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ARTICLE INFO ABSTRACT

Keywords: This paper aims to discuss the importance and the necessity of reasoning applications in the field of Aerospace
IVHM Integrated Vehicle Health Management (IVHM). A fully functional IVHM system is required to optimize
Aerospace Condition Based Maintenance (CBM), avoid unplanned maintenance activities and reduce the costs inflicted
Condition based maintenance thereupon. This IVHM system should be able to utilize the information from multiple subsystems of the vehicle
Amﬁm?l intelligence . to assess the health of those subsystems, their effect on the other subsystems, and on the vehicle as a whole. Such
Reasoning system architecture . . . .

Vehicle Level Health Monitoring a system can only be realized when the supporting technologies like sensor technology, control and systems
engineering, communications technology and Artificial Intelligence (AI) are equally advanced. This paper fo-
cuses on the field of Al, especially reasoning technology and explores how it has helped the growth of IVHM in
the past. The paper reviews various reasoning strategies, different reasoning systems, their architectures,
components and finally their numerous applications. The paper discusses the shortcomings found in the IVHM
field, particularly in the area of vehicle level health monitoring and how reasoning can be applied to address
some of them. It also highlights the challenges faced when the reasoning system is developed to monitor the
health at the vehicle level and how a few of these challenges can be mitigated.

1. Introduction

A study in 2018 by International Air Transport Association (IATA)'s
Maintenance Cost Task Force documents that the aerospace industry
spent $76 billion for Maintenance Repair and Overhaul (MRO) of
commercial aircraft in the financial year 2017 and this is expected to go
up to $118 billion by 2027 [1]. It is a well-known fact that the MRO
costs make up to 10% of the overall operation costs of an airline. Owing
to the increased autonomy and the resulting complexity in aircraft
systems, industries are investing heavily in health management systems
to improve their Condition-based Maintenance (CBM) programs. This
would help in increasing the availability and dispatch reliability of the
aircraft, reduce the MRO cost significantly, and also avoid any un-
planned downtime or accidents. Integrated Vehicle Health Management
(IVHM) is a technology that offers a paradigm shift in support of CBM.
IVHM was initially introduced by the National Aeronautics Space Ad-
ministration (NASA) in 1992, as a technology to collect data, diagnose,
predict, mitigate the faults, and support the operational decisions and
post-operational maintenance activities of space vehicles [2]. Ever
since, IVHM has been expanded to other vehicles like aircraft, ships,
and automobiles. The current version of IVHM encompasses many roles
throughout the lifecycle of a vehicle as a product and process, from the
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beginning idea or business proposition, going through design, devel-
opment, testing, analysis, until the long last stage of after-sales service
[3]. IVHM aims to ensure that the host system functions as it is in-
tended, without failure, thus increasing the availability of the systems,
and reducing the cost and time involved due to unplanned maintenance
activities. To achieve this, IVHM aids the use of data from the host
systems, not only for the purpose of diagnosis and prognosis that help
CBM but also for optimizing the troubleshooting activities. For this
purpose, IVHM makes use of emerging technologies in the fields of
sensor technology, systems and control engineering, communications
technology, and Artificial Intelligence [2]. This paper focuses on the
growth and the challenges in aerospace IVHM with respect to the field
of Al, particularly the technology of reasoning.

1.1. Background

This section presents the growth of aerospace health monitoring
which includes both spacecraft and aircraft, with respect to Al tech-
nologies. Fig. 1 shows the timeline comparison of widely used tech-
nologies in the field of Al since the 1980s versus the Al technologies
used in aerospace IVHM in that particular timeframe. In Fig. 1, the
technologies in the general Al field are mentioned only for comparison
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Fig. 1. Trend of Al technologies in Aerospace IVHM versus general Al tech-
nologies.

purposes and are not discussed in this paper; further reading can be
found in these references [4,5]. This section discusses only the tech-
nologies used in the aerospace IVHM field with respect to Al

1.1.1. Spacecraft health monitoring

While the goal of IVHM with respect to the spacecraft health
monitoring is to improve the reliability of space transportation [6], it
also aims to play an advisory role for providing reliable contingency
management [7]. The spacecraft health monitoring system has to en-
sure that the mission objectives are met with respect to the constraints
and the spacecraft is protected from failures that could lead to the loss
of operation [8]. To achieve these objectives, the spacecraft health
monitoring system has used a variety of Al technologies. In fact, the
trend of technologies used for the Spacecraft health monitoring sys-
tems, show a correlation with the trends in the technologies used in the
field of AI, wherein, those Al techniques that are introduced and ma-
tured over a few years are implemented in the aerospace IVHM field in
the next few years. The examples of this correlation can be seen in
Fig. 1. It shows that considering a timeline starting from the 1980s,
rule-based expert system was the widely used Al technology. During
this time period, technologies like the expert system for scheduling,
NAVEX [9], and the Procedural Reasoning System (PRS) for health
monitoring Reaction Control System (RCS) [10] were developed in
aerospace. Moving to the 1990s, after the ‘Al Winter’ when the expert
system was reaching its bottom, the focus turned to developing other
technologies like Decision Support Systems (DSS) and improving the
related fields like machine learning. While AI techniques like neural
nets and evolutionary algorithms are in use for a long time, the other
machine learning algorithms like Random Decision Forests (RDF) and
Support Vector Machines (SVM) were introduced only in the mid-90s
[11,12]. Model-based reasoning was being widely used in the ‘90s in
aerospace industry, influenced by the General Diagnostic Engine (GDE)
that was presented by de Kleer in 1987 [13]. In 1999, Remote Agent,
developed by NASA, was the first fully autonomous Al system used in a
spacecraft which included a model-based reasoning system (Living-
stone) and a DSS [14]. Similarly, TEAMS is a model-based diagnostic
tool that was used for ground-based diagnostics of power distribution
systems in International Space Station [15]. In the 2000s, when the Al
field started focusing on robotics, speech recognition, deep learning,
and autonomous vehicles, the aerospace IVHM focused mainly on
model-based reasoning engines. As a result, RODON, LYDIA, and sev-
eral other reasoning engines were developed in the 2000s. The aero-
space field also focused on sending rovers to the planet Mars, leading to
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launch of the Mars Exploration Rovers Spirit and Opportunity in 2003.
These rovers had a DSS, namely, MAPGEN (Mixed Initiative Activity
Planning Generator) that carried out automated constraint-based
planning, scheduling, and temporal reasoning for the rovers [16]. In
this decade of 2010s, there is a further increase in the development and
applications of space robots, especially the Mars Exploration rovers like
Curiosity and Mars Express. The focus in space transportation shifted to
autonomous navigation and onboard autonomy via Fault Detection
Isolation and Recovery systems [8], whereas the focus in Al field is on
motion recognition, natural language processing as well as self-driving
vehicles.

