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1 Introduction

Nowadays, two innovative future trends regarding hardware development and
hardware description can be found. The first trend concerns the hardware itself.
Modern Xilinx FPGAs provide the possibility to be reconfigured partially and
dynamically – which is called dynamical partial reconfiguration (DPR). DPR
means that parts of the hardware can be exchanged while the rest of the cir-
cuit is running untouched. This opens a huge field of new functionalities on
FPGAs. Examples of applications which can be improved using DPR are video
processing, low-power, automotive or packet filtering. Other technologies like dy-
namically reconfigurable processors or scrubbing are not even possible without
DPR. Therefore, DPR is a powerful and promising technology. Unfortunately, it
is still very challenging to use. Today, using DPR means struggling with architec-
tural details of the used FPGAs and the according synthesis and implementation
tools. A developer would focus most of the time on DPR and only a small part
of the time on the implementation of the actual modules – of course that is the
opposite of what hardware engineers want to do.
The second trend concerns the way hardware is described. The rapidly increas-
ing complexity of hardware led to the usage of computer aided hardware design
and to the development of hardware description languages (HDLs). Today, the
most important HDLs are VHDL and Verilog. Although these HDLs already
allow to describe hardware on a very high level, the developer still has to handle
registers, clocks and clock domains. Using an HDL operating on the algorithmic
level, this is not necessary any longer. Here, designs can be described exactly as
they are in software languages like C, without the need to care about registers or
clocks – which is called high level synthesis (HLS). Many hardware developing
groups are looking forward to an HDL which operates on the algorithmic level,
since this would come with a significant increase in productivity. The aim is to
be able to translate common software algorithms to hardware in an efficient way.
In that process, the highest challenge is to make use of the hardware’s intrinsic
parallelism. [1]
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Fig. 1. The emulation toolflow of the DPR framework

Although both DPR and HLS are important future trends regarding hard-
ware design, they develop quite independently. Today’s software-to-hardware
compilers focus on conventional hardware and therefore have to remove dy-
namic aspects such as the instantiation of calculating modules at runtime [2].
Even object-oriented languages like SystemC [3] do not support the dynamic
instantiation of objects (that means the usage of new or delete outside of the
constructor) for synthesis at all [4]. On the other hand, DPR tools are work-
ing on the lowest possible layer regarding FPGAs: the bitfile level. This paper
focuses on the design and the implementation of a Framework combining the
two technologies, since this has the potential to kill two birds with one stone.
Firstly, DPR can change the programming paradigm in future HDLs regarding
dynamic instantiations. Dynamic parts would not have to be removed any longer
but could be realized on the target FPGA using DPR. Secondly, a high-level lan-
guage support of DPR technologies could help end its shadowy existence and
turn it into a commonly used method.

2 The Framework

Our DPR Framework consists of a software-to-hardware compiler, an NoC also
reliable for data buffering, a Merger, an adaptive Scheduler and a Java Emu-
lator. Figure 1 and 2 illustrate how these components interact with each other
and with the Xilinx DPR tools. The reconfigurable modules are described in a
Java-like language called POL (Parallel Object Language). For testing and veri-
fication, the POL sources can be translated to Java. The Java Emulator is then
able to execute these Java files, giving a developer a first and quick chance to
verify the correctness of the program. The POL sources can also be translated
to VHDL. The generated VHDL files are plugged into a Network on Chip called
CM (Communication Matrix). The CM is responsible for the data forwarding
between the modules and for the data buffering. The Merger combines the gen-
erated VHDL files and the CM files and starts several XST (Xilinx Synthesis
Tool) synthesis runs, until all required netlist files (called NGC files) are created.
These files represent the functionality of the static area and the functionality of
the reconfigurable modules. They are used as input files for Xilinx PlanAhead,
which eventually does the DPR floorplanning and generates the (partial) bitfiles
using the Xilinx ISE Early Access tools. The CM is controlled by a Scheduler
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Fig. 2. The implementation toolflow of the DPR framework

running in software on the Virtex’ PowerPC. It determines which reconfigurable
module is loaded into which PRR (partially reconfigurable region) at which time.
Since the Scheduler also runs on the target FPGA, the reconfiguration has to
be done via the ICAP (Internal Configuration Access Port [5]). Therefore, the
generated design is a self-reconfiguring system.

