
ChainNet: A Customized Graph Neural Network
Model for Loss-aware Edge AI Service Deployment

Zifeng Niu
Imperial College London

zifeng.niu19@imperial.ac.uk

Manuel Roveri
Politecnico di Milano

manuel.roveri@polimi.it

Giuliano Casale
Imperial College London
g.casale@imperial.ac.uk

Abstract—Edge AI seeks for the deployment of deep neural
network (DNN) based services across distributed edge devices,
embedding intelligence close to data sources. Due to capacity
constraints at the edge, a difficult challenge lies in planning
a dependable deployment that minimizes the data loss rate so
as to meet application Quality-of-Service (QoS) goals. In this
paper, we present ChainNet, a customized graph neural network
(GNN) model serving as a surrogate to assess the reliability of
alternative deployments and guide the loss-aware search for an
optimal edge AI deployment plan. Extensive results show that
ChainNet delivers a substantial improvement in loss prediction
accuracy by over 50% compared to established GNN models, such
as graph attention networks (GATs). Moreover, we show that
ChainNet provides significantly more dependable deployment
decisions under a fixed time budget compared to simulation-based
search across a spectrum of systems from small to large-scale.

Index Terms—graph neural networks, surrogate model, de-
pendable loss-aware deployment

I. INTRODUCTION

Deep neural network (DNN) models play a key role in a

wide range of modern applications [1]–[5]. Since DNN models

are resource-hungry, inference jobs have been initially run only

in high-performance data centers [6]. However, in recent years,

to increase the security and privacy of users [7], and also

to improve energy efficiency and latency [8], an increasingly

common approach is to rely on edge architectures that run

inference jobs located near the end user that generates the

data [9]. Yet, edge devices typically have limited memory and

computing resources, which limits the possibility of deploying

a large DNN model on a single edge device. To enable

deep learning at the edge, referred to in the following as

edge AI, a DNN model is therefore partitioned into a set

of successive fragments distributed on multiple edge devices

for collaborative inference [10]. However, this architecture

introduces potential reliability risks for the application, since

data exchanged among edge devices may be lost due to the

inability of the receiving device to accept incoming jobs

when memory is nearly exhausted. In this paper, reliability

is quantified through job loss rate, which depends on the

probability of an edge device memory being full and unable

to accept new jobs, consequently losing data. Therefore, a

challenge exists on choosing an optimal edge deployment to

minimize the data loss rate, given the knowledge of partitioned

fragments and available edge devices. To answer this question,

it is desirable to have an algorithmic solution to evaluate the

loss rate of candidate deployments in an automated fashion,

supporting the system design decisions.

Although deploying partitioned DNN models has been a

topic of much research [9], existing research assumes that each

DNN fragment will operate under a light workload with little

resource contention and congestion, resulting in negligible

data loss. However, this assumption is simplistic in many

real scenarios. For example, a stream of images triggered by

camera-detected events may occasionally have an arrival rate

higher than the execution speed of the edge device. This leads

to congestion and calls for queueing analysis to characterize

the interplay between latency and finite memory constraints

at the devices. The question is further complicated when the

system accommodates multiple job arrival streams and has

dependencies between the executions of DNN fragments.

Thus, to address the above challenge, abstractions are

needed to characterize the dependability of systems with

congestion and finite memory constraints and identify an

optimal deployment plan. System evaluation based on net-

work simulation tools, such as NS-3 [11], may provide a

reasonable approximation of the real system behavior, but they

are typically too slow to be used in complex optimization

programs, where hundreds or thousands of models need to

be evaluated while seeking for a globally optimal decision.

Stochastic models, such as queueing networks (QNs), offer

more abstract approximations, which trade accuracy of the sys-

tem representation for speed [12]. Yet, explicit solutions in the

presence of multiple service chains and finite constraints are

not known, due to the loss of product-form characteristics [13].

Simulation can still be adopted also for these models but, while

faster than system simulation, it still incurs a computational

bottleneck within optimization programs.

To address this issue, we focus on graph representation

learning that has recently emerged as a way to learn and

evaluate complex networks [14]. A learned graph neural

network (GNN) can capture complicated dependencies within

graphs unseen in the training phase. Besides, GNN inference

is more scalable than queueing simulations and thus can be

used to evaluate large distributed networks.

Motivated by the difficulty in analyzing data loss and the

accuracy of graph representation learning, we propose in

this paper a novel family of GNN models, called ChainNet,

that can efficiently and accurately assess the reliability of

deployments facing resource contention and data loss. We

238

2024 54th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)

2158-3927/24/$31.00 ©2024 IEEE
DOI 10.1109/DSN58291.2024.00034

make these contributions to address the deployment problem:

• We capture the underlying queueing structure of an edge

AI system through ChainNet. Compared to popular GNN

models, such as graph attention networks (GATs) [15],

ChainNet internally adopts a customized convolution

strategy that accounts for the inter-dependencies among

common system metrics. ChainNet has the potential to

serve as a general framework for the GNN modeling of

DNN deployments.

• We propose a detailed design that enables ChainNet to

generalize its predictions to larger systems, even when

faced with more intricate dependencies than those en-

countered during training. An ablation study demonstrates

the effectiveness of our design, confirming its ability to

achieve high generalization performance.

• ChainNet reduces the prediction error by over 50% com-

pared to baseline GNN models such as GATs. With a

fixed time budget, ChainNet is also found to deliver more

reliable deployment decisions, reducing the data loss rate

by an average of around 83% compared to decisions made

by simulation-based search without resorting to a GNN.

Extensive experiments show that ChainNet can support

decision-making significantly in the deployment design.

Although ChainNet is employed in this study to distribute

DNN fragments, its applicability extends in principle to similar

problems for other distributed systems. Its main assumption is

that the studied service consists of a linear chain of fragments

so that the routing is deterministic, which holds true for most

distributed DNNs.

The paper is organized as follows: the loss-aware de-

ployment problem is formulated in Section II. A motivating

example is presented in Section III. Background on GNNs is

discussed in Section IV. ChainNet and its generalized design

are developed in Section V and VI. The surrogate optimization

program is illustrated in Section VII. Evaluation results are

shown in Section VIII. Related work and conclusion are given

in IX and X.

II. PROBLEM FORMULATION

An edge AI service system comprises a set of D heteroge-

neous devices indexed by k = 1, . . . , D. We assume these

devices to be able to acquire data and trigger processing

at other devices. We assume that links exist between any

two devices offering a stable transmission path (e.g., WiFi

or Bluetooth) with negligible signal degradation (e.g., clear

line-of-sight). Additionally, we assume all devices are located

within the transmission range of the chosen network technol-

ogy. The system is populated by a set of C distinct service

chains indexed by i = 1, . . . , C. Each such chain represents an

AI application executed on the edge infrastructure. A chain-

i service consists of a chain of DNN fragments indexed by

j = 1, . . . , Ti, which are executed in sequential order. Each

of its fragments is executed on a separate device.

We assume the arrival of chain-i service requests follows a

Poisson process of rate λi. A fragment j is characterized by

its memory demand mi,j and computational demand ri,j . A

device k is characterized by its maximum memory capacity

Mk and a service rate Rk. An incoming job is either queued in

the buffer of k or dropped if available memory is insufficient

to accept another request. A device k can be shared by

fragments of multiple service chains. All devices use First-

Come-First-Served (FCFS) scheduling to execute queued jobs.

The processing time of a fragment j at a device k is defined

as the ratio between ri,j and Rk.

A placement decision p ∈ P , where P is the space of all

possible placements, assigns the fragments to the available

devices, and it is described by variables

pi,j,k =

{
1 if device k executes fragment j of service i

0 otherwise
.

(1)

Thus, a placement p is determined by D
∑C

i=1 Ti variables

pi,j,k. A placement may not use all of the available devices,

thus we let d denote the number of used devices in a

placement, d ≤ D.

Predicting the performance of a given placement is im-

portant as it enables us to allocate resources in an optimal

manner. Performance measures that are commonly of interest

include system throughput and end-to-end latency per service

chain. The inference accuracy is not a figure of merit for us

since we assume that the DNN models are already trained

and we neither vary the model architecture nor the weights.

The system throughput Xi ≡ Xi(p) is defined as the mean

number of chain-i requests completed in a single unit of time.

