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ITepixndn

XNV nopoLo o SLTAOUATIXT EQY GO, UENETAUE TNV TONUTAOXOTNTA ETUXOVWVINS TWV XBavTixnwy
oxnudtov TNpec opopoppxhc xpuntoyedgpnone (QFHE) xo tov cuotnudtov undevinhc
yvaone (ZK) v v ahdon QMA (1o xfoavtind avéhoyo tne NP). Oewpdvtac v
xPovtixry Suoxoiior tou learning with errors mpoPifuatoc (LWE) vy ta mpddto, xou
Vv otovel-toauovuuixy (quasi-polynomial) xBavtixs duoxoXia tou LWE vyia ta dedtepa,

€ OUUE TA TOEAXATW ATOTENECUOTAL

o KBavtixd Xyrua I\pwng Ououoppinrc Keuntoypdgnong Puluoi-1, nou emitpénet
oty Alice va oteihet o6tov Bob 10 xfoavtixd e whvupa |¢) xpurtoypoagpnuévo,
tote o Bob, éyovtac éva xxhopa C, va uropel va utohoyioet to C(|Y)) ywelc va
yeetdleTal var anoxTunToYpapnoeL To ufvuue. Emituyydvouue moumhoxdtnta

(L) [+ 1Cen]) - (1 +o(1))

Tou elvor oxedOV BENTIOTN.

o IIpwtoxoAN6 ctatio g Mndeviic I'vidone 4 yOpwv yio tny xhdon QMA cto anhéd
wovtého. Autd elvor To TEOTO MEWTOXOANO TOU ETUTUYYAVEL 0TATIOTIXY) UNBEVIXN
yvoon oe otabepd aptbud yopwv yio TNy xhdon QMA.

o ITowtéxoANo umohoyioTxhc (avt. ortatiotinic) Mndevixrc I'vione 2 ylpwv oto
XEOVIXO UOVTENO, BEp®dVTaC ETLTAEOV TNV UTOEE TN LETAXPAVTINDY UN-TULUANNAOTOLACILWV
ouvapthoenv (avt. time-lock puzzles).

'O\t To TopAmdve TEOTOXOANA ETUTUYYXAVOLY TNV BENTIOTH TONUTAOXOTNTA ETUXOWVWVIAC
Tov avtiotolywv NP mpwtoxONN\wv ye ac@dheia EVavtl o€ xAAooLx00g AVTLTANOUG.

Ag&erg KAedid— xPavtiny xpuntoypaplo, TARR0OC OUOUOROIXT XPUTTOYRAPNOT), UNBEVIXN
YVOOT), TONUTAOXOTNTA eTixowvwviag, LWE






Abstract

In this diploma dissertation, we study the communication complexity of Quantum Fully
Homomorphic Encryption (QFHE) schemes and Zero-Knowledge (ZK) for QMA (the
quantum analogue of NP). Assuming the quantum hardness of the learning with errors
problem (LWE) for the first and the quantum quasi-polynomial hardness for the latter,
we obtain the following results:

e Rate-1 Quantum Fully Homomorphic Encryption Scheme, which allows Alice to
send an encrypted version of her quantum input [¢)) to Bob, such that he (holding
a circuit C') can compute C(|¢)) without first decrypting it. We achieve commu-
nication complexity

(L) [+ 1Cen]) - (1 + o(1))

which is nearly optimal.

e 4-Round statistical Zero-Knowledge Arguments for QMA in the plain model, addi-
tionally assuming the existence of quantum fully homomorphic encryption. This
is the first protocol for constant-round statistical zero-knowledge arguments for

QMA.

e 2-Round computational (statistical, resp.) Zero-Knowledge arguments for QMA
in the timing model, additionally assuming the existence of post-quantum non-
parallelizing functions (time-lock puzzles, resp.).

All of these protocols match the best communication complexity known for the corre-
sponding protocols for NP with security against classical adversaries.

Keywords— quantum cryptography, fully homomorphic encryption, zero-knowledge,
LWE, communication complexity
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Extetopevn EXAnvixn Ilepiindmn

1 Ewoyoyn

H xpuntoypapio diadpopatiCel mhéov petlova pdho oty xabnuepwn pog Loy, epodidalovtog
wog pe epyoleia mou xabioTodv SuVATH TNV ACPUNT| ETixoVoVio UETAED BUO0 ¥ ToEATAV®
atopwy. Iépa amd To eLPHTERA Y VWO TE XPUTTOY PAUPIXA TEWTOXOANAL, OTLOG 1) XPUTLTOYRAPNON)
ONUOGIoU ANEWLOD TOU ETUTEETEL TNV ACPANY) ETUXOWVOVIX UECW EVOC ONUOGIOU XUVUALOU,
UTAEY0UY XAl TEPLOCOTERO TERPITAOXA TEWTOXOANA TOU EMAVOUY BUGKONOTERA TEOBNAATY
OTWC:

e H I\Apwc Ouopoppuh Kpuntoypdgnon (FHE), nou enttpénet Tov UnoXoyiopd cuvapThoEnY
ue elocodo xpunToYEAPNUEVL DEDOUEVAL.

e Ou Anodeileic Mndevixic I'vioeic (ZK), mou amodewviouv v eyxupdtnta Uiog
TEOTACNG, XWEIC VO PAVERMVOUY XATOLXL ETLTAEOV TATPOPOELAL.

Ta mopandve epyohelor TEETEL var €lvol o ATOBOTIXE (G TE VoL UTOPOVY VAL PavoLY XENOLUAL
xoU o€ TEayUaTixd oucthuata. ‘Etol ol epeuvntég mpoonaoldy va ENAYIO TOTOCOUY TNV
ToAUTAOXOTNTA ETXOVLViog Touc. H molumhoxdtnta enxovwviog xobopileton 1660 amd
T0 Yéyebog 6o xou amd Tov aElbud TWV UNVUUATOV TTOU AVTOANACOUV Tol EUTAEXOUEVAL
uepn.

Eupabivovtag otor mpoavagepfévia TemTOXOANA, €Vol GUCTNUN TAHEOS OUOUOPPIXNC
XEUTTOYRAPNONG ETUTEETEL GTO €Val UEPOS VO GTEINEL TO XPUTTOYRAPNUEVO TOU URVLUL 1M
XATO omO EVOL ONUOCLO UNELDL ETOL OO TE TO GANO VL UTopel VO TERA, EXOVTASC EVAL XOUNWUL
C, va UTONOY(OEL XOU VO GTEINEL

Enc(m) Eval(C,-)

Enc(C(m)),

xwele va udber xdmolo véa mAnpogopior yia to pivupa m.  Ou umoloyiopol mave oe
XEUTLTOY ROUPNUEVOL OEDOUEVA EXOUV TONNATINES EQPUPUOYES, OTIWS CTNY TER(TTOOY OTOU €Vag
uToNOYLoTIXG adUvouog client BéNel vo aveBdoel Ta Sedopéva Tou GE €vay LOYUPOTERO
server mou UTopel Vo TEEEEL TEQITAOXO XUXADUATI, BLATNEMVTAC TNV WOIWTLXOTNTA TOU.
Etvou BéBonar onpavtind vo eEac@aNCOUUE TWE 1) TONUTAOXOTITO ETUXOVWVIOC TOU ELOAYEL
to FHE nmpotéxorlo dev avoupel tnv Beltiworn tng amédoong mou emupépet 1 avdbeon otov
server. Ilpéogota amodelydnxe nwg undpyxovv FHE npwtdxolha 6mou 1 moxumhoxdtnta
emuxowvwviog TAnodlel exelvn Twv avaogart tpwtoxd ey [BDGM19| (exeiva 6mou to
TEOTO UENOS OTENVEL TO WHVUUO TOU U1] XPUTTOYPAPNUEVO), BEwpmvTac Ty duoxoiia Tou
learning with errors (LWE) npof\fuatoc.
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Yyetnd ye tic anodeielc undevixrc yvwong, and tny etlcarywy Toug to 1989 [GMRSEI)]
€xouv wialtepa onuavTixy enldpacy TNy xpuntoypaplor xou TN OewenTxh TANEOGOELXY
vevixdtepa. ‘Exouv ueketnbel extevig and Toug xpuntoypdpoug, UE GTOHYO TNV XATAVONOT)
TV anapaltnTey unobéccwy xou TV Beltictonoinon tou apbuol arapaltnTov Yopwy.
Amodexvietan nwg Bewpwvrtoc standard computational assumptions, omowadrrote NP
TpbToon uropel vo anodetyfel péoa ot o TOND Téooepic YOpouc OIMNNAETSpaone [GMWSE,
GK96|.

Evtoltolwg, oe avtibeon pe to x\acoixd TpmTOXONNY, YVwelCouue TOND NiyOTERA YLoL To
avtiotouya xPovtind. To xPavtind TARPWS OUOUOEPIXE TEWTOXONNA ETLTEETOUY AVTC TOLY O
xBavtinéc mpdéelc 6TOC

Enc(lv)) 22 Enc(C(|v))).

omou |¢h) eltvan pror awBaipetn xPovtind xatdotaon xou C' xdmoog povadiaxde (unitary)
texeothc. Ilopdho mou autd To mEOPANU €xel ueXeTNOel AydTtepo amd To avticoTouKo
XNAOOLXO, MO TEVOUNE TG EfVoL axOUT| O CTUAVTIXO OEDOUEVNC TNE UTONOYIC TLXHS UTEQROX NG
TV xPavtixdy server oe oxéon Ue xdnowov client. Axourn xow peANovTixd 6mou ot Yo Teg
Bo €youv mpdoPaot oe xPoavtixolc unohoyloTES, To TBAVOTERO Elvol TS OL TEPLOCOTERO
dUoxoNoL uToXoyiopol Ba efvon TparyuaTomotRoluol wovo amd Loyueols server. YT mdpyouv
optopévee xataoxevéc xPavuxedy FHE [BJ15], oxéun xou pe mA\iponc xhacowxd client
[Mah18a|. ITapdia autd, to mpdPAnua xPaviixey FHE cuoctnudtwy ye tolumhoxdtnta
EMXOWVOVIOG aVeEdPTNTN TOU PEYEDOUS TOU XUXADUATOS TUPUUEVEL OVOLXTO.

Tautdypova, 66OV aPopd OTIC ATODEEEL UNOEVIXAC YVWOTNS, TEWTOXOANA YLl TNV
x\&on QMA éyxouv polic npoogdtng xataoxevactel [BJSWI16| xou to BélTtioto péypt
OTLYUAC omoTéENEOUA (OYETIXE PE TNV TONUTAOXOTATA ETXOWLViag) elvon and toug Bi-
tansky xou Shmueli [BS20|, 6nou xotacxebacoy éva emyelpnua undevixfic yvoone (ZK
argument, On\. pe urtohoyloTixf opbbétnTa) pe otabepd aplBud yopwv (>4).

‘Etot, 0étouye tar mopoxdtw epoTioTo:

Mrmogotue va xaraoxsvaoovue xpavtixé FHE e eddyiorn molvrdoxornra
emxowwvias; Ia va amodelbovue mpotrdoes tng xAdons QMA opeilovue ex
pioews va mpooldéoovue emumAéoy yvoovs atintemidoaons;

Ye auTh TNV gpYaolol UENETIUE TOL ToRATAVEL TEoBAAUoTa xou xotaoxeudloupe xPavtixnd
TEWTOXONNI UE TTONUTIAOXOTNTA ETIXOLVWVIAS OVTIC TOLY T UE EXEIVT) TWV XNATTLXWY TEWTOXONNDV.

2 KBaviixd I \pwg Opopoppixd Sxrua Kpuntoyedepnong
PuBuov-1

Apywnd peretdue to KBoavtind INApwe Opopoppixd YXxrua Keuntoypdgnong Pubuod-1.

I'ati arnotelel un-tetpippuevo neoPrnuoe; Ilow eufadivouue otnyv xotaoxeun
HaS, elvol oNUAVTIXG VO XATUVOICOUUE YIATl TOL UTEOYOVTA TEOTOXOANO ATOTUYYAVOUY Xol
eupaviCouv yeyonitepo puBud. (g pubudc yevixd opileton To XxAdouo Tou peyébouc Tou
ATOTENECUATOC TV UTONOYLIOUWY OE 1] XPUTTOYRUPMUEVT) TANROGOpld ¢ TEog To Uéyebog
TOU AMOTENECUATOS TV UTONOYLIOUMY GE XQUTTOYRAPNUEVY) TANEOPORLd. 2TA TEOTOXOANA
6nwe to [Mah18a, Bral§|, éva xpuntoxelyevo mou anotelel xpuntoypdpnon wac (-qubit
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xPavtixic xatdotaons 1) etvon Ty popphc
QOTP((z1, 21, - - -, Te, 20), |1)), QEnc(pk, (21, 21, . - ., Te, 2¢))

6rou 10 QOTP (Quantum One-Time Pad) eqopudleton Eeywpiotd o xdbe qubit xou
n ovuPorooepd otk = (z1,21,..., 2 27) elvar xpuntoypapnuévn bit avd bit. Edxola
UTOpEL XAVELS VO TORATNENOEL TWS TO CUYXEXPUIEVO XPUTTOCUC TNUa €XEL pLBUS avTioTpopa
ToNLLVLUIXO, e€autiag Tou xh\aoowxol FHE oyrfuotoc.

Mio npogavric Nbom Bo oy vor uioBetricouye piar UPELBXT TEOGEYYIGT] XOU VoL BELYUATONNTITOUUE
0 QOTP xXewdi ypnowonowwvtac évay Pevdotuyaio yevvhtopa (PRG). o ocuyxexpipéva,
Bo umopoloaue va Betidcouue tov pubud uroloyilovtog

QOTP(PRG(seed), |1)), QEnc(pk, seed)

YLor %4moLo opoLbpop@o. derypatornmTnuévo seed < {0, 1}, Téte Oa unopolue oxdurn vo
UTIONOY(COUUE Lot CUVERTNOT] UE XPUTTOY paPpNUéVT] €l0000, ool LTAEYEL 1) BUVATOTNTA VAL
UETATEEPOUUE TA XPUTTOXEIUEVA GTNV 0EYLXY| TOUG HOp®T, LTONOYILOVTUG OUOUOPPLXE TOV
(euvdotuyaio yevviTopa.

[Topdho Tou auTy| 1) TEOGEYYIoT NELTOUEYEL Y10t XPUTTOXEIUEVA TTOU €Y 0LV LONE XpuTTOY papnOel,
0ev Loy Vel To (Bl0 VO TEQ ATO OUOUOPPLXY| EQPUOUOYT) CUVAOTHCEWY" OVANOYA UE TNV TUAN
mou B egapuootel oty xPaviiny elcodo, To QOTP xheidl otk arNdlel o€ xdmota dlapopeTixy)
oupfolooeilpd otk’.  Av xon LTdEYEL TEOTOC VoL AVAVEDVOUPE TO XNAGOWS WEPOC TOU
xpuTToXelEVoL Ue xdbe utoroyiopd [Mahl8a|, dev cupfodilet pe Ty LBEWXA Tpocéyyion
Tou e€etdloupe. Autd ouufaiver agol to tpononoinuévo otk mbavie dev avhixel 6o
cUvVoNo agi&ewe Tou Peudotuyaiov yevvitopa PRG, dnhadr unopel va uny undeyet cupforocelpd
seed’ tétoia (dote PRG(seed’) = otk’. Xuverndc mapatnpolue 6Tt dev propolye va omoEANouye
™V xhacowl xpuntoypedenon QEnc(pk, otk). Axdun xou otnv Woavixy nepintwon étou to
xiaoowd FHE éxel BéXtioTo pulud, epdcov anatobvton TouNdyicTov dUo xhacoixd bit
i vou xpuntoypagproouy éva qubit, oxdéun Bo €xoupe mONUTNOXOTNTA UEYONUTERT TNG
emOuunThc xou @Tdvouue oe adLEE0d0.

Spooky Y roXoyiopoi. oty Aoor pog adlonolodue tny dour| uiag Wloltepne Tepintwong
FHE cvothuatog ote va yetateédouye 1o xPaviixd FHE xpuntoxelyevo o ufpidiny
xatdotaon pubuol-1. IHoapatneolue 6t oe opwéva véa FHE cuothuata [BDGM1Y]
opadonolv k xhaooxd bit wopphic ¢ = (o, c1, . . ., ) € ZIH x {0, 1}, yia xdmoto mod-
ulus ¢ xar n = poly(A). H evdiapépovoa yio eude Wbiotnta elvon mwe tor teNeutaio k bits
TWV XPUTTOXEWWEVOY GLOXETILOVTOL UN-TOTUXA UE TO WOLWTXO XNeWdl sk. ITio cuyxexpéva,

0 ONYOPLBUOC ATOXPUTTOYEAPNONG OVOXTA TO dEXIXO Uhvupa UToNoY(LovTog

Dec(sk, c) = F(sk,co) @ (c1, ..., k)

v xdmola ouvdptnor F, tne omolag o axploc oplopds Eegelyel amd Tor TAXOLL TNG
nepiAndne poag. Auth 1 WotnTa Ty omola ovoudlouye spooky anoxgvnwygd(pnon, elvan

xplown yioe Ty Noor pog.

H X\Von pag. Me Bdon ta topandve, urtopolue vo yetatpéhouue xPovtind xpuntoxelyeva

(oedpn xou U6 TEPQL ATd OUOUOPPIXOUE LTIONOYIGWOUC) TNE Lopghc (QOTP(otk', [¢')), QEnc(pk, otk’))
oe puBuoU-1 woper axolovbwvTtag To TopaxdTe Bridoto:

"To évopa elvar epnveucuévo ané éva mapbpolo guvéuevo os FHE cuothpate molamAGy xhedidy [DHRWE).
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e Metutpénoupe to QEnc(pk, otk’) e FHE xpuntoxeiyevo ye spooky aroxpuntoypdgnon
XENOWOTOUVTAG TNV TEXVIXT bootstrapping (on\. Teéyovtac Tov akyoplbuo amoxpuntoypdpnong

OUOUOPPIXY).

e To xpuntoxeipevo nou mpoxvntel To cupfoXiCouue we e&ng:

€= (C0sClasClay- s CousCrz) € ZZH x {0, 1}

e Emotpégoupe o xar Q) (X¢=Z%=) - QOTP(otk', [¢')).
i€l

Egéoov |co| = poly(A), 1o péyeboc tou cuumiecpévou xpuntoxewévou eivon ¢ qubits
ouv poly(\) bit xhacowric TAnpogopiac. O pubude Tou tpoxintel elvar BéNTio ToC dedouévou
4TL OTIOLOBNTOTE XPUTTOCUC TN ONUOGIOU XNELDLOV €XEL XpUTTOXEIUEVA UEYEDOUC TOUNSYLO TOV
A bit, ondte évag npdabetog 6pog e mapopuéteou ac@arelag elavt avamdPEUXTOS. BTNV
TepinTwor pag €xouue évay UeyarlTepo Tpocbeto 6po, 0 onolog GUMS Elval ACUUTTOTIX
aUENNTEOC.

I vor dovpe EexdBapa yiati auty) 1 dradixaoto pog divel Eva xpuntoxeiuevo Tou uropolue
VO OTTOXPUTITOY POPTCOUUE, AVOXATATACCOVTOG TNV Topamdve e&icman €xouue

F(Sk7 CO) = (xllv Zi) ce 71'/67 22) D (Cl,za Clzy -+ Cla, CZ,Z)

6mou efvor To xaTINANNO one-time key tne xPoavtinic xatdotaong

) (X< 2¢=) - QOTP(otk’, 1))

i€]l]

— ® (X Ciw 752 . ® (X%ZZQ) |
i€(l] i€(l]

= @) (xerizes) ).

i€l

3 KpBaviixd IINHfpwc Oporopnoppixd Xxiua Keuntoyedpnong
PuBuoi-1 péow touv Yvunayodg Dual-GSW

Av xou 1) topandve Noon enituyydvel BENTIOTO puBUOS, TapaTNEOVUE OTL ELGAYEL EVOL ETUTAEOY
WBLwTK6 *Nel 610 clotnua. Etot xotd tnv petatpon and leveled (ixavd va amotiuroet
xUIAGPTa optobetnuévou Bdbouc) oe TP OUOPoEPLXS GUC TN ELGEYETOL EVOL ETUTAEOY
assumption xuxAwxotnrog. Avtibeta ye tnv cuvnbiouévn neplntnon dnou KENCLOTOIOVUE
v texVxr bootstrapping xou Oewpolye ao@arf TNV mapoucio EVOC WBLOTIXOU XNELBLOV
(circularity assumption), xatd tnv yetatpon ond TO €Vo XEUTTOCUGTNUL GTO GANO
ONLOLEYELTOL EVOG XOUNOG UE BUO XNELOLAL TNV ACPANELX TOU OTIoloL TIRETEL VoL OEwpEroOUE.
Av xou ot 800 TEPINTOOELS OEV Elvol CUYXEIOWES, YEVVIETOL TO EQMTNUA OV UTOPOVUE
v tetOyovpe pubUd-1 e circularity assumption evoc xAewdol. Xe autd T0 Pépog TN
gpyaoiog amodetxvioupe twg yiveton, xataoxeudlovtac pio cupnayr (packed) mopoihary?
tou dual-GSW cuotiuatoc [Mahl8a| xa amodewxviouye nwe etvar “xfavtixd ixavd” (utootneilet
OB TOV UTONOYIOUO XBAVTIXGDY XUXAOUETWY). Yo TEP, (ENOLLOTOLOVTIS EVaY XY OpLOUOo
ovppixvowone [BDGM19|, npoxiintel éva xBavtixd txavéd xpuntoovotnue pubuold-1, ye vy
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(dla spooky amoxpvrTOYEdPNON UE TAUPATAVL. DUVETWS, UE TUPOUOIES TEYVIXES XATAOKEVALOUUE
Eovd Evar xPovTind TAeES ouopop@ixd xpuntocloTnua pubuos-1.
Yuvpunayeg Dual-GSW cbUotnua. To cuunayéc Dual-GSW clo tnua elvon ouctac Tixd

70 SUix6 TouL xpunTocuc TAUaTOC Ty Hiromasa et al. [HAO15]. Xto (un ovpnayéc) dual-
GSW, 10 xpuntxelpyevo evéc unvopatog (1 elvon TG Lop@hc

C=A'S +E+ NG c Z((Jerl)X(erl)lqu

where A/ € ZU"T g g gp<mtIsd s k- AN = 0, pe sk vo efvon To BTG
XAEW! TOU CUCTAUATOS. 1TO CUUTAYES XEUTTOCUG TN XpUTTOYEapoLuE (-bit unviuata,
ondte Bewpolyue v unvipate darymvioue tivaxec M € {0, 1}%4 nou nepiéyouv £ bits, xou
opiCouue T xpuntoxeiyeva va elvor TN LOPPTG

C=A'S+E+Y -Ge Zl(lm”)x(mﬁ)bgq’

6mou Y € {0, 1}m+0x(m+0) elyor uia xwdixomoinon tou unviuatoc, A’ € ZimO
= ng(m—%é)logq.

[N vo yropéooupe va utoroyicouye pioe NAND o7 ywplc vo adkdEoupe tny doun Tou
XPUTTOCUO TAUATOS, XAl ETOL VO OLUTNPYCOUUE TIC OUOUOPPIXES LOLOTNTES TOU, ETUNEYOUUE
wat xoduonoinon érou utootneiletl tpdobeon xou ToXNam aotaoud otovelo-oToryelo (point-
wise) eve Toutdypova toylel 6Tt Y - A’ = 0, dote va amahetpholy ol emnhéov pxtol bpot
TOU TOANATAAGLACHUOD.

o vo o metiyouye autd, opllouue TO WOWTIXG XAEW! WS [ | D) ‘ L } ue Eg €

7 4 O 7 ’ 4
{0, 1}2™ xou o mivaxac Y optleton we {} . Elvou onpavtind va avagpépouue mog yia

M - sk
VoL TETUYOVUE TNV ToRATdvw dour Tou milvaxa Y, o alyoplfuog mopayoy N XAEWOLOV TOU
XPUTTOOUO THUATOS TEETEL Vor uTtohoyilel xau xpuntoypaghoes twv P; vy i € {0, ..., ¢},

6mov P; etvan évog diaydwiog mivaxag pe 1 oty Béom (7,7) xou 0 omoudrinote aAhov.
‘Etot, 0 alyopiluog xpuntoypdgnong unopel vo tpoceoet ONeG TIC XQUTTOYRAUPHOELS TTOU
AVTIOTOLYOLY GTO UHVUUO TTOU XPUTTOYQRUQEL xou Vo Tpocbéoel ex vEou TuxaoTNTA.

