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Abstract

It follows from the known relationships among the different classes
of graphical Markov models for conditional independence that the
intersection of the classes of moral directed acyclic graph models (or
decomposable -DEC models), and transitive directed acyclic graph
-TDAG models (or lattice conditional independence —LCI models)
is non-empty. This paper shows that the conditional independence
models in the intersection can be characterized as labeled trees, where
every vertex on the tree corresponds to a single random variable. This
fact leads to the definition of a specific Markov property for trees and
therefore to the introduction of trees as part of the family of graphical
Markov Models.



1 Introduction

Graphical Markov models are a powerful tool for the representation and
analysis of conditional independence among variables of a multivariate dis-
tribution. There are different classes of graphical Markov models. Each class
is associated with a different type of graph, which embodies the structural
(qualitative) information on the relationships among the variables involved.
More precisely, every vertex of the associated graph corresponds to a random
variable of the multivariate distribution.

One of the most fascinating aspects is the algebraic structure that under-
lies the broad spectrum of different classes of graphical Markov models. This
underlying algebraic structure is the foundation on which the present paper
develops a particular characterization of the intersection of certain classes
of graphical Markov models (and for which positivity or existence of joint
densities is not required). The reader may find a comprehensive guide to
the different types of graphical Markov models in the books of Pearl (1988),
Whittaker (1990), Cox and Wermuth (1996) and Lauritzen (1996).

In this paper we will deal with graphical Markov models defined by
undirected graphs (UDG models), directed acyclic graphs (DAG' models),
chordal graphs (decomposable or DEC models), transitive directed acyclic
graphs (TDAG models), and finite distributive lattices (lattice conditional
independence or LCI models). In the next section the reader will find precise
graph-theoretical definitions of these graphs.

LCI models, were introduced by Andersson and Perlman (1993) in the
context of the analysis of non-nested multivariate missing data patterns and
non-nested dependent linear regression models. Later, Andersson, Madigan,
Perlman, and Triggs (1997, theorem 4.1) showed that the class of LCI models
coincides with the class of TDAG models. FEither of these terms, TDAG
or LCI, will be used here depending on the algebraic context used at the
moment.

Figure 1 shows a picture that Andersson et al. (1995) devised in order to
describe the location of LCI models within the scope of models represented by
undirected and directed graphs. Although the class of LCI models appears on
the picture as an isolated subclass, Andersson et al. (1995, p. 38) show that
they are in fact interlaced through the class of DAG models. An important
characterization also depicted in this figure corresponds to the definition
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of those UDG models that are equivalent to certain type of DAG models
(Wermuth, 1980; Kiiveri, Speed, & Carlin, 1984). Thus, undirected and
directed graphs members of this intersecting class describe the same model
of conditional independence. They are graphically defined as chordal graphs
and are known as DEC models.

CG DAG DEC UDG

LCI=TDAG DEC intersected LCI

Figure 1: Relation among the classes of chain graph models (CG), directed
acyclic graph models (DAG), undirected graph models (UDG), decomposable
models (DEC) and lattice conditional independence models (LCI)

As has been mentioned already, the intersection between the classes of
DEC and LCI is non-empty, as proven by Andersson et al. (1995). In this
paper, a new formalization of the graphical Markov models in of DECNLCI is
presented. In the first place, this new formalization is based on a characteri-
zation of moral TDAGs as labeled trees. Then, a Markov property for trees is
introduced. Finally the relationship between this new Markov property and
the rest of the existing Markov properties is investigated. From this study,
follows the new formalization of the graphical Markov models in DECNLCI.
Because of the relation between trees and models for conditional indepen-
dence, we will refer to DECNLCI models as tree conditional independence
~TCI models.

The direct consequence of such a formalization is that it provides a differ-
ent way to read the structural information ( = the conditional independen-
cies) contained in the model, by using the new associated Markov property.

The layout of the paper is as follows. In the next section some graph-
theoretic definitions and notation will be introduced. In section 3 an overview
of Graphical Markov models will be given, and it will serve to introduce
section 4, where we will find the characterization of moral TDAG models as
trees, as well as the definition of its specific Markov property. In section 5,
the notion Markov equivalence in this setting will be investigated. Finally,
on section 6, the main issues of the paper will be summarized.



2 Background concepts, terminology
and notation

The notation presented here has been mainly borrowed from Lauritzen (1996)
and Andersson et al. (1995), and the concepts regarding finite distributive
lattices have been taken from Gratzer (1978) and Davey and Priestley (1990).
For more details, the reader is referred to these publications.

A graph is a pair G = (V, E) where V is the set of vertices and E is the
set of edges. In the present context of graphical Markov models, the set of
vertices V' represents the set of random variables of the multivariate distri-
bution that underlies the model. This multivariate distribution is of a family
of probability distributions P defined on a product space X = x(&X;|i € V).
For simplicity, it is convenient to refer to a random variable z; as 7, and a set
of random variables x4 = {z;|i € A,A C V}, as A. Therefore, a statement
of conditional independence regarding three subsets of random variables may
be here specified as ALB|S[P], where A,B,S C V, A, B are non-empty. It
claims that the random variables in x4 are conditionally independent of the
random variables in zg given the random variables in g under P. In the
rest of this paper every statement of conditional independence is asserted
under P, thus it will be dropped from the notation.

