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Abstract—Reinforcement learning agents are susceptible to
evasion attacks during deployment. In single-agent environments,
these attacks can occur through imperceptible perturbations in-
jected into the inputs of the victim policy network. In multi-agent
environments, an attacker can manipulate an adversarial oppo-
nent to influence the victim policy’s observations indirectly. While
adversarial policies offer a promising technique to craft such
attacks, current methods are either sample-inefficient due to poor
exploration strategies or require extra surrogate model training
under the black-box assumption. To address these challenges, in
this paper, we propose Intrinsically Motivated Adversarial Policy
(IMAP) for efficient black-box adversarial policy learning in both
single- and multi-agent environments. We formulate four types
of adversarial intrinsic regularizers—maximizing the adversarial
state coverage, policy coverage, risk, or divergence—to discover
potential vulnerabilities of the victim policy in a principled
way. We also present a novel bias-reduction method to balance
the extrinsic objective and the adversarial intrinsic regularizers
adaptively. Our experiments validate the effectiveness of the
four types of adversarial intrinsic regularizers and the bias-
reduction method in enhancing black-box adversarial policy
learning across a variety of environments. Our IMAP successfully
evades two types of defense methods, adversarial training and
robust regularizer, decreasing the performance of the state-of-
the-art robust WocaR-PPO agents by 34%-54% across four
single-agent tasks. IMAP also achieves a state-of-the-art attacking
success rate of 83.91% in the multi-agent game YouShallNotPass.
Our code is available at https://github.com/x-zheng16/IMAP.

Index Terms—Reinforcement learning, black-box evasion at-
tack, adversarial policy, intrinsic motivation

I. INTRODUCTION

A. Background

Reinforcement Learning (RL) agents are susceptible to a

variety of attacks due to the vulnerabilities of their func-

tion approximators or policies themselves [1]. The growing

application of RL agents in safety-critical systems, such as

robotics and autonomous vehicles [2]–[5], underscores the

need for the development of both certification methods [6]–

[9] and empirical evaluation methods [10]–[13] to measure the

robustness of deployed RL agents. Adversarial Policy (AP),

a type of test-time evasion attack, has emerged as a crucial

∗Corresponding author.

technique for assessing the robustness of the deployed RL

engines or models [1], [11], [14]–[17].

In single-agent environments, AP is developed to generate

imperceptible perturbations on the inputs of the victim policy

network. Sun et al. [14] proposed generating action pertur-

bation via AP first and then crafting the corresponding state

perturbation via the Fast Gradient Sign Method (FGSM). Mo

et al. [17] suggested using two APs to select the attack timing

and determine the worst-case victim action separately. Apart

from these white-box methods, Zhang et al. [1] introduced

SA-RL to learn the optimal black-box AP in dense-reward

locomotion tasks. However, SA-RL requires knowledge of the

victim policy’s training-time rewards, which are difficult for

the adversary to obtain under the black-box threat model.

In multi-agent competitive environments, AP is used to

control an opponent agent to interact with the victim agent

and indirectly influence the observation of the victim. Gleave

et al. [11] first discovered this type of AP in two-player

zero-sum competitive games, denoted as AP-MARL. Wu et

al. [15] suggested training an extra surrogate victim model by

imitation learning first and then using an explainable Artificial

Intelligent technique to identify the attack timing. Guo et

al. [16] developed AP learning for non-zero-sum games by

simultaneously maximizing the adversary’s and minimizing

the victim’s value functions. However, training an additional

surrogate victim model yields only a marginal improvement in

the attacking success rate [15]. Moreover, all these AP learning

methods are sample-inefficient due to their trivial dithering

exploration methods.

B. Motivations and Design Rationale

a) Motivations: In this work, we explore and propose

Intrinsically Motivated Adversarial Policy (IMAP) for efficient

black-box AP learning in both single- and multi-agent environ-

ments. There are three main challenges. Firstly, efficient ex-

ploration is known to be critical for RL algorithms to improve

performance and reduce sample complexity. However, existing

AP learning methods all suffer from poor exploration in both

single- and multi-agent environments as they all explore in

an ad-hoc and trivial manner by heuristically perturbing the
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outputs of the AP with Gaussian noise. To address this, we de-

sign four types of adversarial intrinsic regularizers to enhance

the exploration of the AP in a principled way. Adversarial

intrinsic regularizers encourage the AP to explore novel states

more efficiently so as to uncover potential vulnerabilities of

the black-box victim policy. Secondly, the incorporation of

adversarial intrinsic regularizers presents a new challenge: how

to effectively balance the original extrinsic objective and the

newly introduced adversarial intrinsic regularizers. To sim-

plify the hyperparameter search for the optimal temperature

parameter that controls the strength of the regularization, we

employ constrained policy optimization to develop an adaptive

balancing strategy. Thirdly, existing AP methods, except for

AP-MARL, all follow a relaxed black-box threat model or

require extra surrogate victim model training. One of the key

assumptions on the knowledge of the adversary made by AP-

MARL is that the adversary against the deployed victim policy

does not have access to the training-time rewards and the value

function of the deployed victim agent. To address this, we stick

to the (unrelaxed) black-box assumptions on the knowledge of

the adversary to design our IMAP and do not rely on extra

surrogate victim models.
b) Design Rationale: To encourage the exploration of the

AP, we design four types of adversarial intrinsic regularizers

for IMAP that maximize the adversarial State Coverage (SC),

Policy Coverage (PC), Risk (R), and Divergence (D). All

four types of adversarial intrinsic regularizers are designed for

the AP to uncover the potential vulnerabilities of the victim

policy efficiently and have solid theoretical support, includ-

ing state entropy [18], policy cover [19], constrained policy

optimization [20], and policy diversity [21], [22]. Intuitively,

efficient exploration for black-box AP learning can involve

either uniform state visitation (maximizing the adversarial SC)

or maximizing deviation from explored regions (maximizing

the adversarial PC). Further, the R- and D-driven adversarial

intrinsic regularizers are also well-motivated, with the former

encouraging the AP to lure the victim policy into adversarial

states and the latter encouraging the AP to keep deviating

from its past policies to be diverse. In addition to promoting

the exploration of the AP, the inductive bias introduced by

adversarial intrinsic regularizers may distract the adversary

from its objective—decreasing the performance of the victim

policy—in the final stage of AP learning. We find that such

a distraction phenomenon exists in sparse-reward tasks and

design a novel bias-reduction method to enhance the perfor-

mance of IMAP further.
Summary of Contributions. Our main contributions are

summarized as follows:

• We propose IMAP—a general regularizer-based black-box

AP learning method—and design four types of novel, well-

motivated, and principled adversarial intrinsic regularizers,

i.e., SC-, PC-, R-, and D-driven, in both single- and multi-

agent environments.

• In single-agent environments, our IMAP outperforms the

baseline SA-RL in four dense-reward locomotion tasks and

nine sparse-reward tasks, including six locomotion, two

SA-RL: fail to make the robust agent fall or slow down

IMAP (ours): successfully make the robust agent fall

Fig. 1: The robust victim agent—trained with the state-of-

the-art defense method WocaR [24]—is attacked by (top) the

state-of-the-art AP method SA-RL and (bottom) our IMAP

in the single-agent environment Walker. Though the WocaR

Walker learned to lower its body to be robust, our IMAP can

find its vulnerable states and successfully lure the victim to

lean forward and fall.

navigation, and one manipulation tasks.

• In single-agent environments, our IMAP successfully evades

two types of state-of-the-art defense methods, including ad-

versarial training (e.g., ATLA and ATLA-SA [1]) and robust

regularizer (e.g., SA [8], RADIAL [23], and WocaR [24],

shown in Fig. 1). We empirically show that a defense method

that successfully defends one type of IMAP attack can fail

against another type of IMAP, raising a new challenge for

developing robust RL algorithms.

• In multi-agent environments, our IMAP achieves a state-

of-the-art attacking success rate of 83.91% in the com-

petitive game YouShallNotPass, outperforming the baseline

AP-MARL [11]. The adversary learns a natural blocking

skill with the policy-coverage-driven adversarial intrinsic

regularizer, shown in Fig. 2. IMAP also outperforms AP-

MARL in another competitive game, KickAndDefend.