[ va yiver xatovontéd ot To mopdy xpuntocUo T etvan xBavTind ixavd, mopatneodue
e abpoilovtog tic otiNes (m+1i)logg i € {1,..., ¢} 670 xpUNTOXEWEVS Yag, EXOVUE
OC ATOTENECUO TO

C*:AIS*—i—e*—l—[O‘ng...%lM }T EZZH_K

6mou (1, ..., pe) ebvon to otoyelor Tou mivaxo M. 'Etol, anopovevoviag Tic Tpmtec m
oelpéc tou amotenéopatog pall pe v (m + i)-otn oepd, naipvoupe éva dual-Regev
xpunmtoxelpuevo mou xpuntoypael To ;. Autéd elvon axpifdc To xpuntocUoTNUN GTO
onolo petatpéner ; Mahadev [Mahl8a| to dual-GSW xpuntociotnue (amopovivovtog
TNV TEAEUTA{O GTNAT)) Xot omOdEXVVEL TG Efvat xXPavTind txavs. §dc anoTENECUA, UTOPOUUE
va. egappbooupe tov xputtoypapnuévo CNOT unohoyiopd [Mahl8a] urtohoyilovtac tov
TEAAATAL it xd0e €var omd Tar £ xpUTTOXEIUEVDL, O UETS VoL TG TREPOUUE GTO CUUTAYEG
cVotnua péow N peBddou bootstrapping wote vo cuveyicouye TOUC OPOPOEYPLXOUG
UTONOYLOUOUC.
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4 TIlewtoxoAlo Mndevixrg I'vooong yia tnv Kiadon QMA

E8¢ eZetdlouye Ty xataoxevy| enxelonudtwy undevixhc yvoone (ZK arguments). T
Vo TETUYOVUE UNdeVIXY yvor adlomololue Ty texvixf) tov [BS20], mou ewodyouv wia
non-black-box teyviny| e€aywync mou emitpénel 6TOV TPOGOUOIWTY Va “Uunbel” Tov évTipo
Prover yoplc vo yvwpiler tov pdptupa (witness). To mpwtéxoANé touc amotedeiton and
otafepd aptbud Yipwy (>4) xou emtuyydver utoNoylo Ty undevixt yvoor. Euelc emyeipolue
VO TETOYOVUE OTATICTLXY UNOEVIXY] YVWOT EVE) TALTOYEOVO UEWOVOUUE Tov apliud ylpwv
o€ TE00EpLC.

Arnopaitnta Keuntoypagpixd Epyaheia. Ilpwv nmopoucidcouye tnv xotaoxevy
HaS, MENETAUE oplopévar epyoaleior mTou Ba @avoiv yerowa. To mpdto elvan va xPovtind
\png opopopexé cuotnua (QFHE), to onolo 6nwe teptypdpnxe xou vopitepa Aettoupyel
onwg éva FHE obotnua, emitpénovtag EMTAEOV OUOPORPIXOUS UTONOYIGHOUE OE XPavTixd
xOAOUOTA xon unvogota.  Axour, xenowonololue compute-and-compare “cuoxdtion”
(obfuscation). “Eva compute-and-compare npdypoppo CClf, s, 2], 6nou f elvon pio cuvdptnon
xau ta s, z oupfoloocelpée, €xel we €€080 TNV TN z yia xdBe elcodo x 6mou f(x) = s eV
anoppintel xd0e dAAT elcodo. 'Evoc compute-and-compare “cucxoTio T’ UETATEENEL TO
npodyeaupa CC 670 “cuoxoTioyévo” TedYEaUUL CC é6mou elvou UTIONOYLO TIXE UN-OLoxELtd
and éva mpocopolwuévo “dummy” nedypouus Tou anoppelnTel OXeC TIC Eloddous. Télog,
xenowtonotolue xou éva conditional disclosure of secrets (CDS) npwtéxozho. "Eva CDS
TEWTOXOANO AmOTENE(TAL A6 BV0 YOPOUE XAl €XEL WG €(C0DO Uial TEOTAUCT] Z XAk EVoL UAVUUAL
m and Tov anooToréa. O mouparAnTng Aaufdvel To m wovo av 1 meoTaoy slvon oAnbre,
eve oe avtifetn neplntwon to uRvuua tapopével xpupd. Toautdypova, o udpTupas W TNG
TEOTACTC 2 TOU TOPAUANTITY) TUPOUEVEL XPUPOS ATO TOV AMOC TONEA.
Witness-Indistinguishable Arguments Ytn cuvéyelo HENETAUE TNV XATAOHELY| LS
o emyElefitorta un-dtaxprtotnras pdptupa (Witness-Indistinguishable Arguments - WI)
000 YVUPWY, 1 omola xadne aroteNel TNV BdoT TV TapuxdTw anoteecudtov. To TEwTOXONNO
Baoiletar oty xotaoxeur) tou Shmueli [Shm20], n onola ye v oepd e Pocileton oo
E-tpTOX0NN0 Lot TNV xXdon QMA tov [BG20]. Autd to npotdéxorNo amotereiton amd
Tplot unvopota: pio éopevon (commitment) «, wlo npdxinomn 5, xou plo andvinon v. H
YXEHOWY OF €UdC WOLOTNTA VAL TWE O UTONOYLOUOS TOV 3 %o Y YIVETOL UE ATOXNELCTIXG
XNAOOXES UeBODOUG. 2T OLXLd HOC XUTUOXELT] YENOULOTOLOUUE WLl TIUEAUANXYT) UE €Vl
emmAéov pAvupa (amd Tov verifier otov prover) (HOTE Vo EMITUYOVUE OTUTIO T UNOEVLXN
YVOGT), TNV onolo oy VooUuEe oTa TAaiolar auTAS TN TERANdNE.

H x0pua 18éa Tou mpmtoxdlou eivon va ypnotornotndel éva (levelled) Thhpwe opopoppind
XPUTTOCUC TN UE OOPENELL XUXANGPATOS ot XaxdBoulo meptfdilov (maliciously cir-
cuit private), dote va Ueudoouue toug YOpouc 6T0 L-TpwTOXONNO w¢ e&hc: o veri-
fier otél\vel otov prover pio xpuntoypagnuévn medxAnon B, xa. o prover umoloyilel
TEOTO TNV déoUeuoT) a xat VOTEPA TNV ATAVTNOT Y OUoPop@xd (xpurtoypapnuévn). O
verifier, yvwpllovtag 1o WOIWTIXG XAEWL TOU OUOUOPPIXO) XEUTTOCUC THUATOS, UTOREL Vol
ATOXQPUTTOYPAPNOEL TO XQUTTOXEUEVO Tou Aaufdvel xou vo emiPePondyoet v opboTnTa
v (o, 3,7). Av xou dnodntixd n opbdtnTo Tou Topandve eivor dueco enaxdrovbo g
AGPANELAS TOU OUOUORPIXO) XPUTTOCUC THUATOS, YIdl TNV ATODBELE T AMAUTOUVTAL Ol TTOEUX AT
oAy EC:

e O prover uvnohoyilel yia BEOUELOT) ME TNV TUXALOTNTA TOU YENOLOTOLE(TAL O TOV
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opouop@x6d vnoroyiowd. ‘Etou o verifier unopel (otnv anddeln opbdtntoc) vo
emPefardoel TV eYXLEOTNTA TOU L-TEWOTOXONNOU X0plc Vo YVopllel TO WBLOTXO
XAEW! TOU opOUoEPIOL XpuTTocuo THUATOS. T v emiteuyDel auTd vy TauTdyEOoVa
otatneolue otatioTind WI, xenowomnoeiton €va dialtepo oyxfua déoueuorg, n sometimes-
binding statistically hiding (SBSH) &éopevon. Xe éva tétolo oyfuo déopevorng,
UTdiEyEL ot (e TEN ixpt]) ThovOTNTa Vo €EL TENELR dEopevoT. Xe TéTowa TepinTwon

o verifier unopel va e€dryel To deopeupévo prvuuo. H opbotnta anodewvieton pe tnv
tex vy leveraging.

o 'OXn n mapamdve dadxactio emovoropfdveton 500 QOEES xou O Prover amodeXVIEL TWG
TOUNIYLO TOV OF Ulal oo TLg V0 TEPLITWOELS €YLvay 0p0d oL UTONOYLOUOL, XETCLLOTOLWMVTIG
évo. otatiotxd WI (v tnv xhdon NP). Autd opxel yia va anodet&ouue tnv un-
BLAXELOY TOU HAETUPA TOU GUVONXOU TRWTOXOANOU OIS XOL G TNV ATOOELEY] UTOPOUUE
VoL “ovTaANGEoupE” Tov wdpTupa ot xdfe Briva EexwploTd.

‘OXot Tat ToEamdve UTOEOUY VO XATACKEVACTOOY BEWEOVTAC TNV OLOVEL-TONVWVLULXT
(quasi-polynomial) SuoxoXio tou LWE npof\fuotoc. E@bécov auté to mpotdxorlo
amotenel Bdom yio T emdueva, xou exelva ue TV oelpd toug Ba Bacilovtoan oty owwvel-
ToAVwVLULXT) Buoxolioa Tou LWE npofXruatog
H TeyvixA Ilpocowoinone [BS20]. Ilpwv cuveyicoupe, meprypdpouue Ty eV
mpocopolwone twv [BS20]. T Noyoug anhétnrac, Bewpolue yio apyy verifiers mou
dev SlaxdmTouy TV emxovwvior xou ebvar e€nyfowot (explainable), dnhady) o unviuoTa
vrootneilovton and toug ayop{Buouc évtwmy verifier. H ouoia tou npotoxdiou [BS20]
elvan To eorydyyiwo oo déopeuone To omolo Aettovpyel wg e€ng:

e O anootoléag delypatornmtel Vo tuyalec ouufolooelpée s, td, xabdg xou:

— "Eva donpéoto xou éva brotxd xhewdl (pk, sk) evoc QFHE xpuntocuotiuatog xon
™V xpurtoypdynon tne cupforocelpdc td, c,q = QFHE.Enc(pk, td).

— To “cuoxotiopévo” npdypaua CC « Obf(CCIlf, s, (sk,m)], pe f va glvou 1
cLuvdptnon anoxpurntoyedgnone tou QFHE.

O armoctoréag oténvel Ta pk, cg ¥ CC o10 TopaAAmTY.

o O TopaAATTNG OTENVEL HAVTEVEL Uidt TULY| Y X0 TNV O TENVEL XWOLXOTIOUNUEVT] UEGK TOU
Tpwtoxox ou CDS.

e O anooToNéug AmovTd Ue £VoL URVUUL XEUTTOYPAPNUEVO Hécm Tou CDS tpwtoxd\\ov,
WoTe av Yy = t, TOTE EMOTEEPEL TNV TN 5. Evalhoxtind emotpéper L.

AtoncOnTixd, n tapamdve dlodixacio Teoc@épel SECUELTT Aol TO UHVUUI 0 TO “CUCKOTICUEVD”
TEOYEUUUO Efvol LOVADIXE OPIOHEVO, XD Xou LUCTIXOTNTA EQOCOV O receiver dev Umopel
vo pavtédel cwotd v TN td, napd pe aperntéa mboavotnta. Axdun, o TpocoUOIwTAC
unopet e€dryet T (sk, m) xou XaL VoL TPOGOUOUIGEL TNV OTTLXH TOL ATOGTONEX" apol NEfEL TO
TEWTO UVUUA, UTONOY(LEL OUOPOP®LXA TO TENELTALO U VUU TOU ATOC TONEN YPTOLLOTIOLIVTOG
TO XOXAOUA TOU, UE E0OBO TNV XPUTTOYEAPNUEVY] TWN TOU td xou TNV ECOTEPIXT XAUTAC TAO
Touv anootored. To anotérecua 10U OUOUOEPLXO) UTONOYLGUOU EIVOL TO UVUUA XPUTTOY QUPTIUEVO
uéow Tou CDS, Tou omolou 1 mpdTao elvar 0p0Y| xou dpa EMGTREPEL TNV TUUY| S, XPUTTOYPAPNUEVT]
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wéow tou QFHE. Auth n iy elvon axpifcdc n anoutoduevr elcodog yio To CC doe va
emioteédel To urvupa m. Emméov, to npdypoupa CC emotpépel pall xar 10 WBIwTxo
xXel sk (OOTE O MPOCOUOIWTAC VO UTOREL VO ATOXPUTITOYPUPNOEL TA XQUTTOYRAUPNUEVAL
wéow QFHE unviuarto xou vo mopdlel €va €yxupo avtiypago emxownviog T, ywelc vo
TEETEL VoL xenoonotoetl rewinding.

Mmndevixn I'vioorn o 4 I'Opoug. XpnolonoldvTog TNy Tapandve TeXVIXT 0EcUeuong,
unopolue va avaPobuicovue To WI mpwtdxolho oe undevixn yvoorn wg e€fg: X tov mpdTo
vOpo o verifier ctélver pio déopeuon oe undevixr Tuh pe tuyawotTnTa (Bl ue TNV
TUYAOTNTOL TOL (ENOLOTOLONXE G TNV Topory Y H Twv XAy Tou QFHE xpuntocuothuartoc).
211 GUVEYELD UNOTIOLOVUE TNV TAEAmave Teyvixy| e€aywyng BETovtac wg m Ty TuyaoTnta
r. Metd tnv N&n g oNAn\enidpaone toug, o prover yxenowdonotel o WI npwtdxorho
yia vo anodeiel nwg elte yvopllel Ty tuyaotnTo 1 elte x € L.

[Mo vo amoppiouue xoxéBoules embéoelc dmou o prover nhacTtoypapel Evav €yxupo
udptupa Yoo To mewtoxoaNo CDS amd tnv xpurmtoypdgnorn tou td, mpocBétouvue xou
ulo SBSH 6éopcuon tng twnhc y, n omola umopel va eorybel pe younhy mbavotnta,
eMTEENOVTAC TNV avorywy N TNng elbeong otnv acpdieia Tou QFHE. ITopdhAnha exéyyouue
wéow tou CDS mpwtoxdA\ou mwe 1o oy déopeuone elvar opbd oplopévo (dnhady| o
prover cupnept\apfdver xar v tuyodtnta tne SBSH 8éopeuonc o pépog Tou witness).

‘Evo mpofinua mou mpoxintel elvar mog ta neplocdtepa CDS mpwtéxoka 2 ylpwv
TPOCYEEOLY UTONOYLOTIXY (€VOvTL GTUTIOTIXNAG) ACPANELS, XETL TOU OmOTENEL EUTOBLO
TNV TEOOTA0EL YOG VoL TETUYOUUE OTATIOTiXY Undevixy yvwor. Etol yenowonololye to
ueto-xPavtind CDS mpwtéx0oANo 3 Y0pwv YE CTATICTIXY ACQPINEL OTO TNV TAELPA TOU
TOPANATTY, 6Twe gaiveton oo [CM21].

KoaxépBoulow Verifiers. To pévo npéfinua mou anopével ebvon nwg Bewprioaue 6Tt
ol verifiers dev dlaxdnTOLY TNV eTXOWVWVio xau elvon e€nyrowot. o To mpwTo TEOBANU
Bewpolue dVo tpocouolwtés (6nwe oto [BS20]), évay yio tnv tepintwon nou dlaxdmtel xou
€voy YLoL TNV TEPIMTOON TOU OEV BLOXOTITEL TNV INATAETOpaon. Y oTepa xotaoxeudloupe
€VAY GUVOLAC TIXO TROCOUOLOTH 0 0Ttolog BLaNEYEL Tuyala TOLOY amd Toug BV Ba xENoLLOTOL OEL.
To Watrous’ rewinding Mupa [Wat09)] enitpénet otov npocopolwth va xdvel rewind péypel
Vo pavTédel cnoTd, ywelc va ennpedlet tov verifier. And tnyv AT, yio va emBePoncdcouue
Twg o verifier elvan e€nyfowog, TpocbéTouue 6TO TEWTOXOANO YOG WLol ATOBEIET UNdEVIXTG
yvoorne (and tov verifier 6tov prover) mou emixLEMVEL OTL TaL UNVOUOTA TOL HTay EVTIUAL.
Egbcov oto mpwtoxolko pog o verifier elvon xhaocowodg, apxel 1 anddelln undevixrg
yvoone va etvon yiae Ty xhdon NP. T var e€aopakicovye otatio Ty undevixn yvoor
OUWC TEETEL VoL €Y 0VUE G TaTio T opBdtnTa 610 véo ZK mpwtdxolho, xau dpa xpetal OUac Te
ot amodeEn undevinic yviang xadvotepnuérns-eioddov (ue otatiotixn opbotnTa). Tautdypova
TpéneL N amodelEn vor unv urepPalivel Ttoug 3 yOpouc yia va unv tpochiéon emmAéov yipw
oTNV OLUVOAXY emxovovio. Evtoltolg, dev yvwpllouye %3dmolo TpwTtdXOANO UNOEVIXTC
yvoone 3 yopwv (T6co udilov petaxBavtixd).

[Topdia awtd mapatnEolUe Twe yioe TNV TEPInTworn o apxel €val AyOTERO Lo LEO
EPYOUNE(O X0 UTOPOUUE VoL XENOLOTIOLAOOUNE eviote mooopodoytn (sometimes simulat-
able) undevixh yvion (SSim ZK) [CM21], énou 1 npocopoinwon eivor mbavi ye aperntéa
ey, mbavotnta. T Ty xeron Tou mapamdvou gpyareiou meémel va pubulcouue Tig
TUEAUUETEOUE AOPOUNELNS TWV UTONOLTWV TEWTOXOANWY XUTAANNN Lot Vo ovTio Tabuioouue
auTh TNV exBeTiny| andNela, duola pe To oyua déopevone SBSH. H SSim Qupuiler undeviny
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YVGON UE UTEp-TOAUWYLUIXY (superpolynomial) npocouoiwon (SPS) [Pas03al, ye v
xVpta Slopopd 6TL o TNV SPS undevixt] yvooT 0 TpocoUoLOTAS TEEYEL OE UTER-TIONUWYUULXO
YeoOVo, og avtideon e TNy SSim Undevixy| Y VOoT OOV 0 TEOCOUOIWTHC TEEYEL OE TONUWVUULXO
YEOVO aANG uTdEyeL exBeTIxd uixeY) mboavoTnTa emituylog. Auth 1 Swapopd eivan peilovog
onuactag yia To TEWTOXOANO Yog ao) xutd Bdon dev umopolue vo xdvouue rewind tnyv
xotdoTooT Tou verifier xou dpal amoUToVUE 1) TEOCOUOIWON VoL EVOL YEUUULXY).

5 Ilpwtoxolho Mnodevixnic I'voong yia tnv Kidon QMA
oto Xpovixo Movtélo

TéNog, YeENETAPE TS Vo TETOYOLUE UNDBEVIXT] YV yiar TNV xXdon QMA oe 800 yipouc,
UETAPEQOVTOS TO TEMTOXOANO GTO YeOVIXO povTéNo. 1o cuyxexpéva, Bewpolue Twe Ta
LENN TNS OAATAETBpooNE UopoLY VoL HETENOOLY a€LOTIGTA TNV TTdEodo Tou Yedvou. Lo
NV xaTaoxeun pog Bewpolue TNy UTapEn Hlog Un-TtapaAAn\onoloiune cuvdetnone F. Mio
UN-TUEOANNTAOTIOLOUUY) CUVEETNON €lval Ylot CLVEETNOT 1) oTolal UTOEEL Vor UTONOYLIOTEL OE
%e6vo T'; evey Bev elvan BuVATOV Lo Evay xaxdBouio avtinono ue Bdbog pixpdtepo tou T va
HovTEPEL TO amoTENEOUO TNS UE pLot Eloodo & (Onhadr| Bev uropel va Ty Tpéel TapdAANAa
og \YOTERO YPHVO)

Yroloyiwotixry Mndevixr I'vidon. Apyixd xoataoxevdlouvue €vo TpwTOXOANG UE
UTONOYLO TUXH UNBEVIXY YVoT, duola we v [DS02| npocéyyion. Aaufdvouue wg ypovixh
Toedueteo TV T T xou Bewpolye pior UTo-eXBETIXY) UN-TUEAANTINOTIOLACULT] GUVEETNO
F, ac@af) anévavtl oe alyoplBuoug Bdbouc wxpdtepou tou T'. O prover unoloyilel to
XPEUTTOXEUEVO (r XQUTTOYPAPOVTACS Wlol Tuy ot GUUBONOGELRS UE EVAL OUOUORPIXO XEUTTOGUGC TN,
%x000¢ xou TO ATOTENEGUA 5 TOU OUOUOPPIXOV TOU UTONOYLIOUOU UE TNV cuvdeTtnor F. Xt
ouvéyewa, o verifier otélvel pio Tuyxalor T =¥ xan 0 prover GTENVEL o amodEn WG
elte © € L elte Eépel wa xpuntoypdygnorn a tou z*. O verifier anodéyeton €dv o prover
amavTAoEL ey xalpng, 1 amoOdElEN) TOU GTENVEL ElVaL €Y XURT XL O OUOUORPIXOS UTONOYLOUOG
Tou « Ye TNV ouvdpTtnon F elvou o ue .

AloucOntixd, To TewTOXOANO efvorl AGPINES EQOTOV O prover dev el (EOVO VoL UTONOY(OEL
ououop@xd ex véou to . g amotéNeoud, 1 0phOTNTA TOU TEWTOXOANOU ATOBELXVUETOL
aVAYOVTAS TNG TNV AUPLoPATNON NS UN-TaeaAANNoToouoTtnTaC TN cuvdptnong . H
UNOEVLXY] Y VAOT) ATODELXVVETAL EUXONI DEDOUEVOL OTL O TEOCOUOLOTAS EYEL TNV OUVATOTNTA
VoL “o ToATHOEL ToV %e6vo” (amd Ty ontuixn Tou verifier) xou vo tpocopowoel Ty “cwoth’
andvtnor. Elvow onuavtixd va ava@eépouue g 1 TeocoUoiwoT) Vol YRoUULXY| Xl OEV
avtiypdgel oUTe xdvel rewind tnv xotdotacn Tou verifier, xdvovtdg TNV (AUTINNNAT yia
#xPavTind TpwTOXONNA.

Yzatio Ty Mndevixr I'voor. Kdvovtog xdnotec ioyupdtepes utobéaeig, pehetdue
X0 L0l OLOPORETIXY) TROCEYYION UE GTOXO TNV ETMTEUEN OTATICTIXAC UNOEVIXNS Y VOOTG.
Ewwotepa, Bewpolue tnv Onopln evog petaxBavtixod time-lock puzzle. ‘Eva time-lock
puzzle oucLIC TN ATOTENEL ULot XPUTTOYPAPNOT OTIOL UTopel Vo amoxpuntoypagndel uetd
and yeovo T', eved opolwe YE TG UN-TIOUROANNAOTIOLACLUES CUVOPTAOELS, BeV unopel xdmolog
YXEHOTNG VO OTACEL TNV XQUTTOYRAPNCT] YENOULOTOLOVTASC TOURSANNAOUS UTONOYIGHOUG.
Yo mhadota authg T™Ne Tetdndgng Bewpodue wovo e€nyrowoug verifier, xou 1 yetatpony) xou
v xaxdBovouc verifiers ywvetar ye yvootéc texvixéc [BKP19, CDM20).
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Yty mapoloa xataoxevy), o verifier otéNvel po deouguon oe pla uUNdEVIXY TWN UE
TuxaoTnTa 1 xan €var time-lock puzzle mou xwdwonolel auty TNV TuOTTAL. TOoTEPX O
prover otéXvel plo WI anddellr, anodewxviovtag nwe elte yvwpllel xdmowa npdtocn x € L
elte mwe yvopllel Ty TuxawotnTa . O verifier amodéyeton oV 0 prover amovTAOEL £y XoUEL
xan 1 anodelln tou ebvan €yxupn. AtcOntind, évag xoxdfoulog prover dev umopel vo
Aoel To time-lock puzzle ctov anaitoluevo Ypovo, V(D YLol Vo omOdEEOUUE UNBEVIXN
YVOOY ETUXANOVUICTE TG O TEOCOUOWWTAC UTopel Eavd var “Ttarydoel Tov xedvo” ol Vo
Aooel to time-lock puzzle, Aopfdvovtoag Tnv TuxOTNTA TOU PTOEEL VO TNV YENOLLOTOLCEL
cav witness otnv WI anddeiln.

6 2Uvodn xoww MeXhovtixeg Enextdosig

6.1 XUvodn

Me v dvodo tov xPavtixdy utoloyioT®y, N xPavtixr xpurtoypapio yivetow 6O xou
TEELOCOTERO ONUOPINTIC To TEAELTALOL (POVIAL AV XL OPLOUEVA XNACCIXE XEUTTOYPOUPIX.
TEWTOXOANI UETATRETOVTOL EUXONA OE XPOoVTIXAL, UTIAEYEL X OUT) UEYENOC aiptBuog xPorvTiny
TEWTOXOAA®Y TWV OTOMY 1] TONUTIAOXOTNTA VO TEPEL GUYXQELTIXE UE TO AVTIo TOLX A XAACOIXA.
Ye aut) TV gpyacio uENETHONXE 1 ToAUTAOXOTNTA emixowvwviag Twv KPavtixay I Apwe
Ououpop@ndyv XU TNUATOV XEUTTOYEAPNONS Xol TWV TEWTOXOAWY Mndevixic I'vaong,
ETUTUYYAVOVTAUC ATOBOTIXOTNTA AVANOYT) TV XAACCIXDY TEOTOXONNWY.