2.1 POL and Object-Orientation

As a first step, we analyzed the typical structure and behavior of reconfigurable
hardware. It turned out that this hardware is comparable in many aspects to
object-oriented software [6]. The several hardware elements (like LUTs or flip
flops) can be seen as hardware objects, which have a simple state and provide
simple methods to the surrounding system. These small hardware objects can
be aggregated to bigger objects, like adders or multipliers, which have a more
complex state and provide more complex methods. From this point of view, re-
configurable modules can be seen as complex hardware objects. Using DPR, it
now becomes possible to create and delete these objects at runtime, just like soft-
ware objects. Thus, DPR enables a one-to-one correlation between software and
hardware objects. This way, our software-to-hardware compiler directly trans-
lates software objects (described in POL) to hardware objects (described in
VHDL)[7].
Using object-orientation, all objects are declared once, but can be instantiated
multiple times. Thus, it is important to distinguish between the classes and
their instances. Regarding hardware, the classes are represented by partial bit-
files. An instance is created when the partial bitfile is loaded onto the FPGA
(into a PRR). It is obvious that one hardware class can be instantiated many
times.
Using POL, the instantiation of a new instance can be done with a simple new,
but a few design rules have to be considered. The communication between the
objects is realized with signals and slots (inspired by Qt [8]). No public attributes
and no direct attribute access are allowed. For inter-object communication the
get() and emit() methods have to be used. The method calc() is running perma-
nently and represents the continuous characteristic of hardware modules. It is
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the only method containing functionality. Due to the strict restrictions of POL,
it is possible to translate the POL objects directly to parallel running hardware
components. Every POL slot is translated to a VHDL input signal. Every POL
signal becomes a VHDL output signal and the functionality of the components
is extracted from the method calc(). The method connect tells the CM which
VHDL output signal has to be connected to which VHDL input signal via the
CM. The method emit() sends one data item to the CM, get() receives one data
item from the CM. In order to be able to implement manually optimized VHDL
code, POL provides the component statement, which makes it possible to include
submodules written directly in VHDL.

2.2 Short Reconfiguration

The object-oriented approach can help to significantly decrease the reconfigura-
tion time. In conventional DPR setups, the switch from one hardware module
to another is always correlated with the read-out of the complete PRR, in order
to save the current state of the module. Using object-orientation, the change
from one instance of a class to another instance of the same class only requires
a change of the object’s state. The functionality stays the same. Thus, we de-
cided to separate the functionality and the context to be able to reconfigure
them individually. For this, the hardware modules have to store their state in a
particular BRAM4 before swap-out, and to load their state out of the BRAM
after swap-in. As a consequence, the change from one instance to another in-
stance of a single class only causes the reconfiguration of the BRAM. This is
called Short Reconfiguration. In contrast, the change from an instance of class
A to an instance of class B is called Long Reconfiguration, since the complete
PRR has to be overwritten via DPR. Using this new approach, the read-back
of the complete PRR can always be omitted, even if a Long Reconfiguration is
performed.

2.3 Communication Matrix

In many applications, programmable hardware is used to handle huge data
streams. Thus, the dynamic hardware generated by a POL-to-hardware com-
piler has to be able to handle such huge data streams. This negates the usage of
a simple bus to let the hardware modules communicate with each other. Using
a bus, the hardware modules would be calculating in parallel but would have to
provide the result of their calculation sequentially. Regarding big data streams
this would negate the whole parallelism. To avoid this kind of bottleneck, the
Communication Matrix provides a parallel inter-object communication, based
on a set of FIFOs5 and multiplexers. All FIFO elements consist of a target ad-
dress (the hardware instance the data is sent to) and the payload. Based on the
target address and the placement information coming from the scheduler, the

4 Block Random Access Memory – built-in RAM blocks of the Virtex chips
5 First In First Out buffers
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multiplexers can decide which FIFO has to be linked to which PRR. The CM
contains one FIFO per hardware class. Multiple instances of one hardware class
share a single FIFO. This approach makes it possible to handle the data streams
of several hardware objects in parallel, but avoids the instantiation of too many
FIFOs. Our current framework supports 16 classes and 64 instances per class.
If the matrix instantiated a FIFO for every possible instance, it would have to
provide 1024 FIFOs. Using one single FIFO per class, the matrix only has to
instantiate 16 FIFOs. Furthermore, the number of classes is well known at the
compile time, while in contrast the number of instances cannot be known during
compilation. Therefore, the matrix only has to instantiate as many FIFOs as the
number of classes that are used [9].