• We develop a novel bias-reduction method for IMAP based

on the adversarial optimality constraint and empirically

demonstrate that it can effectively boost performance in both

single- and multi-agent environments.

II. PRELIMINARIES

We introduce the formulations of single- and multi-agent RL

tasks and the basic policy optimization method in this section.

In all tasks, the goal of the victim is to maximize its expected

episode rewards, while the adversary aims to minimize the

expected episode rewards of the victim.

a) Single-Agent RL Tasks: In single-agent tasks, the

agent interacts with the environment by taking sequential

actions according to the observed state at each step. This

process is usually modeled as a Markov Decision Process

(MDP) M = (S,A, P,RE , γ, μ). S and A are the state

space and action space. P : S × A → Δ(S) is a transition

function mapping state s and action a to the next state

distribution P (s′|s, a). RE : S × A × S → R is the bounded

extrinsic reward function. γ ∈ [0, 1) is the discount factor.

And μ ∈ Δ(S) is the initial state distribution.

289



AP-MARL: fail to cause the victim to take poor actions

IMAP (ours): successfully block the victim and make it fall

Fig. 2: The victim (in blue) is attacked by an adversarial oppo-

nent (in red) in the multi-agent environment YouShallNotPass.

The adversary is trained via (top) AP-MARL or (bottom)

IMAP. AP-MARL learns to statically collapse on the ground

and fail to block the victim. In contrast, our IMAP learns a

stronger adversarial skill to intercept the victim.

b) Multi-Agent RL Tasks: For multi-agent tasks, we focus

on two-player zero-sum competition games. A two-player

zero-sum competition game can be formulated as a Markov

Game M = ((Sν ,Sα), (Aν ,Aα), P, (RE ,−RE), γ, μ). S
and A stand for the state and action space repsectively.

Here, we use α to represent the adversary and ν the victim.

P : Sν×Sα×Aν×Aα → Δ(Sν ,Sα) is the transition funtion

where Δ(Sν ,Sα) is the probability distribution space over Sν

and Sα. RE : Sν × Sα × Aν × Aα × Sν × Sα → R is the

bounded instant extrinsic reward function for the victim policy,

and −RE is the corresponding extrinsic reward function for

the adversarial agent according to the zero-sum assumption.

γ ∈ [0, 1) is the common discount factor determining the

horizon of the Markov Game, and μ ∈ Δ(Sν ,Sα) is the initial

state distribution.

c) Policy Optimization: We use Proximal Policy Opti-

mization (PPO) [25] for AP learning. The objective function

of PPO is defined as:

JPPO(π) = Es,a min

{
π(a|s)
πk(a|s) Â,

clip

(
π(a|s)
πk(a|s) ; 1− ε, 1 + ε

)
Â

}
,

(1)

where 1) the density ratio
π(a|s)
πk(a|s) is the importance weight-

ing; 2) the clipping function clip(x; 1 − ε, 1 + ε) =⎧⎪⎨
⎪⎩
1− ε, x ≤ 1− ε

1 + ε, x ≥ 1− ε

x, otherwise

is to make sure that the policy gradient

is zero when |1− π(a|s)
πk(a|s) | ≥ ε; 3) the advantage function Â is

estimated by Generalized Advantage Estimation (GAE) [26]

to reduce the variance of policy gradient estimation, that

is, Â(st) =
∑∞

l=0(γλ)
l(RE(st, at, st+1) + γV πk(st+l+1) −

V πk(st+l)); and 4) the outer minimization operator ensures

the objective function JPPO is a lower bound of the objective

Es,aA. Intuitively, this objective function makes sure the new

and old policies are not so different. PPO then utilizes multiple

steps of mini-batch Stochastic Gradient Descent (SGD) on

JPPO with a dataset D = {(s, a, rE , s′)} collected by the old

policy πk and use regression to update the value function V π .

III. THREAT MODEL

We adopt a black-box threat model for AP learning in both

single- and multi-agent RL tasks. We describe the threat model

from three aspects: objective, knowledge, and capabilities of

the adversary.

A. Objective of the Adversary

In both single- and multi-agent RL tasks, the goal of the

attacker is to learn an optimal AP πα that can minimize the

test-time expected episode rewards of the deployed black-box

victim policy πν . We denote the adversarial state distribution

induced by both πα and πν as dπ
α

= dπ
α;πν

to make the

math notations concise since πν is held fixed. We define the

test-time expected episode rewards of the victim policy as

Jν
E(d

πα

) =
∑
s

dπ
α

r̂νE , (2)

where r̂νE is the surrogate reward of the victim policy since

we assume the adversary cannot access the training-time

reward rνE of the victim policy. rνE may contain complex

reward shaping terms, while r̂νE is a simple indicator that

the victim completes the task (e.g., runs far enough in lo-

comotion or reaches the target position in navigation and

manipulation) in the single-agent environment or win the

competitive game in the multi-agent environment, that is,

r̂νE = 1(the victim succeeds). The objective of the AP is then

JAP(πα) = −Jν
E(d

πα

). (3)

B. Knowledge of the Adversary

In both single- and multi-agent RL tasks, the knowledge

of the attacker is black-box, and the deployed victim policy

network is assumed to be held fixed. Specifically, we assume

that the adversary does not know the following information

of the victim policy πν : 1) training-time hyperparameters; 2)

training-time rewards rνE and the value function V πν

; 3) test-

time model architecture, parameters and activations.

Clarification. Here, we clarify the assumptions made above.

The first and third assumptions are typical black-box assump-

tions adopted by all existing back-box AP learning methods,

including SA-RL, AP-MARL, and Wu et al.’s method. For

the second assumption, it is worth noting that only the victim

policy network is utilized during the deployment phase in

RL tasks. Therefore, for evasion attacks against RL, it is

reasonable that both the training-time rewards rνE and the

value function V πν

—which are only used in the training

phase—are unknown to the adversary. SA-RL relaxed the

second assumption, resulting in a weaker threat model.

C. Capabilities of the Adversary

Here, we introduce the adversary’s capabilities separately in

single- and multi-agent tasks since their transition functions

are different, as stated in Section II.
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a) Single-Agent RL Tasks: The attacker can add small

perturbations to the victim policy’s inputs. We model the

attacker as a state adversary πα(·|s), which can generate

an adversarial perturbation aα ∼ πα based on the victim’s

current state sν . The perturbation aα is bounded in an �p
norm ball with a constant small radius ε, that is, ‖aα‖p ≤
ε. The transition function under this threat model becomes

Pα(sνt+1|sνt , aαt ) = P (sνt+1|sνt , πν(sνt + aαt )).
b) Multi-Agent RL Tasks: We focus on two-player zero-

sum competitive games. The attacker can control an opponent

agent α to battle with the victim agent ν, as visualized

in Fig. 2. Since the victim policy is held fixed, the two-

player Markov game M reduces to a single-player MDP

Mα = ((Sν ,Sα),Aα, Pα, (RE ,−RE), γ, μ). The transition

function under this treat model becomes Pα(sαt+1|sαt , aαt ) =
P (sνt+1, s

α
t+1|sνt , sαt , πν(sνt , s

α
t ), a

α
t ). In each interaction step,

the victim agent takes its action πν(sνt , s
α
t ) based on the

current environment state (sνt , s
α
t ), and the adversarial agent

samples its action aαt ∼ πα(·|sνt , sαt ) simultaneously.

On the Adversary’s Capabilities. In sum, the attacker can ob-

tain the environment’s current state—sν in single-agent tasks

and (sνt , s
α
t ) in multi-agent tasks—and maliciously influence

the victim policy. In single-agent tasks, the adversary can

directly inject perturbations aαt to the inputs of the victim

policy, i.e., πν(sνt+aαt ); in multi-agent tasks, the adversary can

indirectly influence the victim policy by generating adversarial

observations sαt with an opponent agent, i.e., πν(sνt , s
α
t ).