The set of edges F is a subset of the set of ordered pairs {V x V'} such
that it does not contain loops, i.e., Va € V (a,a) ¢ E. For a given pair
of vertices a,b € V a # b, a solid line in the graph joining them a-b will
represent an undirected edge, i.e., it means that (a,b) € E and (b,a) € E.
An arrow a — b between these two vertices will represent a directed edge,
and it means that (a,b) € E and (b,a) ¢ E. A subgraph Gs = (S, Es) is
given by a subset S C V, and the induced edge set Eg = EN (S x S).

When two vertices are joined by an (un)directed edge, these two vertices
are regarded as adjacent. Given a vertex v € V, the set of those vertices
that are adjacent to it are known as the boundary of v, denoted by bd(v).
Further, the closure of a vertex v is defined as cl(v) = bd(v) U {v}. A graph
G = (V, E) is said to be complete iff (z,y) ¢ F = (y,z) € E, or in other
words, every possible pair of vertices is adjacent. A subset is complete if it
induces a complete subgraph. A clique is a complete subset that is maximal
with respect to C, i.e., G has no larger complete subgraph that contains it.

For a directed edge a — b we distinguish between the two joined vertices
by specifying that a is the parent of b, and that b is the child of a. Those



parent vertices that have a common child, will be considered as the parent
set of this child vertex, and it will be noted as pa(v), being v the child
vertex. An important concept regarding directed graphs in the context of
conditional independence is the concept of immorality. An immorality is
formed by two non-adjacent vertices with a common child. A directed graph
without immoralities is called a moral graph.

A directed graph (V, E) can be moralized by marrying non-adjacent par-
ents (joining them with an undirected edge) and dropping directions on the
edges in E. Given a directed graph G = (V, E), its moralized version will be
noted as G™. An immorality is also known as a sink-oriented V-configuration.
Cox and Wermuth (1996) define a V-configuration as a triplet of vertices
(a, b, c) such that two of them are adjacent with the third one but they are
not adjacent themselves. Therefore a sink-oriented V-configuration (an im-
morality) for the previous three vertices would be, for instance, a — b < c,
and the vertex b is called a collision vertex. Following the same terminology,
other two types of V-configurations are the source-oriented V-configuration,
e.g. a < b — ¢, and the transition-oriented V-configuration, e.g. a — b — c.

In a directed or undirected graph G = (V, E), a path from a to b is a
sequence a = ag,...,a, = b of distinct vertices such that n > 0 and either
(ai—1,0;) € E or (a;,a,—1) € E fori = 1,...,n. Given three subsets of
vertices A, B, S C V, it is said that S separates A from B in an undirected
graph iff every path between vertices in A and B, intersects S.

An undirected cycleis a path where a = b. A treeis a connected undirected
graph without undirected cycles such that there is always only a unique path
between any two different vertices from the graph. A rooted tree is a tree
in which a hierarchy among the vertices is created. One of the vertices of
a rooted tree is the root and it is considered at the top of the hierarchy.
The leaves of a rooted tree are those vertices connected to just one other
vertex and they are considered at the bottom of the hierarchy. Under this
convention we will say that the root is above the leaves, and the leaves are
below the root. Given a tree T' = (V, E) and a vertex u € V, a subtree rooted
at u, and noted Ty, is the pair T,, = (U, Ey), where the vertex set U C V
contains all vertices involved in every path from u to the leaves below, and
the edge set Ey = EN (U x U).

In a directed graph, a directed path is a direction-preserving path, that
means all its edges point towards the same direction. A given vertex a is
called the ancestor of b if there is a directed path from a to b. A directed
cycle is a directed path where the first vertex coincides with the last.



A directed acyclic graph (DAG) is a directed graph without directed
cycles. For every vertex v, one may consider the set of those vertices that
are ancestors of v, which it will be called the ancestor set of v, and noted
an(v). From the definition of ancestor set, it follows that pa(v) C an(v). In
the same manner, a vertex b is called the descendant of a if there is a directed
path from a to b (i.e. a is ancestor of b), and all the vertices reachable from
a by directed paths will form the descendant set of a. Given a vertex v the
descendant set will be noted as de(v) and the non-descendant set of v is
defined as nd(v) = V\(de(v) U{v}). A DAG is said to be transitive "-TDAG
if for every vertex v, pa(v) = an(v).

An undirected graph is chordal, or decomposable (DEC), iff it does not
contain undirected cycles of length greater than three without a chord. They
are also known as triangulated graphs or rigid circuit graphs. In the introduc-
tion we already mentioned that DEC models correspond to the intersection
of the classes of DAG and UDG models, and therefore they characterize
those UDG models that are equivalent to DAG models. In the same vein, it
is possible to characterize those DAG models equivalent to UDG models, as
those determined by a DAG that does not contain immoralities (sink-oriented
V-configurations), i.e. a moral DAG.

