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This dissertation addressed many key problems in autonomous driving towards handling

dense, heterogeneous, and unstructured traffic environments. Autonomous vehicles (AV) at

present are restricted to operating on smooth and well-marked roads, in sparse traffic, and among

well-behaved drivers. We developed new techniques to perceive, predict, and plan among human

drivers in traffic that is significantly denser in terms of number of traffic-agents, more heterogeneous

in terms of size and dynamic constraints of traffic agents, and where many drivers do not follow

the traffic rules. In this thesis, we present work along three themes—perception, driver behavior

modeling, and planning. Our novel contributions include:

1. Improved tracking and trajectory prediction algorithms for dense and heterogeneous traffic

using a combination of computer vision and deep learning techniques.

2. A novel behavior modeling approach using graph theory for characterizing human drivers

as aggressive or conservative from their trajectories.



3. Behavior-driven planning and navigation algorithms in mixed (human driver and AV) and

unstructured traffic environments using game theory and risk-aware control.

Additionally, we have released a new traffic dataset, METEOR, which captures rare and

interesting, multi-agent driving behaviors in India. These behaviors are grouped into traffic

violations, atypical interactions, and diverse scenarios. We evaluate our perception work on

tracking and trajectory prediction using standard autonomous driving datasets such as the Waymo

Open Motion, Argoverse, NuScenes datasets, as well as public leaderboards where our tracking

approach resulted in achieving rank 1 among over a 100 methods. We apply human driver

behavior modeling in planning and navigation at unsignaled intersections and highways scenarios

using state-of-the-art traffic simulators and show that our approach yields fewer collisions and

deadlocks compared to methods based on deep reinforcement learning. We conclude the presentation

with a discussion on future work.
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Chapter 1: Introduction

Autonomous vehicles (AVs), intelligent transportation, electric vehicles, and advanced

driving assistance systems (ADAS) are an active area of research in many scientific fields such as

engineering, computer vision, artificial intelligence, control theory, and robotics. Researchers in

these fields from both the academic and industry communities tackle problems related to sensing,

perception, prediction, planning, and controls. Autonomous vehicles currently operate only on

smooth, clearly marked roads, in sparse to moderate traffic, in clear weather, in the daytime, and,

most importantly, among predictable, well-behaved drivers. We refer to such traffic as structured

traffic.

Fully autonomous driving, however, require AVs to robustly, safely, and efficiently operate

in unstructured environments. Examples of unstructured elements include objects previously

unseen by the vehicle’s perception system, idiosyncrasies—often unpredictable—of human drivers,

hazardous weather and road conditions, and so on. Failure to deal with such scenarios, which

occur more frequently than one might imagine, may result in accidents. Bridging the gap between

structured and unstructured traffic environments is, therefore, one of the central open questions

in autonomous driving research. There are three characteristics that elevate the difficulty of

autonomous driving in such environments:

1. High Density: Figure 1.1 depicts a typical dense traffic scenario in developing nations.
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Figure 1.1: Unstructured traffic conditions. Note the high density and high heterogeneity, lack of
lane markings, and overall unstructured nature of traffic.

Since most computer vision AD algorithms rely on front-facing visual sensors, objects

may be occluded from the AV’s field of view raising safety concerns.

2. High Heterogeneity: Heterogeneity refers to the many unique types of road-agents in a

traffic scenario. For example, in Figure 1.1, we can observe vans, cars, two-wheelers, and

even unique agents like a cart loaded with over-sized poles.

3. Non-conformity (unstructured): Non-conformity among traffic-agents refers to the scenario

where drivers do not obey traffic laws and social protocols including right-of-way rules,

lane following, driving under the speed limit, etc.

Our thesis pushes the boundaries of autonomous driving towards dense, heterogeneous,

and unstructured traffic environments, typical of developing nations such as India. We develop
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new techniques to perceive, predict, and plan among human drivers in traffic that is 10 times

denser, twice as heterogeneous, and where more drivers break traffic rules than follow them.

In this dissertation, we present the challenges of perception, prediction, and planning in dense,

heterogeneous, and unstructured traffic, and discuss ways to tackle them.

1.1 Main Contributions

The core contributions of this thesis are:

1. Improved tracking in dense and unstructured traffic—Using a combination of computer

vision and deep learning techniques, we propose a new tracking algorithms that improve

perception in dense and unstructured environments, outperforming over a 100 methods on

standard benchmarks. To deal with the high density, we propose the following:

(a) A better feature representation: Existing trackers that work for sparse traffic scenarios

use rectangular bounding boxes to localize agents. Such boxes, however, overlap

in dense traffic scenarios due to the close proximity between agents. Therefore,

an alternate localization function, such as semantic segmentation, is required that

targets pixels that belong only to the agent under consideration. We provide analytical

guarantees for improved performance of using segmentation as the feature representation

compared to using bounding boxes.

(b) A better motion model: Velocity-based motion models are used to plan agent motion

in dense settings. The reciprocal velocity obstacles (RVO), however, models agents as

circular discs in a 2D plane from a top-down view. Most autonomous driving tracking
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systems, on the other hand, assume a front-facing camera. In our work, we modify

the RVO implementation for front-facing cameras by modeling agents as ellipses.

2. New trajectory prediction algorithms for dense, heterogeneous, and unstructured

traffic— We propose a novel attention mechanism to take into account the different shapes,

sizes, and mobility of the different types of agents. We also integrate our work on tracking

with trajectory prediction to perform trajectory prediction in dense traffic. Finally to

deal with unstructured traffic consisting of non-confirming agents, we combine behavior

prediction with trajectory prediction to predict driver behavior as aggressive or conservative.

3. A new algorithm for online driver behavior modeling— Given the input trajectories of

vehicles in a period of time, we characterize, in realtime, the driving style (on a continuous

scale from aggressive to conservative) of the vehicle using graph theory. Our approach is

generally applicable and we demonstrated our algorithm in India, China, Singapore, and

USA. We further show that our algorithm is accurate up to human-level accuracy.

4. Behavior compliant planning and navigation—We propose a new framework for planning

and navigation in human environments using mechanism design. This thesis presents

the first application of mechanism design, a tool previously limited to economics and

algorithm design, to robotics and optimal planning. The main benefit of this framework

lies in its ability to perform optimal decision-making with humans-in-the-loop, without

requiring access to the humans’ objective functions. Our results from experiments at

dynamic traffic intersections show that our framework improves throughput by at least

25%, time taken to reach the goal by 75%, and fuel consumption by 33% compared to

auction-based approaches and signaled approaches using traffic-lights and stop signs.
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5. Software and datasets—New datasets containing traffic from India consisting of rare and

interesting, multiagent driving behaviors grouped into traffic violations, atypical interactions,

and diverse scenarios. Open-source software to integrate the algorithms for perception,

prediction, and planning into an end-to-end pipeline.

1.1.1 Applications

This thesis is expected to contribute to the following domains:

• Multi-Agent Systems: This is a broad area in the field of artificial intelligence. Our

work on mechanism design and planning can extend to this area and solve issues related to

coordination, negotiation, cooperation, competition, and teaming among intelligent agents.

• Robotics: Our work can extend naturally to ground robots operating in unstructured indoor

and outdoor environments. Specific problems that this thesis could tackle include navigation

in dense crowds and task-and-motion planning.

• Artificial Intelligence and Reinforcement Learning: Our thesis can address important

problems in multi-agent reinforcement learning using the proposed concepts of mechanism

design applied to planning and optimal control.

1.2 Overview of the thesis

Our thesis presents new algorithms for perception (tracking, trajectory prediction, and

behavior prediction), online driver behavior modeling, and behaviorally compliant planning, in

dense, heterogeneous, and unstructured traffic. We organize the material as follows—
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• Chapter 2—Perception in Dense and Heterogeneous Environments: Our contributions

included developing new techniques for visual perception in dense and heterogeneous

traffic. AVs must perceive the dynamic environment around them and extract useful information.

This includes detecting vehicles and static obstacles, tracking the movement of all road-

agents, and predicting their future trajectories and behaviors. Starting with tracking, we

describe two key challenges in dense, heterogeneous, and unstructured traffic environments.

First, it is easy to miss occluded agents which results in a large number of false negatives

and second, tracks are fragile in that they can be easily fragmented. We propose two

algorithms that tackle these challenge. The first algorithm is a tracking-by-detection algorithm

where we employ bounding box subtraction to remove background noise from an image

patch corresponding to an agent. Our background subtraction approach ranked 1st on the

state-of-the-art benchmark leader-board at the time of submission in terms of fewest false

negatives.. The second algorithm extends the previous algorithm by incorporating a novel

motion model that simultaneously takes into account collision avoidance and inter-agent

interactions to bolster current tracks, thereby addressing the second challenge.

The next part in this chapter includes effective methods to predict the trajectories of human

drivers. However, there are several issues associated with such environments that make

prediction challenging. Highly dense traffic corresponds to more frequent inter-agent interactions

which are hard to model due to the inherent uncertainty in human behavior. Moreover,

prediction algorithms require huge datasets for training, the collection of which is a costly

and time-consuming process. Finally, AVs must simultaneously perform low-level trajectory

and high-level action prediction for real time navigation as opposed to current state-of-the-
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art which handles trajectory and action prediction independent of each other. We developed

three algorithms that address the limitations described above. In the first algorithm, the key

aspect is to selectively focus attention on fewer agents. The algorithm consists of a novel

attention mechanism that teaches the ego-vehicle to identify the agents that deserve more

importance than others. For instance, a pedestrian in the way of the ego-vehicle requires

more attention than, say, a parked car to the side. The second approach is an end-to-

end approach that does not require manually labeled ground-truth trajectories to train the

trajectory prediction network. The input to this algorithm consists only of raw traffic videos

obtained from commodity sensors such as monocular RGB cameras. The algorithm uses

a tracking algorithm to generate noisy trajectories from these videos. These trajectories

replace the trajectory input used by the first algorithm. In the final algorithm, we perform

simultaneous trajectory and action prediction. Architecturally, the network consists of a

two-stream approach working in parallel. The first stream is essentially the first trajectory

prediction algorithm while the second stream is used to perform action prediction.

• Chapter 3—Online Driver Behavior Modeling:Following our research on perception

and prediction, we shifted our focus on planning and navigation in unstructured traffic

scenarios. In such scenarios however, human driver behavior plays a key role in building

better planning and navigation algorithms. For instance, developing nations do not have

right-of-way rules at intersections. Human drivers often have to navigate such intersections

by gauging the behavior of the other drivers and negotiate the intersection accordingly.

We propose a new algorithm for modeling and characterizing human driver behavior as

different levels of aggressiveness using the vehicle trajectories as input. Our contributions
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in driver behavior modeling are the following. We propose a new metric, called CMetric [14],

to quantify driver behavior from raw vehicle trajectories obtained from commodity sensors

such as cameras and lidars. My approach uses the concept of vertex centrality functions

from graph theory to measure the likelihood and intensity of driving styles such as overspeeding,

overtaking, sudden lane-changes, etc. We test CMetric in both simulation and real-world

traffic and evaluate its accuracy by comparing it to human evaluation. Specifically, we

measure the time difference between the moments when a human identifies an aggressive

behavior and when CMetric identifies the same behavior. Our experiments showed that

CMetric can identify different behaviors with a time difference of less than 0.02 seconds.

In a follow-on work, GraphRQI [15], we convert the CMetric approach into a machine

learning algorithm by formulating the behavior prediction task as a multi-class classification

problem.

• Chapter 4—Behaviorally Compliant Planning in Human Environments: We proposed

three Planning-Algorithms for planning among AVs and human drivers at intersections

with no traffic lights, signs, and most importantly, no right-of-way rules (such as the first-

in first-out principle). The goal is to route drivers according to a turn-based ordering

that minimizes time-to-goal in a way such that each driver is envy-free. We develop a

new auction format that propounds a new allocation rule based on the behavior of each

driver. We show that such an auction format is incentive-compatible, utility-maximizing,

and computable in polynomial time.

• Chapter 5—Software and Datasets: We present a new traffic dataset, METEOR, which

captures traffic patterns and multi-agent driving behaviors in unstructured scenarios. METEOR consists
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of more than 1000 one-minute videos, over 2 million annotated frames with bounding

boxes and GPS trajectories for 16 unique agent categories, and more than 13 million

bounding boxes for traffic agents. METEOR is a dataset for rare and interesting, multi-agent

driving behaviors that are grouped into traffic violations, atypical interactions, and diverse

scenarios. Every video in METEOR is tagged using a diverse range of factors corresponding

to weather, time of the day, road conditions, and traffic density. We use METEOR to

benchmark perception methods for object detection and multi-agent behavior prediction.

Our key finding is that state-of-the-art models for object detection and behavior prediction,

which otherwise succeed on existing datasets such as Waymo, fail on the METEOR dataset.

METEOR marks the first step towards the development of more sophisticated perception

models for dense, heterogeneous, and unstructured scenarios.

• Chapter 6—Limitations, Conclusion, and Future Work:My long-term vision is to design

robust, efficient, and safe multi-agent AI systems in which autonomous agents can naturally

act in unstructured human environments. In striving towards this naturalness, autonomous

agents must efficiently co-exist with humans in both cooperative and competitive scenarios.

My research will draw upon various tools in AI including planning and optimal control,

algorithmic game theory, and deep learning with applications in robotics and computer

vision. A major challenge in planning and decision-making in human environments is to

reason about the actions of the human agents. Several strategies have been used to varying

degrees of success including worst-case analysis, probabilistic uncertainty, and dynamic

game theory. In the first two cases, the human agent is framed as nature, whereas in the

third case, the agent is assumed to optimize their particular objective function. In general
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cases, this objective function is unknown. A large body of work has been done to learn

the objective function via IRL. The challenges with IRL include necessity of large corpus

of data and instability in training. I also plan to extend my dissertation research on safe,

efficient, and robust autonomous driving in unstructured traffic along several themes.
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Chapter 2: Perception for Dense and Heterogeneous Traffic

2.1 Overview

Perception is the task of collecting, processing, and analyzing visual, semantic, and other

multi-modal information from the environment of an AV via various sensors like cameras, lidars,

radars, IMUs, GPS, etc. Simply put, perception acts as the eyes of the AV. In this dissertation,

we study the tracking and trajectory prediction of the ego-vehicle in dense and heterogeneous

traffic environments. Tracking and trajectory prediction are integral components of autonomous

driving software; without them, AVs cannot safely and efficiently plan in dynamic environments

consisting of multiple vehicles. In light of their importance, research in tracking and trajectory

prediction has exploded in recent times. But despite these advances, current solutions are still not

robust enough in dense and heterogeneous traffic environments. There are three key challenges

in such environments—

1. High density traffic cause occlusions. Especially when recorded from a front-facing

camera, which causes the tracking algorithms to fail to sense critical objects.

2. High heterogeneity: Different road-agents, with varying shape and size, maneuver differently

and result in different trajectories.

3. Lack of robustness in unstructured environments: The trajectories of agents in unstructured
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traffic are inherently noisy. Trajectory prediction algorithms are inherently noisy to these

trajectories.

We conclude this chapter with our work on joint trajectory and behavior prediction.

2.2 Related Work

2.2.1 Object Detection

Early methods for object detection include HOG [16] and SIFT [17], which manually

extract features from images. Inspired by AlexNet, [18] proposed R-CNN and its variants [19, 20]

for optimizing the object detection problem by incorporating a selective search.

More recently, the prevalence of CNNs has led to the development of Mask R-CNN [6],

which extends Faster R-CNN to include pixel-level segmentation. The use of Mask R-CNN

in pedestrian tracking has been limited, although it has been used for other pedestrian-related

problems such as pose estimation [21].

2.2.2 Pedestrian and Vehicle Tracking

There is extensive work on pedestrian tracking [22, 23]. Bruce et al. [24] and Gong et

al. [25] predict pedestrians’ motions by estimating their destinations. Liao et al. [26] compute a

Voronoi graph from the environment and predict the pedestrian motion along the edges. Mehran

et al. [27] apply the social force model to detect anomalous pedestrian behaviors from videos.

Pellegrini et al. [28] use an energy function to build a goal-directed short-term collision-avoidance

motion model. Bera et al. [29, 30] use reciprocal velocity obstacles and hybrid motion models
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to improve the accuracy. All these methods are specifically designed for tracking pedestrian

movement.

Vehicle tracking has been studied in computer vision, robotics, and intelligent transportation.

Some of the earlier techniques are based on using cameras [31] and laser range finders [32]. The

authors of [33] model dynamic and geometric properties of the tracked vehicles and estimate their

positions using a stereo rig mounted on a mobile platform. Ess et al. [34] present an approach to

detect and track vehicles in highly dynamic environments. Multiple cameras have also been used

to perform tracking all surrounding vehicles [35, 36]. Moras et al. [37] use an occupancy grid

framework to manage different sources of uncertainty for more efficient vehicle tracking; Wojke

et al. [38] use LiDAR for moving vehicle detection and tracking in unstructured environments.

Finally, [39] uses a feature-based approach to track the vehicles under varying lighting conditions.

Most of these methods focus on vehicle tracking and do not take into account interactions with

other road-agents such as pedestrians, two-wheelers, rickshaws etc. in dense urban environments.

For an up-to-date review of tracking-by-detection algorithms, we refer the reader to methods

submitted to the MOT benchmark [40].

2.2.3 Motion Models in Pedestrian Tracking

Motion models are commonly used in pedestrian tracking algorithms to improve tracking

accuracy [41, 42]. [42] presents a variation of MHT and shows that it is at par with the state-of-

the-art from the tracking-by-detection paradigm. [43] uses a motion model to combine fragmented

pedestrian tracks caused by occlusion. These methods are based on linear constant velocity or

acceleration models. Such linear models, however, cannot characterize pedestrian dynamics in
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Figure 2.1: Tracking in dense, heterogeneous, and unstructured environments. The circled
numbers indicate the agent IDs.

dense crowds [44]. RVO [3] is a non-linear motion model that has been used for pedestrian

tracking in dense videos to compute intermediate goal locations, but it only works with top-facing

videos and circular pedestrian representations. RVO has been extended to tracking road-agents

such as cars, buses, and two-wheelers, in addition to pedestrians, using a linear runtime motion

model that considers both collision avoidance and pair-wise heterogeneous interactions between

road-agents [45]. Other motion models used in pedestrian tracking are the Social Force model

[46], LTA [47], and ATTR [48].

There are also many discrete motion models that represent each individual or pedestrian

in a crowd as a particle (or as a 2D circle on a plane) to model the interactions. These include

models based on repulsive forces [2] and velocity-based optimization algorithms [49], [3]. More

recent discrete approaches are based on short-term planning using a discrete approach [50] and

cognitive models [51]. However, these methods are based on circular agent representation and do

not work well for front-facing pedestrians in dense crowd videos as they are overly conservative

in terms of motion prediction.
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2.3 Tracking in dense traffic

My initial contributions as a graduate student included developing new techniques for

visual perception in dense and heterogeneous traffic. AVs must perceive the dynamic environment

around them and extract useful information. This includes detecting vehicles, static obstacles, and

tracking the movement of all road-agents (Figure 2.1). There are two key challenges associated

with tracking and detection in dense, heterogeneous, and unstructured traffic environments. First,

it is easy to miss occluded agents which results in a large number of false negatives and second,

tracks are fragile in that they can be easily fragmented. I propose two algorithms, DensePeds and

RoadTrack, that tackle these challenge:

1. DensePeds [12] is a tracking-by-detection algorithm where I employ bounding box subtraction

to remove background noise from an image patch corresponding to an agent. My background

subtraction approach ranked 1st on the state-of-the-art benchmark leader-board at the time

in terms of fewest false negatives. This work has been published in IROS’19.

2. RoadTrack [45] extends DensePeds by incorporating a novel motion model that simultaneously

takes into account collision avoidance and inter-agent interactions to bolster current tracks,

thereby addressing the second challenge. This work has been published in ICRA’20.

2.3.1 Tracking by Detection

Informally, the tracking problem is stated as follows: Given a video, we want to assign

an ID to all road-agents in all frames. This is formally equivalent to solving the following sub-

problem at each time-step (or frame): At current time t, given the ID labels of all road-agents in
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Figure 2.2: Overview of RoadTrack: We use Mask R-CNN on an input frame at time t to generate
segmented boxes [12]. We use SimCAI to predict the agent’s state at frame t + 1. We generate
features that are invariant to shape, size and scale of heterogeneous road-agents. These features
are matched using association algorithms and a tracking ID is assigned to each predicted agent
based on feature matching.

the frame, assign labels for road-agents in the next frame (time t+ 1).

We start by using Mask R-CNN to implicitly perform pixel-wise segmentation of the

road-agents. This generates a set of segmented boxes [12]. For each detected road-agent, hj ,

generated using Mask R-CNN, we extract their corresponding features, fhj
, using the deep

learning-based feature extraction architecture proposed in [12]. We do not use the provided pre-

trained models and instead, fine-tune the existing feature extraction network on traffic datasets to

learn meaningful features pertaining to traffic. We discuss the fine-tuned hyperparameters in the

supplementary material.

Next, we predict the next state (state consists of spatial coordinates (pi) and velocities (νi))

for each road-agent for the next time-step using SimCAI. This step is the main contribution of

this work and is described in detail in Section 2.3.3. This step results in another set of segmented
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boxes for each road-agent at time t+ 1.

Finally, we use these sets of segmented boxes to compute features using a Convolutional

Neural Network [1]. The features generated are compared using association algorithms [52] to

compute the ID of each agent in the next frame. The features are matched in two ways: the

Cosine metric and the IoU overlap [53]. The Cosine metric is computed using the following

optimization problem:

min
hj

(l(fpi , fhj
)|pi ∈ P , hj ∈ Hi). (2.1)

where Hi is the subset of all detected road-agents in the current frame that are within a circular

region around agent pi that have not been matched to a predicted agent. The IoU overlap metric

is used in conjunction with the cosine metric. This metric builds a cost matrix Σ to measure

the amount of overlap of each predicted bounding box with all nearby detection bounding box

candidates. Σ(i, j) stores the IoU overlap of the bounding box of pi with that of hj and is

calculated as:

Σ(i, j) =
Bpi ∩ Bhj

Bpi ∪ Bhj

, hj ∈ Hi.

If we denote the cosine and the IOU overlap metrics by C and I , respectively, then the combined

cost function value is obtained through,

Combined Cost = λ1C + λ2I, λ1 + λ2 = 1, (2.2)

where λ1, λ2 are constants representing the weights for the individual metric costs. Matching

a detection to a predicted measurement with maximum overlap thus becomes a max-weight
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matching problem and we solve it efficiently using the Hungarian algorithm [52]. The ID of

the road-agent at time t is assigned to that road-agent at time t + 1 whose appearance is most

closely associated to the road-agent at time t.

2.3.2 Reduced Probability of Track Loss

We now show how sparse feature vectors generated from segmented boxes reduce the

probability of the loss of pedestrian tracks (false negatives).

We define Tt = {Ψ1:t} to be the set of positively identified states for pi until time t. We

denote the time since the last update to a track ID as µ. We denote the ID of pi as α and we

represent the correct assignment of an ID to pi as Γ(α). The threshold for the Cosine metric is

λ ∼
i.i.d.

U[0, 1]. The threshold for the track age, i.e., the number of frames before which track is

destroyed, is ξ. We denote the probability of an event that uses Mask R-CNN as the primary

object detection algorithm with PM(·) and the probability of an event that uses a standard Faster

R-CNN [20] as the primary object detection algorithm (i.e., outputs bounding boxes without

boundary subtraction) with PF (·). Finally, Tt ← {∅} represents the loss of Tt by occlusion.

We now state and prove the following lemma.

Lemma 2.3.1. For every pair of feature vectors (fM
hj
, fF

hj
) generated from a segmented box and a

bounding box respectively, if ∥fM
hj
∥0> ∥fF

hj
∥0, then d(f, fM

hj
) < d(f, fF

hj
) with probability 1− B

A
,

where A and B are positive integers and A > B.

Proof. Using the definition of the Cosine metric, the lemma reduces to proving the following,

We pad both fM
hj

and fF
hj

such that ∥fM
hj
∥ > ||fF

hj
||0.

We reduce ft, fM
hj

, and fF
hj

to binary vectors, i.e., vectors composed of 0s and 1s. Let
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∆f = fM
hj
− fF

hj
. We denote the number of 1s and −1s in ∆f as A and B, respectively. Now,

let x and y denote the L0 norm of fM
hj

and fF
hj

, respectively. From our padding procedure, we

have x > y. Then, if y = B, then x = A and we trivially have A > B. But if y > B, then

A = x − (y − B) =⇒ A − B = x − y. From x > y, it again follows that A > B. Thus,

x > y =⇒ A > B.

Next, we define a (1, 1) coordinate in an ordered pair of vectors as the coordinate where

both vectors contain 1s. Similarly, a (1,−1) coordinate in an ordered pair of vectors is the

coordinate where the first vector contains 1 and the second vector contains −1. Then, let pa

and pb respectively denote the number of (1, 1) coordinates and (1,−1) coordinates in the pair

(ft,∆f). By definition, we have 0 < pa < A and 0 < pb < B. Thus, if we assume pa and pb to

be uniformly distributed, it directly follows that P(pa > pb) = 1− B
A

.

Based on Lemma 2.3.1, we finally prove the following proposition.

Proposition 2.3.1. With probability 1 − B
A

, sparse feature vectors extracted from segmented

boxes decrease the loss of pedestrian tracks, thereby reducing the number of false negatives

in comparison to regular bounding boxes.

Proof. In our approach, we use Mask R-CNN for pedestrian detection, which outputs bounding

boxes and their corresponding masks. We use the mask and bounding box pair to generate a

segmented box. The correct assignment of an ID depends on successful feature matching between

the predicted measurement feature and the optimal detection feature, that is, when the cosine cost

between the two features is below a set threshold, λ. But since the correct ID assignment depends

on multiple factors including a low cosine cost, we instead exploit the equivalency of the contra-
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positive,

d(f , fh∗
j
) > λ⇔ (α = ∅) (2.3)

Equation 2.3 indicates that when the cosine cost is greater than λ, then feature matching fails and

therefore an ID fails to be assigned, or equivalently, set to ∅. Using Lemma 2.3.1 and the fact that

λ ∼
i.i.d.

U[0, 1],

P(d(f , fM
h∗
j,pi

) > λ) < P(d(f , fF
h∗
j,pi

) > λ)

Using the equivalency in Eq. 2.3, we obtain,

PM(α = ∅) < PF (α = ∅) (2.4)

Now, in our approach, we set certain fixed conditions that need to be satisfied for a track to be

destroyed or lost. Those conditions are listed as follows:

1. DensePeds updates the ID of every pedestrian after each frame. If an update fails to occur

for µ > ζ frames, then this leads to loss of the track of that pedestrian.

2. If the first condition is satisfied, and the current ID of a pedestrian is not set, then the track

of that pedestrian is lost.

We formalize the two conditions as follows,

(µ > ξ) ∧ (α = ∅)⇔ Tt ← {∅}
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Using Eq. 2.4, it follows that,

PM(Tt ← {∅}) < PF (Tt ← {∅}) (2.5)

Informally, equation 2.5 tells us that the probability of losing a track using segmented boxes

is less than the probability of losing a track if we were to use regular bounding boxes.

To complete the proof, we now show that equation 2.5 implies that fewer lost tracks leads

to fewer false negatives. We start by defining the total number of false negatives (FN) as

FN =
T∑
t=1

∑
pg∈G

δTt (2.6)

where pg ∈ G denotes a ground truth pedestrian in the set of all ground truth pedestrians at current

time t and δz = 1 for z = 0 and 0 elsewhere. This is a variation of the Kronecker delta function.

Using Eq. 2.5 and Eq. 2.6, we can say that fewer lost tracks (Tt ← {∅}) indicate a smaller number

of false negatives. We empirically demonstrate this analysis in Section 2.3.4.

The upper bound, PF (Tt), in Eq. 2.5 depends on the amount of padding done to f and f .

A general observed trend is that a higher amount of padding results in a larger upper bound in

Eq. 2.5.

2.3.3 Simultaneous Collision Avoidance and Interactions

One of the major challenges with tracking heterogeneous road-agents in dense traffic is that

road-agents such as cars, buses, bicycles, road-agents, etc. have different sizes, geometric shape,
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Figure 2.3: Inner yellow circle denotes the social distance and the outer orange area denotes the
public region. At time t ≥ τ , pi intends to interact with pk. Then, (left) pi determines its ability
to interact with pk. We observe that γ (grey cone) of pi contains ζ of pk (green circle around pk).
Thus pi can interact with pk. (right) pi and pk align their preferred velocities toward each other.

maneuverability, behavior, and dynamics. This often leads to complex inter-agent interactions

that have not been taken into account by prior multi-object trackers. Furthermore, road-agents in

high-density scenarios are in close-proximity to one another or are almost colliding. So we need

an efficient approach for predicting the next state of a road-agent by modeling the collisions and

interactions. We thus present SimCAI, that takes into account both,

• Reciprocal collision avoidance [3] with car-like kinematic constraints for trajectory prediction

and collision avoidance.

• Heterogeneous road-agent interaction between pedestrians, two-wheelers, rickshaws, buses,

cars and so on.

All the notations used in the paper are provided in Table I of full version of this text [45].
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2.3.3.1 Velocity Prediction by Modeling Collision Avoidance

Reciprocal Velocity Obstacles (RVO) [3] extends Velocity Obstacles motion model by

modeling collision avoidance behavior for multiple engaging agents. RVO can be applied to

pedestrians in a crowd and we modify it to work with bounding boxes as our algoritheorem

conforms to the tracking-by-detection paradigm.

We represent each agent as, Ψt = [u, v, u̇, v̇, vpref], where u, v, u̇, v̇, and vpref represent the

top left corner of the bounding box, their velocities, and the preferred velocity of the agent in the

absence of obstacles respectively. vpref is computed internally by RVO.

The computation of the new state, Ψt+1, is expressed as an optimization problem. For

each agent, RVO computes a feasible region where it can move without collision. This region is

defined according to the RVO collision avoidance constraints (or ORCA constraints [3]). If the

ORCA constraints forbid an agent’s preferred velocity, that agent chooses the velocity closest to

its preferred velocity that lies in the feasible region, as given by the following optimization:

vnew = argmin
v/∈ORCA

||v − vpref|| (2.7)

The velocity, vnew, is then used to calculate the new position of a road-agent.