The end-to-end latency Li is composed of two parts: (i) total

latency of fragments j = 1, . . . , Ti at the devices and (ii)

total transmission time between the devices. The total latency

of fragments is made up of total processing time of fragments

and total queueing time at the devices. The problem addressed

is the optimal placement to minimize the overall data loss rate

of C service chains, in other words, to maximize the total

system throughput, i.e.,

max
p∈P

Xtotal(p) =

C∑
i=1

Xi(p)

s.t. Δmk ≤ Mk, ∀k ∈ {1, . . . , D},
(2)

where Δmk is the sum of memory requirements of all

types of fragments executed on the device k, i.e., Δmk =∑C
i=1

∑Ti

j=1 pi,j,kmi,j . This constraint is meant to consider

the limit on memory capacity to ensure a feasible deployment

at each edge device.

III. A MOTIVATING EXAMPLE

Queueing network (QN) models are a widely used perfor-

mance modeling tool for AI and edge systems [16]–[18]. Since

service requests received by edge devices are external arrivals,

edge AI service systems may be modeled as open QNs. In

particular, we use queueing networks to model the key aspects

behind loss and contention that arise in such devices.

An open QN has external arrivals and consists of a set of

queueing stations. Each edge device is modeled as a station.

239

1 3

2 2 2

3 3 1

4

4 1

chain-1 service

chain-2 service

chain-3 service

edge device

Fig. 1. An example of deploying three edge AI services on five devices. Both
chain-1 and chain-2 services comprise four fragments, while chain-3 service
comprises three fragments. Fragments are represented by boxes. The number
within a box represents the position of this fragment in its service chain.

Queues build up whenever arrival requests find servers are

busy. Each station has a finite-capacity buffer to store the

queue of incoming jobs. Any arrival that finds no room is

lost due to buffer overflow. Stations are connected by service

routes that are fixed once the placement decision is enacted.

Abstracting the system as an ideal open QN, it is possible

to show that the system throughput and the queueing time at

individual devices are unaffected by the network transmission

time since the latter acts as a pure delay. In this paper,

consistently with this observation, we do not explicitly model

the total network transmission time, only the performance at

the devices.

Fig. 1 provides an example of a placement decision. The

fragments of three service chains are executed by five devices.

The arrows represent service routes; a chain-i arrow from

device k to k′ depicts that a chain-i request that finishes service

at device k is next routed to device k′. This placement is

modeled as the open QN shown in Fig. 2.

The analysis of open QNs with losses is however chal-

lenging. In particular, obtaining exact closed-form solutions

for the steady-state queue-length distributions is generally not

feasible. In [19], the authors achieve the exact analysis by

considering a small two queue tandem network in which

losses only occur at the first queue. While some works

have undertaken approximate analysis for non-product form

networks with finite capacity and losses [20], [21], they focus

only on single-chain settings, while here we consider a multi-

chain setting for which, to the best of our knowledge, accurate

approximations do not exist in the literature. In particular, our

models are rooted in the needs of edge AI systems, where the

loss process is driven by memory constraints. Such constraints

are known to have limited tractability, as they are known

to yield product-form solutions only if the loss occurs at

elements without buffers [22]. Therefore, we explore building

a learning-based surrogate model for the reliability assessment

of candidate large-scale multi-chain placement decisions.

IV. BACKGROUND ON GRAPH NEURAL NETWORKS

Graph neural networks (GNNs) are a class of neural net-

works designed to process data that is represented as a graph

[23]. A graph G = (V,E) is composed of a set of nodes V
and a set of edges E, where each edge connects a pair of

Fig. 2. The queueing network model of the placement in Fig. 1. A station
with a finite-capacity buffer is represented by a circle followed by a series of
rectangles. The arrival rates of requests for three services are λ1, λ2, and λ3.

nodes. The input data of a GNN model typically comprises a

graph and a set of features associated to the nodes.

The main objective of GNN models is to learn a meaningful

node embedding hv for v ∈ V on which regression or

classification tasks can be built. An embedding is defined as

the latent vector representation of a node that captures essential

information of its own features and surrounding context. A

popular paradigm to obtain hv is message passing [24], where

each node v in the graph (i) aggregates messages from its

neighbors and (ii) updates its own embedding based on the

obtained aggregate. The message-passing function is typically

defined as

h(n+1)
v = φ

(
h(n)
v , f

({
h(n)
u

∣∣∣u ∈ N (v)
}))

, (3)

where f and φ are respectively aggregation function and

update function, n is an iteration index, and N (v) is the set of

nodes adjacent to v. The choice of f , φ can impact the GNN

model performance [25] and various options are possible. For

instance, f could be an element-wise max-pooling, while φ
may be a concatenation of h(n)

v and f followed by a linear

transformation.

Node embeddings are initialized with their input features.

The message passing step (3) is iterated N times, which allows

node embeddings to be iteratively updated and capture the

important relationships within the data. After N iterations of

message passing, we use h(N)
v for node-level prediction tasks.

In addition, it is possible to aggregate node embeddings to

produce a representation of the entire graph for graph-level

prediction tasks.

V. METHODOLOGY

A. Workflow

Fig. 3 shows the proposed optimization workflow. Given the

available devices and edge AI services to be deployed, our

optimizer can return the best placement decision with respect

to overall system throughput according to (2). The central part

of the optimizer is ChainNet, serving as a surrogate to estimate

the performance of candidate placement decisions.

240

GNN surrogate model

for evaluating reliability

Optimizer

Optimal placement decision

(w.r.t. overall data loss rate)

Available devices

Service chains to

be deployed

A candidate placement decision

Graph representation

Reliability metrics

Construct graph

GNN prediction

Fig. 3. Main steps of the proposed approach.

1

2

1

2

3

1

2 3

2

2 1 1 3

2

Edge1

Edge2

Edge3

service node

device node

fragment node

workflow edge

placement edge

1

Fig. 4. Creating input graph corresponding to the placement decision. There
are five types of elements in a graph representation: (i) service nodes: hollow
circles with solid red borders; (ii) fragment nodes: filled nodes with solid
blue borders; (iii) device nodes: filled nodes with dashed green borders (iv)
workflow edges: solid line arrows; (v) placement edges: dashed line arrows.

B. Model input: graph representation and features

To assess the reliability of a placement decision p, we first

represent it as a heterogeneous graph where each node or edge

corresponds to a component or a dependency involved in p
(Algorithm 1). It serves as the input to our GNN model. A

placement decision p involves components including services,

fragments, and devices. We thus create three types of nodes

to represent them respectively (line 1). As a result, the graph

has C +
∑C

i=1 Ti + d nodes in total. Besides, there exist

two relationships: (i) the placement of a fragment and (ii)

the execution order of sequential fragments, which we capture

with two types of edges. The placement edges point from every

fragment node to its device node (lines 2-4), while workflow
edges point from the device node of a fragment node to its

subsequent fragment node except for the final fragment (lines

5-7). Service nodes are not directly connected to any other

nodes in the graph. They serve as a hypernode that tracks

associated fragment nodes and device nodes.

The feature of a service node vi is the arrival rate λi. For

a fragment node vj , the features include the processing time

of this fragment at its device,
ri,j
Rk

, and the memory demand

of this fragment, mi,j . The feature of a device node vk is its

maximum memory capacity Mk. The details of initial node

embeddings are given later in Table II.

An example of graph construction is displayed in Fig. 4.

This decision uses three edge devices to execute two chains of

services that comprise two and three fragments, respectively.

We create a total of ten nodes, and then use workflow edges

and placement edges to connect all non-service nodes.

Algorithm 1 Graph construction

Input: a placement decision p
Output: a graph representation

1: create service, fragment, and devices nodes: vi, vj , vk
2: for each non-zero αi,j,k ∈ p do
3: connect vj → vk
4: end for
5: for each non-zero αi,j �=Ti,k ∈ p do
6: connect vk → vj′ (j′ is the subsequent fragment of j)

7: end for

Fig. 5. The execution sequence of the chain-i service comprising Ti

fragments. It is partitioned into execution steps E1, . . . , ETi
. The color

scheme follows the one used in Fig. 4.

C. Design rationale based on queueing analysis

1) Graph partition: We partition the entire graph into a

set of execution steps. An execution step is comprised of a

fragment node vj , a device node vk, and a placement edge

from vj to vk. Each service node is associated with a set of

execution steps connected by workflow edges, which compose

its execution sequence. For instance, as shown in Fig. 5, the

execution sequence of the chain-i service is E1 → · · · → ETi ,

where Ej , j = 1, . . . , Ti are execution steps.

Therefore, a graph modeling C service chains has C execu-

tion sequences and
∑C

i=1 Ti execution steps. It is noteworthy

that a fragment node is unique to its execution step, while a

device node might be shared by multiple execution steps.