1.1.2. Aircraft health monitoring

In the aircraft industry, the main goal of IVHM is to reduce MRO
costs and increase the availability of aircraft by enabling integrated
health monitoring and supporting CBM. As for the timeline, since the
operation of aircraft and its maintenance go hand in hand, the evolution
of aircraft design and operations naturally led to the periodically up-
dated maintenance programs. Besides, development in the field of air-
craft maintenance is in line with the stabilized Al technologies at that
period, similar to spacecrafts (Fig. 1). The earlier form of trouble-
shooting involved testing the circuit for continuity in the mechanical-
analog devices of aircraft systems, and in the 1980's technologies
moved towards digital systems leading to electronic testing of the Built-
In Test (BIT) circuit to detect faulty Line Replaceable Units (LRU) [17].
The first formal standard for health monitoring, ARINC-604, ‘Guidance
for Design and Use of Built-in Test Equipment’, was formulated in 1988
[17] and the guidelines for using matured AI techniques in diagnostics
systems was provided in 1995 by IEEE standard 1232 AI-ESTATE (Ar-
tificial Intelligence- Exchange and Service Ties to All Test Environ-
ments) [18]. Moving to the early 90s, Centralized Maintenance Com-
puters (CMC) were developed for B747 aircraft to diagnose the health
of multiple LRUs. These CMCs were initially implementing Al tech-
nologies like rule-based expert systems and then evolved to apply
model-based failure propagation techniques in B777s in the later 90s,
similar to the spacecraft model-based reasoning techniques as shown in
Fig. 1. The maintenance systems like Honeywell Prime Epic Aircraft
Diagnostic Maintenance Systems (ADMS) developed in the early 2000s,
used modular systems, data-driven approaches for diagnosis and load-
able database [17]. In this period, the maintenance systems used Al
techniques like Case-Based Reasoning (CBR), and Web of Language
(OWL) for troubleshooting activities with the help of historical records.
Further, hybrid combinations of model-based and data-driven ap-
proaches were widely used in health management programs for F-35
Joint Strike Fighter [19]. The maintenance system in B787 uses model-
based diagnostic approaches with loadable databases to isolate faults
and carry out model corrections. It uses information from various
sources like control and design documents as well as FMEA [17]. The
maintenance programs like AIRTHM by Airbus enable real-time mon-
itoring by onboard maintenance systems with the help of web-based
technologies and wireless communications [20]. Over the years, several
standards like ARINC 624, 664, and 666 were published to help design
the onboard health monitoring systems [17], whereas the PHM stan-
dards like OSA-CBM provided frameworks to implement CBM systems
and the IEEE standards like SIMICA provided support for PHM systems
to use historical data for diagnostics and prognostics [18]. It is to be
noted that the focus in IVHM systems which were earlier at the LRU
level is able to move towards the subsystems/systems level owing to the
advancement in sensor technology, data analytics, communication
protocols, and computing power.

In the present decade, the IVHM field is taking advantage of cloud-
based computing and big data analysis for improving real-time health
monitoring. Moreover, the aerospace industries like Rolls Royce are
attempting to use robotics to inspect the systems and assess the need for
maintenance [21], in order to save time that would otherwise be spent
for repair and overhaul.
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1.2. Need for Vehicle Level Health Monitoring

In the previous section, it was discussed that the focus of IVHM
systems is moving from the LRU level to the Systems level due to the
advancement in supporting technologies. This is because the main goal
of IVHM is to ‘integrate’ information from all the systems of a vehicle
and to make a well-informed decision on maintenance considering the
health of the systems. According to the FAA report on General Aviation
Safety 2018, 2 out of 10 leading causes of fatal accidents between 2001
and 2016 were due to System component failure [22]. In spite of the
preventive and periodic maintenance, there are several occasions where
a system still fails on its own, or due to its interaction with other sys-
tems, leading to extended downtime and added maintenance cost, if
not, accident. For example, a Boeing 777-200 ER had an engine rollback
in 2008, because of which the aircraft touched down 300 m short of the
pavement path in the runway. The root cause, however, was found to be
in the fuel oil heat exchanger, where a restriction due to the formation
of ice has reduced fuel flow to both the engines resulting in reduced
pressure ratio [23]. Incidents like this emphasize the importance of
having a holistic view of aircraft systems, instead of performing analysis
only at the component and the subsystem levels. While the state-of-the-
art IVHM system ADMS in B777 can capture the cascading faults due to
the interactions between the components, it uses an expert-derived fault
propagation model as a systems reference model [24]. Any unexpected
fault propagation could not be captured by this system and a complete
IVHM system could not be fully realized. There is still a lack of health
monitoring systems that could function at the vehicle level to detect
and isolate faults, that cascade between the systems before it is too late.
In order to identify the root cause of a fault that has affected another
system and predict its cascading effect, the health monitoring system
needs to reason through data from multiple systems in a vehicle, con-
sider the causal relationships of the systems, assign priorities, and re-
solve conflicts. In short, the IVHM system requires an intelligent rea-
soning system that could analyze and make decisions regarding any
system fault, its root cause and the effect at the vehicle level.

With this purpose in mind, the paper explores the AI reasoning
technology. This section gave an overview of IVHM over the years and
the need for vehicle health monitoring and Section 2 aims to answer the
basic questions like what is reasoning, where is it applied, and how does
it function. Section 3 summarizes the applications of reasoning in
aerospace IVHM and Section 4 discusses the shortcomings in IVHM, the
ways to mitigate them with reasoning, along with the challenges and
opportunities. Lastly, Section 5 concludes the paper.

2. Reasoning - a literature review

In general, the term ‘reasoning’ is a derivative of human reasoning,
where the methodology for problem-solving is governed by applying
logic and cognition. The origin of reasoning as a study traces back to
Greek Philosophy. Aristotle coined the term ‘Syllogism’ which is the
study of logic that defines the rules for reasoning to operate [25].
Reasoning is applied in every existing field, to tackle everyday pro-
blems. Reasoning can be as simple as deductions like ‘a = b, b = ¢ and
hence a = ¢’, or as complicated as a combination of multiple strategies,
based on the problem to be solved. To align with the scope of this paper,
the literature review on reasoning restricts itself to the field of en-
gineering. Even a short survey on the functions of reasoning in en-
gineering results in a wider range of industrial applications.

Fig. 2 shows a representative sample of various functions of rea-
soning as an Al technology and their applications in different sectors.
The first layer from the centre shows the different problem fields where
reasoning is applied; this includes, but not limited to, diagnosis, sche-
duling, reporting, decision support, troubleshooting, behavioral ana-
lysis, strategy planning, optimization and context awareness. The
second layer shows their respective applications in the industries and
the outer layer shows the corresponding industries. This non-exhaustive
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list of industries that employ reasoning encompasses aviation, medi-
cine, gaming, robotics, traffic monitoring, design, simulation, produc-
tion, services, communication, electronics, automotive, computers,
smart rooms, and smart buildings. The applications in the middle layer
that are developed to solve the problems shown in Fig. 2, use different
types of reasoning methods and reasoning systems to achieve their re-
spective goals. For example, tools like SpotLight Maintenance devel-
oped for troubleshooting in aircraft engines [26], the expert system
DOCTOR developed for field service of air conditioners [27], the
scheduling system CABIN [28], and the decision support system CLA-
VIER developed by Lockheed Martin [29] use Case-Based Reasoning
(CBR) systems. The CBR systems are also used for incident reporting for
aircraft accidents [30] and cybersecurity threats [31]. Similarly, Rule-
Based Reasoning (RBR) is used in the context-aware application for a
smart room, namely, The Conference Guard [32], and in the goal-
driven diagnosis application, namely, TraumAID 2.0 [33]. The UM-PRS
is a Procedural Reasoning System (PRS) that is designed for robotic
reconnaissance task [34].

Apart from CBR, RBR, and PRS, there are other reasoning methods
which are used for solving various problems in the industries as shown
in Fig. 2. WEBWEAVR developed for design optimization is a Bayesian
reasoning engine [35]. DRACO, an Intelligent Decision Support System
(DSS) used a fuzzy reasoning, along with neural network models for the
quality control process of automotive coating operations [36]. HEAL-
THYLIFE, used in smartphones for recognizing user behaviors, applies
Answer set programming based Stream Reasoning along with Artificial
Neural Networks [37]. A Model-Based Reasoning with mathematical
modeling is used to represent a river network model for simulation of
water quality control [38]. A Real-Time Strategy video game, Starcraft,
extensively uses several reasoning methods including CBR, Neural
Networks, and Bayesian Models for tactical decision making as well as
strategic planning [39]. Furthermore, reasoning methods are used to
infer the driver's behaviors during traffic in traffic monitoring systems
[40]. A hybrid reasoning system with model-based and Tree Aug-
mented Naive Bayesian Network has been used to diagnose and find
anomalies in the Open-Air Unit installed in a smart building, like a
public health centre, in order to increase air quality and reduce Heat
and Ventilation and Air Conditioning costs [41]. Dynamic Mental
Models (DM2) used analytical model and pattern recognition rules and
have been tested by applying hypothetical diagnostic reasoning on
expert systems for networks maintenance at AT&T [42].