The difference in shapes, sizes, and aspect ratios of road-agents motivate the need to use

appearance-based features. In order to combine object detection with RVO, we modify the

state vector, Ψt, to include bounding box information by setting the position to the centers of

the bounding boxes. Thus, u = u+w
2

and v = v+h
2

, where w, h denote the width and height,

respectively, of the corresponding bounding box.
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Finally, the original RVO models the motion of agents seen from a top-view. Therefore,

to account for front-view traffic as well as top-view, we use the modification proposed by the

authors of [12] that allow RVO to model the motion of road-agents in front-view traffic scenes.

2.3.3.2 Velocity Prediction by Modeling Road-Agent Interactions

In a traffic scenario, interactions can occur between different types of road-agents: vehicle-

vehicle, pedestrian-pedestrian, vehicle-pedestrian, bicycle-pedestrian, etc. In this section, we

present a formulation to model such interactions. Our input is an RGB video captured from a

camera with known camera parameters. By using the camera center as the origin, we transform

pixel coordinates to scene coordinates for the computations that follow in this section.

Intent of Interaction The idea of using spatial regions to characterize agent behavior was

proposed in [54]. The authors introduced the notion of “public” and “social” regions, that are

of the form of concentric circles. We show a quadrant of these regions in Figure 2.3, where the

yellow area is the social region and the orange area is the public region. Based on this work,

Satake et al. [55] proposed a model of approach behavior with which a robot can interact with

humans. At the public distance the robot is allowed to approach the human to interact with them,

and at the social distance, interaction occurs. In SimCAI, we have set the public and social

distances heuristically.

We say that a road-agent, pi, intends to interact with another agent, pk, when pi is within

the social distance of pk for some minimum time τ . When two road-agents intend to interact,

they move towards each other and come in close proximity.
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Ability to Interact Even when two road-agents want to interact, their movements could be

restricted in dense traffic. We determine the ability to interact (Figure 2.3(right)) as follows.

Each agent has a personal space, which we define as a circular region ζ of radius ρ, centered

around pk. Given a road-agent pi, the slope of its vpref is tan θ. θ is the angle with the horizontal

defined in the world coordinate system. In dense traffic, each agent, pi has a limited space

in which they can steer, or turn. This space is the feasible region determined by the ORCA

constraints described in the previous section. We define a 2D cone, γ, of angle ϕ as the ORCA

region in which the agent can steer. ϕ is thus the steering angle of the agent. We denote the

extreme rays of the cone as r1 and r2. ⊥G⊭
G⊮

denotes the smallest perpendicular distance between

any two geometric structures, say, G⊮ and G⊭. These parameters are fixed for different agent

types and are not learned from data.

If pi has intended to interact with pk, the projected cone of pi, defined by extending r1 and

r2, is directed towards pk Then, in order for interaction to take place, it is sufficient to check for

either one of two conditions to be true:

1. Condition Ω1: Intersection of ζ with either r1 or r2 (if either ray intersects, then the entire

cone intersects ζ).

2. Condition Ω2: ζ ⊂ γ (if ζ lies in the interior of the cone, see Figure 2.3).

For these conditions to hold, we require that the cone does not intersect or contain any pj ∈

P , j ̸= i. We now make these equations more explicit.

We parametrize r1, r2 by their slopes tan δ, where δ = θi+ϕi if⊥r1
ζ ≥ ⊥

r2
ζ , else δ = θi−ϕi.

The resulting equation of r1 (or r2) is (Y − vi) = tan δ(X − ui) and the equation of ζ is

(X − uk)
2 + (Y − vk)

2 = ρ2. Solving both equations simultaneously, we obtain an equation
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Ω1. Intersection occurs if the discriminant of Ω1 ≥ 0. This provides us with the first condition

necessary for the occurrence of an interaction between pi and pk.

Next, we observe that if ζ lies in the interior of γ, then pk lies on the opposite sides of r1

and r2 which is modeled by the following equation:

Ω2 ≡ r1(pk).r2(pk) ≤ 0 (2.8)

Solving Equation 2.8 further provides us with the second condition for the occurrence of an

interaction between pi and pk, where Ω1,Ω2 : R2 × R2 × R× R 7−→ R.

Interaction If either Ω1 or Ω2 is true, then road-agents pi, pk will move towards each other to

interact at time t ≥ τ . When this happens, we assume that pi and pk align their current velocities

towards each other. Thus, vnew = vpref. The time taken for the two road-agents to be meet or

converge with each other is given by t =
||pi − pk||2
||vi − vk||2

. If two road-agents are overlapping (based

on the values of Ω1 and Ω2), we model them as a new agent with radius 2ϵ.

Our approach can be extended to model multiple interactions. Currently, we restrict an

interaction to take place between 2 road-agents. Therefore, in the case of multiple possible

interactions with an agent, pk, we form a set Q ⊆ P , where Q is the set of all road-agents

pω, that are intending to interact with pk. We determine the road-agent that will interact with

pk as the road-agent that minimizes the distance between pk and pω after a fixed time-step, ∆t.

Thus, pω = argminw∥(pω + vω∆t) − pk∥, pω ∈ Q. road-agents that are not interacting avoid

each other and continue moving towards their destination.

26



2.3.3.3 Analysis

We analyze the accuracy and runtime performance of SimCAI in traffic scenarios with

increasing density and heterogeneity.

Accuracy Analysis: We analytically show the advantage of SimCAI over other motion

models such as Social Forces [2], RVO [3, 44], and constant velocity [1].

We denote the mutliple object tracking accuracy, MOTA of a system using a particular

motion model as MOTAmodel and define it as MOTAmodel =
∑

c MOTAc+
∑

i MOTAi where

c and i denote an agent whose motion is being modeled using collision avoidance and interaction,

and MOTAc and MOTAi denote their individual accuracies, respectively. Let n represent the

number of total road-agents in a video, then we have n = nc + ni, where nc, ni correspond to the

number of agents that are avoiding collisions and are interacting, respectively.

Increasing n would increase the number of road-agents whose motion is modeled through

collision avoidance or heterogeneous interaction formulations. Linear models do not account for

either formulation. Standard RVO only accounts for collision avoidance. SimCAI models both.

Therefore, we rationalize that,

MOTAlinear
c ≤MOTARVO

c ≈MOTASimCAI
c

MOTAlinear
i ≤MOTARVO

i ≤MOTASimCAI
i

=⇒MOTAlinear ≤MOTARVO ≤MOTASimCAI

We validate the analysis presented here in Section 2.3.4.

Runtime Analysis: At approximately 30 fps, we achieve a minimum speed-up of approximately

4×, and upto approximately 30×, over state-of-the-art methods on the MOT dataset (Table 2.3).

The state-of-the-art use RNNs to model the motion of road-agents [56, 57], while we use the
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modified RVO formulation. We exploit the geometrical formulation of SimCAI to state and

prove the following theorem:

Theorem 2.3.1. Given P = {pi|1 ≤ i ≤ n}, that represents a set of n road-agents in a traffic

scene that may assume any shape, size, and agent-type, if statepi ∈ { stationary, collision avoiding,

interacting }, ∀i ∈ n, then SimCAI can track the n road-agents inO((nc+ωni)), where ω << ni.

Proof. RVO is based on linear programming and can perform tracking with a proven runtime

complexity of O((n)) [3]. Now, if we assume that agents always assume one of the following

states: stationary, avoiding collision, or interacting, then we have n = nc + ni, where nc, ni

correspond to the number of agents in collision avoidance states and interacting states, respectively.

We ignore stationary road-agents. Following the formulation in Section 2.3.3.2, for each interacting

road-agent, SimCAI predicts a new velocity by solving a linear optimization problem over ω

road-agents. Thus, the runtime complexity of SimCAI is O((nc + ωni)), where ω << ni.

Our high fps is a consequence of our linear runtime complexity and we validate our theoretical

claims in Section 2.3.4. We further hypothesize that prior deep learning-based methods [56, 57]

are less optimal in terms of runtime due to the intensive computation requirements by deep neural

networks [58, 59]. For example, ResNet [60] needs more than 25 MB for storing the computed

model in memory, and more than 4 billion float point operations (FLOPs) to process a single

image of size 224×224 [58].

We would like to clarify that by realtime performance, we refer to the realtime computation

of the tracking algorithm only. We do not consider the computation time of Mask R-CNN. This

is standard practice by tracking-by-detection algorithms [57] that only contribute to the tracking

28



component, similar to this work. We therefore compare with realtime tracking algorithms.

2.3.4 Results

On Dense Datasets: We provide results on the TRAF dataset using RoadTrack and demonstrate

a state-of-the-art average MOTA of 75.8% (Table 2.2). The aim of this experiment is to highlight

the advantage of our overall tracking algorithm in dense and heterogeneous traffic. We compare

RoadTrack with methods on the dense TRAF dataset in Table 2.2. MOTDT [4] and MDP [5]

are the only state-of-the-art methods with available open-source code. All methods are evaluated

using a common set of detections obtained using Mask R-CNN. Compared to these methods, we

improve upon MOTA by 5.2% on absolute. This is roughly equivalent to a rank difference of 46

on the MOT benchmark.

MOTDT is currently the fastest method on the MOT16 benchmark. Our approach operates

at realtime speeds upto approximately 30 fps and is comparable with MOTDT (Table 2.2). Our

realtime performance results from the runtime analysis from Section 2.3.3.3 and theorem 2.3.1.

Note that we observe an abnormally high number of identity switches compared to other

methods; however, this is because prior methods mostly fail to maintain an agent’s track for more

than 20% of their total visible time (near 100% ML). Not being able to track road-agents for most

of the time excludes those agents as possible candidates for IDS, thereby resulting in lower IDS

for prior methods. Interestingly, the low IDS score for prior methods also contributes to their

reasonably high MOTA score, despite near-failure to track agents in dense traffic.

On Standard Benchmarks: In the interest of completeness and thorough evaluation,

we also evaluate RoadTrack on sparser tracking datasets and present results on both traffic-
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Motion Model FPS↑ MT(%)↑ ML(%)↓ IDS↓ FN↓ MOTP(%)↑ MOTA(%)↑

Const. Vel 30 0.0 100 11 247,738(33.3&) 66.3 66.7
SF 30 0.1 98.6 147 246,528 (33.1%) 63.8 66.3
RVO 30 0.0 100 38 247,675 (33.2%) 63.8 66.9
SimCAI 30 7.0 66.9 1128 178,997 (24.0%) 65.7 75.8

Table 2.1: Ablation experiments to show the advantage of SimCAI. We replace SimCAI with a
constant velocity (Const Lin Vel) [1], Social Forces (SF) [2], and RVO motion model (RVO)[3].
The rest of the method is identical to the original method. All variations operate at similar fps of
approximately 30 fps. Bold is best. Arrows (↑, ↓) indicate the direction of better performance.

only datasets (KITTI-16) in Table 2.3 as well as datasets containing only pedestrians (MOT)

in Table 2.4. RoadTrack’s main advantage is SimCAI, which is based on modeling collision

avoidance and interactions. In the absence of one or both, we do not expect it demonstrate

superior performance over prior methods on the sparse KITTI-16 and MOT datasets.

While not conclusive, we believe our low MOTA score on the 2D MOT15 and KITTI-

16 may also be attributed to a high number of detections that are incorrectly classified as false

positives. For instance, road-agents that are too distant to be manually labeled are not annotated

in the ground truth sequence. We observed this to be true for the methods we compared with as

well. Therefore, we exclude FP from the calculation of MOTA for all methods in the interest of

fair evaluation.

We note, however, that RoadTrack is least 4× faster on the KITTI-16 and 2D MOT15

datasets at approximately 30 fps (Tables 2.3,2.4). To explain the speed-up, we refer to theorem 2.3.1

and the runtime analysis presented in Section 2.3.3.3. We specially point to the 15× and 5×

speed-up over learning-based tracking methods, [56, 57] in Table 2.3 which we attribute the

linear time computation of SimCAI as opposed to the intensive computation required by deep

learning models.

Ablation Experiments: We highlight the advantages of SimCAI through ablation experiments
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Figure 2.4: Qualitative analysis of RoadTrack on the TRAF dataset at night time consisting
of cars, 2-wheelers, 3-wheelers, and trucks. Frames are chosen with a gap of 2 seconds(∼ 60
frames). For visual clarity, each road-agent is associated with a unique ID number. The ID is
displayed in orange. Note the consistencies in the ID, for example, the 3-wheeler (1), car (2), and
2-wheeler (3).

in Table 2.1. The aim of these experiments is to isolate the benefit of SimCAI. We compare with

the following variations of RoadTrack in which we replace our novel motion model SimCAI with

standard and state-of-the-art motion models, while keeping the rest of the system untouched:

• Constant Linear Velocity (Const Lin Vel). We replace SimCAI with a constant velocity

linear motion model [1].

• Social Forces (SF). We replace SimCAI with the Social Forces motion model [2].

• Reciprocal Velocity Obstacles (RVO) [3]. We replace SimCAI with the RVO motion

model.

We compare SimCAI with other motion models (Constant linear velocity, Social Forces,

and RVO) on the dense TRAF dataset. These experiments were performed by only replacing

SimCAI with other motion models, keeping the rest of the system unchanged. We observe that

SimCAI outperforms the motion models by at least 8.9% on absolute on MOTA. All the variations

used in the ablation experiments operated at the same fps of approximately 30 fps. Additionally,

we experimentally verify the analysis of Section 2.3.3.3 by observing that MOTAlinear ≤MOTARVO ≤
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MOTASimCAI. Once again, we point to our high IDS in Table 2.1, compared to the IDS of other

motion models. As mentioned previously, this is due to the near-failure of other motion models

(near 100% ML) to track road agents in dense traffic. Not being able to track a road-agent

excludes them as a IDS candidate.

Dataset Tracker FPS↑ MT(%)↑ ML(%)↓ IDS↓ FN↓ MOTP(%)↑ MOTA(%)↑

TRAF1
MOTDT 37.9 0 98.2 15 (<0.1%) 18,764 (33.0%) 63.3 67.0

MDP 9.3 0 98.2 21 (<0.1%) 18,667 (32.8%) 60.1 67.1
RoadTrack 43.9 0 95.6 163 (0.3%) 17,953 (31.6%) 58.8 68.1

TRAF2
MOTDT 41.6 0 98.8 17 (<0.1%) 18,201 (32.7%) 60.3 67.3

MDP 20.9 0 100.0 7 (<0.1%) 18,105 (32.5%) 59.6 67.5
RoadTrack 12.3 0 92.3 55 (0.1%) 17,202 (30.9%) 60.8 69.0

TRAF3
MOTDT 50.7 3.3 67.1 64 (<0.1%) 34,883 (27.0%) 69.6 72.9

MDP 51.8 0 100.0 0 (0.0%) 43,057 (33.3%) 69.2 66.7
RoadTrack 36.6 32.2 40.0 62 (<0.1%) 19,521 (15.1%) 70.1 84.8

TRAF4
MOTDT 36.6 1.2 76.3 123 (0.1%) 54,849 (29.0%) 65.3 70.9

MDP 9.0 1.2 87.2 16 (<0.1%) 59,097 (31.3%) 66.2 68.7
RoadTrack 40.6 6.0 54.6 266 (0.1%) 47,444 (25.1%) 65.1 74.7

TRAF5
MOTDT 36.0 0.7 75.9 221 (0.2%) 33,774 (28.9%) 63.2 70.9

MDP 22.5 0 98.4 6 (<0.1%) 38,091 (32.6%) 64.9 67.3
RoadTrack 41.4 1.5 55.7 299 (0.3%) 24,860 (21.3%) 63.1 78.4

TRAF6
MOTDT 33.0 0 87.5 161 (0.1%) 58,212 (29.4%) 63.3 70.5

MDP 4.3 0 99.3 0 (0.0%) 65,687 (33.2%) 68.6 66.8
RoadTrack 14.6 0.7 67.8 283 (0.1%) 52,017 (26.3%) 62.8 73.6

Summary
MOTDT 34.7 0.9 83.6 601 (0.1%) 218,683 (29.3%) 65.5 70.6

MDP 10.1 0.2 97.0 50 (<0.1%) 242,704 (32.6%) 65.3 67.4
RoadTrack 31.6 7.0 66.9 1128 (0.2%) 178,997 (24.0%) 65.7 75.8

Table 2.2: Evaluation on the TRAF dataset with MOTDT [4] and MDP [5]. MOTDT is currently
the best online tracker on the MOT benchmark with open-sourced code. Bold is best. Arrows (↑
, ↓) indicate the direction of better performance. Observation: RoadTrack improves the accuracy
(MOTA) over the state-of-the-art by 5.2% and precision (MOTP) by 0.2%.

2.4 Trajectory prediction in heterogeneous traffic

For effective planning and navigation in dense and heterogeneous environments, AVs must

predict the trajectories of human drivers (Figure 2.5). However, there are several issues associated

with such environments that make prediction challenging. Highly dense traffic corresponds to

more frequent inter-agent interactions which are hard to model due to the inherent uncertainty
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Tracker FPS↑ MT(%)↑ ML(%)↓ IDS↓ FN↓ MOTP(%)↑ MOTA(%)↑

AP HWDPL p [61] 6.7 17.6 11.8 18 831 72.6 40.7
K

IT
T

I-
16 RAR 15 pub [57] 5.4 0.0 17.6 18 809 70.9 41.2

AMIR15 [56] 1.9 11.8 11.8 18 714 71.7 50.4
HybridDAT [62] 4.6 5.9 17.6 10 706 72.6 46.3
AM [63] 0.5 5.9 17.6 19 805 70.5 40.6

RoadTrack 28.9 29.4 11.7 15 668 71.3 12.2

Table 2.3: Evaluation on the KITTI-16 dataset from the MOT benchmark with online methods
that have an average rank higher than ours. RoadTrack is at least approximately 4× faster than
prior methods. While we do not outperform on the MOTA metric, we still achieve the highest
MT, ML, FN, and MOTP. We analyze our MOTA performance in Section 2.3.4. Bold is best.
Arrows (↑, ↓) indicate the direction of better performance. The values for all methods correspond
to the KITTI-16 sequence specifically, and not the entire 2D MOT15 dataset.

Tracker FPS↑ MT(%)↑ ML(%)↓ IDS↓ FN↓ MOTP(%)↑ MOTA(%)↑

2D
M

O
T

15

AMIR15 [56] 1.9 15.8 26.8 1026 29,397 71.7 37.6
HybridDAT [62] 4.6 11.4 42.2 358 31,140 72.6 35.0
AM [63] 0.5 11.4 43.4 348 34,848 70.5 34.3
AP HWDPL p [61] 6.7 8.7 37.4 586 33,203 72.6 38.5
RoadTrack 28.9 18.6 32.7 429 27,499 75.6 20.0

M
O

T
16

EAMTT pub [64] 11.8 7.9 49.1 965 102,452 75.1 38.8
RAR16pub [57] 0.9 13.2 41.9 648 91,173 74.8 45.9
STAM16 [63] 0.2 14.6 43.6 473 91,117 74.9 46.0
MOTDT [4] 20.6 15.2 38.3 792 85,431 74.8 47.6
AMIR [56] 1.0 14.0 41.6 774 92,856 75.8 47.2

RoadTrack 18.8 20.3 36.1 722 78,413 75.5 40.9

Table 2.4: Evaluation on the full MOT benchmark. The full MOT dataset is sparse and is not
a traffic-based dataset. RoadTrack is at least approximately 4× faster than previous methods.
While we do not outperform on the MOTA metric, we still achieve the highest MT, ML (MOT16),
FN, and MOTP(MOT15). We analyze our MOTA performance in Section 2.3.4. Bold is best.
Arrows (↑, ↓) indicate the direction of better performance.

in human behavior. Moreover, prediction algorithms require huge datasets for training, the

collection of which is a costly and time-consuming process. Finally, AVs must simultaneously

perform low-level trajectory and high-level action prediction for real time navigation as opposed

to current state-of-the-art which handles trajectory and action prediction independent of each

other. I developed three algorithms that address the limitations described above. In the first
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Figure 2.5: Trajectory prediction in dense, heterogeneous, and unstructured environments.

approach, TraPHic [65], the key aspect is to selectively focus attention on fewer agents. The

algorithm consists of a novel attention mechanism that teaches the ego-vehicle to identify the

agents that deserve more importance than others. For instance, a pedestrian in the way of the

ego-vehicle requires more attention than, say, a parked car to the side. This work has been

published in CVPR’19.

2.4.1 Overview

In this section, we give an overview of our prediction algorithm that uses weighted interactions.

Our approach is designed for dense and heterogeneous traffic scenarios and is based on two

observations. The first observation is based on the idea that road agents in such dense traffic

do not react to every road agent around them; rather, they selectively focus attention on key

interactions in a semi-elliptical region in the field of view, which we call the “horizon”. For

example, consider a motorcyclist who suddenly moves in front of a car and the neighborhood of

the car consists of other road agents such as three-wheelers and pedestrians (Figure 2.6). The car
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must prioritize the motorcyclist interaction over the other interactions to avoid a collision.

The second observation stems from the heterogeneity of different road agents such as

cars, buses, rickshaws, pedestrians, bicycles, animals, etc. in the neighborhood of an road

agent (Figure 2.6). For instance, the dynamic constraints of a bus-pedestrian interaction differs

significantly from a pedestrian-pedestrian or even a car-pedestrian interaction due to the differences

in road agent shapes, sizes, and maneuverability. To capture these heterogeneous road agent

dynamics, we embed these properties into the state-space representation of the road agents and

feed them into our hybrid network. We also implicitly model the behaviors of the road agents.

Behavior in our case the different driving and walking styles of different drivers and pedestrians.

Some are more aggressive while others more conservative. We model these behaviors as they

directly influence the outcome of various interactions, thereby affecting the road agents’ navigation.

Given a set of N road agents A = {ai}i=1...N , trajectory history of each road agent ai over

t frames, denoted Ψi,t := [(xi,1, yi,1), . . . , (xi,t, yi,t)]
⊤, and the road agent’s size li, we predict the

spatial coordinates of that road agent for the next τ frames. In addition, we introduce a feature

called traffic concentration c, motivated by traffic flow theory. Traffic concentration, c(x, y), at

the location (x, y) is defined as the number of road agents between (x, y) and (x, y)+(δx, δy) for

some predefined (δx, δy) > 0. This metric is similar to traffic density, but the key difference is

that traffic density is a macroscopic property of a traffic video, whereas traffic concentration is a

mesoscopic property and is locally defined at a particular location. So we achieve a representation

of traffic on several scales.
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Finally, we define the state space of each road agent ai as

Ωi :=

[
Ψi,t ∆Ψi,t ci li

]⊤
(2.9)

where ∆ is a derivative operator that is used to compute the velocity of the road agent, and

ci := [c(xi,1, yi,1), . . . , c(xi,t, yi,t)]
⊤.

2D Image Space to 3D World Coordinate Space: We compute camera parameters from given

videos using standard techniques, and use the parameters to estimate the camera homography

matrices. The homography matrices are subsequently used to convert the location of road agents

in 2D pixels to 3D world coordinates w.r.t. a predetermined frame of reference, similar to

approaches in [9, 66]. All state-space representations are subsequently converted to the 3D world

space.

Horizon and Neighborhood Agents: Prior trajectory prediction methods have collected neighborhood

information using lanes and rectangular grids [67]. Our approach is more generalized in that

we pre-process the trajectory data by assuming a lack of lane information. This assumption is

especially true in practice in dense and heterogeneous traffic conditions. We formulate a road

agent ai’s neighborhood, Ni, using an elliptical region and selecting a fixed number of closest

road agents using the nearest-neighbor search algorithm in that region. Similarly, we define

the horizon of that agent, Hi, by selecting a smaller threshold in the nearest-neighbor search

algorithm, and in a semi-elliptical region in front of ai.
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2.5 Related Work

In this section, we give a brief overview of some important classical prediction algorithms

and recent techniques based on deep neural networks.

2.5.1 Prediction Algorithms and Interactions

Trajectory prediction has been researched extensively. Approaches include the Bayesian

formulation, the Monte Carlo simulation, Hidden Markov Models (HMMs), and Kalman Filters.

Methods that do not model road-agent interactions are regarded as sub-optimal or as less

accurate than methods that model the interactions between road agents in the scene. Examples of

methods that explicitly model road-agent interaction include techniques based on social forces,

velocity obstacles [3], LTA, etc. Many of these models were designed to account for interactions

between pedestrians in a crowd (i.e. homogeneous interactions) and improve the prediction

accuracy [30]. Techniques based on velocity obstacles have been extended using kinematic

constraints to model the interactions between heterogeneous road agents. Our learning approach

does not use any explicit pairwise motion model. Rather, we model the heterogeneous interactions

between road agents implicitly.

2.5.2 Deep-Learning Based Methods

Approaches based on deep neural networks use variants of Recurrent Neural Networks

(RNNs) for sequence modeling. These have been extended to hybrid networks by combining

RNNs with other deep learning architectures for motion prediction.

RNN-Based Methods RNNs are natural generalizations of feedforward neural networks to sequence [68].
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The benefits of RNNs for sequence modeling makes them a reasonable choice for traffic prediction.

Since RNNs are incapable of modeling long-term sequences, many traffic trajectory prediction

methods use long short-term memory networks (LSTMs) to model road-agent interactions. These

include algorithms to predict trajectories in traffic scenarios with few heterogeneous interactions [67].

These techniques have also been used for trajectory prediction for pedestrians in a crowd [66].

Hybrid Methods Deep-learning-based hybrid methods consist of networks that integrate two

or more deep learning architectures. Some examples of deep learning architectures include

CNNs, GANs, VAEs, and LSTMs. Each architecture has its own advantages and, for many

tasks, the advantages of individual architectures can be combined. There is considerable work

on the development of hybrid networks. Generative models have been successfully used for

tasks such as super resolution, image-to-image translation, and image synthesis. However, their

application in trajectory prediction has been limited because back-propagation during training

is non-trivial. In spite of this, generative models such as VAEs and GANs have been used

for trajectory prediction of pedestrians in a crowd [9] and in sparse traffic [69]. Alternatively,

Convolutional Neural Networks (CNNs or ConvNets) have also been successfully used in many

computer vision applications like object recognition. Recently, they have also been used for

traffic trajectory prediction [70, 71]. In this paper, we present a new hybrid network that combines

LSTMs with CNNs for traffic prediction.

2.5.3 Traffic Datasets

There are several datasets corresponding to traffic scenarios. ApolloScape [72] is a large-

scale dataset of street views that contain scenes with higher complexities, 2D/3D annotations
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and pose information, lane markings and video frames. However, this dataset does not provide

trajectory information. The NGSIM simulation dataset [73] consists of trajectory data for road

agents corresponding to cars and trucks, but the traffic scenes are limited to highways with fixed-

lane traffic. KITTI [74] dataset has been used in different computer vision applications such as

stereo, optical flow, 2D/3D object detection, and tracking. There are some pedestrian trajectory

datasets like ETH and UCY, but they are limited to pedestrians in a crowd. Our new dataset,

TRAF, corresponds to dense and heterogeneous traffic captured from Asian cities and includes

2D/3D trajectory information.

2.5.4 Advanced Driver Assistance Systems (ADAS)

Passive safety measures (that do not process sensory information) in vehicles include safety

belts, brakes, airbags etc. ADAS are active safety measures that collect and process sensory

information through sensors such as lidars, radars, stereo cameras, and RGB cameras. Various

ADAS process the input information in different ways to implement actions that assist the driver

and prevent or reduce the likelihood of traffic accidents due to human error. The development of

ADAS began with the Anti-Lock Braking System (ABS) introduced into production in the late

1970s.

As ADAS with various functionality become popular, it is not uncommon for multiple

systems to be installed on a vehicle. If each function uses its own sensors and processing

unit, it will make installation difficult and raise the cost of the vehicle. As a countermeasure,

research integrating multiple functions into a single system has been pursued and is expected to

make installation easier, decrease power consumption, and vehicle pricing. RobustTP contributes
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towards this research effort by integrating realtime tracking with trajectory prediction.

In addition to to trajectory prediction applications, several other interesting ADAS are

currently being used in vehicles on the road. For example, the Adaptive Cruise Control (ACC)

automatically adapts speed to maintain a safe distance from vehicles in front. The Blind Spot

Detection (BSD) helps drivers when they pull out in order to overtake another road-agent. Emergency

Brake Assist (EBA) ensures optimum braking by detecting critical traffic situations. When EBA

detects an impending collision, the braking system is put on emergency standby. Intelligent

Headlamp Control (IHC) provides optimal night vision. The headlamps are set to provide optimum

lighting via a continuous change of the high and low beams of the lights.

2.5.5 Road-Agent Behavior Prediction

Current autonomous vehicles lack social awareness due to their inherent conservative behavior.

Overly conservative behavior present new risks in terms of low efficiency and uncomfortable

traveling experiences. Real-world examples of problems caused by AVs that are not socially

adaptable can be seen in this video1. The notion of using driver behavior prediction to make the

AVs socially aware is receiving attention [75].

Current driving behavior modeling methods are limited to traffic psychology studies where

predictions for driving behavior are made offline, based on either driver responses to questionnaires

or data collected over a period of time. Such approaches are not suitable for online behavior

prediction. In contrast, our behavior prediction algorithm is the first computationally online

approach that does not depend on offline data and manually tunable parameters. In the remainder

of this section, we review some of the prior behavior modeling approaches and conclude by

1https://www.youtube.com/watch?v=Rm8aPR0aMDE

40

https://www.youtube.com/watch?v=Rm8aPR0aMDE


pointing out the advantages of our approach.

Many studies have been performed behavior modeling by identifying factors that contribute

to different driver behaviors classes such as aggressive, conservative, or moderate driving. These

factors can be broadly categorized into four categories. The first category of factors that indicate

road-agent behavior is driver-related. These include characteristics of drivers such as age, gender,

blood pressure, personality, occupation, hearing, and so on [76, 77, 78]. Feng et al. [76] proposed

five driver characteristics (age, gender, personality via blood test, and education level). Rong

et al. [79] presented a similar study but instead used different features such as blood pressure,

hearing, and driving experience to conclude that aggressive drivers tailgate and weave in and out

of traffic. Dahlen et al. [80] studied the relationships between driver personality and aggressive

driving using the five-factor-model [77]. Social Psychology studies [78, 81] have examined

the aggressiveness according to the background of the driver, including age, gender, violation

records, power of cars, occupation, etc.

The second category corresponds to environmental factors such as weather or traffic conditions [82,

83]. The study conducted in [83] was designed to investigate the effects of weather-controlled

speed limits and signs for slippery road conditions on driver behavior, while other studies [82]

correlated changes in traffic density with varying driver behavior.