2) Latent representations of performance measures: The

end-to-end latency of a service chain is the sum of the latencies

of its fragments. In the proposed GNN model, we use the sum

of the fragment node embeddings as the latent representation

of the end-to-end latency.

Because some arrivals get dropped when the buffer is full,

the throughput typically shows a gradual decrease along the

execution sequence. As a result, the system throughput is

equivalent to the throughput at the last execution step of the

execution sequence. Following the execution sequence, we

recurrently update the embedding of the service node at every

execution step. The embedding updated at the last execution

step acts as the latent representation of the system throughput.

3) Identifying dependency within one execution step:
Queues at devices are stable due to their finite buffers. In this

case, every execution step Ej can show a steady-state behavior

where the (i) average latency LEj
, (ii) average throughput

XEj
, and (iii) average queue length QEj

remain in equilibrium

over time. The queue length indicates the extent of resource

contention at a device. The state of a device is thus captured

by the embedding of the device node.

According to Little’s law [26], the measures (i)-(iii) are

interdependent under steady-state conditions. We leverage this

mutual dependency in the design of message aggregation

241

Fig. 6. The n-th iteration of the proposed message passing within the j-th
execution step of the chain-i service. The color scheme follows the one used
in Fig. 4. The colored dash-dotted lines copy node embeddings. The black
arrows indicate input/output of the three update functions φC , φF , and φD .

within each execution step by relating messages in patterns

that resemble the interdependencies that the measures have

among themselves.

D. Model design for a single service chain

The reason we partition the execution sequence of a service

chain into a set of execution steps is that the latter is the basic

unit used to perform message passing. As shown in Fig. 6,

three types of embeddings are involved in this process, which

we now discuss in the next subsections.
1) Service node embedding: The service node is a hy-

pernode tracking the associated execution sequence, its rep-

resentation learning needs to take into account the order of

execution steps and their inter-dependencies. At each iteration,

we recurrently update the service node embedding at execution

steps Ej , j = 1, . . . , Ti using an update function φC

h
(n),j
i = φC

(
h
(n),j−1
i ,m

(n)
C

)
, (4)

where m
(n)
C is the service message. The service node embed-

ding is updated Ti times per iteration. The final embedding

from the previous iteration serves as the initial embedding for

the next iteration, i.e.,

h
(n+1),0
i = h

(n),Ti

i . (5)

The final embedding at the last iteration is used as the latent

representation of system throughput of the chain-i service.

Regarding the service message m
(n)
C , the mutual depen-

dency guides us to aggregate the embeddings of the fragment

node and device node within the same execution step to

produce the message

m
(n)
C = f

({
h
(n−1)
j ,h

(n−1)
k

})
. (6)

2) Fragment node embedding: The fragment node embed-

ding is related to the latency of this fragment, which is updated

once per iteration

h
(n)
j = φF

(
h
(n−1)
j ,m

(n)
F

)
. (7)

The fragment message m
(n)
F is built using the service node

embedding from the same execution step as well as the device

node embedding

m
(n)
F = f

({
h
(n),j
i ,h

(n−1)
k

})
. (8)

Fig. 7. Predicting system throughput and end-to-end latency of the chain-i
service concurrently at the last (N -th) iteration. The ⊕ represents element-
wise addition of vectors. The color scheme follows the one used in Fig. 4.

TABLE I
MAIN NOTATION USED BY CHAINNET

i service chain index
j fragment index
k device index
n iteration index
C the number of service chains to be deployed
Ti the number of fragments of the chain-i service
D the number of available devices
Fk the number of execution steps that include device k
p a placement decision
d the number of devices used by p
f message aggregation function
φ message update function
hi service node embedding
hj fragment node embedding
hk device node embedding

3) Device node embedding: The state of the device is

captured by its node embedding, which is updated once per

iteration as well

h
(n)
k = φD

(
h
(n−1)
k ,m

(n)
D

)
. (9)

Similarly, the device message m
(n)
D is built by aggregating

the node embeddings of the two other types from the same

execution step

m
(n)
D = f

({
h
(n),j
i ,h

(n−1)
j

})
. (10)

4) Message aggregation and update: In our framework,

m
(n)
C , m

(n)
F , and m

(n)
D are aggregated messages, returned

by function f , that are used to update the embeddings of

service, fragment, and device nodes, respectively. Because an

aggregated message is built using node embeddings from two

different types, we concatenate the two embeddings to obtain

the aggregated message

f({x,y}) = [x || y], (11)

where || is the concatenation operation.

In an execution step, the learning part of our GNN model

comprises three neural networks, φC , φF , and φD, serving as

update functions for the three types of nodes. We use three

separate GRU cells [27] as the three update functions. The

weights of each GRU cell are shared across all execution steps.

242

E. Overall Algorithm

Based on previous developments, we summarize the algo-

rithm of our GNN model (Algorithm 2).

First, we initialize the embeddings of three types of nodes

(line 1). Once node embeddings are initialized, the customized

message-passing iteration is executed N times (lines 2-16). At

each iteration, we track the execution sequence of each service

chain (lines 3-11). This is done by propagating messages

from the first execution step to the last (lines 4-9). In an

execution step, we update the embeddings of the service node

and fragment node (lines 5-8). After completing message-

passing along the entire execution sequence, we update the

initial embedding of the service node for use in the next

iteration (line 10). Then, we update the node embeddings of

used devices (lines 12-15).

At the end of the last iteration, we collect the embed-

dings of the service node, h
(N),Ti

i , and all fragment nodes,

h
(N)
1 , . . .h

(N)
Ti

, of every service chain. Following the design

rationale in Section V-C2, for each service chain, we extract

the latent representations of its throughput and latency. We

then feed them into two separate neural networks MLPtput and

MLPlatency , respectively. In this way, the system throughput

and end-to-end latency are predicted concurrently (line 17)

Xi = MLPtput(h
(N),Ti

i), Li = MLPlatency(hLi
), (12)

where hLi
=

∑Ti

j=1 h
(N)
j . This mechanism of prediction after

completing the last (N -th) iteration is illustrated in Fig. 7.

For the training phase of our GNN model, the weights of

five neural networks (φC , φF , φD, MLPtput and MLPlatency)

are initialized via the Glorot approach [28]. This method

keeps the variance of activation values and gradients roughly

constant throughout the forward and backward passes, which

helps to avoid the exploding or vanishing gradient problem in

the training process. The weights are learned by minimizing

the mean square error (MSE) between the predicted and

ground truth performance measures

L =
1

2Q

Q∑
i=1

(
(Xi −Xgt

i)2 + (Li − Lgt
i)2

)
, (13)

where Q =
∑G

g=1 Cg , G is the number of graphs in a training

batch, Cg is the number of service chains in the g-th graph,

Xgt
i and Lgt

i are the ground truth.

VI. GENERALIZED GNN FOR LARGER PLACEMENTS

A. Design for a shared device by multiple execution steps

A device could be allocated to execute multiple fragments

of distinct service chains, which means it could be shared

by multiple execution steps. Suppose a device k is included

by multiple execution steps indexed by t = 1, . . . , Fk, we

aggregate device messages of these execution steps to obtain

an overall m
(n)
D

m
(n)
D = fmulti

({
m

(n)
D1

, . . . ,m
(n)
DFk

})
. (14)

Algorithm 2 Predicting performance measures of a placement

Input: graph representation of a placement

Output: performance measures: Xi and Li for i = 1, . . . , C

1: initialize h
(1),0
i , h

(0)
j , h

(0)
k

2: for n = 1, . . . , N do
3: for i = 1, . . . , C do
4: for j = 1, . . . , Ti do
5: produce service message m

(n)
C by (6)

6: update service node embedding h
(n),j
i by (4)

7: produce fragment message m
(n)
F by (8)

8: update fragment node embedding h
(n)
j by (7)

9: end for
10: initialize h

(n+1),0
i for the next iteration by (5)

11: end for
12: for k = 1, . . . , d do
13: produce device message m

(n)
D by (10)

14: update device node embedding h
(n)
k by (9)

15: end for
16: end for
17: obtain performance measures by (12)

Fig. 8. Message passing for a device node shared by multiple execution steps.
The color scheme follows the one used in Fig. 4.

Then, we use the aggregated message m
(n)
D to update the state

of the shared device in the same way as (9).

For each involved execution step t = 1, . . . , Fk, we obtain

its device message m
(n)
Dt

using (10).