An important concept regarding directed graphs is ancestral set. Let
G = (V, E) be a DAG. Given a subset A C V, A is said to be ancestral iff for
every vertex v € A, an(v) C A. Since the union and intersection of ancestral
sets is again ancestral, all the different ancestral sets contained in a DAG
G = (V, E) form a ring of subsets of V', which is noted as A(G). Further,
given a subset of vertices A C V, the smallest ancestral subset that contains
A is called the smallest ancestral set of A and denoted An(A). To avoid
confusion, let’s remark the difference between an(v) and An(A). The former
one refers to the set of vertices that are ancestors of the vertex v, while the
latter refers to the smallest subset An(A) C V that contains a given subset
A C V such that An(A) is ancestral in G.

A set S equipped with an order relation? is called a partially ordered set,
or poset. If linearity holds?, then the set is fully ordered, or a chain. A chain
C in a poset S is called mazimal iff, for any chain D € S, C C D implies
that C = D. Let S be a poset and let x,y € S. We say zx is covered by v,
and write z < yifr<yandz <z2<y=z=n=x.

2reflexive, antisymmetric and transitive
3Wa,beS a<bor b<a



Gratzer (1978, p. 10) shows that this covering relation determines the
partial ordering in a given poset in the following way. Let S be a finite
poset. Then a < b iff @ = b or there exists a finite sequence of elements
Xg,--«,Tn_1, such that zo =a,z,_1 =0, and x; < x;41, for 0 <7 <n — 1.

A poset S has an associated undirected graph (V, E) in which (z,y) € E
if < y (y covers z). This associated undirected graph is called the covering
graph of the poset S. A Hasse diagram of a poset S is a representation of
the covering graph of S in the plane such that if x < y, then z is below y on
the plane.

Given a poset S, a subset H C S and an element a € S, it is said that a
is an upper bound (lower bound) of H iff for every h € H, h < a (h > a). An
upper bound (lower bound) a of H is the least upper bound (greatest lower
bound) of H or supremum (infimum) of H iff, for any upper bound (lower
bound) b of H, we have a < b (a > b), and note it a = sup H (a = inf H).

It is possible to define a lattice in different ways. We will introduce here
just one of them, as follows. A poset L is a lattice iff sup H and inf H exist
for any finite nonvoid subset H of L. Gratzer (1978) shows that the con-
cept of a lattice as a poset is equivalent to the concept of a lattice as an
algebra L(A,V). Where A and V are binary operations on pairs of elements
a,b € L, corresponding to inf{a,b} and sup{a,b} respectively. The oper-
ations A,V are idempotent, commutative and associative, and satisfy two
absorption identities. It has been already mentioned that LCI models are
determined by finite distributive lattices. Gratzer (1978, p. 62) characterizes
finite distributive lattices as those isomorphic to a ring of sets.

A finite distributive lattice L has a unique irredundant representation as
a finite poset J(L) C L, known as set of join-irreducible elements (Gratzer,
1978, p. 62). This poset is substantially smaller than L, and its elements are
defined in the following way.

J(L)={a€Lla#0,a=bVec=a=b or a=c}

In this context, the lattice L can be constructed by unions (V) and in-
tersections (A) of the elements of the set of join-irreducible elements J(L).
Davey and Priestley (1990) characterize a join-irreducible element of a finite
distributive lattice as an element which has exactly one lower cover, i.e. it is
covering exactly one other single element.

Analogously to the concept of ancestral set for vertices of a DAG, that
we have seen before, one may define ancestral poset. Let J(L) be a poset, a



subset (which is again a poset) A C J(L) is ancestral in J(L) iff Va € A,b €
J(L) it follows that b < a = b € A.

It is possible to establish a mapping between finite posets and TDAGs
if we consider that a < b < a € an(b) for any a,b € V from a TDAG
G = (V,E). Conversely, given the finite poset J(L) we can build a TDAG
G = (J(L),E<), where

E< = {(a,b) € J(L) x J(L)|a < b}

This mapping between TDAGs and finite distributive lattices is used
by Andersson, Madigan, Perlman, and Triggs (1997) to prove that TDAG
models and LCI models coincide.

3 Graphical Markov models

This section gives an overview of graphical Markov models. Attention will
be paid to UDG, DAG, DEC, TDAG models, and specially to TDAG models
in its equivalent form of LCI models, since this latter class is, in a large part,
the basis of the main contribution of this paper.

The glue that binds the structural information of a graph, with the struc-
tural information of a multivariate distribution P, is Markov properties. They
make it possible to read conditional independencies from the graph. More-
over, there are relationships among the Markov properties that determine
which ones are equivalent or which one is sharper than the other. For more
insight into this discussion and the rest of the section, the reader may consult
Lauritzen et al. (1990), Frydenberg (1990), Lauritzen (1996) and Andersson,
Madigan, Perlman, and Triggs (1997).

Definition 3.1. Undirected pairwise Markov property (UPMP)

Let G = (V,E) be a UDG, a probability distribution P on X is said to satisfy
the undirected pairwise Markov property (UPMP) if, for any pair u,v € V
of non-adjacent vertices, P satisfies

ulv|V\{u,v}

Definition 3.2. Undirected local Markov property (ULMP)
Let G = (V, E) be a UDG, a probability distribution P on X is said to satisfy
the undirected local Markov property (ULMP) if, for any vertexv € V, P
satisfies

vL(V\el(v))|bd(v)



Definition 3.3. Undirected global Markov property (UGMP)
Let G = (V, E) be a UDG, a probability distribution P on X is said to satisfy
the undirected global Markov property (UGMP) if, for any triple of disjoint
subsets of V' such that S separates A from B in G, P satisfies

ALBIS

These three Markov properties are defined for DEC models as well, since
DEC models are determined by chordal graphs and all chordal graphs are
undirected graphs. These properties are related in the following way (Lau-
ritzen et al., 1990),

UGMP = ULMP = UPMP

meaning that the UGMP is the sharpest possible rule to read off conditional
independencies from a UDG (or DEC) model. At this point, it is possible to
introduce the formal definition of a specific type of graphical Markov model,
the UDG model.