2.1. Definitions

It is to be noticed from Fig. 2 that, in the applications presented,
reasoning is implied both as a problem-solving strategy as a part of
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another system, and as a system in itself. This difference can be better
explained with defining the terminologies ‘reasoning strategy’, ‘rea-
soning system’, ‘reasoner’ and ‘reasoning’. While the term ‘reasoning
strategy’ refers to the approach with which the data is assessed in a
certain way, a ‘reasoning system’ refers to a software system that ap-
plies reasoning strategies in an ‘input-process-output’ manner to
achieve the specified goal. The term ‘reasoner’ is used in literature
many times referring to the reasoning system [43] and sometimes to the
algorithms that carry out reasoning [44]. To avoid confusion, in this
paper, ‘reasoner’ refers to the reasoning system itself. Finally, the term
‘reasoning’ itself refers to the process of analyzing the given data using
reasoning strategies and other algorithms in order to achieve the goal of
the reasoning system or any system that the reasoning is a part of. The
next sections further explore the commonly used reasoning strategies as
well as the reasoning systems in the field of aerospace IVHM.

2.2. Reasoning strategies

Several reasoning strategies are applied in the general problem-
solving systems. In the case of health monitoring systems, reasoning
helps in achieving the goals of diagnosis and prognosis, which is to
detect and isolate the fault and to estimate the Remaining Useful Life
(RUL) respectively. These systems can use one or a combination of the
reasoning strategies to reason through and reach their goals. Table 1
presents the different types of reasoning strategies, along with illus-
trations from health monitoring systems. Each reasoning strategy has a
different way of approaching a problem depending upon the type of
data available. For example, if the given set of data is definitive but
small, inductive reasoning will help in projecting or predicting the
generic observations, whereas, in the case of abundant data and a
certain hypothesis, deductive reasoning will help in drawing the con-
clusions. If the given data is insufficient or incomplete, abductive rea-
soning will form and test hypothesis based on the incomplete dataset,
whereas, analogical reasoning will draw conclusions based on similar
experiences from other cases. Likewise, depending on the type of data,
if the data possess time information, temporal reasoning could be
chosen for problems like timestamp comparison, whereas for data with
statistical information, statistical reasoning can be used. Causal rea-
soning draws conclusions based on the cause-effect relationship of the
data and approximate reasoning is applied in the cases that require less
computational time.

Table 1
Reasoning strategies.
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2.3. Reasoning system — a generalized architecture

A reasoning system is a piece of software that implements reasoning
strategies, alongside other problem-solving techniques to achieve cer-
tain objectives with the help of available knowledge. A generalized
reasoning system architecture, shown in Fig. 3, has a basic set of
components which can be adapted to address particular goals based on
the existing resources. The general components of a reasoning system
can be grouped under three modules (Fig. 3): i) Domain Library
module, ii) Problem-Solving module, and iii) Tasks module. The Do-
main Library module contains domain knowledge, the database of the
application, and the working memory. The database includes the data
of the measured inputs and outputs of the system using which, rea-
soning will be carried out, and the domain knowledge consists of
knowledge about the system represented in a certain format. The dy-
namic knowledge specific to the problem is stored in the working
memory. In the Problem-Solving module, the components include i) an
inference engine (also referred to as reasoning engine) which performs
the action of reasoning based on the methodology chosen and the type
of available data, and ii) a reasoner maintenance system which com-
municates with the inference engine to maintain consistency of the
belief or truth of the system. The reasoner maintenance system can be
either assumption based or justification based [45].

The Tasks module of the reasoning system contains its objective or
goal for a given problem. The reasoning system can deal with problem
types like i) Constraint Search Problem (CSP), and ii) Planning and
Decision Making [30]. CSP is a data-driven problem, where the problem
is solved with an assumed set of variables and a defined set of con-
straints; variables get updated in every iteration with respect to the
constraints to search for the solution in the solution space. Diagnosis

Strategy Features

Examples

1 Inductive Reasoning or A bottom-up approach which makes a set of generic

induction projections from observations or data.
2 Deductive Reasoning or A top-down approach wherein, a certain solution is found
deduction from the given premises by holding the hypothesis true.

3 Abductive Reasoning or A logical reasoning which constructs and tests a

abduction hypothesis based on the observations even if they are
incomplete
4 Analogical Reasoning Uses past experience to provide new conclusions by
analogy

5 Temporal reasoning
time as an additional dimension
6  Statistical reasoning Uses statistical information of data sets.
7  Causal reasoning
to draw conclusions

8  Approximate reasoning
its completeness

Helps to the reason of dynamic systems by considering

Uses the relationship between the causes and their effects

Speeds up the process of finding a solution by sacrificing

Inductive Monitoring System on TACSAT-3 detects anomalies by supervised learning
with the help of a model constructed from nominal data [130].

Livingstone is a model-based reasoner in Remote Agent and it uses deductive
reasoning. It draws conclusions based on the given commands and comparing the
corresponding observations with the optimal responses [14].

As a part of the reasoning process patented by GE, the Advanced Diagnostic and
Prognostic Reasoner uses abductive reasoning to construct a minimum set of fault
conditions to associate with ambiguity groups [142].

An intelligent maintenance support system for aircraft is developed using Genetic
Algorithm and Case based reasoning (CBR) which retrieves the similar past cases by
analogy [113].

In the integrated prognostic reasoner developed for bearings, temporal reasoning is
used to integrate a priori reliability information and correct the disagreement of the
information source, with respect to time [150].

Statistical Reasoning is used with fuzzy inference algorithm to develop a DSS [101].
The data driven model developed to detect pipeline leak uses causal inference to find
the pattern between the antecedents like flow difference and pressure difference to
the consequent, leak size [70].

The approximate reasoning is used with a Belief Rule Based methodology to reduce
the complexity of the causal inference model for detecting pipeline leak [70]
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and classification problems are of the CSP type, as their constraints are
defined as fault symptoms, and classification group characteristics re-
spectively. Planning and Decision Making is a goal driven problem,
where the initial conditions and possible final solutions are pre-defined
and the problem is driven in a certain path by applying rules to attain
the defined goal.

To illustrate the functioning of a reasoning system, consider a sce-
nario of isolating a fault in a fuel system that operates under a constant
fuel flow. In this case, the goal/objective of the reasoning system is to
isolate the fault. The domain library will consist of a database of the
fuel system like sensor data of the parameters that are monitored for the
health of the fuel system. It will have the domain knowledge consisting
of relationships between the monitored parameters and fault signatures
of various faults. In this case, once an anomaly is fed as an input, the
inference engine will search the database with the help of fault sig-
natures to match the input anomaly with the fault signature in the
database. The working memory will keep track of the transition states
of the system when the problem is being solved. The reasoner main-
tenance system helps in keeping up with the consistency of the truth or
the assumptions of the system, in this case, a constant fuel flow. Hence
in the case of contradicting truths, the reasoner maintenance system
updates the working memory. The inference engine communicates with
the reasoner maintenance system to check the assumptions and uses
different reasoning strategies and algorithms appropriate for this pro-
blem to derive the required solution. The output can either be the ‘name
of the fault’ in case of a fault known to the reasoning system already or
‘Not found’ in the case of a new fault.

2.4. Types of reasoning systems

There are different types of reasoning systems depending upon the
availability of domain knowledge, data, and the chosen problem-sol-
ving methodology. The knowledge-based systems use domain knowl-
edge that is derived from the experts, the model-based reasoning sys-
tems use domain knowledge that is derived from the governing
equations or behavior of the systems and the data-driven reasoning
systems are used when there is lack of domain knowledge and rea-
soning is dependent mainly on the datasets. This section presents dif-
ferent reasoning systems, various types of knowledge representation
and problem-solving methodologies they use. Several review papers
discuss in depth about the problem-solving methods used for diagnosis
and prognosis [15,46-54], only a few methods are discussed in this
section.