Next, we adopt a graph attention mechanism [29] to com-

pute the attention score that characterizes the significance of

a device message to the shared device

e(h
(n−1)
k ,m

(n)
Dt

) = αTσ
(
W

[
h
(n−1)
k || m(n)

Dt

])
, (15)

where W is a matrix of learnable weights, σ is a LeakyReLU

activition function, and αT is the transpose of a vector of

learnable weights.

We then normalize attention scores of all Fk device mes-

sages using the Softmax function

αkt =
exp(e(h

(n−1)
k ,m

(n)
Dt

))∑Fk

u=1 exp(e(h
(n−1)
k ,m

(n)
Du

))
. (16)

Using the normalized attention, the aggregated device mes-

sage is finally obtained as a weighted sum of transformed

device messages given by fmulti =
∑Fk

t=1 αktWm
(n)
Dt

.

In summary, to adapt our GNN to multi-chain service

scenarios, we adjust the proposed message-passing process for

device nodes by producing an overall device message based

243

train test testtrain

D
en

si
ty

D
en

si
ty

Value Value

(larger placement tasks) (out-of-distribution

node features)

Fig. 9. Two out-of-distribution scenarios considered by our surrogate model.

on the attention mechanism so that the impact of different

execution steps on the shared device can be considered. This

adjustment is shown in Fig. 8.

B. Design for generalization in out-of-distribution scenarios

In real-world conditions, there will be scenarios where

distribution shifts occur between training and test graphs. As

shown in Fig. 9, the out-of-distribution scenarios can occur

in both network size and node features. The goal is to ensure

that our GNN model attains generalization performance when

it confronts such distribution shifts.

1) Larger placement problems: The proposed GNN model

needs to generalize well to larger placement problems beyond

training samples. Compared to the training samples, they could

have more service chains, more fragments within a service

chain, or more available devices.

The key differences caused by larger placement problems

are the out-of-distribution performance measures. For ex-

ample, the end-to-end latency of a service chain could be

greater than any seen in training samples because of its longer

execution sequence. Moreover, the system throughput of this

service chain could be lower than any seen due to consecutive

losses along the longer path.

To adapt to out-of-distribution performance measures, we

make two changes: (i) Instead of learning system throughput

Xi and end-to-end latency Li directly, we learn the ratio

between system throughput and arrival rate, and the ratio

between total processing time and end-to-end latency. The two

ratios are strictly between 0 and 1 because of the occurrence

of loss and queueing time, respectively; (ii) Because the latent

representation of the end-to-end latency of a service chain is

the sum of its fragment node embeddings, a direct sum of

an unseen larger number of fragments can cause an out-of-

distribution embedding. To overcome this problem, we change

the sum into the average of embeddings hLi
= 1

Ti

∑Ti

j=1 h
(N)
j .

2) Out-of-distribution node features: As described in Sec-

tion V-B, the input node features are λi,
ri,j
Rk

, mi,j , and Mk.

For ease of presentation, we use tpi,j to denote the processing

time
ri,j
Rk

. Our model should have the generalization capability

for graph representations where node features come from

distributions different from those in training samples.

Recall that the service node embedding is recurrently

updated along the execution sequence, which is the latent

representation of the probability of service not being dropped,

for the input feature of the chain-i service node, we change

λi into 1 indicating that no drop happens at the beginning.

= 0.5 = 0.5

= 0.125 = 7

= 0.5 = 0.5

= 2.5 = 0.35

case 1

case 2

(a)

case
0

0.05

0.1

0.15

0.2

Lo
ss

 r
at

e
of

 th
e

c
-2

 s
er

vi
ce

case 2

(b)

Fig. 10. (a) Suppose the only differences between these two cases are the
arrival rate and processing time of the chain-1 service. The modified features
of the processing time in the two cases are the same: tp1,1λ1 = 0.875 and
tp2,1λ2 = 0.25. (b) Although all modified features are the same between the
two cases, they have different data loss rates of the chain-2 service.

TABLE II
FEATURE MODIFICATIONS FOR GENERALIZATION

GNN output h
(1),0
i h

(0)
j h

(0)
k

ori Xi Li λi tpi,j mi,j Mk

md
Xi

λi

∑Ti
j=1 tpi,j

Li

1
tpi,j

λ−1
i

tpi,j

Δtk

mi,j

Mk

Δmk

Mk

Legend: ori: original features. md: modified features.

Δtk =
∑C

i=1

∑Ti
j=1 pi,j,ktpi,j

To deal with the potential out-of-distribution processing

time of a fragment, we change the feature into a ratio between

the processing time of this fragment and the interarrival time of

its service chain, that is
tpi,j
λ−1
i

. This enables us to handle unseen

processing times as long as we learn a variety of ratios.

However, this single modification is not enough when a

device is shared by multiple service chains. For example,

Fig. 10 shows two cases that have the same modified features,

but the data loss rates of the chain-2 service are different. To

differentiate such cases, we add one more feature which is the

proportion of the fragment processing time tpi,j to the sum

of processing times of all types of fragments executed on the

shared device, Δtk .

The memory demand mi,j and the maximum memory ca-

pacity Mk are changed into ratios:
mi,j

Mk
and Δmk

Mk
, respectively.

All feature modifications are summarized in Table II.

VII. SURROGATE OPTIMIZATION METHOD

The proposed surrogate optimization algorithm seeks to

maximize the constrained program that we have introduced

in (2). The underpinning search strategy relies on simulated

annealing (SA) [30]. SA is a classic search algorithm that,

compared to gradient search methods, it is known to escape

local minima and find solutions closer to the global optimum.

In our setting, SA starts with an initial placement decision

and a temperature parameter τ0. At each search step, we con-

sider a new candidate decision that satisfies the constraints of

(2) and evaluate using the GNN its associated total throughput

Xtotal, Thus, the GNN surrogate gives an approximation for

the objective function value in (2).

244

TABLE III
PARAMETERS USED FOR NETWORK GENERATION

Parameter Type I Type II
max # devices 10 80
max # service chains 3 12
max # fragments per service chain 6 12

mean interarrival time (λ−1
i) U(0.1,10) APH(2,5)

fragment processing time (tpi,j) U(0,2) APH(0.1,10)

maximum memory capacity (Mk) 50 100

The lower bounds for Type II λ−1
i and tpi,j are set to 1 and 0.05.

λ−1
i and tpi,j are sampled from the listed statistical distributions.

At each step, the new candidate decision is generated as

follows. We first randomly pick a service chain c and select

a DNN fragment for this service running on device k in the

current placement. Then, in the new candidate placement we

move this fragment to a randomly selected device k′ �= k
chosen among those do not already execute fragments of

service chain c. For the placement problem to be non-trivial,

it is reasonable to assume that the number of available devices

exceeds the maximal number of fragments within any service

chain, which implies that a device k′ �= k always exists for

any fragment. If device k′ is already used by Fk′ fragments

of other service chains, we randomly choose b, 0 ≤ b ≤ Fk′ ,

of those fragments and move them to device k′. Thus, the

b fragments and the original fragment of service chain c are

swapped compared to the original placement.

At step s, the candidate placement p′ ∈ P is accepted as the

new current decision p ∈ P if it has a higher total throughput

Xtotal ≡ Xtotal(p
′) than that of p or otherwise SA accepts a

worse decision with probability e(Xtotal(p
′)−Xtotal(p))/τs . This

scheme is iterated, decreasing the temperature geometrically

as τs+1 = γτs, where γ ∈ (0, 1) is a given cooling rate.

The algorithm eventually returns the best decision found after

exceeding the maximum allowed number of search steps

specified by the user. The benefit of its combination with a

GNN surrogate is to speed up the search without incurring

significant approximation error, so as to increase the likelihood

of finding a near-optimal placement.

VIII. EVALUATION

In this section, the proposed approach is evaluated in three

steps. First, we evaluate the prediction performance of the

ChainNet and compare it to baseline GNN models from the

literature. Then, we evaluate its generalization ability through

an ablation study. Finally, we embed the customized GNN

model into our surrogate optimization method to demonstrate

the benefit of our approach on a large number of placement

problems in comparison with the baseline method.