Definition 3.4. UDG model

Let G be a UDG. The set Ux(G) of all probability distributions on X that
satisfy the UGMP relative to G is called the Markov model determined by G,
or more specifically, the UDG model determined by G.

Again, since all chordal graphs are undirected graphs, DEC models are
defined in the same way as the set of all probability distributions that satisfy
UGMP relative to G. The next set of graphs to consider are DAGs. The
Markov properties of DAGs are defined as follows.

Definition 3.5. Directed pairwise Markov property (DPMP)

Let G = (V,E) be a DAG, a probability distribution P on X is said to satisfy
the directed pairwise Markov property (DPMP) if, for any pair u,v of non-
adjacent vertices such that v € nd(u), P satisfies

ulv|nd(u)\{v}

Definition 3.6. Directed local Markov property (DLMP)
Let G = (V, E) be a DAG, a probability distribution P on X is said to satisfy
the directed local Markov property (DLMP) if, for any vertexr v € V, P

satisfies
L(nd(v)\pa(v))[pa(v)



Definition 3.7. Directed global Markov property (DGMP)

Let G = (V,E) be a DAG, a probability distribution P on X is said to satisfy
the directed global Markov property (DGMP) if, for any triple (A, B,S) of
disjoint subsets of V' such that S separates A from B in the moralized version
of the smallest ancestral set of AU B U S, (Gancaubus))™, P satisfies

ALBI|S

Lauritzen et al. (1990) show that the latter Markov property, the DGMP,
is equivalent to the separation criteria from Pearl and Verma (1987). They
also prove that the three Markov properties for DAG models are equivalent,
that is,

DGMP < DLMP < DPMP

6 ‘ 6
/’/f vl
) 3

G Gn({1,3,6)

NS

Figure 2: DAG on the left, and on the right its moralized version over the
smallest ancestral set of {1, 3,6}.

We may see more clearly the intuition behind this Markov property in
figure 2. Given the DAG G on the lefthand side of the figure, let’s try to find
out whether the DGMP holds for 1.16|3 in G. The smallest ancestral set of
1,6 and 3 is An({1,3,6}) = {1,2,3,5,6}. The moralized version of the graph
induced by this subset of vertices is on the righthand side of the figure. Since
the subgraph over An({1,3,6}) contains the immorality 2 — 3 «— 5, 2 and 5
become adjacent at the moment we moralize the graph, creating therefore, a
new path between 1 and 6, which does not intersect the conditioning set {3},
thus 1.16|3 does not hold. In order to find 1 separated from 6 one should add
2 or 5 to the conditioning set, or remove 3. As in the undirected case, let’s
introduce now the formal definition of DAG model.

Definition 3.8. DAG model
Let G be a DAG. The set Dx(G) of all probability distributions on X that
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satisfy the DGMP relative to G is called the Markov model determined by G,
or more specifically, the DAG model determined by G.

Finally, let’s move to the case of TDAG, and LCI, models. This is the
only one new Markov property attached to this class of models, and below

we will find how its related to other Markov properties within the class of
TDAG models.

Definition 3.9. Lattice conditional independence Markov property (LCIMP)
Let G = (V, E) be a TDAG, a probability distribution P on X is said to sat-
isfy the lattice conditional independence Markov property (LCIMP) if, for
every pair of ancestral subsets A, B € A(G), P satisfies

AlBIANB

Theorem 3.1. Andersson, Madigan, Perlman, and Triggs (1997, theorem
3.1,p. 33)
Let G be a TDAG. For any probability distribution P on X,

DGMP < DLMP < DPMP < LCIMP

Andersson, Madigan, Perlman, and Triggs (1997) defined the LCIMP for
the ancestral sets of a DAG. In this more general case, they prove:

Theorem 3.2. Andersson, Madigan, Perlman, and Triggs (1997, theorem
2.2,p. 32)
Let G be a DAG. For any probability distribution P on X, DGMP=-LCIMP.

The definition of an LCI model is then as follows.

Definition 3.10. LCI model

Let G be a TDAG. The set Lx(G) of all probability distributions on X that
satisfy the LCIMP relative to G is called the Markov model determined by
G, or more specifically, the LCI model determined by G.

So far, we have been dealing with graphs as the graphical counterpart
of graphical Markov models. LCI models are special in this aspect, since
they can be specified not only in terms of TDAGs as we have just seen, but

11



also as rings of subsets. This comes from the fact that TDAGs are the same
mathematical objects than finite distributive lattices. In these terms, let V'
be an index set in which each element represents a random variable from the
multivariate distribution xy. One may consider a ring K of subsets of V,
such that for every pair of subsets L, M € K, a probability distribution P
satisfies

LIM|LNM

as in the LCIMP, and the subsets L, M refer to subsets of random variables
zr,zy € Xy that take values from a larger product space X = x(Xj|z; €
zy) and L, M C V. Over this product space, a family of probability distri-
butions P underlies the LCIMP we rewrote before, and gives rise to an LCI
model Ly (K) that, as the notation suggests, is determined by a ring K. For
more details about LCI models determined by rings of subsets, the reader
may consult Andersson and Perlman (1993), Andersson, Madigan, Perlman,
and Triggs (1997).