2.4.1. Knowledge-based systems

The knowledge-based systems carry out reasoning based on the
existing knowledge base. This knowledge can be anything like proce-
dural or declarative, structured or unstructured and are represented in
such a way that the reasoner understands. In general, the knowledge
can be represented in the form of a concept, its intent, and the context.
The Concept is the basic unit of knowledge, providing the abstraction of
real-world things. Concepts have an association with other concepts
which give context of the knowledge. Concepts and its associations can
be represented using any of the technologies like Rules, Procedures,
Frames, Nets, Models, Ontologies, and Scripts, based on the intent of
knowledge, which is the ability or the skill required to achieve the goal
[55]. Some of the knowledge-based systems are discussed here and
Table 2presents the comparison of advantages and disadvantages of
these systems.

2.4.1.1. Expert system. The Expert System architecture consists of a
knowledge base and an inference engine (Fig. 4). Its knowledge is
generally represented in terms of rules. Rules represent domain
knowledge in an ‘if-then-else’ format and they can be written in
different programming languages like C, LISP, and OWL. For
example, in the CLIPS expert system used by Siemens, rules are
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written in OWL 2 language in the format of concept-ontology and
instance-ontology [56]. In some cases, frames are also used to represent
the knowledge in expert systems. Frames are used to represent the
stereotyped knowledge as a collection of attributes and their associated
values. An example is the meteorological vehicle system, wherein the
expert system for fault diagnosis is built using object-frame structure,
with the frame being a collection of state-object, test-object, rule-object,
and repair-object [57]. Most Expert systems employ Rule-Based
Reasoning (RBR) methodology to solve their problem. The RBR is
executed in the following two ways: i) Forward Chaining, and ii)
Backward Chaining. Forward Chaining starts with the initial state of
facts and applies the rules until the endpoint is reached. Backward
Chaining starts from a hypothesis and looks for rules that will allow the
hypothesis to be proven. In other words, it starts with an effect and
looks for the possible root causes that could lead to that effect. Forward
Chaining is data driven whereas Backward Chaining is goal driven [58].

The Expert System is one of the initial implementations of Al soft-
ware, with DENDRAL and MYCIN being two of the earliest rule-based
expert systems developed for analyzing chemical components and for
diagnosing infectious diseases respectively [59]. Expert System was
popular in the 1980s and it has been implemented for several health
monitoring and maintenance systems. However, it could not sustain the
growing demands of the field. While expert system required straight-
forward implementation, its knowledge base is dependent on the ex-
perts and hence, brittle and needed frequent maintenance. It could not
provide intuitive results and incurred high computational costs [60].
Furthermore, the expert system could not handle the dynamics and
uncertainty involved in the aerospace models [46]. Hence, it was in-
tegrated along with other frameworks like in Blackboard architecture in
BEST (Blackboard-based Expert System Toolkit) [61] to enhance per-
formance of the application. It is used along with model-based methods
as well. An example is the expert system patented by GE that applies
model-based reasoning for diagnosing faults in rotary machines. In this
system, the model is represented by partial differential equations based
on their first order; the vibrations measured were used by the rule-
based expert system to identify the root cause [62].

2.4.1.2. Procedural Reasoning System (PRS). The PRS is a knowledge-
based reasoning system which has its knowledge in the form of
procedures called the Knowledge Areas. The PRS implements the
Belief-Desire-Intention concept of modeling for real-time reasoning of
dynamic systems [10]. It consists of the following modules (Fig. 5): i) a
goal or objective set, ii) a database with domain knowledge and beliefs
that update themselves with new knowledge, iii) a knowledge area
which is a library of procedures for actions and tests to achieve the
goals, iv) an intention graph which has partially completed procedures
to run real-time, and v) an interpreter which communicates with all
these modules and carries out reasoning. The interpreter receives the
goal or objective for the system, chooses the correct procedure required
from the knowledge area, places it on the intention graph to narrow
down the set of actions, chooses the correct action based on the
intention, and finally starts the procedure which will update the next
goal [10]. Fig. 5 shows the general architecture of the Procedural
Reasoning System [10]. The PRS has been applied to monitor the
malfunctioning of the RCS of NASA's space shuttle and also to diagnose
and control the overloading of telecommunication networks [63]. The
PRS architecture is simple for execution and reduces the computational
time as the procedures can skip unnecessary steps for a particular
problem, and narrow down rules to the relevant set directly [63]. The
PRS can implement real-time reasoning and handle dynamic systems,
but it can handle only simple plans; any changes to the existing plans
and procedures will be time-consuming and tedious.

2.4.1.3. Case-Based Reasoning (CBR) system. The CBR has its
knowledge derived from the historical cases. It has a simple
framework consisting of four phases: i) retrieve, ii) reuse, iii) revise,
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Table 2
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Advantages, Disadvantages, and applications of Knowledge-based reasoning systems.

Reasoning Systems Advantages

Disadvantages Applications

Expert System Easy to implement (straight forward)

Transparent

Procedural Reasoning
System

Real Time and meta level Reasoning
Simple Semantics
Can act upon partial plans

Case Based Reasoning
System

Simple to use

with Learning capacity — knowledge evolution possible
Flexible architecture

Problems that cannot be expressed mathematically can be dealt

Extrapolation not possible

The system needs to be updated frequently
Depends on expert knowledge — brittle
Computationally expensive

Indexing mechanism makes it difficult to
delete or change rules

Tasks have to be kept short Needs updating
if plans are changed

Depends only on historical information
Time-consuming

Retrieval process needs powerful algorithm
to get exact match

DENDRAL [59]
MYCIN [59]
CLIPS [56]

RCS in NASA Space shuttle
[10]
Robotic reconnaissance [34]

IDS [124]
ISAC [65]

New Case

Knowledge base
(If, Then rules)

—{ Output (Solution)

Inference Engine

I

Input (Problem)

Fig. 4. Expert System Architecture [60].

Input
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(Beliefs)

Interpreter
(Reasoner)

S

Stacks
(Intention)

Goals
(Desire)

Output

Fig. 5. Procedural reasoning system (PRS) architecture (adapted from Ref.
[10D.

and iv) retain (Fig. 6). In the retrieval phase, knowledge in the database
(case repository) in the form of previous experiences and histories
(cases) related to the application are searched for. These old cases are
then retrieved based on their index and interpreted for the current
problem. In the reuse phase, the old cases are adapted to the present
situation in order to find the solution. Evaluation of the new cases is
carried out and solutions suggested in the revise phase and the new
cases are then added to the case repository for future learning, as a part
of the retain phase [64]. One of the examples of CBR application is
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Fig. 6. Case based reasoning architecture (adapted from Ref. [64]).

Intelligent Systems for Aircraft Conflict Resolution (ISAC) [65] which
was developed to help the decision-making process of aircraft
controllers to resolve the conflicts between aircraft. CBR is one of the
most commonly used reasoning systems, as its architecture has the
capability of accommodating any advanced algorithms, mainly text
processing techniques. Moreover, CBR does not require prior
knowledge about the system as it solely depends on past experience.
Since the CBR involves learning as a part of its methodology enabling
knowledge evolution, the CBR can evolve and become expert in the
domain, thus having the potential of becoming the future expert
systems [66]. This is an advantage over the other frameworks since
the other reasoning systems require maintenance time for updating the
knowledge base. Nonetheless, the CBR system is computationally
demanding when compared with the PRS and simple rule-based
Expert Systems.

The knowledge from historical records or cases can be represented
in a variety of graphical representations. One such method, Semantic
nets, are used for representing the relationship between the concepts
that are usually described with verbal information. Knowledge is ex-
tracted by mining text with a defined set of rules and finding re-
lationships between the phrases, and it is represented in accessible
formats like tables or matrices. Semantic nets are used in CBR in cases
like searching the maintenance repair records to find similar cases [67].
They can also be used for text mining the datasets to find anomalies
[68]. Dependency Matrix or D-Matrix [69,70] is a commonly used re-
presentation in the field of diagnosis as well. It consists of dependency/
causal models represented in the form of a matrix using the logical
relationship between the elements. D-matrix is used in CBR to represent
the relationship between the tests and diagnosis, where a case is a
collection of test results that are mapped to the appropriate diagnosis
based on its results. Thus when a new case or test result is given, similar
cases are retrieved and the corresponding diagnosis is chosen [69].