A. Experiment setup

1) Training and test data: We obtain a dataset for training

and evaluation by simulating 70,000 queueing network models

with finite capacity constraints using the Java Modeling Tool

(JMT) simulator for QN models [31]. Each JMT simulation

abstracts the real deployment in a way similar to Figure 2

TABLE IV
GNN HYPERPARAMETERS

Hyperparameter Value
iterations/layers 8 (ChainNet, GAT), 12 (GIN)
hidden layer neurons 64
attention heads 2
batch size 128
epochs 200
optimizer Adam [32]
learning rate α 0.001, decay 10% per 10 epochs

TABLE V
THROUGHPUT APE RESULTS BY CHAINNET AND BASELINE MODELS

model APE (Type I) APE (Type II)
75th 95th 99th 75th 95th 99th

ChainNet 0.012 0.108 0.388 0.011 0.038 0.144
GIN 0.035 0.227 0.688 0.797 0.961 0.987
GAT 0.026 0.219 0.709 0.014 0.112 0.346
GIN* 0.065 0.295 0.945 0.648 1.132 2.210
GAT* 0.040 0.287 0.931 0.083 0.363 1.258

for the performance of a given placement decision. After

discarding the initial transient, the simulator collects 7×105

samples of throughputs and latency metrics. Once a simulation

is completed, we record the system throughput and end-to-end

latency for every service chain in the sample.

The network topologies are randomly generated using two

groups of parameters, shown in Table III, and denoted as

Type I parameters and Type II parameters. These two sets

of parameters represent two classes of edge service systems

with different sizes. Type II systems are larger and have more

complicated dependencies. Each parameter is chosen uni-

formly at random, except for the Type II parameters indicated

in the table, which are drawn from an Acyclic Phase-Type

(APH(μ, s2)) distribution with mean μ and squared coefficient

of variation s2 = V ar/μ2. The APH distribution has positive

support and allows us a fine control of the variance of the Type

II samples. In the simulations we assume that the execution

of a fragment requires a fixed unit of memory, however the

number of fragments on a single device can vary allowing to

exceed the available memory capacity.

The overall dataset produced in this way corresponds ap-

proximately to a week worth of simulations on a cluster of 10

machines and consists of three parts: (i) 50,000 Type I samples

for training and validation; (ii) 10,000 Type I samples for test;

(iii) 10,000 Type II samples for test. The model is trained using

the dataset (i). The samples in test datasets (ii) and (iii) are

unseen during the training phase. The purpose of training on

Type I samples and testing on Type II samples is to evaluate

the generalization ability of the model.

B. Evaluating the proposed GNN model

1) Performance metric: For a service chain, the prediction

of its performance by the proposed GNN model is evaluated by

the absolute percentage error (APE), given by
∣∣P−G

G

∣∣×100%,

where P and G are the predicted performance measure and

ground truth, respectively. Because we predict the performance

of every service chain in a collection of network samples,

245

throughput latency
Performance measures

0

0.05

0.1

M
ea

n
ab

so
lu

te
 p

er
ce

nt
ag

e
er

ro
r

ChainNet
GIN
GAT

(a)

throughput latency
Performance measures

0

0.05

0.1

0.15

0.2

0.25

0.3

M
ea

n
ab

so
lu

te
 p

er
ce

nt
ag

e
er

ro
r

ChainNet
GIN
GAT

(b)

10-5 10-4 10-3 10-2 10-1 100 101 102

Absolute ercentage rror

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

ChainNet
GIN (throughput)
GAT (throughput)
ChainNet
GIN (latency)
GAT (latency)

(c)

10-5 10-4 10-3 10-2 10-1 100 101 102

Absolute ercentage rror

0

0.2

0.4

0.6

0.8

1
C

um
ul

at
iv

e
pr

ob
ab

ili
ty

ChainNet
GIN (throughput)
GAT (throughput)
ChainNet
GIN (latency)
GAT (latency)

(d)

Fig. 11. (a)-(b): MAPE results on Type I and II test datasets, respectively.
(c)-(d): APE distributions on Type I and II test datasets, respectively.

we obtain a set of APEs. We refer in the following to the

associated statistical distribution of the APE values as the APE

distribution. In addition, we use mean absolute percentage er-
ror (MAPE) as a metric for the overall prediction performance:

MAPE =
100%

Qtest

Qtest∑
i=1

∣∣∣∣Pi −Gi

Gi

∣∣∣∣ , (17)

where Qtest is the number of service chains in the test set, i.e.,

Qtest =
∑Gtest

g=1 Cg , and Gtest is the number of test samples.
2) Baseline: We compare our customized GNN model

against two baseline models: graph isomorphism network

(GIN) [25] and graph attention network (GAT) [15], which

are two widely used GNN models adopted for different tasks

arising in various application domains of AI [33]–[36]. The

GIN architecture is designed based on a graph isomorphism

test to ensure better discrimination between different graphs.

The GAT architecture involves self-attention that allows nodes

to attend to distinct neighbors with varying importance. In

both architectures, nodes iteratively exchange messages with

neighbors. The message-passing for nodes is performed within

their respective neighbor groups. Motivated by DNN chains

in edge AI services, ChainNet partition a graph into multiple

execution sequences consisting of execution steps. It performs

message-passing in two dimensions: within execution steps

and along execution sequences, capturing inter-dependencies

between performance metrics within the system. After basic

hyperparameter tuning, the configurations adopted by Chain-

Net and baseline models are shown in Table. IV.
3) Results: Fig. 11 shows the MAPE and APE distributions

for the predicted system throughput and end-to-end latency in

Type I and II test datasets. Compared to the best results of the

baseline models, ChainNet delivers a substantial error reduc-

tion of 48.0% and 64.2% on throughput and latency, respec-

100 100-120 120-140 140-160 160
Number of nodes

0

0.2

0.4

0.6

0.8

1

A
bs

ol
ut

e
pe

rc
en

ta
ge

 e
rr

or

ChainNet
GIN (latency)
GAT (latency)

(a) (b)

 6 6-8 8-10 10-12
Number of service chains

0

0.1

0.2

0.3

0.4

0.5

A
bs

ol
ut

e
pe

rc
en

ta
ge

 e
rr

or

ChainNet
GIN (latency)
GAT (latency)

(c)

 6 6-8 8-10 10-12
Number of service chains

0

0.01

0.02

0.03

0.04

A
bs

ol
ut

e
pe

rc
en

ta
ge

 e
rr

or

ChainNet
GAT (throughput)

(d)

Fig. 12. Box plot of APE distributions under different number of nodes
and service chains. The horizontal line that splits the box is the median. We
only present the throughput prediction error boxes of ChainNet and GAT in
Fig. 12b and Fig. 12d. This is because the medians of GIN boxes are higher
than the third quartiles of other boxes, making it inconvenient to display them
alongside ChainNet and GAT.

tively. The percentiles of the APE distribution on throughput

predictions are shown in Table V. In the table, the value at

the ith percentile indicates i% of the APEs are lower than

this value. For instance, it can be observed that 95% of the

APEs by ChainNet are below 3.8%. For a fair comparison,

the baseline models adopt the same feature modifications

proposed in Table II. In Table V, we also provide the results of

baseline models when using original features in Table II, which

are denoted as GIN∗ and GAT∗. The accuracy of ChainNet

is significantly higher than that of all baseline models. In

addition to accuracy, a distinct advantage of ChainNet is that

it only requires one training phase and then predicts both

throughput and latency concurrently, while the other models

require separate training phases and predictions.

We then classify the Type II test samples according to the

number of nodes and the number of service chains, followed

by an evaluation of the prediction performance of GNN models

on these groups. Recall that in our graph representation, the

number of nodes is the sum of all service chains, fragments,

and used devices. The average prediction time per graph is

approximately 0.01 seconds across five distinct groups classi-

fied by number of nodes, showing no significant difference.

As shown in Fig. 12, the proposed ChainNet consistently

demonstrates superior performance compared to the baseline

GNN models across all groups. The advantage of our approach

becomes more pronounced as the complexity of the test

samples increases. These gains demonstrate the effectiveness

of the customized design of ChainNet.

4) Ablation study: The generalization method proposed in

Table II consists of two modifications: correcting (i) GNN

246

TABLE VI
MAPE RESULTS BY CHAINNET AND ITS ABLATED VARIANTS

model MAPE (Type I) MAPE (Type II)
throughput latency throughput latency

ChainNet 0.037 0.033 0.012 0.069
ChainNet-α 0.136 0.124 0.213 3.952
ChainNet-β 0.379 0.159 0.794 4.546
ChainNet-δ 0.042 0.050 0.033 0.237

(a) ChainNet (b) ChainNet-α

(c) ChainNet-β (d) ChainNet-δ

Fig. 13. Ablation study. Variants α, β, and δ do not use the modifications
in Table II. A major degradation appears in their validation losses supporting
the evidence that removal of GNN features degrades ChainNet.

output and (ii) input initialization, which enables ChainNet

to work on large-scale graphs with out-of-distribution node

features. In order to assess the effect of each modification,

an ablation study is conducted. We compare the prediction

error of ChainNet in Type II dataset with that of three ablated

versions of the customized GNN: (i) ChainNet-α: without

any of the modifications listed in Table II; (ii) ChainNet-β:

without the modification of the GNN outputs in Table II; (iii)

ChainNet-δ: without the modifications for the input h
(1),0
i ,

h
(0)
j , and h

(0)
k in Table II. The MAPE given by ChainNet and

its three variants is shown in Table VI. As can be observed

from ChainNet-β, ablating GNN output modification can cause

the largest error increase. Meanwhile, the modified input plays

an important role in generalization since ChainNet reduces

the MAPE by 63.6% and 70.9% on throughput and latency,

respectively, compared to ChainNet-δ.