‘Ooov agopd ta T\ pns opopopixd cuctiuata (FHE), tapousidlouue 800 xataoxevéc
xPavtixey FHE cuctnudtov xpuntoyedgnong pubuot-1, emtuyydvovtag BENTIO T TONUTAOXOTNTA
HETOED NS TANEogoplac Tou PeTadideTon and TO €va UENOG GTO GANO.  XLTINV e
xatooxeLy), Benpdvtog éva xPovtind xpuntochotnua pe uBEWBLXE xpunToxelueva (To onola
TEPLEYOLY XPavTinr) AN xou XNACOWXH TANPOGopia), xeNnoteotololue éva xhacoixé FHE
eLOUOU-1 MO TE VoL EVOANACCOUUE TNV XAACCIXT] TANEOPORIOL A6 TO aEyiXO XPUTTOCVC TN
oe auto, e€aoporilovtog toAuthoxdTnta emxowvwviag ton ue (| |¢) [+]C(|1¢))]) - (14+0(1)).
[ var ouveylooupe Toug OUOPOEPIXOVE UTONOYLOUOUE UETATEETROUUE Eava TNV TANEOpopia
GTO 0PYXO XPUTTOCUGTNUA. 2T0 BeTEPO TEWTOXOANO, TEoceYYILoupE TO TEOBANU o
103 ot xaTooXEVALOUPE Eva xNoooxd (UeTa-%PovTind) xpuntooloTnua Yo To UBELBLXS
xpuntoxelueva To onolo elvar and poévo tou puhuov-1. Katd autdv tov 1pémo amogedyouue
TOV XUXAO TV OO IOLOTIXWY XAELOLDY TOU ONULOVEYELTOL.

YYETIXA UE TO TPWTOXONNA UNOEVIXNC Y VOTG, OEYIXE XATAOXEVALOVUE EVOL G TATIO TIXO
WI npotéxorlo yia v xxdon QMA Bewpwvtag Ty olwvel-toxuwvuuixr duoxolio Tou
LWE npofX\Auatog. 211 OUVEYELD UTOPOUUE XAl XATUACHEVALOUUE EVOL TROTOXOANO TOU
EMLTUYYAVEL O TATIO T UNOEVIXT Y Vo o€ 4 yOpoug. Emimhéoyv, uetapépovtac 1o TpmwTOXONNO
0710 xpoVix6 HOVTENO, e&acpanilovye undevixt| yvwor ot 800 yipouc (TGo0 UTONOYLETLXN
600 X GTATIOTIXY HE XATOlES ETUTAEOV LUTIODETELS)

6.2 MeXlovtixéc Enextdosic

Ta nopandve anoteréopota UTopody Vo g BAcT Yot LENNOVTIXESC BOUNELES Yol EMEXTACELS.
Mio mbovy| eméxtoom ewvon 1 xataoxevy| evog xBaviixod FHE xpuntocus tiuatog pubuon-

1 moXam\odv xhewddv (Rate-1 Multi-Key Quantum FHE scheme), cuvdudlovtoac to

amoTteENéopaTA ac PE ot xataoxeu| xBoavtixol FHE ntoXhamhav xhediodv [ABGH20] o
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opoing ye v BN pag douletd adlomololy xpuntocloTruato UPEWXAC Hopghc (61w To
[Mah18a]). Mia Siapopetin tpocéyyion Ba it 1 xataoxeuvy| evog verifiable FHE [ADSS17],
OTOL UTLAEYEL 1) SUVATOTNTA ATOBELE NS XATOLAC WBLOTNTAS TOU UNVOUITOS EVE AUTT) TOUEOUEVEL
XEUTTOYROPNUEVT] XAl Y WELS VO ATOXOAUTTOUUE Xaplot ETUTAEOV TANPOYORla.

‘Ocov agopd TV undevixr yvoo, €va avolyté TeoPAnua elvon va va enextelvouue to
amOTENEGUOTA OE ATODEIEELS UNBEVIXAS Y VOGS (avTi Ylal ETLYELPHUATA), OTOU TO TEWTOXOANO
Do €xer otatioTing opbdtnTa. Evar axdun dhuto mpdfinua efvon vo emtdyovue Ty (Bia
TOAUTAOXOTNTAL BepddvTog TNV molvwvuux duoxolio tou LWE mpofAAuatoc (évavtt
e otwvel-todvwvouxhc). lpdogateg epyooiec éxouv oxdun eotidoer oe black-box
Tpooeyyioelc YeToaxfavTinic e-undevixic yvoone oe otabepd aptbud yopov |7, CCLY214),
6mou Ba unopovoe va yewwbel oe 4 yOpoug pe duoteg texvixés. Télog, anouoidlel axdun
and v Pihoypaplo xdmolo TpwTOXONNO UNBEVIXNAS YVOOTNS 3 YUPMY GTO ATAO UOVTENO,
x4t mou Ba Eemepvoloe TNV TOAUTAOXOTNTA EMUXOWVOVINS TWV CNUEQIVOY TEOTOXONNGDV
UNBEVIXNAS Y VWOTC.

Evdiagpépov egpovilet xou 1) EQapUoYY| dUTOY TWY XATACKEVDY GE XPUTTOYPUPIXE TEWTOXOANA
npogoplac, 5douévou OTL GE TANUOTERES AANS XOU TILO TEOCPUTES XATACHEVES YENOLLOTOLOVVTOL
TEYVIXES TIOL 0ELOTIOLOVY OUOUORPIX XpUTTOYPdpon xou amodel&elc undevixic yvmong [SK94,
KY02, GPZZ18, GPZZ2]).
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Chapter 1

Introduction

1 Backrounded Motivation

Cryptography has become a major part of our everyday lives, providing us with tools
that help us realise secure communication between two or more parties. Apart from the
most well known tools, like public key encryption schemes that allow secure communi-
cation via a public channel, there exist more nuanced and advanced protocols that can
solve more complicated problems. Some of the most useful protocols with a profound
impact in cryptography are:

e Fully-Homomorphic Encryption (FHE) schemes, which allow one to evaluate any
function over encrypted data.

e Zero Knowledge (ZK) proofs which allow one to prove the veracity of a statement
while revealing nothing beyond that.

The feasibility of the above results is not enough; in order for them to eventually be
useful in real systems they need to be efficient. Thus cryptographers aim to minimize
their communication complexity. Communication complexity in general specifies the
size and number of messages sent between the involved parties.

Taking a closer look at the aforementioned protocols, an FHE scheme allows one
party to send the encryption of its input m under a public key such that the other party
can later, holding a circuit C', compute and send
Eval(C,-

Enc(m) 2% Enc(C(m)),

without learning any information about the message m (apart from its encrypted value).
Among other applications, computation over encrypted data is useful in the case where
a computationally constrained client uploads some data to a powerful server that can
perform expensive computation, while preserving data privacy. In this setting, it is
important to ensure that the communication overhead introduced by the FHE protocol
does not nullify the efficiency gains of outsourcing the computation to a server. Recently,
it was shown [BDGM19| that there exist FHE protocols where the communication
complexity approaches that of the insecure protocol (where the first party sends its
input m in plain), assuming the hardness of the learning with errors (LWE) problem.
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Concerning ZK proofs, since their introduction [GMR89], they have had a profound
impact on cryptography and theoretical computer science at large. Due to their foun-
dational importance and large applicability, ZK proof systems have been the objective
of a long series of work aiming at understanding the necessary assumptions and their
round complexity: Under standard computational assumptions, any NP statement can
be proven in as few as four rounds of interaction [GMW86, GK96|.

In contrast to the classical case, much less in known for the above primitives in the
quantum setting. In its most general form, quantum FHE allows the transformation
Eval(C,-)
—

Enc(|¢)) Enc(C([4)))

where |¢)) is some arbitrary quantum state and C' is some unitary matrix. Despite the
fact that this problem has received far less attention, we believe that this question is
even more pressing than the classical case, due to the large gap between quantum capa-
bilities of regular users and servers sitting on the cloud. Even in a future where regular
users will be equipped with quantum-capable computers, it is likely that intensive quan-
tum computations will be exclusive to large computer clusters. There have been some
constructions of quantum fully homomorphic encryption (QFHE) schemes [BJ15], even
assuming a completely classical client (Alice) [Mahl8a]. However, to the best of our
knowledge, the question of quantum FHE schemes with compact (i.e. independent of
the size of the circuit) communication complexity has not been considered in the litera-
ture. Circling back to ZK proofs, their construction for QMA (the quantum analogue of
NP) has been introduced only recently [BJSW16] and the best known result, in terms
of round complexity is from the very recent work of Bitansky and Shmueli [BS20| where
they presented a constant-round computational zero-knowledge argument system (i.e.
with computational soundness).
Motivated by the unsatisfactory state of affairs, we ask the following questions:

Can we construct quantum FHE with minimal communication complexity?
Does proving QMA statements inherently introduce additional rounds of
interaction?

In this work, we study these problems and we present protocols in a variety of
settings that match the round complexity of their classical counterparts.

2 Thesis Contribution

In this work we initiate the study of the communication complexity of FHE for quantum
circuits (quantum FHE) and ZK proofs for QMA.

Rate-1 QFHE. Our first main result is a protocol to compute any quantum circuit with
communication complexity (| [¢) |-+|C(|1))])-(1+0(1)) to compute some quantum circuit
C' over some state |¢)). This approaches the communication complexity of the insecure
protocol, where the first party sends the state |¢) in plain, and it is (asymptotically)
optimal. As we discussed before, all known Quantum Fully Homomorphic Encryption
(QFHE) schemes [Mah18a, Bral8| blow up the ciphertext by a polynomial factor poly(\)
for evaluated ciphertexts, i.e. they have low (inverse polynomial) rate. This means that
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the communication complexity of the resulting protocol would be at least |C(|1))] -
poly(A). Thus we reduce this gap by constructing a QFHE scheme with nearly optimal
ciphertext expansion. Our protocol assumes the quantum hardness of the LWE problem
(with polynomial modulo-to-noise ratio) in addition to a circular security assumption
to apply the bootstrapping theorem [Gen09].

Theorem 2.1 (Informal). Assuming the quantum hardness of the LWE problem, there
exists a (leveled) QFHE scheme with rate-1.

Note that the above result can be combined with the other result presented in [CDM20)],
which transforms any QFHE scheme to a QFHE with scheme malicious circuit privacy.
Combining both results we get a secure function evaluation scheme with nearly optimal
communication security.

ZK for QMA. We begin by considering a weak version of zero-knowledge, namely,
witness indistinguishability (WI), which only guarantees that a distinguisher cannot
tell whether the prover used wg or wy, where (wg,w;) are two valid witnesses for the
given statement. While not immediately meaningful on its own, this notion and pro-
tocol will serve as the basis for our further results. We construct a 2-round protocol
with statistical WI, assuming the quasi-polynomial hardness of the learning with errors
(LWE) problem [Reg05]. This matches the round complexity of statistical WI protocols
for NP [KKS18, BFJ™20, GJIM2(].

Theorem 2.2 (Informal). Assuming the quantum quasi-polynomial hardness of the
LWE problem, there exists a 2-round statistical WI argument for QQMA.

Next, as our main result, we show how to compile the above into a fully-fledged
4-round statistical ZK argument for QMA. The protocol is a round compressed ver-
sion of the [BS20] approach and, as such, also has a non-blackbox simulatord In
contrast to [BS20] our protocol achieves statistical ZK and relies on computational as-
sumptions only to argue about soundness. On the flip side, we rely on the (quantum)
quasi-polynomial security of the LWE problem and on the quantum fully-homomorphic
encryption (QFHE). Our protocol matches the round complexity of the best known
ZK proofs/arguments for NP against classical adversaries (albeit using non-blackbox
simulation). We stress that, prior to our work, even post-quantum statistical ZK for
NP was only known in polynomial rounds [Unr12, ACP20].

Theorem 2.3 (Informal). Assuming the quantum quasi-polynomial hardness of the
LWE problem and a quasi-polynomially secure QFHE scheme, there exists a 4-round
statistical ZK argument for QMA.

Finally we consider the question of 2-round ZK in the timing model: Since 2-round
ZK is known to be impossible [GO94]| without additional assumptions, a common relax-
ation is to allow parties to reliably measure time during the execution of the protocol.
In this context, we revisit the Dwork-Stockmeyer [DS02| approach and lift it to the
quantum setting. In addition to quasi-polynomial LWE, we assume the existence of a
post-quantum non-parallelizing function (e.g. repeated hashing).

"There is evidence [CCLY211b] that non-blackbox simulation is necessary for constant-round ZK against quantum
adversaries.
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Theorem 2.4 (Informal). Assuming the quantum quasi-polynomial hardness of the
LWE problem, an FHE scheme, and an average-case non-parallelizing function, there
exists a 2-round computational ZK argument for QMA in the timing model.

A shortcoming of the above approach is that it only achieves computational ZK.
To overcome this issue, we propose a different route to construct statistical ZK in the
timing model, which relies on slightly stronger assumptions (namely, post-quantum
time-lock puzzles).

Theorem 2.5 (Informal). Assuming the quantum quasi-polynomial hardness of the
LWE problem and a quasi-polynomially sequential post-quantum time-lock puzzle, there
exists a 2-round statistical ZK argument for QMA in the timing model.

3 Related Work

The (weakened) problem of quantum homomorphic encryption by allowing a quantum
client has been studied extensively in the recent years [BJ15, OTF15, TKO*14, LCI18,
NS17, DSS16] and has led to major advancements in delegated quantum computing.

The problem of secure (i.e. blind) computation of quantum circuits [BFK09, DNS10,
DNS12] also has a strong tradition in the quantum cryptography literature. Blind
computation is similar to quantum homomorphic encryption in the sense that they
share the goal of carrying out a computation over encrypted data, but blind computation
allows multiple rounds of interaction between the client and the server. To the best of
our knowledge, the only two-round protocol was given in the recent work of Bartusek
et al. [BCKM20]. In contrast to our work, the resulting communication complexity is
proportional to the size of the circuit (i.e. it is not compact). On the flip side, they
achieve the strong notion of simulation security and they assume any post-quantum
two-round oblivious transfer, whereas we crucially rely on the LWE assumption.

A similar line of work has been focusing on werifiability of quantum computation
(see [Mah18h| and references therein) where it is required that a malicious Bob must
prove to Alice that he evaluated the “correct” circuit C' (clearly, this notion only makes
sense when the circuit C is public and the resources needed by Alice to check Bob’s
proof are less than those required to evaluate C).

We also mention a series of recent works [BG20, CVZ20, ACGH20, CCY20b, Shm2(0,
BM21] that considers the problem of non-interactive ZK for QMA. All of these works
require some notion of trusted setup, which is unavoidable for 1-round protocols. We
also mention another line of work [Unr12, HSS11, LN11, ARU14, AL20] that studies the
strong notion of arguments of knowledge in the quantum settings. Finally, in the multi-
prover settings, it is known that NEXP [CFGS18| and MIP* [GSY19] admit perfect ZK
interactive proofs (sound against entangled quantum provers).

4 Overview of Results and Techniques

Here we present an overview of the main technical ideas presented in the paper. For
further details, we refer the reader to the technical sections.
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4.1 Rate-1 Quantum Fully-Homomorphic Encryption

We first examine the description of the rate-1 QFHE scheme.

What Makes This a Non-Trivial Problem? Before describing our solution, it is
instructive to understand why existing schemes fail to achieve good ciphertext expan-
sions and have low (inverse polynomial) rate. In the schemes from [Mah18a, Bralg|, a
ciphertext encrypting an (-qubit state |¢) is of the form

QOTP((z1, 21, - ., xe, 20), |)), QEnc(pk, (z1, 21, - - . , Ty, 2¢))

where the QOTP is applied qubit-by-qubit and the classical string otk = (x1, 21, . .., %4, 2¢)
is encrypted bit-by-bit. It is not hard to see that this scheme has inverse polynomial
rate, due to the blow-up introduced by the (classical) FHE encryption.

One obvious solution to improve the rate would be to adopt the hybrid encryp-
tion approach and sample the QOTP key using a cryptographic PRG with polynomial
stretch. That is, we could improve the rate of the ciphertexts by computing

QOTP(PRG(seed), |1)), QEnc(pk, seed)

for some uniformly sampled seed < {0, 1}*. Note that we can still homomorphically
compute a function in the resulting scheme, since one can always convert the ciphertexts
back to their original form by evaluating the PRG homomorphically.

While this generic approach suffices for fresh ciphertexts, the troubles start once
we begin to evaluate functions homomorphically: Depending on the gate that we ap-
ply to the quantum state, the one-time key otk changes accordingly to otk’. For the
case of the encrypted CNOT operation, the modification is even non-deterministic.
While [Mahl8a| shows a way to update the classical component consistently, this
method conflicts with our hybrid encryption strategy. This is because the modified
otk” will most likely lie outside the support of the PRG and thus a string seed’ such
that PRG(seed’) = otk’ might simply not exist. Thus we are stuck with a classical en-
cryption QEnc(pk,otk), which brings us back to our original problem. Even assuming
an ideal case where the classical FHE scheme has optimal rate, we still have a con-
stant (> 2) ciphertext blow-up. Since two classical bits are necessary to encrypt a
qubit [AMTDWO0(], we seem to have encountered a roadblock.

Spooky Interactions. On a high-level, our solution will leverage the structure of a
special classical FHE scheme to refresh our QFHE ciphertext to the hybrid (i.e. rate-1)
state. More in details, we observe that certain recent FHE schemes [BDGM19| pack k
classical bits in ciphertexts of the form ¢ = (co,c1,...,¢x) € ZZH x {0,1}*, for some
modulus g and n = poly(A). The interesting property for us is that the last k-bits of the
ciphertexts are non-locally correlated with the secret key sk. Specifically, the decryption
recovers the plaintext by computing

Dec(sk, c) = F(sk,co) ® (c1, ..., k)

for some function F', whose exact description is irrelevant for us. This property, that
we refer to as spooky decryption,E will be the key to our solution.

*The name is inspired by a similar phenomenon happening in multi-key FHE schemes [DHRW16].
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The Solution. Equipped with the tool described above, we can convert evaluated
QFHE ciphertexts of the form (QOTP(otk’, 1)), QEnc(pk, otk’)) back to a rate-1 form
using the following procedure:

e Convert QEnc(pk,otk’) into an FHE ciphertext with spooky decryption via boot-
strapping (i.e. evaluating the decryption circuit of QEnc homomorphically).

e Parse the resulting ciphertext as

C= (C07 ClzyClyzs -+ Clzs CZ,z) € ZZ+1 X {07 1}22‘

e Return ¢y and ) (X¢=Z%=) . QOTP(otk', |¢')).

i€(l]

Since |co| = poly()), the size of the compressed ciphertext is ¢ qubits plus poly(\) bits
of classical information.This rate is optimal (up to polynomial additive terms), given
that any public-key encryption scheme must have ciphertexts of size at least A bits, so
an additive term in the security parameter is unavoidable. This is the exact situation
here, except that we have a larger additive term, which is however asymptotically
insignificant.

To see why this procedure gives us a decryptable ciphertext, re-arrange the equation
above to obtain

F(sk,co) = (2,21, ..., 20, 2) @ (Clas Clozy -+ s Coy Coz)

which is the correct one-time key of the quantum state

) (X< z¢) - QOTP(otk', 1))

i€l

_ ® (X Z05) . ® (Xx;Zz;) )

1€l 1€l

— ® (Xcz-,x@argzcz',z@z;) . |¢/> .

1€(l]

A Non-Generic Approach. The savvy reader might have noticed that the the above
solution introduces an additional secret key in the scheme. In the transformation from
leveled to fully homomorphic this results in a different circularity assumption: Instead
of the plain circular security of the QFHE scheme, we now need to assume that semantic
security is retained in the presence of a two-key cycle. While formally the two assump-
tions are incomparable, this motivates us to investigate on whether we can achieve full
homomorphism and rate-1 under the plain one-key circularity. We show that this is
fact the case, by constructing a packed version of the dual-GSW FHE scheme [Mah18a|
and we prove that it is quantum capable (i.e. it supports the homomorphic evaluation
of quantum circuits). Next, using the shrinking algorithm from [BDGM19|, we end
up with a rate-1 quantum capable scheme with the same spooky decryption introduced
above. Thus, following a similar technique, we again obtain a rate-1 quantum fully
homomorphic encryption scheme.
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Packed Dual-GSW scheme. The construction of the packed dual-GSW scheme is
essentially the dual of the scheme from Hiromasa et al. [HAO15]. Recall that, in the
(non-packed) dual-GSW scheme, the ciphertext of a plaintext p is of the form

C=A'S+E+ ”G c Zém+1)x(m+1)1ogq

where A’ € Z{"T* g e ZmX (M8 ynd sk - A/ = 0, with sk being the secret key of
the scheme. The plaintext information is encoded in the last row of the ciphertext. In
a packed scheme, we want to encrypt ¢-bit messages, so we interpret the plaintext as a
diagonal matrix M € {0, 1}**¢ containing ¢ bits, and we define the ciphertext to be

C=AS+E+Y -Ge Z((]mH)X(mH)Iqu

where Y € {0, 1}(mT0x(m+0) i5 an encoding of the message, A’ € ZmXm and S €

nx(m+~)loggq
Zq .

In order to maintain the scheme’s homomorphic properties and be able to compute
a NAND gate without altering the structure of the ciphertext, we select a message
encoding that preserves plaintext-point-wise addition and multiplication, as well as the
relation Y - A’ = 0 to cancel out the mixed term of the multiplication. To achieve this,
the secret key is defined as [ E.; ‘ I }, for a matrix Eg, € {0, 1}5”” and Y is defined as
{l\/Iosk] . Note that, in order to produce said form of Y, the key-generation algorithm
needs to provide encryptions of P; for i € {0,..., ¢}, where P; is a diagonal matrix with
1 in slot (é,7) and zero everywhere else. Then, the encryption algorithm sums all the
encryptions corresponding to the input message and re-randomizes the result.

To see why the scheme is quantum capable, observe that by summing up columns
(m+i)logq for i € {1,...,¢} in our ciphertext, we end up with

c*:A’s*—l—e*—l—[O\g,uy--%ugf ezt

where (1, ..., pe) are the entries in M. Next, by isolating the first m rows of the result,
alongside the (m + i)-th row, we obtain a dual-Regev ciphertext encrypting p;. This
is the same scheme that Mahadev [Mahl8a| converts dual-GSW to (by isolating the
last column), and shows that it is quantum capable. Thus, we can apply the encrypted
CNOT operation from [Mahl8a| using each of the ¢ ciphertexts in parallel and then
bootstrap back into the packed scheme to continue the homomorphic computations.
We refer the reader to Section [ for further details.

4.2 Zero Knowledge Arguments

To achieve ZK, we leverage the generic approach of [AL20, BS20]|, which introduces a
non-black-box quantum extraction technique that allows the simulator to emulate the
honest prover without knowing the witness. The extraction protocol consists of constant
(> 4) number of rounds and the resulted ZK scheme for QMA in [BS20] achieves only
computational ZK, so the challenge for us will be to lift this paradigm to the statistical
ZK settings while at the same time squeezing the number of rounds down to 4.

Some Cryptographic Tools. Before presenting the construction we recall some nec-
essary tools that we use. The first is a quantum fully homomorphic encryption (QFHE)
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scheme, which as described earlier, works similarly to an FHE scheme, allowing us to
additionally perform homomorphic evaluations of quantum circuits and inputs. We also
use a compute-and-compare obfuscation. A compute-and-compare program CC|f, s, z|
where f is a function, and s, z are strings, outputs z on every input x such that f(x) = s
and rejects the rest of the inputs. A compute-and-compare obfuscator compiles a CC
program to the obfuscated program CC and is computationally indistinguishable from
a simulated dummy program, that rejects on all inputs. Finally, we use a conditional
disclosure of secrets (CDS) protocol. This two-round protocol is parametrized by a
statement z and a message m from the sender: The receiver is able to recover m if the
statement is correct, whereas m stays hidden if this is not the case. Simultaneously,
the witness w (held by the receiver) for z should be kept secret from the eyes of the
sender.

Witness-Indistinguishable Arguments We continue by outlining our construction
of a 2-round WI protocol for QMA, which will constitute the basis for the following
results. Our protocol is based on the template from [Shm20|, which in turn relies
on the sigma protocol for QMA introduced in [BG20]. Such a protocol consists of
the canonical three messages: A commitment «, a challenge 5, and a response 7.
The important property (also used in [Shm20]) is that the computation of g and ~
is completely classical. In our protocol, we actually use a statistically zero-knowledge
variant that has an additional first message (from the verifier to the prover), but for
the sake of this overview we can ignore this aspect and simply consider a three message
sigma protocol.