IV. PROPOSED ATTACK

In this section, we introduce the detailed techniques of

IMAP. We start with the design of its regularizer-based

optimization objective and the resulting RL problem for

regularizer-based black-box AP learning. We then introduce

four types of principled and well-motivated adversarial in-

trinsic regularizers as particular design cases. Following this,

we derive the details of how to solve the policy optimization

problem of IMAP. Finally, we introduce a novel bias-reduction

mechanism for IMAP to relieve the potential distraction caused

by adversarial intrinsic regularizers.

A. Optimization Objective of IMAP

Under the black-box threat model, as discussed in Sec-

tion III, maximizing the objective of the AP JAP(πα) with

trivial exploration methods like SA-RL and AP-MARL suffers

from sample inefficiency and suboptimal solutions. To address

these issues, we propose adversarial intrinsic regularizers,

which intrinsically motivate the AP to explore novel states

so as to uncover the potential vulnerabilities of the victim

policy and learn stronger attacking skills. To make a trade-off

between exploration (i.e., maximizing the adversarial intrinsic

regularizer) and exploitation (i.e., maximizing the objective

of the AP), we introduce a regularization approach by in-

corporating the adversarial intrinsic regularizer JI(d
πα

) into

the objective of the AP JAP(πα). The resulting optimization

objective of IMAP is formulated as follows:

J IMAP(πα) = JAP(πα) + τkJI(d
πα

), (4)

where τk represents the temperature parameter that determines

the strength of the regularization.

It is worth noting that our formulation for the optimization

objective of IMAP J IMAP(πα) is general. The adversarial

intrinsic regularizer JI(d
πα

) can be a general function de-

pending on the current adversarial state distribution dπ
α

and

all past adversarial state distribution {dπα
i }ki=0. The adversarial

intrinsic regularizer is designed to encourage the exploration

of the AP in a principled manner. We present four types of

adversarial intrinsic regularizers for IMAP as specific design

cases in the following section.

Based on Eq. (4), the resulting policy optimization problem

of IMAP becomes

max J IMAP(πα), s.t. πα ∈ argmax JAP(πα). (5)

The constraint is necessary so as to ensure that, at convergence,

the optimal AP for J IMAP(πα) is optimal for the objective of

the adversary JAP(πα). We name this constraint the adversarial

optimality constraint.

Uncovering Potential Vulnerabilities of the Victim Policy.
Before delving into the design of adversarial intrinsic regu-

larizers, it is crucial to define the potential vulnerabilities of

a victim policy. Formally, what we are looking for is a state

region in the victim policy’s state space, that is, Wν ∈ Sν ,

where r̂νE is small or zero. In other words, Wν is the state

region that all sub-optimal trajectories of the victim policy

pass through. Thus, uncovering the potential vulnerabilities of

the victim policy entails diverting the victim policy from its

optimal trajectories. This definition is consistent with the ob-

jective of the AP. In single-agent tasks, since Sα = Sν � Wν

and ‖aα‖p ≤ ε, we can encourage the adversary to directly

explore Sα to find Wν . On the contrary, in multi-agent tasks,

Sν 	= Sα, and the victim’s and the adversary’s states sν and

sα are coupled by the transition function Pα(sαt+1|sαt , aαt )
derived in Section III. Thus, we can design adversarial intrinsic

regularizers in Sα, Sν , or (Sα,Sν), to encourage the AP to

uncover Wν .

B. Adversarial Intrinsic Regularizer Design

We now introduce how to design appropriate adversarial

intrinsic regularizers for black-box AP learning. Recall the

objective of the adversary is to maximize the objective of

the AP JAP(πα). Existing black-box AP learning methods in

both single-agent and multi-agent RL tasks typically rely on

the heuristic exploration technique, which involves random

perturbation on the outputs of the AP without considering

the learning process of the AP. However, these methods

have been shown to be sample-inefficient and are prone to

converging towards suboptimal solutions due to premature

exploitation, particularly in sparse-reward tasks. To overcome

these limitations, we design four types of adversarial intrinsic

regularizers to stimulate the exploration of the AP, including

SC-driven, PC-driven, R-driven, and D-driven regularizers.

1) State-Coverage-Driven Regularizer: The first type of ad-

versarial intrinsic regularizer we design is the State-Coverage-

driven (SC) regularizer. The SC-driven regularizer aims to
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encourage the AP to maximize the adversarial SC by maximiz-

ing the entropy of the adversarial state distribution dπ
α

. For

instance, in a single-agent navigation RL task, the AP learned

via IMAP-SC can disrupt the victim policy by enticing it to

move randomly in the whole map. The SC-driven regularizer

for single-agent tasks can be defined as follows:

JSC
I (dπ

α

) = −∑
sd

πα

ln dπ
α

. (6)

For multi-agent RL tasks, to uncover potential vulnerabil-

ities Wν of the victim policy, we can 1) lure the victim

policy into uniformly covering Sν , and 2) encourage the

adversary itself to uniformly cover Sα. To accomplish this,

we define the marginal state distribution dπZ(z) = (1 −
γ)

∑∞
t=0 γ

tP (ΠZ(st) = z|μ, π), where ΠZ is an operator

mapping the full state into a projection space Z . The SC-

driven regularizer for multi-agent tasks is then formulated as

JSC-M
I (dπ

α

) = (1− ξ)JSC
I (dπ

α

Sα) + ξJSC
I (dπ

α

Sν ), (7)

where ξ is a constant for balancing the two sub-objectives.

2) Policy-Coverage-Driven Regularizer: Next, we intro-

duce the Policy-Coverage-driven (PC) adversarial intrinsic

regularizer, which aims to intrinsically motivate the adversary

to divert the victim policy from its past (optimal) trajectories so

as to uncover its potential vulnerabilities efficiently. We define

the adversarial explored regions, or adversarial PC, as the sum

of all historical adversarial state distributions ρα =
∑k

i=1 d
πα
i .

For single-agent tasks, we design the PC-driven adversarial

intrinsic regularizer as follows:

JPC
I (dπ

α

) = −∑
sρ

α ln ρα. (8)

This regularizer can be regarded as the entropy of the adver-

sarial PC. It encourages the adversary to visit novel regions

where ρα is small.

With the definition of the marginal state distribution in

the previous section, we can design the novel PC-driven

regularizer for multi-agent tasks

JPC-M
I (dπ

α

) = (1− ξ)JPC
I (dπ

α

Sα) + ξJPC
I (dπ

α

Sν ). (9)

Here, the first term encourages the adversary to visit novel

states beyond the explored regions, while the second term aims

to derail the victim from its optimal trajectories. The parameter

ξ is used to balance the two sub-objectives.

3) Risk-Driven Regularizer: Besides the SC- and PC-driven

adversarial intrinsic regularizers, we propose a novel Risk-

driven (R) adversarial intrinsic regularizer for black-box AP

learning. The concept of the risk is inspired by safety RL [20],

where a cost function c(s) is designed to constrain the behavior

of the agent. For instance, when there exists a dangerous state

sd in the state space, the cost function can be designed as

c(s) = −‖s− sd‖, penalizing the agent when it is close to sd.

By minimizing the expected cost function, the agent can be

guided to stay away from sd. In the context of evasion attacks,

the attacker can maliciously select a potentially vulnerable

state of the victim and lure the victim to approach this state.

We refer to the state strategically selected by the adversary

α for the victim ν as the adversarial state sν(α) ∈ Wν .

The corresponding cost function for the AP is then cα(s) =
−‖ΠSν (s)− sν(α)‖. Here, we use the projector ΠSν (s) ∈ Sν

to project the environment’s full state s into the victim policy’s

state space Sν since R only concerns the victim’s states. The

R-driven adversarial intrinsic regularizer for both single- and

multi-agent tasks is then

JR
I (d

πα

) = −∑
sd

πα‖ΠSν (s)− sν;α‖. (10)

Since all trajectories of the victim start from its initial state

sν0 , we have sν0 ∈ Wν . Thus, a natural choice of sν(α) is sν0 .
4) Divergence-Driven Regularizer: We now introduce the

fourth type of adversarial intrinsic regularizer, the D-driven

adversarial intrinsic regularizer. The design of the D-driven

regularizer is based on policy diversity [21] and [22]. The

objective of the D-driven regularizer is to intrinsically motivate

the AP πα to continuously deviate from its past policies

{πα
i }ki=1, promoting diversity of the AP’s behaviors and

preventing the AP from being trapped in a local sub-optimal

strategy. Note that we design the D-driven regularizer solely

from the adversary’s perspective, aiming to investigate whether

this proprioceptive design can also help the AP discover

potential vulnerabilities of the victim policy. Instead of ran-

domly selecting an old policy from {πα
i }ki=1, we introduce

one adversarial mimic policy πα;m which has the same neural

architecture as the AP πα and imitates the behaviors of

these past policies {πα
i }ki=1 by minimizing their average KL-

divergence over all states, i.e., min
∑

s DKL(π
α;m, {πα

i }ki=1).
We then define the D-driven regularizer for both single- and

multi-agent tasks as follows:

JD
I (d

πα

) =
∑

sd
πα

DKL (π
α, πα;m) . (11)

By maximizing JD
I (d

πα

), the AP is encouraged to constantly

deviate from its past policies to explore novel states in Sν to

uncover Wν in a proprioceptive manner.