In figure 3a we may see an empty DAG, which represents the fully re-
stricted DAG model, on the left, and its representation by a hasse diagram
on its right as the fully restricted LCI model. In figure 3b we may see a
complete DAG, which represents the unrestricted or saturated DAG model,
and its representation by a hasse diagram on its right as the unrestricted LCI
model. Let’s note that for the LCI model on 3a, J(K,) = {1,2,3} and for
the LCI model on 3b, J(K;) = {1,12,123}.

123 55 |

TP N
1 0 1
(a (b) 0‘

Figure 3: Comparison between DAG models and LCI models

While for the graphical Markov model in 3a the restrictions are charac-
terized by being all three vertices marginally independent 11213, the set of
restrictions of the model in 3b is empty. In order to read conditional inde-
pendencies from the hasse diagram, we have to take into account that any
two elements from this diagram are conditionally independent given their in-
tersection (LCIMP). So, for instance two trivial cases are those from figure 3.

12



On the left hand side of (a) and (b), the fully restricted DAG model and the
unrestricted DAG model, respectively represented by DAGs. On the right
hand side of (a) and (b), the fully restricted LCI model and the unrestricted
LCI model, respectively represented by hasse diagrams.

In the next figure, we may see two more sophisticated models. The one on
4a corresponds to the immorality that induces the two non-adjancent vertices
marginally independent, and the one on 4b corresponds to the source-oriented
V-configuration that makes the two non-adjacent vertices conditionally inde-
pendent. On the LCI model of 4a, J(K,) = {1, 3,123} and on LCI model of
4b, J(Kp) = {2,12,23} (recall that an element belongs to J(K) iff it covers
only one other element).

1%3 2
l\‘ 24/3 /13\3 14/ 2\3 12\ /3
0 - )

(a (b)

Figure 4: On the left hand side of (a) and (b), two DAGs representing
113|0 and 1132 respectively, and on the right hand side of (a) and (b) their
corresponding Hasse diagrams

4 Moral TDAG models as tree conditional in-
dependence —TCI models

This section introduces a new class of graphical Markov models called TCI
models, based on labeled trees. Moreover, it is shown that TCI coincides
with the class of DECNLCI graphical Markov models.

Recall that a DAG is transitive, i.e. a TDAG, if for every vertex v, pa(v) =
an(v). A Markov model member of the class DECNLCI is determined by a
TDAG with no immoralities (Andersson et al., 1995). It inmediately follows
that

Proposition 4.1. Let Ly (G) be a LCI model member of the intersection
class DECNLCI, where G = (V, E) is a moral TDAG. For every v € V, the
set {x} Upa(zx) is a complete set in G.

13



Proof. If {v} Upa(v) was not complete, then at least two nodes u, w € pa(v)
would not be adjacent, creating an immorality. In such case G would not be

a moral TDAG and therefore Ly (G) ¢ DEC N LCI, which contradicts the
first assumption of the proposition. O

Given a TDAG G that determines a graphical Markov model Ly (G) €
DECNLCI, the corresponding finite distributive lattice K will have a set J(K)
of join-irreducible elements which, it may be characterized as a composition

of several maximal chains. These chains are, in fact, induced by the cliques
of the TDAG G.

Lemma 4.1. Let G be a TDAG, such that Ly (G) e DECNLCIL Let C be the
set of cliques of G. Let G¢ be the TDAG that corresponds to a given clique
C € C. The TDAG G¢ = (Ve, Ec) induces a complete order among the
vertices of Vo such that it coincides with a mazximal chain He derived from
the vertex set V. Let K be the finite distributive lattice that coincides with
G. The set of join-irreducible elements J(IC) that represents the lattice K
may be defined as

J(K) = U He

ceC

Proof. We are going to show that (a) every poset defined that way is a join-
irreducible set and (b) that every join-irreducible set of a LCI model from
DECNLCI corresponds to the union of maximal chains induced by the cliques
of a TDAG that defines a graphical Markov model member of DECNLCI.

(a) Recall that the lattice IC is generated by unions and intersections from
its set of join-irreducible elements J(/C). To prove that the union of the
maximal chains H¢ forms the join-irreducible set J(KC), we need to see
that no element, generated by unions and intersections of the elements
in U He¢, is a second lower cover for any element in J He.

Clearly, the union of two elements from |J H¢ will not create a second
lower cover for any element in |JHs. However, intersection of two
elements of | Hc needs to be carefully examined.

If the vertex sets Vi of every clique C' € C are disjoint, the intersection
of any two elements of |J H¢ is empty. Hence | H¢ is join-irreducible.