The basic idea of the protocol is to use a maliciously circuit private (levelled) ho-
momorphic encryption to round-collapse the sigma protocol: The verifier sends to the
prover an encrypted challenge 3, then the prover computes in plain a commitment «
and evaluates homomorphically the response function to return an encrypted version
of . The verifier, who knows the secret key of the homomorphic encryption, can de-
crypt the incoming ciphertext and verify the validity of the transcript (a, 3,+). While
intuitively the soundness follows from the semantic security of the homomorphic en-
cryption scheme, turning this into a provably secure scheme requires some tweaks with
some additional tools:

e The prover is let to compute a commitment to the random coins used in the
homomorphic evaluation procedure. This allows the verifier (in the soundness
proof) to check the validity of the transcript without knowing the secret key of
the homomorphic encryption scheme. To achieve this while maintaining statistical
WI, a special kind of sometimes-binding statistically hiding (SBSH) commitment
is used. This is a standard statistically hiding commitment scheme, which has a
certain (negligibly small) probability to be perfectly binding. When such event
happens, the verifier can extract the committed message. Soundness is then argued
by a standard complexity leveraging argument.

e A dual-track approach is used, where the above process is repeated twice and the
prover shows that at least one of the two instances was computed correctly, via a
statistical WI (for NP). This is sufficient to prove the overall WI of the protocol
since the witness can be switched step-by-step for each branch.
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All of the above building blocks can be instantiated assuming the quasi-polynomial
hardness of the LWE problem. Since this protocol constitutes the basis of the upcoming
ZK constructions, they will also be based on the quantum quasi-polynomial hardness
of LWE.

The “Homomorphic Trapdoor” Technique. We now briefly recall the simulation
technique from [BS20, AL20|. For simplicity, we consider a verifier that never aborts
and that is explainable, i.e. it computes all its messages in the support of algorithms
as dictated by the honest protocol. The crux of their protocol consists of the following
extractable commitment scheme:

e The sender samples two random strings s, td in addition to:

— A public and secret key (pk,sk) of a QFHE scheme and an encryption ¢;q =
QFHE.Enc(pk, td) of td.

— The obfuscated program CC « Obf(CC|f, s, (sk,m)], where f is the decryp-
tion circuit of QFHE.

The sender sends pk, ¢y, CC to the receiver.
e The receiver encodes a guess y via the CDS protocol.

e The sender responds with a message encrypted via the CDS protocol, such that,
if the guess y is equal to td, then the message decrypts to s. Otherwise it returns
1.

Intuitively, such a procedure is binding since the message in the obfuscated program
is uniquely determined, and hiding since no receiver guesses td correctly, except with
negligible probability. Furthermore, a simulator can extract the message (sk,m) and
simulate the sender’s view: After the simulator gets the first message, it homomor-
phically computes the sender’s last message using the sender’s circuit with inputs the
encryption of td and the inner state of the sender. The result of the homomorphic
computation is the message encrypted with the CDS, whose statement is satisfied and
hence it returns s encrypted under QFHE. This is exactly the input needed for CC in
order to obtain m. Note that the simulator is able to also produce a valid transcript T'
without rewinding the adversary, since the CC program also returns sk, which can be
used by the simulator to decrypt the QFHE-encrypted messages.

From WI to ZK in 4 Rounds. Given the above extractable commitment, one can
boost a 2-round WI argument into a fully-fledged 4-round ZK protocol, as follows: The
verifier in the first round sends a commitment to zero with randomness r (which is the
same randomness used in the QFHE keys generation algorithm). Then, they perform
the above quantum extraction technique with r as the message m. After the interaction,
the prover utilizes the WI argument introduced before and sends a proof that either he
knows the randomness r or that x € L.

To rule out mauling attacks where the prover could maul a QFHE encryption of td
into a valid witness for the CDS protocol, we additionally include an SBSH commitment
of y, which can be extracted with low probability, thus enabling a reduction against
the semantic security of the QFHE scheme. Consistency is guaranteed by checking that

35



the SBSH commitment is well-formed within the CDS protocol (i.e. the prover includes
also the randomness of the SBSH commitment as part of the witness).

One immediate problem is that most existing two-round CDS protocols only pro-
vide computational security for the receiver, which would result in us achieving only
computational ZK. In order to achieve statistical security, we utilize the 3-round post
quantum CDS protocol with statistical receiver privacy constructed in [CM21]].

Malicious Verifiers. The only remaining problem is that the ZK protocols are sim-
ulatable under the assumption that the verifier is non-aborting and explainable. To
deal with aborting verifiers, we (as done in [BS20]) define two simulators, an aborting
and a non-aborting one, and we let the combined simulator guess which of the two he
should use. Watrous’ rewinding lemma [Wat09] allows the simulator to rewind until
the guess was correct without disturbing the verifier’s state. To ensure that the verifier
is explainable, we augment the protocol with an additional ZK proof (from the verifier
to the prover) that the messages where computed honestly. Note that in our protocol
the verifier is completely classical, so ZK for NP suffices. In order to achieve statistical
soundness and maintain the statistical ZK property though, we need a delayed-input
ZK proof (with statistical soundness). This proof needs also to not exceed 3 rounds so
as not to increase the rounds of the original protocol. Unfortunately, we do not have a
3-round ZK proof, let alone a post-quantum one.

We observe however, that for our case a weaker notion suffices and we can use
sometimes simulatable zero-knowledge [CM21|, where simulation is possible with some
(negligibly) small probability. In order to be meaningfully used, one must set the
security parameters of other primitives to account for this exponential loss, much like
with SBSH commitments. Sometimes-simulatable (SSim) ZK is reminiscent of ZK with
super-polynomial simulation (SPS) [Pas03a| but with a crucial difference: In SPS-ZK
the simulator runs in super-polynomial time, whereas in SSim-ZK the simulator runs in
polynomial time but only has an exponentially small success probability. This difference
is important in our settings since (in general) we cannot rewind the state of the verifier
and it is therefore important that the simulation is straight-line.

4.3 Zero Knowledge in the Timing Model

Finally, we investigate how to achieve ZK in QMA in two rounds, by moving the
protocol to the timing model. In other words, we assume that the parties can reliably
measure the lapse of time during the interaction. In order to achieve this, we assume the
existence of a non-parallelizing function F'. A non-parallelizing function is a function
that can be computed in time 7', while the result of the function with an input z
cannot be predicted by an attacker with depth less than 7" (i.e it cannot be run quicker
in parallel time).

Computational Zero-Knowledge. For our first construction we revisit the [DS02]
approach. The protocol is parametrized by a time parameter 7' and and we assume
a sub-exponentially non-parallelizing function F', secure against algorithms with depth
less than T'. The prover first computes an encryption « of a random string, and its
homomorphic evaluation § with the function F. Then, after the verifier sends a random
value x*, the prover sends a proof that either x € £ or that he knows an encryption «
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of x*. Eventually, the verifier accepts if the prover responds in time, the proof is valid
and the homomorphic evaluation of o with F' is equal to [.

Intuitively, the protocol is secure because the prover doesn’t have the time to ho-
momorphically recompute 5. Thus, soundness is proven by reducing to breaking the
non-parallelizability of F'. The zero-knowledge property is easily proven, having in mind
that the simulator is allowed to freeze time” (from the perspective of the verifier) while
simulating the accepting transcript. Note that the simulation is straight-line and does
not copy nor rewinds the state of the verifier, which makes it suitable for the quantum
settings.

Statistical Zero-Knowledge. Assuming slightly stronger assumptions, we propose a
different approach, achieving statistical ZK. In particular we assume the existence of a
post-quantum time-lock puzzle. A time-lock puzzle essentially provides an encryption
that is breakable after time T, but where one cannot gain a significant speedup with
parallel computation (similar to the non-parallelizability). For the sake of this overview,
we only consider explainable verifiers and the conversion to malicious verifiers can be
done with standard techniques [BKP19, CDM20)].

In our construction, the verifier sends a commitment to 0 with randomness r, along
with a time-lock puzzle encrypting said randomness. Then the prover sends a WI proof
proving that either it knows a statement z € L or that it knows the randomness r.
The verifier accepts if the prover responds in time and the proof is valid. Intuitively,
a malicious prover cannot solve the time-lock puzzle in the necessary time, whereas in
order to prove ZK, the simulator can again "freeze time” and solve the time-lock puzzle,
acquiring the randomness and using it as a witness in the WI proof.
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Chapter 2

Quantum Cryptography

Here we present some introductory notions to quantum computations and quantum
cryptography. Part of the upcoming theoretical backround was taken from [Zhal9,
Zhalg, Yue2l]

In traditional (i.e. classical) cryptography, the most basic setting is where Alice
wants to send a message to Bob, but suspects there is an eavesdropper Eve. If Alice
and Bob share a secret key, Alice can encrypt a message m and send it to Bob, who in
turn can run a decryption algorithm and get the message. Eve, without the secret key,
cannot get any information about the message. Even in this very simple example, many
assumptions are made. Specifically, we assume that both the related parties (Alice, Bob,
Eve) and the communication channel obey Newtonian physics. We now know that this
description can be incomplete; Newtonian physics fail when things are really big or
really small. In the latter case, with the development of quantum computers, we need
to also consider quantum mechanics.

1 Quantum Computing

Here we introduce some basic notions of quantum computing, necessary for understand-
ing this work.

It might be useful to consider quantum information theory as a generalization of
classical probability theory, where the probabilities are complex numbers instead of
real positive numbers.

Quantum States. Let B be a finite set of classical basis states. A (pure) quantum
state is a unit vector in C!Bl. That means that the basis states form a complex Hilbert
space and it only takes | B| complex numbers to define a quantum state. These numbers
are called amplitudes. When B = {0,1}, the resulting quantum system is called a
qubit, and can be thought as the quantum analog of a bit, that can be 0 or 1 with some
probability.

Bra-Ket Notation. States are represented as column vectors. To denote a column
vector ¢ we write |¢), using the “ket” notation. For the notation of row vectors, we
denote as (¢| the conjugate transpose of ¢, using the “bra” notation. The inner product
of a row vector |¢) and a column vector (| is denoted as (¢p|1)), and is called a “braket”.
Bearing this notation in mind, we think of the basis states as column vectors, where
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|z) assigns weight 1 to x and 0 everywhere else. The entirety of these states form
an orthonormal basis called the computational basis, and any quantum state can be
written as a complex combination of the classical states |z). Such combinations are
called superpositions. For example, in case where B = {0, 1}, the computation basis

consists of |0) = ((1)) and |1) = (?) Any general qubit |¢)) can be written as a

superposition of the classical basis states

) = al0) + B[1),

where «, 8 € C are the amplitudes of the qubit.

Composite Quantum Systems. Given that a qubit is defined in the Hilbert space C?,
the Hilbert space of two qubits is the tensor product space C?® C?, with computational
basis {]|0) ® [0),]0) ® [1),]1) ® |0),|1) ® |1)}. Note that usually in literature (as well
as in the upcoming computations) the tensor product is implied without being written,
such that |0) ® [0) = |0)]0) = |00). Thus, to describe a system with two qubits

|bo) = ap |0) + Bo |1) and |é1) = aq]|0) + 51 |1) we get
[po) |91) = apay [00) + apfBy [01) + Boar [10) + FoBy [11) .

The above can be generalised for more qubits or quantum states with a different set
B. Any state |¢) consisting of more than one qubit and cannot be written as a tensor
product is called an entangled state.

Evolution of a Quantum System. As we mentioned before, quantum states are
Lo-normalized vectors. Hence, computations on quantum states must preserve the Lo
norm. As a parallel with the classical probability theory, we notice that there the
Ly norm is preserved, while any transformation is computed with a stochastic matrix,
preserving said norm. Similarly, in quantum computations we use unitary matrices.
A unitary matrix U is a matrix whose inverse equals his conjugate transpose UT, or
UUT = I. We denote the result of a unitary transformation of a quantum state |¢) as
9 = Ulo).

Measurements. A (pure) quantum state |¢) can be measured. After the measurement,
with probability | (z|¢) |* we observe x and the state “collapses” to the classical state |z).
Note that any subsequent measurements will always output x. For example, consider
a qubit |¢) = a|0) + 4 ]1). Upon measurement, with probability |a|* we observe 0 and
the state collapse to |0). Similarly, with probability |5]|*> we observe 1 and the state
collapse to |1).

In a composite quantum system, we can perform partial measurements. First, let’s
consider we have an un-entangled quantum system, i.e. a quantum state |¢) = |¢g) |¢1)
where |¢g) and |¢;) have amplitudes «ay, By and «y, f; respectively. In this case, the
qubits can be measured independently. Thus, with probability |ag|* we observe 0 and
the state collapses to |0) |¢;), and similarly with probability |3|*> we observe 1 and the
state collapses to |1) |¢1). More interest resides in the case where the quantum state
is entangled. Assume the general state [¢) = >, . a;;|ij) € C* ® C* and we want to
measure the first qubit. Then we observe i with probability p; = ) o ;|* and the state

collapses to :l/pi i, 7). That means that we have to cross out the inconsistent terms
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after the measurement, i.e. the terms that their first qubit is not the same as the result
of the partial measurement. The division with ,/p; is necessary in order to renormalize
the state and still preserve the Lo-norm.

Mixed States. A quantum system can be in a pure state |¢) with soame probability,
for example 1/2, and in a different pure state |¢)) with probability 1/2. This can
take place in events like a partial measurement on a product system. This probability
distribution cannot be correctly described by a pure state alone. This we say that the
system is in a mixed state. The statistical behavior of a mixed state can be captured
by a density matrix. If the system is in a pure state |¢;) with probability p;, then the
density matrix for the system is defined as p = ). p; |¢i) (¢i|. The density matrix for a
pure state is given by the rank-1 matrix |¢) (¢|.

No cloning. In the classical setting, the most obvious and trivial computation we can
do is copy a string of bits. This however, is not the case with quantum information.
Specifically, there is no quantum procedure that transforms |¢) — |¢) |,) V¢. This is
one of the most important theorems in quantum computation. It introduces many
limitations since, combined with the irreversibility induced by measurements, we are
restricted on the computations we can perform. Intuitively, since we cannot measure
many different copies of a quantum state, we cannot learn with certainty what an
arbitrary quantum state is. On the other hand, the no cloning theorem can serve as
a cryptographic guarantee, since an eavesdropper cannot copy quantum messages and
any changes will be detected.

2 Quantum Cryptography

In general we notice that quantum computations differ vastly from classical ones.
It is proven that for any classical function f, we can deterministically define a Uni-
tary that efficiantly performs said function. However, the different nature of quan-
tum information allows the development of algorithms that perform better than their
classical counterparts. For example, Shor’s algorithm solves integer factorization, a
problem that in the classical setting requires sub-exponential time, with complexity
O ((log N)?*(loglog N)(logloglog N)). Hence, many assumptions made in cryptography
can be broken with quantum methods.

There are two different approaches to combat this problem. One is post-quantum
cryptography, which includes classical protocols that are secure also against quantum
adversaries. In order to achieve that level of security, quantum-secure assumptions
must be used, such as the ones found in lattice-based cryptography. Another approach
is quantum cryptography, in which the protocol itself is also quantum and we can take
advantage of the quantum properties to prove security. The protocols constructed in
this work are part of quantum cryptography.

41



42



Chapter 3

Preliminaries

We denote by A the security parameter. A function f : N — [0, 1] is negligible if for
every constant ¢ € N there exists N € N such that for all n > N, f(n) < n=¢. We recall
some standard notation for classical Turing machines and Boolean circuits:

e We say that a Turing machine (or algorithm) is PPT if it is probabilistic and runs
in polynomial time in \.

e We sometimes think about PPT Turing machines as polynomial-size uniform fam-
ilies of circuits. A polynomial-size circuit family C is a sequence of circuits
C = {Cy}aen, such that each circuit Cy is of polynomial size A°Y) and has
X°M) input and output bits. We say that the family is uniform if there exists
a polynomial-time deterministic Turing machine M that on input 1* outputs C\.

e For a PPT Turing machine (algorithm) M, we denote by M (x;r) the output of
M on input z and random coins r. For such an algorithm, and any input =z,
we write m € M(x) to denote that m is in the support of M(z;-). Finally we
write y <—$ M (x) to denote the computation of M on input = with some uniformly
sampled random coins.

1 Quantum Adversaries

We recall some notation for quantum computation and we define the notions of com-
putational and statistical indistinguishability for quantum adversaries. Various parts
of what follows are taken almost in verbatim from [BS20].

e We say that a Turing machine (or algorithm) is QPT if it is quantum and runs in
polynomial time.

e We sometimes think about QPT Turing machines as polynomial-size uniform fam-
ilies of quantum circuits (as they are equivalent models). We call a polynomial-size
quantum circuit family C' = {C)} \en uniform if there exists a polynomial-time de-
terministic Turing machine M that on input 1* outputs C,.

e Classical communication channels in the quantum setting are identical to classical
communication channels in the classical setting, except that when a set of qubits
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is sent through a classical communication channel, then the qubits decohere and
are automatically measured in the standard basis.

e A quantum interactive algorithm (in the two-party setting) has input divided into
two registers and output divided into two registers. For the input qubits, one
register is for an input message from the other party, and a second register is for
a potential inner state the machine holds. For the output, one register is for the
message to be sent to the other party, and another register is for a potential inner
state for the machine to keep for itself.

Throughout this work, we model efficient adversaries as quantum circuits with non-
uniform quantum advices. This is denoted by A* = {A}, pr}ren, where {A}}ren
is a polynomial-size non-uniform sequence of quantum circuits, and {p)} en is some
polynomial-size sequence of mixed quantum states. We now define the formal notion
of computational indistinguishability in the quantum setting.

Definition 1.1 (Computational Indistinguishability). Two ensembles of quantum ran-
dom variables X = {X)}reny and Y = {Y)}ren are said to be computationally indistin-
guishable (denoted by X =~. )) if there exists a negligible function u such that for all
A € N and all non-uniform QPT distinguishers with quantum advice A = {Ax, pr}ren,
it holds that

[PrlA(X; p) = 1] = Pr[A(Y; p) = 1]] < p(A)
where X <+$ X, and Y +sY,.

The trace distance between two quantum distributions (X}, Y} ), denoted by TD(X, Y)),
is a generalization of statistical distance to the quantum setting and represents the max-
imal distinguishing advantage between two quantum distributions by an unbounded
quantum algorithm. We define below the notion of statistical indistinguishability.

Definition 1.2 (Statistical Indistinguishability). Two ensembles of quantum random
variables X = {X, }ren and Y = {Y)}aen are said to be statistically indistinguishable
(denoted by X =4 Y) if there exists a negligible function p such that for all X\ € N, it
holds that

The Class QMA. A language £ = (Lyes, L£1) in QMA is defined by a tuple (V, p, , ),
where p is a polynomial, V = {V)},en is a uniformly generated family of circuits such
that for every ), V) takes as input a string = € {0,1}* and a quantum state |1)) on p(\)
qubits and returns a single bit, and «, 8 : N — [0, 1] are such that a(\) — () > 1/p(N).
The language is then defined as follows.

e For all © € Ly of length A, there exists a quantum state |¢) of size at most p(\)
such that the probability that V) accepts (z,[1)) is at least a(\). We denote the
(possibly infinite) set of quantum witnesses that make V) accept = by Rz (z).

e For all z € L, of length A, and all quantum states |¢)) of size at most p(}), it
holds that V), accepts on input (z, [¢))) with probability at most ().
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2 Learning with Errors

We recall the definition of the learning with errors (LWE) problem [Reg05].

Definition 2.1 (Learning with Errors). The LWE problem is parametrized by a modulus
q = q(\), polynomials n = n(\) and m = m(X), and an error distribution x. The LWE
problem is hard if it holds that

(A,A-s+e)~, (A u)

where A <—sZ;""", s<sZ;, u<sLy

7 s and e<sx™.

As shown in [Reg05, PRS17], for any sufficiently large modulus ¢ the LWE problem
where x is a discrete Gaussian distribution with parameter ¢ = £¢ > 2y/n (i.e. the
distribution over Z where the probability of z is proportional to e~(#l/ ")2), is at least
as hard as approximating the shortest independent vector problem (SIVP) to within a
factor of v = O(n/€) in worst case dimension n lattices.

3 Pseudorandom Functions

We recall the standard notion of pseudorandom function (PRF) [GGMS6|.

Definition 3.1 (Pseudorandom Function). A pseudorandom function (PRF.Gen, PRF.Eval)
consists of the following efficient algorithms.

e PRF.Gen(1%): On input the security parameter, the key generation algorithm re-
turns a key k.

e PRF.Eval(k,z): On input a key k and a string x € {0,1}*, the evaluation algorithm
returns a string y € {0, 1}¢™).

The scheme must be pseudorandom in the following sense.

Definition 3.2 (Pseudorandomness). A pseudorandom function (PRF.Gen, PRF.Eval)
1s pseudorandom if there exists a negligible function p such that for all A € N and all
non-uniform QPT distinguishers with quantum advice A = { Ay, px}ren, it holds that

|Pr [A(p)PREEAE) = 1] — Pr [A(p)") = 1]] < p(N)
where k < PRF.Gen(1*) and f : {0,1}* — {0, 1}*W is a uniformly sampled truly random
function.
4 Garbled Circuits

We recall the definition of a garbling scheme for circuits [Yao86, AIK04, BHR12|.

Definition 4.1 (Garbled Circuit). A garbling scheme for circuits is a tuple of PPT
algorithms (Garble, GEval) with the following syntaz.
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e Garble (1A,C’) : Garble takes as input a security parameter 1%, a circuit C, and

.....

.....

.....

We recall the notion of completeness.

Definition 4.2 (Completeness). A garbling scheme (Garble, GEval) is complete if for
any circuit C' and input x € {0,1}" we have that:

,,,,,

We define the notion of (statistical) simulation security, which is achievable for
circuits in NC1.

Definition 4.3 (Security). A garbling scheme (Garble, GEval) is simulation secure if
there exists a PPT simulator GSim such that for any circuit C and input = € {0,1}",
we have that

77777

5 Interactive Proofs and Sigma Protocols

We present the definitions of interactive proof systems and sigma protocols. Much of
the following material is taken in verbatim from [Shm20|. We denote by (P,V) and
interactive protocol between a prover P and a verifier V. The output of the verifier is
denoted by Out(P,V). For an honest verifier, the output is a classical bit that denotes
acceptance or rejection. If the verifier is corrupted, the output can be an arbitrary
quantum state. We define completeness in the following.

Definition 5.1 (Completeness). An interactive protocol (P, V) for a language L € QMA
with relation R, is complete if there exists a polynomial p and a negligible function p
such that for all A\ € N, all x € L, and all |w) € Re(x), it holds that

Pr [Out(P(|w>®p(A) ,2),V(z)) = 1] >1— u(\).

Next we define the notion of (non-adaptive) computational soundness.

Definition 5.2 (Computational Soundness). An interactive protocol (P,V) for a lan-
guage L € QMA with relation Ry is computationally sound if there exists a negligible
function p such that for all X € N, all x ¢ L, and all non-uniform QPT provers with
quantum advice A = { Ay, pr}ren, it holds that

Pr{Out(A(z; p), V() = 1] < pu(A).
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Sigma Protocols. We explicitly define sigma protocols (X), a special case of inter-
active protocols for QMA, and we define a special-zero knowledge guarantee that is
satisfied by some protocols of interest.

Definition 5.3 (Sigma Protocol). A sigma protocol (3.Com, 3.Chal, 3.Resp) consists of
the following efficient algorithms.

o 3.Com(|w)®™ ;1): On input p(\)-many copies of the witness and some (classical)
random coins r € {0, 1} the commitment algorithm returns a first commitment
).

e Y..Chal(z): On input the instance x, the challenge algorithm returns a uniformly
sampled (classical) string 3 € {0,1}*™.

e Y.Resp(f,r): On input the challenge 5 and the classical random coins r, the
response algorithm returns a classical response 7.

We highlight the fact that both the challenge and the response algorithm are com-
pletely classical: The only quantum computation needed is for the ¥.Com algorithm
and for verifying that x € L, given the protocol transcript. We now define the notion
of computational special zero-knowledge.

Definition 5.4 (Computational Special Zero-Knowledge). A sigma protocol (¥.Com, ¥.Chal,
Y..Resp) satisfies (computational) special zero-knowledge if there exists a QPT simulator
¥..Sim such that for all A € N, all x € L, and all lw) € Re(x), it holds that

(2.Com(|w)®"™ 1), .Resp(3,7)) ~. X.5im(z, 3)
where 1 +s{0,1}Y and B < {0, 1}°W.

The statistical notion is defined analogously, except that we require statistical in-
distinguishability between the two distributions. It was recently shown by Broadbent
and Grilo [BG20] how to obtain a sigma protocol for QMA satisfying statistical sound-
ness and special zero-knowledge, assuming a (classical) post-quantum non-interactive
statistically binding bit commitment scheme [LS19, HW18|. Here we restate the main
theorem of such a work.

Lemma 5.5 (|[BG20|). Assuming the post-quantum hardness of the LWE problem,
there exists a sigma protocol (3.Com,X.Chal, ¥.Resp) satisfying statistical soundness
and computational special zero-knowledge.

