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Compressed covariance sensing using quadratic samplers is gaining increasing

interest in recent literature. Covariance matrix often plays the role of a sufficient

statistic in many signal and information processing tasks. However, owing to the

large dimension of the data, it may become necessary to obtain a compressed sketch

of the high dimensional covariance matrix to reduce the associated storage and

communication costs. Nested sampling has been proposed in the past as an efficient

sub-Nyquist sampling strategy that enables perfect reconstruction of the autocorre-

lation sequence of Wide-Sense Stationary (WSS) signals, as though it was sampled

at the Nyquist rate. The key idea behind nested sampling is to exploit properties

of the difference set that naturally arises in quadratic measurement model associ-

ated with covariance compression. In this thesis, we will focus on developing novel

versions of nested sampling for low rank Toeplitz covariance estimation, and phase

retrieval, where the latter problem finds many applications in high resolution optical

imaging, X-ray crystallography and molecular imaging.



The problem of low rank compressive Toeplitz covariance estimation is first

shown to be fundamentally related to that of line spectrum recovery. In absence

if noise, this connection can be exploited to develop a particular kind of sampler

called the Generalized Nested Sampler (GNS), that can achieve optimal compression

rates. In presence of bounded noise, we develop a regularization-free algorithm that

provably leads to stable recovery of the high dimensional Toeplitz matrix from its

order-wise minimal sketch acquired using a GNS. Contrary to existing TV-norm

and nuclear norm based reconstruction algorithms, our technique does not use any

tuning parameters, which can be of great practical value.

The idea of nested sampling idea also finds a surprising use in the problem

of phase retrieval, which has been of great interest in recent times for its convex

formulation via PhaseLift, By using another modified version of nested sampling,

namely the Partial Nested Fourier Sampler (PNFS), we show that with probability

one, it is possible to achieve a certain conjectured lower bound on the necessary

measurement size. Moreover, for sparse data, an l1 minimization based algorithm is

proposed that can lead to stable phase retrieval using order-wise minimal number

of measurements.
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Chapter 1: Introduction

Technological advances in device physics, microelectronics, signal processing and

computing have contributed to the emergence of “Big Data” over the last decade

[1, 2]. Big data is routinely encountered in sensor networks, genomics, remote

sensing, imaging, particle physics, web search, social networks, and so forth. This

has led to a widening gap between the volume of available data and the capabilities

for storing, communicating and processing them efficiently and reliably. Fortunately

however, the amount of information buried in the data acquired by sensors in most

scenarios is substantially lower compared to the number of raw samples acquired.

Additionally, such data can also exhibit well- defined structures, often imposed by

the generative physical model. For example, a radar system collects large number

of samples of 3 dimensional data across fast time, slow time and space, but the

ultimate goal is to find three parameters (range, velocity and direction) of a few

targets of interest. This key observation has led to the possibility of novel sampling

strategies and design of sensing systems that can directly capture the information

using far fewer samples.
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1.1 Compressive Sensing and Linear Measurement Model

In recent times, compressed sensing has been popularized as an efficient tool for

big-data processing, where the essential idea is to exploit the fact that many real-

life signals of interest (such as images and videos) have sparse representations over

known bases (i.e. they can be represented using only a few non-zero numbers with

respect to known basis vectors) [3, 4, 6]. Such signals can then be sub-sampled

using a random linear projections for efficient storage and/or communication. The

compressive measurement model can be written as

y “ Ax` n

where y P CM represents low dimensional linear measurement of a high dimensional

sparse vector x P CN (N " M) using the measurement matrix A P CM,N . The

number of non-zero elements of x, denoted by }x}0 “ s is typically small, i.e.

s ! N . Given y, x is typically reconstructed using the following l1 minimization:

min
z
}z}1

s.t. y “ Ax (1.1)

By invoking certain isometric properties of high dimensional random linear operators

[5], the original high dimensional signal can be successfully recovered from its low-

dimensional measurement using l1 minimization [3, 4]. In particular, for a wide

class of random A with i.i.d entries, it can be shown that M “ Ops logpN{sqq

measurements suffice for perfectly reconstructing x with overwhelming probability

(that grows to 1 exponentially with N).
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1.2 Compressive Covariance Sketching and Quadratic Samplers

In many applications, however, the goal is to infer quantities of interest from high

dimensional signals (such as recognize and track an object from a video sequence,

or identify point sources of radiation from signals collected at an array of imaging

sensors). In such cases, it reconstruction of the original signal may be unnecessary

and compression may be attained even without invoking sparsity. Furthermore, the

physics of the problem can impose structures on the ensuing acquisition system,

leading to the possibility of “structured sampling strategies. Also often, one can

make informed assumptions about the nature of randomness, or statistical distribu-

tion of the data (which is frequently done in statistical signal processing) that can

be judiciously exploited by the sampling technique. Standard compressive sensing

techniques, that heavily rely on sparsity of representation, and use linear random

projections for taking measurements, may turn out to be either inapplicable, or

sub-optimal in such settings. We will illustrate this in the context of compressive

covariance sketching, where the goal is to infer the covariance matrix parameterizing

the distribution of high dimensional signals, from their compressed sketch.

In many signal and information processing tasks, (such as spectral estimation

and source localization), the covariance matrix Rx “ EpxxHq of the (zero-mean)

high dimensional random signal x is used for subsequent estimation/detection tasks.

However, owing to its large size, it may be impractical to store and/or communicate

Rx (or its estimate). Instead, if we acquire compressive linear measurements of x

as y “ Ax, the covariance matrix Ry of y now acts as a compressive sketch of Rx
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which can be effectively stored and/or processed. The high dimensional covariance

matrix Rx and its compressive sketch Ry are related as

Ry “ ARxAH (1.2)

Notice that Ry and Rx are still linearly related, and in the most general setting,

this linear map is equal to the Kronecker product A˚bA. This is seen more clearly

using the following vectorized form:

vecpRyq “

´

A˚
bA

¯

vecpRxq

Hence, each element of Ry is a quadratic function of the elements of A. The key

idea in compressive covariance sensing is to design the linear operator A such that

its aforementioned quadratic form possess certain desirable properties which can

be exploited to reconstruct Rx from an optimal number of measurements. It is

to be noted that Kronecker products of measurement matrices have been studied

and analyzed for compressed sensing and sketching of images and other matrices

[7, 8]. More recently, the performance of nuclear norm based compressive covariance

estimation algorithms has been studied using random A with i.i.d entries. However,

when the covariance matrix is highly structured, a direct application of these results

will produce sub-optimal number of measurements. In other words, by carefully

exploiting the specific structure of Rx (such as its positive semidefinite property),

it may be possible to achieve a greater degree of compression via clever design of

structured deterministic A. In this thesis, we will assume Rx to be a Toeplitz

structured covariance matrix, and derive an optimal structured sampling strategy

(inspired from prior work on nested arrays [29]) that can provably perform exact and
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stable reconstruction of Rx from its compressed sketch, acquired using an optimal

number of measurements, which is only a function of the rank of Rx.

1.3 Phase Retrieval and Quadratic Samplers

Quadratic Samplers also arise in a famous problem from high resolution optical

imaging, namely that of phase retrieval. It finds extensive application in many areas

of imaging science, such as X-ray crystallography, diffraction imaging, molecular

imaging and high resolution microscopy, astronomical imaging, to name a few. The

goal is to recover an unknown signal (or an image) from the magnitude of its Fourier

measurements. It arises from the fact that detectors often are unable to measure

the phase of incident optical wave, whereby much of the structural information

contained in the image may be lost. The (noiseless) measurement model for phase

retrieval can be represented as

yi “ |xai,xy|, i “ 1, 2, ¨ ¨ ¨ ,M (1.3)

Here x P CN is the unknown signal of interest and yi, 1 ď i ďM represent M inten-

sity measurements acquired using the measurement vectors ai, i “ 1, 2 ¨ ¨ ¨ ,M . The

problem of phase retrieval has received great attention across scientific and engineer-

ing communities [86, 59, 90, 61], both due to fundamental mathematical questions

on the number of necessary and sufficient measurements (i.e. relation between M

and N) and the need for developing robust algorithms that can successfully recover

x (upto a trivial global phase ambiguity) from yi, i “ 1, 2, ¨ ¨ ¨M . The problem of

Fourier phase retrieval (i.e . when taiu
M
i“1 represent columns of a DFT matrix) is
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particularly elusive, since the presence of multiple spectral factors make the problem

fundamentally ill-posed (to be elaborated later in Chapter 2). In recent times, there

have been attempts at resolving this ambiguity by using sparsity as a prior [89],

using coded diffraction masks [80], or using STFT [56]. However, these methods

are often sub-optimal in terms of the number of measurements required to ensure

perfect reconstruction.

In this thesis, we will develop a new Fourier-based measurement system (again,

inspired from nested arrays) that can perform phase retrieval with provably near-

minimal number of measurements. A key idea is to realize that the non-linear

measurement model for phase retrieval can be recast in the following form

y2
i “

´

aTi b aHi

¯

vecpxxHq (1.4)

It can be seen that y2
i is a linear function of the matrix xxH and this equivalent

linear map actually consists of quadratic products of the measurement vector ai.

We can actually view (1.4) as a special case of covariance sketching, where xxH

represents a rank-1 covariance matrix. This formulation will help us exploit ideas

from covariance estimation using nested samplers to design highly efficient Fourier-

based measurement vectors ai for phase retrieval.

1.4 Contributions and Organization of The Dissertation

The contributions of this thesis can be summarized as following:

1. Optimum Low Rank Toeplitz Covariance Compression Using Struc-

tured Samplers: We consider the problem compressing a low rank (say,
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with rank r) high dimensional Toeplitz covariance matrix (of size N ˆ N ,

where N is large), and develop a new structured sampling strategy, namely

the Generalized Nested Sampler (GNS), using which the high dimensional ma-

trix can be exactly recovered from its noiseless sketch of size M ˆM , as long

as M “ Op
?
rq. It can be shown that the size of the sketch is optimal since

it attains the degrees of freedom associated with low rank Toeplitz covariance

matrix. Our sampling strategy fully exploits the positive semidefiniteness as

well as the Toeplitz structure of the covariance matrix, and outperforms ran-

dom samplers where the number of measurements typically involve an extra

polylogpNq factor. We also show that GNS is stable in presence of bounded

noise.

2. Low Complexity and Regularizer-Free Reconstruction: We also de-

velop a new reconstruction algorithm for recovering high dimensional Toeplitz

structured Rx from its compressed sketch RY acquired using a GNS. Our

algorithm enjoys several advantages over state-of-the art nuclear norm based

recovery algorithms. Firstly, our algorithm exploits the parametric represen-

tation of Toeplitz PSD matrices and this leads to a significantly lower com-

putational complexity over nuclear norm minimization techniques. Secondly,

our algorithm exploits the positive semidefinite property of covariance ma-

trices to proposed a novel pre-processing step using constrained least square

denoising, that completely avoids the need for any regularization parameter.

This offers great advantage over algorithms that use nuclear-norm regulariz-
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ers since the choice of regularization parameter can be quite sensitive to our

knowledge of the noise power. We analytically characterize the performance

of our algorithm and show that it leads to stable covariance estimation from

its order-wise minimal sketch.

We report out results on low rank Toeplitz covariance compression and recon-

struction in Chapter 2.

3. Fourier Phase Retrieval with near-minimal number of measurements:

In 2, we consider the problem of Fourier-based phase retrieval and design a new

sampling technique, namely Partial Nested Fourier Samplers (PNFS) that can

overcome the inherent ambiguity of standard Fourier sampling. In absence of

noise, we show that our sampler can recover almost all N dimensional image

using only 4N ´ 5 intensity measurements, which has an interesting connec-

tion with a certain existing conjecture regarding the number of measurements

necessary for exact phase retrieval. When the underlying signal is sparse, the

PNFS can be modified and combined with l1 minimization algorithm to en-

sure recovery of sparse signals from only OpslogpN{sq intensity measurements,

which has not been so far possible for Fourier based phase retrieval.

The content of this thesis is derived from several published and submitted

conference and journal papers [13, 14, 17, 75, 76, 15, 16].
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Chapter 2: Low Rank Toeplitz Covariance Estimation

In this chapter, we will focus on compressing and recovering Toeplitz structured co-

variance matrix with near-minimal number of measurements. Since Toeplitz matrix

consists of repeated entries, we can apply nested array idea [29] to extract distinct

entries by designing particular sampler. We will discuss the idea of nested array

sampling and illustrate it with some simple examples. Then we will define a partic-

ular kind of sampler called Generalized Nested Sampler (GNS) that is powerful in

compressing Toeplitz covariance which is the focus of next chapter.

2.1 Overview and Prior Art

Estimation of second-order statistics (or correlation) of high-dimensional data plays

a central role in modern statistical analysis and information processing. The covari-

ance often acts as a sufficient statistic in many signal processing problems [18, 19].

The covariance matrix also provides a compact summary of a large dataset, and is

used for dimension reduction. A popular example is that of principal component

analysis [20, 21] where the second-order statistics of the data are used to project

the data along the dominant eigenvectors, thereby attaining dimension reduction.

The inverse covariance matrix also plays important role in many applications re-
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lated to classification of Gaussian data and establishing independence relations in

exploratory data analysis and testing [22].