Apart from Semantic nets and D-Matrix, there are several other
graphical methods that can be used for historical knowledge
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representation. These methods can as well be used to represent the
knowledge of model-based systems and the apriori knowledge of data-
driven systems.

2.4.2. Model-based reasoning systems

Model-based reasoning systems are used when there is a rich do-
main knowledge about the system. Its knowledge i.e., the concepts and
their relationships to the other concepts are represented based on their
physics-based or functional relations [71]. For example, NASA devel-
oped a physics-based model for diagnosis of the Liquid Hydrogen Pro-
pellant Loading System, as it requires a detailed model for under-
standing the system under healthy and faulty conditions, enabling quick
detection and recovery, in case of failures [72]. On contrast, a fuel
system was represented by a functional model in MADe, in which, the
functional flow in terms of energy, material, and signal between the
components. This model differentiates nominal cases from faults and
helps in isolating the identified faults [73].

The theory of Model-Based Diagnosis was first formulated and ap-
plied in a General Diagnostic Engine by de Kleer [13]. This framework
used a diagnostic reasoner to identify behavioral discrepancy between
the model and the observed value and it made use of the assumption-
based truth maintenance system to achieve efficiency. Ever since, a lot
of methods have been developed for representing and solving the
model-based problems efficiently. Presently, the model-based reasoning
uses both qualitative and quantitative methods to solve its problems.
The quantitative methods involve comparing the output predicted va-
lues generated by analytically redundant models, with the measured
sensor values from systems to generate residuals. The error can be re-
duced by solving the algebraic or differential equations for the best set
of parameters. Parity equation is a residual generation method which
consists of linear equations that link different variables by their math-
ematical relationships. The deviation in parameters can be found
through the residuals and faults can be flagged if the errors cross the set
threshold [74]. These equations can also be grouped in a way that, a set
of parity equations could represent a diagnostic model and are solved in
order to isolate the faults [75]. Developing this model is time-con-
suming because of the complexity involved. Kalman Filter is another
approach for residual generation, which estimates the state of a system
in presence of noise and is used widely in diagnostics for its ability to
adaptively estimate the state parameters of the degradation model, as
time evolves [76]. One drawback of this method is that, it assumes the
equations to be linear and noise to be of Gaussian distribution [77].
These drawbacks are mitigated by using derivatives of this method like
Particle filters, Switching Kalman Filters, and Extended Kalman Filters
[52,76,78].

Among the qualitative methods, Timed Failure Propagation Graph
(TFPG) [79] is used for the abstract representation of a system behavior
during failure propagation. It is a directed graph consisting of nodes
representing the failure modes as well as the possible deviation in
system behavior in the form of discrepancies, and the edges that con-
nect the failure modes to their respective discrepancies. TFPG helps in
tracing the root cause of a propagated fault as well as the likelihood of
further failure progression and it is used widely for representing the
complex dynamic systems. TFPG is applied in an embedded systems
environment to isolate the faults [80] and a hybrid version of TFPG is
applied in the diagnosis of switching systems [81]. Petri-Net, a bipartite
graph, is another qualitative model used in model-based reasoning. It is
a mathematical modeling language used to represent the relationship
between the conditions and the events in a distributed system. It con-
sists of i) nodes representing events or transitions, ii) places re-
presenting conditions and containing tokens, and iii) arcs representing
the direction of transition from a place (condition). Petri-Net is used for
analyzing the dynamic behavior of the system where the firing of a
token from one place to another represents the transition taking place
in the system. Petri-Net is used in failure analysis in many systems
[82,83] and a hybrid version of the Petri-Net, combined with fuzzy
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reasoning, called Fuzzy Petri-Nets is used for fault diagnosis while
dealing with uncertainty [84]. The other commonly used qualitative
methods are Fault Tree Analysis and Multi-flow Models. Fault Tree
[85,86] expresses the logical relationship between a failure and its
possible causes, but it can be modeled only for the expected failures.
Multi-Flow Model [87] represents the system and its subsystems in
terms of its goals, functions and the networks connecting these func-
tional flows.

2.4.3. Data-driven reasoning systems

Data-driven reasoning methods extract the underlying patterns in
the datasets and use them for understanding the systems’ characteristics
to reason through them. They are generally used in the cases which
have rich datasets and have a very little or no domain knowledge itself.
This section briefly discusses the most widely used data-driven
methods.

Bayesian reasoning uses the estimates based on data from statistics
and deals with uncertainty in the system model. The cause-effect re-
lationship between the variables have to be known probabilistically but
the entire system model knowledge is not required [88]. The Bayesian
Network is a probabilistic graphical model which uses a set of nodes to
represent variables of a system and directed edges, the relationships
between the variables. It uses Bayes’ theorem as its principle to decide
the root cause based on a priori probability with respect to the observed
value. Conditional probabilities are specified for every node on this
network and probability estimates get updated based on every new
observed value. The Bayesian Network was first introduced by Pearl in
the 1980s [89] and has been widely used for a variety of intents in-
cluding tacking uncertainties, within the broad field of diagnostics. For
example, the Bayesian Network and its derivatives like Dynamic
Bayesian Network, and Tree Augmented Naive Bayesian Network have
been applied for fault diagnosis of a fuel system [90], auto-generation
of the nets for diagnosis of an Electrical Power System [91], bench-
marking of diagnostic systems [92], enhancing existing diagnostic
models [93,94], and for change point detection of a valve failure in a
fuel system in Unmanned Aerial Vehicle [95].

Fuzzy Reasoning is a data-driven method that deals with un-
certainty using Fuzzy Set theory and the theory of fuzzy relations. Fuzzy
logic was introduced by Zadeh (1965), in order to describe the systems
that are ‘too complex or too ill-defined’ for mathematical analysis [96].
Fuzzy logic is a three-step process: i) Fuzzification, ii) Evaluation, and
iii) Defuzzification. In the first step, the inputs representing a range of
variables in overlapping regions are fuzzified by applying membership
functions. These functions overlap and hence, there is a possibility of
variables belonging to more than one membership. Then, a set of ‘IF-
THEN’ rules (generally known as a deductive form) are applied to
evaluate the response to each input. These sets of consequences are then
evaluated to give one final output using the aggregation principle. The
output is then converted to crisp quantities in the defuzzification stage
[97]. Fuzzy Reasoning has been used directly for fault diagnosis in
various industries [98,99] or in the derived form combined with Petri-
Nets [100], besides developing Decision Support Systems (DSS) [101].
Likewise, Evidential Reasoning is another data-driven method that
deals with uncertainty and imprecise information, by handling the
evidence to make an assertion. It uses the Dempster-Shafer theory of
beliefs which replaces probability distributions with belief functions.
This theory is very useful in modeling uncertain conditions where
probabilities in subjective judgments can be assigned a base degree of
belief. Such degrees of belief can be combined from multiple in-
dependent evidence as well. One of the major advantages of Dempster-
Shafer is that it enables reasoning with partial or conflicting pieces of
evidence [102]. The lack of knowledge on assigning belief to the evi-
dence and the computational complexity has made it a ‘difficult to use’
reasoning method. Dempster-Shafer reasoning has been used for fault
diagnosis [103,104] and for developing the BNs for DSS [105].