Relationships Between the Four Types of Adversarial
Intrinsic Regularizers. Here, we clarify the relationships

between the four types of adversarial intrinsic regularizers,

i.e., SC-, PC-, R-, and D-driven adversarial intrinsic regular-

izers. They can be classified into two major categories, i.e.,

knowledge-based and data-based, depending on whether the

regularizer involves only the agent’s latest experiences (i.e.,

dπ
α

) or the whole historical knowledge (i.e., {dπα
i }ki=1 or

{πα
i }ki=1). Thus, it is clear that SC- and R-driven regularizers

belong to data-based since they only involve the adversary’s

latest state distribution dπ
α

. In contrast, PC- and D-driven reg-

ularizers belong to knowledge-based because they both employ

the adversary’s all historical knowledge ρα or {πα
i }ki=1.

State Density Approximation. To solve the optimization

problem of IMAP, it is crucial to approximate the adversarial

state density dπ
α

that all four regularizers we design involve.

In the existing literature, there are two main types of methods

for approximating state density, i.e., prediction-error-based

and K-nearest-neighbour (KNN) estimation. Prediction-error-

based methods, such as ICM [27] and RND [28], directly esti-

mate the inverse of state density using the prediction errors of a
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neural network. However, these methods suffer from forgetting

problems [29], [30]. We thus turn to the KNN method, a

more efficient and stable nonparametric technique [31]. KNN

estimates the state density via the inverse of the distance

between a state and its K-nearest neighbor. Intuitively, the

larger the distance, the smaller the state density (the sparser

the samples). To estimate dπ
α

, we cannot directly sample

trajectories using the unsolved new policy πα. In turn, we use

the old policy πα
k to sample trajectories since PPO guarantees

that DKL(P
πα
k ‖Pπα

) ≤ δ. Thus, the estimated adversarial SC

is given by dπ
α

(s) ≈ 1/‖s−s∗Dk
‖. Here, Dk is a replay buffer

containing trajectories sampled by only the latest old policy

πα
k , and s∗D ∈ D is the K-nearest state of s in D. Similarly,

the adversarial PC can be estimated via ρα(s) ≈ 1/‖s− s∗B‖,

where B =
⋃k

i=1 Di is the union replay buffer that contains

all historical sampled trajectories. Note that one does not need

to maintain the functional forms of all the old APs to estimate

ρα. Instead, it is sufficient to sequentially store the trajectories

sampled by the old policy πα
i at the i-th iteration of the policy

optimization into B and use the replay buffer B to estimate

the policy cover ρα based on the KNN method.

C. Solving the IMAP Optimization Problem

We now present how to solve the policy optimization

problem of IMAP defined in Eq. (5). It is easy to verify that

J IMAP(πα) is a concave function of dπ
α

. Thus, we can leverage

the Frank-Wolfe algorithm to solve this problem. Specifically,

it iteratively solves the following problem

πα
k+1 ∈ argmax

〈
dπ

α

,∇J IMAP(πα
k )
〉

(12)

to constructs a sequence of πα
0 , π

α
1 , ... that converges to an

optimal AP πα∗. The right-hand side of Eq. (12) is also

known as the Frank-Wolfe gap [32]. Maximizing the Frank-

Wolfe gap is equivalent to finding a policy πα that maximizes

the expected episode rewards, which is in proportion to

∇J IMAP(πα
k ). Hence, we can obtain the adversarial intrinsic

bonus as follows:

rαI = ∇JI(d
πα

), (13)

and can derive the objective of IMAP based on Eq. (1)

J IMAP(πα) = Es,a min

{
πα(a|s)
πα
k (a|s)

(
ÂE + τkÂI

)
,

clip

(
πα(a|s)
πα
k (a|s)

; 1− ε, 1 + ε

)(
ÂE + τkÂI

)}
,

(14)

where ÂE and ÂI are the estimated extrinsic and intrinsic

advantage functions.

D. Reducing Bias in IMAP

Though adversarial intrinsic regularizers can intrinsically

motivate the AP to uncover the potential vulnerabilities of the

victim policy, they may introduce bias to the optimal AP. In

other words, the adversarial optimality constraint in Eq. (5)

may not hold, i.e., argmax J IMAP(πα) 	= argmax JAP(πα).
One common practice to reduce this bias is to perform

Algorithm 1 IMAP

Initialize the AP πα

Initialize replay buffers B and D
Initialize counters t = 0 and k = 0
Initialize the temperature parameter τ0 = 1
Choose an adversarial intrinsic regularizer JI(d

πα

)
while t < T do

# Sampling Stage
Collect D = {(s, a,−r̂νE , s

′)} using πα
k against πν

Update the replay buffer B = B ∪ D
Update the sample counter t = t+ len(D)
# Optimizing Stage
Compute the intrinsic bonus rαI via Eq. (13)

Estimate advantages ÂE and ÂI via GAE

Update the AP πα via Eq. (14)

Update value functions V α
E and V α

I via regression

if use BR then
Update τk via Eq. (16) and Eq. (17)

end if
Update the iteration counter k = k + 1

end while

a hyperparameter search to find the best sequences of the

temperature parameter {τi}Ti=0 for different tasks. However,

an exhaustive hyperparameter search is computationally ex-

pensive and sample-intensive.

On Hyperparameter Search. Task-dependent temperature

schedulers commonly utilize hyperparameter search to gen-

erate a sequence of the temperature parameter {τi}Ti=0 in

advance, e.g., the exponentially decreasing scheduler τk =
β(1 − ρ)k where both β and ρ are the hyperparameters to

control the shape of the exponential function. Determining

the optimal hyperparameters requires an expensive grid search.

As the number of hyperparameters increases, the cost of the

hyperparameter search grows exponentially. Conversely, our

BR is a task-independent self-adaptive temperature scheduler

that contains only one hyperparameter.

To address this challenge, we propose a novel adaptive Bias-

Reduction (BR) method to ensure the adversarial optimality

constraint. It is essential to balance the extrinsic objective

and the intrinsic regularizer to ensure the maximization of

the extrinsic objective (i.e., meeting the adversarial optimality

constraint) rather than prioritizing the intrinsic regularizer at

the end of the training process. Specifically, we propose an

approximate adversarial optimality constraint, that is,

max JAP(πα) + JI(d
πα

)

s.t. JAP(πα) >= JAP(πα
k ).

(15)

Once the approximate adversarial optimality constraint is

satisfied, we have JAP(πα
k+1) ≥ JAP(πα

k ), that is, the objective

of the AP JAP monotonically increases.

To solve this soft-constrained optimization problem, we

leverage the Lagrangian method to convert it into an uncon-

strained min-max optimization problem. The Lagrangian of

Eq. (15) is L(πα, λ) = JAP(πα) + JI(d
πα

) + λ(JAP(πα) −

293



(a) (b) (c) (d)

Fig. 3: Rendered pictures of typical MuJoCo environments. (a)

the locomotion environment Ant; (b) the navigation environ-

ment AntUMaze where the red point is the goal position; (c)

the manipulation environment FetchReach where the red point

is the goal position; (d) the two-player zero-sum competitive

game YouShallNotPass where the blue human is the victim

and the red is the adversary.