Owing to its large dimension, it may not be always possible to store and/or

reliably communicate the entire high dimensional covariance matrix. Hence, it is

crucial to obtain a compressive sketch of the covariance matrix which can be ef-

ficiently stored and transmitted. The topic of compressive covariance sampling

[23, 24, 25, 26, 27], is receiving increasing attention, where the goal is to compress

and reconstruct the high dimensional covariance matrix using so-called quadratic

samplers. In general, it is not possible to design a compressive sampler unless the

correlation matrix exhibits some low dimensional structure that allows compression.

Typical structural assumptions include that of sparsity, low rank and stationarity

of data (which imposes a Toeplitz structure on the covariance matrix) [23, 25].

2.1.1 Related Work

The problem of obtaining a sketch of the covariance matrix by compressively sam-

pling the underlying random process has been recently investigated in a number of

works [23, 24, 25, 26, 8]. In [8], a high dimensional covariance matrix Σ P RN,N is

sketched using quadratic measurements where Σ is assumed to exhibit distributed

sparsity. The required sample size for compressing sparse covariacne matrices is

proved to be Op
?
N logNq. When the covariance matrix exhibits a Toeplitz struc-

ture, compressive covariance sensing becomes equivalent to compressive power spec-

trum estimation, which has been investigated in [27, 26, 24, 25, 28, 29]. The common
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theme in this body of work is the use of deterministic sub-Nyquist samplers (often

inspired from the idea of difference-sets [12]) for compressively sampling WSS sig-

nals. Such samplers can compress Toeplitz matrices of size N ˆN using a sketch of

size Op
?
NqˆOp

?
Nq. The work in [30], considers a cyclostationary signal model for

which the number of measurements is shown to be Op
?
Nq. In [31], the authors con-

sider the estimation of Toeplitz covariance matrix via Maximum Likelihood methods

and the results hold only in asymptotic sense and no stability result is discussed for

finite sample case. These results in literature do not consider low rank Toeplitz ma-

trices and the reconstruction framework is quite different from Least-Square (LS)

based approach proposed in this thesis.

In this thesis, besides Toeplitz structure, we also exploit low rank of the covari-

ance matrix that allows further compression over what is possible by exploiting only

the Toeplitz structure. Low rank positive semidefinite (PSD) Toeplitz matrices arise

in applications such as direction finding in radar and astronomical imaging systems,

where the low rank is typically attributed to the presence of only a few sources or

scatterers compared to the number of physical sensors [32]. Another closely related

application is that of LTI dynamical system realization from convex time domain

constraints on its impulse response. In such a case, the problem reduces to finding

a low rank Hankel structured matrix (very closely related to the Toeplitz structure)

describing the LTI system [33].

Much of the existing work on low rank matrix recovery from compressive mea-

surements [34, 35, 36, 37, 38, 39] uses random sampling along with a nuclear norm

minimization heuristic to establish performance guarantees. The number of mea-
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surements in such cases is shown to be of the general formOprαNβpolylogpNqq, α, β ą

0. These methods however do not consider compression of low rank Toeplitz ma-

trices. The authors in [23] provide a unified analysis for compressing and recov-

ering low rank Toeplitz covariance matrix (again, using a nuclear norm heuris-

tic) and shows that OprpolylogNq measurements are sufficient for compressing N -

dimensional Toeplitz covariance matrices with rank r. Recently, in [40], the authors

consider the problem of line spectrum estimation from multiple measurement vec-

tor models (MMV) compressed using deterministic sparse samplers, and propose

a nuclear norm minimization technique to recover the frequencies. However, the

size of the compressed covariance matrix (obtained from the MMV model) in [40] is

Op
?
NqˆOp

?
Nq since the sampling scheme does not exploit low rank. Furthermore

the recovery guarantees cannot be easily extended to the case when the compressed

sketch is of size Op
?
rq ˆOp

?
rq, r ! N .

Our work stands in sharp contrast to random sampling based approaches since

we use a deterministic structured sampler. Hence, we cannot use the existing tools for

analyzing the performance of nuclear norm minimization algorithms (which heavily

reply on random sampling for showing existence of necessary dual certificates, or

proving RIP of suitable sampling operators). For compressing low rank PSD Toeplitz

matrices, we use a newly proposed deterministic sampling scheme called Generalized

Nested Sampling (GNS) [13, 14]. Compared with existing sparse ruler type samplers

[24, 25, 28], GNS provides a closed-form expression for the sampling matrix for any

dimension. Moreover, unlike [24, 25, 28, 40], the size of the compressed sketch is

Op
?
rq ˆOp

?
rq. The proposed reconstruction technique is also very different from
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existing body of work in low rank matrix recovery. We transform the problem of

low rank Toeplitz matrix recovery to that of line spectrum estimation, and use the

recently developed analysis tools in frequency domain [41, 42, 39] for establishing

performance guarantees for noiseless as well as noisy recovery. As a consequence of

the positive semidefinite property of the covariance matrix, our analysis framework

can avoid the need for a separation condition on the true frequencies in noiseless

case, which is a central assumption in [42, 41, 43]. The fact that separation condition

can be avoided for positive sources has been discussed in many recent works [43,

44, 45, 46, 47]. In this paper, we propose a parameter-free algorithm based on LS-

denoising and prove the proposed algorithm is stable if separation condition on true

frequencies is satisfied as in literature.

2.2 Nested Array Sampling and Generalized Nested Sampler

2.2.1 Difference Set

The key idea of nested array sampling is the use of difference set brought by the

quadratic measurement model. Consider the general quadratic model

Y “ AXBT (2.1)

where X P RNˆN , A,B P RMˆN . We have

rYsi,j “
ÿ

1ďm,nďN

rAsi,mrXsm,nrBsj,n (2.2)

The difficulty of quadratic model is that all entries of X are coupled together in each

measurement rYsi,j. One simple way to fix this is to design A,B such that there is

13



one-to-one mapping from Y to X. In another word, we hope following relationship

holds

rYsi,j “ rAsi,fpiqrXsfpiq,gpjqrBsj,gpjq (2.3)

where fp¨q, gp¨q are index mappings specified by the samplers design. In practice,

we may choose B ” A, then the entry of X selected in rYsi,j is rXsfpiq,fpjq. When

X is Toeplitz structured (see Chapter 2), the entry selected will be determined by

the difference fpiq ´ fpjq.

However, since the range of i, j are both up-limited by the sample size M , the

difference fpiq ´ fpjq will also be bounded from both sides as we require fp¨q to

be a one-to-one mapping function. Then we naturally hope that the difference set

tfpiq ´ fpjqu will span as large consecutive range as possible for 1 ď i, j ď M and

consequently more entries of X can be sampled.

The study of difference set can be dated back to early works [12]. It has been

proved that to cover the range r1, N s, we need at least Op
?
Nq integers. As a simple

example, consider an index set N “ t1, 2, 3, 4u, its difference set DN is given by

DN “ t´3,´2,´1, 0, 1, 2, 3u (2.4)

With the number of integers fixed, consider another index set N 1 “ t1, 2, 3, 6u, its

difference set is following

DN 1 “ t´5,´4,´3,´2,´1, 0, 1, 2, 3, 4, 5u (2.5)

Obviously, N 1 is better thanN in the sense of representing larger consecutive integer

range. So, it is preferable to define mapping

fpiq ô rN 1
si (2.6)
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which can sample more entries of X for 1 ď i, j ď 4.

To the best of our knowledge, there is no deterministic way to construct opti-

mal index set N for any given sample size M . What is known in literature is that

the optimal rate is Op
?
Nq. As one of the major contributions of this thesis, we

define a particular kind of sampler based on nested array sampling idea which works

for almost every dimension N and theoretically achieve Op
?
Nq sampling rate.

2.2.2 Generalized Nested Sampler

The Generalized Nested Sampler (GNS) was first introduced in [13] and further

developed in [14]. Following [13], we review some key properties in this section. A

GNS is defined in terms of two integer-valued functions ΘpNq and ΓpNq.

Definition 1. For any integer K ě 6, define ΘpKq as the maximum integer θ such

that

θ2
` θ ď K (2.7)

ΓpKq “ 1`K ´Θ2
pKq

A GNS can be defined as a measurement matrix for any integer K as follows:

Definition 2. For any integer K ě 6, define the effective Generalized Nested Sam-

pling matrix AK
GNS P RM,K, with M “ ΓpKq `ΘpKq ´ 1, as
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rAK
GNSsi, j “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

1 if i “ j, 1 ď i ď ΓpKq

1 if j “ pi´ ΓpKqqΘpKq ` i,

ΓpKq ă i ďM

0 Elsewhere

(2.8)

The key motivation of GNS is to give a unified algorithm for general dimen-

sion that can be used to establish a one-to-one mapping as discussed in previous

section. The following lemma shows that the definition (2.8) indeed constructs such

a mapping.

Lemma 1. Given an integer N ě 6, there exists a set of integers, Ω, of the following

form, such that every integer from 0 to N ´ 1 can be expressed as a difference of

two elements in Ω.

Ω “ t1, 2, ¨ ¨ ¨ ,ΓpNq,

ΓpNq `∆pNq,ΓpNq ` 2∆pNq, ¨ ¨ ¨ ,ΓpNq ` n∆pNqu

(2.9)

where ∆pNq “ ΘpNq ` 1 and n “ ΘpNq ´ 1

Proof. First noting that for N ě 6, ΘpNq ě 2 and ΓpNq ` n∆ “ ΓpNq ` ΘpNq2 ´

1 “ N by (2.8). Since ΓpNq ě ∆pNq “ ΘpNq ` 1, we can express any integer ζ

between 0 and N ´ 1, in the form ζ “ ΓpNq ` l∆pNq ´ m where 0 ď l ď n and

16



0 ď m ď ΓpNq. If m “ 0, we consider l in the range 0 ď l ď n ´ 1 and express ζ

as ζ “ ΓpNq ` pl` 1q∆pNq ´∆pNq where ΓpNq ` pl` 1q∆pNq and ∆pNq are in Ω.

If 1 ď m ď ΓpNq, noting that ΓpNq ` l∆pNq and m are in Ω, it can be concluded

that ζ can be expressed by difference of two elements in Ω.

As a simple example, we consider the case N “ 6, then

AN
GNS “

»

—

—

—

—

—

—

—

—

—

—

–

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(2.10)

and the associated set Ω is given by

Ω “ t1, 2, 3, 6u (2.11)

which is already discussed in earlier section.

If we use AN
GNS in (2.1), the measurements Y will contain and only contain

all the entries rXsm,n satisfying m ´ n P DΩ. Obviously, a large portion of X

is ignored by using such sparse structured sampling matrix AN
GNS but it may be

already sufficient for sampling some highly structured matrix like Toeplitz covariance

matrix, which is discussed in detail in later sections.

2.3 Preliminaries for Low Rank Toeplitz Recovery

A first contribution of our work is to show that certain structured deterministic

samplers can provably lead to the optimum recovery guarantees in terms of the
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number of measurements needed to recover the high dimensional Toeplitz matrix.

This is possible due to two reasons: (i) Toeplitz matrices (irrespective of rank) are

highly structured objects, and deterministic samplers can be designed to completely

exploit their structure (ii) Low rank PSD Toeplitz matrices possess additional alge-

braic properties which the proposed deterministic sampler can exploit. We will first

introduce our measurement model and review a key property of low rank Toeplitz

matrices that we will exploit throughout the paper.

2.3.1 Model Description

Consider a sequence of high dimensional zero-mean random vectors txpu
8
p“´8 of

dimension N (N is a large integer), whose covariance matrix is given by Epxpx
T
p q fi

T P RN,N . We compressively sample the data using a sampling matrix As P RM,N ,

M ! N to obtain yp “ Asxp where M is treated as sample size to be minimized

throughout the paper. The covariance matrix of typu
8
p“´8 is given by

RY “ Erypy
T
p s “ AsTAs

T (2.12)

Instead of the larger covariance matrix T, we store and/or transmit the compressed

covariance matrix RY P RM,M . This paper focuses on the special case when the

vectors xp are wide-sense stationary, whereby its covariance matrix T P RN,N is a

Toeplitz matrix, satisfying rTsm,n “ rTsm`k,n`k “ t|m´n|, @m,n, k. The goal of

this paper is to design the sampling matrix As to obtain the compressed sketch RY

and develop a reconstruction algorithm to recover T from RY under the assumption

that T is Toeplitz and low rank.
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2.3.2 Low Rank Toeplitz Matrix and Vandermonde Decomposition

Lemma

Our proposed sampling scheme and recovery algorithms are fundamentally based on

the famous Caratheodory’s theorem [39, 48, 49] that provides an explicit algebraic

structure of T in terms of a Vandermonde matrix:

Theorem 1. A positive semidefinite Toeplitz matrix T P RN,N with rank r ă N has

the following decomposition:

T “ VNDVH
N (2.13)

where VN P CN,r “ rvNpf1q,vNpf2q, ¨ ¨ ¨ ,vNpfrqs and each column vNpfiq is defined

as

rvNpfiqsk “ ej2πfipk´1q fi P p´1{2, 1{2s, 1 ď k ď N (2.14)

The matrix D P Rrˆr is diagonal with positive entries td1, d2, ¨ ¨ ¨ , dru.

Remark: The Vandermonde decomposition lemma is also true for complex

valued low rank PSD Toeplitz matrices. However, we present it for real valued T

which is the focus of current paper.