The third category refers to psychological aspects that affect driving styles. These could

include drunk driving, driving under the influence, state of fatigue, and so on [84, 85]. It

is shown in [84] that driving under influence induces delayed responses in acceleration and

deceleration. Jackson et al. show that a state of fatigue manifests the same characteristics

as driving under influence, but without the effect of substance intoxication. Additionally, this

category also includes distractions caused by driver activity during driving, such as operating

41



mobile phones. For example, [85] shows that drivers engaged in mobile phone conversations

increase their response time to external stimuli.

The final category of factors contributing to driving behavior are vehicular factors such as

positions, acceleration, speed, throttle responses, steering wheel measurements, lane changes,

and brake pressure [15, 86, 87, 88, 89].

A recent data-driven behavior prediction approach [15] also models traffic through graphs.

The method predicts the driving behavior by training a neural network on the eigenvectors of

the DGGs using supervised machine learning. Apart from behavior modeling, several methods

have used machine learning to predict the intent of road-agents [90, 91]. The proposed behavior

prediction algorithm in this paper extends the approach in [15] by predicting sequences of eigenvectors

for future time-steps. Compared to these prior methods, are algorithm is online, computationally

tractable and does not depend on any other information other than the vehicle coordinates.

Aljaafreh et al. [86] categorized driving behaviors into four classes: Below normal, Normal,

Aggressive, and Very aggressive, in accordance with acceleration data. Murphey et al. [87]

conducted an analysis on the aggressiveness of drivers and observed that longitudinal (changing

lanes) jerk is more related to aggressiveness than progressive (along the lane) jerk (i.e., rate

of change in acceleration). Mohamad et al. [88] detected abnormal driving styles using speed,

acceleration, and steering wheel movement, which indicated the direction of vehicles. Qi et

al. [92] studied driving styles with respect to speed and acceleration. Shi et al. [93] pointed

out that deceleration is not very indicative of the aggressiveness of drivers, but measurements

of throttle opening, which are associated with acceleration, were more helpful in identifying

aggressive drivers. Wang et al. [94] classified drivers into two categories, aggressive and normal,

using speed and throttle opening captured by a simulator. Cheung et al. [89] use speed, acceleration,
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lane change information of highway data to derive a linear mapping between vehicular information

and driver behavior. Finally, using only the spatial positions of the vehicles, [15] uses spectral

graph theory to train a multi-layer perceptron to classify driver behavior.

2.5.6 Traffic Flow and Forecasting

Traffic forecasting has been studied in different contexts in prior literature. From a deep-

learning perspective, traffic forecasting is synonymous with trajectory prediction and does not

take into account road-agent behavior [11]. However, in a broader sense, traffic forecasting refers

to predicting traffic flow [95, 96, 97] or traffic density [98, 99, 100, 101] on a macroscopic scale.

Predicting traffic flow is important for applications such as congestion management and vehicle

routing. In this paper, we mainly limit ourselves to forecasting low-level trajectories and high-

level behaviors of each road-agent.

2.5.7 Hybrid Architecture for Traffic Prediction

In this section, we present our novel network architecture for performing trajectory prediction

in dense and heterogeneous environments. In the context of heterogeneous traffic, the goal is to

predict trajectories, i.e. temporal sequences of spatial coordinates of a road agent. Temporal

sequence prediction requires models that can capture temporal dependencies in data, such as

LSTMs. However, LSTMs cannot learn dependencies or relationships of various heterogeneous

road agents because the parameters of each individual LSTM are independent of one another.

In this regard, ConvNets have been used in computer vision applications with greater success

because they can learn locally dependent features from images. Thus, in order to leverage the
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benefits of both, we combine ConvNets with LSTMs to learn locally useful relationships, both in

space and in time, between the heterogeneous road agents. We now describe our model to predict

the trajectory for each road agent ai. A visualization of the model is shown in Figure 2.7.

We start by computing Hi and Ni for the agent ai. Next, we identify all road agents aj ∈

Ni ∪Hi. Each aj has an input state-space Ωj that is used to create the embeddings ej , using

ej = ϕ(WlΩi + bl) (2.10)

where Wl and bl are conventional symbols denoting the weight matrix and bias vector respectively,

of the layer l in the network, and ϕ is the non-linear activation on each node.

Our network consists of three layers. The horizon layer (top cyan layer in Figure 2.7)

takes in the embedding of each road agent in Hi, and the neighbor layer (middle green layer

in Figure 2.7) takes in the embedding of each road agent in Ni. The input embeddings in both

these layers are passed through fully connected layers with ELU non-linearities, and then fed into

single-layered LSTMs (yellow blocks in Figure 2.7). The outputs of the LSTMs in the two layers

are hidden state vectors, hj(t), that are computed using

hj(t) = LSTM(ej,Wl, bl, h
t−1
j ) (2.11)

where ht−1
j refers to the corresponding road agent’s hidden state vector from the previous time-

step t − 1. The hidden state vector of a road agent is a latent representation that contains tem-

porally useful information. In the remainder of the text, we drop the parameter t for the sake of

simplicity, i.e., hj is understood to mean hj(t) for any j.
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The hidden vectors in the horizon layer are passed through an additional fully connected

layer with ELU non-linearities. We denote the output of the fully connected layer as hjw. All

the hjw’s in the horizon layer are then pooled together in a “horizon map”. The hidden vectors

in the neighbor layer are directly pooled together in a “neighbor map”. These maps are further

elaborated in Section 2.5.7.1. Both these maps are then passed through separate ConvNets in

the two layers. The ConvNets in both the layers are comprised of two convolution operations

followed by a max-pool operation. We denote the output feature vector from the ConvNet in the

horizon layer as fhz, and that from the ConvNet in the neighbor layer as fnb.

Finally, the bottom-most layer corresponds to the ego agent ai. Its input embedding, ei,

passes sequentially through a fully connected with ELU non-linearities, and a single-layered

LSTM to compute its hidden vector, hi. The feature vectors from the horizon and neighbor

layers, fhz and fnb, are concatenated with hi to generate a final vector encoding

z := concat(hi, fhz, fnb) (2.12)

Finally, the concatenated encoding z passes through an LSTM to compute the prediction for the

next τ seconds.

2.5.7.1 Weighted Interactions

Our model is trained to learn weighted interactions in both the horizon and neighborhood

layers. Specifically, it learns to assign appropriate weights to various pairwise interactions based

on the shape, dynamic constraints and behaviors of the involved agents. The horizon-based

weighted interactions takes into account the agents in the horizon of the ego agent, and learns the
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Figure 2.6: Horizon and Heterogeneous Interactions: We highlight various interactions for
the red car. Horizon-based weighted interactions are in the blue region, containing a car and a
rickshaw (both blue). The red car prioritizes the interaction with the blue car and the rickshaw
(i.e. avoids a collision) over interactions with other road-agents. Heterogeneous-Based weighted
interactions are in the green region, containing pedestrians and motorcycles (all in green). We
model these interactions as well to improve the prediction accuracy.

“horizon map”Hi, given as

Hi = {hjw|aj ∈ Hi} (2.13)

Similarly, the neighbor or heterogeneous-based weighted interactions accounts for all the agents

in the neighborhood of the ego agent, and learns the “neighbor map” Ni, given as

Ni = {hj|aj ∈ Ni} (2.14)
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During training, back-propagation optimizes the weights corresponding to these maps by minimizing

the loss between predicted output and ground truth labels. Our formulation results in higher

weights for prioritized interactions (larger tensors in Horizon Map or blue vehicles in Figure 2.6)

and lower weights for less relevant interactions (smaller tensors in Neighbor Map or green

vehicles in Figure 2.6).

2.5.7.2 Implicit Constraints

Turning Radius: In addition to constraints such as position, velocity and shape, constraints such

as the turning radius of a road agent also affects its maneuverability, especially as it interacts with

other road agents within some distance. For example, a car (a non-holonomic agent) cannot alter

its orientation in a short time frame to avoid collisions, whereas a bicycle or a pedestrian can.

However, the turning radius of a road agent can be determined by the dimensions of the

road agent, i.e., its length and width. Since we include these parameters into our state-space

representation, we implicitly take into consideration each agent’s turning radius constraints as

well.

Driver Behavior: Velocity and acceleration (both relative and average ) are clear indicators of

driver aggressiveness. For instance, a road agent with a relative velocity (and/or acceleration)

much higher than the average velocity (and/or acceleration) of all road agents in a given traffic

scenario would be deemed as aggressive. Moreover, given the traffic concentrations at two

consecutive spatial coordinates, c(x, y) and c(x+δx, y+δy), where c(x, y) >> c(x+δx, y+δy),

aggressive drivers move in a “greedy” fashion in an attempt to occupy the empty spots in the

subsequent spatial locations. For each road agent, we compute its concentration with respect to
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its neighborhood and add this value to its input state-space.

Finally, the relative distance of a road agent from its neighbors is another factor pertaining

to how conservative or aggressive a driver is. More conservative drivers tend to maintain a healthy

distance while aggressive drivers tend to tail-gate. Hence, we compute the spatial distance of each

road agent in the neighborhood and encode this in its state-space representation.

2.5.7.3 Overall Trajectory Prediction

Our algorithm follows a well-known scheme for prediction [66]. We assume that the

position of the road agent in the next frame follows a bi-variate Gaussian distribution with

parameters µt
i, σ

t
i = [(µx, µy)

t
i, ((σx, σy)

t
i)], and correlation coefficient ρti. The spatial coordinates

(xt
i, y

t
i) are thus drawn from N (µt

i, σ
t
i , ρ

t
i). We train the model by minimizing the negative log-

likelihood loss function for the ith road agent trajectory,

Li = −Στ
t+1 log(P((xt

i, y
t
i)|(µt

i, σ
t
i , ρ

t
i))). (2.15)

We jointly back-propagate through all three layers of our network, optimizing the weights for the

linear blocks, ConvNets, LSTMs, and Horizon and Neighbor Maps. The optimized parameters

learned for the Linear-ELU block in the horizon layer indicates the priority for the interaction in

the horizon of an road agent ai.

2.5.8 Results

We describe our new dataset in Section 2.5.8. In Section 2.5.8, we list all implementation

details used in our training process. Next, we list the evaluation metrics and methods that we
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Figure 2.7: TraPHic Network Architecture: The ego agent is marked by the red dot. The
green elliptical region around it is its neighborhood and the cyan semi-elliptical region in front
of it is its horizon. We generate input embeddings for all agents based on trajectory information
and heterogeneous dynamic constraints such as agent shape, velocity, and traffic concentration
at the agent’s spatial coordinates, and other parameters. These embeddings are passed through
LSTMs and eventually used to construct the horizon map, the neighbor map and the ego agent’s
own tensor map. The horizon and neighbor maps are passed through separate ConvNets and then
concatenated together with the ego agent tensor to produce latent representations. Finally, these
latent representations are passed through an LSTM to generate a trajectory prediction for the ego
agent.

compare with, in Section 2.5.8. Finally, we present the evaluation results in Section 2.5.8.

TRAF Dataset: Dense & Heterogeneous Urban Traffic We present a new dataset, currently

comprising of 50 videos of dense and heterogeneous traffic. The dataset consists of the following

road agent categories: car, bus, truck, rickshaw, pedestrian, scooter, motorcycle, and other road

agents such as carts and animals. Overall, the dataset contains approximately 13 motorized

vehicles, 5 pedestrians and 2 bicycles per frame. Annotations were performed following a strict

protocol and each annotated video file consists of spatial coordinates, an agent ID, and an agent

type. The dataset is categorized according to camera viewpoint (front-facing/top-view), motion

(moving/static), time of day (day/evening/night), and difficulty level (sparse/moderate/heavy/challenge).

All the videos have a resolution of 1280 × 720. We present a comparison of our dataset with
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Dataset Method
RNN-ED S-LSTM S-GAN CS-LSTM TraPHic

NGSIM 6.86/10.02 5.73/9.58 5.16/9.42 7.25/10.05 5.63/9.91
Beijing 2.24/8.25 6.70/8.08 4.02/7.30 2.44/8.63 2.16/6.99

Table 2.5: Evaluation on sparse or homogeneous traffic datasets: The first number is the average
RMSE error (ADE) and the second number is final RMSE error (FDE) after 5 seconds (in meters).
NGSIM is a standard sparse traffic dataset with few heterogeneous interactions. The Beijing
dataset is dense but with relatively low heterogeneity. Lower value is better and bold value
represents the most accurate result.

Methods Evaluated on TRAF
RNN-ED S-LSTM S-GAN CS-LSTM TraPHic

Original Learned Original Learned Original Learned B He Ho Combined
3.24/5.16 6.43/6.84 3.01/4.89 2.89/4.56 2.76/4.79 2.34/8.01 1.15/3.35 2.73/7.21 2.33/5.75 1.22/3.01 0.78/2.44

Table 2.6: Evaluation on our new, highly dense and heterogeneous TRAF dataset. The first
number is the average RMSE error (ADE) and the second number is final RMSE error (FDE) after
5 seconds (in meters). The original setting for a method indicates that it was tested with default
settings. The learned setting indicates that it was trained on our dataset for fair comparison.
We present variations of our approach with each weighted interaction and demonstrate the
contribution of the method. Lower is better and bold is best result.

Dataset
# Frames Agents Visibility Density #Diff
(×103) Ped Bicycle Car Bike Scooter Bus Truck Rick Total (Km) (×103) Agents

NGSIM 10.2 0 0 981.4 3.9 0 0 28.2 0 1013.5 0.548 1.85 3
Beijing 93 1.6 1.9 12.9 16.4 0.005 3.28 3
TRAF 12.4 4.9 1.5 3.6 1.43 5 0.15 0.2 3.1 19.88 0.005 3.97 8

Table 2.7: Comparison of our new TRAF dataset with various traffic datasets in terms of
heterogeneity and density of traffic agents. Heterogeneity is described in terms of the number
of different agents that appear in the overall dataset. Density is the total number of traffic agents
per Km in the dataset. The value for each agent type under “Agents” corresponds to the average
number of instances of that agent per frame of the dataset. It is computed by taking all the
instances of that agent and dividing by the total number of frames. Visibility is a ballpark estimate
of the length of road in meters that is visible from the camera. NGSIM data were collected using
tower-mounted cameras (bird’s eye view), whereas both Beijing and TRAF data presented here
were collected with car-mounted cameras (frontal view).

standard traffic datasets in Table 2.7.

Implementation Details We use single-layer LSTMs as our encoders and decoders with hidden

state dimensions of 64 and 128, respectively. Each ConvNet is implemented using two convolutional

operations each followed by an ELU non-linearity and then max-pooling. We train the network
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for 16 epochs using the Adam optimizer with a batch size of 128 and learning rate of 0.001.

We use a radius of 2 meters to define the neighborhood and a minor axis length of 1.5 meters

to define the horizon, respectively. Our approach uses 3 seconds of history and predicts spatial

coordinates of the road agent for up to 5 seconds (4 seconds for KITTI dataset). We do not down-

sample on the NGSIM dataset due to its sparsity. However, we use a down-sampling factor of

2 on the Beijing and TRAF datasets due to their high density. Our network is implemented in

Pytorch using a single TiTan Xp GPU. Our network does not use batch norm or dropout as they

can decrease accuracy. We include the experimental details involving batch norm and dropout in

the appendix due to space limitations.

Evaluation Metrics and Comparison Methods We use the following commonly used metrics [9,

66, 67] to measure the performances of the algorithms used for predicting the trajectories of the

road agents.

1. Average displacement error (ADE): The root mean square error (RMSE) of all the predicted

positions and real positions during the prediction time.

2. Final displacement error (FDE): The RMSE distance between the final predicted positions

at the end of the predicted trajectory and the corresponding true location.

We compare our approach with the following methods.

• RNN-ED (Seq2Seq): An RNN encoder-decoder model, which is widely used in motion

and trajectory prediction for vehicles.

• Social-LSTM (S-LSTM): An LSTM-based network with social pooling of hidden states to

predict pedestrian trajectories in crowds [66].

51



• Social-GAN (S-GAN): An LSTM-GAN hybrid network to predict trajectories for large

human crowds [9].

• Convolutional-Social-LSTM (CS-LSTM): A variant of S-LSTM adding convolutions to

the network in [66] in order to predict trajectories in sparse highway traffic [67].

We also perform ablation studies with the following four versions of our approach.

• TraPHic-B: A base version of our approach without using any weighted interactions.

• TraPHic-Ho: A version of our approach without using Heterogeneous-Based Weighted

interactions, i.e., we do not take into account driver behavior and information such as shape,

relative velocity, and concentration.

• TraPHic-He: A version of our approach without using Horizon-Based Weighted interactions.

In this case, we do not explicitly model the horizon, but account for heterogeneous interactions.

• TraPHic: Our main algorithm using both Heterogeneous-Based and Horizon-Based Weighted

interactions. We explicitly model the horizon and implicitly account for dynamic constraints

and driver behavior.

Results on Traffic Datasets In order to provide a comprehensive evaluation, we compare our

method with state-of-the-art methods on several datasets. Table 2.5 shows the results on the

standard NGSIM dataset and an additional dataset containing heterogeneous traffic of moderate

density. We present results on our new TRAF dataset in Table 2.6.

TraPHic outperforms all prior methods we compared with on our TRAF dataset. For a fairer

comparison, we trained these methods on our dataset before testing them on the dataset. However,
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Figure 2.8: RMSE Curve Plot: We compare the accuracy of four variants of our algorithm
with CS-LSTM and each other based on RMSE values on the TRAF dataset. On the average,
using TraPHic-He reduces RMSE by 15% relative to TraPHic-B, and using TraPHic-Ho reduces
RMSE by 55% relative to TraPHic-B. TraPHic, the combination of TraPhic-He and TraPhic-Ho,
reduces RMSE by 36% relative to TraPHic-Ho, 66% relative to TraPHic-He, and 71% relative to
TraPHic-B. Relative to CS-LSTM, TraPHic reduces RMSE by 30%.

the prior methods did not generalize well to dense and heterogeneous traffic videos. One possible

explanation for this is that S-LSTM and S-GAN were designed to predict trajectories of humans

in top-down crowd videos whereas the TRAF dataset consists of front-view heterogeneous traffic

videos with high density. CS-LSTM uses lane information in its model and weight all agent

interactions equally. Since the traffic in our dataset does not include the concept of lane-driving,

we used the version of CS-LSTM that does not include lane information for a fairer comparison.

However, it still led to a poor performance since CS-LSTM does not account for heterogeneous-

based interactions. On the other hand, TraPHic considers both heterogeneous-based and horizon-

based interactions, and thus produces superior performance on our dense and heterogeneous

dataset.
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Figure 2.9: Trajectory Prediction Results: We highlight the performance of various trajectory
prediction methods on our TRAF dataset with different types of road-agents. We showcase six
scenarios with different density, heterogeneity, camera position (fixed or moving), time of the
day, and weather conditions. We highlight the predicted trajectories (over 5 seconds) of some
of the road-agents in each scenario to avoid clutter. The ground truth (GT) trajectory is drawn
as a solid green line, and our (TraPHic) prediction results are shown using a solid red line. The
prediction results of other methods (RNN-ED, S-LSTM, S-GAN, CS-LSTM) are drawn with
different dashed lines. TraPHic predictions are closest to GT in all the scenarios. We observe up
to 30% improvement in accuracy over prior methods over this dense, heterogeneous traffic.

We visualize the performance of the various trajectory prediction methods on our TRAF

dataset Figure 2.9. Compared to the prior methods, TraPHic produces the least deviation from the

ground truth trajectory in all the scenarios. Due to the significantly high density and heterogeneity

in these videos, coupled with the unpredictable nature of the involved agents, all the predictions

deviate from the ground truth in the long term (after 5 seconds).

We demonstrate that our approach is comparable to prior methods on sparse datasets such

as the NGSIM dataset. We do not outperform the current sate-of-the-art in such datasets, since

our algorithm tries to account for heterogeneous agents and weighted interactions even when

interactions are sparse and mostly homogeneous. Nevertheless, we are at par with the state-of-

the-art performance. Lastly, we note that our RMSE value on the NGSIM dataset is quite high,
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Figure 2.10: Overview of RobustTP: RobustTP is an end-to-end trajectory prediction algorithm
that uses sensor input trajectories as training data instead of manually annotated trajectories. The
sensor input is an RGB video from a moving or static camera. The first step is to compute
trajectories using a tracking algorithm (light orange block). The trajectories generated are the
training data for the trajectory prediction algorithm (green block). The model trains on τ = 3
seconds of trajectory history and predicts trajectory for the next k = 5 seconds. As an example,
the predicted trajectories for two of the agents are shown in the output image at the right end.
The green circles denote the positions of the agents at the beginning of prediction, as seen from
a top-view in the 3D world. The red-dashed lines denote the predicted trajectories for the next 5
seconds, as seen from the same top-view in the 3D world.

which we attribute to the fact that we used a much higher (2X) sampling rate for averaging than

prior methods.

Finally, we perform an ablation study to highlight the contribution of our weighted interaction

formulation. We compare the four versions of TraPHic as stated in Section 2.5.8. We find that

the Horizon-based formulation contributes more significantly to higher accuracy. TraPHic-He

reduces ADE by 15% and FDE by 20% over TraPHic-B, whereas TraPHic-Ho reduces ADE by

55% and FDE by 58% over TraPHic-B. Incorporating both formulations results in the highest

accuracy, reducing the ADE by 71% and the FDE by 66% over TraPHic-B.

2.6 RobustTP: Improving robustness of prediction in unstructured traffic

We present an end-to-end algorithm for predicting future trajectories of road-agents in

dense traffic with noisy sensor input trajectories obtained from RGB cameras (either static or

moving) through a tracking algorithm. In this case, we consider noise as the deviation from the
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ground truth trajectory. The amount of noise depends on the accuracy of the tracking algorithm.

Our approach is designed for dense heterogeneous traffic, where the road agents corresponding

to a mixture of buses, cars, scooters, bicycles, or pedestrians. is an approach that first computes

trajectories using a combination of a non-linear motion model and a deep learning-based instance

segmentation algorithm. Next, these noisy trajectories are trained using an LSTM-CNN neural

network architecture that models the interactions between road-agents in dense and heterogeneous

traffic. Our trajectory prediction algorithm outperforms state-of-the-art methods for end-to-end

trajectory prediction using sensor inputs. We achieve an improvement of upto 18% in average

displacement error and an improvement of up to 35.5% in final displacement error at the end

of the prediction window (5 seconds) over the next best method. All experiments were set

up on an Nvidia TiTan Xp GPU. Additionally, we release a software framework, TrackNPred.

The framework consists of implementations of state-of-the-art tracking and trajectory prediction

methods and tools to benchmark and evaluate them on real-world dense traffic datasets.

The second approach is called RobustTP [102]. This is an end-to-end approach that does

not require manually labeled ground-truth trajectories to train the trajectory prediction network.

The input to this algorithm consists only of raw traffic videos obtained from commodity sensors

such as monocular RGB cameras. The algorithm uses a tracking algorithm to generate noisy

trajectories from these videos. These trajectories replace the trajectory input used by TraPHic.

This work has been published in ACM CSCS’19.

We begin by formally stating the problem and describing the notation. Then we give an

overview of our approach to realtime end-to-end trajectory prediction in dense and heterogeneous

traffic scenarios.

Given a set of N road agents R = {ri}i=1...N , the trajectory history of each road agent
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ri over τ frames, denoted Ti = {(x1, y1), (x2, y2), . . . , (xτ , yτ )}, and the road agent’s size l, we

predict the trajectory, i.e., the spatial coordinates of that road agent for the next k frames.

We define the state space of each road agent ri as

Ωi :=

[
Ti ∆Ti c l

]⊤
, (2.16)

where ∆ is a derivative operator that is used to compute the velocity of the road agent, and c :=

[c(x1, y1), . . . , c(xτ , yτ )]
⊤. The traffic concentration, c(x, y), at the location (x, y), is defined as

the number of road agents between (x, y) and (x, y)+ (δx, δy) for some predefined (δx, δy) > 0.

We also compute camera parameters from given videos using standard techniques and use

the parameters to estimate the camera homography matrices. The homography matrices are

subsequently used to convert the location of road agents in 2D pixels to 3D world coordinates

w.r.t. a predetermined frame of reference, similar to approaches in [9, 66]. All state-space

representations are subsequently converted to the 3D world space.

Finally, we consider a method to be more robust compared to other methods if the trajectories

predicted by it are less affected by noise in the trajectory history (arising due to sensor artifacts,

inaccuracies in tracking and similar factors).

2.6.1 TrackNPred: A Software Framework for End-to-End Trajectory Prediction

TrackNPred is a python-based software library 2 for end-to-end realtime trajectory prediction

for autonomous road-agents. Our first goal, through TrackNPred, is to enable autonomous road-

agents to navigate safely in dense and heterogeneous traffic by estimating how road-agents, that

2https://gamma.umd.edu/robusttp
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Figure 2.11: TrackNPred is a deep learning-based framework that integrates trajectory prediction
methods with tracking by detection algorithms to motivate further research in end-to-end
trajectory prediction. In this figure, we show the graphical user interface of TrackNPred where
one can select the tracking by detection algorithm as well as choose the trajectory prediction
method. The user can also set the hyperparameters for the training and evaluation phases. If the
input can be connected to an RGB camera mounted on a road-agent, then TrackNPred can be
extended to ADAS applications.

are in close proximity, are going to move in the next few seconds.

The continuous advancement in deep learning has resulted in the development of several

state-of-the-art tracking and trajectory prediction algorithms that have shown impressive results

on real world dense and heterogeneous traffic datasets. However, there are currently no theoretical

guarantees to validate the comparison of performance of different deep learning models. It is

only through empirical research that one can evaluate the efficiency of a particular deep learning

model.

Our second goal is to equip researchers with a packaged deep learning tool that performs

trajectory prediction based on various state-of-the-art neural network architectures, such as

Generative Adversarial Networks (GANs [9]), Recurrent Neural Networks (LSTMs [66], and

Convolutional Neural Networks (CNNs [67]). Therefore, one of the advantages of TrackNPred is
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that it enables researchers to experiment with these different deep learning architectures with

minimal difficulty. Researchers need only select hyperparameters for the chosen network. We

also provide the ability to modify individual architectures without disrupting the rest of the

methods (Figure 2.11).

TrackNPred integrates realtime tracking algorithms with end-to-end trajectory prediction

methods to create a robust framework. The input is simply a video (through a moving or static

RGB camera). TrackNPred selects a tracking method from the tracking module to first generate

a trajectory, Ti = {(x1, y1), (x2, y2), . . . , (xn, yn)}, for the ith road-agent for n frames, where n is

a constant. The trajectories for each agent are then treated as the trajectory history for that agent

in the trajectory prediction module. The final output is the future trajectory for the ego-agent,

Tego = ((xn+1, yn+1), (xn+2, yn+2), . . . , (xn+k, yn+k)), where k is the length of the prediction

window. This is a major difference from trajectory prediction methods in the literature [9, 66, 67]

that rely on manually annotated input trajectories. TrackNPred, in contrast, does not require any

ground truth trajectories.

Finally, TrackNPred evaluates and benchmarks realtime performances of various trajectory

prediction methods on a real-world traffic dataset3 [65]. This dataset contains more than 50

videos of dense and heterogeneous traffic. The dataset consists of the following road agent

categories: cars, buses, trucks, rickshaws, pedestrians, scooters, motorcycles, and other road

agents such as carts and animals. Overall, the dataset contains approximately 13 motorized

vehicles, 5 pedestrians, and 2 bicycles per frame. Annotations consist of spatial coordinates,

an agent ID, and an agent type. The dataset is categorized according to camera viewpoint

(front-facing/top-view), motion (moving/static), time of day (day/evening/night), and density

3https://go.umd.edu/TRAF-Dataset

59



Table 2.8: The list of algorithms currently implemented in TrackNPred.

Methods

Tracking by Detection
Mask R-CNN + DeepSORT

YOLO + DeepSORT

Trajectory Prediction

RNN- Encoder Decoder [68]
Social-GAN [9]

Covolutional Social-LSTM [67]
TraPHic [65]

level (sparse/moderate/heavy/

challenging). All the videos have a resolution of 1280× 720.

2.6.1.1 Methods Implemented in TrackNPred

One of our goals is to motivate research in highly accurate, end-to-end, and realtime

trajectory prediction methods. To achieve this goal, we design a common interface for several

state-of-the-art methods from both tracking and trajectory prediction literature. Such a design

facilitates easy bench-marking of new algorithms with respect to the state-of-the-art . The methods

in TrackNPred differ in numerous ways from their original implementations in the literature in

order to achieve improved accuracy in tracking and prediction in dense and heterogeneous traffic.

Table 2.8 provides a list of algorithms currently implemented in TrackNPred.

Tracking Module For tracking, we mainly focus our attention on tracking by detection approaches.

These are approaches that leverage deep learning-based object detection models. This is because

tracking methods that do not perform detection require manual, near-optimal initialization of

each road-agent’s state information in the first video frame. Further, methods that do not utilize
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Table 2.9: We evaluate RobustTP with methods that use noisy sensor input, on the TRAF Dataset.
The trajectory histories are computed using tracking by two detection methods: Mask R-CNN [6]
and YOLO [7]. The results are reported in the following format: ADE/FDE, where ADE is the
average displacement RMSE over the k seconds of prediction and FDE is the final displacement
RMSE at the end of k seconds. We tested for both short-term (k = 3) and longer-term (k = 5)
predictions. We observe for all the cases that RobustTP is the state-of-the-art.

Prediction length, k = 3 secs
RNN-ED S-GAN CS-LSTM RobustTP

MRCNN 2.60/4.96 2.11/3.50 1.27/2.01 1.14/1.90
YOLO 1.13/2.18 1.29/2.18 1.08/1.55 0.96/1.53

Prediction length, k = 5 secs
RNN-ED S-GAN CS-LSTM RobustTP

MRCNN 3.99/6.55 3.23/5.69 1.91/3.76 1.75/3.42
YOLO 2.06/4.26 1.98/3.72 1.52/2.67 1.29/1.97

object detection need to know the number of road-agents in each frame a priori so they do not

handle cases in which new road-agents enter the scene during the video. Tracking by detection

approaches overcome these limitations by employing a detection framework to recognize road-

agents entering at any point during the video and initialize their state-space information.