14



Since the TDAG G = (V, E) is moral and for every v € V, pa(v) =
an(v), the vertex set V¢ of every clique C' € C is ancestral in G. There-
fore, the non-empty intersection of the two vertex sets of any given two
cliques of (G, is ancestral too. This means that any of two such maximal
chains H¢, and Hg, will be of the form He, = {@1,.. ., 2, Y1, -+, Yn}
and He, = {z1,...,%1, 21, -, Zm}, Where z; < y;, z; < 2, y; £ 2 and
s Lyjfor1<i<[[1<j<mnand1<k<m.

For any two incomparable elements y; and z, such that y; N 2z, =
w, obviously w < y;,2, and w € Hg,, w € Hg,. Therefore, w €
{z1,...,2;}, and since z; < y; and z; < z it follows that w = z;, so
the set U H¢e remains join-irreducible.

(b) Let’s consider that the mapping between the poset J(K) and the TDAG
G is of the form G = (J(K), E<) where

E< = {(a,b) € J(K) x J(K)|a < b}

Let H be a maximal chain in J(K). Let ¢ € H and a € an(c), such
that then a < c¢. Let b € H and without loss of generality b < c¢. From
a < c and b < c it follows that (a,c) € E< and (b,c) € E<. Since the
TDAG G induced by E< is moral, either (a,b) € E< or (b,a) € E<,
thus @ < b or b < a. Therefore a,b,c € H are all comparable so a € H
and H is an ancestral poset.

Let C; = (W4, E1) and Cy = (Vs, Es) be two cliques created from two
maximal chains H; and H, in J(K). If the vertex sets V; and V; are
disjoint (V3 N Va = @), the graph that results from the union of these
two cliques G1p = (V3 U V,, By U Ey) is a moral TDAG. If Vi N V5 # (),
then it goes as follows. Because H; and H, were ancestral posets, V}
and V3 are ancestral in G5. Therefore, an(v) C Vi (or an(v) C V3)
and since in a TDAG pa(v) = an(v) the parent set pa(v) induces a
complete subgraph and the resulting TDAG is moral. By doing the
union of all the cliques derived from all the maximal chains in J(K) we
will obtain moral TDAG G which will determine a graphical Markov
model Ly (G) eDECNLCI.

O

Let’s consider the following mapping between a set J(K) of join-irreducible
elements of a finite distributive lattice /C, and a labeled tree 7.
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p:J(K) — T = (J(K)u {0}, EY)

The finite distributive lattice K coincides with some moral TDAG G =
(V, E), and the labeled tree T has a vertex set formed by the elements of
J(K) plus an extra vertex labeled @), that acts as the root, and the set of
edges

E= ={(a,b) € J(K)xJ(K)[b < a}U{(0,a) € {0} x J(K)| Abe J(K)b< a}

Where < is the covering relation taken over the set of join-irreducible
elements J(K). Note that there is a one to one correspondence between
J(K) and the set of vertices V from the corresponding TDAG G. From
the next three propositions it will follow that the mapping p is a bijection
between moral TDAGs and labeled trees.

Proposition 4.2. Let K be a finite distributive lattice that coincides with
some moral TDAG. The graph u(J(K)) is a labeled tree.

Proof. From lemma 4.1 we can decompose J(K) in several maximal chains
H¢. Every pu(He) is a path in p(J(K)) from the root to a leaf an viceversa.
For any of such two chains Hg, and He,, u(He,) N u(He,) is a unique path
from the root to a vertex. It follows directly that u(J(K)) has no cycles and
therefore is a labeled tree. O

Proposition 4.3. The mapping u is injective, for a finite distributive lattice
K that coincides with a moral TDAG.

Proof. Let Ky, Ko be two finite distributive lattices that coincide with two
moral TDAGs. If u(J(K1)) = u(J(K2)), then for every path h € pu(J(Ky)),
for which we can create a maximal chain H, there exists a path d € u(J(Kz)),
for which we can create a maximal chain D, such that h = d and H = D.
Since then U H = |J D, it follows that J(IC;) = J(K), and p is injective. O

Proposition 4.4. The mapping p is surjective, for a finite distributive lat-
tice IC that coincides with a moral TDAG.

Proof. Let’s consider labeled trees where the root is labeled as () and the rest
of the vertices using natural numbers {1,...,n}. From the fact that T is a
tree, there is always a unique path from the root to every of its leaves. For
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every path p of the tree T, such that p = {0, z,...,z,}, let’s take out the
root label (), and from the rest of the path {z1,...,z,} let’s build a chain H¢
such that He = {z1,{z1,22},...,{z1,...,2,}}. From lemma 4.1 we know
that the union of these chains H¢ produces a set of join-irreducible elements
J(K) corresponding to a lattice I that coincides with a moral TDAG. O

Finally, we can establish the following result.
Theorem 4.1. Moral TDAGSs coincide with labeled trees.

Proof. 1t follows directly from the fact that the mapping u is a bijection
between moral TDAGs and labeled trees. O

The bijection between moral TDAGs and labeled trees shows the way to
construct a labeled tree that corresponds uniquely to a given moral TDAG.
Let’s remark that we are not talking yet in terms of Markov models, but
just from a pure graph-theoretic perspective. To illustrate this construction,
we may find in figures 5a, 5b and 5c, the trees corresponding to the moral
TDAGs that appear on figures 3a, 3b and 4b, respectively.