JAP(πα
k )) ∝ JAP(πα) + (1 + λ)−1JI(d

πα

) where λ is the

Lagrangian multiplier, and the corresponding dual problem is

minλ≥0 maxπα L(πα, λ). By defining the temperature param-

eter τk as

τk = (1 + λk)
−1, (16)

we have J IMAP(πα) = L(πα, λk). We alternatively update πα

and λ, that is,

πα
k+1 ∈ argmax J IMAP(πα)

λk+1 = λk − η(JAP(πα
k+1)− JAP(πα

k )),
(17)

to ensure that J IMAP and JAP are monotonically increased.

The form of the Lagrangian implies an interpretation for

balancing the objective of the AP JAP and the adversarial

intrinsic regularizer JI . At the beginning of training, λ0 =
0 and τ0 = 1, the AP focuses on exploring novel states to

discover the potential vulnerabilities of the victim policy Wν

via maximizing the sum of the objective of the AP JAP and

the adversarial intrinsic regularizer JI . When λ grows as the

training progresses, the AP pays more attention to exploiting

the uncovered states in Wν via directly maximizing JAP.

V. EXPERIMENTS

We conduct comprehensive experiments in various types of

RL tasks to evaluate our IMAP’s attacking capacity and gen-

eralization with four types of adversarial intrinsic regularizers

and verify the effectiveness of our bias-reduction method.

A. Task Descriptions

In this section, we describe the details of the selected

tasks. We evaluate our IMAP on both single- and multi-

agent RL tasks. All environments are implemented based

on the OpenAI Gym library and MuJoCo. For single-

agent environments, we choose 1) four dense-reward lo-

comotion tasks, including Hopper, Walker2d, HalfCheetah,

and Ant [1], [8], [23], [24]; 2) six sparse-reward lo-

comotion tasks, including SparseHopper, SpasreWalker2d,

SparseHalfCheetah, SparseAnt, SparseHumaonidStandup, and

SparseHumanoid [18], [33]; 3) two sparse-reward navigation

tasks, AntUMaze and Ant4Room [34], [35]; and 4) one

sparse-reward manipulation task, FetchReach [36]. We choose

two challenging two-player zero-sum competitive games,

YouShallNotPass and KickAndDefend [11], [15], [16], [37]–

[39], as our multi-agent environments.
a) Criteria for Task Selection: The selection of tasks

in our experiments is based on two main criteria. First,

all tasks must be typical and have been adopted in former

AP- and RL-related research works. This ensures that our

evaluation is based on well-established benchmarks and allows

for meaningful comparisons with existing methods. Second,

the types of tasks must be diverse to evaluate the attack

capacity and generalization of our IMAP comprehensively.

In total, we selected 13 single-agent tasks and 2 multi-agent

tasks that meet these criteria. Notably, tasks such as Ant,

SpasreAnt, and YouShallNotPass have been used in multiple

attacking and defense methods, making them suitable for

comparative evaluations. The selected single-agent tasks cover

three types: locomotion, navigation, and manipulation. We

specifically include a manipulation task to demonstrate that our

IMAP can efficiently learn optimal black-box APs to attack

agents in tasks other than locomotion tasks. To further increase

task diversity and evaluate IMAP’s efficacy in multi-agent en-

vironments, we include two competitive games. These games

involve victim agents with diverse skills, such as running and

kicking. Moreover, the dimension of the environment state

varies across the single-agent tasks, ranging from 11 (Hopper)

to 378 (Humanoid). In the multi-agent tasks, the dimension of

the environment state grows to 378x2. This variation in the

state space dimension allows us to assess the performance of

IMAP across tasks with different levels of complexity. Overall,

our selected tasks ensure a comprehensive evaluation of IMAP.
b) Evaluation Metrics: In our evaluation of single-agent

tasks, we use the average episode rewards of the victim

policy under attacks as the primary evaluation metric. This

is a common metric used to assess the performance of the

victim policy. A lower average episode reward indicates a

more successful evasion attack, as the victim policy is less

effective in achieving its intended goals. For multi-agent tasks,

we follow the previous works and report the attacking success

rate of the AP. The attacking success rate is defined as

ASR = # of episodes where the adversary wins
# of total episodes

. It is easy to observe

that ASR = JAP +1. A higher ASR indicates a stronger AP.
c) Single-Agent Tasks: In dense-reward single-agent

tasks, the victim agent is expected to run as fast as possible

and live as long as possible. According to the threat model in

Section III, the adversary cannot access the victim’s training-

time reward rνE which contains complex reward shaping terms

like −ων
a‖aν‖2 and −ων

f‖fν‖2. Instead, the adversary uses

the surrogate reward r̂νE . In sparse-reward single-agent tasks,

the victim agent is required to reach a certain goal at the

end of the episode. In four locomotion tasks, the victim agent

starts from the initial position and must move forward across

a distant line to complete the task. The Ant environment is

rendered in Fig. 3a. The episode is terminated once the victim

agent gets the extrinsic reward or enters an unhealthy state. In

two navigation tasks, the victim agent must navigate an Ant

on different maps to reach a target region instead of always
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moving forward. This kind of task is thus known as more

challenging than locomotion tasks like Ant and SparseAnt

[34]. The environment AntUMaze is shown in Fig. 3b. In

the manipulation task FetchReach, the robot arm is reset to

an initial posture in each episode, and the victim agent is

demanded to control the arm to move the end effector to a

target position. FetchReach is visualized in Fig. 3c.

d) Multi-Agent Tasks: In YouShallNotPass, two hu-

manoid robots are initialized facing each other. The victim

policy controls the runner (in blue), while the AP controls the

blocker (in red), as visualized in Fig. 3d. The victim wins if

it reaches the finish line within 500 timesteps, whereas the

adversary wins if the victim does not. KickAndDefend is a

soccer penalty shootout between two humanoid robots. The

victim policy controls the kicker (in blue), and the AP controls

the goalie (in red). The victim wins if it shoots the ball into the

red gate; otherwise, the adversary wins. The victim policies

were trained via self-playing against random old versions of

their opponents.

B. Baselines and Implementation

We now introduce the baselines used in our experiments.

a) Single-Agent Tasks: We select SA-RL [1], the state-

of-the-art black-box AP learning method for single-agent

tasks, as the baseline. The original SA-RL relaxes the black-

box assumption and requires the training-time reward rνE
to learn the optimal AP. To ensure a fair comparison, we

implement both SA-RL and IMAP with the same simple

surrogate reward −r̂νE defined in Section III-A across all

tasks. Moreover, all evasion attack methods for single-agent

tasks in our experiments use the same attacking budget ε
in each task. To justify the choice of the baseline, here we

discuss other related AP methods for single-agent tasks. Yu

et al.’s method [40] is tailored for video games. Sun et al.’s

method [14] and Mo et al.’s method [17] fall under the

category of white-box AP methods, as they necessitate access

to the accurate model architecture and parameters of the victim

policy. What is more, SA-RL outperforms MaxDiff and Robust

Sarsa in their original paper [1]. Thus, SA-RL is the most

suitable choice for our baseline in single-agent tasks.

b) Multi-Agent Tasks: We choose AP-MARL [11] as the

baseline, which is recognized as the state-of-the-art black-

box AP learning method for multi-agent tasks. To justify this

choice, we mention here other existing AP methods for multi-

agent tasks. As highlighted in Section III, our threat model

is the same as that of AP-MARL. Wu et al.’s method [15],

while adopting the same threat model, introduces the require-

ment of training an extra surrogate victim model. This added

complexity, however, results in only a marginal improvement

when compared to AP-MARL. As reported in their original

paper, Wu et al.’s method achieves an ASR of only 60% in

YouShallNotPass, while AP-MARL achieves an ASR of 59%

in our experiments. Gong et al.’s method [38] demands access

to the training-time value function V πν

of the victim policy,

thereby violating our threat model. In addition, Gong et al.’s

method reports an ASR of only 76% in YouShallNotPass. In

contrast, our method, IMAP-PC+BR, achieves a substantially

higher ASR of 83.91% in the same environment without

any relaxation of the black-box assumptions. Guo et al.’s

method [16] extends AP-MARL to non-zero-sum competitive

games and is the same as AP-MARL in zero-sum competitive

games. Thus, AP-MARL is the ideal baseline for two-player

zero-sum competitive games, which are our primary focus.

