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ABSTRACT  

Firearms currently pose a known risk at the borders. The enormous number of X-ray images from parcels, luggage and 

freight coming into each country via rail, aviation and maritime presents a continual challenge to screening officers. To 

further improve UK capability and aid officers in their search for firearms we suggest an automated object segmentation 

and clustering architecture to focus officers’ attentions to high-risk threat objects. Our proposal utilizes dual-view single/ 

dual-energy 2D X-ray imagery and is a blend of radiology, image processing and computer vision concepts. It consists of 

a triple-layered processing scheme that supports segmenting the luggage contents based on the effective atomic number 

of each object, which is then followed by a dual-layered clustering procedure. The latter comprises of mild and a hard 

clustering phase. The former is based on a number of morphological operations obtained from the image-processing 

domain and aims at disjoining mild-connected objects and to filter noise. The hard clustering phase exploits local feature 

matching techniques obtained from the computer vision domain, aiming at sub-clustering the clusters obtained from the 

mild clustering stage. Evaluation on highly challenging single and dual-energy X-ray imagery reveals the architecture’s 

promising performance. 

 

Keywords: Object Clustering, Object Segmentation, Threat Detection, X-ray Images 

 

1. INTRODUCTION  

One of the major worldwide border considerations is firearm smuggling. A common method to detect such activities is 

via X-ray screening the luggage coming into each country via rail, aviation and maritime. This screening operation is 

performed by specially trained offices. Considering the enormous amount of luggage entering each country every day, 

the high number of X-ray images produced presents a continual challenge to screening officers. Therefore, current 

literature aims at aiding officers in their search for firearms within congested luggage either by clustering the objects 1,2 

or by introducing fully automated threat detection systems in the 2-dimensional (2D) 3,4 or 3-dimensional space (3D) 5–9. 

Current X-ray clustering techniques are either applied on 3D Computed Tomography (CT) data 1 or on 2D imagery 2. 

Even though 3D data can afford higher levels of information completeness, as it reveals the underlying structure of the 

contained objects 10, it has a number of disadvantages. First, it requires quite a few X-rays in order to construct a single 

3D CT representation. In addition, 3D data processing is computationally deficient compared to 2D data processing. 

Regarding the current 2D X-ray clustering techniques for threat detection, literature relies on single image concepts 

utilizing standard image processing techniques 2. 

Independently of the application, common object clustering techniques include k-means 11, hierarchical clustering 12, 

DBSCAN 13, multivariate Gaussian distributions using the Expectation-maximization (EM) algorithm 14 and sparse 

models 15. Although these standard clustering techniques are quite widespread, they fail clustering overlapping objects, 

which is a very common situation for luggage contents. Although recent techniques from the biomedical community 16,17 

can afford clustering of overlapping objects, these techniques are constrained to simplistic elliptical shapes rather than 

complex unknown objects which is the case investigated in this paper. 

Urged by the deficiencies of current clustering techniques, in relation to complex object clustering, we propose an 

automated X-ray image segmentation and clustering method that suits the needs of border security. In specific, we 

suggest a multi-discipline multi-level X-ray image segmentation and clustering architecture driven by radiology, image 
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processing and computer vision concepts. Our architecture is applicable on single/ dual-energy dual-view X-ray images 

affording enhanced segmentation and clustering performance, even in case of overlapping or highly connected objects. 

This is achieved by forcing disjoining objects based on a soft and a hard clustering procedure that relies on state-of-the-

art local feature matching techniques.  

The rest of this paper proceeds as follows. Section 2 describes the single/ dual energy x-ray imagery and the dataset 

used. Section 3 presents the proposed automated X-ray image segmentation and clustering architecture and Section 4 

concludes this paper. 

2. SINGLE/ DUAL ENERGY X-RAY IMAGERY 

X-ray imagery has the ability to differentiate objects of various materials based on the interaction between X-ray photons 

and the atomic structure of the target material. Depending on the target being scanned, different energy levels of X-rays 

are used starting from 140 – 160 keV for baggage and increase up to MeV for other types of cargo. X-ray machines 

typically have two modes, single energy and dual energy. Single energy systems emit photons at a single energy level 

and produce a grayscale image with higher density materials being darker. Dual energy systems emit photons at two 

distinct energy levels. These systems are able to approximate the effective atomic number 
effZ  of different materials, by 

comparing the measurements relative to a baseline. This capability allows the system to generate a false color image of 

the object, giving the operator the ability to discriminate between different materials. Table 1 outlines the typical color 

scheme used while an example is illustrated in Figure 1. 

 

Table 1: Color scheme for different material densities in a dual-energy X-ray 

Zeff  Color Typical materials 

Low Orange  Organic material, natural substances  

Mid Green  Plastics, alloys, ceramics, light metallic elements  

High Blue/Black  Hard, dense materials e.g. steel, lead  

 

 
 

(a) (b) 

Figure 1. Example of a (a) single energy X-ray image of a handbag and (b) dual energy X-ray of a luggage containing a 

firearm. (single-energy X-ray courtesy of 18) 

 

Typical X-ray security scanning devices have an object passing through the X-ray target zone where multiple images are 

captured and collated to produce a single 2D image. Although multiple images are used, this procedure is different to a 

CT (Computed Tomography) X-ray, which provides a full 3D image of the target object. Technological advancements 

have increased the number of dual energy images from single one up to two or even four that are created by a single pass 

of the scanned object through the X-ray target zone. This means that in a single pass, two or four perspectives can be 

viewed.  