Machine learning algorithms are the most commonly used data-
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driven methods in the current period. Albeit being in existence over
several decades, they are used extensively in the recent times, owing to
their capability to analyze enormous data sets generated by the in-
dustries, and to the aid provided by the increased computing power.
One of the most popular machine learning algorithms is Artificial
Neural Networks (ANN). ANN is modeled after the biological neuron
structure; it is used widely for pattern classification problems of diag-
nosis and prognosis, because of its ability to infer functions from the
observations. A neural network is composed of several layers (mainly
the input, hidden and output layers) with interconnected nodes which
have activation function and are connected to the network by the
weighted edges. Back Propagation Neural Network, a type of ANN, is a
multi-layer feed forward network which learns by adjusting the weights
and thresholds to reduce the feedback error [106]. Deep learning is a
neural network with multiple hidden layers and is helpful in mining the
information from big data sets in order to achieve the classification and
other goals [107]. The neural networks do not require the background
of the data for analysis and use less operational time after training, but
their major drawback is their need for big datasets for training the
network. K-Nearest Neighbor is another non-parametric pattern re-
cognition algorithm, which clusters a sample to the k nearest subsets
from the trained data set based on the majority vote from the k-subsets
[108]. Similarly, the Support Vector Machine (SVM) is a classification
algorithm which groups the datasets by introducing the boundaries or
hyperplanes with a maximum distance of separation [109]. Principal
Component Analysis (PCA) is a parametric algorithm which is used to
derive the statistical model from historical data. It reduces di-
mensionality of data by projecting the historical training data onto a
lower dimensional space and uses it to study the factors that contribute
to the major trends [48]. The Decision tree algorithm uses a divide and
conquer approach on the datasets to classify the data space by recursive
partition until there is no further splitting possible [109].

The data-driven algorithms include traditional statistical models
like Weibull, Normal distributions, Hidden Markov model and Cox
Proportional Hazard models. Weibull and normal distributions are used
to fit the failure data to predict the time-to-failure [77]. Hidden Markov
Model contains the transition and observation probabilities and is used
for detection in the stochastic processes where transition is not directly
observed [110]. Cox Proportional Hazard model is a powerful regres-
sion method that uses hazard function or conditional failure rate
function as a baseline, to build predictive models for failure events
based on the trigger events. These trigger events can be characterized as
anything like a failure or a particular behavior and the model can be
used to build a framework that connects the failure mode with its in-
dicator [111].

Fig. 7 shows the Strengths, Weaknesses, Opportunities, and Threats
(SWOT analysis) of both model-based and data-driven methods.
Though the model-based method can be precise and could be extra-
polated, it requires domain knowledge and can be time-consuming.
Further, modeling errors and under-modeling are the downsides to this
approach. As for the data-driven approach, it does not require detailed
domain knowledge and modeling skills, but, it does require immense
data and risk misinterpretation of results as well as imprecise outputs.
Thus, the choice of problem-solving methods depends on the factors
like available knowledge, data, time, and skill.

2.4.4. Hybrid reasoning systems

These systems use a combination of reasoning techniques, applied in
order to compensate for the disadvantages the algorithms possess.
There are several studies that carried out reasoning by combining dif-
ferent methods. For example, a combination of Artificial Neural net-
work and Fuzzy Inference System (ANFIS) is one of the most used hy-
brid methods in diagnosis applications [58]. Fuzzy algorithm is used
with Bayesian Networks as well, to model the gray-scale health as
component degradation for a lithium-ion battery [112]. Another such
combination is the Genetic Algorithm that is used with the CBR, to
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Weakness
Strength Model based:
Model based:

- Requires detailed
domain knowledge

- Time consuming
Data driven:

- Immense data
required

- As precise as the
designer wants it to be

- Data driven:

- Requires less or no
domain knowledge

Threats
Model based:
- Modeling errors
- Under modeling

Opportunities
Model based:

- Can be extrapolated
with available data

Data driven: Data driven:

- Outputs can be
imprecise

- Misinterpretations

- Quicker process
- Less modeling skill

Fig. 7. SWOT analysis on Model-based and Data driven methods.

enhance the retrieval ability of the CBR mechanism for fault diagnosis
of electronic ballasts in aircraft [113]. Apart from the combination of
multiple data-driven methods, in many cases, data-driven methods are
combined with model-based reasoning as well. One example is Ab-
ductive Diagnosis through Adaptation of Past Episodes for Reuse
(ADAPER) [114], where a CBR system is integrated with model-based
reasoning system in a master-slave architecture, using two knowledge
bases, i) solved diagnostics problems in the case memory, and ii) a
behavioral model in place of the domain knowledge. Another such
combination can be found in the hybrid prognostic model, that was
developed using a physics-based model and similarity-based data-
driven approach ,in order to carry out short-term predictions as well as
RUL estimations in the cases of a clogged filter and fatigue crack pro-
pagation [115].

3. Applications of reasoning in aerospace IVHM

As the previous section discussed the different techniques used in
the reasoning systems and the various problems that could be solved by
reasoning, this section discusses how the reasoning systems are applied
practically in aerospace IVHM. It is already known that, the aim of
IVHM is to collect and utilize as much useful information as possible to
understand the behavior of the systems, to diagnose and predict their
health in order to aid CBM. Hence, in aerospace applications, reasoning
systems are implemented mainly with the goal of real-time health
monitoring, diagnostics, and prognostics as well as the troubleshooting
activities. A select few examples of applications of reasoning in these
areas are discussed below. Table 3 summarizes the various reasoners
developed by different industries for health monitoring in aerospace
IVHM.

3.1. By NASA

NASA is a pioneer in the field of aerospace IVHM. Over the years, it
has developed several reasoning systems for monitoring the health of its
space shuttles, satellites, and aircrafts. Space Health Inference Engine
(SHINE) is a reusable expert system used for real-time and non-real-
time health monitoring and diagnosis. It consists of a blackboard
structure, a knowledge base, and a database; it has high computational
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Table 3

Applications of reasoning in aerospace IVHM.
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Reasoner Organization Used in/Experimented on

NASA

SHINE JPL Deep Space Missions [116]

Livingstone NASA AMES Research Centre Deep Space Missions [14]

BEAM NASA AMES Research Centre Propulsion IVHM Test Experiment [118]

R2U2 Framework NASA AMES Research Centre Electric Unmanned Aerial Vehicle health management program [119]
MAPR NASA AMES Research Centre, Anomaly detection and fault classification in the Electro Mechanical

Aerospace OEMs

AGET

10T based ontological reasoning
CONSOLIDATE

Meta-diagnostic reasoner

Ridgetop Group, Inc

Pratt & Whitney

Siemens

Smith Industries Aerospace and Defense, Inc
Airbus

Actuator (EMA) [71]

Aircraft Engines [120]

Gas turbines [121]

Aircraft engines [43]

Centralized Maintenance Systems' knowledge database [122]
Navy/Airforce aircrafts [123]

Generic Maintenance Management System [127]

Adapt [125]
Multi-disciplinary applications [127]
EMA [128], Naval Shipboard Systems [129], TacSat3 [130]

Smart TPS Boeing

IDS For Air Canada

COTS Packages

RODON Uptime Solutions AB
eXpress DSI International Inc
TEAMS Qualtech Systems INC
MADe PHM Technology
ReasonPro Impact Technologies

Health Management Programs

Bayesian network top level reasoner Impact Technologies

Ground based reasoner Boeing
Model-based TRANSCEND + Data driven NASA
reasoning
Academia
FACT Vanderbilt University, and Budapest University
of Technology and Economics
LYDIA Delft University
PHM reasoner Cranfield University, IVHM Centre
HyDE University of California, NASA Ames Research

centre

Multi-disciplinary applications [131]
Avionics [132]

Avionics Vehicle Health Management [133].