At present, we implement python-based tracking by detection algorithms to facilitate easy

integration into TrackNPred. DeepSORT [1] is currently the state-of-the-art realtime tracker

implemented in python. Naturally, we use DeepSORT as the base tracker. However, DeepSORT

was originally developed using a constant velocity model with the goal of tracking pedestrians

in sparse crowds. Consequently, it is not optimized for dense and heterogeneous traffic scenes

that may contain cars, buses, pedestrians, two-wheelers, and even animals. Therefore, we replace

the constant velocity model with a non-linear RVO motion model [103], which is designed for

motion planning in dense environments.
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The advantage of using tracking by detection algorithms is that we can combine the unique

benefits of different object detection models. For example, we integrate two state-of-the-art object

detection models, YOLO and Mask R-CNN. They are state-of-the-art in its own category. The

YOLO algorithm is extremely fast as compared to Mask R-CNN wile the latter offers a higher

accuracy.

The output of the tracking module is a trajectory file with corresponding ID’s. An ID is

an integer unique to every agent. Each row of this file corresponds to the following format:

< Fid >,< Vid >,< center-X >,< center-Y > which denotes the frame ID, vehicle ID, and the

2D coordinates of the center of the bounding box of the road-agent. This trajectory file is input

for the trajectory prediction module.

2.7 Behavior Prediction

In the final algorithm, SpectralLSTM, we extend TraPHic to also incorporate action prediction.

Architecturally, the network consists of a two-stream approach working in parallel. The first

stream is essentially the TraPHic algorithm while the second stream is used to perform action

prediction. This work [104] has been published in RAL/IROS’20.

2.7.1 Problem Statement

We first present a definition of a vehicle trajectory:

Definition 2.7.1. Trajectory: The trajectory for the ith road agent is defined as a sequence

Ψi(a, b) ∈ {R2}, where Ψi(a, b) =
{
[xt, yt]

⊤| t ∈ [a, b]
}

. [x, y] ∈ R2 denotes the spatial

coordinates of the road-agent in meters according to the world coordinate frame and t denotes
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Figure 2.12: Trajectory and Behavior Prediction: We predict the long-term (3-5 seconds)
trajectories of road-agents, as well as their behavior (e.g. overspeeding, underspeeding, etc.), in
urban traffic scenes. Our approach represents the spatial coordinates of road-agents (colored
points in the image) as vertices of a DGG to improve long-term prediction using a new
regularization method.

the time instance.

We define traffic forecasting as solving the following two problem statements, simultaneously,

but separately using two separate streams.

Problem 2.7.1. Trajectory Prediction: In a traffic video with N road agents, given the trajectory

Ψi(0, τ), predict Ψi(τ
+, T ) for each road-agent vi, i ∈ [0, N ].

Problem 2.7.2. Behavior Prediction: In a traffic video with N road agents, given the trajectory,

Ψi(0, τ), predict a label from the following set, { Overspeeding, Neutral, Underspeeding} for

each road-agent vi, i ∈ [0, N ].

The overall flow of the approach is as follows:

63



1. Our input consists of the spatial coordinates over the past τ seconds as well as the eigenvectors

of the DGGs corresponding to the first τ DGGs.

2. Solving Problem 2.7.1: The first stream accepts the spatial coordinates and uses an LSTM-

based sequence model [105] to predict Ψi(τ
+, T ) for each vi, i ∈ [0, N ], where τ+ = τ+1.

3. Solving Problem 2.7.2: The second stream accepts the eigenvectors of the input DGGs and

predicts the eigenvectors corresponding to the DGGs for the next τ seconds. The predicted

eigenvectors form the input to the behavior prediction algorithm in Section 2.7.2.2 to assign

a behavior label to the road-agent.

4. Stream 2 is used to regularize stream 1 using a new regularization algorithm presented

in Section 2.7.3. We derive the upper bound on the prediction error of the regularized

forecasting algorithm in Section 2.7.3.1.

2.7.2 Network Overview

We present an overview of our approach in Figure 2.13 and defer the technical implementation

details of our network to the supplementary material. Our approach consists of two parallel

LSTM networks (or streams) that operate separately.

Stream 1: The first stream is an LSTM-based encoder-decoder network [105] (yellow

layer in Figure 2.13). The input consists of the trajectory history, Ψi(0, τ) and output consists of

Ψi(τ
+, T ) for each road-agent vi, i ∈ [0, N ].

Stream 2: The second stream is also an LSTM-based encoder-decoder network (blue

layer in Figure 2.13). To prepare the input to this stream, we first form a sequence of DGGs,

{Gt| t ∈ [0, τ ]} for each time instance of traffic until time τ . For each DGG, Gt, we first compute
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Figure 2.13: Network Architecture: We show the trajectory and behavior prediction for the ith

road-agent (red circle in the DGGs). The input consists of the spatial coordinates over the past τ
seconds as well as the eigenvectors (green rectangles, each shade of green represents the index of
the eigenvectors) of the DGGs corresponding to the first τ DGGs. We perform spectral clustering
on the predicted eigenvectors from the second stream to regularize the original loss function and
perform back-propagation on the new loss function to improve long-term prediction.

its corresponding Laplacian matrix, Lt and use state-of-the-art eigenvalue algorithms to obtain

the spectrum, Ut consisting of the top k eigenvectors of length n. We form k different sequences,

{Sj| j ∈ [0, k]}, where each Sj = {uj} is the set containing the j th eigenvector from each Ut

corresponding to the tth time-step, with |Sj| = τ .

The second stream then accepts a sequence, Sj , as input to predict the j th eigenvectors for

the next T − τ seconds. This is repeated for each Sj . The resulting sequence of spectrums,

{Ut| t ∈ [τ+, T ]} are used to reconstruct the sequence, {Lt| t ∈ [τ+, T ]}, which is then used to

assign a behavior label to a road-agent, as explained below.
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2.7.2.1 Trajectory Prediction

The first stream is used to solve Problem 2.7.1. We clarify at this point that stream 1

does not take into account road-agent interactions. We use spectral clustering (discussed later in

Section 2.7.3) to model these interactions. It is important to further clarify that the trajectories

predicted from stream 1 are not affected by the behavior prediction algorithm (explained in the

next Section).

2.7.2.2 Behavior Prediction Algorithm

We define a rule-based behavior algorithm (blue block in Figure 2.13) to solve Problem 2.7.2.

This is largely due to the fact that most data-driven behavior prediction approaches require large,

well-annotated datasets that contain behavior labels. Our algorithm is based on the predicted

eigenvectors of the DGGs of the next τ seconds.

The degree of ith road-agent, (θi ≤ n), can be computed from the diagonal elements of the

Laplacian matrix Lt. θi measures the total number of distinct neighbors with which road-agent vi

has shared an edge connection until time t. As Lt is formed by simply adding a row and column

to Lt−1, the degree of each road-agent monotonically increases. Let the rate of increase of θi be

denoted as θ′
i. Intuitively, an aggressively overspeeding vehicle will observe new neighbors at a

faster rate as compared to a road-agent driving at a uniform speed. Conversely, a conservative

road-agent that is often underspeeding at unconventional spots such as green light intersections

(Figure 2.12) will observe new neighbors very slowly. This intuition is formalized by noting the

change in θi across time-steps. In order to make sure that slower vehicles (conservative) did not

mistakenly mark faster vehicles as new agents, we set a condition where an observed vehicle is
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marked as ‘new’ if and only if the speed of the observed vehicle is less than the active vehicle (or

ego-vehicle). To predict the behavior of the ith road-agent, we follow the following steps:

1. Form the set of predicted spectrums from stream 2, {Ut| t ∈ [τ+, T ]}. We compute the

eigenvalue matrix, Λ, of Lt by applying theorem 5.6 of [106] to Lt−1. We explain the exact

procedure in the supplemental version.

2. For each Ut ∈ U , compute Lt = UtΛU
⊤
t .

3. θi = ith element of diag(Lt), where “diag” is the diagonal matrix operator.

4. θ
′
i =

∆θi
∆t

.

where Λ is the eigenvalue matrix of Lt. Based on heuristically pre-determined threshold parameters

λ1 and λ2, we define the following rules to assign the final behavior label: Overspeeding (θ′
>

λ1), Neutral (λ2 ≤ θ
′ ≤ λ1), and Underspeeding (θ′

< λ2).

Note that since human behavior does not change instantly at each time-step, our approach

predicts the behavior over time periods spanning several frames.

2.7.3 Spectral Clustering Regularization

The original loss function of stream 1 for the ith road-agent in an LSTM network is given

by,

Fi = −
∑T

t=1 logPr(xt+1|µt, σt, ρt) (2.17)

Our goal is to optimize the parameters, µ∗
t , σ

∗
t , that minimize equation 2.17. Then, the next spatial

coordinate is sampled from a search space defined by N (µ∗
t , σ

∗
t ). The resulting optimization

67



forces µt, σt to stay close to the next spatial coordinate. However, in general trajectory prediction

models, the predicted trajectory diverges gradually from the ground-truth, causing the error-

margin to monotonically increase as the length of the prediction horizon increases ([107], cf.

Figure 4 in [65, 67], Figure 3 in [8]). The reason for this may be that while equation 2.17 ensures

that µt, σt stays close to the next spatial coordinate, it does not, however, guarantee the same for

x̂t+1 ∼ N (µt, σt). Our solution to this problem involves regularizing equation 2.17 by adding

appropriate constraints on the parameters, µt, σt, such that sampled coordinates from N (µ∗
t , σ

∗
t )

are close to the ground-truth trajectory.

We assume the ground-truth trajectory of a road-agent to be equivalent to their “preferred”

trajectory, which is defined as the trajectory a road-agent would have taken in the absence of other

dynamic road-agents. Preferred trajectories can be obtained by minimizing the Dirichlet energy

of the DGG, which in turn can be achieved through spectral clustering on the road-agents [108].

Our regularization algorithm (shown in the yellow arrow in Figure 2.13) is summarized below.

For each road-agent, vi:

1. The second stream computes the spectrum sequence, {UT+1, . . . , UT+τ}.

2. For each U , perform spectral clustering [109] on the eigenvector corresponding to the

second smallest eigenvalue.

3. Compute cluster centers from the clusters obtained in the previous step.

4. Identify the cluster to which vi belongs and retrieve the cluster center, µc and deviation, σc.

Then for each road-agent, vi, the regularized loss function, F reg
i , for stream 1 is given by,
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∑T
t=1

(
− logPr(ŷt+1|µt, σt, ρt

)
+ b1∥µt − µc∥2 + b2∥σt − σc∥2 (2.18)

where b1 = b2 = 0.5 are regularization constants. The regularized loss function is used to

backpropagate the weights corresponding to µt in stream 1. Note that F reg
i resembles a Gaussian

kernel. This makes sense as the Gaussian kernel models the Euclidean distance non-linearly –

greater the Euclidean distance, smaller the Gaussian kernel value and vice versa. Furthermore,

we can use Equation 2.18 to predict multiple modes [67] by computing maneuver probabilities

using µ, σ following the approach in Section 4.3 of [67].

2.7.3.1 Upper Bound for Prediction Error

In this section, we derive an upper bound on the prediction error, ϕj , of the first stream as

a consequence of spectral regularization. We present our main result as follows,

Theorem 2.7.1. ϕj ≤ ∥δtδ⊤t ∥2
min(λj ,Λ)

, where min(λj,Λ) denotes the minimum distance between λj

and λk ∈ Λ \ λj .

Proof. At time instance t, the Laplacian matrix, Lt, its block form,

 Lt 0

0 1

, denoted as

block(Lt), and the laplacian matrix for the next time-step, Lt+1 are described by Equation 3.1.

We compute the eigenvalue matrix, Λ, of Lt by applying theorem 5.6 of [106] to Lt−1.

LSTMs make accurate sequence predictions if elements of the sequence are correlated

across time, as opposed to being generated randomly. In a general sequence of eigenvectors,
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the eigenvectors may not be correlated across time. Consequently, it is difficult for LSTM

networks to predict the sequence of eigenvectors, U accurately. This may adversely affect the

behavior prediction algorithm described in Section 2.7.2.2. Our goal is now to show there exist

a correlation between Laplacian matrices across time-steps and that this correlation is lower-

bounded, that is, there exist sufficient correlation for accurate sequence modeling of eigenvectors.

Proving a lower-bound for the correlation is equivalent to proving an upper-bound for the

noise, or error distance, between the j th eigenvectors of Lt and Lt+1. We denote this error distance

through the angle ϕj . From Theorem 5.4 of [106], the numerator of bound corresponds to the

frobenius norm of the error between Lt and Lt+1. In our case, the update to the Laplacian matrix

is given by Equation 3.1 where the error matrix is δδ⊤.

In Theorem 2.7.1, ϕj << 1 and δ is defined in equation 3.1. λj represents the j th eigenvalue

and Λ represents all the eigenvalues of Lt. If the maximum component of δt is δmax, then ϕj =

O(
√
Nδmax). Theorem 2.7.1 shows that in a sequence of j th eigenvectors, the maximum angular

difference between successive eigenvectors is bounded by O(
√
Nδmax). By setting N = 270

(number of road-agents in Lyft), and δmax := e−3 = 0.049 (width of a lane), we observe a

theoretical upper bound of 0.8 meters. A smaller value of ϕj indicates a greater similarity between

successive eigenvectors, thereby implying a greater correlation in the sequence of eigenvectors.

This allows sequence prediction models to learn future eigenvectors efficiently.

An alternative approach to computing the spectrums {UT+1, . . . , UT+τ} is to first form

traffic-graphs from the predicted trajectory given as the output from the stream 1. After obtaining

the corresponding Laplacian matrices for these traffic-graphs, standard eigenvalue algorithms can

be used to compute the spectrum sequence. This is, however, a relatively sub-optimal approach
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as in this case, ϕ = O(NLmax), with Lmax ≫ δmax.

2.7.3.2 Results

2.7.4 Analysis and Discussion

We compare the ADE and FDE scores of our predicted trajectories with prior methods in

Table 3.3 and show qualitative results in the supplementary material. We compare with several

state-of-the-art trajectory prediction methods and reduce the average RMSE by approximately

75% with respect to the next best method (GRIP).

Ablation Study of Stream 1 (S1 Only) vs. Both Streams (S1 + S2): To highlight the

benefit of the spectral cluster regularization on long-term prediction, we remove the second

stream and only train the LSTM encoder-decoder model (Stream 1) with the original loss function

(equation 2.17). Our results (Table 3.3, last four columns) show that regularizing stream 1 reduces

the FDE by up to 70%. This is as expected since stream 1 does not take into account neighbor

information. Therefore, it should also be noted that stream 1 performs poorly in dense scenarios

but rather well in sparse scenarios. This is evident from Table 3.3 where stream 1 outperforms

comparison methods on the sparse NGSIM dataset with ADE less than 1m.

Additionally, Figure 2.14 shows that in the presence of regularization, the RMSE for our

spectrally regularized approach (“both streams”, purple curve) is much lower than that of stream

1 (red curve) across the entire prediction window.

RMSE depends on traffic density: The upper bound for the increase in RMSE error

is a function of the density of the traffic since ϕ = O(
√
Nδmax), where N is the total number

of agents in the traffic video and δmax = 0.049 meters for a three-lane wide road system. The
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Figure 2.14: RMSE Curves: We plot the RMSE values for all methods. The prediction window
is 5 seconds corresponding to a frame length of 50 for the NGSIM dataset.

NGSIM dataset contains the sparsest traffic with the lowest value for N and therefore the RMSE

values are lower for the NGSIM (0.40/1.08) compared to the other three datasets that contain

dense urban traffic.

Comparison with other methods: Our method learns weight parameters for a spectral

regularized LSTM network (Figure 2.13), while GRIP learns parameters for a graph-convolutional

network (GCN). We outperform GRIP on the NGSIM and Apolloscape datasets, while comparisons

on the remaining two datasets are unavailable. TraPHic and CS-LSTM are similar approaches.

Both methods require convolutions in a heuristic local neighborhood. The size of the neighborhood

is specifically adjusted to the dataset that each method is trained on. We use the default neighborhood

parameters provided in the publicly available implementations, and apply them to the NGSIM,

Lyft, Argoverse, and Apolloscape datasets. We outperform both methods on all benchmark

datasets. Lastly, Social-GAN is trained on the scale of pedestrian trajectories, which differs

significantly from the scale of vehicle trajectories. This is primarily the reason behind Social-

GAN placing last among all methods.
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2.7.5 Long-Term Prediction Analysis

The goal of improved long-term prediction is to achieve a lower FDE, as observed in

our results in Table 3.3. We achieve this goal by successfully upper-bounding the worst-case

maximum FDE that can theoretically be obtained. These upper bounds are a consequence of the

theoretical results in Section 2.7.3.1. We denote the worst-case theoretical FDE by T-FDE. This

measure represents the maximum FDE that can be obtained using Theorem 2.7.1 under fixed

assumptions. In Table 2.11, we compare the T-FDE with the empirical FDE results obtained in

Table 3.3. The T-FDE is computed by,

T-FDE =
ϕ

n
× (T − τ) (2.19)

The formula for T-FDE is derived as follows. The RMSE error incurred by all vehicles at a

current time-step during spectral clustering is bounded by ϕ (Theorem 2.7.1). Let n = N
T

= 10

be the average number of vehicles per frame in each dataset. Then, at a single instance in the

prediction window, the increase in RMSE for a single agent is bounded by ϕ
n

. As T − τ is the

length of the prediction window, the total increase in RMSE over the entire prediction window is

given by T-FDE = ϕ
n
× (T − τ). We do not have the data needed to compute ϕ for the NGSIM

dataset as the total number of lanes are not known.

We note a 73%, 82%, 100% agreement between the theoretical FDE and the empirical FDE

on the Apolloscape, Lyft, and Argoverse datasets, respectively. The main cause for disagreements

in the first two datasets is the choice for the value of δmax = 0.049 during the computation of ϕ.

This value is obtained for a three-lane wide road system that was observed in majority of the
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Table 2.10: Main Results: We report the Average Displacement Error (ADE) and Final
Displacement Error (FDE) for prior road-agent trajectory prediction methods in meters (m).
Lower scores are better and bold indicates the SOTA. We used the original implementation and
results for GRIP [8] and Social-GAN [9]. ‘-’ indicates that results for that particular dataset are
not available. Conclusion: Our spectrally regularized method (“S1 + S2”) outperforms the next
best method (GRIP) by upto 70% as well as the ablated version of our method (“S1 Only”) by
upto 75%.

Dataset (Pred. Len.) Comaprison Methods Ablation Our Approach

CS-LSTM TraPHic Social-GAN GRIP S1 Only S1 + S2
ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE

Lyft (5 sec.) 4.423 8.640 5.031 9.882 7.860 14.340 - - 5.77 11.20 2.65 2.99
Argoverse (5 sec.) 1.050 3.085 1.039 3.079 3.610 5.390 - - 2.40 3.09 0.99 1.87
Apolloscape (3 sec.) 2.144 11.699 1.283 11.674 3.980 6.750 1.25 2.34 2.14 9.19 1.12 2.05
NGSIM (5 sec.) 7.250 10.050 5.630 9.910 5.650 10.290 1.61 3.16 1.31 2.98 0.40 1.08

videos in both datasets. However, it may be the case that several videos contain one- or two-

lane traffic. In such cases, the values for δmax changes to 0.36 and 0.13, respectively, thereby

increasing the upper bound for increase in RMSE.

Note, in Figure 2.14, the increase in RMSE for our approach (purple curve) is much lower

than that of other methods, which is due to the upper bound induced by spectral regularization.

2.7.6 Behavior Prediction Results

We follow the behavior prediction algorithm described in Section 2.7.2.2. The values for

λ1 and λ2 are based on the ground truth labels and are hidden from the test set. We observe a

weighted accuracy of 92.96% on the Lyft dataset, 84.11% on the Argoverse dataset, and 96.72%

on the Apolloscape dataset. In the case of Lyft, Figure 2.15(top) and Figure 2.15(bottom)

show the ground truth and predictions for Lyft, respectively. We plot the value of θ
′ on the

vertical axis and the road-agent I.D.s on the horizontal axis. More similarity across the two

plots indicates higher accuracy. For instance, the red (aggressive) and blue (conservative) dotted

regions inFigure 2.15(top) and Figure 2.15(bottom) are nearly identical indicating a greater number
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Figure 2.15: Behavior Prediction Results: We classify the three behaviors– overspeeding(blue),
neutral(green), and underspeeding(red), for all road-agents in the Lyft, Argoverse, and
Apolloscape datasets, respectively. The y-axis shows θ′ and the x-axis denotes the road-agents.
We follow the behavior prediction protocol described in Section 2.7.2.2. Each figure in the top
row represents the ground-truth labels, while the bottom row shows the predicted labels. In our
experiments, we set λ = λ1 = −λ2.

of correct classifications. Similar results follow for the Apolloscape and Argoverse datasets,

which we show in the supplementary material due to lack of space. Due to the lack of diverse

behaviors in the NGSIM dataset, we do not perform behavior prediction on the NGSIM.

An interesting observation is that road-agents towards the end of the x-axis appear late

in the traffic video while road-agents at the beginning of the x-axis appear early in the video.

The variation in behavior class labels, therefore, decreases towards the end of the x-axis. This

intuitively makes sense as θ′ for a road-agent depends on the number of distinct neighbors that it

observes. This is difficult for road-agents towards the end of the traffic video.

2.7.6.1 Results

We compare the ADE and FDE scores of our predicted trajectories with prior methods in

Table 3.3 and show qualitative results in the supplementary material. We compare with several
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state-of-the-art trajectory prediction methods and reduce the average RMSE by approximately

75% with respect to the next best method (GRIP).

Ablation Study of Stream 1 (S1 Only) vs. Both Streams (S1 + S2): To highlight the

benefit of the spectral cluster regularization on long-term prediction, we remove the second

stream and only train the LSTM encoder-decoder model (Stream 1) with the original loss function

(equation 2.17). Our results (Table 3.3, last four columns) show that regularizing stream 1 reduces

the FDE by up to 70%. This is as expected since stream 1 does not take into account neighbor

information. Therefore, it should also be noted that stream 1 performs poorly in dense scenarios

but rather well in sparse scenarios. This is evident from Table 3.3 where stream 1 outperforms

comparison methods on the sparse NGSIM dataset with ADE less than 1m.

Additionally, Figure 2.14 shows that in the presence of regularization, the RMSE for our

spectrally regularized approach (“both streams”, purple curve) is much lower than that of stream

1 (red curve) across the entire prediction window.

RMSE depends on traffic density: The upper bound for the increase in RMSE error

is a function of the density of the traffic since ϕ = O(
√
Nδmax), where N is the total number

of agents in the traffic video and δmax = 0.049 meters for a three-lane wide road system. The

NGSIM dataset contains the sparsest traffic with the lowest value for N and therefore the RMSE

values are lower for the NGSIM (0.40/1.08) compared to the other three datasets that contain

dense urban traffic.

Comparison with other methods: Our method learns weight parameters for a spectral

regularized LSTM network (Figure 2.13), while GRIP learns parameters for a graph-convolutional

network (GCN). We outperform GRIP on the NGSIM and Apolloscape datasets, while comparisons

on the remaining two datasets are unavailable. TraPHic and CS-LSTM are similar approaches.
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Both methods require convolutions in a heuristic local neighborhood. The size of the neighborhood

is specifically adjusted to the dataset that each method is trained on. We use the default neighborhood

parameters provided in the publicly available implementations, and apply them to the NGSIM,

Lyft, Argoverse, and Apolloscape datasets. We outperform both methods on all benchmark

datasets. Lastly, Social-GAN is trained on the scale of pedestrian trajectories, which differs

significantly from the scale of vehicle trajectories. This is primarily the reason behind Social-

GAN placing last among all methods.

2.7.7 Long-Term Prediction Analysis

The goal of improved long-term prediction is to achieve a lower FDE, as observed in

our results in Table 3.3. We achieve this goal by successfully upper-bounding the worst-case

maximum FDE that can theoretically be obtained. These upper bounds are a consequence of the

theoretical results in Section 2.7.3.1. We denote the worst-case theoretical FDE by T-FDE. This

measure represents the maximum FDE that can be obtained using Theorem 2.7.1 under fixed

assumptions. In Table 2.11, we compare the T-FDE with the empirical FDE results obtained in

Table 3.3. The T-FDE is computed by,

T-FDE =
ϕ

n
× (T − τ) (2.20)

The formula for T-FDE is derived as follows. The RMSE error incurred by all vehicles at a

current time-step during spectral clustering is bounded by ϕ (Theorem 2.7.1). Let n = N
T

= 10

be the average number of vehicles per frame in each dataset. Then, at a single instance in the

prediction window, the increase in RMSE for a single agent is bounded by ϕ
n

. As T − τ is the
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Table 2.11: Upper Bound Analysis: ϕ is the upper bound on the RMSE for all agents at a
time-step. T − τ is the length of the prediction window. T-FDE (Eq. 2.20) is the theoretical
FDE that should be achieved by using spectral regularization. The FDE results are obtained from
Table 3.3. The % agreement is the agreement between the T-FDE and FDE computed using T-FDE

FDE
if T-FDE<FDE, else 100%. Conclusion: Theorem 2.7.1 is empirically verified with at least 73%
guarantee.

Dataset ϕ (T − τ ) T-FDE FDE % Agreement

Lyft Level 5 0.80 30 2.46 2.99 82%
Apolloscape 1.50 10 1.50 2.05 73%
Argoverse 0.64 30 1.95 1.87 100%

length of the prediction window, the total increase in RMSE over the entire prediction window is

given by T-FDE = ϕ
n
× (T − τ). We do not have the data needed to compute ϕ for the NGSIM

dataset as the total number of lanes are not known.

We note a 73%, 82%, 100% agreement between the theoretical FDE and the empirical FDE

on the Apolloscape, Lyft, and Argoverse datasets, respectively. The main cause for disagreements

in the first two datasets is the choice for the value of δmax = 0.049 during the computation of ϕ.

This value is obtained for a three-lane wide road system that was observed in majority of the

videos in both datasets. However, it may be the case that several videos contain one- or two-

lane traffic. In such cases, the values for δmax changes to 0.36 and 0.13, respectively, thereby

increasing the upper bound for increase in RMSE.

Note, in Figure 2.14, the increase in RMSE for our approach (purple curve) is much lower

than that of other methods, which is due to the upper bound induced by spectral regularization.
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Chapter 3: Online Driver Behavior Modeling

3.1 Overview

Autonomous Vehicles (AVs) are an active area of research, successfully employing tools

from machine learning [110], perception [111], planning and driver behavior modeling [75].

Recently, there have been multiple breakthroughs in perception-based tasks in autonomous driving

in areas that include object detection [112], tracking [12, 45], trajectory prediction [65, 102, 104],

and planning [113, 114]. While these advances have been widely successful, current AVs still

lack the ability to interact with multiple human drivers in dense traffic scenarios [115] such as

intersections and merging on highways.

As a precautionary measure, AVs are designed to behave conservatively in order to maximize

safety [116]. A recent study [117] conducted real-world AV experiments and collected factors

that may associate with how people’s opinions change before and after experiencing a ride in an

AV. However, conservative AV behavior is not always desirable or necessary, particularly given

potential consequences like low efficiency and shortsighted behavior, which frequently frustrate

other human drivers [118]. For example, in [118], a Tesla driver is observed to be executing a

lane-change maneuver. The Tesla AutoPilot slows down to wait for an excessively large gap in

the target lane thereby blocking the traffic behind it in the current lane. This causes frustration

and inefficiency among the blocked drivers. Furthermore, some studies [116] have pointed out
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Figure 3.1: GraphRQI predicts the behaviors of road-agents in dense and heterogeneous traffic
from one of the following classes–impatient, reckless, threatening, careful, cautious, timid. Our
approach is up to 25% more accurate than prior behavior prediction methods.

that aggressive driving for AVs is even desirable in certain situations like reconnaissance, material

transport, emergency handling, or efficiency-sensitive application. Sometimes it is even desirable

simply based on human preference.

There is prior work on predicting human driver behavior from trajectory data using machine

learnings [14, 15, 75, 119, 120]. The two main approaches for this task include inverse reinforcement

learning (IRL) and machine learning (regression and clustering techniques). Due to the data-

driven nature of these methods, they incur two predominant limitations, which are inherent to

most learning-based techniques in artificial intelligence research. First, these data-driven methods

are constrained to a narrow range of traffic environments and fail to generalize to different

environments. Furthermore, it has been shown both empirically and theoretically [121] that data-

driven methods are not robust to fluctuations or noise in the sensor measurements (GPS, lidars,
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depth cameras etc.). These limitations prevent the current driver behavior prediction systems

from being used in other AD tasks such as navigation.

Furthermore, in autonomous driving, it is important to handle the unpredictability and

aggressive nature of human drivers during navigation. While there is considerable research on

designing navigation algorithms [122], much of it assumes little to no interaction with human

drivers. However, in real-life circumstances, drivers may act irrationally by moving in front of

other vehicles, suddenly changing lanes, or aggressively overtaking. One such instance occurred

in 2016 when an AV by Google collided with an oncoming bus during a lane change maneuver [123].

The AV assumed that the bus driver was going to yield; instead, the bus driver accelerated.

Therefore, we need navigation methods that can account for different driver behaviors.

Main Contributions: In light of the limitations presented by data-driven methodologies,

we present a fundamentally different approach to driver behavior prediction that can generalize

to widely varying traffic scenarios while also being robust to realistic fluctuations in sensor noise.

Our model not only alleviates the problems of prior approaches in order to predict human driver

behavior, but also extends existing navigation research to behaviorally-guided navigation. Our

main contributions include:

1. A new approach to predict driver behavior from raw vehicle trajectories using graph-

theoretic machine learning. In this approach, called StylePredict, we use the concept

of vertex centrality functions [124] and spectral analysis to measure the likelihood and

intensity of driving styles such as overspeeding, overtaking, sudden lane-changes, etc.

This process generates driver behavior features that can then be used for training machine

learning algorithms.
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2. Extending current navigation research [122] to behaviorally-guided local navigation. This

novel approach to navigation computes a local trajectory for the AV, taking into account the

aggressiveness or conservativeness of human drivers. For example, the AV learns to slow

down around aggressive human drivers while confidently overtaking conservative drivers.

StylePredict can be deployed in real-world traffic. We test extensively on real-world traffic

datasets (Section 3.5.1.2, Table 3.3) collected in India, Singapore, U.S.A, and China. These

datasets contain sensor noise (latency, precision, presence of outliers, etc.) identical to that

expected in the real world. In Section 3.4.4.1 and Table 3.5, we demonstrate robustness of our

method to these sensor issues.