In this work we are also interested in the reverse guarantees, i.e. computational
soundness and stastistical zero-knowledge. In [BG20], it was shown that instantiating
the same protocol with a statistically hiding commitment results in a sigma protocol
with the desired properties. However, (classical) statistically hiding commitments no-
toriously require two rounds of interaction and thus one needs to extend the syntax of
the sigma protocol to have the verifier sampling the commitment key ck < ¥.Gen(1%),
which is also given as an input to the ¥.Com algorithm. The definition of special
zero-knowledge is extended accordingly. Since statistically hiding commitments can
be constructed from any collision resistant hash function [HM96] (and in particular
assuming LWE), we obtain the following implication.
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Lemma 5.6 ([BG20]). Assuming the post-quantum hardness of the LWE problem,
there exists a sigma protocol (X.Gen,Y..Com, X..Chal, X.Resp) satisfying computational
soundness and statistical special zero-knowledge.

6 Statistical ZAPs for NP

A ZAP protocol is a two-round witness-indistinguishable argument where the first mes-
sage is instance-independent. We say that the protocol achieves multi-theorem security
if the first round can be fixed once and for all and can be reused for an unbounded
amount of second rounds. In the other hand, if the first round has to be re-initialized
for each run of the protocol, we say that the ZAP achieves only single-theorem security.
Additionally, we say that the protocol is public coin if the output of the protocol is
publicly computable given the protocol transcript, and otherwise we say that the pro-
tocol is private coin. We being by defining the syntax of (public coin) statistical ZAPs
for NP.

Definition 6.1 (ZAP Protocol for NP). A ZAP protocol (ZAP .Setup, ZAP.Prove, ZAP .Verify)
for a language L € NP with relation Ry consists of the following efficient algorithms.

e ZAP.Setup(1*): On input the security parameter 1%, the setup returns a common
reference string crs and a trapdoor td.

e ZAP.Prove(crs,w,x): On input a common reference string crs, a witness w, and a
statement x, the proving algorithm returns a proof .

e ZAP .Verify(td, 7, x): On input a trapdoor td, a proof 7, and a statement x, the
verification algorithm returns a bit {0,1}.

The definitions of completeness and computational soundness are identical to those
given for general interactive proof systems (Section [f). Note that all definitions that
we present here are for the single-theorem case. This is without loss of generality, since
single-theorem soundness (witness indistinguishability, resp.) is equivalent to single-
theorem soundness (witness indistinguishability, resp.) for public coin protocols. In the
following we present the notion of (statistical) witness indistinguishability.

Definition 6.2 (Statistical Witness Indistinguishability). A ZAP protocol (ZAP .Setup,
ZAP.Prove, ZAP Verify) for a language £ € NP with relation R, is witness indistinguish-
able if for all X\ € N, all x € L, all pairs of witnesses (wy, w1) € Rz, and all common
reference strings crs it holds that

(crs, ZAP.Prove(crs, wy, x)) ~; (crs, ZAP.Prove(crs, wy, x)).

It was recently shown in [BFJ*t20, GJIM2(] that statistical ZAPs for NP exist
assuming the quasi-polynomial (quantum) hardness of the LWE problem.

Lemma 6.3 ([BFJ™20, GJJM20]). Assuming the quantum quasi-polynomial hardness of
the LWE problem, there exists a public coin ZAP for NP (ZAP.Setup, ZAP.Prove, ZAP .Verify).
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7 Sometimes-Binding Statistically Hiding Commitments

We introduce the notion of sometimes-binding statistically hiding (SBSH) commit-
ments, as defined in [LVW20].

Definition 7.1 (SBSH Commitment). An SBSH commitment scheme (SBSH.Gen, SBSH.Key,
SBSH.Com) consists of the following efficient algorithms.

e SBSH.Gen(1*): On input the security parameter 1%, the generation algorithm re-
turns a partial commitment key ckg.

e SBSH.Key(ckq): On input a partial key cko, the key agreement algorithm returns
the complement of the key ck;.

e SBSH.Com((cko, cky), m): On input a commitment key (cko, ck;) and a message m,
the commitment algorithm returns a partial commitment key cky and a commitment
c.

The commitment must satisfy the notion of statistical hiding.

Definition 7.2 (Statistical Hiding). An SBSH commitment scheme (SBSH.Gen, SBSH.Key,
SBSH.Com) is statistically hiding if for all X € N, all partial keys cky, and all pairs of
messages (mg, my), it holds that

(cko, ckq, SBSH.Com((ckg, ckq),mq)) = (cko, cki, SBSH.Com((cko, cky), m1))
where cky <—$ SBSH.Key(cky).

Next we define the notion of sometimes-binding for an SBSH commitment scheme.
We define the set Binding as the set of all commitment keys (ckg, ck;) such that the any
resulting commitment is perfectly binding. We present the definition of the property in
the following.

Definition 7.3 (Sometimes Binding). An SBSH commitment scheme (SBSH.Gen, SBSH.Key,
SBSH.Com) is (e, d)-sometimes binding if there exists a negligible function p such that
for all X € N and all (stateful) QPT distinguishers A = { Ay, px}ren, it holds that

Pr[A(st; p) = 1 A (cko, cky) € Binding] = () - Pr[A(st; p) = 1] + d(N) - u(N)
where cky +—$ SBSH.Gen(1%) and (st,ck;) = A(cko; p).

We also require the existence of a polynomial-time extractor SBSH.Ext that, on
input the random coins r used in the SBSH.Gen algorithm, extracts the committed
message m from the protocol transcript if (ckg,ck;) € Binding. The works of [KKS18,
BFJ*20, GJIM20] construct SBSH commitment schemes (using a slightly different
syntax) for quasi-polynomial (e,d) assuming the quasi-polynomial hardness of two-
round statistically sender private oblivious transfer. Thus we can state the following
lemma.

Lemma 7.4 ([BFJ™20, GJIJM20]). Assuming the quantum quasi-polynomial hardness
of the LWE problem, there exists an (e, d)-sometimes binding SBSH commitment scheme
(SBSH.Gen, SBSH.Key, SBSH.Com).
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8 Sometimes-Simulatable Zero-Knowledge

Here we introduce the notion of sometimes simulatability (SSim-ZK) as defined in
[CM21]. This can be thought as the straight-line equivalent of super-polynomial simu-
lation [Pas03b] and it is formally defined in the following.

Definition 8.1 (Sometimes Simulatability). An interactive protocol (P,V) for a lan-
guage L € NP with relation R; is (g,9)-sometimes simulatable if there exists a negligible
function p such that for all A € N and all (stateful) QPT distinguishers A = { Ay, px}ren;,
it holds that

Pr [A(st; p) = 1 A (zko, zky) € Simulation] = e(\) - Pr[A(st; p) = 1] + d(N) - u(A)

where (zkg, zky) are the first two messages of the protocol and Simulation defines a set.
Furthermore, we require the existence of a polynomial-time algorithm Sim such that,
conditioned on the event (zko,zky) € Simulation, it holds that

Sim(1*, 7, ) ~, zky

where r are the random coins r used to compute zkg and zky is the honestly computed
third message.

9 Compute-and-Compare Obfuscation
Here we define compute-and-compare circuits (CC) and obfuscators for said circuits
(Obf). The definitions are taken in verbatim from [BS20].

Definition 9.1 (Compute-and-Compare Circuit). Let f : {0,1}" — {0,1}* and let
u € {0,1}, z € {0,1}* be strings. Then CC|f,u,z](x) is a circuit that returns z if
f(z) =y, and L otherwise. CC has a canonical description from which f,u and z can
be read.

For the following definition, Obf is a PPT algorithm that takes as input a CC circuit
and outputs a new circuit CC.

Definition 9.2 (Correctness). A PPT algorithm Obf is a correct compute-and-compare
obfuscator if for any circuit f : {0,1}" — {0,1}*, u € {0,1}, z € {0, 1}*
Pr [Vz € {0,1}" : CC(z) = CC[f,u,z](z) | CC + Obf(CC[f,u,z])| =1

We define simulation security in the following.

Definition 9.3 (Simulation Security). A PPT algorithm Obf is a simulation secure
compute-and-compare obfuscator if there exists a PPT Simulator Sim such for every
two polynomials 04(-), l2(+),

{66 lu < {0,1}),CC « Obf(CC)}” ~ {SIm(LA0), 1400, 1))

where A €N, f 1 {0,1}* is a £1()\)-size circuit and z € {0, 1}20),

Constructions based on the quantum hardness of LWE can be found in [GKW17,
WZ17, GKVW19].
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10 Quantum One-Time Pad

We recall the quantum one-time pad (QOTP) construction [AMTDWO(Q| for quantum
states. We explicitly consider the scheme that allows one to encrypt an n-qubit quantum
state with unconditional security.

Definition 10.1 (Quantum One-Time Pad). A quantum one-time pad (QOTP.Gen,
QOTP.Enc, QOTP.Dec) consists of the following efficient algorithms.

e QOTP.Gen(1"): For all i = 1...n sample two classical bits (x;,z;) <s{0,1}2.
Return the one-time key otk = (x1, 21, ..., Tpn, 2n)-

e QOTP.Enc(otk, [¢))): On input a one-time key otk and an n-qubit state 1)), apply
the Pauli transformation X*Z% to the i-th qubit, for all i = 1...n. Return the
resulting state |¢).

e QOTP.Dec(otk, |¢)): On input a one-time key otk and an n-qubit state |¢), apply
the reverse Pauli transformation Z% X™ qubit-by-qubit to recover the original state.

More explicitly, the (single qubit) Pauli transformation X*Z* is the following uni-
tary:
(a0 [0) + a1 [1)) = (ag |z:) + (=1)%aq [z; & 1)).

As shown in [AMTDWO00|, the above scheme can be used to transform any n-qubit
quantum state into a totally mixed state (no matter if some of its initial qubits are in
an entangled state).

11 Pauli Operators

The Pauli Operators X,Y, Z are 2 x 2 matrices that are unitary and Hermitian. More

specifically:
01 0 —i 1 0
() r=00) -6

12 Homomorphic Encryption

In the following we define the main object of interest of our work, namely homomorphic
encryption that allows one to evaluate classical and/or quantum circuits over encrypted
data.

Classical Homomorphic Encryption

We recall the notion of classical homomorphic encryption [Gen09].

Definition 12.1 (Homomorphic Encryption). A homomorphic encryption scheme (FHE.Gen,
FHE.Enc, FHE.Eval, FHE.Dec) consists of the following efficient algorithms.

e FHE.Gen(1*): On input the security parameter, the key generation algorithm re-
turns secret/public key pair (sk, pk).
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e FHE.Enc(pk,m): On input the public key pk and a message m, the encryption
algorithm returns a ciphertext c.

e FHE.Eval(pk,C,c): On input the public key pk, a (classical) circuit C, and a
ciphertext ¢, the evaluation algorithm returns an evaluated ciphertext c.

e FHE.Dec(sk,c): On input the secret key sk and a ciphertext c, the decryption
algorithm returns a message m.

We say that a scheme is fully homomorphic (FHE) if the evaluation algorithm sup-
ports all polynomial-size classical circuits (without posing an a-priori bound on the size
of |C|). If the size of C' needs to be fixed at the time of key generation, then we say
that the scheme is levelled homomorphic. It is well-known that levelled FHE schemes
can be based on the hardness of the (plain) LWE problem [BV11, BV14|. We recall
the notion of single-hop evaluation correctness in the following and we refer the reader
to [GHV1(0| for a more general definition of multi-hop evaluation correctness.

Definition 12.2 (Single-Hop Evaluation Correctness). A homomorphic encryption
scheme (FHE.Gen, FHE.Enc, FHE.Eval, FHE.Dec) is correct if for all A € N, all (sk, pk) €
FHE.Gen(1%), all messages m, and all polynomial-size circuits C, it holds that

Pr [FHE.Dec(sk, FHE.Eval(pk, C, FHE.Enc(pk,m))) = C(m)] = 1
We recall the notion of semantic security for public-key encryption.

Definition 12.3 (Semantic Security). A homomorphic encryption scheme (FHE.Gen,
FHE.Enc, FHE.Eval, FHE.Dec) is semantically secure if for all X € N and all pairs of
messages (mg, my), it holds that

FHE.Enc(pk, mg) ~. FHE.Enc(pk, m;)
where (sk, pk) <—sFHE.Gen(1%).
Finally we define the notion of (malicious) statistical circuit privacy for FHE [OPP14].

Definition 12.4 (Statistical Circuit Privacy). A homomorphic encryption scheme
(FHE.Gen, FHE.Enc, FHE.Eval, FHE.Dec) is (malicious) statistically circuit private if there
exists a pair of unbounded algorithms FHE.Ext and FHE.Sim such that for all A € N, all
public keys pk™, all ciphertexts ¢*, and all circuits C, it holds that

FHE.Eval(pk*, C, ¢*) ~, FHE.Sim(1*, pk*, ¢*, C'(z*))
where x* = FHE.Ext(1*, pk*, ¢*).

It is shown in [OPP14| that any FHE scheme can be converted into one with
malicious circuit privacy generically, by additionally assuming a two-round statisti-
cally sender-private oblivious transfer. The latter can in turn be instantiated from
LWE [BD18, DGIT19, BDGM19|. Taken together, these results give us the following

implication.

Lemma 12.5 ([OPP14, BD18|). Assuming the hardness of the circular LWE problem,
there exists an FHE scheme (FHE.Gen, FHE.Enc, FHE.Eval, FHE.Dec) with (malicious)
statistical circuit privacy.

52



Quantum Homomorphic Encryption

We extend the notion of classical FHE to the evaluation of quantum circuits [BJ15]. In
this work we consider only quantum FHE (QFHE) schemes with completely classical
key generation algorithms. We extend the syntax of classical FHE below.

Definition 12.6 (Quantum Homomorphic Encryption). A quantum homomorphic en-
cryption scheme (FHE.Gen, FHE.QEnc, FHE.QEval, FHE.QDec) consists of the following
efficient algorithms.

e FHE.Gen(1*): Same as in Definition [12.1.

e FHE.QEnc(pk, [¢)): On input the public key pk and a quantum state |1), the
encryption algorithm returns a quantum ciphertext |¢).

e FHE.QEval(pk,C,|¢)): On input the public key pk, a quantum circuit C, and a
quantum ciphertext |p), the evaluation algorithm returns an evaluated quantum
ciphertext | ).

e FHE.QDec(sk, |¢)): On input the secret key sk and a quantum ciphertext |p), the
decryption algorithm returns a quantum state |1)).

Analogously to the classical case, we say that the scheme is fully homomorphic if
the evaluation algorithm supports all polynomial-size quantum circuits. Next we define
the notion of single-hop evaluation correctness for QFHE.

Definition 12.7 (Single-Hop Evaluation Correctness). A quantum homomorphic en-
cryption scheme (FHE.Gen, FHE.QEnc, FHE.QEval, FHE.QDec) is correct if for all A € N,
all (sk,pk) € FHE.Gen(1%), all quantum states |¢), and all polynomial-size quantum
circuits C', it holds that

FHE.QDec(sk, FHE.QEval(pk, C, FHE.QEnc(pk, |¢)))) ~s C(|¢¥)).

The notion of semantic security is defined analogously to the classical case, and we
refer the reader to [BJ15] for a formal definition. We define the main notion of interest
of this work, namely, malicious statistical circuit privacy for QFHE.

Definition 12.8 (Statistical Circuit Privacy). A quantum homomorphic encryption
scheme (FHE.Gen, FHE.QEnc, FHE.QEval, FHE.QDec) is (malicious) statistically circuit
private if there exists a pair of unbounded algorithms FHE.Ext and FHE.Sim such that

for all X € N, all public keys pk*, all quantum ciphertexts |¢*), and all quantum circuits
C, it holds that

FHE.QEval(pk*, C, |¢*)) ~, FHE.Sim(1*, pk*, ar, C'(|¢)*)))

where ([¢*) , ) = FHE.Ext(1*, pk™, |¢*)).
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Chapter 4

Rate-1 Quantum Fully
Homomorphic Encryption

In the following we construct a QFHE scheme with rate approaching 1, as the security
parameter (and consequently the message space) grows.

1 Definition

We begin by formally defining the notion of rate for a quantum homomorphic encryption
scheme.

Definition 1.1 (Rate). We say that a quantum homomorphic encryption scheme
(QFHE.Gen, QFHE.QEnc, QFHE.QEval, QFHE.QDec) has rate p = p(\), if for all pk in
the support of QFHE.Gen(1%), all supported quantum circuits C' with sufficiently large
output size, all polynomials £ = ((N\), all (-qubit quantum states |1}, and all states |¢p)
where |¢) € QFHE.QEnc(pk, 1)), it holds that

1C([¥))]
[QFHE.QEval (pk, C. )] = *

where |-| is the size in qubits for quantum information and bits for classical information.
We also say that a scheme has rate 1, if it holds that

lim p(A) =1
A—00
The notation | - | generally corresponds to the size of the input. In the classical

setting, this translates to the number of bits that the information consists of. Similarly,
in the quantum setting, we can extend the definition and measure the size in the basic
unit of quantum information, a qubit. For constructing rate-1 QFHE schemes, it is
convenient to define an additional ciphertext compression algorithm, together with a
corresponding compressed decryption algorithm. The following are definitions from
[BDGM19], extended to the quantum setting.

Definition 1.2 (Compression). Let QFHE = (QFHE.Gen, QFHE.QEnc, QFHE.QEval, QFHE.QDec)
be a QFHE scheme and let ¢ = ((\) be a polynomial. We say that QFHE sup-

ports (-qubits ciphertext compression if there exist two algorithms QFHE.Compress and
QFHE.CompressDec with the following syntax:
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e QFHE.Compress(pk, |¢)): Takes as input a public key pk and an encrypted (-qubit
state |¢) and outputs a compressed ciphertext |¢*).

e QFHE.CompressDec(sk, [¢*)): Takes as input a secret key sk and a compressed
ciphertext |¢*) and outputs an (-qubit state |1)).

We require the following notion of correctness to hold for compressed ciphertexts.

Definition 1.3 (Compressed Correctness). A quantum homomorphic encryption scheme
(QFHE.Gen, QFHE.QEnc, QFHE.QEval, QFHE.QDec, QFHE.Compress, QFHE.CompressDec)
satisfies compressed correctness if for all X € N, all £ = £(\), all (sk, pk) in the support
of FHE.Gen(1%), all (-qubit quantum states 1), all |¢) such that |p) = QDec(sk, |p)), it
holds that

CompressDec (sk, Compress(pk, |¢)) = [¢) .

The definition of rate is unchanged, except that we consider the size of compressed
ciphertexts. For the case of classical FHE, it was recently shown by Brakerski et
al. [BDGM19] that a leveled scheme with rate-1 exists under the standard LWE as-
sumption (with polynomial modulo-to-noise ratio), which can be converted to fully
homomorphic by an additional circularity assumption. The scheme satisfies an addi-
tional structural property that we call spooky decryption and we formally define below.

Lemma 1.4 (|[BDGM19|). Assuming the hardness of the circular LWE problem, there
exists a rate-1 FHE scheme (FHE.Gen, FHE.Enc, FHE.Eval, FHE.Dec) and a function F
such that for all ciphertexts ¢ = (co,c1,...,ck) € ZZH x {0, 1}* it holds that

FHE.Dec(sk, ¢) = F(sk,co) @ (¢1, ..., k).

Finally, the works of Mahadev [Mah18a| and Brakerski [Bral§| show that QFHE
with classical keys can be constructed from the quantum hardness of the LWE prob-
lem. For the evaluation of unbounded circuits, an additional circularity assumption is
required due to an application of the bootstrapping theorem [Gen09|. Both schemes
follow the hybrid encryption approach where each ciphertext consists of (i) a QOTP
of a given quantum state and (ii) a (classical) FHE encryption of the corresponding
one-time key. This is captured by the following Lemma.

Lemma 1.5 (|[Mah18a, Bralg|). Assuming the quantum hardness of the circular LWE
problem, there exists a QFHE scheme (FHE.Gen, FHE.QEnc, FHE.QEval, FHE.QDec) where
(evaluated) ciphetexts are of the form

QOTP.Enc(otk, |1)), FHE.Enc(pk, otk)

where FHE.Enc is the encryption algorithm of a classical semi-honest circuit-private
FHE scheme.

2 Our Construction

Our scheme is again described as a generic transformation, assuming the existence of
the following primitives:
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e A rate-1 classical FHE scheme (FHE.Gen, FHE.Enc, FHE.Eval, FHE.Dec) with spooky
decryption (see Lemma [1.4).

e A quantum fully homomorphic encryption scheme (QFHE.Gen, QFHE.QEnc, QFHE.QEval,
QFHE.QDec) with classical keys and hybrid ciphertexts of the form (QOTP.Enc(otk, |)),
QFHE.Enc(qpk, otk)) (see Lemma [L.5)

Our transformation is presented formally in Figure El] As before, the scheme is fully
homomorphic if both ingredients are also fully homomorphic and it is otherwise leveled
homomorphic.

Analysis. We proceed by analyzing the security and the correctness of our scheme.

Lemma 2.1 (Security). Assuming that QFHE and FHE are semantically secure, the
scheme in Figure [{.1 is semantically secure.

Proof. Let A be a QPT adversary against the semantic security of the rate-1 QFHE
scheme. Let (pk,qpk,ck) be a public key in support of the key generation algorithm
where ck = FHE.Enc(pk, gsk) and (|¢) , ¢) be an honestly computed ciphertext, where

ck = FHE.Enc(pk, gsk) and (|¢) ,c) = (QOTP.Enc(otk, |¢)), QFHE.Enc(qpk, otk)) .

We define a series of hybrid distributions and argue that they are indistinguishable from
the original ciphertext. First, we substitute the computation of the compression key
with an encryption of 0 (padded to the appropriate length), obtaining

FHE.Enc(pk, 0)

The resulting distribution is computationally indistinguishable due to the semantic se-
curity of FHE. Next, we substitute the classical part of the ciphertext with an encryption
of 0 (padded to the appropriate length), obtaining the ciphertext

(QOTP.Enc(otk, 1)), QFHE.Enc(qpk, 0))

Computational indistinguishability follows from the semantic security of QFHE. Then,
we replace the quantum one-time-padded state with a totally mixed ¢-qubit state |u)
and get

(lu) , QFHE.Enc(qpk, 0)) .

This distribution is indistinguishable from the above due to the information-theoretic
security of the QOTP. A’s advantage in this experiment is 0, given that the ciphertext
consists of a maximally mixed state and an encryption of 0, whereas the public key
no longer includes any information about the secret key. Since this last distribution
is computationally indistinguishable from the original ciphertext, it follows that A’s
advantage in the original experiment is negligible. [

Next we show that the scheme satisfies single-hop evaluation correctness. We remark
that, making an additional 2-key circularity assumption, we can extend the scheme to
multi-hop (for any number of hops) homomorphic via the techniques outlined in Section
5.3 in [CDM2(].
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Rate-1 QFHE

e Key Generation: On input the security parameter 1*, the key generation algorithm
samples two key pairs

(pk, sk) <s FHE.Gen(1%) and (qpk, gsk) +s QFHE.Gen(1?).

Then it samples a compression key ck <% FHE.Enc(pk, gsk). The secret key of the scheme
is set to (sk, gsk) and the public key consists of (pk, qpk, ck).

e Encryption: On input the public key (pk, qpk, ck) and a quantum state [¢), the algorithm
computes and outputs (|¢) , c) <—$ QFHE.QEnc(qgpk, |¢)).

e Evaluation: On input the public key (pk, qpk, ck), a quantum circuit C, and a ciphertext
ct = (|@),c), the algorithm computes and outputs the evaluated ciphertext (|€),¢) =
QFHE.QEval(qgpk, C, ct).

e Decryption: On input the secret key (sk, gsk) and (without loss of generality) an evalu-
ated ciphertext (|¢€),¢), the algorithm returns |¢) = QFHE.QDec(qgsk, (|£),¢)).

e Compression: On input the public key (pk, gqpk, ck) and (without loss of generality) an
evaluated ciphertext (|€), ¢), the compression algorithm key-switches from QFHE to FHE,
by homomorphically decrypting the classical part of the ciphertext, computing

(CosCl2:Clzs - - -5 Com, Cr,2) = FHE.Eval (pk, QFHE.Dec(-, ¢), ck)
Then, it computes an ¢-qubit state

|6) = @) (X 2%%) - [€)
1€[l]

and outputs (|¢) , co).

e Compressed Decryption: On input the secret key (sk, gsk) and a compressed ciphertext
(|¢),co), where |¢) is an l-qubit state, the algorithm proceeds as follows. It computes
F(sk,co) = ((fi,2, fi,2),- -+ (fem, feo-)) and outputs the ¢-qubit state

) = @ (X7 27) ).

i€(l]

Figure 4.1: Description of a rate-1 QFHE scheme.

Lemma 2.2 (Correctness). Assuming that the schemes FHE and QFHE are correct, the
scheme in Figure [{.1 satisfies compressed correctness.