The decomposition (2.13) allows us to a deduce similar factorization for all

leading principals of T. In particular, we have the following corollary

Corollary 1. For all 1 ď n ď N , we have the following decomposition of Tpnq

Tpnq “ VnDVH
n (2.15)

where the columns of Vn P Cn,r are defined in the same way as (2.14).
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The degrees of freedom of a matrix is defined as the minimum number of

real numbers needed to represent it. Using Caratheodory’s theorem, the degrees of

freedom of a rank r Toeplitz matrix is given by

Corollary 2. A PSD Toeplitz matrix T P RN,N with rank r, has at most 2r degrees

of freedom (DOF), characterized by the real numbers tfi, diu
r
i“1 given by (2.14).

Two important remarks follow:

• The DOF of a rank r ă N Toeplitz matrix is completely independent of the

ambient dimension N . We will exploit this property to propose a recovery

technique that has significantly lower complexity than the nuclear norm min-

imization framework of [42, 41].

• Any (order-wise) optimal sketching method should produce a sketch RY of

size Op
?
rq ˆ Op

?
rq, i.e., it should contain Oprq measurements of T. The

proposed sampling and reconstruction scheme will be shown to be order-wise

optimal.

2.3.3 Application of Generalized Nested Sampler

In earlier sections, we introduce the nested array sampling idea and Generalized

Nested Sampler (GNS). Due to the special structure of Toeplitz covariance matrix,

GNS is well suitable to Toeplitz matrix sampling.

To illustrate how GNS works, we show a small example. Let T be a real PSD

Toeplitz matrix of dimension N “ 6 with first column rt0, t1, ¨ ¨ ¨ , t5s
T . Then AN

GNS
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is given by

AN
GNS “

»

—

—

—

—

—

—

—

—

—

—

–

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(2.16)

Then the compressed sketch RY is given by

RY “

»

—

—

—

—

—

—

—

—

—

—

–

t0 t1 t2 t5

t1 t0 t1 t4

t2 t1 t0 t3

t5 t4 t3 t0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(2.17)

Then obviously, we can recover T from observation RY. It can be seen that RY is

itself structured when AN
GNS is applied. Particularly, the diagonal blocks will also

be Toeplitz which is illustrated in Fig 2.1. The result is formalized in Theorem 2.

Theorem 2. A real symmetric Toeplitz matrix T P RN,N , N ě 6, can be recovered

from its compressed quadratic measurement RY “ ATA1 where A P RM,N is a

Generalized Nested Sampling Matrix given by (2.8).

Proof. Each entry of RY can be expressed as

RYi,j “
ÿ

p

ÿ

q

Ai,pTp,qAj,q “
ÿ

p

ÿ

q

Ai,pt|p´q|Aj,q (2.18)

From the definition of A, for each i or j, we have one and only one entry Ai,ppiq

or Aj,qpjq which is nonzero. Here, we use notations ppiq and qpjq to express the

dependency on i and j explicitly.
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Then, RYi,j “ t|ppiq´qpjq| and ppiq, qpjq are both in the set Ω defined in (2.9).

From Lemma 1, we know for any N ě 6, any integer from 0 to N ´ 1 could be

expressed by two elements in Ω, equivalently, ppiq and qpjq could be found that any

entry tn in ωT can be expressed as tn “ t|ppiq´qpjq| “ RYi,j. And the Toeplitz matrix

T is exactly recovered in the sense that each entry in ωT can be exactly found in

the measurement RY where the position of tn, 0 ď n ď N ´ 1 is pi, jq such that

Ai,ppiq “ Aj,qpjq “ 1 and n “ |ppiq ´ qpjq|.

Figure 2.1: The structure of RY when AN
GNS is applied.

Compression Using Structure Alone: It is worth noting that the row or column

size M of the compressed matrix RY is Op
?
Nq. This shows that GNS can compress

a N ˆN Toeplitz matrix T by entirely exploiting its structure, even when it is not

necessarily low rank. As an immediate consequence of Lemma 1, we have following

corollary on recovering the nˆ n principal Tpnq of T.

Corollary 3. For any 1 ď n ď N , Tpnq can be exactly recovered from its compressive

sketch RY “ AsTAT
s where the measurement matrix As P RΓpnq`Θpnq´1,N is given

by As

As “ rA
n
GNS,0s (2.19)

where An
GNS P RΓpnq`Θpnq´1,n is a GNS defined as (2.8).
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2.4 Near Optimal Compression and Recovery of Low-Rank Toeplitz

Matrices without Noise

The Vandermonde decomposition lemma dictates that a rank r PSD Toeplitz matrix

can be compressed by simply retaining its nˆn principal minor Tpnq where n “ Oprq.

However, Tpnq, being a real-valued Toeplitz matrix, contains only n distinct entries.

This leads to the possibility of further compressing Tpnq using a suitable sampler.

The possibility of compressing and reconstructing a nˆn Toeplitz matrix simply by

exploiting the redundancies in its entries has been addressed in [24, 25, 26, 27] where

the sampling matrix As is constructed using a minimum redundancy sampler or a

sparse ruler [12]. The size of the optimally compressed covariance matrix is Op
?
nqˆ

Op
?
nq and it retains all n distinct entries of Tpnq from which Tpnq can be perfectly

reconstructed in absence of noise. However, one disadvantage of using sparse rulers

is that there are no closed form expressions for the sampling set, or the exact size of

the sketch. We recently proposed another structured deterministic sampler, namely,

the Generalized Nested Sampler (GNS) [13, 14] that ensures perfect reconstruction

of Tpnq from a compressed sketch of size Op
?
nq ˆOp

?
nq. An advantage of GNS is

that closed form expressions for the sampling matrix As and the size of the sketch

can be derived for almost any n.

The use of random samplers for compressing Toeplitz matrices has also been

considered in [25], and it is shown that with probability 1, they attain the same order

wise compression (i.e. Op
?
nq) as sparse rulers. However, these samplers usually
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lead to a dense measurement matrix As while sparse rulers or GNS yield a highly

sparse As which can require less storage space and allow faster computations.

For noiseless case, there are two different ways to recover T exactly. One way

is to use the idea of linear prediction [50] which is developed in [14] and the other is

more based on the Vandermonde decomposition of T or equivalently the associated

frequencies and amplitudes. We will cover both methods in following sections.

2.5 Sampling and Reconstruction Scheme via Vandermonde Decom-

position

We now propose an end-to-end sampling and reconstruction scheme for low rank

PSD Toeplitz matrices in noiseless case using GNS as a representative example of

an order-wise optimal sampler. In principle, GNS can also be replaced by a sparse-

ruler type sampler [24, 25].

1. Compression: Given a sequence of high dimensional WSS data xp P RN,1

with Toeplitz covariance matrix T having rank r ă N , obtain compressed

measurements yp P RΓpr`qq`Θpr`qq´1,1 as

yp “ Asxp, As “ rA
r`q
GNS,0s (2.20)

Here q ě 1 and Ar
GNS P RΓpr`qq`Θpr`qq´1,r`q is a GNS sampler. Compute

the covariance of the compressed measurements to obtain the required sketch
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RY P RΓpr`qq`Θpr`qq´1,Γpr`qq`Θpr`qq´1of T as

RY fi Epypyp
T
q “ AsTAT

s

From the structure of As in (2.20), it can be readily observed that

RY “ Ar`q
GNSTpr`qqpA

r`q
GNSq

T (2.21)

2. Reconstruction: Given RY obtained from the compression stage, we proceed

to reconstruct T as follows:

(a) Recover Tpr`qq from RY. This is possible as dictated by Corollary 3.

(b) Noticing that Tpr`qq is a rank deficient (rank r) PSD Toeplitz matrix for

q ě 1, let tfi, diu, i “ 1, 2, ¨ ¨ ¨ , r be the parameters describing its paramet-

ric decomposition (2.15). Recover tfi, diu using MUSIC and least-square

(LS) according to (2.15).

(c) Given tfi, diu, recover T using its Vandermonde decomposition (2.13).

Fig. 2.2 shows the pictorial depiction of the end-to-end compression and reconstruc-

tion system.

The proposed scheme enjoys several advantages, such as requiring the order-

wise optimum number of measurements to compress a rank r Toeplitz matrix, and

employing a lower complexity reconstruction procedure compared to existing meth-

ods, which can be especially attractive for high dimensional (large N) problems. We

next elaborate on these points.
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Figure 2.2: GNS based sampling and reconstruction of low rank PSD Toeplitz

matrix.

2.5.1 Optimum Compression

GNS or sparse-ruler ased compression strategy produces a sketch RY of size pΓpr`

1q ` Θpr ` 1q ´ 1q ˆ pΓpr ` 1q ` Θpr ` 1q ´ 1). Since Γpr ` 1q,Θpr ` 1q “ Op
?
rq,

we need Oprq numbers to represent/store RY. Recall that the degree of freedom

of a rank r Toeplitz matrix is at most 2r. Hence, the GNS is order-wise optimal,

requiring only Oprq measurements to compress T. The same comment applied to

sparse rulers. Another crucial property of GNS is that the size of the compressed

matrix RY is independent of the ambient high dimension N of T. This stands in

sharp contrast to the random sampling based compression scheme suggested in [23]

where the total number of measurements in the compressed sketch is of the form

Oprpoly logNq. Therefore there is a logarithmic factor depending on N , which

shows that random sampling is not order-wise optimal, and cannot attain the DOF
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of T. This is because random sampling is not structure-aware and hence cannot

fully exploit the inherent redundancies among the entries of the Toeplitz matrix.

The compressed sketch produced by the GNS however, attains the DOF (upto a

constant) by fully exploiting the structure of T and its size does not scale with N .

Hence, we can compress Toeplitz matrices of arbitrarily large size N but fixed rank

r, using a sketch of constant (with respect to N) size of Oprq.

2.5.2 Low-complexity Reconstruction and Power of Prediction

Given the sketch RY, the reconstruction scheme proceeds in two stages: it first

extracts the parameters tfi, diu from Tpr`1q recovered from RY. Then, it predicts

the remaining entries of T using the Vandermonde decomposition (2.13). This pre-

diction based scheme offers a powerful advantage in terms of reducing the computa-

tional complexity of the overall reconstruction. We make this advantage explicit by

comparing with the reconstruction algorithm proposed in [23]. The authors in [23]

obtain a sketch Y “ ApTq of T where Ap¨q is a random linear map, and propose to

reconstruct T as

min
XPRNˆN

}X}˚ pN1q

subject to Y “ ApXq, X is PSD Toeplitz

The problem pN1q thus recovers the entire matrix T in a single-shot and the problem

size is directly proportional to N . This has the following disadvantages:

1. The complexity of pN1q scales with N and can become prohibitive for very

large N .
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2. The problem pN1q needs to be re-solved for each size N . In other words, even

if we recover a principal Tpnq by solving pN1q, it cannot be directly used to

compute a larger principal Tpn1q (n1 ą n), and one needs to solve pN1q again

for the new problem size n1.

The proposed reconstruction method however offers the following advantages that

overcome both of these limitations:

1. Low Complexity Reconstruction: Just as our compressed sketch is independent

of the ambient dimension N , the key step of our reconstruction scheme (where

we recover tfi, diu) also requires a much smaller problem size (compared to

pN1q) that scales only with r. Thus our reconstruction scheme has an overall

complexity that is completely independent of N and this can offer substantial

computational saving especially when N is very large.

2. Power of Prediction: Given estimates of fi, di, i “ 1, 2, ¨ ¨ ¨ , r, our algorithm

can recover Toeplitz matrices of any size by using the Vandermonde decom-

position (2.13). This is because we can perfectly predict (in absence of noise

and other additive errors) the remaining entries of T once we know its pr `

1q ˆ pr` 1q leading principal Tpr`1q. Therefore, we solve for tfi, diu only once

and use them to predict T of any size. Hence, if we want to recover a larger

principal minor Tn1 (n1 ą n), we just use (2.13) to compute n1 ´ n additional

values.
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2.6 Stable Recovery of Low Rank Toeplitz Covariance in Presence of

Bounded Noise: A Parameter Free Approach

In previous section, we review the GNS sampler and show the algorithm for noiseless

case. M “ Op
?
rq is proved to be sufficient for exact recovery via MUSIC and (2.13).

However, if noise is present, the algorithm proposed earlier cannot work for stable

estimation. In this section, we will discuss the algorithm with noisy measurements

and prove the stability. It will be shown that M “ Op
?
nq is still sufficient for stable

recovery where n ! N and the computational complexity is much lower than existent

methods in literature. In addition, the algorithm is parameter free in the sense

that there is no regularization [42, 40] and noise power needs not to be estimated

[23]. Moreover, MUSIC algorithm is still exploited for frequency estimation but the

stability analysis is done for finite sample case as compared to ML-based methods

[31, 51].

2.6.1 A Parameter Free Algorithm with Noisy Measurements

The results developed so far guarantee perfect recovery of rank r PSD Toeplitz

matrix T of any size from its noiseless compressed sketch RY in (2.12) of size

Op
?
rqˆOp

?
rq. In practice, we will almost always encounter additive measurement

noise. Furthermore, instead of RY , we can only compute its estimate R̂Y as

R̂Y “ 1
L

řL
p“1 ypyp

T . We can model the effect of both noise and finite sample
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averaging as an additive error term W. In other words, we assume to observe

R̂Y “ AsTAT
s `W (2.22)

where noise matrix W is bounded and As constructed by (2.19) for specified n ! N .