3.2 Related Work

3.2.1 Graph-based Machine Learning

Graph-based machine learning is a sub-field in machine learning where the input data is

organized as graphs. While the core learning algorithms themselves, including neural networks,

LSTMs [125], and convolutional neural networks, remain the same, they are now referred to as

graph neural networks (GNNs) [126], Graph-LSTMs [104], and graph convolutional networks

(GCNs) [127], respectively. Graph-based machine learning algorithms have been widely used

in trajectory prediction, computer vision and natural language processing [128]. GNNs, Graph-

LSTMs, and GCNs, however, are “deep” networks and require a huge amount of training data in

order to produce meaningful results.

In this work, we instead use “shallow” graph-based machine learning, which includes

learning algorithms based on logistic regression [129], multi-layer perceptrons, and support
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vector machines [130], which require fewer computational resources than deep learning-based

methods.

3.2.2 Data-Driven Methods for Driver Behavior Prediction

Data-driven methods broadly follow two approaches. In the first approach, various machine

learning algorithms including clustering, regression, and classification are used to predict or

classify the driver behavior as either aggressive or conservative. These methods have mostly been

studied in traffic psychology and the social sciences [92, 93, 94]. So far, there has been relatively

little work to improve the robustness and ability to generalize to different traffic scenarios, which

require ideas from computer vision and robotics. In this work, we bridge the gap between

robotics, computer vision, and the social sciences and develop an improved graph-theoretic

machine learning model for human driver behavior prediction that alleviates the limitations of

prior approaches.

The second approach uses trajectory data to learn reward functions for human behavior

using inverse reinforcement learning (IRL) [75, 119, 131]. IRL-based methods, however, have

certain limitations. IRL requires large amounts of training data and the learned reward functions

are unrealistically tailored towards scenarios only observed in the training data [119, 131]. For

instance, the approach proposed in [119] requires 32 million data samples for optimum performance.

Additionally, IRL-based methods are sensitive to noise in the trajectory data [75, 131]. Consequently,

current IRL-based methods are restricted to simple and sparse traffic conditions.
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3.2.3 Navigation Research in Autonomous Driving

Navigation in robotics is a well studied area of research. At a broad level, navigation

methods can be categorized into approaches for vehicle control, motion planning, and end-

to-end learning-based methods. Techniques for vehicular control methods assume apriori an

accurate motion model of the vehicle. Such methods can be used for controlling vehicles at high

speeds or during complex maneuvers. Motion planning methods can be further sub-divided into

lattice-based [132], probabilistic search-based [133], or use non-linear control optimization [134]

approaches.

In addition to vehicular control and motion planning methods, many learning-based techniques

are also used [135, 136, 137]. These methods are based on reinforcement learning where one

finds an optimal policy that directly maps the sensor measurements to control commands such as

velocity or acceleration and steering angle. Li et al. [138] formulate the navigation problem as

one of action prediction using the proximity relationship between agents along with their visual

features.

However, the above methods do not consider the interaction among human drivers. Typically,

in order to model dynamic obstacles, prior methods have either assumed a linear constant velocity

model [137]. Our behavior-based formulation can be integrated with these methods. We refer the

reader to [122] for a detailed review on recent planning and navigation methods.

3.2.4 Interpretation of Driver Behavior in Social Science

Many studies have attempted to define driver behavior for traffic-agents. Sagberg et al. [10]

extract and summarize the common elements from these definitions and propose a unified definition
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Table 3.1: A list showing the taxonomy of various aggressive and conservative behaviors. In this
work, we focus on modeling the longitudinal and lateral specific styles (except “tailgating” and
“responding to pressure”). NA denotes “Not Applicable”

Global Behavior Specific Style/Indicator Nature

Aggressive

Overspeeding Longitudinal
Tailgating Longitudinal

Overtake as much as possible Lateral
Weaving Lateral

Sudden Lane-Changes Lateral
Inappropriate use of horn NA

Flashing lights at vehicle in front NA

Conservative
Uniform speed or under-speeding Longitudinal

Conforms to single lane Lateral
Responding to pressure from other drivers NA

for driver behavior. We incorporate this definition in our driver behavior model.

Definition 3.2.1. (Sagberg et al. [10] Driver behavior refers to the high-level “global behavior”,

such as aggressive or conservative driving. Each global behavior can be expressed as a combination

of one or more underlying “specific styles”. For example, an aggressive driver (global behavior)

may frequently overspeed or overtake (specific styles).

The main benefit of Sagberg’s definition is that it allows for a formal taxonomy for driver behavior

classification. Specific indicators can be classified as either longitudinal styles (along the axis of

the road) or lateral (perpendicular to the axis of the road). We can formally characterize driver

behavior by mathematically modeling the underlying specific indicators.

Problem 3.2.1. In a traffic video with N vehicles during any time-period ∆t, given the trajectories

of all vehicles, our objective is to mathematically model the specific styles for all drivers during

∆t.
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In Section 3.4.2, we elucidate on “mathematically modeling” a specific style. In Section 3.3, we

construct the “traffic-graph” data structure used by our approach. We introduce the ideas of vertex

centrality in Section 3.4.1 followed by a presentation of our main approach in Section 3.4.2. We

describe the experiments and results in Section 4.4.3.

3.3 Representing Traffic Data Using Graphs

The behavior of drivers depend on their interactions with nearby drivers. StylePredict

models the relative interactions between drivers by representing traffic through weighted undirected

graphs called “traffic-graphs”. In this section, we describe the construction of these graph representations.

If we assume that the trajectories of all the vehicles in the video are extracted using state-of-the-art

localization methods [139] and are provided to our algorithm as an input, then the traffic-graph,

Gt, at each time-step t can be defined as follows,

Definition 3.3.1. A “traffic-graph”, Gt, is a dynamic, undirected, and weighted graph with a set

of vertices V(t) and a set of edges E(t) ⊆ V(t) × V(t) as functions of time defined in the 2-D

Euclidean metric space with metric function f(x, y) = ∥x − y∥2. Two vertices vi, vj ∈ V are

connected if and only if f(vi, vj) < µ, where µ is a distance threshold parameter.

We use N to represent the maximum number of vehicles tolerated by our system. N is

typically fixed as some large integer (e.g., 1000) for each vehicle. Most real world commercial

and academic systems use large high-performing computers to run computations involving large

matrices [140]. Therefore, large values of N do not impose a computational burden on our

approach. Road-agents at each time instance t in a traffic scenario can be represented using a

traffic-graph Gt. Each vertex in the graph Gt is represented by the vehicle position in the global
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coordinate frame, i.e. vi ← [xi, yi]
⊤ ∈ R2. The spatial distance between two vehicles is assigned

as the cost of the edge connecting the two vehicles.

In computational graph theory, every graph G can be equivalently represented by an adjacency

matrix, A. For a particular traffic-graph G, the adjacency matrix A is given by A(i, j) = (vi, vj)

if f(vi, vj) < µ, i ̸= j (otherwise 0).

Adjacency matrices allow linear vector operations to be performed on graph structures,

which are useful for analyzing individual vertices. For example, each non-zero entry in the j th

column corresponding to the ith row of the adjacency matrix stores the relative distance between

the ith and j th vehicles. A is initialized as an N ×N identity matrix.

However, considering the traffic-graph and its corresponding adjacency matrix only at a

current time-step t is not useful in describing the behavior of a driver. The behavior of a driver

also depends on their actions from previous time-steps. To accommodate this notion, at each

time-step t, we populate A with principle sub-matrices At of size t× t,



A3︷ ︸︸ ︷

A2︷ ︸︸ ︷A1 a12

a21 a22

 a13

a23

a31 a32
1


. . . 0

...

0

. . . ...

. . . 1


︸ ︷︷ ︸

AN×N

.

The sub-matrix for the next time-step, At+1, is obtained by the following update,
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At+1 =

(t+1)×(t+1)︷ ︸︸ ︷ [At]t×t 0

0 1

+ δσ(δ)⊤, (3.1)

where δσ(δ)⊤ ∈ R(t+1)×(t+1) is a sparse update matrix and δ, σ(δ) are update vectors defined as

follows,

δ =



δ11 ̸=0︷︸︸︷
δ11 0

δ21 0

...
...

δt1 0

0 1


(t+1)×2

σ(δ) =



0

δ11 ̸=0︷︸︸︷
δ11

0 δ21

...
...

0 δt1

1 0


(t+1)×2

.

Here, σ is a permutation that swaps the two columns in δ. If the j th row of δ is non-zero, then

that implies that the j th road-agent has formed a new edge with a new vehicle that came into

its proximity; this new vehicle will be added to the current traffic-graph. This new vehicle

is identified by a unique ID number provided by the localization sensor (GPS or lidar). For

example, if a vehicle with ID 1(j = 1) has formed a new edge connection with another vehicle.

This corresponds to δ11 ̸= 0. The update rule in Equation 3.1 ensures that a vehicle adds edge

connections to new vehicles while retaining edge connections with previously seen vehicles.

A candidate vehicle is categorized as “new” with respect to a vehicle if there does not exist

any prior edge connection between the vehicles and the speed of the old vehicle is greater than the

candidate vehicle. If an edge connection already exists between the vehicle, then the candidate

vehicle is said to have been “observed” or “seen”. The dimension of A is constant (N × N ).
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Table 3.2: Definition and categorization of driving behaviors [10]. We measure the likelihood
and intensity of specific styles by analyzing the first-and second-order derivatives of the centrality
polynomials.

Global Specific Centrality SLE SIE

Aggressive
Overspeeding Degree (ζd) —1st Derivative— —2nd Derivative—

Overtaking / SLC Closeness (ζc) —1st Derivative— —2nd Derivative—
Weaving Closeness (ζc) Extreme Points ε-sharpness

Conservative
Driving Slowly Degree (ζd) —1st Derivative— —2nd Derivative—
No Lane-change Closeness (ζc) —1st Derivative— —2nd Derivative—

Once the upper limit N has been achieved (N different vehicles have been observed), then A is

re-initialized as an N ×N identity matrix. As the behaviors of each vehicle are determined in an

online manner, “erasing” the old vehicles from the matrix to make way for new vehicles does not

affect their behavior computation; their behaviors have already been computed and stored. If the

number of vehicles is less than N , then the “unused” entries in A are simply left as 0. Finally,

vehicles appearing and disappearing from the field of view of the ego-vehicle does not impact

the size of A. If a vehicle does not remain in the field of view of the ego-vehicle for a sufficient

amount of time, then our algorithm does not consider that vehicle in the adjacency matrix A.

3.4 StylePredict: Mapping Trajectories to Behavior

3.4.1 Centrality Measures

In graph theory and network analysis, centrality measures [124] are real-valued functions

ζ : V −→ R, where V denotes the set of vertices and R denotes a scalar real number that

identifies key vertices within a graph network. So far, centrality functions have been restricted to

identifying influential personalities in online social media networks [141] and key infrastructure

nodes in the Internet [142], to rank web-pages in search engines [143], and to discover the
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Figure 3.2: Overview: The autonomous vehicle reads the positions of all vehicles in realtime.
The positions and corresponding spatial distances between vehicles are represented through a
traffic-graph Gt (Section 3.3). We use the centrality functions defined in Section 3.4.1 to model
the specific driving style corresponding to the global behaviors as outlined in Table 3.2.

origin of epidemics [144]. There are several types of centrality functions. The ones that are of

particular importance to us are the degree centrality and the closeness centrality denoted as ζd(t)

and ζc(t), respectively. These centrality measures are defined in [14] (See section III-C). Each

function measures a different property of a vertex. Typically, the choice of selecting a centrality

function depends on the current application at hand. In this work, the closeness centrality and the

degree centrality functions measure the likelihood and intensity of specific driving styles such as

overspeeding, overtaking, sudden lane-changes, and weaving [14].

3.4.2 Algorithm

Here, we present the main algorithm, called StylePredict, for solving Problem 3.2.1. StylePredict

maps vehicle trajectories to specific styles by computing the likelihood and intensity of the latter

using the definitions of the centrality functions. The specific styles are then used to assign global

behaviors [10] according to Table 3.2. We summarize the StylePredict algorithm as follows:

1. Obtain the positions of all vehicles using localization sensors deployed on the autonomous
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vehicle and form traffic-graphs at each time-step (Section 3.3).

2. Compute the closeness and degree centrality function values for each vehicle at every time-

step.

3. Perform polynomial regression to generate uni-variate polynomials of the centralities as a

function of time.

4. Measure likelihood and intensity of a specific style for each vehicle by analyzing the first-

and second-order derivatives of their centrality polynomials.

5. Classify the centrality polynomials, obtained from step 3, as either aggressive or conservative

using machine learning algorithms such as Multi-Layer Perceptrons (MLPs).

We depict the overall approach in Figure 3.2. We begin by using the construction described in

Section 3.3 to form the traffic-graphs for each frame and use the definitions in [14] to compute the

discrete-valued centrality measures. Since centrality measures are discrete functions, we perform

polynomial regression using regularized Ordinary Least Squares (OLS) solvers to transform the

two centrality functions into continuous polynomials, ζc(t) and ζd(t), as a function of time. We

describe polynomial regression in detail in the following subsections. We compute the likelihood

and intensity of specific styles by analyzing the first- and second-order derivatives of ζc(t) and

ζd(t) (this step is discussed in further detail in Section 3.4.4).

3.4.3 Polynomial Regression

In order to study the behavior of the centrality functions with respect to how they change

with time, we convert the discrete-valued ζ[t] into continuous-valued polynomials ζ(t), using
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which we calculate the first- and second-order derivatives of the centrality functions as explained

in Section 3.4.4.

In this work, we choose a quadratic1 centrality polynomial can be expressed as ζ(t) =

β0 + β1t + β2t
2, as a function of time. Here, β = [β0 β1 β2]

⊤ are the polynomial coefficients.

These coefficients can be computed using ordinary least squares (OLS) equation as follows,

β = (M⊤M)−1M⊤ζ i (3.2)

Here, M ∈ RT×(d+1) is the Vandermonde matrix [145]. and is given by,

M =



1 t1 t21 . . . td1

1 t2 t22 . . . td2

...
...

... . . . ...

1 tT t2T . . . tdT



3.4.4 Style Likelihood and Intensity Estimates

In the previous sections, we used polynomial regression on the centrality functions to

compute centrality polynomials. In this section, we analyze and discuss the first and second

derivatives of the degree centrality, ζd(t), and closeness centrality, ζc(t), polynomials. Based on

this analysis, which may vary for each specific style, we compute the Style Likelihood Estimate

(SLE) and Style Intensity Estimate (SIE) [14], which are used to measure the probability and the

intensity of a specific style.

1A polynomial with degree 2.
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Overtaking/Sudden Lane-Changes Overtaking is when one vehicle drives past another vehicle

in the same or an adjacent lane, but in the same direction. The closeness centrality increases as

the vehicle navigates towards the center and vice-versa. The SLE of overtaking can be computed

by measuring the first derivative of the closeness centrality polynomial using SLE(t) =
∣∣∣∂ζc(t)∂t

∣∣∣.
The maximum likelihood SLEmax can be computed as SLEmax = maxt∈∆t SLE(t). The SIE of

overtaking is computed by simply measuring the second derivative of the closeness centrality

using SIE(t) =
∣∣∣∂2ζc(t)

∂t2

∣∣∣. Sudden lane-changes follow a similar maneuver to overtaking and

therefore can be modeled using the same equations used to model overtaking.

Overspeeding The degree centrality can be used to model overspeeding. As At is formed by

adding rows and columns to At−1 (See Equation 3.1), the degree of the ith vehicle (denoted as θi)

is calculated by simply counting the number of non-zero entries in the ith row of At. Intuitively,

a drivers that are overspeeding will observe new neighbors along the way (increasing degree) at

a higher rate than conservative, or even neutral, drivers. Let the rate of increase of θi be denoted

as θ
′
i. By definition of the degree centrality and construction of At, the degree centrality for an

aggressively overspeeding vehicle will monotonically increase. Conversely, the degree centrality

for a conservative vehicle driving at a uniform speed or braking often at unconventional spots

such as green light intersections will be relatively flat. Therefore, the likelihood of overspeeding

can be measured by computing,

SLE(t) =
∣∣∣∣∂ζd(t)∂t

∣∣∣∣
Similar to overtaking, the maximum likelihood estimate is given by SLEmax = maxt∈∆t SLE(t).

Figure 3.3 visualize how the degree centrality can distinguish between an overspeeding vehicle

and a vehicle driving at a uniform speed.
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Weaving A vehicle is said to be weaving when it “zig-zags” through traffic. Weaving is characterized

by oscillation in the closeness centrality values between low values towards the sides of the

road and high values in the center. Mathematically, weaving is more likely to occur near the

critical points (points at which the function has a local minimum or maximum) of the closeness

centrality polynomial. The critical points tc belong to the set T =
{
tc
∣∣∂ζc(tc)

∂t
= 0

}
. Note that T

also includes time-instances corresponding to the domain of constant functions that characterize

conservative behavior. We disregard these points by restricting the set membership of T to only

include those points tc whose ε−sharpness [146] of the closeness centrality is non-zero. The set

T is reformulated as follows,

T =

{
tc

∣∣∣∣∂ζc(tc)∂t
= 0

}

s.t. max
t∈Bε(tc)

∂ζc(t)

∂t
̸= ∂ζc(tc)

∂t

(3.3)

where Bε(y) ∈ Rd is the unit ball centered around a point y with radius ε. The SLE of a weaving

vehicle is represented by |T |, which represents the number of elements in T . The SIE(t) is

computed by measuring the ε−sharpness value of each tc ∈ T . Figure 3.3 visualizes how the

degree centrality can distinguish between an overspeeding vehicle and a vehicle driving at a

uniform speed.

Conservative Vehicles Conservative vehicles, on the other hand, are not inclined towards aggressive

maneuvers such as sudden lane-changes, overspeeding, or weaving. Rather, they tend to stick to

a single lane [147] as much as possible, and drive at a uniform speed [10] below the speed

limit. Correspondingly, the values of the closeness and degree centrality functions in the case of

conservative vehicles remain constant. Mathematically, the first derivative of constant polynomials

is 0. The SLE of conservative behavior is therefore observed to be approximately equal to 0.
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Figure 3.3: Measuring the Likelihood of Specific Styles: We measure (degree and closeness
centrality) the likelihood that an ego-vehicle (grey with a blue outline) has a specific driving
style by computing the magnitude of the derivative of the centrality functions as well as the
functions’ extreme points. In part (b) , the derivative of the degree centrality function is 0
because the ego-vehicle does not observe any additional new neighbors (See Section 3.4.4), so
the degree centrality is a constant function; therefore, the vehicle is conservative. In part (c),
the vehicle overspeeds and, consequently, the rate of observing new neighbors is high, which is
reflected in the magnitude of the derivative of the degree centrality being positive. Finally, in part
(d), the ego-vehicle demonstrates overtaking/sudden lane-changes and weaves through traffic.
These behaviors are reflected in the magnitude of the slope and the location of extreme points,
respectively, of the closeness centrality function.

Additionally, the likelihood that a vehicle drives uniformly in a single lane during time-period ∆t

is higher when,

∣∣∣∣∂ζc(t)∂t

∣∣∣∣ ≈ 0 and max
t∈Bε(t∗)

SLE(t) ≈ SLE(tc).

The intensity of such maneuvers will be low and is reflected in the lower values for the SIE.
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3.4.4.1 Robustness to Noise

In the formulation above, our algorithm assumes perfect sensor measurements of the global

coordinates of all vehicles. However, in real-world systems, even state-of-the-art methods for

vehicle localization incur some measurement errors. We consider the case in which the raw

sensor data is corrupted by some noise ϵ. Without loss of generality, we prove robustness to

noise for the degree centrality. Further, the analysis can be extended to other centrality functions.

The discrete-valued centrality vector for the ith agent is given by ζ i ∈ RT×1. Therefore, ζ1[2]

corresponds to the degree centrality value of the 1st agent at t = 2.

In the previous section, we showed that a noiseless estimator may be obtained by solving

an ordinary least squares (OLS) system given by Equation 3.2. However, in the presence of noise

ϵ, the OLS system described in Equation 3.2 is modified as,

β̃ = (M⊤M)−1M⊤ζ̃ i (3.4)

where ζ̃ i = ζ i + ϵ. Then we can prove that ∥β̃ − β∥ = O(ϵ). We defer the proof to the

supplementary material.

3.5 Behavior Classification Using Machine Learning

We treat the centrality polynomials computed in Section 3.4.3 as features in a supervised

learning paradigm. While our formulation is such that any classification algorithm can be used,

we select Multi-Layer Perceptron (MLP) as the classification model due to its superior performance.

We defer a comparison between different ML algorithms to Section 4.4.3.
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Algorithm 1: Our approach outputs the Style Likelihood Estimate (SLE) and Style
Intensity Estimate (SIE) for a vehicle, u, in a given time-period ∆t.

Input : u = vi ← [xi, yi]
⊤ ∀vi ∈ V(t)

Output: SLE(t),SIE(t)
1 t = 0
2 for each v ∈ V(t) do
3 while t ≤ T do
4 // Compute Centrality //
5 ζ ic[t] =

N−1∑
vj∈V(t)\{vi}

Dt(vi,vj)

6 ζ id[t] =
∣∣{vj ∈ Ni(t)}

∣∣+ ζ id[t− 1], (vi, vj) ̸∈ E(τ), τ = 0, . . . , t− 1
7 t← t+ 1
8 // Perform Polynomial Regression w.r.t Time //
9 β = argminβ∥ζ −Mβ∥

10 ζ(t) = β0 + β1t+ β2t
2

11 // Compute Likelihood and Intensity //
12 for k = 0, 1, 2 do
13 SLEk(t) =

∣∣∣∂ζ(t)∂t

∣∣∣
14 SIEk(t) =

∣∣∣∂2ζ(t)
∂t2

∣∣∣
15 end
16 end
17 end

Formally, let Φ denote the MLP model that takes in a centrality feature vector, ζ(t), as input

and produces a 1-hot vector encoding, ŷ = Φ(ζ(t)), of the behavior prediction as output. Let y

denote the corresponding ground-truth label for that agent. Then, for N agents, a loss function

can be framed as follows,

L(θ) =
N∑
i=1

∥yi − Φ(ζ i(t))∥2 (3.5)

where θ denote the MLP model parameters. The goal of the classification problem is to find the

optimum values of θ, say θ∗, that minimizes Equation 4.12. More simply,
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Table 3.3: We report the Time Deviation Error (TDE) (in seconds (s)) for the following driving
styles: Overspeeding (OS), Overtaking (OT), Sudden Lane-Changes (SLC), and Weaving (W)
along with their % appearance in various real-world datasets. On average, we find that it is
easiest to predict weaving and sudden lane-changes in India. This observation agrees with our
cultural analysis in Section 3.5.1.3

Dataset
Styles

OS OT SLC W

TDE % TDE % TDE % TDE %

U.S. [11] 0.25s 83 0.67s 2 0.23s 14 0.26s 1
Singapore 0.54s 27 0.88s 27 1.21s 27 1.28s 18
China [148] 0.74s 24 0.44s 32 0.39s 36 0.23s 8
India [65] 0.81s 16 0.38s 40 0.19s 28 0.06s 16

θ∗ = argmin
θ
L(θ)

3.5.1 Experiments and Results

We begin with a discussion of the evaluation metrics, the Time Deviation Error (TDE)

and the weighted classification accuracy, for validating and measuring the accuracy of behavior

prediction methods in Section 3.5.1.1. Then, we describe the real-world traffic datasets and

simulation environment used for testing our approach and outline the annotation algorithm used

to generate ground-truth labels for aggressive and conservative vehicles in Section 3.5.1.2. We

use the TDE to validate our approach and analyze the results in real-world traffic datasets in

Section 3.5.1.3. Finally, we analyze the weighted accuracy of StylePredict and compare with

state-of-the-art graph classification and behavior prediction methods in Section 3.5.1.4.
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3.5.1.1 Evaluation Metrics

1. Time Deviation Error (TDE) [14]: We use the TDE to validate our approach to modeling

driver behavior using StylePredict. The TDE measures the temporal difference between

the moments when a human identifies a behavior and when that same behavior is modeled

using StylePredict. The TDE is given by the following equation,

TDEstyle =

∣∣∣∣tSLE − E[T ]
f

∣∣∣∣ (3.6)

where E denotes the expected time-stamp of an exhibited behavior in the ground-truth

annotated by a human and f is the frame rate of the video. tSLE is obtained using argmaxt∈∆t SLE(t)

as explained in Section 3.4.2, E[T ] is computed using Algorithm 2, described in the following

section.

2. Weighted Classification Accuracy: To measure the accuracy of StylePredict in predicting

future behaviors, we report a weighted classification accuracy, which is defined as the

fraction of correctly predicted behaviors, weighted by class frequencies .

3.5.1.2 Datasets and Simulation Environment

Our testing environments consist of both simulation and real-world trajectory data. The

simulation includes a top-view of the traffic while the trajectory data has been captured from

front-view vehicle-based sensors. Both settings are the same in the sense that they provide the

same type of information – the coordinates of each vehicle with respect to a fixed frame of

reference (camera center in the case of top-view or the ego-vehicle in the case of front view).
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Algorithm 2: Computing E[T ] for each video in a dataset.
Input : M participants, set of starting frames S = {s1, s2, . . . , sM}, set of ending

frames E = {e1, e2, . . . , eM}
Output: E[T ] for a video

1 s∗ = minS
2 e∗ = maxE
3 Initialize a counter ct = 0 for each frame t ∈ [s∗, e∗]
4 for t ∈ [s∗, e∗] do
5 if t ∈ [sm, em] then
6 ct ← ct + 1
7 end
8 P(T = t) = ct
9 end

10 E[T ] =
∑

t tct, t = s∗, s∗ + 1, . . . , e∗

Simulation Environment We use the Highway-Env simulator [149] developed using PyGame.

The simulator consists of a 2D environment where vehicles are made to drive along a multi-

lane highway using the Bicycle Kinematic Model [150] as the underlying motion model where

the linear acceleration model is based on the Intelligent Driver Model (IDM) [151] and the lane

changing behavior is based on the MOBIL [152] model. We note here that more sophisticated

car models such as the Ackermann steering model may be used. While many popular vehicle

simulators [153, 154] do provide the option of Ackermann modeling, these simulators do not

provide the behavior-rich environment needed for testing our algorithm. Therefore, we restrict

ourselves to [149] that can generate aggressive and conservative driver behaviors. Furthermore,

most simulators that use Ackermann steering do so for modeling safety by preventing slipping of

the tires during tight turns such as U-turns or intersection turns. Since our environment consists

of a straight road with no turns, the Ackermann model holds little advantage over the Bicycle

kinematic model in our case.
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Real-World Datasets We have evaluated StylePredict on traffic data collected from geographically

diverse regions of the world. In particular, we use data collected in Pittsburgh (U.S.A) [11], New

Delhi (India) [65], Beijing (China) [148], and Singapore (private dataset).

The format of the data includes the timestamp, road-agent I.D., road-agent type, and spatial

coordinates obtained via GPS or lidars. We understand that the characteristics of drivers in a

particular city may not mirror those in other cities of the same country. Therefore, all results

presented in this work correspond to the traffic in the specific city where the dataset is recorded.

One of the main issues with these datasets is that they do not contain labels for aggressive

and conservative driving behaviors. Therefore, we obtain ground-truth driver behavior annotations

using Algorithm 2. We directly use the raw trajectory data from these datasets without any pre-

processing or filtering step. For each video, the final ground-truth annotation (or label) is the

expected value of the frame at which the ego-vehicle is most likely to be executing an aggressive

driving style. This is denoted as E[T ]. The goal for any driver behavior prediction model should

be to predict the aggressive style at a time stamp as close to E[T ] as possible. The implied

difference between the two time stamps is measured by the TDE metric.

The TDE metric is computed by Equation 3.6. Here, tSLE = argmaxt∈∆t SLE(t), as

explained in Section 3.4.2. We use Algorithm 2 for computing E[T ]. We recruited M = 35

participants with driving experience in at least two countries out of USA, Singapore, China, and

India. This ensured that participants are “expert” annotators we are able to obtain gold-standard

labels. For each video, every participant was asked to mark the starting and end frames for the

time-period during which a vehicle is observed executing an aggressive maneuver. Participants

were asked to watch out for typical traits such as overspeeding, overtaking, sudden lane-changes,

weaving, driving slowly in single lanes etc. Once the start and end frames are recorded, we
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proceed by using Algorithm 1 as explained in Section V-B(b). Participants were allowed to

scrub back and forth during a video and replay any moment any number of times. Furthermore,

participants were allowed to zoom into a video to inspect styles more closely. We ignore repetitions

and did not observe any control errors.

For each video, we end up with S = {s1, s2, . . . , sM} and E = {e1, e2, . . . , eM} start and

end frames, respectively. We extract the overall start and end frame by finding the minimum

and maximum value in S and E, respectively (lines 1 − 2). We denote these values as s∗ and

e∗. Next, we initialize a distinct counter, ct, for each frame t ∈ [s∗, e∗] (line 3). We increment

a counter ct by 1 if t ∈ [sm, em] (lines 4 − 7). The value of the counter ct is assigned to P(T )

(line 8). The E[T ] of P(T ) can then be computed using the standard definition of expectation of

a discrete probability mass function (line 10). Algorithm 2 is applied separately for each video in

each dataset.

3.5.1.3 Validating StylePredict Using TDE

In Table 3.5, we report the average TDE in seconds (s) in simulation environments. We

used Algorithm 2 to compute the TDE in various simulation settings. First, we varied the traffic

density by increasing the number of vehicles from 5 to 25. As the number of vehicles grows,

the TDE increases, which is to be expected since it is harder for a human participant to spot

different styles in denser traffic resulting in a detection delay and therefore higher TDE. Next,

we analyzed the robustness property by varying the noise parameter ϵ (Equation 3.4). We opted

for ϵ = {10−4, 10−3, 10−2, 10−1} as this range reflects the most common values of error that

may occur in nature. TDE for values lower than 10−4 all converged to 0. We naturally observe
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that the TDE increases with more noise. Finally, we varied the number of lanes from 2 − 8 (1

lane is invalid as lateral styles cannot be observed in a single lane) and observe that the TDE

increases with the number of lanes. This is because, with more space available, it is unclear to

human participants whether a particular maneuver is aggressive or neutral. On the other hand,

overtaking and lane-changing in a 2−lane highway is very evident and easy to spot, resulting in

a lower TDE.