(a (b) (c)

Figure 5: From left to right, trees constructed from an empty moral TDAG, a
complete moral TDAG and a moral TDAG formed by a single source-oriented
V-configuration

One of the features that distinguishes the trees from other types of graph
used in the context of graphical Markov models is that it is a connected
structure. In this sense, they are quite similar to the hasse diagrams used to
represent lattices. Thus, we may observe in between figures 3a and 5a how
a complete disconnected graph turns into a connected structure, a tree, by
using this new, artificially introduced, vertex labeled ().

The intuition behind the root node () will become clear from the Markov
property for trees. To define this formally, we need two new concepts regard-
ing trees and the following proposition.
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Proposition 4.5. Let T = (V U {0}, E) be a tree rooted at 0. Given any
two vertices u,v € V there is always at least one common vertex in the two

unique paths that lead from u and v to the root ). The minimal element is
the root of T', 0.

Proof. 1t follows directly from the fact that every vertex in a tree is reachable
from the root by a unique path. O

Given the existence of a common minimal element for every two paths
from two given vertices to the root, let’s consider the next two definitions.

Definition 4.1. Meet

Let T = (V U{0},E) be a tree rooted at 0. Let u,w € V be two vertices
inducing subtrees T, T,,, such that none of them is subtree of the other. The
meet is the first common vertex in the two unique paths from u,w to the root
0. It will be noted as py .

Definition 4.2. Meet path

Let T = (V U {0}, E) be a tree rooted at (. Let u,w € V be two vertices
inducing subtrees T,,T,, such that none of them 1is subtree of the other.
Let ¢, be their meet. The meet path is the set of vertices that forms the
common path from the meet to the root, and noted mp(pyw) = {Puw,---,0}.

As we may see, meet and meet path are intuitive concepts that follow
naturally from the definition of a tree. It is straightforward to identify the
meet in a tree for two given vertices, even if this tree is large. Finally, the
new Markov property can be introduced.

Definition 4.3. Tree conditional independence Markov property (TCIMP)
Let T = (VU{0}, E) be a tree rooted at (), a probability distribution P on X is
said to satisfy the tree conditional independence Markov property (TCIMP)
if, for every pair of vertices u,w € V inducing two subtrees T, = (U, Ey)
and T, = (W, Ew) with meet @, ., and meet path mp(puw), P satisfies

ULW | mp(puw)

This Markov property leads to the definition of the following new type of
graphical Markov model.

Definition 4.4. TCI model

Let G be a tree rooted at ). The set Tx(Q) of all probability distributions on
X that satisfy the TCIMP relative to G is called the Markov model deter-
mined by G, or more specifically, the TCI model determined by G.
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Let’s consider three TCI models determined by the trees in figure 5. By
the TCIMP the tree on (a) renders the three vertices marginally independent
11213, from the tree on (b) is not possible to read off any conditional in-
dependency, thus the set of restrictions of the model is empty and on (c) we
may see that the vertex 2 is the meet of vertices 1 and 3, thus 1.13|2. These
restrictions were already read from the TDAG models from which these trees
have been built, at the end of the previous section. Further examples are
provided by figures 6 and 7.

123
12 3 /@\ A
1 2 3 1 3
— o 1 3 ‘ 3
2 ]
5
(1,2)13 314)(1,2)  (1,2,3,4)15

Figure 6: Two different Markov models represented by a TDAG model, a
LCI model and a TCI model

In figure 6 we see the different graphical representations for two simple
models of conditional independence, with the independencies as specified. In
figure 7 we find a larger model which may help understanding the TCIMP.
For instance, if we pick the vertices 15 and 21, and apply the TCIMP, we see
that the set {15,18,19} is conditionally independent of {21, 22,23, 24} given
{2,3,14}. While if we pick the vertices 12 and 13, the TCIMP renders the
singletons {12} and {13} conditionally independent given {1,7,11}.

To show that DECNLCI coincides with TCI, we first have to investigate
the relationship between TCIMP and the well-known Markov properties. To
do this, we need some definitions first.

Definition 4.5. Moral ancestral set

Let G = (V,E) be a DAG. Given a subset A C V, A is said to be moral
ancestral iff for every vertex v € A, an(v) C A and an(v) U {v} is complete
in G.

Proposition 4.6. Let G = (V,E) be a DAG. Given two moral ancestral
subsets A, B CV, the union AU B is again moral ancestral in G.

Proof. Tt is already known that the union of ancestral sets is ancestral. Thus,
it is only necessary to find out whether the union of moral ancestral sets is
moral.
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Figure 7: Example of a TCI model for 24 variables

Let a,b,c € AU B such that a — ¢ < b. Since a,b € an(c), either
a,b,c € A or a,b,c € B, which would contradict the initial assumption that
A and B are moral ancestral. O

Proposition 4.7. Let G = (V,E) be a DAG. Given two moral ancestral
subsets A, B C 'V, the intersection A N B is again moral ancestral in G.

Proof. 1t follows directly from the fact that, the intersection of ancestral sets
is again ancestral, and since AN B C A and AN B C B then AN B should
be moral otherwise it would contradict the assumption of A, B being moral
ancestral. O

From the above propositions it follows that all the different moral ances-
tral sets contained in a DAG G = (V, E) form a ring of subsets of V', which
will be called as the moral ancestral ring of G, and noted A™(G). The moral
ancestral ring allow us to define the TCIMP in terms of DAGs.