3. PROPOSED ARCHITECTURE 

The proposed object segmentation and clustering pipeline is a blend of radiology, image processing and computer vision 

concepts applied on a dual-view imaging scheme. Our architecture is presented in Figure 1 and will be analyzed in the 

following paragraphs. During that analysis, dual-energy X-rays are considered as baseline images while this section 

concludes by tackling the challenging single-energy imagery. 

 

Pre-processing

Hard-clustering

X-ray breakdown

Soft-clustering2D X-ray 

image

Zeff based image 

breakdown

Low

Mid

High
Enhanced High 

Zeff imagery

Mild object 

disconnection
Noise filtering

Object 

Clustering

2
nd

 2D X-

ray image

Local Feature 

extraction

Local Feature 

extraction

Feature 

Matching

Feature 

Matching 

refinement

Rigid 

Transformation 

estimation

Cluster 1

…
.

Rigid 

Transformation 

application

Cluster – X-ray 

intersection based 

breakdown

Cluster i

Sub-cluster a Sub-cluster N……..

Cluster i

 
Figure 2. Proposed object segmentation and clustering architecture.  

 
3.1 Dual-Energy X-ray image breakdown 

The main information obtained from a dual-energy 2D X-ray image f  is the type of materials it contains. Objects are 

distinguished based on their effective atomic number effZ  (Table 2), which we exploit to establish three image 

subcomponents , ,low mid highf f f  that correspond to the low, medium and high effZ  values.  

 

 

 



Table 2: RGB color space response based on 
effZ  

Zeff Color RGB color space response 

Low  Orange  Red 

Mid  Green  Green 

High  Blue/Black  Blue 

 

The usual case is that every pixel is a mixture of all RGB color space responses with one of the colors gaining the 

highest response. Thus, we correlate the maximum RGB response of a pixel with ( , , ), { , , }f i j c c R G B  and ,i j  are the 

X-ray image coordinates, with the dominant material at position ,i j  according to Table 2 and given by: 

 
       max ( , ) 0.33 argmax ( , , )   max ( , , ) 0.33 1

( , ) cc

if f i j f i j c f i j c c
f i j

elsewhere

  
       

  



1

0

 (1) 

In the event a pixel has the same maximum response in two color-bands, then that pixel will belong in both 

subcomponent images. From the three-subcomponent images created, the 
Bf  contains the hard and dense materials 

which will likely contain the firearm and therefore this sub-component is further propagated through the suggested 

pipeline. For better performance, objects in 
Bf  are enhanced by incorporating the low/ mid 

effZ materials enclosed as 

extracted from f  (Figure 3):  

 high Bf f f  (2) 

where  is the Hadamard product 19. 

  

(a) (b) 

  

(c) (d) 

Figure 3. X-ray of baggage, split into its three subcomponents based on the effective atomic number Zeff of each material contained (a) 

dual-energy X-ray image (b) Rf  (c) Gf  (d) highf . 

 



3.2 Soft object clustering 

Objects contained in the high-density image are then disconnected by applying a fine morphological operation of image 

opening and closing. For that process, we use a disk structuring element s  with one pixel radius in order to preserve, as 

possible, the initial shape of each object: 

  '

high highf f s s    (3) 

Where   denotes image opening and   image closing. This methodology can afford disjoining two objects that are not 

overlapping or that are not heavily connected. During our experiments, we evaluated several structuring element shapes 

e.g. square and sizes, which provided though a poorer soft object clustering performance. This is because, for a given 

radius, the disk has the smallest area and thus decimates less the objects within highf . Similarly, increasing the size of the 

structuring element corrupts the information contained in highf . 

On the manipulated high-density image '

highf , artefacts smaller than 400pixels sized are discarded as noise. This size is 

properly selected such as to balance preserving weapon sub-components while rejecting small clutter objects. An 

example is shown in Figure 4, where the effectiveness of the soft object clustering is indicated with green arrows. The 

same image highlights with a red arrow the poor performance on highly connected objects, highlighting the requirement 

for additional more sophisticated approaches that are presented in Section 3.4.  

  

  

(a) (b) 

  

(c) (d) 

Figure 4. (a) Original dual energy 2D X-ray imagery (b) High-density subcomponents, red arrows highlight connected regions of 

different objects (c) Image after morphological opening and closing (d) final high-density imagery after discarding small artefacts 

 

 

3.3 Object clustering 

Given the processed high-density image 
'

highf , we cluster the contents based on a pixel-pair connectivity metric. Pixel-

pairs that meet the 8-connectivity requirement are assigned under the same cluster kCl , otherwise to a different cluster. 

Figure 5 depicts a clustering example where nine clusters are identified.  