The first step of our proposed reconstruction scheme is to estimate tpnq from

R̂Y. Let ti denote the ith entry of tpnq. Notice that each ti, i “ 0, 1, ¨ ¨ ¨n ´ 1

can appear more than once in AsTAT
s and there are many ways to retrieve noisy

measurements of tpnq. In this paper, we arbitrary pick only one entry from R̂Y for

each ti without averaging. By doing this, we only need to store and communicate n

samples t̂pnq.

In Sec.2.5, MUSIC algorithm can be used to to recover tfi, diu exactly which

is based on the low rank fact and perfect knowledge of tpnq for n ě r ` 1. However,

in presence of noise, low rank property is lost in general and (2.13) or (2.15) is not

readily applicable. It is well known that Vandermonde decomposition of positive

definite Toeplitz covariance is not unique [58]. In this paper, we use the elegant

representation of any PSD Toeplitz matrices from [52].

Lemma 2. [52] A positive semidefinite Toeplitz matrix T P RN,N has the following

decomposition :

T “ VNDVH
N ` σIN (2.23)

where σ is the smallest singular value of T and IN is identity matrix. VN P CN,N 1 “

rvNpf1q,vNpf2q, ¨ ¨ ¨ ,vNpfN 1qs with N 1 ă N and each column vNpfiq is defined by

(2.14) and D “ diagpd1, d2, ¨ ¨ ¨ , dN 1q contains the corresponding positive amplitudes.
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Remark: For low rank case, (2.23) reduces to (2.13) and N 1 “ rankpTq. If T

is positive definite, N 1 “ N ´mσ where mσ is the multiplicity of σ. For both cases,

the frequencies are uniquely determined and can be computed by MUSIC or other

methods.

In [41, 42], the authors solve the following atomic norm based denoising method

for an estimation t̃pnq of tpnq given the noisy measurements t̂pnq.

t̃pnq “ arg min
z

1

2
}̂tpnq ´ z}22 ` τ}z}An (2.24)

where } ¨ }An is atomic norm and τ is a tuning parameter to control the weight

of atomic norm and dependent on the noise power. The estimated frequencies are

achieved by solving the dual problem.

However, it is not easy to choose parameter τ since noise power may not be

known. Inspired by the works in [54, 55], we show in following sections that PSD

constraint is enough for stable reconstruction via least square denoising. In addition,

we do not need to estimate the unknown noise power and tune the parameter for

regularization.

The algorithm for structured compression and stable recovery is summarized in

Table 1.The whole algorithm proposed in this paper consists of two separate steps.

Firstly, we compress the large covariance T with GNS for a n ! N and extract

minimum number of noisy measurements to further reduce the storage/transmission

load. Secondly, we do LS-denoising and make predictions for a PSD estimation of

dimension N via MUSIC and representation (2.23).
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Input: Noisy sketch R̂Y P Rn,n observed by (2.22)

Output: Estimates of the entries ti, i “ 0, 1, ¨ ¨ ¨ , N ´ 1 of T.

1. Redundancy Reduction: Given the ideal repetitive pattern

[13], extract noisy measurements t̂pnq without averaging that

t̂pnq “ tpnq `wpnq (2.25)

where tpnq “ rt0, t1, ¨ ¨ ¨ , tn´1s
T and bounded noise }wpnq}8 ď

ε.

2. Denoising: Obtain denoised estimation t#
pnq as

t#
pnq fi min

uPRn
}̂tpnq ´ u}2

s.t. T puq ľ 0 (2.26)

where T puq denotes the real symmetric Toeplitz matrix with

first column u.

3. Parameterization :

Given t#
pnq, from Lemma 2, we have

T#
pnq “ T pt

#
pnqq “ VnD

#VH
n ` σ

#In (2.27)

with frequencies tf#
1 , f

#
2 , ¨ ¨ ¨ , f

#
r̃ u and positive amplitudes

td#
1 , d

#
2 , ¨ ¨ ¨ , d

#
r̃ u.

4. Prediction:

• If σ# “ 0, the recovery of T is given by T# “ VND#VH
N

for frequencies tf#
i u

r̃
i“1 and dimension N .

• If σ# ą 0, the recovery of T is given by T# “

VND#VH
N`σ

#IN for frequencies tf#
i u

r̃
i“1 and dimension

N .

Table 2.1: Low Rank PSD Toeplitz Matrix Recovery In

Presence of Bounded Noise

Remark: We exploit MUSIC algorithm for obtaining (2.27) and the PSD
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constraint in (2.26) is critical for applying Lemma 2.

Remark: If σ# ą 0 or equivalently, T#
pnq is positive definite, it should be

noted that there are more than one way to extend it into dimension N keeping the

PSD property. For example, let Toeplitz matrices X,X1,X2 defined as

X “ I2, X1 “ I3, X2 “ T pr1, 0, 0.1sT q

It can be easily verified that X,X1,X2 are all positive definite and X1,X2 are both

valid extensions of X. Obviously, X1,X2 have different Carathéodory parameteri-

zations.

On the other hand, if σ# “ 0, there is only one way to extend it into a PSD

Toeplitz matrix of larger dimension N . This is due to the fact that line spectrum

WSS process is linearly predictable [14, 50].

2.6.2 Near Optimal Performance in Noiseless Case

In Sec.2.5 as well as in [13, 14], it has been shown that M “ Op
?
rq is sufficient

for exact recovery. Still, the algorithm in Table 1 achieves near optimal sample

complexity M “ Op
?
rq and there is no separation condition necessary for noiseless

case since only MUSIC is applied. Particularly, we have following result.

Theorem 3. If W “ 0, then T “ T# if and only if n ě r ` 1.

Proof. If W “ 0, then t̃pnq “ tpnq and the only solution of (2.26) is t#
pnq “ tpnq. If n ě

r` 1, the frequencies tfiu
r
i“1 are uniquely determined by MUSIC via representation

(2.15) where Tpnq is rank deficient. The amplitudes tdiu
r
i“1 can also be uniquely
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recovered given tfiu
r
i“1 by least-square since Vn is a Vandermonde matrix. If n ď r,

T# will be full rank since T pt#
pnqq is positive definite and σ# ą 0.

2.6.3 Stability Analysis in Presence of Bounded Noise

In this section, we will analyze the stability of the proposed algorithm in Table

1. The analysis is done from the view of frequency domain and the key tools are

developed in works [42, 43, 57]. The key idea is based on the fact that PSD Toeplitz

matrix is associated with a line spectrum and the estimation error of such line

spectrum can be controlled by the denosing step (2.26). And the prediction error is

in turn a function of the spectrum estimation error.

First, the estimation error of the denoising phase is given in following lemma.

As in noiseless case, there is no separation condition is needed on the frequencies.

Lemma 3. Let t#
pnq be the solution of (2.26), then we have

}t#
pnq ´ tpnq}2 ď 2}wpnq}2 ď 2

?
nε (2.28)

Proof. The result is straightforward with triangle inequality by noting that true tpnq

is feasible and noise model (2.25).

In presence of noise, T pt#
pnqq will in general be full rank and we will always

apply (2.23) rather than (2.13). It should be noted that tvnpfqu defined in Theorem

2 is a frame over Rn for f P p´1{2, 1{2s. Given T,T#, there exist finite measures
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µ, µ# such that

tpnq “

ż 1{2

´1{2

vnpfqµpdfq t#
pnq “

ż 1{2

´1{2

vnpfqµ
#
pdfq (2.29)

The measures µ, µ# may not be unique and one possible construction is given

by

µ “
r
ÿ

i“1

diδpf ´ fiq (2.30)

µ#
“

r̂
ÿ

i“1

d#
i δpf ´ f

#
i q `

σ#

n

n
ÿ

i“1

δpf ´
pi´ 1q

n
q

where δp¨q is Dirac function and tf#
i , d

#
i u

r̂
i“1 are frequencies and positive amplitudes

associated with T# of which σ# is the smallest singular value, all are uniquely

defined as in Lemma 2. Both µ, µ# are positive and following analysis is based on

the construction in (2.30).

Given the representation in frequency domain, we could apply the tools in

[42, 57] which are used to bound the spectrum estimation error. To proceed, we

need first introduce some notations. We define a distance function ρpf̂1, f̂2q for

distinct frequencies f̂1, f̂2 P p´1{2, 1{2s in a wraparound manner [43]. The difference

measure is defined as ν “ µ# ´ µ. Define neighborhood Ni around each true

frequency fl by Nl “ tf P p´1{2, 1{2s : ρpf, flq ď 0.16{nu and also far region

F fi p´1{2, 1{2sz
Ťr
l“1Nl. Define PF be the projection of any measure onto the true

frequency support F “ tf1, f2, ¨ ¨ ¨ , fru.} ¨ }TV is total variation norm [57]. We also
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define

I l0 :“

ˇ

ˇ

ˇ

ˇ

ż

Nl

νpdfq

ˇ

ˇ

ˇ

ˇ

I l1 :“ n

ˇ

ˇ

ˇ

ˇ

ż

Nl

pf ´ flqνpdfq

ˇ

ˇ

ˇ

ˇ

I l2 :“
n2

2

ż

Nl

pf ´ flq
2
|ν|pdfq

Ii :“
r
ÿ

l“1

I li , for i “ 0, 1, 2 (2.31)

We need following two lemmas from [42] to bound the spectrum estimation

error. Contrary to noiseless case and Lemma 3, we need separation condition on the

true frequencies tfiu
r
i“1.

Lemma 4. [42, 57] If the true frequencies tflu
r
l“1 satisfies

min
p‰q

ρpfp, fqq ą 4{n

and n ą 256, then there exists a trigonometric polynomial Qpfq such that

}PFpνq}TV “

ż 1{2

´1{2

QpfqPFpνqpdfq

|Qpfq| ď 1´
Ca
2
n2
pf ´ flq

2 f P Nl, 1 ď l ď r

|Qpfq| ď 1´ Cb f P F (2.32)
ˇ

ˇ

ˇ

ˇ

ˇ

ż 1{2

´1{2

Qpfqνpdfq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
Ccrξ

n
(2.33)

where Ca, Cb, Cc are positive constants and ξ fi supfPp´1{2,1{2s |xvnpfq, t
#
pnq ´ tpnqy|

Lemma 5. [42] If the true frequencies tflu
r
l“1 satisfies

min
p‰q

ρpfp, fqq ą 4{n
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and n ą 256, then there exist positive constants c̃1, c̃2 such that

I0 ď c̃1

ˆ

rξ

n
` I2 `

ż

F
|ν|pdfq

˙

I1 ď c̃2

ˆ

rξ

n
` I2 `

ż

F
|ν|pdfq

˙

(2.34)

where ξ fi supfPp´1{2,1{2s |xvnpfq, t
#
pnq ´ tpnqy|

From Lemma 5, I2 and
ş

F |ν|pdfq are key values needing to be bounded which

is done in following lemma.

Lemma 6. If the true frequencies tflu
r
l“1 satisfies

min
p‰q

ρpfp, fqq ą 4{n

and n ą 256, then there exist positive constants c1, c2 such that

I2 `

ż

F
|ν|pdfq ď c1

ˆ

c2rξ

n
` |t#0 ´ t0|

˙

(2.35)

where ξ fi supfPp´1{2,1{2s |xvnpfq, t
#
pnq ´ tpnqy|

Proof. Since separation condition on F is satisfied, from Lemma 4, there exist poly-

nomial Qpfq such that

}PFpνq}TV “

ż 1{2

´1{2

QpfqPFpνqpdfq (2.36)
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With triangle inequality and noting PF is projection onto F, we have

}PFpνq}TV ď

ˇ

ˇ

ˇ

ˇ

ˇ

ż 1{2

´1{2

Qpfqνpdfq

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ż

Fc

Qpfqνpdfq

ˇ

ˇ

ˇ

ˇ

ď
Ccrξ

n
`

ÿ

flPF

ˇ

ˇ

ˇ

ˇ

ż

Nlzfl

Qpfqνpdfq

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ż

F
Qpfqνpdfq

ˇ

ˇ

ˇ

ˇ

ď
Ccrξ

n
`

ÿ

flPF

ˆ
ż

Nlzfl

|ν|pdfq ´ CaI
l
2

˙

`p1´ Cbq

ż

F
|ν|pdfq

“
Ccrξ

n
` }PFc}TV ´ CaI2 ´ Cb

ż

F
|ν|pdfq (2.37)

where we use (2.33) for second and third inequality.

Next, noting that

}µ#
}TV “ }µ` ν}TV “ }µ` PF}TV ` }PFc}TV

ě }µ}TV ´ }PF}TV ` }PFc}TV (2.38)

Then we have

CaI2 ` Cb

ż

F
|ν|pdfq ď

Ccrξ

n
` }µ#

}TV ´ }µ}TV (2.39)

Noting that both µ, µ# constructed from(2.30) are positive measures, we have

CaI2 ` Cb

ż

F
|ν|pdfq ď

Ccrξ

n
` t#0 ´ t0

I2 `

ż

F
|ν|pdfq ď

1

mintCa, Cbu

ˆ

Ccrξ

n
` |t#0 ´ t0|

˙

(2.40)

and the proof completes.

Remark. It should be noted that we use the fact both µ, µ# are positive

measures in (2.39) and then we can equivalently express the TV norm in terms of
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entry value. And this partially explain why PSD constraint is enough and atomic

norm is not necessary as needed for general case [42].