To visualize the impact of each modification, we use Type

II dataset to validate the model during the training process on

Type I dataset. Fig. 13 shows the training and validation loss

over the training epochs. The figure emphasizes the critical

role of each modification in our generalization design. As

can be observed, every element of the design significantly

contributes to attaining good generalization ability in large-

sized scenarios with distribution shifts. The ablated model

variants result in validation losses that either have much larger

TABLE VII
PARAMETERS USED FOR PLACEMENT PROBLEM GENERATION

Parameter Value
available devices 20, 40, 80, 120
service chains 12
max # fragments per service chain 12

mean interarrival time (λ−1
i) Exp(1)

device service rate (Rk) U(0.5,1)
maximum memory capacity (Mk) 100
fragment computational demand (ri,j) U(0.01,0.1)

The lower bound of λ−1
i is set to 0.01. λ−1

i , Rk , and ri,j
are sampled from the listed distributions.

errors or remain hard to converge.

C. Evaluating the surrogate optimization program

1) placement problems: In this section, we solve 100

randomly generated placement problems, each corresponding

to solving an optimization program (2), using our surrogate

method developed in Section VII. Each problem has 12 service

chains to be deployed. Every service chain has a variable

number of fragments, up to 12, so that a problem can be

formulated at maximum on 144 fragments. The number of

available devices in a placement problem is varied as 20,

40, 80, or 120. The parameters used to generate placement

problems are summarized in Table VII.

2) Initial placement and search setting: To initialize a

placement that triggers the search, we first define the ranking

score for the available devices, which follows the rules: (i) The

ranking score of an unused device is always greater than that

of a used device. (ii) Within each of the two device groups,

the ranking score of a device is determined by its remaining

memory capacity. Then, we sort the available devices based

on their ranking scores from the largest to the smallest. At

each assignment iteration, we select a device with the largest

ranking score for a fragment, followed by updating its ranking

score and re-sorting the devices. We iterate this process until

all fragments are assigned. The rationale of this initialization

strategy is to use as many devices as it can, which serves as

a vanilla deployment that pursues a lower loss rate.

In the optimization process, we carry out a search with a

maximum of 100 steps. We refer to each search trajectory as a

trial. After completing a trial, the search starts again from the

same initial placement. Since the SA method in Section VII

is randomized, this results in a different search trajectory. We

find that a cooling rate γ = 0.9 gives good performance for

both ChainNet and the baseline optimization programs.

Fig. 14a gives an example of SA run showing the search

trajectories for five trials. As we can see, the rate of data loss

reduction is highly variable and the best placement decision is

ultimately given by the second trial. The curves of trials 1, 3, 4,

and 5 are fairly similar, while the trial 2 curve has two sharp

decreases around the 30th and 60th steps. While it is well

known that multi-start methods that attempt repeated trials

improve SA solutions, this example indicates that this remains

the case also for the placement problem we consider. As we

show later, the key benefit of ChainNet is to allow to run many

247

more trials per unit time than simulation-based approaches,

while attaining a very precise surrogate representation of the

search surface, allowing high fidelity in the representation of

the objective function.
3) Performance metric: We define the loss probability of a

placement p as

πloss(p) =
λtotal −Xtotal(p)

λtotal
, (18)

where λtotal =
∑C

i=1 λi, and Xtotal(p) is the objective

function value at p given in (2).

Since the goal of our optimization program is to minimize

the overall loss rate, we use the relative loss reduction to

evaluate the optimized placement p, which is defined as

η(p) =
πloss(p0)− πloss(p)

πloss(p0)
=

Xtotal(p)−Xtotal(p0)

λtotal −Xtotal(p0)
,

(19)

where p0 is the initial placement from which the search starts.

We consider the mean loss probability and mean relative

loss reduction achieved by the optimization program on gen-

erated placement problems.
4) Baseline: We now compare on the 100 random place-

ment problems the performance of the ChainNet-based opti-

mization program with that of the JMT simulation-based opti-

mization program. We split the validation into two experiments

that are conducted separately:
a) Fixed-time optimization: We compare the mean rel-

ative loss reduction achieved by ChainNet-based search to

that achieved by simulation-based search after a fixed time

length, corresponding to the duration of one simulation-based

trial. Since GNN-based estimation of latency and throughput

is faster than simulation, the ChainNet-based method is able to

run multiple trials in the period during which the simulation

completes its single trial and we compare the best solution

found by both methods in the same time period.
b) Fixed-steps optimization: We compare the mean rel-

ative loss reduction and optimization duration of ChainNet-

based search to that of simulation-based search fixing the

number of search steps to 30 trials for both GNN and simu-

lator, thus comprising 3,000 steps in total. As the GNN is a

surrogate of the simulated data, it is expected that an accurate

GNN model should display very similar performance as the

simulator in this test. Thus we ask whether this is the case or

whether the GNN faces some distortion of the search surface

that misleads the optimization.
5) Results: Given a placement problem, the ChainNet-

based optimization program provides us with an optimized

placement decision. After completion of the GNN-based opti-

mization, we post-process the results to correctly characterize

its performance as follows: the GNN solution is passed to the

simulator, then the actual performance metrics of this decision

are collected and used to produce the results reported in this

section. Thus, we do not report the loss rates estimated by the

GNN itself, which we observe are often optimistic, though

close to the simulated values, and conservatively use instead

the simulated values obtained in post-processing.

(a)

Fixed time Fixed steps
0

0.2

0.4

M
ea

n
re

la
tiv

e
lo

ss
 r

ed
uc

tio
n Simulator

ChainNet (simulated)

(b)

0 0.2 0.4 0.6 0.8 1.0
Time (hours)

0.3

0.4

0.5

M
ea

n
lo

ss
 p

ro
ba

bi
lit

y

Simulator
ChainNet as surrogate
ChainNet (simulated)

(c)

0 0.2 0.4 0.6 0.8 1.0
Time (hours)

0

0.2

0.4

M
ea

n
re

la
tiv

e
lo

ss
 r

ed
uc

tio
n Simulator

ChainNet as surrogate
ChainNet (simulated)

(d)

Fig. 14. (a): An example of different objective function reductions across 5
independent trials. (b): Mean relative loss reduction by ChainNet and baseline
method in two groups of experiments. (c)-(d): The change process of mean
loss probability and mean relative loss reduction over the fixed time frame.
Dashed lines represent estimated results by ChainNet, while solid red lines
represent simulated results of ChainNet decisions. The curves show a steep
improvement of ChainNet in a short amount of time.

0 500 1000 1500 2000 2500 3000
Steps

0.3

0.4

0.5

M
ea

n
lo

ss
 p

ro
ba

bi
lit

y

Simulator
ChainNet as surrogate
ChainNet (simulated)

(a)

0 500 1000 1500 2000 2500 3000
Steps

0

0.2

0.4

M
ea

n
re

la
tiv

e
lo

ss
 r

ed
uc

tio
n Simulator

ChainNet as surrogate
ChainNet (simulated)

(b)

Fig. 15. (a)-(b): The change process of mean loss probability and mean
relative loss reduction over the same number of steps. The curves indicate
that ChainNet is accurate in capturing trends of simulation-based search.

a) Overall results: Fig. 14b shows the mean relative loss

reduction gained by ChainNet and simulation-based baseline

method. Recall that for each problem, both searches start

from the same initial placement. For the results of fixed-time

optimization, the baseline and ChainNet achieve 20.5% and

37.6%, respectively. ChainNet delivers a 83.4% improvement

compared to the simulation-based method. When conducting

the optimization using the same number of search steps,

ChainNet achieves 86.7% of the level of the baseline method,

with a high time efficiency.

b) Fixed-time optimization: We give more details on this

scenario by plotting the mean loss probability and mean loss

relative reduction along the fixed time frame (Fig. 14c to

14d). As can be observed, in the fixed-time optimization, the

ChainNet-based program shows a steep improvement in the

curve in the very early iterations. The mean loss reduction by

248

ChainNet exceeds 35% before 0.1 hours (6 minutes), while the

simulation-based search provides a slight 5% loss reduction at

this time point. The overall curve of the objective function

given by ChainNet dominated the simulation-based curve.

c) Fixed-steps optimization: For this scenario, we plot

the change of the two metrics over the same number of steps

(Fig. 15a to 15b). It can be observed that the evolution of

loss rate in simulation-based search is accurately captured

by ChainNet. Moreover, in such cases, the ChainNet-based

program is far more efficient than the baseline. The simulation-

based program takes around 30 hours to decide the best

optimal placement, while the ChainNet-based program only

takes 90 seconds to complete an optimization of 30 trials.