At this stage, the suggested object segmentation and clustering pipeline exploits one dual-energy 2D X-ray image. It is 

possible though that high-density objects within the baggage are overlapping or are highly connected. To compensate 

that we force disjoining the objects belonging to the same cluster by exploiting concepts from the computer vision 

domain.  

 
Figure 5. Clustering example on the processed high-density image 

 

 

3.4 Hard object clustering 

We force clustering overlapping/ heavily connected objects by introducing a hard object clustering process that takes 

advantage of current computer vision concepts. These concepts are applied on a second complimentary view 'f of the 

same luggage image f .  

Specifically, we propagate 'f  via the pipeline presented in Sections 3.1 and 3.2 and create image '

highI . Then '

highI  along 

with the clusters Cl  obtained from image f  after the soft disjoining and clustering modules (Sections 3.1 – 3.3), are 

input to the hard object clustering module (Figure 2). The first stage of that module considers applying a local feature 

based description technique on '

highI  and on each cluster iCl . Although a number of such description methods exist, we 

choose SURF 20 as it balances performance with processing burden. Due to the modality difference between a true RGB 

imagery, where SURF was developed in, and the X-ray imagery, we set a low keypoint detection threshold of 10-3, 

within three Octaves and six scale levels. After SURF keypoint detection and description, the SURF features of '

highI  are 

matched against the corresponding ones of each cluster iCl  using a Nearest Neighbor Distance Ratio 21 criterion. Finally, 

matches are refined based on RANSAC 22. Figure 6 (a) shows cluster 3Cl  and Figure 6 (b) the refined matches between 

3Cl  and '

highI . 

The matched keypoints leverage a rigid transformation T  between iCl  and 
'

highI  which is estimated by RANSAC during 

the keypoint matching refinement stage. Estimating T  requires at least three matches and in the event RANSAC does 

not qualify these, then iCl  cannot be sub-clustered and the process terminates for cluster iCl . If { , }T r t  is estimated, it 

is applied to 
'

highI  creating the transformed image 
T

highI  (Figure 6 (c)). Finally, 
T

highI  and iCl  are fused via an intersection 

scheme (Figure 6 (d)) and the two sub-clusters ,A B

i iCl Cl  of iCl  presented in Figure 6 (e) are given by: 

    A T B A

i i high i i iCl Cl I and Cl Cl Cl    (4) 

It is evident that the quality of the hard object clustering process is related to the complimentary nature of the two X-ray 

images used. Therefore, it is quite important to obtain a few X-ray images aiming at capturing firearms from 

complimentary poses. Care has to be taken that firearms contained have a pairwise pose change that does not exceed the 

30° affine transformation limit that SURF can handle 20. A solution to this consideration might be using a quad-view X-

ray scanning systems and exploit the optimum combination to achieve a valuable firearm clustering. 



 

 
(a) (b) 

  

(c) (d) 

 

(e) 

Figure 6. Hard object clustering pipeline (a) cluster iCl  of image 
'

highf  (b) SURF feature matching of iCl  and 
'

highI  (c) transformed 

image 
T

highI  based on the matched SURF features (d) image fusion of iCl  and 
T

highI  highlighting the matched keypoints (e) sub-

clusters ,A B

i iCl Cl  as given by Equation 4 

 
 

Our architecture is also applicable to single-energy dual-view X-ray imagery. A major disadvantage of such imagery is 

that it relies on a single color band i.e. grayscale, rather than three-color variants as the dual-energy does i.e. RGB 

domain. This leads to poor or even absent texture information of the objects contained and therefore, single-energy 

object clustering is more challenging compared to the dual-energy.  

To enhance performance we pseudo-color the single-energy X-rays by remapping them from the grayscale to a RGB 

color scheme. Thereafter, the manipulated X-ray images are input to the architecture proposed in Section 3. An example 

of the suggested technique on single-energy X-ray images from 18 is presented in Figure 7. Despite the weapon being 

texture-less our enhancement strategy still afforded disjoining the weapon from the clutter object. It should be noted 

though that compared to the dual-energy dual-view X-ray example, the sub-clustering accuracy is slightly reduced as a 

part of the clutter object is still connected. This is because SURF does not provide good quality keypoints and so the 

transformation established based on the matched SURF features of the two X-ray images does not optimize the sub-

clustering procedure. Despite that, our architecture still achieves clustering the weapon out of its initial cluster offering 

enhanced weapon detection capability either for manual by the border officer or for automated threat detection purposes. 

4. CONCLUSION 

We suggest an automated object segmentation and clustering architecture to aid security officers while searching luggage 

or bags for high-risk threat objects. Our proposal utilizes dual-view single or dual-energy 2D X-ray imagery and exploits 

concepts from the radiology, image processing and computer vision domains. It consists of a triple-layered segmentation 

and clustering scheme capable of disjoining overlaying objects. Evaluation on highly challenging X-ray imagery reveals 

the architecture’s promising performance. 

Future work shall focus on identifying the optimum number of X-rays such as to optimize the complimentary nature of 

the two images used in our suggested architecture.  

 



 

 

(a) (b) 

Figure 7. (a) Single-energy X-ray imagery of a bag (b) weapon cluster disjoint (X-ray image from 18) 
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