Now, we are ready to prove the main result of this paper. In Lemma 3, we

have already given the estimation error for observed part which is not based on

separation condition. However, for predicted part, we have to use the analysis tools

in frequency domain to represent prediction error in terms of spectrum estimation

error,i.e, I0, I1, I2 and
ş

F |ν|pdfq. And then separation condition is needed as in

previous lemmas.

Theorem 4. Suppose the noisy measurements are specified by (2.22) and (2.25)

with uniform noise bound ε. Let T# be the recovered PSD Toeplitz matrix by solving

(2.26) and predicting following the recovery algorithm, then

1

n
}t#
pnq ´ tpnq}2 ď

2ε
?
n

(2.41)

If the true frequencies tf1, f2, ¨ ¨ ¨ , fru satisfy

min
p‰q

ρpfp, fqq ą 4{n

and n ą 256, we have

|t#m ´ tm| ď

ˆ

γ1 `
γ2πm

n
`
γ3π

2m2

n2

˙

`

γ4r `
?
n
˘

ε (2.42)

where γ1, γ2, γ3, γ4 are positive constants and n ď m ď N ´ 1.

Proof. (2.41) is from Lemma 3 and no separation condition is necessary.
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For any n ď m ď N ´ 1, we have

|t#m ´ tm| “ |

ż 1{2

´1{2

ej2πmfνpdfq|

ď

ż

F
|ν|pdfq `

r
ÿ

l“1

ˇ

ˇ

ˇ

ˇ

ż

Nl

ej2πmfνpdfq

ˇ

ˇ

ˇ

ˇ

(2.43)

where triangle inequality is used.

With Taylor’s theorem around each fl, it follows that

ˇ

ˇ

ˇ

ˇ

ż

Nl

ej2πmfνpdfq

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ż

Nl

νpdfq

ˇ

ˇ

ˇ

ˇ

`2πm

ˇ

ˇ

ˇ

ˇ

ż

Nl

pf ´ flqνpdfq

ˇ

ˇ

ˇ

ˇ

` 2π2m2

ż

Nl

pf ´ flq
2
|ν|pdfq

“ I l0 `
2πm

n
I l1 `

4π2m2

n2
I l2 (2.44)

Then, (2.43) can be simplified as

|t#m ´ tm| ď

ż

F
|ν|pdfq ` I0 `

2πm

n
I1 `

4π2m2

n2
I2

ď

ˆ

c̃1 `
2πm

n
c̃2 ` 1

˙
ż

F
|ν|pdfq

`

ˆ

c̃1 `
2πm

n
c̃2 `

4π2m2

n2

˙

I2

`pc̃1 ` c̃2
2πm

n
q
rξ

n
(2.45)

where we use Lemma 5. Since n ď m, we finally have

|t#m ´ tm|

ď

ˆ

c̃1 `
2πm

n
c̃2 `

4π2m2

n2

˙ˆ

I2 `

ż

F
|ν|pdfq

˙

`pc̃1 ` c̃2
2πm

n
q
rξ

n

ď

ˆ

c̄1 `
c̄2πm

n
`
c̄3π

2m2

n2

˙ˆ

c̄4rξ

n
` |t#0 ´ t0|

˙
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where we use Lemma 6.

To bound ξ, we apply Cauchy-Schwartz inequality that

ξ ď }vnpfq}2}wpnq}2 “
?
n}wpnq}2 ď nε

Finally, we always have |t#0 ´ t0| ď }t
#
pnq ´ tpnq}2 ď 2

?
nε and the proof com-

pletes.

The following remarks apply to our derivation of the prediction error:

1. From (2.43), the prediction error is a trigonometric polynomial with finite

period due to ν is a finite measure. Consequently, the prediction error will not

go to infinity when m approaching infinity and there is a global upper bound.

2. Since the separation condition should be satisfied, we can choose n ą 4r

where r is the rank of T as well as the number of true frequencies. And the

sample size M can be still Op
?
rq which may be much smaller than N and

near optimal.

3. Separation Condition and Prediction v/s Observed Error: Notice that

we have different bounds for the observation error (given in (2.41)) and predic-

tion error (given by (2.42)). The former is obtained by directly using triangle

inequality, whereas the latter result is the first of its kind. Another important

distinction between the two bounds is that (2.41) does not require a separation

condition, whereas it is needed for establishing (2.42). The reason is that for

prediction, we need to estimate the frequencies that parameterize T ( which

is not necessary for just denoising the observed entries). Existing results in
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noisy line spectrum estimation [42, 41, 39, 43, 57] seem to require a “separa-

tion condition” for developing error bounds on the estimated frequencies. In

[46], similar results as in [42] have been obtained without explicitly assuming

separation condition, but requiring the dual polynomial to satisfy a so-called

Quadratic Isolation Condition (QIC). So far, it is still not clear whether sep-

aration condition is necessary for satisfying QIC. Another closely related idea

is that of Rayleigh regularity [45] which does not lead to a strict separation

condition on the frequencies. It is however, non trivial to extend this analysis

for bounding the error in frequency estimates. It can be a question of future

interest to see if we can derive tighter error bounds for predicted entries using

this condition (instead of the current minimum separation criterion). Since

it is presently unclear what kind of separation is fundamentally necessary for

frequency estimation in presence of noise, in this paper, we still assume the

specific form of the separation condition as used in [41, 42, 57], and leave the

general case as an open problem for future research.

2.6.4 Comparison with Nuclear Norm Based Recovery using Struc-

tured Samplers

Compression and reconstruction of low-rank Toeplitz structured covariance matrices

has been recently studied in [40] in the context of line spectrum estimation from

MMV models. The signal model introduced in [40] assumes the compressed measure-

ments yp to be partial observations of xp, i.e. yp “ xΞ,p where Ξ Ă t0, 1, ¨ ¨ ¨ , N ´1u
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denotes the rows of xp that are sampled. Let T ptNq P RNˆN denote the real-valued

Toeplitz structured covariance matrix of xp where tN denotes the first row. The es-

timated covariance matrix of the compressed data is denoted by R̂Y “
1
L

řL
p“1 ypy

T
p

which satisfies EpR̂Yq “ PΞpT ptNqq, where tN is the first column of T and PΞ is a

selection matrix that only preserves the submatrix composed of rows and columns

indexed by Ξ. Equivalently, we can also think of R̂Y as a corrupted version of

PΞpT ptNqq. The authors in [40] propose to recover tN by solving and analyzing the

following nuclear norm minimization problem

min
zPRN

1

2
}PΞpT pzqq ´ R̂Y}

2
F ` λ}T pzq}˚ (2.46)

where } ¨ }˚ denotes the nuclear norm of a matrix. There are important differences

between this approach, and the compression/recovery framework proposed in this

paper that are worth highlighting:

1. Number of Measurements and Complexity: The performance guaran-

tees for (2.46) are derived under two choices of the sampling set Ξ that corre-

spond to structured samplers: (i) full observations, i.e., Ξ “ t0, 1, ¨ ¨ ¨ , N ´ 1u

and (ii) Ξ corresponding to a sparse ruler. In this case the size of Ξ is Op
?
Nq.

Although the true covariance matrix T ptNq is assumed to be low rank (r ă N),

the size of the compressed covariance sketch R̂Y for both choices has no de-

pendence on the rank r and is at least as large as Op
?
NqˆOp

?
Nq. This also

implies that the problem size (and the computational complexity) of (2.46)

scales with N , since it aims to recover the entire row tN P RN of the Toeplitz

matrix.
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In contrast, the proposed GNS-based compressor produces a sketch of size

Op
?
rqˆOp

?
rq in noiseless case, and the key step in our reconstruction scheme

involves solving an SDP (for atomic norm minimization) that scales only with

r, and is independent of the ambient dimension N . Hence our approach re-

quires fewer measurements and has lower complexity than that proposed in

[40].

2. Performance Guarantees of observed v/s predicted entries: Denoting

t#
N as the solution to (2.46), the error bound }t#

N ´ tN} in [40] is derived under

the aforementioned choices of Ξ, both of which ensure that all N entries of

tN are observed at least once. However, in the proposed approach, we only

observe n “ Oprq entries of tN and predict the remaining ones. If we choose

Ξ to be of size Op
?
rq (i.e., we only observe Oprq noise corrupted sentries of

tN), and try to reconstruct the entire vector tN using (2.46), we cannot obtain

an explicit bound on the error }t#
N ´ tN} by following the analysis framework

developed in [40, 53], since bounds on the error in the unobserved N´n entries

of tN cannot be easily computed in such a case. The performance guarantees

of (2.46) in this setting, is a question of future interest, which may require

us to relate the error in the n observed entries to that in remaining N ´ n

entries of tN via the parametric representation of T ptNq. However, we will

numerically compare its performance with the proposed algorithm is previous

section.

On the other hand, we can directly compare the “observed error” epnq (i.e.
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estimation error in the first n entries of tN) produced by the LS-denoising

approach with the estimation error of the following modified version of (2.46)

that recovers only the first n entries of tN :

min
zPRn

1

2
}PΞpnqpT pzqq ´ R̂Y }

2
F ` λ}T pzq}˚ (2.47)

Here, Ξpnq corresponds to the sampling pattern of a GNS sampler or sparse

ruler of size Op
?
nq, that selects entries from the nˆn principal minor of T ptNq

(with some repetitions), and we recover the estimate t#
pnq of tpnq (instead of tN).

In this case, we can use the analysis technique of [40] (which is based upon the

analysis framework for M-estimators in [53]) to bound the error }tpnq ´ t#
pnq}2.

From [40, 53], if λ ě 2}PΞpnqpT ptpnqqq ´ R̂Y}, then the estimation error (when

Ξpnq represents a sparse ruler or GNS), is given by

}tpnq ´ t#
pnq}

2
ď Cλ2nr (2.48)

The choice of λ depends on the specific sampler used but a lower bound can

be computed as follows. When Ξpnq corresponds to sparse ruler or GNS, we

observe n entries of T ptpnqq at least once, implying }PΞpnqpT ptnqq ´ R̂Y}F ě

?
nε2 where ε is the upper bound for entry-wise noise as introduced in (2.25).

Then λ satisfies

λ ě 2}PΞpnqpT ptpnqqq ´ R̂Y}

ě
2
?
n
}PΞpnqpT ptpnqqq ´ R̂Y}F “ 2ε (2.49)

From (2.48) and (2.49), we have the following “best-case” upper bound on the
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estimation error (over all choices of λ)

}tpnq ´ t#
pnq}

2
2 ď C

1

nrε2 (2.50)

where C
1

is a constant.

We can compare (2.50) with the bound in Theorem 4 obtained from simple

LS-denoising with PSD constraint. If rank r can be treated as constant then

(2.50) is of the same order as (2.42). It is to be noted that (2.42) represents

a worst-case or most pessimistic upper bound (computed using the worst case

value of }wpnq}2) whereas (2.50) is a best-case upper bound over all choices

of λ. Moreover, both bounds do not require any separation condition on the

frequencies fi, i “ 1, 2, ¨ ¨ ¨ r.

At last, it should be noted that PSD constraint is not used when the authors

of [40] analyze the recovery performance (see Appendix D therein). In the

following section, we will numerically show that even PSD constraint is added

to (2.46), the proposed algorithm in this paper provides better performance

in sense of estimation error when the total number of measurements are the

same.

2.7 Numerical Results

In previous sections, we have discussed the theoretical results on low rank Toeplitz

covariance matrix estimation. In noiseless case, optimal compression rate can be

achieved with respect to the DOF of rank r Toeplitz covariance that only r `

1 entries of original T are sufficient for exact recovery. If the noise is present,
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the algorithm proposed in this thesis has much lower computational complexity

compared to existing methods in literature since we only need to sample a submatrix

Tpnq where n ! N . In addition, the proposed algorithm is parameter free compared

to those in [42, 23, 57, 43] which is advantageous in real practices since it may not

be possible to estimate the noise-power dependent parameters.

In this section, we will implement extensive numerical experiments to demon-

strate our theoretical claims made in earlier sections. And we will show these simu-

lations results for noiseless and noisy cases respectively. In addition, we will compare

the proposed algorithm with other methods in litarature.

2.7.1 Exact Recovery via Vandermonde Decomposition

Fig. 2.3 shows the phase transition plot of the probability of successfully recovering

T from its compressed sketch, for different choices of the rank r and the sampled size

n. As a reference, we also show the theoretical lower bound and it is obvious that

the simulation results agree with this bound perfectly. In particular, GNS coupled

with MUSIC based recovery can perfectly recover T as soon as n ě r ` 1. The

phase transition exhibits a perfectly linear behavior, which is in agreement with the

fundamental compression limit of rank r Toeplitz matrices .

We compare the proposed method with the random sampling based compres-

sion and recovery of Toeplitz matrices, proposed in [23]. The sampling model for

our method is different from that in [23]. For fairness of comparison, we fix the

value of n and simulate the measurement model in [23] by collection n measure-
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Figure 2.3: Phase transition plot for the proposed GNS based compression and

MUSIC based reconstruction of T. A trial is declared successful if }tpNq´t#
pNq}2{N ď

0.001. White cells indicate success while black denote failure. The red line represents

n “ r ` 1 and the result is averaged over 50 runs. N “ 113.
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ments. This ensures that the reconstruction algorithms for both approaches use the

compressed sketch of same size. Fig. 2.4 shows the phase transition for the ap-

proach in [23]. Comparing Fig. 2.3 and Fig. 2.4, it is obvious that the proposed

method has tighter transition boundary and larger success region. The underlying

reason for this difference is that we transform the matrix completion problem into

spectrum detection problem and the Vandermonde decomposition theorem gives us

deterministic guarantees with minimum possible measurement size, thereby leading

to the sharp phase transition. The non-linear shape of the transition region in Fig.