Integrated Diagnostics System [134], Aircraft Electrical Power Systems
Prognostics and Health Management (AEPHM) program [135]

PHM for EMA [136]

Fault diagnosis in aircraft fuel system [137]

Implemented in TELEMOS, HMS-RSTS, and Harbour Cranes [138].
EPGS Failure prediction [139]

Propulsion system in ALDER,

EPS in ISS [140]

power and speed that is required for real-time monitoring of deep space
missions like Voyager, Galileo, and Cassini [116]. The first fully au-
tonomous Al system in a spacecraft, Remote Agent, has a planning and
scheduling AI module, a multi-threaded executive module and its cen-
terpiece is a model-based reasoning software, Livingstone [14]. Li-
vingstone is developed to monitor the overall behavior of a complex
system. Livingstone consists of qualitative models for both nominal and
off-nominal behaviors and is capable of reasoning through system-wide
interactions, thus enabling inference of the effect of any failure over the
complex system [6]. Similarly, Beacon-based Exception Analysis for
Multi-missions (BEAM) [117], also developed by NASA ,consists of
several signal processing modules, which was integrated with Living-
stone, where it functioned as a virtual sensor to resolve the ambiguities
for multiple fault scenarios in Propulsion IVHM Test Experiment [118].
In this, BEAM was used to detect and isolate a local fault, whereas Li-
vingstone used the BEAM's output as evidence to reason through the
entire system, thus complementing each other. NASA developed the
Realizable Responsive Unobtrusive Unit (R2U2) framework, in order to
improve the diagnostic capability in an electric Unmanned Aerial Ve-
hicle health management program. The R2U2 framework was adapted
to use the prognostic information derived from a Bayesian Network to
improve diagnostic accuracy [119]. Another reasoner, namely the
Model-based Avionic Prognostic Reasoner (MAPR) [71] is capable of
real-time monitoring, processing as well as reconfiguring the model,
based on the system's health and it was used for anomaly detection and
fault classification in the Electro Mechanical Actuator (EMA).

3.2. By aerospace OEMs

Several Original Equipment Manufacturers (OEMs) of aircraft in-
dustry have developed their own reasoning systems and a combination
of strategies to aid their maintenance programs. For example,
Automated Ground Engines Test Set (AGETS) Model-Based Reasoner
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developed by Pratt & Whitney uses an AI tool called Qualitative
Reasoning System, to run diagnostics tests and isolate failures using a
troubleshooting approach involving F100-P100/200 gas turbine en-
gines [120]. Siemens uses the Internet of Things (IoT) architecture and
ontological reasoning to carry out diagnosis and prognosis of turbines
[121]. Smith Industries Aerospace and Defense, Inc. developed a di-
agnostic reasoning system called CONSOLIDATE, which uses an Object
Oriented Database and hypothetical reasoning to diagnose the faults in
aircraft systems like engines [43]. Airbus developed a meta-diagnosis
methodology to reason through and isolate faults in their Centralized
Maintenance System's knowledge database [122]. Boeing developed a
Smart Test Program Set (TPS) software suite with AI Estate archi-
tecture, that was utilized to communicate with multiple system rea-
soners and to provide suggestions for aircraft in the Navy and the
Airforce. In this, the diagnostic reasoners used were developed in
MATLAB and were capable of using the BIT data, historical diagnostic,
and maintenance records and other related information, to provide
suggestions on entry points and call outs in the test programs to the
engineers via the Smart TPS suite [123]. The Integrated Diagnostic
System (IDS) developed as a generic maintenance management system
for Air Canada, uses CBR to retrieve and classify the warning and failure
messages from aircraft with case bases, as the original messages cannot
be tracked with simple string matches. Furthermore, a case-base for
diagnostics is developed which serves as a corporate memory that
stores historical information of an aircraft fleet, thus helping the repair
and the maintenance processes across the fleet [124].

3.3. COTS packages

Numerous commercial reasoning packages are used by the in-
dustries for both health monitoring as well as maintenance. RODON is a
commercial model-based diagnostic reasoning system from Uptime
Solutions AB. It generates hypotheses based on contradictions between
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the simulated and observed systems. A declarative equation-based
language called Rodelica is used to capture the model's knowledge.
RODON has been tested on the ADAPT system [125] and is capable of
generating decision trees which can be used for troubleshooting of the
system [126]. DSI International Inc. developed the eXpress Embedded
Reasoner, which is capable of being embedded into the HM system, in
order to receive systems data and provide a diagnosis of the system
including root cause of failures, instructions for repair, as well as sug-
gestions on further tests to be carried out [127]. Another commercial
package, Testability Maintenance and Engineering Systems (TEAMS) is
developed by Qualtech Systems Inc. (QSI). It is a domain-neutral De-
cision Support Software Suite that has been applied for integrated di-
agnosis and prognosis of various systems like EMA [128], Naval Ship-
board Systems [129], and Tactical Satellite 3 (TacSat 3) spacecraft
[130]. Similarly, PHM Technology developed the Maintenance aware-
ness Design Environment (MADe), which is an integrated model-based
design, analysis and DSS software suite [131]. MADe is capable of
functional modeling, failure reporting as well as health-related analysis.
ReasonPro, another COTS package developed by Impact Technologies,
has automated many reasoning processes, including the Built-In-Test
(BIT) reasoning that uses system level knowledge and LRU level data.
ReasonPro provides interactive diagnostics solutions to the maintainers,
based on the information and codes collected from the aircraft, and it
further helps fault isolation through ambiguity reduction and evidence-
driven diagnostics [132].

3.4. Health management programs

Several health management programs have implemented reasoning
as a part of the monitoring process as well. Impact Technologies de-
veloped a Bayesian Network top level reasoner for Avionics Vehicle
Health Management [133]. The Integrated Diagnostics System [134]
and the Aircraft Electrical Power Systems Prognostics and Health
Management (AEPHM) program [135], both developed by Boeing, use
a Ground-Based Reasoner component, to optimize maintenance of hy-
draulic subsystem in legacy aircraft, and to improve the mission
readiness of Electrical Power Systems in military aircraft, respectively.
A Prognostics Health Management (PHM) program for EMA uses
model-based TRANSCEND approach as well as a data-driven reasoning
for diagnosis of the faults in the EMA [136].

3.5. Academic work

Some of the reasoners developed by the academia are presented
here. Fault-Adaptive Control Technology (FACT) was developed by
Vanderbilt University, and Budapest University of Technology and
Economics, with support from NASA and Boeing. It uses Temporal
Causal Graph at a lower level and TFPG at system high level to describe
the effect of the faults. FACT was tested on an aircraft fuel system,; it
was able to identify the fault injected, as well as reconfigure the control
system to maintain continued operation [137]. Similarly, a modeling
language, Language for sYstem DIAgnosis (LYDIA), developed by Delft
University was implemented in TELE-operations and Model-based Su-
pervision of instruments for planetary exploration (TELEMOS), a
model-based diagnostic reasoning system. It has been demonstrated on
several other projects like Health Management System for Reusable
Space Transportation System (HMS-RSTS), and Harbour Cranes [138].
Another model-based prognostic reasoner was developed in Cranfield
University for an Electrical Power Generation System, based on power
management design. In this work, a hybrid mathematical model was
developed to study structural and parametric faults; a framework with
PHM reasoner was developed to predict the failures accurately, along
with the warning of secondary damages that might affect aircraft op-
erations [139]. Furthermore, the Hybrid Diagnostic Engine (HyDE)
reasoning system was developed by the University of California along
with NASA Ames Research Centre. It is used for diagnosis of faults in
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several components of the propulsion system in the Autonomous Lander
Demonstration Project (ALDER), the Electrical Power System of the
International Space Station (ISS), and the landing gear of an aircraft
[140].

4. Reasoning for IVHM at the vehicle level
4.1. Opportunities

The previous section discussed how reasoning is used for health
monitoring by different sectors within the aerospace industry.
However, among the health monitoring systems cited, the major focus
was on the component or the systems level, but not at the vehicle level.
This is an important shortcoming, considering that one of the main
objectives of IVHM is to assess and predict the health of the system and
its effect at the vehicle level and avoid unexpected downtime, thereby
supporting CBM.