In Table 3.3, we report the average TDE in seconds (s) in different geographical regions

and cultures for the following driving styles: Overspeeding (OS), Overtaking (OT), Sudden

Lane-Changes (SLC), and Weaving (W). The traffic conditions differ significantly due to the

varying cultural norms in different countries such as Singapore, the United States (U.S.), China,

and India. For instance, traffic is more regulated in the U.S. than in Asian countries such as

India or China, where vehicles do not conform to standard rules such as lane-driving. Such

differences contribute to different driving behaviors. Our quantitative results in Table 3.3 and

qualitative results in Figure 3.4 show that our driver behavior modeling algorithm is not affected

by cultural norms. Across all cultures, the average TDE is less than 1 second for every specific

style. Aggressive vehicles are still associated with high centrality values, while conservative

vehicles remain associated with low centrality values.

In Figure 3.4, we show traffic recorded in Singapore (top row), the U.S. (second row), China

(third row), and India (bottom row). In each scenario, the first three columns depict the trajectory

of a vehicle executing a specific style between some time intervals. The last column shows the

corresponding centrality plot. The shaded colored regions overlaid on the graphs are color heat

maps that correspond to P(T ) (line 8, Algorithm 2). The orange dashed line indicates the mean

time frame, E[T ], and the blue dashed line indicates tSLE. The main result can be observed by

103



Figure 3.4: Driver Behavior Modeling in Singapore (top row), U.S. (second row), China (third
row), and India (bottom row): In each row, the first three figures demonstrate the trajectory of
a vehicle executing an aggressive driving style (sudden lane change, overspeeding, weaving, and
overspeeding, respectively), while the fourth figure shows the corresponding closeness or degree
centrality plot. The shaded colored regions overlaid on the graphs in the first two rows are color
heat maps that correspond to P(T ) (line 8, Algorithm 2).

noting the negligible distance between the two dashed lines, i.e. the TDE.

In the first row (corresponding to traffic in Singapore), for instance, our approach accurately

predicts a maximum likelihood of a sudden lane-change by the white sedan at around the 75th

frame (blue dashed line), with an average TDE of 0.88 seconds. Similarly, in the second row

(corresponding to traffic in the U.S.), we precisely predict the maximum likelihood of the vehicle

overspeeding by the vehicle denoted by the red dot at around the 30th frame with a TDE of 0.25
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Table 3.4: We compare the weighted classification accuracy of StylePredict versus supervised
learning-based SOTA methods on the Argoverse dataset [11]. Additionally, we compare the
accuracy of different supervised learning machine learning and deep learning algorithms.

Dataset Method Weighted Accuracy

Argoverse

DANE [155] 65.50%
Cheung et al. [89] 62.50%
StylePredict w. LR 69.90%

StylePredict w. RNN 70.80%
StylePredict w. SVM 75.00%
StylePredict w. MLP 89.90%

seconds. Note that in both cases the TDE (the distance between the blue and orange dashed

vertical lines) is < 1 second.

3.5.1.4 Analyzing Behavior Prediction Using Weighted Accuracy

We compare our approach with Dynamic Attributed Network Embedding (DANE) [155]

and Cheung et al. [89]. Both baselines predict human behavior but differ in their techniques.

DANE also uses a graph-based approach (although not based on centrality) where the main step

consists of computing the spectrum of the Laplacian matrix. Cheung et al., on the other hand,

use linear lasso regression on trajectory features, extracted from raw traffic videos. We present a

comparison using the weighted accuracy with DANE and Cheung et al. in Table 3.4 where we

show an improvement of up to 25%.

StylePredict uses a multi-layer perceptron (MLP) [156] for the classification task. However,

other classifiers in the machine learning literature such as logistic regression (LR), support vector
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Table 3.5: Analysing Simulation Results using TDE: We analyze StylePredict by varying
the traffic density, number of lanes, and the noise parameter ϵ (Equation 3.4). We observe
that TDE increases as these parameters increase in value. We discuss these results in detail
in Section 3.5.1.3.

Density TDE Robustness TDE # Lanes TDE

N = 5 0.08s ϵ = 10−4 0.001s L = 2 0.10s
N = 13 0.15s ϵ = 10−3 0.001s L = 4 0.27s
N = 20 0.56s ϵ = 10−2 0.013s L = 6 0.53s
N = 25 0.79s ϵ = 10−1 0.050s L = 8 0.98s

machines (SVM)), and deep neural networks (RNNs) may be used. In Table 3.4, we compare

the results of replacing the MLP with different classifiers and benchmark the different output

accuracies against the MLP.

3.6 Speeding up the eigenvector centrality

3.6.1 Eigenvalue Algorithm

Our eigenvalue algorithm is built upon the classical RQI algorithm [157] that computes an

eigenvector u that corresponds to an approximation of a given eigenvalue µ of a given matrix.

However, the dominant step of the RQI consists of matrix inversion that generally requiresO(d3)

operations, and so the applicability of RQI to a sequence of dynamic ( or time-varying) matrices

largely depends on two factors — computational complexity of matrix inversion, and the length

of the sequence. For a sequence of dynamic Laplacian matrices, {L1,L2, . . . ,LT}, the main

advantage of the GraphRQI approach is to be able to compute the eigenvector matrix, U , very

efficiently by combining the following optimizations:
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• Recursively exploit sub-k matrix information.

• Exploit the sparsity and symmetry of Laplacian matrices to compute inverse Laplacian

matrices efficiently.

At each time-step t, we compute k eigenvectors of Lt. For each eigenvector, we perform

an iterative process. We begin by initializing a random vector. Next, we iteratively perform the

following update rule until it converges to an eigenvector. For the j th eigenvector, the update rule

is given as:

xnew ← SM

δδ⊤,

 (1− µj)
(

SM(σσ⊤,Lt−1)
)

0

0 1− µj


xold

(3.7)

where SM refers to the Sherman-Morrison formula [158] that computes the inverse of a sum of

a matrix and an outer product, xx⊤, where x ∈ Rd×1 is a sparse vector, µj is the approximate

eigenvalue corresponding to which we compute an eigenvector, uj . Lt−1, Ut−1, and Λt−1 are the

Laplacian, spectrum, and corresponding diagonal eigenvalue matrix of the previous time-step.

δ is a sparse Rd vector where, if the kth entry of δ is denoted by δ(k), then the kth road-agent

observes a new neighbor if δ(k) = 1.

3.6.2 Graph Spectrum Analysis

We compute the spectrum of the graph that describes the topologies of traffic at various

time-step to classify aggressive and conservative behaviors.
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Table 3.6: Analytical Comparison of GraphRQI with classical and state-of-the-art eigenvector
algorithms. In practice, our observed runtime is 10 milliseconds which is a speed of up to 2.348
seconds over prior works for calculating the spectrums of dynamic traffic graph.

Metric SVD IncrementalSVD [159] RestartSVD [160] TruncatedSVD CG [161] GraphRQI

Time O(d3) O(|Lt|r) O
(
|f(Lt)|+ |g(Lt)|k + |g(Lt)∅|k2

)
O(dk2) O(d

√
κ) O(|L−1

t |k)

Space O(d2) O(2 dr) - O(dk) O(d) O(d)

In Table 3.6, we compare the time and space complexities of several state-of-the-art eigenvalue

algorithms. For each of these methods, the input is a Laplacian matrix. We now state the

theoretical guarantees for the running time and storage cost of our eigenvalue algorithm in the

following theorems. All proofs are provided in the supplementary material2.

Theorem 3.6.1. Given a sequence, {L1,L2, . . . ,LT}, our eigenvalue algorithm for Lt converges

cubically with a running time complexity of O(|L−1

t |k) for each Laplacian at time-step t, where

k ≪ dim(Lt), with a storage cost of O(d).

Proof. Our eigenvalue algorithm is motivated from the Rayleigh Quotient Iteration algorithm [157]

(RQI). In RQI, to compute the eigenvector of any given matrix, A, corresponding to an approximation

to a given eigenvalue, say η, the standard update formula for the RQI method is given as xnew =

(A− ηI)−1xold, where xold ∈ Rd×1 is initialized as a random vector. The efficiency of the update

step depends on the efficiency of computing (A − ηI)−1. In GraphRQI, denoting m = |L−1

t |

as the number of non-zero elements of L−1

t , and d = dimLt, for each of the k eigenvectors, the

iterative update formula is: xnew = (Lt− µI)−1xold. At first glance, it seems as if this update can

be performed by applying the Sherman-Morrison (SM) update on the following decomposition:

(Lt − µI)−1 = [Lt − µ (I1 + I2 + . . .+ Id)]
−1 (3.8)

2https://gamma.umd.edu/graphrqi
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That is, by expressing µI as a sum of d rank-1 matrices, Ij , where each Ij is a diagonal matrix

with I(j, j) = 1 and 0 elsewhere. However, SM on Lt in the above equation requiresO(d3) flops

(d2 flops for each SM operation applied d times. Therefore, we look towards a better solution.

Observe that we can decompose Lt = L′
t + rr⊤, where L′

t =

 Lr
t−1 0

0 1

 and rr⊤ is

an outer product of rank 2 with r ∈ Rd×2 is a vector of 1’s and 0’s, where r(j) = 1 represents

the addition of a new neighbor by the j th road-agent. Lr
t−1 denotes the laplacian matrix at the

previous time-step plus a diagonal update on account of observing r new neighbors at the current

time-step (This is further explained in lemma IV.2). So,

(Lt − µI)−1 = (L′

t + rr⊤ − µI)−1,

where rr⊤ is a sum of two rank-1 matrices. Therefore, if we can compute (L′
t − µI)−1 in less

than or equal to O(m), we are done. It is easy to verify that for any matrix A,

 A 0

0 1


−1

=

 A−1 0

0 1

 .

Therefore,

(
L′

t

)−1

=

 Lr
t−1 0

0 1


−1

=


(
Lr

t−1

)−1
0

0 1


and thus,

(L′

t − µI)−1 =


(
Lr

t−1 − µI
)−1

0

0 (1− µ)

 .
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We can now use Lemma IV.2 to show that computing the inverse of the laplacian,
(
Lr

t−1 − µI
)

can be performed in O(m). The entire update can be summarized as follows,

xnew ← SM

rr⊤,

 (1− µj)
(

SM(σσ⊤,Lt−1)
)

0

0 1− µj


xold

(3.9)

σσ⊤ = Σ.

At each time-step, we add a new column and a row to the laplacian matrix of the previous

time-step. Therefore, the space complexity grows linearly with the dimension of the laplacian

matrix. Finally, the cubic convergence follows from the classic RQI algorithm [157].

Informally, Theorem 3.6.1 states that for a Laplacian matrix Lt, the compuatation for each

eigenvector requires O(|L−1

t |) operations, which is fewer than quadratic runtime algorithms that

require O(d2) operations, since O(|L−1

t |) ≪ d2. For a random intial iterate, x, our eigenvalue

algorithm converges cubically, that is, at each iteration, |xnew − xold| = O(ϵ3).

Note that some eigenvalue algorithms make several assumptions in terms of running time

complexity analysis. For example, the conjugate gradient method [161] requiresO(d
√
κ) operations.

The success of conjugate gradient assumes the matrix is either well-conditioned or pre-conditioned

by a preconditioning matrix, for which the running time becomesO(d1.5). IncrementalSVD [159]

requires the matrix to be low-rank. In the general case, IncrementalSVD requiresO(|Lt|d) which

becomes O(|Lt|r) for low rank matrices with rank r. Our eigenvalue algorithm makes no such
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assumptions. We now state a lemma, related to our Laplacian matrix, that is used to prove

Theorem 3.6.1.

Lemma 3.6.1. The complexity of computing the inverse of a Laplacian at time-step t, L−1

t , grows

as O(|L−1

t |).

Proof. Note that Lr
t−1 ̸= Lt−1 =⇒

(
Lr

t−1

)−1 ̸= L−1

t−1 since the diagonal elements (the degree

of each node (vehicle)) are now different due the entry of new nodes at current time t. Let the

number of new nodes be r. For example, if at the current time-step, 10 cars from the previous

time-step observed a new neighbor, then r = 10. Since we heuristically set the time-step and the

KNN parameters, we constrain each vehicle observing at most 1 new neighbor for each time-step.

Therefore,

Lr
t−1 = Lt−1 + Σ,

where Σ = I1+I2+ . . .+Ir is a low-rank matrix with rank r ≪ d, where we treat r as a constant

due to our earlier assumption. Each Ij is a diagonal matrix with I(j, j) = 1 and 0 elsewhere.

Hence,

(
Lr

t−1 − µI
)
= Lt−1 − µI + Σ(

Lr
t−1 − µI

)−1
= (Lt−1 − µI + I1 + I2 + . . .+ Ir)

−1 ,

(3.10)

where (Lt−1 − µI)−1 = Ut−1(Λ− µI)−1U⊤
t−1. Using the Sherman-Morrison formula r times on

(Lt−1 − µI), we get
(
Lr

t−1 − µI
)−1 in O(m).
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The current best-case running-time complexity for inverting a d × d) matrix is O(d2.373)

using a variation of the Coppersmith–Winograd algorithm [162]. We show that we can achieve

an even lower runtime complexity for inverting our matrix in O(|L−1

t |), where O(|L−1

t |)≪ d2.

3.6.3 Behavior Classification

The graphs are constructed from the road-agent trajectories as described in Section 3.3. We

then pass the spectrum of the traffic graphs as inputs to train a Multi-Layer Perceptron(MLP) [156]

for behavior classification. The MLP is parametrized by a weight vector, w. Our goal is to learn

the optimal parameters that minimize the squared error loss,

f(w) =
1

2

d∑
k=1

(
w⊤yk − zk

)2
(3.11)

where d is the number of vehicles, yk is the kth row of the eigenvector matrix, U and corresponds

to the feature vector of the kth vehicle. The corresponding label of the kth vehicle is denoted as

zk. In our experiments, d is around 100 for each traffic video.

3.6.4 Running Time Evaluation

Table 3.7: Ablation study on TRAF and ARGO datasets. We perform a running time analysis
of several eigenvalue algorithms. All experiments were performed on an 8 Core Intel Xeon(R)
W2123 CPU clocked at 3.60GHz with 32 GB RAM to compute the eigenvectors for a d×d matrix,
where d is the number of road-agents. We also compare the accuracy of different supervised
learning machine learning models and report the weighted classification accuracy.

Eigenvalue Algorithms (Runtime) GraphRQI + ML model (Accuracy)

Dataset SVD IncrementalSVD [159] RestartSVD [160] TruncatedSVD CG GraphRQI LogReg SVM LSTM GraphRQI

TRAF 34.2ms 67ms 1,644ms 37ms 2,365ms 16.9ms 69.1% 74.2% 71.4% 78.3%
ARGO 16.9ms 45ms 1,091ms 35ms 2,328ms 10ms 69.9% 75.0% 70.8% 89.9%

For fair evaluation, we use the same programming platform (Python 3.7) and the same
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processor for running all the different methods (8 Core Intel Xeon(R) W2123 CPU clocked at

3.60GHz with 32 GB RAM). We empirically validate the theoretical guarantees of Theorem 3.6.1

by replacing our eigenvalue algorithm with several standard eigenvector algorithms, Singular

Value Decomposition (SVD), Incremental SVD[159], Restart SVD [160], Truncated SVD, and

the state-of-the-art iterative method Conjugate Gradient Descent [161]. For SVD, and TruncatedSVD,

we directly used the library routine implemented in the SCIPY package, and for RestartSVD, we

used the authors’ original implementation. In practice, our method outperforms all these standard

methods for Driver Behavior Classification. These results are shown in Table 3.7.

3.7 Conclusions, Limitations, and Future Work

We have presented a new approach for driver behavior modeling that uses the idea of vertex

centrality from computational graph theory to explicitly model the behavior of human drivers in

realtime traffic using only the trajectories of the vehicles in the global coordinate frame. Our

approach is robust, general, and can be integrated with existing navigation methods to perform

behaviorally-guided navigation.

There are several interesting directions of future work. Our work is currently limited

to straight roads. It would be useful to apply our approach to additional scenarios, including

roundabouts, intersections, and merging. Another aspect of future work includes extending our

approach for decision-making. While our current approach stops at modeling the driver behavior,

a natural extension of our work includes combining our algorithm with motion and decision

planning techniques for end-to-end self-driving.
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Chapter 4: Behaviorally Compliant Planning in Human Environments

4.1 Overview

The navigation problem for autonomous vehicles (AVs) corresponds to computing the

optimal actions that enable the AV to begin from starting point A and reach destination B via

a smooth trajectory while avoiding collisions with dynamic obstacles or traffic agents. A key

aspect of navigation is safety because the AVs are expected to keep a safe distance from other

vehicles while also making driving more fuel- and time-efficient. Navigation is a central task in

autonomous driving, and navigation problems have also been studied extensively in the contexts

of motion planning and mobile robots.

There is considerable research on designing prediction and navigation algorithms for autonomous

driving, but these algorithms are currently primarily deployed in specific driving scenarios [163]

or low-density traffic [164]. Some of these algorithms are intentionally designed to excel in

unique cases [165], while others are inevitably limited because they are based on data-driven

methods trained on selected datasets with specific driving conditions [67]. Modern prediction and

navigation algorithms must be able to handle various driving scenarios to comply with real-world

situations. One of these scenarios is dense traffic, which is commonly observed in city centers

or in the vicinity of frequent or popular destinations. There are many challenges in terms of

handling dense traffic environments, including computing safe and collision-free trajectories, and
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modeling the interactions between the traffic-agents. Some key issues are related to evaluating the

driving behaviors of human drivers and ensuring that the driving pattern of the AV is consistent

with traffic norms. It has been observed that current AVs tend to drive hyper-cautiously or in

ways that can frustrate other human drivers [118], potentially leading to fender-benders.

Moreover, it is important to handle the unpredictability or aggressive nature of human

drivers. For example, human drivers may act irrationally and move in front of other vehicles by

suddenly changing lanes or aggressively overtaking. In 2016, Google’s self-driving car had a

collision with an oncoming bus during a lane change [123]. In this case, the ego-vehicle assumed

that the bus driver was going to yield; instead, the bus driver accelerated. Overall, we need better

prediction and navigation methods that can account for such behaviors and more diverse datasets

enriched with these behaviors so that learning-based methods can produce results that are more

applicable to real-world scenarios.

There is considerable work on classifying driver behaviors or styles in traffic psychology [75,

166, 167]. In most cases, driving style is defined with respect to either aggressiveness [168] or

fuel consumption [169]. Many recent methods have been proposed to classify driving behaviors

based on past trajectories [14, 79, 81] and use them for predicting the vehicle’s future trajectory [104,

138]. On the other hand, recent techniques for prediction and navigation have been based on

reinforcement learning, and they tend to learn optimal policies with suitable rewards for collision

handling, lane changing, and traffic rule adherence. Our goal is to extend these learning methods

to account for driver behaviors.
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Table 4.1: Summary of prior work: We list methods for navigating unsignaled intersections,
roundabouts, and merging based on multi-agent planning (MAP), action space (AS), and
incentive compatibility (IC). ✓∗ corresponding to a method indicates that optimality does not
hold for human drivers with varying social preferences.

Approach Methods Optimality MAP AS IC Real world

DRL

Capasso et al. [170] ✗ ✓ C - ✗

Isele et al. [171] ✗ ✗ D - ✗

Kai et al. [172] ✗ ✗ D - ✓

Liu et al. [173] ✗ ✗ D - ✗

Game Theory
Li et al. [174] ✗ ✓ C - ✗

Tian et al. [175] ✗ ✓ C - ✗

RNN Roh et al. [176] ✗ ✓ C - ✗

Auctions

FIFO ✗ ✓ D - ✗

Buckman et al. [177] ✗ ✓ D - ✗

Vasirani and Ossowski [178] ✗ ✓ D ✗ ✗

Censi et al. [179] ✗ ✓ D ✗ ✗

Lin and Jabari [180] ✗ ✓ D ✗ ✗

Carlino et al. [181] ✓∗ ✓ D ✓ ✗

Rey et al. [182] ✓∗ ✓ D ✓ ✗

Sayin et al. [183] ✓∗ ✓ D ✓ ✗

This work ✓ ✓ D ✓ ✓
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4.2 Prior Work

In Table 4.1, we compare our approach with the current state-of-the-art in navigating

unsignaled intersections, roundabouts, and merging scenarios on the basis of optimality guarantees,

multi-agent versus single-agent planning (MAP), action space (AS), incentive compatibility (IC),

and real-world applicability.

4.2.1 Deep reinforcement learning (DRL)

DRL-based methods [114, 170, 171, 172, 173] learn a navigation policy using the notion

of expected reward received by an agent from taking a particular action in a particular state.

This policy is learned from trajectories obtained via traffic simulators using Q-learning and is

very hard as well as expensive to train. In practice, DRL-based planning methods often do not

generalize well to different environments and it is hard to provide any guarantees. Furthermore,

these methods discussed so far are intended for single-agent navigation. However, Capasso et

al. [170] use additional signals such as traffic signs (stop, yield, none) to regulate the movement

and actions of multiple agents. In terms of real world applications, Kai et al. [172] learn a unified

policy for multiple tasks and also demonstrate their approach on a real robot.

4.2.2 Game theory

Game-theoretic approaches [174, 175], by their very nature, perform multi-agent planning.

However, these methods restrict the actions and objectives of active agents. For example, Li et

al. [174] formulate traffic intersection planning as a stackelberg leader-follower game in which

one agent is assumed to act first (leader) and the other agent (follower) will react accordingly.
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The leader is decided by a first-in first-out (FIFO) principle. Tian et al. [175] use a recursive

k−level game-theoretic approach in which complex strategies for agents at each level are derived

from previous levels. However, all agents except the ego-agent at the first level are assumed to be

static.

4.2.3 Recurrent neural networks (RNNs)

Deep learning-based methods [176] train a recurrent neural network for trajectory prediction

and are also susceptible to complex environments or different behavior of drivers. In contrast to

all of the above, GamePlan do not require an objective function; instead, successful application

of this approach requires minimizing a loss function that depends on the distribution of the data.

4.2.4 Auctions

A very basic principle to regulate traffic at intersections is the FIFO principle which basically

states that agents move in the order in which they arrive at the intersection. The main concern

with such an approach is that aggressive or impatient drivers are incentivised to break form and

move out of turn. Additionally, in situations when drivers arrive at an intersection at the same

time, oftentimes deadlocks occur as a result of ensuing confusion among the drivers. Therefore,

FIFO is not guaranteed to be optimal. Buckman et al. [177] integrate a driver behavior model [75]

within the basic FIFO framework to incorporate human social preference to address some of the

above limitations of FIFO. But the model does not estimate the social preferences in real time;

instead, it chooses a fixed preference parameter for each agent.

Vasirani and Ossowski [178] proposed a combinatorial auction for assigning turns at intersections.
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Censi et al. [179] introduced a karma-based auction and Lin and Jabari [180] proposed a mechanism

for pricing intersection priority based on transferable utility games. However, these auctions are

not incentive-compatible. Incentive-compatible auctions such as Sayin et al. [183] propose a

mechanism in which agents are assigned turns based on their distance from the intersection and

the number of passengers in the vehicle. Carlino et al. [181] and Rey et al. [182] propose a

similar mechanism but use a monetary-based bidding strategy. These methods are, however,

biased towards wealthier agents disregarding human preference, limiting their use in the real-

world applications.

4.3 Planning at Unsignaled Intersections, Roundabouts, and Merging

In this section, we begin by defining several key terms and stating the problem statement

and assumptions made in our approach (Section 4.3.1). We briefly summarize the CMetric

algorithm [14] for behavior modeling and prediction that we use in GamePlan in Section 4.3.2.

Finally, we provide an overview on sponsored search auctions [184] in Section 4.3.3 which forms

the basis of the auction used in GamePlan.

4.3.1 Problem Formulation

We frame navigating unsignaled intersections, roundabouts, and merging scenarios as a

multi-agent game-theoretic non-sequential decision-making problem. We consider three unsignaled

and uncontrolled traffic scenarios or environments – intersections, merging, and roundabouts with

multiple non-communicating human drivers and AVs. In each of the three scenarios, we refer to

a traffic-agent as “active” if they participate in the decision-making process for navigating the
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scenario. For example, the lead traffic-agents in each service lane of a four-way intersection are

active vehicles, while agents waiting in line behind their respective lead vehicle are non-active

agents. We denote the active agents as a set A = {a1, a2, . . . an} where each ai participates in

the GamePlan auction. The action space for each active agent is a discrete set consisting of finite

acceleration values. The state space consists of the position xt ∈ X and velocity vt of each agent

measured in a global coordinate frame (e.g. GPS coordinates or 3D points obtained using GPS

and lidars).

Problem Statement: To prevent collisions and deadlocks, it is necessary to determine the order

in which agents take turns to navigate the traffic scenario [178, 180, 181, 183, 185, 186]. Thus,

the goal of this paper is to compute an optimal turn-based ordering which is defined as follows,

There may be multiple turn-based orderings that may apply in a given scenario. However, many

of them could be sub-optimal and may result in collisions and deadlocks. An optimal turn-based

ordering prevents collisions and resolves deadlock conflicts.

We are now ready to formally state our goal in this paper.

Assumptions: We assume agents (AVs and human drivers) are rational and strive to maximize

their own utility which can be independent of other agents. Further, agents are non-ideal (in

contrast to ideal agents in [13, 187, 188]) in that they do not have access to the actions, objectives,

or utility functions of other agents. We make no assumptions on the motion or dynamics of traffic-

agents. The state-space is fully observable by all agents (active and non-active). We assume the

availability of a behavior modeling and prediction algorithm such as CMetric [14] that models

driving behavior as being either aggressive or conservative. This information is provided to an

auction program. We assume that agents navigate through the environment one at a time and do

not use traffic signals, employ right-of-way rules, or communicate with other agents.
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4.3.2 Modeling human driver behavior

Each active agent is characterized by a behavior profile, ζi, which can be obtained via

recent behavior modeling algorithms such as the SVO [75] and CMetric [14]. In this work,

we use CMetric to quantify the aggressiveness or conservativeness of a traffic-agent. This model

provides an objective measure of aggressiveness based on driving maneuvers such as overspeeding,

overtaking and so on. We briefly summarize the CMetric algorithm. To determine if an agent is

aggressive or conservative, the algorithm begins by reading the trajectories of the ego-agent and

surrounding vehicles via cameras or lidars during any time-period ∆t. The trajectory of an agent

is represented by

Ξ∆t = {xt | t = t0, t1, . . . , t0 +∆t}.

In CMetric, these trajectories are represented via weighted undirected graphs G = (V , E) in

which the vertices denote the positions for each agent and the edges correspond to the distances

between agents. The algorithm proceeds by using these graphs to model the likelihood and

intensity of driving behavior indicators like overspeeding, overtaking, sudden “zig-zagging” and

lane-changes via centrality functions [124] represented by Φ : G → R. These behavior indicators

determine whether an agent is aggressive or conservative. The behavior profile for ai is denoted

by ζi and is computed as,

ζi(Ξ∆t) = Φi(G)[t], (4.1)

where G(V , E) is constructed using Ξ∆t. The original definition of centrality, however, does not
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take into account temporal memory since the the centrality value changes with time. In order

to model driver behavior during a time period ∆T , we must keep track of all the neighbors the

vehicle has interacted with during that period. Φ(G)[t] is defined as follows,

Definition 4.3.1. Temporal memory for Φ(G): In a connected traffic-graph G at time t with

associated adjacency matrix At, let Ni(t) = {vj ∈ V(t), At(i, j) ̸= 0, νj ≤ νi} denote the set of

vehicles in the neighborhood of the ith vehicle with radius µ, then the discrete degree centrality

function of the ith vehicle at time t is defined as,

Φi[t] = Φi ({vj ∈ Ni(t)}) + Φi[t− 1]

such that (vi, vj) ̸∈ E(τ), τ = 0, . . . , t− 1

(4.2)

where |·| denotes the cardinality of a set and νi, νj denote the velocities of the ith and j th vehicles,

respectively.

In this work, we use CMetric to compute the behavior profiles of traffic-agents, represented by a

n−dimensional vector ζ, that is provided to the auction program.

4.3.3 Sponsored search auctions (SSAs)

Sponsored search auctions (SSAs) are a game-theoretic mechanism that are used extensively

in internet search engines for the purpose of internet advertising [184]. In an SSA, there are K

items to be allocated among n agents. Each agent ai has a private valuation vi and submits a

bid bi to receive at most one item of value αi. A strategy is defined as an n dimensional vector,

b = (bi ∪ b−i), representing the bids made by every agent. b−i) denotes the bids made by all

agents except ai. Furthermore, let b1 > b2 > . . . > bK and α1 > α2 > . . . > αK . The
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allocation rule is that the agent with the ith highest bid is allocated the ith most valuable item, αi.

The utility ui [184] incurred by ai is given as follows,

ui(bi) = viαi −
k∑

j=i

bj+1 (αj −αj+1) . (4.3)

In the equation above, the quantity on the left represents the total utility for ai which is equal to

value of the allocated goods αi minus a payment term. The first term on the right is the value of

the item obtained by ai. The second term on the right is the payment made by ai as a function

of bids bj>i and their allocated item values αj . We refer the reader to Chapter 3 in [184] for a

derivation and detailed analysis of Equation 4.3.

In our approach, we re-cast Equation 4.3 through the lens of a human driver. More specifically,

the term viαi denotes the time reward gained by driver ai by moving on her turn. The payment

term represents a notion of risk [13] associated with moving on that turn. It follows that an

allocation of a conservative agent to a later turn (smaller α) also presents the lowest risk and

vice-versa.

Choosing an optimal ordering, in which agents navigate unsignaled and uncontrolled traffic

scenarios, can be cast as an allocation problem where the goal is to allocate each agent, ai, a

position in the optimal turn-based ordering (σi). Deciding such an allocation depends heavily

on the incentives of the agents which, in the case of non-ideal agents, is a hard problem. Prior

planning methods model non-ideal agents by estimating the objective functions of the agents

from noisy data using statistical methods [122, 175, 189] or by assuming a fixed behavior for

surrounding agents (static or constant velocity) [174, 175]. These methods are not guaranteed

to be optimal and result in collisions and deadlocks in unsignaled traffic scenarios, as shown in
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Table 3.3.

Auction-based methods, on the other hand, model non-ideal agents in unsignaled traffic

scenarios effectively albeit using a monetary-based bidding strategy that is not realizable in real-

world scenarios [178, 180, 181, 183]. Our formulation, GamePlan, differs in this regard wherein

we use a novel online driving behavior-based bidding strategy using the CMetric model [14]. In

the rest of this section, we present the main algorithm followed by an analysis of its optimality.