2.4 Emulator

The usage of partial reconfiguration leads to an extended toolflow regarding syn-
thesis, mapping, placement, routing and bitfile generation. All these steps have
to be done for the static area, and each reconfigurable module times the number
of PRRs. For example a design with 2 PRRs and 3 hardware classes requires
7 runs for each of the steps. Therefore, the implementation time increases sig-
nificantly. In our test setups, the generation of a completely static design for
a V4FX20 required about 30 minutes. The generation of a partial design with
2 PRRs and 3 hardware classes required about 3 hours. It is therefore obvious
that a developer needs the possibility to verify his POL code, without the need
for implementation. Thus, we created the Java Emulator. It uses the concept of
threads in Java to recreate structures and mechanisms (namely the FIFOs and
multiplexers) of the Communication Matrix. The Emulator serves as an extra
layer between POL code and Java Virtual Machine. Rebuilding all characteris-
tics and features of the Communication Matrix allows the execution of POL in
software with exactly the same behavior as in hardware [10].

2.5 Scheduling

In our current setup, the Scheduler is running in software on a PowerPC inside
the Virtex chip. It is responsible for loading the correct instance of the correct
class based on the data coming out of the buffers. It also manages the creation
and the destruction of instances. For this, the PRRs (and therefore the loaded
instances) are connected to the scheduler via DCB (Dynamic Control Bus). This
enables the hardware instances to request the instantiation or the removal of an
instance. Based on the number of items inside a FIFO, the Scheduler decides
which class has to be loaded next (via Long Reconfiguration). In that process, it
is the task of the Scheduler to keep the number of Long Reconfigurations as small
as possible. Since all instances of one class share a single FIFO, the Scheduler
has to check continuously which instance is addressed by the top item coming
out of the FIFO. This instance has to be loaded via Short Reconfiguration.
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3 Case Studies and Measurements

3.1 Dynamic Object Instantiation

Our first example implementation focused on the functionality of the framework
itself. To be able to do Runtime Scheduling, instantiating reconfigurable modules
dynamically, their alternating execution (swap out, saving the context, swap in,
restoring the context) and the final removal of instances have to work correctly.
To verify this functionality, we chose the intuitive and playful example Pong.
It is a simple game for two players. Each player can move a bar up and down
on his edge of the screen and tries to bounce the ball back when it arrives on
his side. Our implementation of the game is able to contain more than one ball.
New balls can be added to the game by simply pressing a button. A ball can
also leave the game when it is missed by a player. To verify the framework, each
of the balls and the bars have been represented as a reconfigurable module. It
is obvious that the creation of a new ball correlates to the instantiation of a
new hardware instance of the ball class and the removal of a ball correlates to
the removal of a ball instance. This example also demonstrates the power of
the object-oriented approach. All balls are implementing the same functionality.
Thus, instantiating multiple balls can be done with ease since no new bitfile is
required. Furthermore, a switch from one instance of a class to another instance
of the same class requires only a Short Reconfiguration.
The system has been instantiated on a Xilinx ML405 board containing a Virtex-
4 FX20. For synthesis, mapping, placement, routing and bitfile generation, we
used ISE 9.1 SP 2 extended by the partial reconfiguration patch (available via
Xilinx’ Early Access Page [11]). For PowerPC subsystem and software gener-