There are only a handful of studies that consider the notion of ‘ve-
hicle level’ as the primary driver. For example, Vehicle Integrated
Prognostic Reasoner developed by a team from Honeywell, Vanderbilt
University, and NASA Langley Research Centre, integrates information
from various aircraft subsystems, namely APU, Avionics, Flaps, and
LRUs, to generate multiple evidence and simulate evidence and false
alarms for other subsystems [141]. Dinkar et al. [142] patented a Ve-
hicle Level Reasoner Engine that consists of an Advanced Diagnostic
and Prognostic Reasoner, and a System Fault Model which has fault
models from components level, group area level, and subsystems level,
and a set of diagnostic and prognostic algorithms, in order to provide
diagnostic and prognostic conclusions, based on the observed failure
modes. An evolvable tri-reasoner conceptual framework [143] was
developed by Boeing, along with Impact Technologies, NASA and
Vanderbilt University which consisted of reasoners for anomaly, diag-
nosis, and prognosis, that provided health information of the vehicle.
This was used by the Reasoner Integration Manager as evidence to
prioritize the faults based on their interaction with the integrated
model. Khan et al. [144] developed a Vehicle Level Reasoning System
framework, that takes the health status of several subsystems like the
engine, the fuel system and the electrical system into account, and
weighted health indices were calculated based on behavioral evidence
and diagnosed faults. Schoeller et al., [54] proposed a reasoning
structure that had hierarchical layers of reasoning where, health mon-
itoring techniques are focused on the component or the LRU level, the
sub-system level, and the system level. Failure mechanisms of multiple
sub-systems of the main system like the engine, actuators and drive
trains of an aircraft are monitored and overall functionality of the ve-
hicle (aircraft) during simultaneous degradation of all the monitored
failure mechanisms is calculated. Thanigaivelu et al. [145] developed a
methodology for the BIT Effectivity analysis, which is based on the
Failure Mode and Effect Summary, to calculate the probability of BIT
fault detection and isolation in a control system, considering its effect at
the LRU, the system and at the aircraft level.

Most work presented in the previous paragraph, show only the ef-
fect of a single component's or a sub-system's failure at the vehicle level.
The effects of these failures on other subsystems, i.e. the effect due to
their interactions and their root causes, at the vehicle level are not
widely explored. Only a very few works have so far considered the
effect of subsystem interactions. For example, Lopez et al. [146] de-
monstrated the effect of a fault in a fuel-cooled oil cooler on the in-
dependent systems using a modular framework. However, the finding
did not describe the effect at the vehicle level and focused mainly on the
cross-system diagnostics. Similarly, Nwadiogbu et al. [147] from Hon-
eywell International Inc. patented a vehicle health monitoring system
architecture, in which the DSS would choose to ignore the fault issues
reported by the Environmental Control system when there is a fault in
the engine. The drawback of this decision is that, it runs the risk of
ignoring the faults that originate in the Environmental Control System
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that is independent of the faults in the engine. Another such example is
the Vehicle Health Monitoring algorithms developed for diagnosis of
the flight control system in a space shuttle [148]. The multivariate al-
gorithm is used with parametric models to detect the fault onset by
combining the prediction models of three subsystems: Guidance, Na-
vigation and Control System, Propulsion system, and Gimbal actuation,
and study the effect of four faults on these three systems. This study
suggests that a vehicle level reasoner is required to find the root cause
of faults by combining the symptoms from other systems as well as BIT
data.

The number of examples in this section and their findings are evi-
dence to the point that, the area of diagnosis and prognosis of inter-
acting faults requires considerable exploration. On another note, it is
worth noticing that, even among these few numbers of works on vehicle
level frameworks, reasoning seems to play a key role in assessing the
effect of the system's fault in most of them. Hence, it is safe to assume
that reasoning, both as a system as well as a strategy, is an inevitable
requirement for any work related to vehicle level health monitoring.
Any research in the detection and prediction of interacting faults is,
thus, a great opportunity to harness the full potential of reasoning. At
the vehicle level, reasoning could be used to make inferences with the
information available from multiple systems, ranking priorities, and
solving conflicts. It could make use of the connectivity between the
components and the systems, consider the health information from all
the levels, i.e. at the component/subsystem/system levels (as shown in
Fig. 8), process the data at each stage, and give decisions on the root
cause of the faults and their cascading effects [88].

4.2. Challenges

The implementation of reasoning at the vehicle level is a challen-
ging task and would face a lot of hurdles. One of the major reservations
faced by IVHM is access to data. In general, the systems are manu-
factured by different suppliers, and the OEMs assemble these individual
systems onto a common platform. Hence, there is a problem of in-
tellectual property which prevents the suppliers from sharing data to
the OEMs or the airliners. The other challenge is that, these systems
have their own methods of data processing and monitoring, which may
not be compatible with other systems’ methods [149]. Hence, the in-
tegration of information from these systems at the vehicle level requires
a framework, that could accommodate the processing of different types
of data sources.

A reasoning system for vehicle level health monitoring would re-
quire a robust framework that could clearly distinguish between the
different layers of the vehicle and accommodate different data from
multiple systems. Since the database is mainly dependent on sensor
data, suitable algorithms have to be chosen for data processing, feature
selection, and extraction [44]. Correspondingly, methods to enable
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sensor data fusion and methods to mitigate the risk of sensor failure
should be chosen as well [44]. A database management system is re-
quired, which could maintain all the different types of data, link their
functionalities, and make them accessible [44]. In order to mitigate the
challenge of knowledge acquisition, the systems could use modular
architecture to protect the IP protected and the private data. For this
reason, suitable communication protocol has to be established between
the database modules that possess the system health information and
the reasoning system developed at the vehicle level. Apart from this,
suitable knowledge representation and problem-solving methods have
to be chosen, depending upon the type of interaction between the
systems and the data sources. For example, if the reasoning system is
being built for a vehicle that has rich data sources, the CBR metho-
dology can be chosen to make use of the existing data as historical
information. This would be an advantage to the reasoning system, in
terms of developing the knowledge as well, since the CBR methodology
allows learning through its revise and retain phases. Apart from these
requirements, performance metrics like efficiency, false negatives, and
false positives need benchmarking [44]. Lastly, developing a reasoning
system for vehicle level health monitoring will require rigorous ver-
ification and validation for qualifying the system.

5. Summary and conclusions

Following contributions are made in this literature review on rea-
soning in aerospace IVHM and its potential.

i) A timeline comparison of the AI technologies used in the aerospace
IVHM versus the Al technologies in general (Fig. 1).
ii) Applications of reasoning as an Al technology in the engineering
field (Fig. 2)
iii) Different reasoning strategies with examples (Table 1).
iv) A generalized architecture for reasoning system (Fig. 3)
v) Pros, cons, and applications of different knowledge-based rea-
soning systems (Table 2).
vi) A SWOT analysis for model-based and data-driven methods
(Fig. 7).
vii) Applications of reasoning in aerospace IVHM (Table 3).
viii) Shortcomings in the existing health monitoring systems in aero-
space IVHM and the opportunities for reasoning in vehicle level
health monitoring along with the potential challenges.

A fully realized IVHM system is required to face the high demand for
CBM and reduce the MRO costs. Nevertheless, it is a challenging task,
considering that the development of such an IVHM system depends on
equally advanced supporting fields. This paper attempts to learn the
importance of the Al technology reasoning and its capability to con-
tribute to the shortcomings in the aerospace IVHM field. To that effect,
the paper reviews the reasoning system's architecture, its types, and
functions along with its applications in various fields, and explores the
spaces where reasoning can further contribute to IVHM. It is identified
from the paper that the vehicle level health monitoring system requires
reasoning in any format: a strategy or a system. Likewise, the challenges
involved in developing a reasoning system for vehicle level health
monitoring is presented too and a few suggestions provided to mitigate
some of them. The full potential of reasoning, as both a strategy and a
system, can be harvested by combining a suitable technology that has
the capability of negating the challenges faced by reasoning. In iden-
tifying such potential technologies and making them function alongside
reasoning, lies the key to the future of a fully functional IVHM system.
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