Another observation is that the tails of both curves get slow

to improve; this is due to the relative difficulty of improving

the optimum through randomization as the search continues.

D. A case study with real-world parameters

The proposed ChainNet optimization program is now ap-

plied to the simulated placement of DNNs based on pa-

rameters from a real-world technological scenario comprising

2×OrangePi Zero, 2×Raspberry Pi A+, and 1×Raspberry Pi

3A+, with 128 MB, 256 MB, and 512 MB of RAM, and

4.8 GFLOPs, 0.218 GFLOPs, 5 GFLOPs of service rates,

respectively. We seek to optimally deploy 8 deep neural

networks of 4 types: a VGG16, a VGG19, a 28-layer custom

CNN for image classification, and a custom CNN for intrusion

detection from [37]. Each model is partitioned into three and

four fragments, forming two distinct service chains. Thus

the problem has a total of 2×4=8 chains that require the

deployment of 28 fragments. The memory and computational

demands of these fragments range from 4 KB to 51879

KB, and 0.6 FLOPs to 396.8 FLOPs. FLOPs are converted

into edge device processing times based on their nominal

speeds (in GHz). The exponential inter-arrival times of 3-

fragment and 4-fragment networks have mean of 0.6s and

0.7s, respectively. We conduct a simulation-based study with

JMT and estimate that the initial deployment experiences

a loss probability of 96.2%. We then perform a 100-step

ChainNet-based optimization (taking around 3s) that reduces

the loss probability to 14.6%, while the simulation-based

optimization reduces it only to 86.8% in a much longer time

span of 10 minutes. In addition, a 100-step GAT and GIN-

based optimization achieves a loss probability of 23.5% and

94.7%, respectively. These reinforce the generalization ability

of ChainNet.

IX. RELATED WORK

Several studies seek to optimize the deployment of DNN

models across distributed edge devices. The deployment can

be optimized by considering various metrics, such as latency

[38]–[41], throughput [42], [43], energy consumption [44],

and accuracy [10]. These studies can be classified into two

main groups. The first focuses on the partition of DNN

models, which determines the split points that produce near-

optimal model fragments [10], [38], [42], [43], [45], [46].

The second pursues the near-optimal placement decision for

the given DNN models and partitioned fragments [39]–[41],

[44]. For the second group, they mathematically formulate the

placement as an optimization problem, which is then solved by

heuristic methods or optimizers like Gurobi. However, these

methods are primarily developed based on the assumption

that there is no traffic congestion, which is a simplification.

In complex scenarios with queues and loss, deriving the

exact mathematical expression for the objective function is

often challenging, necessitating the use of surrogate to bridge

this gap. Graph learning-based models appear as promising

surrogates in graph-structured problems [47]. Although or-

dinary GNNs can be used conveniently, to obtain desirable

performance in specific problems, the model typically requires

a customized design that adapts the message-passing mecha-

nism to the problem context. Proper customization stands as

a powerful framework to enhance performance and address

specific challenges across various domains [48]–[52].

X. CONCLUSION, LIMITATIONS AND FUTURE WORK

In this paper, we propose ChainNet, a novel customized

GNN that can be used as a surrogate for loss-aware edge AI

deployment. The design of this model is guided by queueing

analysis tailored to the scenario where congestion and loss

occur. Meanwhile, it has a strong generalization ability that

enables ChainNet to perform well in complicated problems. In

addition, ChainNet can predict throughput and latency concur-

rently because of its customized design. The evaluation results

demonstrate that ChainNet has distinct advantages compared

with baseline models, in terms of accuracy and generalization

capability, which shows promise in evaluating and settling

complex edge deployment. It effectively and efficiently drives

the search for a deployment that minimizes the data loss rate.

The proposed method has two main limitations. Firstly, the

DNN models considered in this paper are constructed as a

chain of sequentially executed fragments, forming a deter-

ministic routing structure that shapes the design of ChainNet.

However, in less frequent scenarios, DNN models in Edge AI

may deviate from strict forward execution, such as custom

early-exit networks [53] or directed acyclic graph (DAG)

[6], [54]. To accommodate these scenarios, an extension of

ChainNet may incorporate Markovian routing, which would

need to go beyond the determinism of ChainNet. Secondly,

network link unreliability could be integrated in extensions in

ChainNet, such as unsuccessful transmissions caused by link

failure [55]. This would also be achievable once Markovian

routing is supporting, so as to enable probabilistic routing of

jobs on failed links to a sink node modeling their loss.

In terms of future work, given the inference speed shown

in the case study, the proposed ChainNet-based optimization

program may be expanded to other tasks outside design,

such as real-time resource management scenarios, possibly

integrating it with online optimization [56], [57]. It would also

be interesting to compare it with other classes of GNNs, such

as those with implicit layers [58], which have not been applied

before in Edge AI deployment modeling.

249

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in neural informa-
tion processing systems, vol. 25, 2012.

[3] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 1–9.

[4] J. D. M.-W. C. Kenton and L. K. Toutanova, “Bert: Pre-training of deep
bidirectional transformers for language understanding,” in Proceedings
of NAACL-HLT, 2019, pp. 4171–4186.

[5] L. Floridi and M. Chiriatti, “Gpt-3: Its nature, scope, limits, and
consequences,” Minds and Machines, vol. 30, pp. 681–694, 2020.

[6] C. Hu and B. Li, “Distributed inference with deep learning models
across heterogeneous edge devices,” in IEEE INFOCOM 2022-IEEE
Conference on Computer Communications. IEEE, 2022, pp. 330–339.

[7] P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino,
A. Iamnitchi, M. Barcellos, P. Felber, and E. Riviere, “Edge-centric
computing: Vision and challenges,” pp. 37–42, 2015.

[8] M. Kaiser, R. Griessl, N. Kucza, C. Haumann, L. Tigges, K. Mika,
J. Hagemeyer, F. Porrmann, U. Rückert, M. vor dem Berge et al.,
“Vedliot: very efficient deep learning in iot,” in 2022 Design, Automation
& Test in Europe Conference & Exhibition (DATE). IEEE, 2022, pp.
963–968.

[9] J. Chen and X. Ran, “Deep learning with edge computing: A review,”
Proceedings of the IEEE, vol. 107, no. 8, pp. 1655–1674, 2019.

[10] E. Li, L. Zeng, Z. Zhou, and X. Chen, “Edge ai: On-demand accelerating
deep neural network inference via edge computing,” IEEE Transactions
on Wireless Communications, vol. 19, no. 1, pp. 447–457, 2019.

[11] G. F. Riley and T. R. Henderson, “The ns-3 network simulator,” in
Modeling and tools for network simulation. Springer, 2010, pp. 15–34.

[12] G. Bolch, S. Greiner, H. De Meer, and K. S. Trivedi, Queueing
networks and Markov chains: modeling and performance evaluation
with computer science applications. John Wiley & Sons, 2006.

[13] N. Thomas, “Approximation in non-product form finite capacity queue
systems,” Future Generation Computer Systems, vol. 22, no. 7, pp. 820–
827, 2006.

[14] W. L. Hamilton, R. Ying, and J. Leskovec, “Representation learning on
graphs: Methods and applications,” 2017.

[15] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, Y. Bengio
et al., “Graph attention networks,” stat, vol. 1050, no. 20, pp. 10–48 550,
2017.

[16] Q. Liang, W. A. Hanafy, A. Ali-Eldin, and P. Shenoy, “Model-driven
cluster resource management for ai workloads in edge clouds,” ACM
Transactions on Autonomous and Adaptive Systems, vol. 18, no. 1, pp.
1–26, 2023.

[17] H. Sedghani, M. Z. Lighvan, H. S. Aghdasi, M. Passacantando, G. Ver-
ticale, and D. Ardagna, “A stackelberg game approach for managing
ai sensing tasks in mobile crowdsensing,” IEEE Access, vol. 10, pp.
91 524–91 544, 2022.