Fig. 3. Left: Screenshot of PlanAhead’s floorplan
Top right: Picture of the ML405 development board
Bottom right: Output of the Pong example running on the ML405
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ation, we used the EDK 9.1 SP 2. The floorplanning and the control of the
specific partial reconfiguration placement, routing and bitfile merging was done
with PlanAhead 10.1.1. Figure 3 shows a screenshot of PlanAhead’s floorplan.
In our example, the size of the PRR was 256 CLBs6 (the according partial bit-
file had a size of 129 kB). It took 323 microseconds to reconfigure the PRR.
The state of the reconfigurable module was stored in 4 BRAMs (the according
partial bitfile had a size of 10 kB). Thus, the Short Reconfiguration took 52
microseconds. Saving the state of a reconfigurable module in the BRAM took
300 ns, restoring it took 200 ns. Compared to the reconfiguration times, these
values are negligible. Using two PRRs, one for the Balls and one for the Bars,
only the Short Reconfiguration had to be performed. This way, the utilization
of the Short Reconfiguration leads to a reconfiguration speedup of 10.
Our tests proved that the framework translates the object-oriented represen-
tation to valid VHDL code. The resulting hardware cooperated nicely with the
Communication Matrix. The swap-in / swap-out mechanism worked as expected.
The dynamic generation and deletion of new Balls was successful. Furthermore,
the framework generated Java code with the same functionality that could be
used without modification for testing and evaluation.

3.2 Streaming

In many applications, FPGAs are used to handle data streams with a high
throughput. Thus, we evaluated the possible implementation of an audio DSP
application, demonstrating the behavior of a dynamic environment regarding
data streams, on a Virtex-4 FX40, using the same tools as in the case study
above. Our audio DSP application has two 16-bit inputs (stereo) and two 16-bit
outputs. We implemented 4 hardware classes representing 4 different effects: a
high pass filter, a low pass filter, a distortion and an echo. Every class is instan-
tiated to activate the corresponding effect on a single channel and removed to
deactivate it. Due to the 2 channels (left and right), every class has 2 instances
at most. The Framework provides 4 PRRs. Thus, if the user activates all effects
on both channels, the scheduler uses each PRR for one single hardware class
and changes its instances alternately. An uninterrupted audio stream at the out-
puts is possible since the hardware modules could calculate 100 000 samples in
one millisecond (due to the clock frequency of 100 MHz), but only 48 samples
per millisecond were needed (due to the sampling rate of the audio stream). The
scheduler needs 52 microseconds for Short Reconfiguration. Every reconfigurable
module stays configured for 1 000 microseconds. The PRRs cannot be reconfig-
ured simultaneously but only sequentially, since the FPGA’s reconfiguration unit
can only reconfigure one frame at once. The Communication Matrix has to store
at least 48 000 samples/s · 2 104µs ≈ 101 samples. Thus, every instance calcu-
lates 1 000 microseconds and pauses 1 104 microseconds. In this example, one
reconfiguration turn lasts 2 104 microseconds. 2 000 microseconds of a turn are
used for calculation. 104 microseconds are used for reconfiguration.

6 Configurable Logic Blocks – a cluster of 4 Slices
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Every PRR had the size of 812 CLBs. The static area (containing the Com-
munication Matrix) had a size of 1008 CLBs. Therefore, the resulting hardware
design would have had a size of 4656 CLBs (that is the complete V4FX40). If
one had instantiated all needed instances at once (without using DPR and CM),
the design would have had a size of about 812 · 8 = 6496 CLBs. Thus, DPR
helped increase the FPGA’s capacity utilization by 28%. This value increases
with the number of audio channels. For example, using 8 audio channels would
lead to a utilization increase of 82% (4656 CLBs with DPR instead of 25984
CLBs without).
Please note that these results are based on the utilization of the Short Recon-
figuration. Without using this technology, a turn would have at least the length
of 12 880 microseconds and 3 220 microseconds would have to be used for re-
configuration (two times swap in and swap out). So without the usage of the
Short Reconfiguration technology, 25% of a single turn would be used for recon-
figuration and the Communication Matrix would have to store 619 samples per
instance – whereas utilizing the Short Reconfiguration, only 5% of a turn are
used for reconfiguration and the Communication Matrix only has to store 101
samples per instance.

4 Conclusion

The object-oriented DPR Framework enables hardware developers to write re-
configurable modules without going into detail with the reconfiguration tech-
niques. The reconfigurable modules are described in a high-level language called
POL. Since POL is very similar to Java, it makes use of well-known program-
ming constructs. It allows expressing the needed parallelism explicitly, without
introducing statements which are unusual in software programming (such as par
in Handel-C [12]). The dynamic instantiation of reconfigurable modules can be
done with a simple new. This makes the handling of the whole reconfiguration
process much easier and helps increase the productivity significantly. Current
case studies are very promising and show that the Framework is ready to be
used even in high data rate environments. [13]
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