4.3.4 Algorithm

Our goal is to solve Problem 3.2.1 and compute the optimal turn-based ordering σOPT =

σ1σ2 . . .σn, which shall determine the order in which agents will navigate unsignaled intersections,

roundabouts, or merging. Our GamePlan algorithm proceeds in two stages: the behavior modeling

phase and the planning phase.

During the behavior modeling phase, we use CMetric to compute the behavior profiles

ζi for every agent (active or non-active) using Equation 4.1 during an observation period of 5

seconds. However, alternative behavior models such as SVO [75] may be used. This is followed

by the planning phase which runs a sponsored search auction (SSA) scheme. In the auction

scheme, each active agent has a private valuation vi. Each agent ai submits a bid bi ∈ R≥0 and

obtains a time reward of 1
ti

for completing the navigation task in ti seconds, measured from the

time the first agent begins to move. Note that moving earlier corresponds to a higher time reward.

To summarize the algorithm, the agent with the highest bid i.e. most aggressive behavior

is allocated the highest priority and is allowed to navigate the scenario first, followed by the

second-most aggressive, and so on. Therefore,
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(σOPT)i = j⋆, (4.4)

where j⋆ is the index of ζj⋆ in the sequence ζ1 > ζ2 > . . . > ζj⋆ > . . . > ζK .

4.3.5 Game-theoretic optimality and efficiency analysis

In this section, we show that our approach is incentive compatible, welfare maximizing,

and can be computed in polynomial time.

4.3.5.1 Incentive compatibility

The goal of any optimal auction should be such that that no agent is incentivised to “cheat”

or, more simply, when the dominant strategy for each agent is to bid their true valuation vi. We

define a dominant strategy as,

Definition 4.3.2. Dominant Strategy: Bidding bi is a dominant strategy for ai if ui(bi, b−i) >

ui(b̄i, b−i) for all b̄i ̸= bi.

Ensuring fair allocations is crucial for auctions applied to traffic scenarios since unfair allocations

could result in collisions and deadlocks. Incentivising traffic-agents to bid their true value as a

dominant strategy is known as incentive compatibility [181, 182, 183, 184] which is defined as

follows,

Definition 4.3.3. Incentive Compatibility: An auction is said to be incentive compatible if for

each agent, bidding bi = vi is a dominant strategy.

We want to show that σOPT is incentive compatible, maximizes welfare, and can be computed
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in polynomial time. Incentive compatibility ensures that the best action

In our formulation, we set the true valuation (vi) for a traffic-agent to be equal to its behavior

profile ζi. Hence,

vi = ζi.

And so to show that our auction is incentive-compatible, we show the following, We verify these

properties through the following analysis.

Theorem 4.3.1. For each active agent ai ∈ A at a traffic intersection, roundabout, or during

merging, bidding bi = ζi is the dominant strategy.

We defer the proof to the supplementary material.

Proof. Recall that the kth highest bidder (kth most aggressive agent) receives a time reward αk =

1
tk

. Then according to Equation 4.3, the overall utility achieved by the kth most aggressive traffic-

agent is,

uk(bk) = ζk

(
1

tk

)
−

K∑
j=k

bj+1

(
1

tj
− 1

tj+1

)
.

We sort the K highest bids received in the following order: b1 > b2 > . . . > bK . In order to

show that bk = ζk is the dominant strategy, it is sufficient to show that over-bidding (b̄k > ζk)

and under-bidding (b̄k < ζk) both result in a lower utility than uk. We proceed by analyzing both

cases.

Case 1: Over-bidding (b̄k = bk−1 > bk): In this case, the new utility for ak is ūk(b̄k) which is

126



equal to,

ζk

(
1

tk−1

)
− bk

(
1

tk−1

− 1

tk

)
−

K∑
j=k

bj+1

(
1

tj
− 1

tj+1

)
. (4.5)

From Equation 4.3 and Equation 4.5, the net increase in utility is,

ūk(b̄k)− uk(bk) = (ζk − bk)

(
1

tk−1

− 1

tk

)
. (4.6)

Therefore, bidding b̄k > ζk =⇒ ūk(b̄k) − uk(bk) < 0 since tk−1 < tk. In other words,

overbidding yields negative utility for agent ak.

Case 2: Under-bidding (b̄k = bk+1 < bi): The new utility in this case is given by,

ūk(ζ̄k) = ζk

(
1

tk+1

)
−

K∑
j=k+1

bj+1

(
1

tj
− 1

tj+1

)
(4.7)

From Equation 4.3 and Equation 4.7, the net decrease in utility is,

uk(bk)− ūk(b̄k) = (ζk + bk+1)

(
1

tk
− 1

tk+1

)
. (4.8)

Note that Equation 4.8 is always positive since ζ, bk+1 > 0 and tk < tk+1. This implies that

under-bidding always results in a decrease in utility as well.
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4.3.5.2 Welfare maximization

The next desired property in an optimal auction is welfare maximization [183, 184] which

maximizes the total utility earned by every active agent.

Theorem 4.3.2. Welfare maximization: Social welfare of an auction is defined as
∑

i viαi.

Welfare maximization involves finding the strategy b that maximizes
∑

i viαi. For each active

agent ai ∈ A, bidding bi = ζi maximizes social welfare.

We defer the proof to the supplementary material.

Proof. Our proof is based on induction. We begin with the base case with the most aggressive

agent (highest bidder). Recall that after sorting, we have agents in decreasing order of aggressiveness

i.e. ζ1 > ζ2 > . . . > ζn and 1
t1

> 1
t2

> . . . > 1
tk

. Therefore, we have that ζ1
t1

is maximum. Next,

consider the hypothesis that the sum
∑k

j=1
ζj
tj

is maximum up to the kth highest bidder. Then the

inductive step is to prove that
∑k+1

j=1
ζj
tj

is maximum. Observe that,

k+1∑
j=1

(
ζj
tj

)
=

k∑
j=1

(
ζj
tj

)
+

ζk+1

tk+1

Note that the first term on the RHS is maximum from hypothesis. Then,

ζk+1 > ζk+2 > ζk+3 > . . . > ζn

and

1

tk+1

>
1

tk+2

>
1

tk+3

> . . . >
1

tK

(4.9)
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implies that ζk+1

tk+1
is maximum.

4.3.5.3 Polynomial time computation

Finally, in terms of planning and auction design [184], it is important to show that the

underlying auction is computationally efficient and can handle a large number of agents. We

show that our approach runs in polynomial time via the following theorem,

Theorem 4.3.3. Polynomial Runtime: GamePlan runs in polynomial time.

Proof. The main computation in our algorithm is dominated by sorting the agent’s CMetric

values; it is known that sorting algorithms run in polynomial time [190].

4.3.6 Using σOPT for collision prevention and deadlock resolution

We identify a deadlock as a situation when two or more active traffic-agents remain stationary

for an extended period of time due to the uncertainty in the actions of other active traffic-agents.

Deadlocks may arise in traffic scenarios consisting of multiple conservative and/or aggressive

agents and are resolved when one of the agents opts to move based on some heuristic. Via

σOPT, agents automatically know when each agent is supposed to move thereby eliminating any

confusion or uncertainty in the actions of other agents.

GamePlan can also prevent collisions in a similar manner. The number of collisions, or

the likelihood thereof, increases when two or more aggressive agents decide to MOVE first,

simultaneously, despite the uncertainty in the actions of the other agents. σOPT can break ties

between multiple aggressive drivers since ζi ̸= ζj for i, j ∈ [1, n]. Using the turn-based ordering
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determined by σOPT, less aggressive agents can let more aggressive agents pass first.

4.3.7 Conclusion, Limitations, and Future Work

We present a novel multi-agent game-theoretic planning algorithm called GamePlan in

intersections, roundabouts, and during merging with human drivers and autonomous vehicles.

GamePlan uses the behavior profiles of all traffic-agents, combines with sponsored search auctions,

and produces an optimal turn-based ordering. We show that GamePlan is incentive compatible,

welfare maximizing, and operates in polynomial time. We reduce the number of collisions and

deadlocks by at least 10 − 20% on average over prior methods. Moreover, we demonstrate

GamePlan in two merging scenarios involving real human drivers and show that our game-

theoretic model is applicable in real-world scenarios.

There are a few limitations of our work. Our approach is primarily designed for moderately

to highly dense traffic as CMetric [14] may not work as well in sparse traffic conditions. In such

cases, data-driven behavior models such as SVO [75] may be used. There are many interesting

directions for future work. For example, our method currently does not plan beyond computing

turn-based orderings, i.e. local navigation. Next steps may include integrating GamePlan with

global motion planning methods to achieve an end-to-end navigation approach for non-communicating

multi-agent traffic scenarios. In addition, we have currently demonstrated real world application

with 2 − 3 vehicles. In the future, we plan to conduct further evaluation in denser and more

comprehensive real world settings with more vehicles.
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4.4 Risk-Aware Planning

Risk-aware planning involves sequential decision-making in dynamic and uncertain environments,

where agents must consider the risks associated with their actions and corresponding costs and

rewards [191]. Risk-seeking agents are willing to take lower expected reward in exchange for a

higher reward variance (more risk), while risk-averse agents are willing to take a lower expected

reward in exchange for lower reward variance (less risk). Agents that are risk-averse or risk-

seeking are collectively referred to as risk-aware. Human drivers are risk-aware by nature [192,

193, 194]. For example, aggressive drivers frequently speed, overtake, and perform sharp cut-

ins, whereas conservative drivers drive more cautiously. To navigate successfully among human

drivers, autonomous vehicles (AVs) must identify the risk preferences of human drivers online,

and predict and plan future motion with the risk preferences of all agents in mind, including the

AV’s own risk preferences.

The most common risk measures utilized in risk-sensitive planning are entropic risk [195]

and conditional value at risk (CVaR) [196]. A popular approach for risk-aware planning in multi-

agent traffic scenarios is to model risk-aware agent interactions via dynamic games [13] wherein

agents act while considering their impact on other agents as well as the intentions of the other

agents. In [13], the authors compute the Nash equilibrium solution of the game by iteratively

solving a set of LEQ equations [197, 198]. The main benefits of this approach compared to prior

risk-aware planning methods include improved time-to-goal and, more importantly, generation

of emergent behaviors. For instance, risk-averse agents learn to maintain a greater distance from

risk-seeking agents and generally yield more frequently to risk-seeking agents at intersections, at

roundabouts, and during merging.
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Despite its performance and benefits, the main drawback of the approach proposed by [13]

is that it does not model the risk tolerance of human drivers, as it assumes the AV knows the

synthetically chosen risk tolerances for all other driving agents). Extending game-theoretic risk-

aware planning to human drivers will allow AVs to act more confidently around human drivers

and reduce time-to-goal via more efficient and safer navigation. Estimating the risk tolerances of

human drivers, however, requires computationally tractable human driver behavior models that

can characterize drivers.

Some of the state-of-the-art approaches for modeling human driver behavior [75, 119,

131] are data-driven and require a large volume of clean training data. These methods classify

behaviors as aggressive and conservative [119] or selfish and altruistic [75]. In contrast, deterministic

models [14] do not require data and assign a real-valued score to each agent to quantify its

behavior. These approaches can be integrated with risk-aware planning frameworks to incorporate

planning for human agents.

Main Contributions:

We propose a novel approach for risk-aware planning in multi-agent traffic scenarios that

takes into account human driver behaviors. We extend an existing risk-aware planner [13] by

incorporating interactions with human drivers using a data-driven human driver behavior model [14].

We derive a linear mapping between the driver behavior and risk tolerance, which serves as the

key component of our proposed approach.

To evaluate our approach, we validate the mapping between driver behavior and risk tolerance

by measuring the number of lane changes, and test the accuracy of this model via K-Means

clustering. Our results show that aggressive human driving results in more frequent lane changing.

We confirm that the final trajectories obtained from the risk-aware planner generate emergent
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behaviors. We measure the yield % and minimum distance between human drivers at intersections,

at roundabouts, and during merging where we observe that conservative drivers generally yield

to aggressive drivers while maintaining a greater distance from them. We also conduct a user

study in which we show that users are able to distinguish between aggressive and conservative

trajectories generated by the planner.

Finally, we compare our modified risk-aware planner with existing planners that do not

model human drivers and show that modeling human drivers results in safer navigation. Specifically, [13]

(and similar planners) assign a fixed neutral risk tolerance to human drivers and the ego-vehicle

generates to the human driver accordingly. However, when the human driver is, in fact, either

aggressive or conservative, then we show that the error (absolute value of minimum relative

distance between the agents) increases by 10%.

4.4.1 Related Work

4.4.1.1 Risk-Aware Planning

Risk sensitivity-based planning [199, 200, 201, 202, 203] considers the risk associated with

the actions of agents to avoid unsafe situations. The most common risk measures utilized in risk-

sensitive planning are entropic risk [195] and conditional value at risk (CVaR) [196]. Entropic

risk has been widely used in optimal control due to its simplicity and tractability [204], while

CVaR has recently been incorporated in trajectory optimization due to its interpretability [201].

Risk-aware planning has been used extensively in autonomous underwater vehicles [205], ground

vehicles [206, 207], and unmanned aerial vehicles (UAVs) [208]. While the CVaR risk model has

been used in the latter two cases, [205] used the entropic measure of risk. In addition to CVaR
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and the entropic models, several other models are also used in various applications such as the

dynamic risk density function for collision avoidance [209] and semantic maps for simultaneous

localization and mapping (SLAM) [210, 211]

4.4.1.2 Data-Driven Methods for Driver Behavior Prediction

Data-driven methods broadly follow two approaches. In the first approach, various machine

learning algorithms such as clustering, regression, and classification predict or classify driver

behavior as either aggressive or conservative. These methods have been studied in traffic psychology

and the social sciences [76, 78, 81, 86, 87, 87, 88, 92, 93, 94, 212, 213, 214, 215, 216, 217,

218, 219]. So far, there has been relatively little work to improve the robustness and ability

to generalize to different traffic scenarios, steps that require ideas from computer vision and

robotics.

The second approach uses trajectories to learn reward functions for human behavior using

inverse reinforcement learning (IRL) [75, 119, 131]. IRL-based methods, however, have certain

limitations. IRL requires large amounts of training data, and the learned reward functions are

unrealistically tailored towards scenarios only observed in the training data [119, 131]. For

instance, [119] requires 32 million data samples for optimum performance. Additionally, IRL-

based methods are sensitive to noise in the trajectory data [75, 131]. Consequently, current IRL-

based methods are restricted to simple and sparse traffic conditions.
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4.4.2 Algorithm

We consider N agents consisting of a mixture of human drivers and AVs with the system

dynamics defined by Equation 4.11, and we define the cost function for each agent by Equation 4.13.

A human driver is simulated using a user-controlled keyboard with the following features: acceleration,

braking, and lane changing. For simplicity, we test with one human driver, but our approach can

work with more than one human driver. We further assume that agents are non-ideal in that

agents are not provided the risk tolerance of other agents. The input to our approach consists

of the state and control signals of every agent at time t. Then, our goal is to compute the Nash

equilibrium trajectories for all agents. The trajectories for the human agents are predictions,

while the trajectories for the AVs can be executed in a receding horizon planning loop. Finally,

none of the agents are assumed to follow constant velocity models.

We describe our algorithm (Figure 3.2). The first step is to read the trajectories for every

agent over a finite horizon T , denoted by ΞT . These trajectories correspond to human agents.

The second step is to compute the CMetric value, ζ , for each agent during T ; the CMetric

value encodes the aggressive (or conservative) nature of the driver via certain indicators such

as speeding, overtaking, and zigzagging. The third step consists of mapping an agent’s CMetric

to their risk sensitivity. This is performed using a linear transformation obtained by simple linear

regression. This is discussed in detail in Section 4.4.2.1. Finally, based on the risk sensitivity, we

perform game-theoretic risk-aware planning using the planner developed by Wang et al. [13].
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4.4.2.1 CMetric to Risk Sensitivity

We denote the risk sensitivity parameter by θ. We first compute a linear mapping M :

Z −→ Θ. Since both ζ ∈ Z and θ ∈ Θ are scalars, we can use simple one dimensional

linear regression to estimate M. We create a training dataset by first generating trajectories

corresponding to a fixed array of risk sensitivity values ranging from −5.0 (risk-seeking) to

+5.0 (risk-averse). We denote these risk sensitivity values as θ̂ to indicate they are training

values. We then evaluate the CMetric values, also represented using ζ̂ , corresponding to each of

these trajectories using the algorithm described in the previous section. The risk sensitivity and

CMetric pair constitute the training dataset on which we apply linear regression to estimate linear

coefficients β0 and β1.M is then defined as follows,

M(ζ) = β1ζ + β0, (4.10)

where ζ is the CMetric value of a human agent at test time.

4.4.2.2 Risk-Aware Planning

The system dynamics for each agent are given by,

xt+1 = Atxt +B1
t u

1
t +B2

t u
2
t + wt. (4.11)

To simplify notation, we describe a two-player system, although our approach can easily generalize

to n agents. xt = [x1
t , x

2
t ] ∈ X represents the system state and xi

t = [pix, p
i
y, v

i
x, v

i
y] denotes the

position (in meters) and velocity (in meters/second) of an agent. u1
t = a1, u

2
t = a2 ∈ U are the
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control inputs for both agents denoting the acceleration of both agents, wt ∼ N (0,Wt) is the

system noise, and At, B
1
t , B2

t are fixed matrices of appropriate dimensions. An agent incurs the

following cost during a finite horizon T :

Ψi =
T−1∑
t=0

[
1

2
xT
t Q

i
txt + liTt xt +

1

2

∑
j

ujT
t Rij

t u
j
t

]
+

1

2
xT
TQ

i
TxT + liTT xT ,

(4.12)

where Qt ⪰ 0 and Rt ≻ 0. To model risk, we use the exponential risk cost function used in [13],

J(Ψ) =
1

M(ζ)
logE

[
e(M(ζ)Ψ)

]
= RM(ζ)(Ψ), (4.13)

whereM(ζ) is the risk tolerance of a human driver.

Remark 1: The difference between Equation 4.13 and the risk cost function described in [13] is

that the risk parameter in the latter work includes a fixed value for every agent, whereas in this

work, we automatically generate the risk parameter for human agents in a data-driven fashion.

The optimal strategies for each player can be obtained by minimizing J(Ψi) for each

agent i and obtaining the Nash equilibrium using Riccati recursion [220, Chap. 6]. However,

Equation 4.13 is constrained by the fact that M(ζ) is bounded. If the M(ζ) is too low or too

high, then the cost function value approaches∞, also known as “neurotic breakdown” [13]. Due

to the data-driven nature of Equation 4.13, in order to ensure optimality, certain traffic parameters

such as traffic density is assumed, since they affect the CMetric value [14], and by Equation 4.10,

the risk sensitivity of the human agent used in Equation 4.13.
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4.4.3 Experiments and Results

In this section, we present the results of extensive experiments testing the accuracy of the

linear mapping between human driver aggressiveness and risk tolerance. We then evaluate the

emergent behaviors associated with the final trajectories generated by the iterative risk sensitive

game theoretic solver, compare with [13], which is chosen as the baseline (in which human driver

behavior is ignored), and finally, discuss using alternative human driver behavior models. All

experiments are performed using a 12-core 2.60GHz Intel i7 processor. We conduct open-loop

tests that follow the pipeline outlined in Figure 3.2. We use the OpenAI traffic simulator [149] to

compute the CMetric values representing human driver behavior and the python-based controller

provided by Wang et al. [13] to generate the final trajectories based on the risk tolerances obtained

from the corresponding CMetric values. The configurations of both the simulator and the controller

(which include the dynamics of the vehicles, traffic density, number of lanes etc.) are kept

identical so that all vehicles generated using the controller are tracked in the simulator.

We compute the CMetric values of the human driver in a highway scenario since we

require a fixed duration of time (5s) during which we must observe the vehicle’s trajectory and its

interaction with other vehicles. For the risk-aware trajectory controller, we consider a merging

scenario where a human agent must merge onto a highway with another human agent in the

target merging lane. Here, the human agent is equivalent to an agent whose risk sensitivity value

is obtained from the CMetric value. We assume vehicles follow the center line in their current

driving lanes and only consider the vehicle’s speed to finish the merging maneuver. In other

words, we assume a steering controller will be executed separately for each car to remain in its

lane.
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Figure 4.1: We highlight the relationship between the CMetric value and the risk parameter θ.
Refer to Section 4.4.3.1 for further details.

4.4.3.1 Verifying the accuracy ofM

In Figure 4.1, we plot the risk parameter θ (y-axis) obtained from a given CMetric value (x-

axis) via the linear mapping. When computing the risk parameters corresponding to each CMetric

value, we vary the simulation configuration (traffic density, number of lanes etc.) to include a

range of environments. This results in θ belonging to a range (as opposed to a fixed value).

This is desirable since, in practice, the traffic will vary according to place and time. The risk

parameters are clustered into four categories: “very conservative”, “conservative”, “aggressive”,

and “very aggressive”. Each cluster is identified by a color. The empty circles are training

data. The goal of this experiment is to cluster a test set of CMetric values (solid-colored points)

based on their risk sensitivity. The test data are generated by a human driving the OpenAI

simulator [149] in a randomly selected environment consisting of eleven vehicles and four lanes.

The results (Figure 4.1) demonstrate that given the CMetric value, the linear regression mapping

can accurately identify the risk sensitivity among a wide range of traffic configurations.
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Figure 4.2: Yielding behaviors: Darker colors (indicating higher likelihood of yielding)
corresponding to interactions between a risk-seeking agent and risk-averse agent. As the risk
tolerances for both the human drivers are data-driven, and therefore noisy, both agents are
adapting to the other. As a result, when either agent is risk-averse, we see higher yielding
likelihood (darker colors).
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Another metric we use to validate the correlation between the CMetric and corresponding

risk sensitivity is the average number of lane changes. Based on the final trajectories generated

from the risk sensitivity parameter (obtained from corresponding CMetric values) and using the

controller provided by [13], we measure the average number of lane changes made by the ego-

vehicle. The reason for using average number of lane changes as a metric is that aggressive

drivers change lanes more frequently than non-aggressive and conservative drivers. The aim

of the experiment, therefore, is to check if an aggressive human-driven vehicle (modeled using

the keyboard of the OpenAI simulator) results in more lane changes by the final simulated ego-

vehicle (simulated using the python controller) and conversely, if a conservative human driver

results in fewer simulated lane changes. In Figure 4.1, we confirm this is indeed the case;

aggressive drivers (θ < 0) yield a greater number of lane changes than conservative drivers

(θ > 0).

4.4.3.2 Emergent behaviors

We evaluate the final trajectories generated using the learned risk sensitivity of human

drivers in a merging scenario where a human agent attempts to merge onto the highway. Different

risk sensitivities yield a range of emergent behaviors. For example, in [13], Wang et al. showed

that two risk-averse agents maintain a larger minimum distance between them, while risk-seeking

agents may allow a smaller gap. Further, in an interaction between a risk-averse and a risk-

seeking agent, there is a higher likelihood of the risk-averse agent yielding to the risk-seeking

agent.

The experiments conducted by Wang et al. modeled synthetic agents for which the risk
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sensitivity must be manually chosen. Here, we run the same set of experiments for human agents.

In Figure 4.2, we can observe darker colors (indicating larger minimum distance) corresponding

to two risk-averse human agents and lighter colors (indicating smaller minimum distance) corresponding

to two risk-seeking human agents. In Figure 4.2, we can observe darker colors (indicating a

higher likelihood of yielding for the risk-averse agent) corresponding to interactions between a

risk-seeking agent and a risk-averse agent.

4.4.3.3 User studies

We recruited 27 participants to respond to a user study consisting of two questions. The

first question involved showing two video clips of final trajectories. The first clip (top) consisted

of a risk seeking trajectory (θ = −2.429), while the second (bottom) consisted of a risk averse

trajectory (θ = 3.651). Participants were not told the risk preferences that generated the trajectories,

and were asked to identify which trajectory corresponded to an aggressive driver. The goal of this

question is to qualitatively assess the emergent nature of the final trajectories. That is, based on

simply observing the nature of the trajectory, can a human distinguish between the generated

trajectories? We answer in the affirmative; 26 out of the 27 participants correctly identified the

risk seeking driver as the aggressive driver.

4.4.3.4 Comparing with the baseline

We compare our modified risk-aware planner with existing planners that do not model

human drivers and show that modeling human drivers results in safer navigation. Specifically, [13]

(and similar planners) assign a fixed neutral risk tolerance to human drivers and the ego-vehicle
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generates to the human driver accordingly. There are two outcomes:

1. Suppose the human driver is, in fact, aggressive. Then, by modeling the driver with a

neutral risk tolerance, the ego-vehicle may stray close to the aggressive driver as opposed

to keeping a safe distance from them.

2. Conversely, suppose the human driver is conservative. Then, by modeling the driver with a

neutral risk tolerance, the ego-vehicle may enter a brief deadlock during which both agents

wait to see who moves first.

We aim to capture these inefficiencies via a single error metric, which is the absolute value

of the minimum relative distance between the two agents. This metric is ideal since in both cases,

it measures the discrepancy between the expected distance and the actual observed distance.

For example, we show that in the first case, the expected minimum relative distance between

both agents is more than the observed distance while in the second case, we show the observed

minimum distance is more than the actual distance. In both cases, the error is positive by virtue

of the absolute value. Empirically, the maximum RMSE observed is 0.0425m or 10% as shown

in Figure 4.3.

4.4.3.5 Using alternative human driver behavior models

Thus far, we have successfully demonstrated that CMetric can be effectively integrated with

risk-aware planning to generate game-theoretic behavior-rich trajectories. Alternative models for

human driver behavior such as the SVO can theoretically be used. However, there are practical

issues when it comes to integrating these alternative models in risk-aware planning. Here, we

discuss some of these challenges. SVO is an offline technique that requires a large volume
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Figure 4.3: Comparison with [13]: The approach by Wang et al. assumes a neutral risk
sensitivity for human agents. However, when an ego-agent interacts with a human driver who
may be aggressive or conservative (indicated by the negative and positive values on the x axis,
respectively), then the assumption of neutral risk tolerance results in an error in terms of absolute
value of minimum relative distance between the two agents.

of training data to learn a data-driven reward function via inverse reinforcement learning. Our

technique is meant to be deployed in realtime and, as such, we test in an open-loop simulation and

use active metrics such as yield %, frequency of lane changes, and minimum distance between

agents. The SVO approach, on the other hand, uses RMSE to measure the deviation of the

prediction trajectories from the ground-truth trajectories. We do not assume the availability of

ground-truth data. In future, we will conduct experiments comparing CMetric with SVO once

the source code for SVO is public.

4.4.4 Conclusion, Limitations, and Future Work

We presented an approach for risk-aware planning in multi-agent traffic with human agents.

The basic intuition of our approach is that aggressiveness of a driver is linearly correlated with
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risk preference. That is, aggressive drivers are more risk-seeking while conservative drivers

are more risk-averse. Accordingly, we integrate a human driver behavior model [14] with the

risk-aware dynamic game solver in [13] via simple linear regression to derive a mapping between

driver behavior and risk tolerance. Our results show that aggressive human driving results in more

frequent lane-changing. We show that conservative drivers generally yield to aggressive drivers

while maintaining a greater distance from them. Finally, we confirm that the final trajectories

obtained from the risk-aware planner generate emergent behaviors though a comprehensive user

study in which participants were able to distinguish between aggressive and conservative drivers.

There are some limitations to our method. Currently, we have tested our approach in an

open-loop simulation where we use two different simulators for the human behavior model and

the trajectory planner. To use both simulators in open-loop simulation effectively, the environment

configuration must be kept identical, which is cumbersome and a hindrance. In the future, we

will explore a closed-loop simulator that combines the human behavior model and the risk-aware

trajectory planner.
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Chapter 5: Software and Datasets

We present a new traffic dataset, METEOR, which captures traffic patterns and multi-

agent driving behaviors in unstructured scenarios. METEOR consists of more than 1000 one-

minute videos, over 2 million annotated frames with bounding boxes and GPS trajectories for 16

unique agent categories, and more than 13 million bounding boxes for traffic agents. METEOR

is a dataset for rare and interesting, multi-agent driving behaviors that are grouped into traffic

violations, atypical interactions, and diverse scenarios. Every video in METEOR is tagged using

a diverse range of factors corresponding to weather, time of the day, road conditions, and traffic

density. We use METEOR to benchmark perception methods for object detection and multi-

agent behavior prediction. Our key finding is that state-of-the-art models for object detection and

behavior prediction, which otherwise succeed on existing datasets such as Waymo, fail on the

METEOR dataset. METEOR marks the first step towards the development of more sophisticated

perception models for dense, heterogeneous, and unstructured scenarios.

5.1 Overview

Recent research in learning-based techniques for robotics, computer vision, and autonomous

driving has been driven by the availability of datasets and benchmarks. Several traffic datasets

have been collected from different parts of the world to stimulate research in autonomous driving,
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driver assistants, and intelligent traffic systems. These datasets correspond to highway or urban

traffic, and are widely used in the development and evaluation of new methods for perception [45],

prediction [66], behavior analysis [120], and navigation [221].

Many initial autonomous driving datasets were motivated by computer vision or perception

tasks such as object recognition, semantic segmentation or 3D scene understanding. Recently,

many other datasets have been released that consist of point-cloud representations of objects

captured using LiDAR, pose information, 3D track information, stereo imagery or detailed map

information for applications related to 3D object recognition and motion forecasting. Many large-

scale motion forecasting datasets such as Argoverse [222], and Waymo Open Motion Dataset [223],

among others, have been used extensively by researchers and engineers to develop robust prediction

models that can forecast vehicle trajectories. However, existing datasets do not capture the rare

behaviors or heterogeneous patterns. Therefore, prediction models trained on these existing

datasets are not very robust in terms of handling challenging traffic scenarios that arise in the

real world.

A major challenge currently faced by research in autonomous driving is the heavy tail

problem [222, 223], which refers to the challenge of dealing with rare and interesting instances.

There are several ways in which existing datasets currently address the heavy tail problem:

1. Mining: The Argoverse and Waymo datasets use a mining procedure that includes scoring

each trajectory based on its “interestingness” to explicitly search for difficult and unusual

scenarios [222, 223].

2. Diversifying the taxonomy: Train the prediction and forecasting models to identify the

unknown agents at the time of testing. This approach necessitates annotating a diverse
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taxonomy of class labels. Argoverse and nuScenes [224] contain 15 and 23 classes, respectively.