C. Evaluation Results

In this section, We report our main results. At a high level,

our experiments reveal the following set of observations:

IMAP vs. SA-RL: IMAP dominates SA-RL against most (15

out of 22) models and is comparable in the reset across all

dense-reward single-agent tasks. Among all types of IMAP

attacks, IMAP-PC achieves the best average performance.

Generalization: IMAP excels in terms of generalization,

surpassing SA-RL across diverse types of tasks, including

locomotion, navigation, and manipulation tasks.

Choice of Adversarial Intrinsic Regularizers: IMAP-PC

is a suitable choice for a novel task since it exhibits superior

generalization across our proposed four types of IMAP attack.

Effect of BR in IMAP: The use of the balancing method

BR in IMAP proves effective in enhancing the attacking per-

formance, particularly when the adversarial intrinsic bonuses

strongly distract the adversary.

IMAP vs. AP-MARL: IMAP-PC+BR significantly outper-

forms AP-MARL in two zero-sum competitive games.

Hyperparameter Sensitivity: IMAP displays resilience to

variations in two newly introduced hyperparameters within

reasonable bounds, i.e., ξ in Eq. (9) and η in Eq. (17).

Evading Defense Methods: IMAP successfully evades two

different types of robust training defense methods, namely,

adversarial training and robust regularizer.

1) Performance in Dense-Reward Tasks: We first discuss

the results of IMAP v.s. SA-RL in dense-reward tasks shown

in Table I.
a) IMAP Outperforms SA-RL: As shown in Table I,

IMAP performs the best against most (15 out of 22) models

(bolded results in each row) and is comparable to SA-RL

in the rest. Here are some points that need to be explained.

Firstly, when attacking the vanilla PPO models, IMAP sig-

nificantly outperforms SA-RL in Walker (895 vs. 1253) and

Ant (188 vs. 351) and performs equally in Hopper (both

80) and HalfCheetah (both 0). This underscores that when

the victim policy has evident vulnerabilities, both SA-RL,

utilizing the ad-hoc dithering exploration method, and IMAP,

employing principled adversarial intrinsic regularizers, can

readily identify and exploit these vulnerabilities to disrupt the

victim. However, when there are more subtle vulnerabilities

that elude trivial exploration methods, IMAP remains capa-

ble of efficiently discovering such vulnerabilities and further

compromising the performance of the victim policy. Secondly,

it is reasonable that there is no big difference between the

performance of IMAP and SA-RL against certain models (e.g.,

7 comparable cases beyond the 15 of 22 outperforming cases),

such as 4377 vs. 4376 against Walker RADIAL and 4202 vs.
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TABLE I: Average episode rewards Jν
E ± standard deviation of one vanilla model trained via PPO and five robust models

trained using various defense methods over 300 episodes in four dense-reward locomotion tasks under no attack, random attack,

SA-RL, and our four types of IMAP attacks. We bold the best attack result (the lowest value) in each row and also report

the average Attack Performance across all models. IMAP—the best of the four types of IMAP attacks—outperforms SA-RL

against most (15 out of 22) models and exhibits similar performance in the reset across all dense-reward single-agent tasks.

Among all attacks, IMAP-PC performs the best regarding the average performance.

Env. Victim No Attack Random SA-RL IMAP-SC IMAP-PC IMAP-R IMAP-D

Hopper
11D
0.075

PPO (va.) 3167± 542 2101± 793 80± 2 80± 2 80± 2 80± 2 80± 2

ATLA 2559± 958 2153± 882 875± 145 689± 132 639± 48 672± 120 808± 170
SA 3705± 2 2710± 801 1826± 897 1282± 68 1346± 85 1714± 1176 2278± 1144

ATLA-SA 3291± 600 3165± 576 1585± 469 1685± 512 1536± 392 1807± 642 1823± 527
RADIAL 3740± 44 3729± 100 1622± 408 2194± 672 1647± 398 1871± 498 1895± 551
WocaR 3616± 99 3633± 30 1850± 530 2140± 612 1646± 337 2917± 495 1832± 493

Average Across Victims 3346 2915 1306 1345 1149 1510 1452

Walker
17D
0.05

PPO (va.) 4472± 635 3007± 1200 1253± 468 1002± 391 895± 450 2966± 956 947± 160

ATLA 3138± 1061 3384± 1056 1163± 464 1035± 614 991± 500 1599± 742 1385± 590
SA 4487± 61 4465± 39 3927± 162 4196± 231 3072± 1304 4083± 155 3820± 39

ATLA-SA 3842± 475 3927± 368 3508± 66 3144± 995 2868± 1145 3620± 143 3469+650
RADIAL 5251± 12 5184± 42 4376± 1229 4562± 941 4377± 1147 4584± 1021 4474± 1187
WocaR 4156± 495 4244± 157 2871± 1153 3178± 1168 2874± 1085 2740± 1162 2859± 1078

Average Across Victims 4224 4035 2850 2853 2513 3265 2826

HalfCheetah
17D
0.15

PPO (va.) 7117± 98 5486± 1378 0± 0 0± 0 0± 0 56± 147 0± 0

ATLA 5417± 49 5388± 34 1696± 1352 2451± 1352 1711± 1357 1996± 965 1765± 1357
SA 3632± 20 3619± 18 2997± 22 2996± 24 2984± 20 3390± 62 3000± 27

ATLA-SA 6157± 852 6164± 603 4170± 664 4311± 412 4202± 726 4395± 728 4231± 681
RADIAL 4724± 14 4731± 42 1654± 1312 1669± 1326 1641± 1298 1791± 1278 2563± 1496
WocaR 6032± 68 5969± 149 4257± 1254 3734± 1512 4026± 1374 4782± 105 4759± 487

Average Across Victims 5513 5226 2462 2433 2427 2730 2720

Ant
111D
0.15

PPO (va.) 5687± 758 5261± 1005 351± 110 310± 184 212± 244 188± 135 284± 195

ATLA 4894± 123 4541± 691 0± 0 428± 63 70± 128 696± 24 0± 0
SA 4292± 384 4986± 452 2698± 822 2720± 879 2643± 851 2722± 994 2746± 831

ATLA-SA 5359± 153 5366± 104 3125± 207 3228± 190 3156± 302 2611± 213 3125± 182
Average Across Victims 5058 5039 1544 1672 1520 1554 1539

4170 against HalfCheetah ATLA-SA. This can be attributed to

three factors: 1) the victim agent’s strong robustness, making

its vulnerabilities difficult to detect even with adversarial

intrinsic regularizers; 2) the potential distraction introduced

by the adversarial intrinsic regularizers, which may divert the

adversarial policy from maximizing its core objective; 3) the

worst cases in these 7 comparable tasks are easier to uncover

compared to the other 15 outperforming tasks, causing that

both IMAP and SA-RL can successfully discover the worst

cases in these tasks and exhibit similar performances. Note

that the distraction phenomenon is more apparent in sparse-

reward tasks. We delve deeper into it in the following section.

b) Choice of Adversarial Intrinsic Regularizers: Black-

box robustness evaluation of the RL agent is a trial-and-

error process where the agent knows nothing about the black-

box victim model, including the training method, as stated

in Section III. We thus recommend starting the evaluation

of a new black-box victim agent with IMAP-PC as the first

trial since the experiments show it behaves well on average.

As evident from Table I, IMAP-PC demonstrates the best

average performance among all types of IMAP attacks. It

notably reduces the average performance of all victim models

by 65.66%, 40.52%, 55.97%, and 69.94% in Hopper, Walker,

HalfCheetah, and Ant, respectively. For a comprehensive

assessment of the robustness of a black-box victim policy,

it is reasonable to explore multiple types of IMAP attacks.