Proof. Fix a public key (pk, gpk,ck) and a secret key (sk,qgsk) and an input ciphetext
(1€) ,¢) where

|€) = QOTP.Enc(otk, |¢))

for some quantum state |¢)), where otk = (21, 21, . .., s, 2¢) and ¢ is a classical encryption
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of otk. Recall that the compression algorithm defines
(CosC1a,Clzy- -, Coz,s Cor) = FHE.Eval (pk, QFHE.Dec(+, ¢), ck)

which is also a classical encryption of otk, and
|0) = @ (X = 27%2) - [€)
i€(l]

_ ® (XCi,IZCi,Z) . QOTP.EnC(Otk7 W))

1€l

— ® (Xci,a:@wiZCz‘,z@Zi) . WJ)

1€(l]

— ® (Xfi,:chi,z) |¢>

1€[l]

by the spooky decryption property of the rate-1 FHE scheme. The compressed decryp-
tion algorithm then returns

® (Xfi,:chi,z) o)

i€(l]
_® szfozz ® szfozz . ¢>
i€(l] i€(l]
= [¢)
which is the correct state. ]

Parameters. We calculate the rate of the above scheme. Assuming that the plaintext
|1)) is an (-qubit state, the compressed ciphertext consists of an (-qubit state |¢) and
the classical information cg € Zg“. Thus we obtain a rate of

B 14 ., (n+1)log(q)
pA) = (n+1)log(q) +¢ L (n+1)log(q) + ¢

Recall that ¢ is some polynomial in A and thus we can bound log(q) < log()\)?. Setting
0 =Q(A(n + 1)log()\)?) we obtain a rate of p(\) =1 — O(1/\).
Combining Lemma .1 and Lemma P.9 we obtain the following result.

Theorem 2.3 (Rate-1 QFHE). Assuming the quantum hardness of the LWE problem,
there exists a leveled QFHE scheme with rate-1. Additionally assuming that the scheme
is circularly secure, there exists a QFHE scheme with rate-1.
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Chapter 5

Rate-1 QFHE via Packed
Dual-GSW

In Section @ we constructed a rate-1 QFHE scheme by key switching between the
classical part of a quantum FHE scheme and a rate-1 FHE scheme. In this section, we
present a different, and somewhat more direct, approach to construct rate-1 QFHE. Our
generic approach required us to augment the encryption scheme with a two-key cycle in
order to obtain full (as opposed to leveled) homomorphism. This non-generic approach
has the advantage of requiring only a one-key cycle. While these two assumptions are
formally incomparable, one-key circularity is arguably more studied and it is the same
assumption that was used in [Mah18a].

1 Definitions

For our construction we will make use of the notion of a lattice trapdoor, along with
the following theorem.

Theorem 1.1 ([MP12]|). There is an efficient algorithm GenTrap(1",1™, q) that, given
n,m > 1 and q¢ > 2 such that m = Q(n log(q)), returns a matriv A € Z7>" and a
trapdoor T4 such that the distribution of A is negligibly (in n) close to the uniform
distribution. Moreover, there is an efficient algorithm Invert that on input A, 74 and
As + e, where s is arbitrary in Zj and |le]| < q/ (O(nlog(q))), returns s and e with
overwhelming probability.

We recall the definition of the ciphertext shrinking algorithm.

Definition 1.2 (|[BDGM19|). Let (KeyGen, Enc,Dec, Eval) be an encryption scheme
where the public key specifies a message space Zg, the secret key sk is a matriz
m ngm and ciphertexts are of the form (c,.,cp). Assume publicly known functions
J, H, F and let noisy decryption compute Dec(sk, (cq,¢p)) = J(cp) — sk - H(c,), where
J(cp) € Zfl, H(c,) € Z7'. Then the following algorithms exist:

e Shrink : On input the public key and a ciphertext (c4,cp) that encrypts m =
(mq,...,my), it computes and outputs the shrunken ciphertext (co,cy,..., o)
e Z7+ x {0, 1}
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e ShrinkDec : On input the secret key and a shrunken ciphertext (co,cq,...,¢cp), it
computes and outputs F (sk,c,) @ (¢1,...,¢0) = (mq,...,my).

The classical FHE used to encrypt classical information in a quantum scheme in
Lemma [L.5 is referred to as a quantum capable scheme. Below we present the definition
and requirements of a quantum capable scheme.

Definition 1.3 ([Mahl8a|). Let FHE be a classical leveled fully-homomorphic encryp-
tion scheme. FHE is quantum capable if there exists an encryption scheme AltHE such
that:

1. There exists an algorithm FHE.Convert that takes as input an encryption ¢ under
FHE and outputs an encryption ¢ under AltHE, where both ciphertexts encrypt
the same value.

2. AltHE allows the operation @y, which is the XOR operation that can be performed
homomorphically. This operation should also be easily invertible using only the

public key of AltHE.

3. There exists a distribution D (which may depend on parameters of FHE) that
satisfies the following conditions:

(a) For all ciphertexts ¢ that can arise during homomorphic evaluation, { AltH E.Enc(pk, x;r) |
(x,r) « D} =4 {AltHE.Enc(pk, xz;r)@gc| (z,r) < D}, where x is the plain-
text and r is the chosen randomness.

(b) There exists a bounded-error quantum polynomial time procedure to, given
AltHE’s public key, construct the superposition

Z V' D(z,7r)|z,7)

ze€{0,1},r

(c) Given a ciphertext ¢ = AltHE.Enc(pk,x;r) | (z,r) < D, the secret key and
some trapdoor information, it must be possible to compute (z,7)

2 Packed Dual GSW

The first step to construct a rate-1 QFHE scheme is to present a packed version of the
dual-GSW FHE scheme.

Let A be the security parameter of the scheme. For simplicity, we assume that
q is a power of 2. Let m and n be polynomially bounded functions of A, where
m = Q(nlog(q)), ¢ be the number of bits encrypted in a packed ciphertext and N =
(m + ¢)log(q). Also, let B be a positive integer that will constitute the bound of the
distribution x that the error will be sampled from (see [Mah18a| for more details). We
require that ¢ > w(poly(\) - B).

For our construction we will make use of two operations from [GSW13| as shown
in [Mah18a|: The linear operator G and the inverse operator G~'. G is the matrix
(1,2,...,2"°¢@)®1,,,s, which converts a binary representation back to its original rep-
resentation. The operator G is well defined even for non-binary vectors. The non linear
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operator G~! is the inverse of G and converts a vector (or each column of a matrix)
to its binary representation. It is important to note that GG~ results in the identity
operation.

Our construction is inspired by the work of Hiromasa et al. [HAO15| and it is shown
in Figure El]
Ciphertext Conversion. To show the quantum capability of our scheme and to obtain
a rate-1 scheme, we need some additional algorithms. Let dGSW be the packed dual
GSW scheme we introduced in Figure El] Consider the following scheme QCdGSW,
which is identical to dGSW, except that it has an additional conversion algorithm that
converts the ciphertext to an alternate scheme, as well as a different (noisy) decryption
algorithm, as described below.

e Conversion: On input a ciphertext C, the algorithm sums up columns (m +
i)log(q) for i € {1,...,¢} and outputs the one column ciphertext

0
%#1

C* — AIS* +e* + c Z;n+€

q
Y24

It continues by extracting individual ciphertexts

* A * * 0 m+1
Cl—[_eWA-:|S +ez+|:q[1, :|€Zq

o M

for i € {1,..., ¢}, by keeping the first m rows and the (m + i)-th row of C*, where
€k, 1s the i-th row of Eg.

e Noisy Decryption: On input a secret key sk and a converted ciphertext c*, the
algorithm creates two ciphertexts ¢! and c; by keeping the first m rows and the
last ¢ rows of c¢* respectively. Then it computes and outputs

c, + Egc.

Observe that the structure of the (noisy) decryption algorithm allows us to apply the
shrinking algorithm from Definition [L.9.

3 Analysis

We proceed by proving that the scheme satisfies some properties of interest.

Homomorphic Evaluation. First we show that throughout homomorphic evalua-
tions the ciphertext preserves the form

AS+E+Y G ezmow

M1

0 0o |o
(m40) x (m~+£) ..
WhereY_{M-sk}_{M-Esk }6{0,1} and M = , €
He

{07 1}m><m.
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Packed Dual GSW

e Key Generation: On input the security parameter 1%, the key generation algo-
rithm chooses Eg, € {0,1}*™. Using the procedure GenTrap(17,1™,¢q) it samples
a random trapdoor matrix A € Zy*". Let sk = [ E,. ‘ I, ] e {0,1}*(m+0 and

A
Al = [EA} € ng—%)xn. Let P; € {0,1}**¢ (i € {1,...,£}) be the matrix with
—Lisk
1 in the (i,4)-th position and zero everywhere else. For i € {1,...,¢ + 1} it samples
S; <8 ZZXN, E; <s X(mM)XN and then calculates

X, =A'S. + E;
1 Sz+ l+|:PiSk

} -G € Z{m TN
for i € {1,...,¢}, and

0
C;=A’'S E | .G g plmTHxN,
I 1+ Byppg + [ T,k ] € 4y

It outputs the secret key of the scheme set to sk, the public key set to
(A’ {Xi}ieq1.....03, Cr) and the trapdoor 74.

e Encryption: On input the public key (A’,{X,}ics, Cr) and messages (i1, ..., 1) , the
algorithm samples S <$ ZgXN , E s (mHOxN and it computes and outputs

12
C=AS+E+)) u-X;
=1

¢ Evaluation: On input the public key (A', {X;i}icqo,..¢3, Cr), a circuit C, and a cipher-
text C, the algorithm computes and outputs the evaluated ciphertext C’. In order to
apply the NAND gate on input C1, Ca, it computes C; — C;G~(Ca).

e Decryption: On input a secret key sk and (without loss of generality) an evaluated
ciphertext C, the algorithm computes

For each entry ] it returns 0 if the result is closer to 0 than ¢/2 and 1 otherwise.

Figure 5.1: Description of the packed dual GSW scheme.

A freshly encrypted ciphertext corresponds to this structure since

)4
C=AS+E+> u-X;
=1

l l
0
=A"|1S+ ) wSi|+(E+ ) wE +[ ]'G
(se5ms) (2 3mm) [t
4 l 0




Now, we show that the same structure is maintained during a NAND operation.
C[ - ClG_l(CQ) = C[ - (A/SI + El + Yl : G) G_I(CQ)
= C] - A’SlG_l(Cg) - ElG_l(Cg) - YlA/SQ - Y1E2 - YlYgG
=C; - A'S;.G1(Cy) —E,G(Cy) ~Y,E;, - Y Y,G
=A'S+E+YG

where g = (S] — SlG_l(Cg)), E = (E] — ElG_l<Cg) — YlEQ) and
0

The second equality strands true because GG'(C,) = C, whereas the third equality

o |o A o . :
I __ X _
because Y, A’ = [ M, E. ‘ M, } [ “E_A } 0. The form of Y is correct since
YY__{ 0 0}_[ 0 0}_{ 0 | o
2T I My Eg | M M, -E; | M, MM, - E,;, | MM,

Note that in [Mahl8a], the error parameter entries are sampled from a truncated
discrete Gaussian distribution with bound B. Hence, in a freshly encrypted ciphertext
the error entries are bounded by (¢ + 1) - B, in E; by B, and Y; has at most (m + 1)

non-zero entries in each row. As a result the entries in E are bounded by
B(U+1)N+({l+1)(m+1)+1)=B-((+1)(N+m+1)+1)<B-({+1)(N+m+2).

If the scheme is used to compute an L-depth circuit, the error entries of E are bounded
by B' = B - ({+1)(N +m + 2)L across all ciphertexts during computations.

Quantum Capability.  Here we proceed to prove the quantum capability of our
scheme.

Theorem 3.1. The scheme QCdGSW described before is quantum capable.

Proof. The individual ciphertexts ¢ produced by the conversion algorithm are exactly
the dual-Regev encryptions of p1, ..., s, each with secret key [ €sk; ‘ 1 ] € Zg”“. This
constitutes the AItHE scheme in Definition , which is the same as the one used in
[Mah18a|. As a result, the first two requirements in Definition are satisfied imme-
diately. Requirement 3c is also immediately satisfied, as the matrix A with trapdoor
T4 is intact in the converted ciphertexts.

For requirements 3a and 3b, we need to appropriately bound the error parame-
ter. Specifically, in [Mah18a|, the requirements hold if the parameter of the truncated
discrete Gaussian distribution that the error was sampled from is super-polynomially
larger than the error entries of E*. From the assumption parameters we know that
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modulus q is super-polynomially larger than the original error entries. When proving
the invariability of the ciphertext form, we proved that the error entries of an evaluated
ciphertext are bounded by B’ = B- (£+1)(N +m+2)*. This means that in a converted
ciphertext, they are bounded by £- B’. As a result, it is possible to define a large enough
error bound so as to satisfy these requirements. ]

Security and Correctness. We proceed by analyzing the security and the correctness
of our scheme. The security is proven against the the standard LWE assumption in the
presence of encryptions of the secret key (circular LWE).

Lemma 3.2 (Security). Assuming circular LWE, the QCAGSW scheme introduced above
18 semantically secure.

Proof. Let A be a QPT adversary against the semantic security of QCdGSW. Let
(A", {Xi}icq1....3, Cr) be a public key in support of the key generation algorithm and

C=A'S+E+ Ele Wi+ X; € ngH)XN be an honestly computed ciphertext where

XizA’Si+Ei+[O}G, c,zA'S,+E]+[ }-GandA’:[]?A]_
— Lk

PZ‘Sk
We define a series of hybrid distributions and argue that they are indistinguishable
from the original ciphertext. First we substitute the matrix A with a uniformly random

matrix U, getting
U
I _
V-l e]

This distribution is statistically indistinguishable from the original due to Theorem .
Then, we substitute A’ with a uniformly random matrix U’. The resulting distribu-
tion is statistical indistinguishable from the previous one due to the the leftover hash
lemma [HILL99|.

We proceed with the next ¢ hybrid distributions. For ¢ € {1,...,¢}, Hybrid,,, is the
distribution where we substitute each

0
IgSk

0
X, =US;+E;+ |—w=—| G
% i B+ |: PZSk :|
with a uniform matrix V;. Each distribution is computationally indistinguishable from
the previous one on account of the hardness of the circular LWE. Similarly, for the next
hybrid distribution we replace C; with a uniformly random matrix V;. At last, we
substitute the ciphertext

¢
C=US+E+) u-V;
i=1
with a uniformly random matrix W. The resulting distribution is again computationally
indistinguishable from the previous by an invocation of the hardness of the circular
LWE.

A’s advantage in the last experiment is 0, given that the ciphertext consists of a
uniformly random matrix and the public key no longer includes any information of
the secret key. Since this last distribution is computationally indistinguishable from
the original ciphertext, it follows that A’s advantage in the original experiment is
negligible. []
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Next we proceed to show the single-hop evaluation correctness of the scheme. We
can extend the scheme to multi-hop (for any number of hops) homomorphic via boot-
strapping.

Lemma 3.3 (Correctness). Assuming that the algorithms Shrink and ShrinkDec in Def-
mition are correct, then the QCAGSW scheme introduced above satisfies decryption
correctness.

Proof. Fix a public key pk = A’ and a secret key sk = [ E; ‘ I ] It was proven that
a QCdGSW ciphertext has form

, N 0 |o
A'S+E+Y GAS+E+{M~ES,€M G
It is easily shown that column (m+1i)log(q) of Y- G is a column with zeros everywhere
else and y; in the (m + 4)-th row, for i € {1,...,/}. Hence, adding those columns
results into the converted ciphertext

0

q
M1

cf=A's"+e" + € Z;”“

2
It is important to notice that the matrix A’ remains intact after this transformation.

Recall that the decryption algorithm creates ¢} and c; by keeping the first m rows and
the last ¢ rows of ¢* respectively. Then it outputs

3
c, + Egc. = —EgA - -s"+e + : +E;-As"+Eg - €,
3 he
3
= (Eske; + ez> + :
g he
which consist of the correct (noisy) plaintexts.
The rounding (in order to get the plaintexts) operates correctly as long as the
entries in (Ey.e} 4 €;) are bounded by %. The entries in e* are bounded by /5’ and Ey;
contributes at most by a factor m. As a result, the entries in (Ez e} + e;) are bounded

by ((m+ 1)B' = {(m+1)({ + 1)B - (N +m + 2)*. Given that ¢ is super-polynomially
larger than B, we can meet the necessary requirement. ]

3.1 Rate-1 Quantum FHE

The rate-1 scheme we construct is identical to a QFHE with classical keys and hybrid
ciphertexts of the form

(QOTP.Enc(otk, |¢)), QCAGSW.Enc(pk, otk))
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(see Lemma [1.5), with the addition of a Compression and a Compressed Decryption
algorithm, as described below, in order to support ¢-qubits ciphertext compression. We
use the same techniques as the rate-1 QFHE scheme described Section @

e Compression: On input the public key and (without loss of generality) an evalu-
ated ciphertext (|¢) ,c*), where |£) is a quantum one time padded ¢-qubit state and
cr e ZZ”% is a converted packed dual GSW ciphertext, the compression algorithm
uses the Shrink algorithm described in Definition and computes

(CosClayCly .-y CopsCry)) € Z’qn“ x {0,1}%*

Then, it computes an /-qubit state

6 = Q) (X 2¢=) - |€)

1€(l]
and outputs (|¢) , co).

e Compressed Decryption: On input the secret key sk and a compressed cipher-
text (|¢),co), where |¢) is an (-qubit state, the algorithm computes F(sk,cgy) =
((fiz, frz), -y (fou, fr)) and outputs the (-qubit state

V) = Q) (X727 -|6).

i€l

Parameters. Assume the quantum fully homomorphic encryption scheme (QFHE.Gen,
QFHE.QEnc, QFHE.QEval, QFHE.QDec) with classical keys and hybrid ciphertexts of the
form (QOTP.Enc(otk, 1)), QCAGSW.Enc(pk, otk)). We can see that the Compression
algorithm is identical with one described in Section @, and similarly we obtain a rate of

p(N) =1—O(1/N).
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Chapter 6

Zero-Knowledge for QMA

In the following we present a 4-Round statistical zero-knowlege protocol for QMA.
Before delving into the description of our protocol, we introduce a few cryptographic
tools that are going to be useful for our main protocol.

1 Witness-Indistinguishable Arguments for QMA

This section is devoted to the definition and description of our 2-round witness indis-
tinguishable (WI) argument for QMA.

1.1 Definition

We recall the definition of 2-round WI for QMA. We consider a variant where the first
message is instance-independent and we define directly this notion.

Definition 1.1 (2-Round WI for QMA). A WI protocol (WI.Setup, WI.Prove, WI.Verify)
for a language L € QMA with relation R, consists of the following efficient algorithms.

e WI.Setup(1*): On input the security parameter 1*, the setup returns a classical
common reference string crs and a classical trapdoor td.

e WI.Prove(crs, |w>®p()‘) ,x): On input a common reference string crs, p(\)-many

copies of the witness |w), and a statement x, the proving algorithm returns a
quantum state |).

o WI.Verify(td, |7) ,z): On input a trapdoor td, a quantum state |r), and a statement
x, the verification algorithm returns a classical bit {0,1}.

For the definition of completeness we refer the reader to Section E In the following we
define the notion of (non-adaptive) multi-theorem computational soundness for private-
coin ZAPs.

Definition 1.2 (Computational Soundness). A WI protocol (WI.Setup, WI.Prove, WI.Verify)
for a language L € QMA with relation Ry is computationally sound if there exists a
negligible function p such that for all X € N, all x ¢ L, and all non-uniform QPT
provers with quantum advice A = { Ay, px}ren, it holds that

Pr[|m) = Alcrs, z; p) A WL Verify(td, |7) , 2) = 1] < u(N)
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where (crs, td) < WI.Setup(1%).
We now define the notion of (statitical) witness indistinguishability.

Definition 1.3 (Statistical Witness Indistinguishability). A WI protocol (WI.Setup, WI.Prove,
WI.Verify) for a language £ € QMA with relation R; is statistically witness indistin-
guishable if there exists a negligible function p such that for all A € N and all (stateful)
admissible distinguishers A, it holds that

‘PI“ [A(Crs,St)WI'ProveO(ch""") _ 1] — Pr |:.,4(CI’S, St)WI.Provel(crs,.V.’.) _ 1i| ‘ < ,U()\)

where (st,crs) = A(1*) and the oracle WI.Prove® takes as input a statement x and p(\)-
many copies of two witnesses |wo) and |wi) and returns WI.Prove(crs, |w,) "™ | z). We
say that the distinguisher A is admissible if it holds that (Jwe)®*™ | |w)**™M) € Ry ().

1.2 Construction

In the following we describe our protocol for statistical WI for QMA. Let () be a
(fixed) negligible function. We assume the existence of the following building blocks
(all secure against quantum adversaries):

e A sigma protocol (3.Gen, 3.Com, 3.Chal, ¥.Resp) for QMA satisfying statistical spe-
cial zero-knowledge and with £(\)? - (\) soundness error.

e A public coin ZAP (WI.Setup, WI.Prove, WI.Verify) for NP with statistical witness
indistinguishability and £(\)? - () soundness error.

e A pseudorandom function (PRF.Gen, PRF.Eval) with distinguishing advantage £(\)?*-
f(A)-

e A maliciously circuit private classical (levelled) FHE scheme (FHE.Gen, FHE.Enc,
FHE.Eval, FHE.Dec) with distinguishing advantage ()% - ().

e An SBSH commitment scheme (SBSH.Gen, SBSH.Key,SBSH.Com) that satisfies
(e(\), e(N)?)-sometimes binding.

Where p()) is some negligible function and k is the security parameter of the primitives
with super-polynomially bounded disitinguishing advantage. Our protocol is formally
described in Figure . Completeness of the protocol follows by a standard argument.

Soundness. We show that our protocol satisfies (non-adaptive) soundness. We also
note that the proof can be lifted to the adaptive setting (i.e. where the prover can
choose the challenge statement adaptively) using complexity leveraging, albeit at the
cost of a stronger assumption for the security of the underlying primitives.

Theorem 1.4 (Soundness). Assuming the quantum quasi-polynomial hardness of the
LWE problem, the WI argument described in Figure satisfies computational sound-
ness.
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Statistical WI Arguments for QMA

e Setup: The setup algorithm samples a PRF key k «+$PRF.Gen(1%) and an FHE key
pair (sk, pk) «+-$ FHE.Gen(1%). Additionally it samples a commitment key ck <—$ X.Gen(1%),
an SBSH commitment key cko<$SBSH.Gen(1), and a common reference string
crszap <% ZAP.Setup(17). The algorithm computes cj <—$ FHE.Enc(pk, k) and sets the com-
mon reference string and the trapdoor as

crs = (pk, ¢, ck, cko, crszap) and td = (sk, k).

>2p M) and a statement z, the proving

e Prove: On input 2p(A)-many copies of the witness |w
algorithm does the following. First, it samples a commitment key ckj <-$ SBSH.Key(cky),
then for b € {0,1}, it samples a classical string 7y <${0,1}" and computes the first
lop) = 2.Com(|w)®P W) ck; rsp). Then it evaluates homomorphically the response function

of the sigma protocol sampling the challenge from the PRF, i.e. it computes
Cybp = FHE.EV:ﬂ(pk7 Z.Resp(PRF.EvaI(-, IHb), ?"271,), Ck; rFHE,b)-

where rpygp are some classical random coins. In addition, it computes an SBSH commit-
ment to rxp as ¢, = SBSH.Com((cko, ck1), s p; rsgsH,5), where 7sgsy p are also uniformly
sampled coins. Finally it computes a statistical ZAP « for the classical statement

cy,p = FHE.Eval(pk, ¥.Resp(PRF.Eval(-, z||b), wx), ck; WrHE) }

{El (b7w27 wFHvaSBSH) 5.0 A Crb = SBSH.Com((ckg, Ckl),wg; wSBSH)

using (0, 75,0, TFHE,0, "'sBSH,0) as & witness. The output of the algorithm is defined as
[m) = (ck1, |ao) , [1) ; ¢y,05¢y,15 Cr 0, Cr 1, ).

e Verify: The verification algorithm checks that the ZAP 7 against the common reference
string crszap, then for b € {0,1} does the following. It recomputes the challenge for the
sigma protocol B, = PRF.Eval(k, z||b) and it recovers the response v, = FHE.Dec(sk, c,)
by decrypting the corresponding FHE ciphertext. Then it checks whether (|ay) , By, 7p) is
a valid transcript for the sigma protocol. If all of the above conditions are satisfied, the
algorithm returns 1, otherwise it returns 0.

Figure 6.1: Description of a statistical WI argument for QMA.

Proof. We are going to show that the prover success probability is bounded by a neg-
ligible function €(\). Let o ¢ L be the challenge statement and let Cheat be the event
where the prover causes the verifier to accept x. Assume towards contradiction that

Pr [Cheat] > ¢(\).