3. Increasing dataset size: This approach is to simply collect more data with the premise

that collecting more traffic data will likely also increase the number of such scenarios in

the dataset.

In spite of many efforts along these lines, existing datasets manage to collect only a handful

of such instances, due to the infrequent nature of their occurrence. For example, the Waymo

Open Motion dataset [223] contains only atypical interactions and diverse scenarios while the

Argoverse dataset [222] contains only atypical interactions. There is clearly a need for a different

approach to addressing the heavy tail problem. Our solution is to build a traffic dataset from

videos collected in India, where the inherent nature of the traffic is dense, heterogeneous, and

unstructured. The traffic patterns and surrounding environment in parts of India are more challenging.

than those in other parts of the world. This includes high congestion and traffic density. Some

of these roads are unmarked or unpaved. Moreover, the traffic agents moving on these roads

correspond to vehicles, buses, trucks, bicycles, pedestrians, auto-rickshaws, two-wheelers such

as scooters and motorcycles, etc.

5.1.1 Main Contributions

1. We present a novel dataset, METEOR, corresponding to the dense, heterogeneous, and

unstructured traffic in India. METEOR is the first large-scale dataset containing annotated

scenes for rare and interesting instances and multi-agent driving behaviors, broadly grouped

into:

(a) Traffic violations—running traffic signals, driving in the wrong lanes, taking wrong
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turns).

(b) Atypical interactions—cut-ins, yielding, overtaking, overspeeding, zigzagging, lane

changing.

(c) Diverse scenarios—intersections, roundabouts, and traffic signals.

2. METEOR has more than 2 million labeled frames and 13 million annotated bounding boxes

for 16 unique traffic agents, and GPS trajectories for the ego-agent.

3. Every video in METEOR is tagged using a diverse range of factors including weather, time

of the day, road conditions, and traffic density.

4. We evaluate state-of-the-art methods for object detection and multi-agent behavior prediction

on METEOR.

5. We present a novel, fine-grained analysis on the relationship between traffic environments

and perception. Specifically we study the effect of 2D object detection in varying traffic

density, mixture of agents, area, time of the day, and weather conditions.

5.1.2 Applications and Benefits

• Towards Risk-Aware Planning and Control: Our multi-agent behavior prediction benchmark

can aid the development of risk-aware motion planners by predicting the behaviors of

surrounding agents. Motion planners can compute controls that guarantee safety around

aggressive drivers who are prone to overtaking and overspeeding.

• Towards Robust Perception: We observe that these models fail in challenging Indian

traffic scenarios, compared to their performance on existing datasets captured in the US,
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Figure 5.1: METEOR: We summarize various characteristics of our dataset in terms of scene:
traffic density, road type, lighting conditions, agents (we indicate the total count of each agent
across 1250 videos), and behaviors, along with their size distribution (in GB). The total size of
the current version of the dataset is around 100GB, and it will continue to expand. Our dataset
can be used to evaluate the performance of current and new methods for perception, prediction,
behavior analysis, and navigation based on some or all of these characteristics. Details of the
organization of our dataset are given at https://gamma.umd.edu/meteor.

Europe, and other developed nations. As a result, METEOR can be a useful benchmark for

research in perception in unstructured traffic environments and developing nations.

• Towards Fine-grained Traffic Analysis: Our novel analysis studying the relationship

between traffic patterns and 2D object detection can lead to more informed research in

perception for autonomous driving.
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5.2 Comparison with Existing Datasets

5.2.1 Tracking and Trajectory Prediction Datasets

Datasets such as the Argoverse [222], Lyft Level 5 [225], Waymo Open Dataset [223],

ApolloScape [72], nuScenes dataset [224] are used for trajectory forecasting [65, 102, 104,

226, 227] and tracking [45]. Several of these datasets use mining procedure [222, 223] that

heuristically searches the dataset for rare and interesting scenarios. The resulting collection of

such scenarios and behaviors, however, is only a fraction of the entire dataset. METEOR, by

comparison, exclusively contains such scenarios due to the inherent nature of the unstructured

traffic in India.

METEOR has many additional characteristics with respect to these datasets. For instance,

METEOR’s 2.02 million annotated frames are more than 10× the current highest number of

annotated frames with respect to other dataset with high density traffic (ApolloScape). Furthermore,

METEOR consists of 16 different traffic-agents that include only on-road moving entities (and

not static obstacles). This is by far, the most diverse in terms of class labels. In comparison,

Argoverse and nuScenes both contain 10 and 13 traffic-agents, respectively. METEOR is the

first motion forecasting and behavior prediction dataset with traffic patterns from rural and urban

areas that consist of unmarked roads and high-density traffic. In contrast, traffic scenarios in

Argoverse, Waymo, Lyft, and nuScenes have been captured on sparse to medium density traffic

with well-marked structured roads in urban areas.
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Table 5.1: Characteristics of Traffic Datasets: We compare METEOR with state-of-the-art
autonomous driving datasets that have been used for trajectory tracking, motion forecasting,
semantic segmentation, prediction, and behavior classification. METEOR is the largest (in terms
of number of annotated frames) and most diverse in terms of heterogeneity, scenarios, varying
behaviors, densities, and rare instances. Darker shades represent a richer collection in that
category. Best viewed in color.

Rare and Interesting Behaviors‡

Datasets Location Bad weather Night Road type Het.⋆ Size Density Lidar HD Maps Traffic Atypical Diverse
Violations Interactions Scenarios

Argoverse [222] USA ✓ ✓ urban 10 22K Medium ✓ ✓ ✗ ✓ ✗

Lyft Level 5 [225] USA ✗ ✗ urban 9 46K Low ✓ ✓ ✗ ✗ ✗

Waymo [223] USA ✓ urban 4 200K Medium ✓ ✓ ✗ ✓ ✓

ApolloScape [72] China ✗ ✓ urban, rural 5 144K High ✓ ✓ ✗ ✗ ✗

nuScenes [224] USA/Sg. ✓ ✓ urban 13 40K Low ✓ ✓ ✗ ✓ ✓

INTERACTION [228] International ✗ ✗ urban 1 − Medium ✓ ✓ ✗ ✗ ✗

CityScapes [229] Europe ✗ ✗ urban 10 25K Low ✗ ✗ ✗ ✗ ✗

IDD [230] India ✗ ✗ urban, rural 12 10K High ✗ ✗ ✗ ✗ ✗

HDD [231] USA ✗ ✗ urban − 275K Medium ✓ ✗ ✗ ✓ ✓

Brain4cars [232] USA ✗ ✗ urban − 2000K Low ✗ ✓ ✗ ✗ ✗

D2-City [233] China ✓ ✗ urban 12 700K Medium ✗ ✗ ✗ ✗ ✓

TRAF [65] India ✗ ✓ urban, rural 8 72K High ✗ ✗ ✗ ✗ ✗

BDD [234] USA ✓ ✓ urban 8 3000K Low ✗ ✗ ✗ ✗ ✓

METEOR India ✓ ✓ urban, rural† 16†† 2027K High§ ✗ ✗ ✓ ✓ ✓

‡ Rare instances can be broadly grouped into (i) traffic violations, (ii) atypical interactions, and (iii) difficult scenarios.
† Includes roads without lane markings. Roads in other datasets with rural roads may contain lane markings.
⋆ Heterogeneity. We indicate the classes corresponding to moving traffic agents only, excluding static objects such as poles, traffic lights, etc.
§ Up to 40 agents per frame.
†† Up to 9 unique agents per frame.

5.2.2 Semantic Segmentation Datasets

CityScapes [229] is widely used for several tasks, primarily semantic segmentation. It is

based on urban traffic data collected from European cities with structured roads and low traffic

density. In contrast, the Indian Driving Dataset (IDD) [230] is collected in India with both urban

and rural areas with high-density traffic. A common aspect of both these datasets (CityScapes and

IDD), however, is the relatively low annotated frame count (25K and 10K, respectively). This is

probably due to the effort involved with annotating every pixel in each image. IDD also contains

high-density traffic scenarios in rural areas, similar to METEOR. However, our dataset has 200×

the number of annotated frames and 1.6× the number of traffic-agent classes. Similar to TRAF,

the IDD does not contain the behavior data that is provided by METEOR.
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5.2.3 Behavior Prediction

Behavior prediction corresponds to the task of predicting turns (right, U-turn, or left),

acceleration, merging, and braking in addition to driver-intrinsic behaviors such as over-speeding,

overtaking, cut-ins, yielding, and rule-breaking. The two most prominent datasets for action

prediction include the Honda Driving Dataset (HDD) [231] and the BDD dataset [234]. Some

of the major distinctions between METEOR and the HDD in terms of size (approximately 10×),

the availability of scenes with night driving and rainy weather, and the inclusion of unstructured

environments in low-density traffic. The BDD dataset [234] contains more annotated samples

than METEOR, however, the BDD dataset contains 100K videos while METEOR contains 1K

videos. So the number of annotated samples per video is 66× higher for METEOR. The annotations

in prior datasets are limited to actions and do not contain the rare and interesting behaviors

contained in METEOR.

5.3 METEOR dataset

Our dataset is visually shown in Figure 5.1. Below, we present some details of the data

collection process and discuss some of the salient features and characteristics of METEOR.

5.3.1 Dataset Collection

The data was collected in and around the city of Hyderabad, India within a radius of 42

to 62 miles. Several outskirts were chosen to cover rural and unstructured roads. Our hardware

capture setup consists of two wide-angle Thinkware F800 dashcams mounted on an MG Hector

and Maruti Ciaz. The camera sensor has 2.3 megapixel resolution with a 140 degrees field of
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view. The video is captured in full high definition with a resolution of 1920 × 1080 pixels at

a frame rate of 30 frames per second. The dashcam is embedded with an accurate positioning

system that stores the GPS coordinates, which were processed into the world frame coordinates.

The sensor synchronizes between the camera and the GPS. Recordings from the dashcam are

streamed continuously and are clipped into 1 minute video segments.

5.3.2 Dataset organization

The dataset is organized as 1250 one-minute video clips. Each clip contains static and

dynamic XML files. Each static file summarizes the meta-data of the entire video clip including

the behaviors, road type, scene structure etc. Each dynamic file describes frame-level information

such as bounding boxes, GPS coordinates, and agent behaviors. Our dataset can be searched

using helpful filters that sort the data according to the road type, traffic density, area, weather,

and behaviors. We also provide many scripts to easily load the data after downloading.

5.3.3 Annotations

We provide the following annotations in our dataset: (i) bounding boxes for every agent,

(ii) agent class IDs, (iii) GPS trajectories for the ego-vehicle, (iv) environment conditions

including weather, time of the day, traffic density, and heterogeneity, (v) road conditions with

urban, rural, lane markings, (vi) road network including intersections, roundabouts, traffic signal,

(vii) actions corresponding to left/right turns, U-turns, accelerate, brake, (viii) rare and interesting

behaviors (See Section 5.3.4), and (ix) the camera intrinsic matrix for depth estimation to generate

trajectories of the surrounding vehicles. This set of annotations is the most diverse and extensive
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compared prior datasets.

A diverse and rich taxonomy of agent categories is necessary to ensure that autonomous

driving systems can detect different types of agents in any given scenario. Towards that goal,

datasets for autonomous driving are designed or captured to achieve two goals: (a) capture

as many different types of agent categories as possible; (b) capture as many instances of each

category as possible. In both these aspects, METEOR outperforms all prior datasets. We annotate

16 types of moving traffic entities, not including static obstacles listed in Figure 5.1 along with

their distribution. Note specifically that the percentages of pedestrians, motorbikes, and bicycles

are higher than the percentage of passenger vehicles. This is particularly useful as the former

categories are known as “vulnerable road users” (VRUs) [235], and it is important for autonomous

driving systems to be able to detect them–necessitating many instances of these VRUs in any

dataset.

5.3.4 Rare and Interesting Behaviors

We provide a total of 17 different types of rich collection of rare and interesting cases that

are unique to our dataset. They can be summarized in terms of the following groups:

5.3.4.1 Atypical Interactions

Atypical interactions correspond to pairwise interactions among traffic agents that are

not often observed in regular traffic scenarios. Some examples of atypical interactions include

yielding to, and cutting across, pedestrians, zigzagging through traffic, pedestrian jaywalking,

overtaking, sudden lane changing, and overspeeding. We describe these in more detail below:
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Figure 5.2: Annotations for rare instances: One of the unique aspects of METEOR is the
availability of explicit labels for rare and interesting instances including atypical interactions,
traffic violations, and diverse scenarios. These annotations can be used to benchmark new
methods for object detection and multi-agent behavior prediction.

• Overtaking (OT): When an agent overtakes another agent with sudden or aggressive movement.

• Overspeeding (OS): If the vehicle over-speeds (based on speed limits) due to any reason.

• Yield (Y): A pedestrian, bicycle, or any slow-moving agent trying to cross the road in front

of another agent. If the latter slows down or stops, letting them cross the road then such

behavior is labeled as yield.

• Cutting (C): When pedestrians, bicycles, or any slow-moving agents trying to cross the road

is interrupted by another agent. Yielding and cutting can also be re-labeled as instances of

jaywalking. In a majority of these cases, one of the agents involved is a pedestrian crossing
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the road in the middle of traffic.

• Lane change w. lane markings (LC(m)): Agents aggressively change lanes on roads with

clear lane markings.

• Lane change w/o. lane markings (LC): Agents aggressively change lanes on roads without

lane markings.

The above two annotations can be used to identify videos in the dataset that contain roads

without lane markings for relevant applications.

• Zigzagging (ZM): If any of the agent of interest undergoes a zigzag movement in the traffic,

the agent behavior is classified as zigzagging.

5.3.4.2 Traffic Violations

In addition to the above driving behaviors, we also annotate traffic agents breaking traffic

rules. These are particularly unique since rule breaking scenarios are rare.

• Running a traffic light (RB TL): Passing through an intersection even though the traffic

signal is red.

• Wrong Lane (RB WL): A road may not be divided for inbound and outbound traffic by

a physical barrier, making it possible for the motorists to use the inbound lane for the

outbound traffic and vice versa. This behavior identifies all such cases.

• Wrong Turn (RB WT): When an agent makes an illegal turn (including U-turns).
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Figure 5.3: We highlight the high traffic density, heterogeneity, and the richness of behavior
information in METEOR. Abbreviations correspond to various behavior categories and are
explained in Section 5.3.4.

5.3.4.3 Diverse Scenarios

Finally, we provide annotations for challenging scenarios that include intersections, roundabouts,

traffic signals, executing left turns, right turns, and U-turns.

5.3.5 Dataset statistics

We analyze the dataset statistics and distribution of agents and their behaviors in terms

of total count, uniqueness, and duration (in seconds). Figure 5.3 show that METEOR is very

dense and highly heterogeneous, respectively; the total number of agents in a single frame can
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Table 5.2: Effect of meta features on object detection: We analyze how meta features such
as traffic density, type of agents, location, time of the day, and weather play a role in 2D object
detection using the DETR, Deformable DETR, YOLOv3 and CenterNet object detectors. Bold
indicates the type of meta feature that is the most effective for object detection.

DETR and Deformable DETR (in parentheses)

Density Agents Environment Time Weather

Low Medium High Mixed Uniform Urban Rural Day Night Normal Rainy

mAP 19.00 (22.70) 27.00 (38.30) 19.30 (28.10) 27.00 (38.30) 14.80 (31.30) 27.00 (38.30) 14.20 (25.70) 27.00 (38.30) 12.00 (20.60) 27.00 (38.30) 12.00 (20.90)
mAP50 33.33 (36.80) 48.40 (61.80) 32.40 (41.40) 48.40 (61.80) 31.80 (44.30) 48.40 (61.80) 23.40 (34.90) 48.40 (61.80) 22.70 (36.10) 48.40 (61.80) 21.90 (32.70)
mAP75 21.50 (22.10) 28.10 (41.50) 20.40 (31.30) 28.10 (41.50) 11.70 (37.00) 21.80 (41.50) 16.30 (28.40) 28.10 (41.50) 12.20 (20.50) 28.10 (41.50) 12.60 (22.90)
mAPS 2.60 (7.10) 1.20 (12.10) 0.20 (2.50) 1.20 (12.10) 0.30 (12.80) 1.20 (12.10) 2.00 (10.30) 1.20 (12.10) 0.10 (0.30) 1.20 (12.10) 1.80 (9.50)
mAPM 7.40 (25.20) 8.30 (22.50) 10.50 (16.90) 8.30 (22.50) 7.20 (34.30) 8.30 (22.50) 11.70 (28.10) 8.30 (22.50) 3.30 (12.50) 8.30 (22.50) 6.20 (19.90)
mAPL 25.60 (24.90) 45.90 (54.10) 24.70 (35.60) 45.90 (54.10) 40.30 (57.80) 45.90 (54.10) 26.30 (35.60) 45.90 (54.10) 16.70 (27.80) 45.90 (54.10) 15.10 (23.80)

YOLOv3 and CenterNet (in parentheses)

Density Agents Environment Time Weather

Low Medium High Mixed Uniform Urban Rural Day Night Normal Rainy

mAP 19.20 (22.90) 30.40 (32.90) 21.10 (23.30) 30.40 (32.90) 19.10 (30.20) 30.40 (32.90) 13.80 (13.60) 30.40 (32.90) 13.30 (15.90) 30.40 (32.90) 13.40 (14.00)
mAP50 36.90 (34.80) 52.50 (55.40) 36.30 (32.50) 52.50 (55.40) 35.10 (43.40) 52.50 (55.40) 22.00 (22.70) 52.50 (55.40) 25.00 (25.70) 52.50 (55.40) 25.00 (22.50)
mAP75 16.10 (28.10) 32.30 (33.40) 23.20 (26.70) 32.30 (33.40) 19.70 (37.30) 32.30 (33.40) 15.70 (13.20) 32.30 (33.40) 13.40 (27.00) 32.30 (33.40) 13.60 (15.50)
mAPS 2.70 (8.40) 2.40 (13.10) 0.60 (2.90) 2.40 (13.10) 7.90 (19.30) 2.40 (13.10) 5.20 (5.40) 2.40 (13.10) 0.00 (0.90) 2.40 (13.10) 1.30 (10.90)
mAPM 14.10 (26.20) 13.10 (30.50) 11.70 (17.60) 13.10 (30.50) 19.10 (38.80) 13.10 (30.50) 22.50 (25.80) 13.10 (30.50) 7.50 (11.60) 13.10 (30.50) 11.60 (17.40)
mAPL 23.70 (29.50) 48.70 (44.60) 27.30 (27.90) 48.70 (44.60) 38.90 (40.00) 48.70 (44.60) 21.20 (21.40) 48.70 (44.60) 18.50 (21.70) 48.70 (44.60) 16.40 (14.30)

reach up to 40 and up to 9 unique agents can exist in a single frame. Figure 5.3 represents the

distribution of behaviors across videos and Figure 5.3 shows the distribution of each behavior’s

average duration. In particular, we note that the average duration can reach up to 3 seconds

which, at 30 frames per second, corresponds to approximately 90 frames that contain visual,

contextual, and semantic information that can inform behavior prediction algorithms for more

accurate perception and prediction.

5.4 Experiments and Analysis

We provide the pre-trained models for object detection and behavior prediction at https:

//gamma.umd.edu/meteor.

5.4.1 Analyzing Object Detection in Unstructured Scenarios

Existing datasets have helped develop sophisticated and robust 2D detection methods.

We use the MMDetection [239] toolbox to train the following 2D object detection models—
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Table 5.3: Training Details for Object Detection (BS: Batch size, Mom: Momentum, WD:
Weight decay, MGN: Max Gradient Norm)

Method Backbone BS Opt. LR Mom. WD (L2) MGN

DETR [236] ResNet-50 2 AdamW 1e−4 − 1e−4 0.1
Def. DETR [237] ResNet-50 2 AdamW 2e−4 − 1e−4 0.1

YOLOv3 [7] Darknet-53 8 SGD 1e−3 0.9 5e−4 35
CenterNet [238] ResNet-18 16 SGD 1e−3 0.9 5e−4 35

Table 5.4: Object detection on Waymo and KITTI: We report the standard mAP for many
widely used methods on autonomous driving datasets.

DETR [236] CenterNet YOLO v3 Def. DETR Swin-T

KITTI [74] 23.00 80.40 81.60 42.20 −
Waymo [223] 65.31 64.83 56.93 65.31 37.20

METEOR 8.30 12.10 14.30 15.80 32.60

DETR [236], Deformable DETR [237] (with iterative bounding box refinement), YOLOv3 [7]

(with scale 608), CenterNet [238] (with normal convolutions), and Swin-T [240]. The models

are pre-trained on the COCO dataset [241] and fine-tuned on METEOR. We provide the training

details in Table 5.3 and report results using the standard mAP, mAP50, mAP75, mAPS, mAPM,

and mAPL. We refer the reader to [242] for a primer on these metrics.

In Table 5.4, we report the mAP for the 2D object detectors listed above. We observe that

the most widely used 2D object detectors, that perform well on the state-of-the-art autonomous

driving datasets, like the Waymo Open Motion Dataset [223] and the KITTI dataset [74], do

not perform well on METEOR. More specifically, the detectors achieve 37% − 65% and 23% −

81% mAP on the Waymo and KITTI datasets, respectively, while the same methods achieve

8% − 31% mAP on the METEOR dataset. In other words, the best possible result on METEOR

is 1
2
× and 1

3
× the best result on the Waymo and KITTI datasets, respectively. In Table 5.5, we

compare METEOR in depth with the Waymo dataset using the Swin-T method [240], which
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Table 5.5: Swin-T on Waymo and METEOR: We present a more detailed analysis of Swin-T,
one of the state-of-the-art object detection approaches, on Waymo and METEOR.

mAP mAP50 mAP75 mAPS mAPM mAPL

Waymo [223] 37.20 70.60 52.00 17.20 41.80 67.20

METEOR 32.60 46.90 36.20 20.50 35.40 54.70

is currently one of the top performing methods on the standard COCO 2D object detection

benchmark leaderboard [241]. The Swin-T method performs 14% better on the Waymo Dataset.

There are two possible reasons for performance degradation on METEOR. First, 2D detectors

are typically pre-trained on MS COCO [241] and ImageNet [243], which contain only up to

9 categories of the commonly occurring traffic agents. This was not an issue for detectors

on existing datasets like Waymo and KITTI since those datasets contain a subset of those 9

classes. METEOR, on the other hand, contains 16 agent categories that are approximately equally

distributed. The approximately 7 − 8 traffic agent categories that are contained in METEOR but

do not appear in MS COCO are novel to these 2D object detectors and are not classified correctly.

The other reason why object detection deteriorates on METEOR is due to the challenging

traffic environments in METEOR. More specifically, METEOR contains many challenging scenarios

such as bad weather, nighttime traffic, rural area, high density traffic, etc. (see Figure 5.2).

We analyze the effect of meta-features such as traffic conditions (density and heterogeneity),

road conditions, weather, and time-of the day on 2D object detection and present this analysis

in Table 5.2. For this analysis, we form separate test sets corresponding to each label in a

meta-feature (for example, we have two test sets for day and night). Most datasets contain

videos of medium density traffic. In Table 5.2, we see that the performance of the DETR,

Deformable DETR, YOLOv3, and CenterNet suffers as the traffic density increases from medium
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to high. Similar reasoning can be made for other factors–object detection is less effective for

homogeneous traffic, in rural areas, at nighttime, and in rainy weather. In most datasets, the

number of annotated data samples with these adverse and challenging factors are a fraction of

the entire dataset, which partly explains why 2D detectors are more successful on those datasets.

The analysis in this section empirically validates the difficulty that the heavy-tail problem poses

to perception tasks in autonomous driving.

5.4.2 Multi-Agent Behavior Recognition

Multi-agent behavior recognition (MABR) is the task of first localizing agents in a video

followed by classifying their behaviors. This task has drawn attention in recent years and plays

an important role in autonomous driving. Unlike object detection, which can be accomplished

solely by observing visual appearances, MABR reasons about the actors’ interactions with the

surrounding context, including environments, other people and objects.

Dataset Preparation: The METEOR dataset is ideal for spatio-temporal MABR due to the

availability of bounding box annotations and their corresponding behavior labels for more than

1231 video clips, each lasting one minute in duration, and over 2 million annotated frames.

We use 1000 video clips for training and 231 video clips for testing. As the guidelines of the

benchmarks, we evaluate 16 behavior classes with mean Average Precision (mAP) as the metric,

using a frame-level IoU threshold of 0.5.

Framework: We use the ActorContext-Actor Relation Network (ACAR-Net) [245] which builds

upon a novel high-order relation reasoning operator and an actor-context feature bank for indirect

relation reasoning for spatio-temporal action localization. This framework is composed of an
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Table 5.6: ACAR-Net on AVA and METEOR: We applied currently the state-of-the-art multi-
agent action recognition approach on AVA to our METEOR dataset. (PT: pre-train, BS: batch
size, Opt.: Optimization, LR: learning rate, WD: weight decay, FR(RX-101): Faster R-CNN
(ResNeXt-101), Kin.-700: Kinetics-700, CR(Swin-T): Cascade R-CNN (Swin-T))

Dataset Detector PT BS Opt. LR WD mAP
AVA [244] FR(RX-101) Kin.-700 32 SGD 0.008 1e−7 30.0

METEOR CR(Swin-T) Kin.-700 32 SGD 0.008 1e−7 6.10

object detector, backbone network, and ACAR components.

Object Detector: For the object detection step, we use the Swin-T detector, generated by

combining a Cascade R-CNN [246] with a Swin-T [240] backbone. The model is pre-trained on

ImageNet and MS COCO, and fine-tuned on METEOR using the same settings as Swin-T [240]:

multi-scale training [247] (resizing the input with the shorter side between 480 and 800 and the

longer side at most 1333), AdamW [248] optimizer (initial learning rate of 1e−4, weight decay

of 0.05, and batch size of 16), and 1× schedule (12 epochs).

Backbone Network: Following ACAR-Net [245], we use SlowFast networks [249] as the backbone

in the localization framework and double the spatial resolution of res5. We conduct experiments

using a SlowFast R-101 8 × 8, pre-trained on the Kinetics-700 dataset [250], without non-local

blocks. The inputs are 64-frame clips, where we sample T = 8 frames with a temporal stride

τ = 8 for the slow pathway, and αT (α = 4) frames for the fast pathway.

Training Settings: We train ACAR-Net using synchronous SGD with a batch size of 16. For

the first 3 epochs, we use a base learning rate of 0.008, which is then decreased by a factor of 10

at iterations 4 epochs and 5 epochs. We use a weight decay of 1e−7 and Nesterov momentum

of 0.9. We use both ground-truth boxes and predicted object boxes for training. For inference,

we scale the shorter side of input frames to 384 pixels and use detected object boxes with scores

greater than 0.85 for final behavior classification.
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Results: We compare METEOR with the AVA dataset [244] as the latter is the state-of-the-

art in multi-agent action recognition. In Table 5.6, we show that the current state-of-the-art

approach, ACAR, achieves 30.0% mAP on AVA but yields 6.1% mAP on METEOR. There

are several reasons why ACAR performs better on AVA. AVA focuses exclusively on only one

target, humans, a category which most state-of-the-art object detectors can detect with ease.

Furthermore, the videos in the AVA dataset consist of high-definition movies, in which agents

(actors) are clearly visible, the background is simple, and the movements performed are also

exaggerated and easier to identify. METEOR, on the other hand consists of 16 different categories

of agents from vehicles to animals, most of which are novel for most detectors and therefore

hard to detect. Moreover, the movements of the agents on the road are very fast, making them

hard to capture. Finally, different agents have different motion patterns; for example, pedestrians

move differently than vehicles and buses move differently than motorbikes. All of these factors

collectively contribute to the complexity of MABR in dense, heterogeneous, and unstructured

traffic scenarios. Our experiments and analysis show that there is much room for improvement

and our hope with METEOR is that it provides the research community the resources it needs to

tackle this important problem.

5.5 Conclusion

We present a new dataset, METEOR, for autonomous driving applications in dense, heterogeneous,

and unstructured traffic scenarios. rain consists of more than 1000 one-minute video clips, over

2 million annotated frames with 2D and GPS trajectories for 16 unique agent categories, and

more than 13 million bounding boxes for traffic agents. We found that current models for object

164



detection and multi-agent behavior prediction fail on the METEOR dataset. METEOR marks the

first step towards the development of more sophisticated and robust perception models for dense,

heterogeneous, and unstructured scenarios.

Our dataset has some limitations. While METEOR contains bounding box information

for the surrounding agents, we currently do not provide trajectory information from a fixed

reference frame. One would have to use depth estimation techniques to extract such trajectories.

Furthermore, our dataset does not contain HD maps ad pointcloud data, which are used in many

applications. For future work, we hope that our dataset can benefit in terms of design and

evaluation of new motion forecasting and behavior prediction algorithms in dense and heterogeneous

traffic. Finally, we hope to include semantic segmentation capability as part of METEOR by

providing pixel labels for each object.
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Chapter 6: Conclusion

This dissertation addressed many key problems in autonomous driving towards handling

dense, heterogeneous, and unstructured traffic environments. We developed new techniques

to perceive, predict, and plan among human drivers in traffic that is significantly denser in

terms of number of traffic-agents, more heterogeneous in terms of size and dynamic constraints

of traffic agents, and where many drivers do not follow the traffic rules. In this thesis, we

present work along three themes—perception, driver behavior modeling, and planning. Our novel

contributions include:

1. Improved tracking and trajectory prediction algorithms for dense and heterogeneous traffic

using a combination of computer vision and deep learning techniques.

2. A novel behavior modeling approach using graph theory for characterizing human drivers

as aggressive or conservative from their trajectories.

3. Behavior-driven planning and navigation algorithms in mixed (human driver and AV) and

unstructured traffic environments using game theory and risk-aware control.

Additionally, we have released a new traffic dataset, METEOR, which captures rare and

interesting, multi-agent driving behaviors in India. These behaviors are grouped into traffic

violations, atypical interactions, and diverse scenarios. We evaluate our perception work on
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tracking and trajectory prediction using standard autonomous driving datasets such as the Waymo

Open Motion, Argoverse, NuScenes datasets, as well as public leaderboards where our tracking

approach resulted in achieving rank 1 among over a 100 methods. We apply human driver

behavior modeling in planning and navigation at unsignaled intersections and highways scenarios

using state-of-the-art traffic simulators and show that our approach yields fewer collisions and

deadlocks compared to methods based on deep reinforcement learning. We conclude the presentation

with a discussion on future work.
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