An essential insight from the results in Table I is that the

type of potential vulnerabilities of the victim policy is not

tied to the training method of that policy. For instance, the

vulnerabilities of the ATLA-SA model in Ant can be identified

via IMAP-R (reducing performance from 5359 to 2611), while

the vulnerabilities of the ATLA-SA model in Walker can be

exposed through IMAP-PC (reducing performance from 3842

to 2868). This pattern holds for other victim policy training

methods as well. Therefore, it is advisable to try all adversarial

intrinsic regularizers to discover potential vulnerabilities of the

victim policy thoroughly. Additionally, we do not recommend

combining multiple adversarial intrinsic regularizers since they

may violate each other and make the adversary struggle.

c) On the Large Standard Deviation in the Performance
of AP Attacks: The presence of substantial variance in the

performance of reinforcement learning algorithms is a well-

acknowledged phenomenon. This variability primarily stems

from the inherent variance in policy gradient estimation [25],

[41]. Given that the objective of the AP is maximized by

PPO, it is unsurprising that the results exhibit large standard
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Fig. 4: Curves of test-time attacking results of SA-RL and four

types of IMAP attacks on six sparse-reward locomotion tasks.

IMAP-R significantly outperforms SA-RL in SparseHopper

and SpareWalker2d; IMAP-PC significantly surpasses SA-RL

in SparseHalfCheetah and SparseHumanoidStandup.

deviations. It is noteworthy that this phenomenon of significant

standard deviation is not exclusive to IMAP but has also

been reported in the original papers of SA-RL [1] and AP-

MARL [11]. Importantly, variances do not significantly affect

the application of AP methods. In practice, attackers have the

flexibility to train multiple APs using various seeds and select

the best one to attack the victim.

2) Performance in Sparse-Reward Tasks.: We now discuss

the results in spares-reward single-agent tasks shown in Fig. 4

and Table II.

a) Attacking Capacity and Generalization: The results

presented in Table II underscore IMAP’s superior perfor-

mance, outperforming SA-RL across all sparse-reward tasks.

Additionally, as shown in Fig. 4, IMAP exhibits a significant

advantage over SA-RL. In particular, SA-RL struggles to learn

any effective attacking strategy with the trivial exploration

method in SparseWalker2d. In contrast, IMAP-R efficiently

discovers an optimal AP, leading to a remarkable reduction

in the victim’s average episode rewards, from 0.95 to -0.04,

using only 0.5M samples (10× less than the 5M training

sample budget). In SparseHumanoidStandup, SA-RL costs 5M

samples to decrease the victim’s performance from 0.99 to

0.88, while our IMAP-PC decreases the victim’s performance

to 0.4 within 2.5M samples (2× less). In terms of generaliza-

tion, IMAP consistently diminishes the performance of victim

agents across all three types of tasks, including locomotion,

navigation, and manipulation tasks. Moreover, IMAP surpasses

SA-RL in terms of the average performance across tasks (in

the last line of Table II). These findings highlight the superior

attacking capacity and generalization of IMAP compared to

the baseline SA-RL.

b) Choice of Adversarial Intrinsic Regularizers: Again,

we discuss the choice of the adversarial intrinsic regularizers in

sparse-reward tasks. From Table II, we observe that IMAP-PC

mainly excels in locomotion and manipulation tasks; IMAP-D

performs the best in navigation tasks; and IMAP-R stands out

in partial locomotion tasks. These findings lead us to conclude
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Fig. 5: Learning curves of AP-MARL and IMAP-PC+BR

in two-player zero-sum competitive games. IMAP-PC+BR

outperforms AP-MARL by a large margin.

that the suitability of an adversarial intrinsic regularizer is

closely tied to the type of task. It is expected that different

types of victim agents possess distinct potential vulnerabilities.

For instance, in locomotion tasks like SparseHopper and

SparseWalker, where the victim policy is dynamically unstable

and prone to fall into unhealthy states under perturbations,

the R-driven adversarial intrinsic regularizer is more likely

to reveal these vulnerabilities. Considering that the average

performance of IMAP-PC is the best, one may try IMAP-PC

first and then other types of IMAP.

c) Effect of Bias-Reduction: The results presented in

Table II reveal that bias-reduction (BR) yields notable perfor-

mance improvements for IMAP in several sparse-reward tasks.

Specifically, in Ant4Rooms, IMAP-R is heavily distracted

by the R-driven regularizers. With the incorporation of BR,

IMAP-R’s performance is substantially enhanced, elevating

it from 0.74 to 0.22. Note that 0.22±0.48 (R) indicates that

this result is achieved by IMAP-R+BR. Similarly, IMAP-PC

benefits from BR, improving its performance from 0.37 to

0.22 and emerging as the top-performing attack in AntUMaze.

These outcomes underscore the efficacy of BR in augmenting

the performance of IMAP in sparse-reward tasks.

3) Performance in Competitive Games: In this section, we

discuss the results of IMAP v.s. AP-MARL in multi-agent

tasks, as shown in Fig. 5.

a) IMAP-PC+BR Outperforms AP-MARL: Building

upon the insights gained from single-agent tasks, we delve

into the performance of IMAP-PC+BR in two-player zero-

sum competitive games in comparison to AP-MARL. Remark-

ably, IMAP-PC+BR consistently outperforms AP-MARL by

a substantial margin. As illustrated in Fig. 5, IMAP-PC+BR

consistently surpasses AP-MARL, substantially elevating the

ASR from 59.64% to an impressive 83.91%. This remarkable

enhancement can be attributed to the acquisition of more

natural attacking behavior in YouShallNotPass, as evidenced

in Fig. 2. In KickAndDefend, the game imposes constraints

on the adversary (the goalie), confining it to a square region

before the gate. Even within these constraints, IMAP manages

to enhance the ASR from 47.02% to 56.96%. These results
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TABLE II: Average episode rewards Jν
E ± standard deviation of the victim policies over 1000 episodes across nine sparse-

reward tasks, including six locomotion tasks (starting with ’S.’), two navigation tasks AntUMaze and Ant4Rooms, and one

manipulation task, under nine attacks, including one baseline attack SA-RL, four types of IMAP attacks, and four types

of IMAP+BR attacks. We bold the best attack performance under each row. IMAP dominates SA-RL across all nine tasks

(highlighted by ). BR improves the attack performance of IMAP further in (4 out of 9) tasks.

Env. No Attack Random SA-RL IMAP-SC IMAP-PC IMAP-R IMAP-D IMAP+BR

S.Hopper 0.95± 0.00 0.95± 0.00 0.01± 0.32 0.00± 0.30 0.16± 0.45 -0.03± 0.00 -0.02± 0.28 -0.05± 0.22 (PC)
S.Walker 0.95± 0.00 0.94± 0.11 0.85± 0.23 0.66± 0.44 0.63± 0.45 -0.04± 0.01 0.91± 0.06 0.80± 0.32 (R)
S.HalfCheetah 0.98± 0.00 0.98± 0.00 0.30± 0.51 0.17± 0.45 0.04± 0.35 0.98± 0.00 0.33± 0.51 0.06± 0.37 (SC)
S.Ant 0.99± 0.00 0.98± 0.10 0.12± 0.42 0.23± 0.48 0.27± 0.49 0.43± 0.49 0.12± 0.42 0.10± 0.40 (D)
S.HumanStand 0.99± 0.00 0.99± 0.00 0.88± 0.32 0.99± 0.05 0.23± 0.50 0.99± 0.00 0.80± 0.42 0.36± 0.54 (PC)
S.Humanoid 0.96± 0.00 0.93± 0.21 0.49± 0.50 0.46± 0.50 0.40± 0.49 0.24± 0.44 0.45± 0.5 0.35± 0.48 (PC)

AntUMaze 0.98± 0.00 0.98± 0.00 0.32± 0.52 0.30± 0.51 0.37± 0.52 0.97± 0.10 0.28± 0.51 0.19± 0.47 (PC)
Ant4Rooms 0.91± 0.23 0.91± 0.00 0.34± 0.51 0.32± 0.51 0.40± 0.52 0.74± 0.43 0.24± 0.48 0.22± 0.48 (R)

FetchReach 0.99± 0.00 0.99± 0.00 0.31± 0.50 -0.10± 0.00 -0.10± 0.00 0.73± 0.42 0.51± 0.49 -0.10± 0.00 (PC)