Then, by the (¢()), £(A)?)-sometimes binding property of the SBSH commitment scheme,
we have that
Pr [Cheat A (cko, ck;) € Binding] > g(\)? - (1 + u()\))
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for some negligible function u(\). Let 15 = SBSH.Ext(r, cko, cky, ¢ o) and 77 = SBSH.Ext(
1, cko, cky, ¢- 1) denote the outputs of the extractor on such a transcript, where r denote
the random coins used in the SBSH.Gen algorithm. We now gradually change the
verification procedure and we argue that the probability that the above event happens
does not decrease significantly.

e The verifier no longer decrypts the FHE ciphertext, instead, for b € {0,1}, it
computes 7, = X.Resp(PRF.Eval(k,z||b), ;) and checks whether the transcript
(low) , PRF.Eval(k, z||b), ) is accepting. If at least one of the two transcripts is
accepting and the ZAP 7 correctly verifies, then the verifier returns 1, otherwise
it returns 0. Let Cheat; be the event that the prover causes the modified verifier
to accept on some = ¢ £. We want to argue that

Pr [Cheat; A (cko,ck;) € Binding] > e(A)* - (1 + pu(N))

for some negligible function p(\). To show this, it suffices to consider the case
where the prover passes the original verification procedure but fails the modified
one. This implies that the prover has computed two inconsistent commitments
(¢rp0,¢r1) but the ZAP 7 correctly verifies. Thus, if the inequality above does not
hold, then we obtain a contradiction against the e(\)?- y(\)-soundness of the ZAP
argument.

e The verifier computes ¢, as an encryption of 0 (padded to the appropriate length),
i.e. it computes ¢ <—$ FHE.Enc(pk,0). Let Cheaty be the event that the prover
causes the modified verifier to accept on some x ¢ L. Recall that the modified
verifier no longer uses the FHE secret key in its routine. Thus, by the g(\)? - u(\)-
semantic security of the FHE scheme we have that

Pr [Cheaty A (cko, ck;) € Binding] > e(\)? - (14 pu(N)).

e Instead of computing 3, = PRF.Eval(k, z||b), the verifier samples (fy, 1) uniformly.
By the e(\)?- u(\)-pseudorandomness of the pseudorandom function, we have that

Pr [Cheats A (cko, ck;) € Binding] > e(\)* - (1 + pu(\))

where Cheats denotes the event that the prover causes the modified verifier to
accept on some x ¢ L.

The last inequality implies that either of the sigma protocols (|ag) , 5o,70), (1), 51,71)
is accepting for some x ¢ L, where [y and f; are sampled uniformly and independently
of |ag) and |a;), with probability at least e(A\)? - (1 + u(\)). This contradicts the
e(X)? - u(\)-soundness of the sigma protocol and concludes our proof. O

Witness Indistinguishability. We show that our protocol satisfies statistical witness
indistinguishability.

Theorem 1.5 (Statistical Witness Indistinguishability). The WI argument described
wn Figure satisfies statistical witness indistinguishability.
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Proof. We begin by fixing the challenge bit b = 0 and we gradually modify the experi-
ment through a series of hybrids that we show to be statistically close.

e Hybrid H,: This is the original experiment with the challenge bit fixed to b = 0,
i.e. the oracle always uses the witness |wy).

e Hybrid #H;: In this hybrid we modify the answers to all queries of the adversary
to compute ¢, as a commitment to 0, i.e. ¢, < SBSH.Com((cko, ck;),0). Note
that the randomness of the commitment is never used in the proof and thus, by
the statistically hiding property of the SBSH commitment we have that

SBSH.Com((ckg, cky), s 1) s SBSH.Com((cko, cky), 0).
It follows that the two hybrids are statistically indistinguishable.

e Hybrid Hs: In this hybrid we first run the (unbounded) extractor given by the
malicious circuit privacy of the FHE scheme k* = FHE.Ext(1%, pk, ¢ ), then we com-
pute the evaluated cirphertext as ¢, 1 <= FHE.Sim(1%, pk, ¢4, £.Resp(PRF.Eval(k*, z||1),75,1)).
By the statistical circuit privacy of the FHE scheme we have that

FHE.Eval(pk, X.Resp(PRF.Eval(-, z||1),rs 1), cx)
~, FHE.Sim (1", pk, ¢x, 2.Resp(PRF.Eval(k*, z||1), 75 1))

and thus the two hybrids are statistically close.

e Hybrid H3: In this hybrid we compute 5; = PRF.Eval(k*, z||1) and we use the chal-
lenge to simulate the response for the sigma protocol. I.e. we compute (o) ,71) <3
X.Sim(z, 1) and we set ¢, < FHE.Sim(1", pk, s, v1). Note that the only differ-
ence with respect to the previous hybrid is that we do compute a simulated tran-
script of the sigma protocol instead of an honest one. By the statistical special
zero-knowledge property of the sigma protocol we have that

(3.Com(|wo) &P ;751), 2.Resp(f1,7m51)) ~5 X.Sim(z, 1)
and therefore the two hybrids are statistically close.

e Hybrid #4: In this hybrid we switch the computation of |oy) and ¢, ; to use again
an honest witness, except that we use |w;) instead of |wy). Specifically we compute
the commitment of the sigma protocol as |a;) s Z.Com(|w1>®pm :7x1) and the
simulated ciphertext as c,; <—$ FHE.Sim (1", pk, ¢x, X.Resp(PRF.Eval(k*, z||1), 75.1))-
The two hybrids are statistically indistinguishable by the statistical special zero-
knowledge property of the sigma protocol (same argument as Hy x5 Hs).

e Hybrid Hs: In this hybrid we switch back to a correctly evaluated FHE cipher-
text, i.e. we compute c,, <—s FHE.Eval(pk, X.Resp(PRF.Eval(-, z|[1),751), cx). By the
(malicious) statistical circuit privacy of the FHE scheme, the two hybrids are sta-
tistically close (same argument as H; ~; Hs).

e Hybrid Hg: In this hybrid we revert the changes to the SBSH commitment, i.e. we
compute ¢, 1 < SBSH.Com((cko, ck;), s 1). By the statistical hiding of the SBSH
commitment we have that the two hybrids are statistically indistinguishable (same
argument as Ho ~g Hi).
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e Hybrid H;: This hybrid is identical to the previous one, except that we compute
the statistical ZAP argument using (1, 7s 1, 7FHE1, 7sesH.1)- Note that the the mes-
sages are indeed well-formed and thus statistical indistinguishability follows by
the statistical witness indistinguishability of the ZAP argument system.

e Hybrids Hs ... Hi3: In this series of hybrids we change how we compute (o) , ¢1.0, ¢r0)
analogously as we did in hybrids H; ... Hsg, i.e. using |w;) instead of |wg). Note
that the underlying random coins are no longer used in the computation of the
ZAP argument and thus to indistinguishability follows along the same lines as
what we discussed above.

Observe that hybrid H3 is identical to H, except that the challenge bit is fixed to b =1
and in particular the oracle uses the witness |w;) to compute the ZAP argument. It
follows that our protocol satisfies statistical witness indistinguishability. ]

2 Post-Quantum Conditional Disclosure of Secrets

Conditional disclosure of secrets (CDS) [AIRO1] for a language £ in NP with relation
R. is the interactive analogue of witness encryption [GGSW13|: Given a statement z
and a message m from the sender, the receiver is able to recover m if x € L, whereas
m stays hidden if this is not the case. Furthermore, the witness w for x should be kept
secret from the eyes of the sender.

Definition. We recall the definition of a CDS protocol. In this work we consider two
variants: A 3-round statistically-receiver private (SRP) CDS and a 2-round statistically
sender private (SSP) CDS. The syntax below is defined for the 3-round variant and the
2-round protocol can be defined analogously by omitting the first algorithm.

Definition 2.1 (CDS Protocol for NP). A CDS protocol (Setup, R, S, D) for a language
L € NP with relation R, consists of the following efficient algorithms.

e Setup(1*): On input the security parameter 1%, the setup returns a first message
cty.

e R(ctg,w): On input a first message cty and a witness w, the receiver algorithm
returns a second message cty and a key k.

e S(cty,z,m): On input a second message cty, a statement x, and a message m, the
sender algorithm returns a third message cts.

e D(cty,k): On input a third message cty and a key k, the decryption algorithm
returns a message m

We define completeness for a CDS protocol.

Definition 2.2 (Completeness). A CDS protocol (Setup, R, S, D) for a language L € NP
with relation Ry is complete if for all N € N, all x € L, all x € Re(x), and all messages
m it holds that

Pr [D(S(cty, z,m), k) =m| = 1.

where cty s Setup(1?) and (cty, k) < R(cty, w).
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Next we define the notion of (computational and statistical) receiver privacy.

Definition 2.3 (Receiver Privacy). A CDS protocol (Setup,R,S,D) for a language
L € NP with relation R; is computationally (statistically, resp.) receiver private if
for all X € N, all strings w, and all first messages cty the following distributions are
computationally (statistically, resp.) indistinguishable

(cto, co) = (cto, ¢1)
where (co, ko) s R(cto,0) and (c1, k1) <—sR(cto, 1).

In recent works [CM21], there exists a simple construction of post-quantum SRP-
CDS for NP assuming an (g(\), e(A\)?)-sometimes extractable SRP oblivious transfer
and a simulation secure garbling scheme (Garble, GEval) for NC1 circuits.! Hence, we
get the following.

Lemma 2.4 (|[CM21)). Assuming the quantum quasi-polynomial hardness of the LWE
problem, there exists an SRP-CDS scheme (R, S, D) with statistical receiver privacy and
computational sender privacy.

Finally we define the notion of (computational and statistical) sender privacy.

Definition 2.5 (Sender Privacy). A CDS protocol (Setup, R, S, D) for a language L € NP

with relation Ry is computationally (statistically, resp.) sender private if there exists
a negligible function p such that for all X € N, all x ¢ L, and all non-uniform QPT
(unbounded, resp.) receivers with quantum advice A = { Ay, pa}aen, it holds that

|Pr [A(S(cty, x,m),st; p) = 1] — Pr[A(S(cty, z,0),st; p) = 1]] < u(N).
where cty s Setup(1?) and (st,ct;) = A(cto; p).

It is well-known that a 2-round SSP-CDS can be built from any 2-round oblivious
transfer and information-theoretically secure randomized encodings [IK0Q]. Thus we
have the following fact.

Lemma 2.6 ([BD18]). Assuming the post-quantum hardness of the LWE problem, there
exists an SSP-CDS scheme (R,S, D) with computational receiver privacy and statistical
sender privacy.

3 4-Round Zero-Knowledge for QMA

We assume the existence of the following building blocks (all secure against quantum
adversaries):

e A circuit-private classical QFHE scheme (QFHE.Gen, QFHE.Enc, QFHE.Eval, QFHE.Dec)
with distinguishing advantage e(\)* - u(\).

e A non-interactive perfectly binding commitment Com with hiding advantage £(\)*-
1(A).

'Note that NC1 circuits suffice here, since it is well known that the validity of any NP statement can be verified
by an NCI1 circuit.
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e An SBSH commitment scheme (SBSH.Gen, SBSH.Key,SBSH.Com) that satisfies
(e()), e(N\)?)-sometimes binding.

e A 2-round WI argument (WI.Setup, WI.Prove, Wl.Verify) for QMA, with statistical
witness indistinguishability and e(\)* - (\) soundness error.

e a 3-round statistically receiver private conditional disclosure of secrets scheme
(SRP-CDS.Setup,
SRP-CDS.R, SRP-CDS.S, SRP-CDS.D) for NP, with £(A)*-u()\) computational sender

privacy.
e A CC obfuscator Obf with e(\)* - u(\) simulatability.

e A 3-round sometimes simulatable statistical ZK protocol (SSim-ZK.Setup, SSim-ZK.R,
SSim-ZK.S) that satisfies (e()\), e()\)?)-sometimes simulatability.

Our protocol is formally described in Figure [6.9.

[Soundness| At first we show that the protocol satisfies computational soundness.

Theorem 3.1. [Soundness| Assuming the quantum quasi-polynomial hardness of the
LWE problem and the existence of a quantum quasi-polynomial semantically secure
FHE, the protocol described in Figure satisfies computational soundness.

Proof. Let P* be a malicious prover that produces an accepting state (cks, cmtow, |¢) , cts, |T2))
for some statement x ¢ L£. We define the aforementioned event as Cheat and assume
towards contradiction that the probability of P* succeeding in cheating is

Pr[Cheat] > e()).

Then, by the (£(\), £(A\)?)-sometimes binding property of the SBSH commitment scheme
and the (g(\), e(\)?)-sometimes simulatability of the SSim-ZK, we have that

Pr [Cheat A (ck, ck;) € Binding A (zko, zk;) € Simulation] > g(A)* - (1 4 u(N))?

for some negligible function p()\). Let § = SBSH.Ext(rgen, cko, cki,cmt,) and zky <
SSim-ZK.Sim(1%,

TSetup, 22), Where rgen and rseryp are the randomnesses used in the respective first mes-
sages. We can now gradually change the procedure and we argue that the probability
that the above defined event happens does not decrease significantly.

e The verifier computes and sends a simulated ZRQ instead of zks. If we define Cheat;
as the event that this modified version accepts, we want to argue that

Pr [Cheat; A (cko,ck;) € Binding A zkg, zk;) € Simulation] > e(A\)* - (14 pu(N))?.

Observe that the events Cheat and Cheat; only differ in case zky # zko. If we assume
that the inequality doesn’t hold we get a contradiction against the sometimes
simulatability of SSim-ZK.
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4-Round (Statistical) ZK Argument for QMA

e First Message (V — P): The verifier samples (td, r, s) <$ {0, 1}* and computes:

— (pk,sk) <-$ QFHE.Gen(1%;7) and ¢;q = QFHE.Enc(pk, td).

— the obfuscated program CC « Obf(CC[QFHE.Dec(sk, ), s, (r,sk)]).

— a commitment ¢ = Com(0;7) and an SBSH commitment key ckq +$SBSH.Gen(1*).
— the first message of the 3-round CDS, cty <—$ SRP-CDS.Setup(1%).

— the first message of SSim-ZK, zkg <8 SSim-ZK.Gen(1%).

It sends <pk, C, Cd, (?é,cto, cko, zk0> to the prover.
e Second Message (P — V): The prover samples y <—$0” and computes:

— a commitment key ckj <-$ SBSH.Key(cko) and cmt, - SBSH.Com((cko, ck1), ¥; remt, )
— (ZklytdSSim-ZK) — SSim—ZK.R(Zko).
— the second message of the SRP-CDS, (ctg, k) += SRP-CDS.R(cto, (¥, remt, ))-

It sends to the verifier (cky,zky, ctg).
e Third Message (V — P): The verifier computes

— ctg <= SRP-CDS.S(ctg, 21, s), where the statement z; attests to y = td and cmt, =
SBSH.Com((cko, ck1), ¥; Temt, )-

— the first message of a WI argument, (crsy;, tdy;) < WI.Setup(1%).

— zkg < SSim-ZK.S(zk1, 22, "ssim-zK ), Where z3 is the statement that all of the verifier’s
messages so far are explainable, with the random coins rssim.zx as witness.

It sends to the prover (ctg, crsy;,, cks).

e Fourth Message (P — V): The prover first verifies SSim-ZK.Verify(tdsgim-zk, zkz). If
the verification is not successful it aborts. Else, on input p(\)-many copies of the witness
lw)®PN) and a statement x, it sends a WI proof |r):

{relLv3ir:c=Com(0;r)}.

e Verify: The verifier accepts if WI.Verify(tdy;, |7),z) = 1.

Figure 6.2: Description of a 4-round statistical ZK argument for QMA (plain model)

e The verifier’s third message of the SRP-CDS, ctg, returns always zero. If we define
Cheat, as the event that this modified version accepts, we want to prove that

Pr [Cheat, A (ck, ck;) € Binding A zkg, zk;) € Simulation] > ¢(A\)* - (1 + u()\))?.

The proof is presented in Lemma @

77




e The verifier’'s obfuscated program in the first message always returns 0. If we
define Cheats as the event that this modified version accepts we want to prove
that

Pr [Cheats A (cko, ck;) € Binding A zkg, zk;) € Simulation] > (A\)* - (1 4+ ()2
This is true due to the £(\)* - u()\) compute and compare obfuscation security

e The verifier’'s commitment ¢ in the first message is changed to ¢ = Com(1, r) instead
of a commitment to zero. If we define Cheaty as the event that this modified version
accepts we want to prove that

Pr [Cheaty A (ck, ck;) € Binding A zkg, zk;) € Simulation] > ¢(A\)* - (1 + u()\))?.
The inequality holds due to the £(A\)* - u()\) hiding of the commitment.

This last inequality implies that the WI proof is accepting with probability at least
e(A\)*(14u(N))?, when neither of the clauses is satisfied. This contradicts the e(A)*-u(\)
soundness of the WI proof and concludes our proof. O

Lemma 3.2. Given the definition of the events Cheat; and Cheaty in Theorem and
assuming that

Pr [Cheat; A (cko, ck;) € Binding A zkg, zk;) € Simulation] > e(A)* - (1 4 u(N))?,
then
Pr [Cheaty A (cko, ck;) € Binding A zkg, zk;) € Simulation] > e(A)* - (1 4 p(A))%

Proof. Consider the interaction where the verifier extracts § using the SBSH.Ext al-
gorithm, and if § = td the verifier aborts (denote this event by Abort); otherwise it
continues with the interaction. If the event does not happen, then the desired inequal-
ity follows by a reduction against the £(\)* - u()\) computational sender privacy of the
SRP-CDS.

We are now going to show that the probability that Abort happens is negligibly
smaller than Pr[Cheaty A (ckg, cky) € Binding A zkg, zk;) € Simulation]. In order to do
that we consider the following hybrid distributions:

e Hybrid H,: This is the protocol we presented above.

e Hybrid H;: This hybrid process is identical to the above except that the the CC
obfuscated program CC returns always 0. These processes are computationally
indistinguishable given the (A\)* - u(\) security of CC.

e Hybrid H.: This hybrid process is identical to the above except that the verifier, in-
stead of sending an encryption of td in the first message, it sends QFHE.Enc(pk, 0).
Computational indistinguishability follows from the £(A)* - 4()\) semantic security
of QFHE.

In the last hybrid process, we have no information about td, and hence the proba-
bility to guess y = td is negligible. This concludes our proof. ]
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Quantum Rewinding Lemma Before we move on to zero-knowledge, recall the def-
inition of the Quantum Rewinding Lemma (Lemma 9 from [Wat09]), which constructs
a quantum algorithm for amplifying the success probability of quantum sampler cir-
cuits under certain conditions. The below definition is taken directly from the modified
version in [BS20)].

Lemma 3.3. [Quantum Rewinding Lemma] There is a quantum algorithm R that gets
as nput:

e A general quantum circuit Q with n input qubits that outputs a classical bit b and
an additional m output qubits.

o An n-qubit state |1).
e A numbert € N.

R ezecutes in time t - poly(|Q|) and outputs a distribution over m-qubit states Dy =
R(Q,|v) ,t) with the following guarantees.

For an n-qubit state |1), denote by Q, the conditional distribution of the output
distribution Q(|v)), conditioned on b = 0, and denote by p(y) the probability that b = 0.
If there exists po,q € (0,1), € € (0,3) such that:

log(1/€)

o Amplification executes for enough time: t > Too(lp)’

e There is some minimal probability that b = 0: For every n-qubit state 1), py <

p(¥),

e p(v) is input independant, up to € distance: For every n-qubit state, [1) , |p(¥) — q| <
€, and

e ¢ is closer to % po(1 —po) < q(1—q),
then for every n-qubit state |1)),

log(1/€)

TD Dy) <4
(Qu. Dy) < \/Epo(l—po)

where TD denotes the trace distance.

Zero-Knowledge. Here we show that the scheme satisfies statistical zero-knowledge.
In order to prove ZK, we follow the technique presented in [BS20], so as to simulate
aborting verifiers as well. More specifically, we describe two simulators Sim, and Sim,,,,
that on input (x,V*, p) simulate different types of interactions. Sim, tries to simulate
an aborting interaction and Sim,, a non-aborting interaction. Formally, an aborting
interaction is an interaction where the verifier aborts or fails to prove the SSim-ZK,
whereas a non-aborting interaction is one where the verifier doesn’t abort before the
fourth message and also the SSim-ZK is succesful. Then, we describe a combined Sim-
ulator Simgymp, which randomly chooses b<—s${a,na} and uses Sim;, to simulate the
interaction. We prove that the output of Sim.,,; is indistinguishable from the output
of the real interaction, as long as it doesn’t fail (i.e. picks the correct b), which hap-
pens with probability negligibly close to % Lastly, it is proven that Sim.,,;, satisfies
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the required conditions for applying Watrous’ quantum rewinding lemma, so that the
success probability can be amplified negligibly close to 1.
The simulator Sim,(z, V*, p) proceeds as follows:

e In the second message, it computes cmt, = SBSH.Com((cko, cky), 0*; 7).

e If at some point before the fourth message the verifier aborts or fails to prove the
SSimZK proof, Sim, outputs the verifier’'s output. Otherwise it outputs Fail.

The simulator Sim,,,(x, V*, p) proceeds as follows:

e It encrypts the the inner state of the verifier at that point p(!) under QFHE with
public key pk (ct,u) = QFHE.Enc(pk, pM)) and proceeds to compute

Ctegs,, < QFHE.Eval(pk, SRP-CDS.R(cty, (-, 7cmt, )), td) and
Cteme, < QFHE.Eval(pk, SBSH.Com((cko, cky), - ;7cme, ), td).

e Then, Sim,,, continues to homomorphically evaluate the verifier’s response
(Ctargs, Ct,y@) <= QFHE.Eval(pk, V", ((Ctedsy, Cteme, ) ),

where ct,, 43 is the third message of the verifier V* and Cty2) 18 the new inner state
of V*, both encrypted.

e From the encrypted result of the SRP-CDS.V, given that y was equal to td (under
encryption), it gets QFHE.Enc(s) by running SRP-CDS.D homomorphically. Thus,
it can compute (r,sk’) < CC(QFHE.Enc(s)).

e Subsequently, Sim,,, checks the validity of (pk’,sk) = QFHE.Gen(1%;r). If pk’ # pk
or sk # sk’ then it halts the simulation. Otherwise it obtains the inner state
of the verifier by decrypting, using the acquired secret key. The simulator also
simulates the missing transcript in the second message with the same values and
randomnesses used in the homomorphic computations.

e Lastly, Sim,,, continues with the protocol by computing and sending the WI proof.
It uses as witness the randomness r.

The simulator Simgm(x, V*, p) proceed as follows:
e First, it samples b<s{a, na}.

e Then it runs Simy(z, V*, p).

At last, Sim(x, V*, p) proceeds as follows:

e Generates the circuit Sim.mp. 2 v+, which is the implementation of Sim,,,,, with the
inputs z, V* hardwired, so that p is the only input.

e The output of the simulation is R (Simeomp v+, p, A), where R is the algorithm
from Lemma @
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Proposition 3.4. [Similarity of Aborting Plan] Let V* = V be an unbounded quantum
verifier and let OUTy« be the verifier’s output at the end of the protocol such that if V*
does not abort the output is Fail. We show that

{ouTy; (P(lw)*™ 2),v*(p.2)) |~ {Sima(e, V", o)},

Az, w
where A € N,z € LN {0,1}* and |w) € Re(z).

Proof. The two distributions are identical, since both Sim, and the prover act exactly
the same up to the fourth message. In an aborting interaction the verifier would have
aborted before this message. In the case of a non-aborting interaction, both outputs
would be Fail. ]

Proposition 3.5. [Similarity of Non-Aborting Plan| Let V* be an unbounded quantum
verifier and let OUTy.- be the verifier’s output at the end of the protocol such that if V*
aborts the output is Fail. We show that

{oUTw, (PUw)™™ ).V (p.2)) |~ {Simaa(e. Vo))

A,z w
where A € N,z € LN {0,1}* and |w) € Re(z).

Proof. We consider the following hybrid distributions, which we prove that are statis-
tically indistinguishable:

e Hybrid Hy: This is the output distribution of Sim,,,

e Hybrid H;: This process is identical to the above except that in the WI proof the
simulator proves the first statement (z € £). Indistinguishability follows from the
witness-indistinguishability property of the WI proofs.

e Hybrid Hs: This hybrid process is identical to the above except that if the verifier’s
messages are not explainable and its SSim-ZK proof fails, then the process chooses
to fail and outputs Fail. Otherwise, after performing the homomorphic computa-
tions, instead of getting the sk from the CC, it computes it inefficiently. It also
computes s inefficiently and if QFHE.Dec(QFHE.Enc(s)) # s (where QFHE.Enc(s)
is part of ct,,4,) it outputs Fail. Else, it continues with the simulation.

Statistical indistinguishability will follow from the perfect correctness of the CC
obfuscation, the perfect correctness of the QFHE and from the soundness of the
SSim-ZK that the verifier sends. Assume that the two distributions are distinguish-
able and fix a partial transcript T’ and a verifier’s inner state p(*) that maximize
the distinguishability.

— In case T’ is not expainable, the SSim-ZK will fail, and so will the hybrid
process, resulting in a contradiction (since both outputs would be Fail).

— In case T’ is expainable, in both hybrids we can check if s is correct after
obtaining the sk, either inneficiently or through CC. Hence, the statistical
distance between them is bounded by the probability that the check in one
hybrid process fails and succeeds in the other, which in turn is bounded by the
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result of the SRP-CDS not being equal to s. Given the statistical correctness of
the QFHE scheme (under which the homomorphic evaluations are performed),
this leads to a contradiction.

e Hybrid Hj3: In this hybrid distribution we get rid of the homomorphic evalua-
tion altogether. If the verifier’s messages are explainable (and thus specifically
QFHE.Enc(td)) then the simulator sends cmt, and ctg in the clear (similar as in
the original protocol, using td in place of y = 0%). If the verifier’s SRP-CDS de-
crypted is equal to the precomputed s then the process continues. Otherwise, the
process outputs Fail.