2.4 is due to the nature of random sampling used in [23], for which the number

of required measurements needed for a given r is strictly larger than that for our

method.
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Figure 2.4: Phase transition plot for method in [23] and nuclear-norm minimization

based reconstruction of T. A trial is declared successful if }tpNq´ t#
pNq}2{N ď 0.001.

White cells indicate success while black denote failure. The red line represents

n “ r ` 3 and the result is averaged over 100 runs. N “ 113.
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2.7.2 Observed and Prediction Error In Presence of Noise

We next evaluate the performance of the proposed method in presence of bounded

noise, and compare it with related works in [23, 40]. In particular, we compare the

following algorithms:

• proposed : This represents the proposed reconstruction algorithm described in

Table 1.

• nuclear-psd : This represents the algorithm in [40] with PSD constraint. We

use GNS for compressing the MMV model described in [40] and use two ver-

sions of the nuclear norm minimization algorithm : one for recovering the

sampled submatrix Tpnq, and the other for recovering the entire matrix T.

The specific version will become clear depending on the context.

• CCG : This represents the compression/reconstruction framework of [23] using

random samplers. Although the sampling scheme is different from our method,

we assume that the method in [23] collects n measurements, which match the

total number of entries in our compressed sketch.

We numerically choose regularization parameters λ (for [40]) to ensure the best

performance.

For noisy case, we define the Signal-to-Noise Ratio (SNR) as

SNR fi 10 log

řn
i“1 t

2
i

řn
i“1w

2
i

(2.51)
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where w and t are noise and signal vectors of same length n. And the normalized

estimation error is defined as

ε “
}t´ t#}2

}t}2
(2.52)

where t# is the estimation of t which is the first column of T. Similarly, the

normalized prediction error is defined as

εpred “
}tp´nq ´ t#

p´nq}2

}tp´nq}2
(2.53)

where tp´nq “ rtn, tn`1, ¨ ¨ ¨ , tN´1s
T and t#

p´nq “ rt
#
n , t

#
n`1, ¨ ¨ ¨ , t

#
N´1s

T .

In Fig. 2.5, we study the prediction error εpred and the total error ε of the

aforementioned algorithms as a function of SNR. It can be seen that, proposed

method outperforms algorithms in [23, 40]. Particularly, since the sampler in [23]

is generated randomly, all entries of T are effectively sampled as compared to GNS

sampling matrix As which only sample a submatrix. However, the proposed method

gives better performance in both total normalized error and prediction error.

We further study the prediction error for the proposed method as a function

of the sampled size n. This also represents the scenario when we may overestimate

the rank r and oversample the measurements (i.e. n ą r). Fig. 2.6 shows the

normalized total error and prediction error as a function of sampled size n. It can

be seen that generally, the average prediction error decreases for increasing n, and

increases for increasing rank and noise power. And the proposed method provides

better performance than other two alternatives. It should be also notated that there

is a threshold for proposed method which around the rank r which corresponds to

the noiseless case.
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Figure 2.5: Estimation error of different algorithms as functions of SNR of. (Top)

Normalized error ε v/s SNR. (Bottom) Prediction error v/s SNR. The results are

averaged over 100 runs. Here N “ 110, r “ 30.
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Figure 2.6: Estimation error of different algorithms as functions of n of. (Top)

Normalized error ε v/s n. (Bottom) Prediction error v/s n. The results are averaged

over 100 runs. Here N “ 110, SNR = 50dB.
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2.7.3 Approximate Low Rank

In practice, T may not be low rank but can be approximated by a low rank matrix.

We study the robustness of the proposed method in such a setting when the entries of

T can no longer be represented as a sum of complex exponentials. We generated an

approximately low rank T by adding a small diagonal loading factor to a low rank

PSD Toeplitz matrix. In Fig.2.7, we study the performance of proposed method

for such an approximately low rank T as a function of sampled dimension n and

compare it with the method in [23]. The proposed method exhibits robustness to

violation of the low rank assumption and its performance improves with increasing

n.
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Figure 2.7: Recovery performance of proposed method and other methods in [23, 40]

when T is approximately low rank Toeplitz. The matrix T is approximately rank 30

with ambient dimension N “ 110. Here SNR is 50 dB and the results are averaged

over 50 runs.
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2.7.4 Frequency Estimation Performance

With bounded noise, the T pt#
pnqq given by (2.26) will be full rank. Consequently, via

(2.23), there will be alias frequencies when n ą r. For the proposed method, we will

treat the r frequencies with largest amplitudes as the recovered frequencies. Since

T# is real, the frequencies appear in conjugate pairs and we will show the frequency

region r0, 1{2s without losing generality. In Fig.2.8, we show the recovered the

frequencies for different n and SNR along with the true frequencies.
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Figure 2.8: Recovered frequencies (blue) and true frequencies (red). (Top) SNR =

10 dB, r “ 16. Left: n “ 20, Right: n “ 40. (Bottom) SNR = 40 dB, r “ 16. Left:

n “ 20, Right: n “ 40.

Let tf̃iu
r
i“1 be the recovered frequencies corresponding to largest amplitudes,

the frequency estimation error is defined as

εf “

d

r
ÿ

i“1

pfi ´ f̃iq2 (2.54)

55



where both true and recovered frequencies are ordered in same manner. In Fig.2.9,

we show the averaged frequency estimation error as a function of SNR and for

different n. It can be seen that proposed algorithm provides accurate estimation of

frequencies. For the same SNR, frequency error is larger when n increases since more

alias frequencies occur by computing (2.23). And the estimation error decreases

when SNR increases.
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Figure 2.9: Frequency estimation plot for proposed algorithm. The matrix T is

rank 10 with ambient dimension N “ 50. Results are averaged over 500 runs.

2.7.5 Computational Complexity

Finally, we compare the computational complexity of the proposed method with

nuclear and CCG. Fig. 2.10 shows the run-time of these algorithms as we increase

the problem size N . We simulated all algorithms on a Dell OptiPlex 7020 desk-

top with Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz, and 16 GB Memory, using

the CVX toolbox for MATLAB, and on the same dataset. Since the problem size
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(number of unknown variables) of the proposed algorithm is Opnq, rather than N ,

the complexity of our method is smaller than the other algorithms. Moreover, our

complexity does not grow with N . This may turn out to be especially advantageous

in the high dimensional setting when N is very large.
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Figure 2.10: Comparison of run-times of the proposed method and the nuclear

norm based recovery algorithms in [23, 40]. Here, r “ 10, SNR “ 20 dB and n “ 20.

The run-time is averaged over 100 runs.
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Chapter 3: Randomized PNFS and Sparse Phase Retrieval with Noise

3.1 Introduction

The problem of reconstructing an unknown signal (up to a global phase) from its

phaseless measurements has been studied for decades owing to its wide applications

in many areas of imaging science such as X-ray crystallography, diffraction imaging

and molecular imaging, and so forth [59, 60, 61]. The problem can be studied under

various settings by considering a real or complex signal model, with or without

sparsity constraints. A comprehensive review of existing measurement strategies

and reconstruction algorithms for phase retrieval is provided in [62].

A central goal in phase retrieval problems is to develop an effective measure-

ment strategy and a recovery algorithm which can provably recover the unknown

signal with minimal number of measurements. In early works [86, 87, 88], the algo-

rithms are iterative and start with a phase guess. The estimat is then updated re-

peatedly between the measurement domain and spatial domain. Recent approaches

based on the elegant idea of “lifting” can provably recover (non-sparse) signals of

dimension N using OpNq or OpN logNq measurements [61, 63, 54, 83], by solving

an appropriate convex problem in the “lifted” variable.
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3.1.1 Related Work

Recovering a sparse signal from its phaseless measurements with near optimal num-

ber of measurements (which is Opsq up to a logarithmic factor) is a challenging

problem that has received much attention in recent times [65, 66, 67, 68]. In fact,

it becomes necessary to impose a sparse prior on the unknown signal to ensure its

unique recovery, when Fourier measurements are used. An l1-minimization-based

approach for sparse phase retrieval is proposed in [68], which requires Ops2qmeasure-

ments along with an additional Collision-Free-Condition [69] on the autocorrelation

of the unknown signal. In [65, 66, 67], the authors use a graph-decoding based

approach which requires the sparsity to be at most Op
?
Nq. Recent iterative ap-

proaches using alternating minimization also require the number of measurements to

grow quadratically in s [70]. Another iterative algorithm based on Fienup’s work [86]

is proposed in [93]. In [90], the authors develop a greedy algorithm for sparse phase

retrieval. In [91], convex programming with l1 constraint is used and outliers of

measurement are cosidered additional to noise. The authors of [92] solve the sparse

phase retrieval with the idea of approximate message passing. In all [93, 90, 91, 92],

no stable result is theoretically established and sufficient number of measurements

for stable recovery is not given. In addition, for real signal and Fourier measure-

ments, these works need cross-validation to find the optimal estimation and get rid

of ambiguity given the true signal, which may not be possible in real applications. In

[71, 23, 72], the problem of sparse phase retrieval is cast as a joint low-rank+sparse

matrix recovery problem which minimizes the weighted linear combination of the
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nuclear norm and l1 norm of an appropriate lifted variable. However, as pointed

out in [73], convex optimization based techniques for such simultaneously structured

models (low rank+sparse) will necessarily require the number of measurements to

be at least quadratic in s. Very recently, concurrent with our own work on Partial

Nested Fourier Sampler (PNFS), a promising approach to overcome this limitation

has been suggested in [74], where by using constrained measurement vectors and

a two-step recovery algorithm, the authors can guarantee unique solution to the

sparse phase retrieval problem using only Ops logpN{sqq measurements.

3.1.2 Our Contributions

In this chapter, we introduce a new design of Fourier measurement vectors, namely

the Partial Nested Fourier Sampler (PNFS), drawing inspiration from our past and

current work in nested sampling and its extensions [29, 13, 14]. As will be demon-

strated, the idea of partial nested sampling is highly effective for the phase retrieval

problem since it naturally allows “decoupling” of terms arising in the equivalent

quadratic measurement model. Unlike [68], the PNFS can completely avoid the

need for a “collision-free” condition on x and hence there is no restriction on the

maximum size of the sparse support in our framework. In contrast to [79], we do

not need masks to modulate x and our algorithm may be easier to be implemented

in practice. Furthermore, for a non-sparse complex x, the PNFS needs only 4N ´ 5

Fourier measurements using a simple reconstruction scheme, that comes very close

to the universal lower bound conjectured in current literature [60]. Then we further
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develop the theory of PNFS for sparse phase retrieval by proposing a randomized

version of the basic PNFS, namely the R-PNFS. By using a certain “decoupling”

property of the R-PNFS, along with a new “cancellation” based algorithm (that

effectively cancels out certain unwanted quadratic terms in the autocorrelation of

the signal), we are able to demonstrate that Ops logNq measurements are sufficient

to recover the sparse signal with probability 1. We also prove that the proposed

algorithm is stable in presence of bounded noise, and present numerical simulations

to validate the theoretical claims.

3.2 Problem Setting and Fourier Based Phase Retrieval

Let x P CN be a complex valued vector which may be sparse. Given M sampling

vectors fi P CN , i “ 1, 2, ¨ ¨ ¨ ,M , we obtain M noisy magnitude measurements as

[63, 77, 23]

yi “ |xx, fiy|
2
` ni (3.1)

where ni denotes the additive noise. The fundamental objective of phase retrieval

problem is to recover x from yi, i “ 1, 2, ¨ ¨ ¨ ,M . It is well known that for complex

x, we can only recover x up to a global phase ambiguity [59]. We can equivalently

express the measurements as

yi “
`

fi
T
b fi

H
˘

Vec
`

xxH
˘

` ni (3.2)

where b denotes the Kronecker product and Vecp¨q is the column-wise vectorized

form of a matrix.
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3.2.1 Limitations of Fourier Sampling based phase retrieval

Sparse phase retrieval problem was first studied in the context of Fourier measure-

ment vectors [78, 65, 68, 79]. In the Fourier based phase retrieval problem, we

collect measurements yi, 1 ď i ďM using an (oversampled) Fourier sampling vector

[62, 61, 78, 65, 80, 79, 81]

fi “ α
“

1, zi, z
2
i ¨ ¨ ¨ , z

N´1
i

‰T

Here zi “ ej2πi{M where M ě N is the oversampling factor.

It is readily seen that the Fourier based phase retrieval problem is equivalent

to recovering a zero padded (if M ą N) x from its autocorrelation sequence. This

problem has an inherent ambiguity since two distinct finite length signals x1rns and

x2rns (with same length N) can exhibit identical autocorrelation. This can be seen

from the fact that the polynomial X1pzqX̄1p1{z̄q (denoting the z´ transform of the

autocorrelation of x1rns and ¯̈ is conjugate) can be decomposed into two spectral

factors of same length in more than one way. To remove this ambiguity, it is nec-

essary to impose additional priors on the signal x. In [89], the authors avoid the

inherent ambiguity of spectral factorization by adding one additional entry to make

the signal minimum-phase. The number of measurements needed in [89] is 2N but

sparsity can not be exploited.