Average 0.97 0.96 0.40 0.34 0.28 0.56 0.40 0.21

reinforce the superior efficacy of IMAP-PC+BR in multi-agent

tasks compared to AP-MARL, highlighting the effectiveness

of the PC-driven regularizer in uncovering potential vulnera-

bilities in the victim policy.

b) Fundamental Reasons for Outperforming AP-MARL:
The primary distinction lies in their exploration strategies

employed during the training stage. AP-MARL utilizes a

heuristic dithering exploration strategy, while IMAP+PC is

intrinsically motivated by the PC-driven regularizer. The PC-

driven regularizer allows IMAP to uncover the vulnerabilities

of the victim Wν more efficiently through a larger coverage

on the victim and the adversary’s joint state space (Sν ,Sα).

c) Ablation Study on Hyperparameters: We conducted

an in-depth investigation into the impact of IMAP’s two

newly introduced hyperparameters: the updating step size η
of the Lagrangian multiplier in Eq. (17) and the constant

ξ for balancing the two sub-objectives in Eq. (9). Fig. 6

and Fig. 7 reveal the performance of IMAP-PC+BR under

different hyperparameter settings in single- and multi-agent

tasks separately. Fig. 6 demonstrates that IMAP is insensitive

to η when η ∈ {1, 5, 10, 50}. A larger updating step size

leads to better performance within this range. Fig. 7 shows

that IMAP is also robust to changes of ξ ∈ {0.5, 1}. Recall

that JSC-M
I (dπ

α

) = (1 − ξ)JSC
I (dπ

α

Sα) + ξJSC
I (dπ

α

Sν ). Fig. 7

indicates that JSC
I (dπ

α

Sα) is critical for the performance of

IMAP-PC. Note that when these hyperparameters go beyond

rational ranges (i.e., [1,50] for the updating step size η and

(0,1] for the balancing constant ξ), the performance of IMAP

may significantly deteriorate. For instance, when ξ = 0, the

ASR of IMAP drops from the optimum 83.91% to the baseline

ASR of 60%.

VI. DEFENSE METHODS AGAINST IMAP

In this section, we explore potential defense methods against

IMAP and evaluate IMAP’s effectiveness against two main

types of defense methods.

Possible Defense Methods Against IMAP. There are four

categories of methods for RL agents to defend against evasion
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attacks: adversarial training, robust regularizer, randomized

smoothing, and active detection. Adversarial training in the

context of RL closely resembles its counterpart in DNN. It

involves optimizing the policy under either gradient-based

evasion attacks or the optimal AP. The adversary can have

various access rights in the environment to robustify the victim

agent against different types of uncertainties, e.g., directly

injecting perturbations to the state or action or reward [1],

[14], [42]–[45], adding disturbance forces or torques [12], or

even changing the layout or dynamic property of the environ-

ment [46]. Robust regularizer aims to enhance the smoothness
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of the learned policy by upper-bounding the divergence of

the action distributions under state perturbations [8], [23],

[24], [47]. Randomized smoothing has been applied to analyze

the robustness of reinforcement learning from a probabilistic

perspective [9], [48]–[50]. Active detection strategies focus

on identifying malicious samples by comparing the KL-

divergence of the nominal action distribution and the predicted

one [51] or using explainable AI techniques to identify critical

time steps contributing to the victim agent’s performance [52].

Evaluating IMAP Against Defense Methods. There are two

types of defense methods based on the above analysis, i.e.,

robust training (adversarial training and robust regularizer)

and test-time defense mechanisms (randomized smoothing and

active detection). We focus on the first type of defense method

against IMAP and leave the second type of defense method for

future work. What is more, randomized smoothing and active

detection may sacrifice the victim’s test-time performance

since they operate on the original inputs of the deployed victim

policy. Robust regularizer methods include 1) SA [8], which

improves the robustness of the victim agent via a smooth

policy regularization (denoted as SA-regularizer for concision)

on the victim policy solved by the convex relaxation tech-

nique; 2) RADIAL [23], which leverages an adversarial loss

function based on bounds of the victim policy under bounded

l∞ attacks; and 3) WocaR [24], which directly estimates

and optimizes the worst-case episode rewards also based on

bounds of the victim policy under bounded l∞ attacks. Two

adversarial training methods include: 1) ATLA [1], which

alternately trains the victim agent and an RL attacker with

independent value and policy networks; and 2) ATLA-SA [1],

which combines the training procedure of ATLA with the

SA-regularizer and uses LSTM as the policy network. The

results in Table I demonstrate our IMAP is effective in evading

robust models trained by either adversarial training methods

or robust regularizer methods. All victim models we adopt

are publicly released. We report the average performance over

300 episodes to make the results statistically reliable. Notably,

even against the state-of-the-art robust WocaR models, our

IMAP can efficiently uncover their potential vulnerabilities via

proper adversarial intrinsic regularizers under the black-box

threat model, reducing their performance by 54.58%, 34.07%,

and 38.10% in Hopper, Walker, and HalfCheetah respectively.

VII. DISCUSSION

In this section, we provide an in-depth discussion of the

sample efficiency of IMAP and identify the specific reinforce-

ment learning engines or models that can benefit from the

proposal of the IMAP.

On the Sample Efficiency. There are three key insights

on the sample efficiency of IMAP. Firstly, the adversarial

intrinsic regularizers (i.e., SC, PC, R, D) contribute more to

the sample efficiency of IMAP compared to BR. Intuitively,

when the potential vulnerabilities of the victim policy are

extremely difficult to discover, it becomes challenging to learn

an optimal adversarial policy with an inappropriate or no in-

trinsic regulator. Secondly, there is a trade-off between sample

efficiency and performance. As shown in Table II, satisfactory

results can be achieved by using the adversarial intrinsic

regularizer PC alone, without the need for BR. Therefore,

unless ultimate performance is sought, it is not necessary

to increase the number of samples by 8x. Thirdly, IMAP-

PC is based on policy cover theory that enjoys polynomial

sample complexity [19]. Intuitively, it is aware of the agent’s

entire historical knowledge and explicitly deviates the victim

policy from its optimal trajectories. Hence, IMAP-PC is more

likely to discover the victim’s worst cases than SA-RL which

explores randomly.

RL Agents Benefiting From IMAP. There are various real-

world scenarios for RL agents, e.g., Large Language Models

(LLM) [53], autonomous driving [4], traffic control [54],

industrial automation and manufacturing [55], dynamic treat-

ment regimes [56], [57], and recommendation systems [58],

[59]. IMAP is promising to evaluate these deployed black-

box real-world RL engines or models. Here, we provide two

appropriate cases. Firstly, to evaluate the robustness of a

real-world victim autonomous driving RL agent, we can use

IMAP to either generate stealthy sensor noise to disrupt the

victim car [8] or control another malicious car to intercept

the victim car to make a traffic jam or even accident [60].

Secondly, we can formulate the red-teaming tasks for LLM

as a two-player competitive game, regarding the target LLM

as the victim agent and the red-teaming language model as

the adversarial policy [61]. In such a way, IMAP holds the

potential for learning a strong, intrinsically motivated red-

teaming adversarial policy to evaluate the robustness of the

real-world commercial black-box LLM, e.g., GPT-4.

VIII. CONCLUSION

In this paper, we proposed a new regularizer-based AP

learning method called IMAP to evaluate the robustness of

test-time RL agents in single- and multi-agent environments

under the black-box threat model. We presented four types

of adversarial intrinsic regularizers that encourage the AP to

explore novel states so as to uncover the potential vulner-

abilities of the victim policy. We also introduced a novel

balancing method, BR, to boost IMAP further. We conducted

extensive evaluation experiments of IMAP across various types

of tasks. The experimental results demonstrated that IMAP

outperformed existing methods, including SA-RL and AP-

MARL, in terms of attacking capability and generalization.

We also empirically showed that BR effectively boosted IMAP

in both single- and multi-agent environments. Moreover, we

demonstrated that IMAP successfully evaded state-of-the-art

defense methods, including adversarial training and robust

regularizer methods. Additionally, our ablation study showed

IMAP was insensitive to its main hyperparameters. Note that

though our proposed four adversarial intrinsic regularizers

covered the main branches of intrinsic motivation, one can

still design new adversarial intrinsic regularizers for IMAP as

needed. We leave this as future work.
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