Statistical indistinguishability follows directly from the perfect correctness of the
QFHE and the soundness of the SSim-ZK. Assume that the two distributions are
distinguishable and fix a partial transcript T’ and a verifier’s inner state p(!) that
maximize the distinguishability.

— In case T’ is not explainable, the SSim-ZK as well as the hybrid process would
output Fail, resulting in a contradiction.

— In case T’ is explainable, the difference in the distributions is that in one the
verifier’s response is computed homomorphically and in the other in the clear.
By the QFHE correctness, this leads to a contradiction.

e Hybrid H,: This process is identical to the previous except that the simulator does
not check the verifier’s SRP-CDS response and always continues with the process.

Assume that the two distributions are distinguishable and fix a partial transcript
T.

— If T’ is not explainable then both hybrids would output Fail and are thus
identical.

— If T” is explainable and the result of the SRP-CDS is equal to s then the hybrids
are identical. Alternatively, if the result of the SRP-CDS is not equal to s,
then H3 would output Fail, but, in the current hybrid, due to the correctness
of the SRP-CDS, T’ should not be explainable. Given the soundness of the
SSim-ZK we reach a contradiction.

e Hybrid Hs: This hybrid process is identical to the previous except that the prover
always sends cmt, SBSH.Com((cko,ckl),OA;rcmty) in the second message. Sta-
tistical indistinguishability follows from the statistical hiding of the commitment
and the SRP-CDS statistical privacy. Assume towards contradiction that the dis-
tributions are distinguishable and fix a partial transcript T’.

— If T’ is not explainable then both hybrids would output Fail thanks to the
soundness of the SSim-ZK.

— In case T’ is explainable, we reach a contradiction due to the statistical secu-
rity of the SBSH commitment and the statistical privacy of SRP-CDS.

e Hybrid Hg: This hybrid process is identical to the previous except that instead of
getting s and sk inefficiently and verifying V*’s messages (with the Gen algorithm),
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it always sends ctp < SRP-CDS.R(ctg, (0%, 7cme,)) in the second message. Assume
towards contradiction that the distributions are distinguishable and fix partial
transcript T".

— If T’ is not explainable then both hybrids would output Fail thanks to the
soundness of the SSim-ZK.

— In case T’ is explainable we reach a contradiction due to the statistical privacy
of SRP-CDS.

Note that this last process is exactly the output of the interaction with a prover.

]

Next we prove that the output of of a successful Sim,,,,; is indistinguishable from
a real interaction. The Proposition is identical to Proposition 3.4 in [BS20|, with the
necessary changes in order to argue statistical zero knowledge.

Proposition 3.6. [The output of of a successful Simqomp is Indistinguishable from Real

Interaction] Let V* be a verifier. Forx € L, let Simeomp(x, VY, pa) denote the conditional
distribution of Simeoms(z, V¥, pa), conditioned on the simulation being successful. Then,

{OUT (P(|w>®p“> 2), V*(p, g:))}

~ {Simegmila, V', o)}

A\,z,w W

where A\ € N,x € LN {0,1}* and |w) € Re(z).

Proof. Denote the following conditional distributions.

e Asim: A conditional distribution of Sim,(x, V*, p), conditioned on that the output
is not Fail (might be an empty distribution, if a(zx, p) = 0).

e Ssin: A conditional distribution of Sim,,(z, V*, p), conditioned on that the output
is not Fail (might be an empty distribution, if b(x, p) = 1).

o Apy+y = {A<P7v*>)\}/\eN: A conditional distribution of OUTy« (P, V*), conditioned

on that the output is not Fail (might be an empty distribution, if ¢(z, p, |w)*"™V) =
0).

® Sipyry = {S<P7v*>/\})\eNZA conditional distribution of OUTy. (P,V*), conditioned
on that the output is not Fail (might be an empty distribution, if ¢(z, p, |w)**™) =

1).
where the probabilities a, b, ¢ are defined as follows:
e a(x,p): The probability that the simulation of Sim,(z, V*, p) was aborting.

e b(z,p): The probability that the simulation of Sim,,(z,Vp) was aborting.

o c(z,p,|w)®™M): The probability that the interaction <P(]w>®p(’\)), V* (p)) (x) was
aborting.
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Proof. ]

—_~—

The distribution Simgm(z, V*, p) is the distribution generated by outputting a sam-

ple from Agj,, with probability %,

#ﬁ’bp@p). In addition, the distribution OUTy« (P,V*) (x) is the distribution gen-
>®p(>\)>

erated by outputting a sample from Apy+) with probability c(z, p, |w

and a sample from Ss;,, with probability

and from

S(pv+ with probability 1 — ¢(z, p, |w)®” M. We will show that the two distributions are
statistically indistinguishable by a hybrid argument. Consider the following distribu-
tions:

—_~—

e Hyb,: This is the distribution Simgems(x, V*, p).

e Hyb,: This process is identical to the above with the exception that instead of

sampling from Asg;,, with probability #?—%(xp) and from Ss;,, with probability
1-b(z,p

TTale ) b ) it samples from Ag, with probability a(z,p) and from Ss;, with
probability 1 — a(z, p).

e Hyb,: This process is identical to the above, but the probability a(z, p) is changed

to c(x, p, [w)*"Y).

e Hyb,: This process is identical to the above except that with probability ¢(z, p, |w)*? (/\))

the process outputs a sample from Apy+ instead of Agim.

e Hyb,: This process is identical to the above except that with probability 1 —

c(x, p, |w>®p()‘)) the process outputs a sample from Sipy -y instead of Sgim.

Following the proof from [BS2(]| while using propositions @ and @ we prove statistical
indistinguishability between the above hybrid distributions. O

Theorem 3.7 (Zero Knowledge). Let V* = V' be an unbounded quantum verifier. The
protocol described in Figure satisfies statistical zero-knowledge:

{OUT (P(|w>®p(/\) ,2), V*(p, x))} ~, {Sim(x, V*,p))}wi ,

A, z,w
where A\ € N,x € LN {0,1}* and |w) € Re(z).

Proof. The proof is identical with the proof of Proposision 3.5 in [BS20], where the
authors use Watrous’ Rewinding Lemma for Simcos v+, which has probability success
negligibly close to 1/2. If we denote the success probability for input p by p(p) and
denote € = negl()\)+2”\%,po = ;11 and g == %, the conditions for the Quantum Rewinding
Lemma [cite it| are satisfied.

Thus the trace distance between Simcoms(z, V*, p) and R (SiMeomp zv+,(2, V*, p)) =
Sim(x,V*, p) is bounded by a negligible function. Finally, observe that as proven in
Proposition B.6, Simeoms(z, V*, p)) is statistically indistinguishable from OUTy- (P(|w)®*™),
V*(p))(z), which concludes the proof.

O
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Chapter 7

Zero-Knowledge for QMA in the
Timing Model

In this section we present two zero-knowledge arguments for QMA languages in the tim-
ing model: The first satisfies computational zero-knowledge, whereas the latter satisfies
statistical zero-knowledge but requires slightly stronger assumptions.

1 Computational Zero-Knowledge

We recall the definition of average-case non-parallelizing functions. Non-parallelizing
functions can be instantiated via repeated hashing or via the universal construction
of [JMR20], additionally assuming an FHE scheme.

Definition 1.1 (Average-Case Non-Parallelizing Functions [BGJ"16]). A function fam-
ily {Fxr @ Xar — Iriaren is T-non-parallelizing with gap ¢ < 1, if for all x € X,
F\r(x) can be computed in time T and there exists a negligible function u such that for
all X\ € N and all non-uniform QPT algorithm with quantum advice A = { Ay, px}ren
of depth at most T¢, it holds that

Pr[A(x;p) = Far(z) | x s X\ = p(N).

In this work we are interested in an even stronger variant, where we assume that
the above holds also against sub-exponential size (but still depth bounded) adversaries,
and we refer to this variant as sub-exponential average-case non-parallelizing functions.

Our Protocol. We are now ready to describe our 2-round ZK argument. We assume
the existence of the following building blocks (all secure against quantum adversaries):

e A circuit-private classical FHE scheme (FHE.Gen, FHE.Enc, FHE.Eval, FHE.Dec).

e A sub-exponentially secure average-case T-non-parallelizing function F' : X — )
secure against algorithms of size O(2}) and depth less than T°.

e A 2-round WI argument (WI.Setup, WI.Prove, WI.Verify) for QMA.

Our protocol is parametrized by a time-parameter 7' and it is formally described in
Figure [7.1. Completeness follows immediately from the completeness of the 2-round
WI argument.
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2-Round (Computational) ZK Arguments for QMA

e Prover Precomputation: Sample an FHE key pair (sk, pk) +$FHE.Gen(1}) and an
input 2’ <—$ X. Compute « <—$ FHE.Enc(pk, 2’) and 8 = FHE.Eval(pk, F, «).

e First Message (V — P): Sample a uniform input z*<«+$X and a first message
(crs, td) < WI.Setup(1*) and return (z*, crs).

e Second Message (P — V): On input p(A\)-many copies of the witness \w>®p()‘) and a
statement z, compute a WI proof |7) for the statement

stmt = {:B € LV pk € FHE.Gen(1*) A a € FHE.Enc(pk, x*)}

A)

using \w>®p( as the witness. The prover sends (|7) , pk, a, 3) to the verifier.

e Verify: The verifier accepts if the following conditions are satisfied.

1. The prover responds before time T°¢.
2. WI.Verify(td, |7) , stmt) = 1.
3. FHE.Eval(pk, F, o) = B.

Figure 7.1: Description of a 2-round (computational) ZK argument for QMA (timing model)

Soundness. In the following we show that the protocol satisfies computational sound-
ness.

Theorem 1.2 (Soundness). Assuming that F is sub-exponentially average-case non-
parallelizable and that (WI.Setup, WI.Prove, WI.Verify) is computationally sound, the pro-
tocol described in Figure satisfies single-theorem computational soundness.

Proof. Consider a prover (running in time less than T°¢) that produces an accepting
state (|7), pk, a, B) for some statement = ¢ L. By the computational soundness of the
WI proof, it must be the case that

pk € FHE.Gen(1*) A o € FHE.Enc(pk, z*) (7.1)

as otherwise it would produce a valid WI second message for a false statement. We
can use the prover to define an algorithm that breaks the (sub-exponential) non-
parellelizability of F' as follows: The reduction sets z* to be the challenge input and
proceeds with the protocol in the same way as the verifier would. Once the prover re-
turns (pk, a, 3), the reduction recovers the sk in time O(2}), by e.g. testing all random
strings of the FHE.Gen algorithm in parallel. Then it and uses sk to decrypt 5 and
returns whatever the decrypted message is.

Observe that, by Equation (1), « is indeed an encryption of z*. By the evaluation
correctness of the FHE scheme, we have that

FHE.Dec(sk, 8) = FHE.Dec(sk, FHE.Eval(pk, F, a)) = F'(z™).
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Thus, the reduction returns the correct output. What is left to be shown is that the
depth of the reduction is asymptotically smaller than T¢. Observe that the process of
recovering sk can be computed by a circuit of depth O()), by testing all random coins of
the FHE.Gen in parallel and then selecting the matching secret key with a binary tree.
The depth of the decryption procedure is bounded by a fixed polynomial in A and is in
particular independent of 7. Thus, the depth of the reduction is only an additive term
poly(A) higher than the depth of the prover. For a large enough 7', this contradicts the
non-parallelizability of F'. O]

Zero-Knowledge. Finally, we show that the scheme satisfies zero-knowledge in the
timing model. Recall that in the timing model [DS02| the simulator is allowed to “freeze
time” while simulating the accepting transcript.

Theorem 1.3 (Zero-Knowledge). Assuming that (FHE.Gen, FHE.Enc, FHE.Eval, FHE.Dec)
18 semantically secure, the protocol described in Figure satisfies computational zero-
knowledge in the timing model.

Proof. The simulator computes « as an encryption of z*, then it computes 5 as FHE.Eval(pk,
F,a) and uses the corresponding random coins as a witness to compute the WI argu-
ment. Recall that the simulator is allowed to perform computations without letting
time elapsing, from the perspective of the verifier. To show that the simulation is
computationally indistinguishable from the real proof, we consider the following hybrid
distributions.

e Hybrid Ho: This is the honestly computed proof (|7), pk, a, 3).

e Hybrid H;: Here we change « to be the encryption of z*, instead of 2’. Computa-
tional indistinguishability follows immediately from the semantic security of the
FHE scheme.

e Hybrid Hy: Here we use the random coins used to sample pk and to encrypt «
to compute the WI proof, as opposed to the witness |w)®” ), By the statistical
indistinguishability of the WI argument, the distributions are statistically close.

The proof is concluded by observing that the distribution induced by Hs is the same
as the one induced by the simulator. ]

2 Statistical Zero-Knowledge

We show a different protocol that achieves statistical zero-knowledge at the cost of
requiring slightly stronger assumptions, namely the existence of a post-quantum time-
lock puzzle. At present, we only know how to construct (presumably) post-quantum
time-lock puzzles from succinct randomized encodings [BGJ'16].

Time-Lock Puzzles. We recall the definition of time-lock puzzles [RSW96| in the
following.

Definition 2.1 (Time-Lock Puzzles). A time-lock puzzle (TLP.Gen, TLP.Solve) consists
of the following efficient algorithms.
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e TLP.Gen(1*,T,m): On input the security parameter, a time parameter T, and a
message m, the puzzle generation algorithm returns a puzzle Z.

e TLP.Solve(Z): On input a puzzle Z, the solving algorithm returns a message m.

In terms of efficiency, we only require that the algorithm TLP.Gen runs in time
polynomial in A and at most logarithmic in 7. Whereas for correctness, we require that
for all A € N, all polynomials T, all messages m it holds that

TLP.Solve(TLP.Gen(1*, T, m)) = m

and the algorithm TLP.Solve runs in time linear in 7. We recall the definition of security
below.

Definition 2.2 (Sequentiality [BGJT16]). A time-lock puzzle (TLP.Gen, TLP.Solve) is
T-sequential with gap ¢ < 1 if there exists a negligible function u such that for all A € N
and all non-uniform QPT algorithm with quantum advice A = { Ay, px}ren of depth at
most TC, it holds that

Pr[A(Z;p) =b | b<s{0,1}; Z <sTLP.Gen(1*, T,b)] = 1/2 + p(N).

Our Protocol. Let €(\) be a (fixed) negligible function. We assume the existence of
the following building blocks (all secure against quantum adversaries):

e A perfectly binding commitment Com which is hiding with £(\)?- u()\) advantage.

e A 2-round WI argument (WI.Setup, Wl.Prove, WI.Verify) for QMA with statistical
witness indistinguishability and £(\)? - (\) soundness error.

e A two-round statistically sender private conditional disclosure of secrets scheme
(SSP-CDS.R, SSP-CDS.S, SSP-CDS.D) for NP with £(\)? - () receiver security.

e A time-lock puzzle (TLP.Gen, TLP.Solve) T-sequential with advantage bounded by
e(AN)? - pu(A).

e An SBSH commitment scheme (SBSH.Gen, SBSH.Key,SBSH.Com) that satisfies
(e()\),e(N\)?)-sometimes binding.

Where () is some negligible function. Note that, with the exception of the time-lock
puzzles, all other building blocks can be instantiated assuming the quantum hardness
of quasi-polynomial LWE. We define T to be the time parameter of the scheme and we
describe our protocol in Figure [7.9.

Soundness. We show that our protocol satisfies (non-adaptive) soundness.

Theorem 2.3 (Soundness). Assuming the quantum quasi-polynomial hardness of the
LWE problem and quasi-polynomially T-sequential time-lock puzzles, the ZK argument
described in Figure satisfies computational soundness.

Proof. We show that the success probability of the prover is bounded by a negligible
function €(\). Let x ¢ L be the false statement and let Cheat be the event where the
prover causes the verifier to accept x. Assume towards contradiction that

Pr[Cheat] > e()).
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2-Round (Statistical) ZK Arguments for QMA

e First Message (V — P): Sample an SBSH commitment key ckg <+$ SBSH.Gen(1) and
the first messages of two WI arguments (crsy, tdy), (crs, tds) <—$ WI.Setup(1*). Sample a
uniform ¢ «$Com(1*,0;r) and compute Z <$ TLP.Gen(1*, T,r;#) and compute the first
message of a CDS ct +-$SSP-CDS.R(1%, (r,7)). Return (cko, crsy, crsg, ¢, Z, ct).

e Second Message (P — V): On input p(A\)-many copies of the witness |w>®p(’\) and a

statement z, compute a WI proof |m) (with respect to crs;) for the statement
stmt; = {x €LVIr:c=Com(1*,0: r)}

Sample otk +$QOTP.Gen(1*) and calculate |¢)) = QOTP.Enc(otk,|r1)). Then sample
cky <—$ SBSH.Key(ckp) and compute cmt +—$ SBSH.Com((cko, ckj ), otk). Compute the CDS
message ct’ for otk, conditioned the statement

stmty = {EI r:7Z € TLP.Gen(1*,T,7) A c = Com(l)‘,O;r)} .
Finally compute WI proof |ma) (with respect to crsy) for the statement
stmty = {z € £V cmt € SBSH.Com((cko, cky ), otk) A ct’ € SSP-CDS.S(ct, stmto, otk) }

using the witness for the second branch. Return (cky,cmt,ct/, [¢) , [m2)).

e Verify:  The verifier computes otk = SSP-CDS.D(ct/,(r,7)) and |m) =
QOTP.Dec(otk’, [1)). The verifier accepts if the following conditions are satisfied.
1. The prover responds before time T°¢.
2. WI.Verify(tdy, |m1) ,stmt;) = 1.
3. Wl Verify(tdg, |m2) , stmtg) = 1.

Figure 7.2: Description of a 2-round (statistical) ZK argument for QMA (timing model)

Then, by the (¢(\), £(\)?)-sometimes binding property of the SBSH commitment scheme,
we have that

Pr [Cheat A (ck, ck;) € Binding] > e(\)? - (1 + u()\))

for some negligible function p(A). Let otk = SBSH.Ext(r, cko, cki, cmt) be the output of
the extractor, where r denote the random coins used in the SBSH.Gen algorithm. We
now gradually change the verification procedure and we argue that the probability that
the above defined event happens does not decrease significantly.

e The verifier computes |7;) = QOTP.Dec(otk, |1/)), instead of recovering otk’ from
the CDS protocol. Let us now define Cheat; as the event where the modified
verifier accepts. We want to argue that

Pr [Cheat; A (cko,ck;) € Binding] > e(\)? - (1 + pu(N))
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for some negligible function z(\). Note that the events Cheat and Cheat; only
differ in the case where otk # otk’. Thus if the inequality above does not hold, we
obtain a contradiction against the £(\)? - u(\)-soundness of the WI argument.

e The verifier computes ct < SSP-CDS.R(1*,0) and we define Cheat, as the event
where the modified verifier accepts. We can show that

Pr [Cheaty A (cko, ck;) € Binding] > e(A)? - (1 + pu(N))
by a reduction against the £(\)? - u(\)-receiver hiding of the CDS scheme.

e The verifier computes Z < TLP.Gen(1*,7T,0) and we define Cheat; as the event
where the modified verifier accepts. We can show that

Pr [Cheats A (cko, ck;) € Binding] > c(\)? - (1 + u(\))

by a reduction against the T-sequentiality of the time-lock puzzle with advantage
e(A)? - p(A).

e The verifier computes ¢ <—s Com(1*,1) and we define Cheat, as the event where the
modified verifier accepts. We have that

Pr [Cheaty A (cko, ck;) € Binding] > e(A)* - (1 + pu(N))
by the (A\)? - u(\) hiding of the commitment scheme Com.

The last inequality implies that the prover produces a valid |m;) for a false statement
with probability greater than £(\)? - (1 + p()\)), which is a contradiction to the g(\)? -
(14 p(A))-soundness of the WI argument and concludes the proof. O

Zero-Knowledge. We now argue that the protocol is zero-knowledge in the timing
model.

Theorem 2.4 (Zero-Knowledge). The protocol described in Figure satisfies statis-
tical zero-knowledge in the timing model.

Proof. The simulator recovers a randomness r from Z (by computing TLP.Solve) and
checks whether ¢ = Com(1*,0;7). If this is the case it uses it as the witness to compute
|71), otherwise it sets |m;) to be the all 0 state (padded to the appropriate length). The
simulator then proceeds as in the real protocol.

To show that the transcript produced by the simulator is statistically close to the
one produced by the real prover, we consider the following hybrid distributions.

e Hybrid Hy: This is the simulated transcript.

e Hybrid H;: We change the simulation to compute |7r;) using the real witness of
the statement z, but only in the case where ¢ = Com(1* 0;7). By the statisti-
cal witness indistinguishability of the WI argument, this change is statistically
indistinguishable.
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Hybrid Hs: Here we compute |ms) using the real witness of the statement z. This
change is statistically indistinguishable to the eyes of the verifier by the statistical
witness indistinguishability of the WI argument.

Hybrid Hs: If ¢ # Com(1*,0;7) we compute the CDS second message ct’ with
the message fixed to 0 (padded to the appropriate length), instead of otk. Note
that the condition ¢ # Com(1*,0;r) implies that stmt is false, and therefore the
distribution induced by this hybrid is statistically close to that of the previous
one.

Hybrid Hy: If ¢ # Com(1*,0;7) we compute cmt < SBSH.Com((cko, ck;),0). This
change is statistically indistinguishable by the statistical hiding property of the
SBSH commitment.

Hybrid Hs: If ¢ # Com(1*,0;7) we compute |1)) = QOTP(otk, |71)), where |m;) is
computed using the real witness for z. To the eyes of the distinguisher [¢) is now
maximally mixed and therefore this distribution is identical to that of the previous
hybrid.

Hybrid Hg: We revert the change done in Hy.
Hybrid H7: We revert the change done in Hs.
Hybrid Hg: We revert the change done in H,.

proof is concluded by observing that Hg is identical to the output of the honest

prover. O
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Chapter 8

Conclusions and Future Work

1 Conclusions

With the rise of quantum computers, quantum cryptography has been gaining increas-
ingly more attention in the past years. While some cryptographic tools from the classi-
cal setting are easy to generalize, many quantum protocols are far from reaching their
classical counterparts’ efficiency. In this work we study communication complexity of
Quantum FHE protocols and ZK arguments for QMA we are able to match it with the
one of their corresponding classical protocols.

In the case of the Fully Homomorphic Encryption Scheme, we present two construc-
tions of Rate-1 quantum FHE, where the amount of information exchanged between the
parties is optimal. In the first one, assuming a quantum encryption scheme with hybrid
ciphertexts (with both quantum and classical information) we utilize a classical rate-1
FHE and key-switch the classical information from the original scheme to the rate-1
one, managing to achieve communication complexity (|[¥) | + |C(|¥)]) - (1 + o(1)). In
order to continue doing homomorphic ea=valuations, we can switch back to the origi-
nal scheme. In the second construction, we approach the problem non-generically, and
construct a scheme to hold the classical information in the hybrid ciphertext that is
itself rate-1, avoiding the two-key cycle needed to obtain full (as opposed to leveled)
homomorphism.

Regarding the zero-knowledge arguments, we first create a 2-round statistical WI
argument for QMA based on the quasi-polynomial hardness of LWE. Based on that,
we are able to create a protocol that achieves statistical ZK in only four rounds with
the same assumption. In addition, by transferring the protocol to the timing model,
we were able to achieve ZK in two rounds (both computationally and statistically with
stronger assumptions).

2 Future Work

The above results can be used as motivation for further work, transferring them to
different settings or assuming different parameters.

One way to do that would be to construct a Rate-1 Multi-Key Quantum FHE
scheme, combining our results with the quantum multi-key FHE in [ABGT20] that
also utilizes hybrid encryption schemes (as in [Mah18a]). Another approach would be
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to extend out results to verifiable FHE [[ADSS17|, where we are able to prove some
property about the message while it remains encrypted and not reveal any additional
information.

Concerning ZK, extending our results to ZK proofs (instead of arguments), where
the protocol provides statistical soundness is an open problem. It is also interesting
to produce the same communication complexity assuming the polynomial security of
LWE (instead of quasi-polynomial), which is one of the optimal assumptions in quantum
cryptography so far. Recent works have also focused on black-box approaches to post-
quantum e-zero-knowledge in constant rounds [CCY20a, CCLY21la|, which could be
reduced to 4-rounds following our techniques. Lastly, there is yet to be constructed a
3-round ZK argument in the plain model, surpassing the so far optimal communication
complexity of ZK protocols.

We would also be interested to investigate how such protocols might be applied to
cryptographic voting, as homomorphic techniques and zero-knowledge proofs are an
important ingredient of several earlier and recent protocols [SK94, KY02, GPZZ18,
GPZZ21].
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