Sparsity as a prior: A popular prior knowledge used in recent literature is that

x P CN is sparse with s ă N non zero elements. However, even with sparse priors,
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it is non trivial to ensure unique recovery of x from its autocorrelation, since the

autocorrelation may not be sparse. To remedy this, a “Collision-Free Condition”

(CFC) is further imposed in literature[68, 69] and restated in Def.3. Under this

condition, for s ‰ 6, x can be uniquely recovered from M Fourier measurements

where M ě s2 ´ s` 1, and M is a prime integer [68, 62].

Definition 3. (Collision-Free Condition) [69, 68] A sparse vector x has collision-

free property if for pairs of distinct entries pp, qq, pm,nq in the support of x, p´ q ‰

m´ n unless pp, qq “ pm,nq.

Drawbacks: A major drawback of CFC is that it imposes an upper bound on the

sparsity of x that we can only recover sufficiently sparse vectors whose sparsity can

be at most s “ Op
?
Nq. In practice, the no-collision property may only hold for

even smaller values of s as experimentally validated in Fig.3.1 . Secondly, even

with CFC, the l1 minimization based recovery algorithm proposed in [68] requires

M “ Ops2q measurements, which is larger than the degrees of freedom in a sparse

x.

3.3 Nested Fourier Measurements and Phase Retrieval without Noise

3.3.1 Nested Fourier Measurement and Decoupling

As a major contribution of this thesis, we now propose a Fourier type measurement

model namely the Partial Nested Fourier Sampler (PNFS), built upon the nested
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Figure 3.1: The probability of “no-collision” as a function of sparsity s. The

ambient dimension is N “ 10000 and the result is averaged over 2000 runs.

sampling idea in [29, 13, 14], that completely avoids the need for a collision-free

condition and provides good performance guarantees.

We first define the following general model for Fourier measurement vectors:

Definition 4. (General Fourier Measurement:) A General Fourier Measure-

ment (GFM) vector is defined as

fi “ α rzn1
i , z

n2
i , ¨ ¨ ¨ , z

nN
i s

T (3.3)

where zi is on the unit circle in complex plane, α is a normalizing constant and

N “ tn1, n2, ¨ ¨ ¨ , nNu are non-negative integers.

Definition 5. (Partial Nested Fourier Sampler:) We define a Partial Nested

Fourier Sampler (PNFS) as a special form of GFM vector defined in (3.3) where

N “ t1, 2, ¨ ¨ ¨ , N ´ 1, 2N ´ 2u, α “ p4N ´ 5q´1{4 and zi “ ej2πpi´1q{p4N´5q.
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Substituting this choice of fi in (3.3) and combining identical columns, in

noiseless case, we have

yi “
1

?
4N ´ 5

”

z
´p2N´3q
i , ¨ ¨ ¨ , z´1

i , 1, z1
i ,

¨ ¨ ¨ , z2N´3
i

‰

x̃ (3.4)

where x̃ P C4N´5 is the corresponding rearranged version of VecpxxHq with following

form

rx̃sm “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

řN
k“1 |xk|

2 m “ 0

řN´1´m
k“1 xkx̄k`m m “ 1, 2, ¨ ¨ ¨ , N ´ 2

x2N´2´mx̄N N ´ 1 ď m ď 2N ´ 3

rx̃s
´m m ă 0

(3.5)

where we re-number the indices of x̃ in range r´2N ` 3, 2N ´ 3s for simplicity and

clearance.

Decoupling Effect And Basics of Recovery: The most important property

of PNFS is that for |m| ě N ´ 1, rx̃sm only consists of single terms instead of a

sum. Moreover, each of these terms has a constant factor xN . The important

advantage of decoupled products is that if xN is nonzero, the sparsity of

the sub-vector consisting of x̃ for |m| ě N ´ 1 reveals the support of x. In

addition, for s ě 2, rx̃sm will vanish for |m| ě N ´1 if and only if xN “ 0. However,

65



without any prior knowledge about the support of x, there is no guarantee that xN

is nonzero and for this reason, we define the following column-permuted version of

the PNFS sampling vector fi as

f
plq
i “

1
4
?

4N ´ 5

“

z1
i , z

2
i , ¨ ¨ ¨ , z

N´1
i , z2N´2

i

‰

Πplq (3.6)

where zi “ ej2πpi´1q{p4N´5q and Πplq is a permuting matrix such that the vector

xplq “ Πplqx satisfies rxplqsl “ xN , rx
plqsN “ xl, rx

plqsi “ xi, i ‰ l, N . The basic idea

of using the permuted PNFS vector is that for some l, we can ensure that rxplqsN is

non zero. For that choice of l, we can then recover x̃plq from measurements y
plq
i , and

use the decoupled entries (guaranteed to be non zero since rxplqsN ‰ 0) to estimate

the support of xplq (or equivalently of x) and the corresponding non zero elements

(upto a global phase ambiguity). For each l, we collect M̃ phaseless measurements

y
plq
i , i “ 1, 2, ¨ ¨ ¨ , M̃ using the permuted PNFS vector (3.6) and obtain

yplq “ Zx̃plq (3.7)

where ryplqsi “ y
plq
i , rZsi,m “

1?
4N´5

ej2π
pi´1qm
4N´5 , 1 ď i ď M̃, ´2N ` 3 ď m ď 2N ´ 3.

It is easy to see that Z is invertible if M̃ “ 4N ´ 5 and x̃plq can be recovered from

ỹplq.

3.3.2 Iterative Algorithm

We now describe the details of a simple iterative algorithm that uses the permuted

PNFS vectors iteratively to find a non zero entry of x. Assuming sparsity s ě 2,

note that rx̃plqsm will be all zero for |m| ě N ´ 1 if and only if the last entry is zero.

Hence, the proposed algorithm starts with l “ N and reduces l in each step until
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it finds a non zero xl. It then successively recovers x̃plq and x upto a global phase.

Table 1 summarizes the algorithm

Input: data x Output: estimation x#

1. Initialization: l “ N

2. Loop:

(a) Step S1: Using the permuted PNFS vectors (3.6), obtain 4N ´ 5 phaseless

measurements

y
plq
i “ |xx, f

plq
i y|

2, i “ 1, 2, ¨ ¨ ¨ 4N ´ 5

Using (3.7), recover x̃plq “ Z´1yplq

(b) Step S2: If rx̃plqsm “ 0,@|m| ě N ´ 1, declare xl “ 0. Assign lÑ l´ 1 and go

back to Step S1.

If rx̃plqsm ‰ 0 for some m with |m| ě N ´ 1, proceed to the recovery stage.

3. Recovery:

(a) Choose m˚ P t1, 2, ¨ ¨ ¨ , N ´ 2u such that rx̃plqsm˚ ‰ 0 and compute

|x
plq
N | “

b

γ{rx̃plqsm˚

& γ “
řN´1´m˚

k“1 rx̃plqs2N´2´krx̃plqs2N´2´k´m˚

(b) Obtain estimate x# as

rx#sq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

ˆ

rx̃plqs2N´2´q

|x
plq
N |

˙

q ‰ tl, Nu

|x
plq
N | q “ l

rx̃plqs2N´2´l

|x
plq
N |

q “ N

Table 3.1: Iterative Algorithm for Phase Retrieval using PNFS
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3.3.3 Accuracy of the Iterative Algorithm

In this section, we will show x# exactly recovers x in absence of noise. Obviously,

the number of measurements needed is determined by the smallest index lmin such

that xlmin
is non zero in Table 1. In terms of the minimum number of required

measurements, it is clear that the best case occurs when lmin “ N and the worst

case happens for lmin “ s. Formally, we have the following result

Theorem 5. Let x P CN be s-sparse with s ě 3. The estimate x# produced by

the iterative algorithm described in Table 1 is equal to x (in the sense of CzT) if

the total number of phaseless measurements M equals 4N ´ 5 for the best case and

pN ´ s` 1qp4N ´ 5q for the worst case.

Proof. In each iteration, we collect 4N ´ 5 phaseless measurements y
plq
i , and hence

we need to collect 4N ´ 5 measurements in the best case and p4N ´ 5qpN ´ s` 1q

measurements in the worst case. The final step is then to show the correctness

of this algorithms in recovering x upto a global phase. We prove correctness for

the case when the algorithm terminates in 1 step (i.e. when xN is non zero) since

the proof remains identical for other cases just by exchanging l and N . The first

idea in the proof is to show the existence of m˚ such that rx̃plqsm˚ ‰ 0. Denote

x̆ “ rx1, x2, ¨ ¨ ¨ , xN´1s
T and let rx̆ P C2N´3 be the autocorrelation vector of x̆.

Suppose m˚ does not exist, implying rx̃sm “ 0 for 1 ď |m| ď N ´ 2. Hence,

rrx̆sn “ γδpnq where γ “ rx̃s0 ´ |xN |
2 and δpnq is Kronecker delta. This means

that r̂x̆pe
jωq fi

řN´2
n“´N`2rrx̆sne

´jωn is an all-pass filter. However, r̂x̆pe
jωq “ |ˆ̆xpejωq|2

where ˆ̆xpejωq fi
řN´2
n“´N`2rx̆sne

´jωn. This implies ˆ̆xpejωq is also an all-pass filter.
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Since ˆ̆xpejωq is an FIR filter, this is not possible unless we have [84]

rx̆sn “ λδpn´ n0q (3.8)

for some n0 satisfying 1 ď n0 ď N ´ 1 and λ is a constant. However, since s ě 3, x̆

has at least two non zero entries which contradicts (3.8). Therefore, the existence

of m˚ is guaranteed.

It is then easy to see that x# is equal to x in sense of CzT. In particular,

assuming lmin “ N , we have rx#sN “
a

γ{rx̃plqsm˚ “ |xN |. Now, for 1 ď q ď N ´ 1,

from (3.5), we have rx̃s2N´2´q “ xqx̄N . Therefore, rx#sq “
rx̃s2N´2´q

|xN |
“ cxq where

c “ x̄N{|xN | is the global phase term.

Note that this iterative algorithm imposes no upper bound on s. We also have

following corollary for non-sparse x.

Corollary 4. If x is nowhere vanishing (i.e. s “ N), the number of measurements

needed for recovering x is M “ 4N ´ 5.

Connection to 4N ´ 4 Conjecture: The interesting part of Corollary 4 is that

4N ´ 4 is a well known conjectured lower bound for complex phase retrieval [62].

Let M˚pNq be the size of a set of measurements, then if successful phase retrieval

holds for all x P CN , to the best of our knowledge, the lower bound on the number

of measurements needed for phase retrieval is given by [85]
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M˚
pNq ě

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

4N ´ 2αpN ´ 1q ´ 3 for all N

4N ´ 2αpN ´ 1q ´ 2 if N is odd and

αpN ´ 1q “ 2 mod 4

4N ´ 2αpN ´ 1q ´ 1 if N is even and

αpN ´ 1q “ 3 mod 4

where αpN ´ 1q denotes the number of 1’s in the binary representation of N ´ 1

which is always no less than 1. As a quick observation, the lower bound is itself

upper bounded by 4N ´5 where αpN ´1q is 1, and 4N ´5 is the exact lower bound

for N “ 2p ` 1 for p ě 1.

3.4 Randomized PNFS and Phase and Phase Retrieval with Noise

One of the major reasons for the inefficiency of the iterative algorithm in Theorem

5 is the number of measurements spent towards finding the non-zero pivot entry,

x
plq
N . We now introduce a randomized version of PNFS for sparse phase retrieval

which requires only OpslogNq measurements to ensure phase retrieval with high

probability.

Definition 6. (Randomized PNFS) A Randomized PNFS (R-PNFS) consists of

measurement vectors

f
(R-PNFS)
i “ rIN,N vs f

pN`1q
i

where v P CN is a random vector with independent entries, and f
pN`1q
i is defined in

(5) for dimension N ` 1.
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Given the unknown signal x‹ P CN , the phaseless measurement obtained using

a R-PNFS vector can be expressed as

yi “
ˇ

ˇ

ˇ

´

fR-PNFS
i

¯H

x‹
ˇ

ˇ

ˇ

2

` ni “
ˇ

ˇ

ˇ
f
pN`1q
i

H

»

—

—

–

x‹

vHx‹

fi

ffi

ffi

fl

ˇ

ˇ

ˇ

2

` ni (3.9)

The basic idea of R-PNFS is to concatenate an extra element xN`1 “ vHx‹ to form

the vector x “ rx‹T xN`1s
T , and then measure x using PNFS for dimension N`1.

Since the elements of v are independent random variables, it follows that the last

entry of x satisfies xN`1 ‰ 0 with probability 1.

3.4.1 A Cancellation Based Algorithm for R-PNFS

The main idea behind reducing the number of measurements for sparse retrieval

using R-PNFS is to measure a sparse x‹ (with s non zero elements) using two sets

of R-PNFS samplers, and perform sparse recovery on the difference between these

two measurements. This enables us to “cancel” out certain non-zero terms in the

autocorrelation of x‹ and retain only “decoupled terms” (singletons) which have a

maximum sparsity of 2s ` 1. We begin by introducing a second sampling vector

f̃
pN`1q
i P CN as

f̃
pN`1q
i “ rIN,N 0s f

pN`1q
i

This sampler can be thought of as a masked version of the PNFS sampler

defined in (5). Following are the main steps of the algorithm:
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1. Collect two sets of (noisy) phaseless measurements yp1q,yp2q P CM̃ as

y
p1q
i “

ˇ

ˇ

ˇ

´

fR-PNFS
i

¯H

x‹
ˇ

ˇ

ˇ

2

` n
p1q
i

y
p2q
i “

ˇ

ˇ

ˇ

´

f̃
pN`1q
i

¯H

x‹
ˇ

ˇ

ˇ

2

` n
p2q
i (3.10)

We assume the noise is bounded, i.e. |n
pkq
i | ď η, k “ 1, 2. Notice that we

collect a total of M “ 2M̃ measurements.