[18] S. Deng, Z. Xiang, J. Taheri, M. A. Khoshkholghi, J. Yin, A. Y. Zomaya,
and S. Dustdar, “Optimal application deployment in resource constrained
distributed edges,” IEEE Transactions on Mobile Computing, vol. 20,
no. 5, pp. 1907–1923, 2020.

[19] H. Baumann and W. Sandmann, “Multi-server tandem queue with
markovian arrival process, phase-type service times, and finite buffers,”
European Journal of Operational Research, vol. 256, no. 1, pp. 187–195,
2017.

[20] L. Shi, “Approximate analysis for queueing networks with finite capacity
and customer loss,” European journal of operational research, vol. 85,
no. 1, pp. 178–191, 1995.

[21] F. Ciucu, F. Poloczek, and A. Rizk, “Queue and loss distributions in
finite-buffer queues,” Proceedings of the ACM on Measurement and
Analysis of Computing Systems, vol. 3, no. 2, pp. 1–29, 2019.

[22] H. Kobayashi and B. L. Mark, “Generalized loss models and queueing-
loss networks,” International Transactions in Operational Research,
vol. 9, no. 1, pp. 97–112, 2002.

[23] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfar-
dini, “The graph neural network model,” IEEE transactions on neural
networks, vol. 20, no. 1, pp. 61–80, 2008.

[24] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” in International
conference on machine learning. PMLR, 2017, pp. 1263–1272.

[25] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?” in International Conference on Learning Represen-
tations.

[26] L. JD C, “A proof of the queuing formula: L= λw,” Operations Research,
vol. 9, no. 3, pp. 383–387, 1961.

[27] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

[28] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in Proceedings of the thirteenth
international conference on artificial intelligence and statistics. JMLR
Workshop and Conference Proceedings, 2010, pp. 249–256.

[29] S. Brody, U. Alon, and E. Yahav, “How attentive are graph attention
networks?” in International Conference on Learning Representations.

[30] A. G. Nikolaev and S. H. Jacobson, “Simulated annealing,” Handbook
of metaheuristics, pp. 1–39, 2010.

[31] M. Bertoli, G. Casale, and G. Serazzi, “Jmt: performance engineering
tools for system modeling,” ACM SIGMETRICS Performance Evaluation
Review, vol. 36, no. 4, pp. 10–15, 2009.

[32] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[33] B.-H. Kim and J. C. Ye, “Understanding graph isomorphism network
for rs-fmri functional connectivity analysis,” Frontiers in neuroscience,
vol. 14, p. 630, 2020.

[34] T. Alsinet, J. Argelich, R. Béjar, D. Gibert, and J. Planes, “Argumenta-
tion reasoning with graph isomorphism networks for reddit conversation
analysis,” International Journal of Computational Intelligence Systems,
vol. 15, no. 1, p. 86, 2022.

[35] K. Fountoulakis, A. Levi, S. Yang, A. Baranwal, and A. Jagannath,
“Graph attention retrospective,” Journal of Machine Learning Research,
vol. 24, no. 246, pp. 1–52, 2023.

[36] H. Hou, S. Ding, X. Xu, and L. Ding, “A novel clustering algorithm
based on multi-layer features and graph attention networks,” Soft Com-
puting, vol. 27, no. 9, pp. 5553–5566, 2023.

[37] G. Casale and M. Roveri, “Scheduling inputs in early exit neural
networks,” IEEE Transactions on Computers, 2023.

[38] E. Cho, J. Yoon, D. Baek, D. Lee, and D.-H. Bae, “Dnn model
deployment on distributed edges,” in International Conference on Web
Engineering. Springer, 2021, pp. 15–26.

[39] M. Bensalem, J. Dizdarevć, and A. Jukan, “Modeling of deep neural
network (dnn) placement and inference in edge computing,” in 2020
IEEE International Conference on Communications Workshops (ICC
Workshops). IEEE, 2020, pp. 1–6.

[40] G. Constantinou, C. Shahabi, and S. H. Kim, “Placement of dnn models
on mobile edge devices for effective video analysis,” in 2021 IEEE
International Conference on Big Data (Big Data). IEEE, 2021, pp.
207–218.

[41] S. Disabato, M. Roveri, and C. Alippi, “Distributed deep convolutional
neural networks for the internet-of-things,” IEEE Transactions on com-
puters, vol. 70, no. 8, pp. 1239–1252, 2021.

[42] A. Parthasarathy and B. Krishnamachari, “Partitioning and placement of
deep neural networks on distributed edge devices to maximize inference
throughput,” in 2022 32nd International Telecommunication Networks
and Applications Conference (ITNAC). IEEE, 2022, pp. 239–246.

[43] J. Li, W. Liang, Y. Li, Z. Xu, X. Jia, and S. Guo, “Throughput maxi-
mization of delay-aware dnn inference in edge computing by exploring
dnn model partitioning and inference parallelism,” IEEE Transactions
on Mobile Computing, 2021.

[44] G. Premsankar and B. Ghaddar, “Energy-efficient service placement
for latency-sensitive applications in edge computing,” IEEE internet of
things journal, vol. 9, no. 18, pp. 17 926–17 937, 2022.

[45] T. Mohammed, C. Joe-Wong, R. Babbar, and M. Di Francesco, “Dis-
tributed inference acceleration with adaptive dnn partitioning and of-
floading,” in IEEE INFOCOM 2020-IEEE Conference on Computer
Communications. IEEE, 2020, pp. 854–863.

[46] S. Zhang, S. Zhang, Z. Qian, J. Wu, Y. Jin, and S. Lu, “Deepslicing:
collaborative and adaptive cnn inference with low latency,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 32, no. 9, pp. 2175–
2187, 2021.

250

[47] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE transactions on
neural networks and learning systems, vol. 32, no. 1, pp. 4–24, 2020.

[48] J. Shlomi, P. Battaglia, and J.-R. Vlimant, “Graph neural networks in
particle physics,” Machine Learning: Science and Technology, vol. 2,
no. 2, p. 021001, 2020.

[49] S. Wang, X. Wang, K. Sun, S. Jajodia, H. Wang, and Q. Li, “Graphspd:
Graph-based security patch detection with enriched code semantics,” in
2023 IEEE Symposium on Security and Privacy (SP). IEEE, 2023, pp.
2409–2426.

[50] M. Ferriol-Galmés, J. Paillisse, J. Suárez-Varela, K. Rusek, S. Xiao,
X. Shi, X. Cheng, P. Barlet-Ros, and A. Cabellos-Aparicio, “Routenet-
fermi: Network modeling with graph neural networks,” IEEE/ACM
Transactions on Networking, 2023.

[51] M. Réau, N. Renaud, L. C. Xue, and A. M. Bonvin, “Deeprank-gnn:
a graph neural network framework to learn patterns in protein–protein
interfaces,” Bioinformatics, vol. 39, no. 1, p. btac759, 2023.

[52] S. Huang, Y. Wei, L. Peng, M. Wang, L. Hui, P. Liu, Z. Du, Z. Liu,
and Y. Cui, “xnet: Modeling network performance with graph neural
networks,” IEEE/ACM Transactions on Networking, 2023.

[53] T. Bolukbasi, J. Wang, O. Dekel, and V. Saligrama, “Adaptive neural
networks for efficient inference,” in International Conference on Ma-
chine Learning. PMLR, 2017, pp. 527–536.

[54] X. Dai, Z. Xiao, H. Jiang, M. Lei, G. Min, J. Liu, and S. Dustdar,
“Offloading dependent tasks in edge computing with unknown system-
side information,” IEEE Transactions on Services Computing, 2023.

[55] A. Aral and I. Brandić, “Learning spatiotemporal failure dependencies
for resilient edge computing services,” IEEE Transactions on Parallel
and Distributed Systems, vol. 32, no. 7, pp. 1578–1590, 2020.

[56] S. Modaresi, D. Sauré, and J. P. Vielma, “Learning in combinatorial
optimization: What and how to explore,” Operations Research, vol. 68,
no. 5, pp. 1585–1604, 2020.

[57] S. Padakandla, “A survey of reinforcement learning algorithms for
dynamically varying environments,” ACM Computing Surveys (CSUR),
vol. 54, no. 6, pp. 1–25, 2021.

[58] J. Liu, B. Hooi, K. Kawaguchi, and X. Xiao, “Mgnni: Multiscale graph
neural networks with implicit layers,” in Advances in Neural Information
Processing Systems, vol. 35. Curran Associates, Inc., 2022, pp. 21 358–
21 370.

251