2. Compute the difference measurement ∆y “ yp1q ´ yp2q. The key step is to

notice that

∆y “ Zx̂`∆n (3.11)

where the unknown vector x̂ P C4N´1 consists only of “decoupled” quadratic

terms (singletons of the form x̄N`1xi, i “ 1, 2, ¨ ¨ ¨ , N) given by

rx̂sm “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

|xN`1|
2 m “ 0

0 m “ 1, 2, ¨ ¨ ¨ , N ´ 1

x2N´mx̄N`1 m “ N, ¨ ¨ ¨ , 2N ´ 1

rx̂s
´m m ă 0

Since xN`1 “ vHx‹ where v is a random vector with independent entries, it

holds that xN`1 ‰ 0 with probability 1. Hence x̂ has exactly 2s` 1 non zero

elements. We also have ∆n “ np1q ´ np2q, and the matrix Z P CM̃,4N´1 is a

partial DFT matrix with rZsi,k “
1?

4N´1
ej2π

mik

4N´1 .
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3. Obtain an estimate of x̂ as the solution to the following l1-minimization prob-

lem:

min
θ
}θ}1 subject to }∆y ´ Zθ}2 ď η

a

M̃ pP1q

4. Given the solution x̂# to (P1), the estimate for each entry of x‹ is given by

x#
q “ rx̂

#s2N´q{x
#
N`1 for 1 ď q ď N and x#

N`1 “ |
a

rx̂#s0|.

3.4.2 Stability of Noisy Phase Retrieval with R-PNFS

To analyze the performance of the proposed algorithm, we use the following lemma

from [82] which is tailored for the form (P1):

Lemma 7. [82] Consider a sparse x̂ P C4N´1 with 2s ` 1 non zero elements and

Z P CM̃,4N´1 be the DFT matrix with M rows whose indices are chosen uniformly

at random from r0, 4N ´ 2s. If M̃ ě c0p2s ` 1q logp4N ´ 1q logpε´1q, then with

probability at least 1´ ε, the solution x̂# of (P1) satisfies

}x̂´ x̂#
}2 ď c1

?
2s` 1η (3.12)

where c0, c1 are universal constants.

Theorem 6. Given a sparse x‹ P CN (with s non zeros), and the measurement

vector v P CN , consider the measurement model (3.10) where the indices mi of

f
pN`1q
i , i “ 1, 2 ¨ ¨ ¨ ,M are chosen uniformly at random from r0, 4N ´ 2s. If M̃ ě

c0p2s ` 1q logp4N ´ 1q logpε´1q and |xN`1|
2 ą c1

?
2s` 1η, with probability at least
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1´ ε, the estimates x#
q of x‹q, 1 ď q ď N , satisfy

N
ÿ

q“1

|x‹q ´ e
jφ0x#

q | ď
c1

a

p2s` 1qp4N ´ 1q
a

|xN`1|
2 ´ c1

?
2s` 1η

η `

`}x‹}1

¨

˝

1
b

1´ c1

?
2s`1η

|xN`1|
2

´ 1

˛

‚ (3.13)

where xN`1 “ vHx‹, φ0 “ argφPr0,2πqxN`1{|xN`1|, and c0, c1 are universal constants

given in Lemma 7.

Proof. For each 1 ď q ď N , we have

x‹q ´ e
jφ0x#

q “
rx̂s2N´q
x̄N`1

´
xN`1

|xN`1|

rx̂#s2N´q

x#
N`1

“
xN`1

|xN`1|

rx̂s2N´q
|xN`1|

´
xN`1

|xN`1|

rx̂#s2N´q

x#
N`1

“
xN`1

|xN`1|

˜

rx̂s2N´q
|xN`1|

´
rx̂s2N´q

x#
N`1

`

rx̂s2N´q

|x#
N`1|

´
rx̂#s2N´q

x#
N`1

¸

“
xN`1

|xN`1|

˜

rx̂s2N´q

x#
N`1

´
rx̂#s2N´q

x#
N`1

¸

`

xN`1

|xN`1|

˜

rx̂s2N´q
|xN`1|

´
rx̂s2N´q

x#
N`1

¸

“
xN`1

|xN`1|

˜

rx̂s2N´q

x#
N`1

´
rx̂#s2N´q

x#
N`1

¸

`

˜

1´
|xN`1|

x#
N`1

¸

x‹q (3.14)

Using simple triangle inequality, we have

|x‹q ´ e
jφ0x#

q | ď β
ε2N´q
|xN`1|

` |1´ β||x‹q| (3.15)
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and

N
ÿ

q“1

|x‹q ´ e
jφ0x#

q | ď β

řN
q“1 ε2N´q

|xN`1|
` |1´ β|

N
ÿ

q“1

|x‹q|

(3.16)

where ε2N´q fi |rx̃s2N´q ´ rx̃
#s2N´q| and β “ |xN`1|

x#N`1

. We have

N
ÿ

q“1

|x‹q ´ e
jφ0x#

q | ď β

řN
q“1 ε2N´q

|xN`1|
` |1´ β|

N
ÿ

q“1

|x‹q|

ď β
}x̂´ x̂#}1

|xN`1|
` |1´ β|}x‹}1 (3.17)

Since }x̂´ x̂#}1 ď
?

4N ´ 1}x̂´ x̂#}2, Lemma 7 gives us

N
ÿ

q“1

|x‹q ´ e
jφ0x#

q |

ď c1β

a

p2s` 1qp4N ´ 1qη

|xN`1|
` |1´ β|}x‹}1 (3.18)

Since rx̂s0 “ |xN`1|
2, it follows from Lemma 7 that |1´ 1

β2 | ď c1

?
2s`1η

|xN`1|
2 . If |xN`1|

2 ą

c1

?
2s` 1η, we have

1´ c1

?
2s` 1η

|xN`1|
2
ď

1

β2
ď 1` c1

?
2s` 1η

|xN`1|
2

(3.19)

The proof completes by plugging (3.19) in (3.18).

3.5 Numerical Results

In this section, we will perform numerical experiments to validate the theoretical

claims made in this chapter. We will separately consider non-sparse and sparse

signal models for phase retrieval and for each case, we will compare with existing
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state-of-the art methods in literature. We define the normalized error (minimized

over all possible phase ambiguities) for any estimate x# of x as

ε “ min
φPp0,2πs

}x´ ejφx#}2

}x}2

3.5.1 Non-sparse Phase Retrieval

From Theorem 5 and Corollary 4, we have shown that 4N ´ 5 PNFS measurements

are sufficient for exact recovery in absence of noise. In [89], the authors solve the

phase retrieval problem by adding one additional entry to the original data so that

the extended data has minimum phase property. Then, given the Fourier mea-

surements, the auto-correlation function can be computed and the minimum-phase

solution can be found uniquely. However, the number of measurements needed is

lower bounded by 2N regardless of the sparsity. We compare our proposed algorithm

with that in [89] for non-sparse data. In addition, we also compare with random

measurement based method in [23] which uses Semidefinite Programming (SDP)

and nuclear norm regularizer for rank minimization.

In Fig. 3.2, we generate real Gaussian random data. It should be noted that

the proposed method and the one in [89] can also work for complex data but the SDP

based method in [23] is discussed only for real data. It can be seen that the proposed

method outperforms the other two methods in terms of normalized estimation error.
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Figure 3.2: Performance comparison for non-sparse real data for proposed R-PNFS

method and those in [89, 23]. Data dimension is N “ 30 with M “ 4N ´ 1 and the

results are averaged over 50 runs.
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3.5.2 Sparse Phase Retrieval

We consider a complex valued signal x‹ P CN with s non zero elements, and }x‹}2 “

1. Both the nonzero indices and amplitudes are generated randomly.
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Figure 3.3: (Left) Phase transition for noiseless case, averaged over 100 runs with

N “ 150. White and black boxes denote success rates of 1 and 0 respectively.

(Right) Phase transition for noisy case averaged over 50 runs with N “ 100, and

entry-wise noise bounded by 0.01. Each box denotes 1
N

řN
q“1 |x

‹
q ´ e

jφ0x#
q |. The red

line represents M “ 3s logN for both.

The phase transition plots of the proposed method for both noiseless and noisy

signal models is depicted in Fig.3.3. Here N “ 100. In the noiseless setting, for

each M and s, we declare success if maxq |x
‹
q´ e

jφ0x#
q | ă 10´6. For the noisy model,

we assume the entry wise noise to be upper bounded by ε “ 0.01 and plot the

reconstruction error 1
N

řN
q“1 |x

‹
q´e

jφ0x#
q |. We also superpose the line corresponding

to M “ 3s logN to demonstrate that the proposed approach recovers the true x‹

with M “ Ops logNq measurements.

In Fig. 3.4, we show an example of sparse phase retrieval using the proposed

R-PNFS sampler and cancellation based algorithm. Here N “ 350, s “ 6,M “ 100.
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It can be seen that the proposed technique recovers the true x‹ faithfully up to a

global phase ambiguity, the value of which is easily obtained from the complex plane

representation.
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Figure 3.4: (Top left) Amplitudes of the original data. (Top right) The complex

plane representation of the nonzero part of the original data.(Bottom left) Ampli-

tudes of the recovered data. (Bottom right) The complex plane representation of

the recovered data. Here, N=350, s=6 and M = 100.

In [90], the authors propose a greedy algorithm called ”GESPAR” for sparse

phase retrieval of real data with Fourier measurements. The estimate is found not

only by searching all possible phase in range p0, 2πs but also trying different shifted

versions of the true data, which may not be possible in practice. However, we still

make comparisons with GESPAR in Fig.3.5 assuming that it is allowed to perform

the shift operations. It should be noted that GESPAR always need 4N measure-
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ments which may not be desirable for small sparsity s. It can be clearly seen that

proposed method outperforms GESPAR with the same number of measurements

and SNR.
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Figure 3.5: Performance comparison for parse real data for proposed R-PNFS

method and GESPAR [90]. Data dimension is N “ 64 with s “ 8 The results are

averaged over 50 runs.
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Chapter 4: Conclusion

In this thesis, we considered compressive quadratic measurement models for two

signal processing problems, namely that of covariance estimation and phase retrieval,

and demonstrated how the idea of nested sampling can used to achieve optimal

compression in both cases.

For compressive covariance estimation, we focused on the class of low rank

Toeplitz covariance matrices and introduced a new structured sampler, namely the

Generalized Nested Sampler (GNS) for compressing such matrices. As a major con-

tribution of this work, we showed that it is possible to recover a rank r PSD Toeplitz

matrix from a sketch of size Op
?
rqˆOp

?
rq, which is order-wise optimal. In absence

of noise, these structured samplers provably outperform random sampling where the

number of required measurements exhibits a logarithmic dependence on ambient di-

mension N . We further reformulated the reconstruction problem in terms of linear

prediction and line spectrum estimation respectively and studied the performance

of gridless techniques, such as MUSIC, for recovering T from its sketch produced

by the GNS. In absence of noise, we established exact recovery of a rank-r Toeplitz

matrix of any size by Carathéodory’s representation of low rank Toeplitz matrix

and perfect recovery is possible without assuming a separation condition between
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the frequencies parameterizing the low rank PSD Toeplitz matrix. In the presence of

bounded noise, we propose a parameter-free algorithm for recovering T. We use LS-

denoising and make predictions for estimating whole high-dimensional matrix. This

novel prediction based algorithm is based on the representation of positive definite

Toeplitz covariance in [52]. We developed an explicit bound on the prediction error

in terms of r, noise power and the observation length n. The numerical simulations

validated the theoretical claims established in this paper and show that proposed al-

gorithm provides better performance than existing algorithms in literature. Future

work will be directed towards understanding the need for separation condition for

frequency estimation in presence of noise, and establishing optimal error bounds.

We next considered the problem of phase retrieval using Fourier measurements,

and introduced a new Fourier-based sampler, namely the Partial Nested Fourier

Sampler (PNFS) that is capable of overcoming inherent ambiguities of Fourier based

phase retrieval. For non-sparse signals, we established that 4N ´ 5 PNFS measure-

ments are sufficient for exact recovery in absence of noise. It should be noted that

4N´4 is a conjectured lower bound for general phase retrieval. For sparse signals, a

randomized version of PNFS and a novel cancellation-based algorithm are proposed

which only require M “ Ops logNq measurements for stable estimation based. Un-

like other algorithms, the proposed framework works for almost all sparsity levels

and its estimation error is smaller than greedy algorithms as shown by simulation

result.

In future, we will develop a unified analytical framework for analyzing the

performance of general regularizer-free algorithms for covariance compression and
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understand if they are capable of achieving the Cramér-Rao bounds. Our results

can also be applied to Sparse Bayesian Learning where covariance estimation is a

key step towards estimating a sparse signal. Finally, we will explore the possibility

of implementing the proposed PNFS sampler using holographic techniques, and

integrating them with random coded masks.
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