Definition 4.6. Directed tree conditional independence Markov property
(DTCIMP)

Let G = (V, E) be a DAG, a probability distribution P on X is said to satisfy
the directed tree conditional independence Markov property (DTCIMP) if,
for every pair of moral ancestral subsets A, B € A™(G), P satisfies

AlBIANB

Theorem 4.2. Let Dx(G) be a DAG model. For any probability distribution
P on X,
DGMP = LCIMP = DTCIMP = TCIMP
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Proof. From left to right. The first implication follows from theorem 3.2.
Let A, B € A™(G). The LCIMP implies the DTCIMP if A, B € A(G), and
this follows from A™(G) C A(G).

The third implication may be proved as follows. For any pair A, B €
A™(@G), the set AU B induces a moral TDAG G 4up from G, such that it
coincides with a tree Tyug by theorem 4.1. The DTCIMP will imply the
TCIMP if for each pair of vertices a € A\B and b € B\ A, mp(p.ps) = ANB
in Ty p. This equality follows from the fact that the meet path in T4, for
any pair of vertices a € A\B and b € B\A, is formed by those vertices that
are common to A and B, therefore AN B. O

Theorem 4.3. Let G be a moral TDAG. For any probability distribution P
on X, TCIMP=DGMP. Thus, for a moral TDAG,

TCIMP & DGMP < DLMP < DPMP < LCIMP < DTCIMP

and Dx(G) = Tx(T), for some tree T that coincides the TDAG G.

Proof. By theorem 4.1, there is a unique tree 7' = (V, E) that coincides with
the moral TDAG G. For any two vertices u,w € V, that induce subtrees
T, = (U, Ey), Ty = (W, Ew), the TCIMP in T implies the DGMP in G if U
and W are separated by mp(py.) in

(GAn(UUWUmp(cpu,w )) )m = GAn(UUWUmp(tpu,w))

This equality follows since G is assumed to be moral. Now, we should find
out which set separates U and W in the graph specified on the right hand of
this equality. Let’s consider a path between any two vertices a € U and b €
W. Since U, W were induced by vertices u, w, this path will traverse at some
point the sets pa(u) and pa(w), because of transitivity. And more concretely,
this path will always traverse those vertices x € pa(u) N pa(w). The set
pa(u) N pa(w) is equivalent to the definition of meet path, hence mp(py.)
separates U, W in G an(uwump(e...))- 1T he second part of the theorem follows
from theorems 3.1 and 4.2. O

Finally, we can establish the following theorem that determines the loca-
tion of TCI models, within the family of graphical Markov models.
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Theorem 4.4. The class of TCI models coincides with the class of DECNLCIT
models.

Proof. 1t follows from the fact that Dy (G) = Tx(T), for some moral TDAG
G and some tree T', which is proved on theorem 4.3. O

5 Markov equivalence among TCI models

DAG models are organized in classes of equivalence, such that two DAG
models Dx(G;) and Dx(G2) determined by two different DAGs G and
GG, may actually infer the same model of conditional independence, hence
Dx(G:) = Dx(G2). In this context we use = to denote that two graphical
Markov models are structurally equivalent. This situation is reproduced as
well in the case of TCI models, so for two different trees 17,75, they may de-
termine the same TCI model Ty (71) = Tx(T2). We will investigate now the
notion of Markov equivalence among TCI models. First, let’s review the no-
tion of Markov equivalence for DAG models, which was given independently
by Frydenberg (1990), Verma and Pearl (1991).

Theorem 5.1. Two DAG models are Markov equivalent if and only if they
have the same skeleton and the same immoralities.

It is possible to decide Markov equivalence for TCI models by simply cre-
ating the corresponding TDAG using theorem 4.1 and applying the previous
theorem. The notion specifically for TCI models is as follows.

Theorem 5.2. Two TCI models are Markov equivalent if and only if they
have the same subsets of vertices induced from every path starting at each of
its leaves to the root ).

Proof. (Necessity). Let’s assume that two given TCI models 7" and T" are
Markov equivalent. Then, any TCIMP read from T, holds also in 7". A
TCIMP involves the vertex sets of two subtrees and the vertex set of their
meet path. If a TCIMP holds in T and in 7", then the two vertex sets of the
two subtrees and the vertex set of their meet path in 7", should be derived
also from 7.

Let u, w be two vertices of a tree T = (V, E), with meet ¢, ,, inducing
subtrees T, = (U, Ey), T, = (W, Ey) such that none of them is subtree of
the other. In order to find the meet path mp(p,,) for u,v in both trees T’
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and 7", the paths from u, v to the root must intersect in the same vertices in
T and T". Provide that this must happen for every pair of vertices in 7" and
T’, it follows that the only way that the intersections of all the paths are to
be the same in 7" and 7", is when all paths from the leaves to the root @ in
T and 7" involve the same subsets of vertices.

(Sufficiency). Let’s assume that two given TCI models 7" and 7" have the
same subsets of vertices induced from every path from each of its leaves to
the root (). This implies that every possible meet path from any given two
subtrees, in T must exist in T”. Because, if there would be a meet path that
differs in at least one vertex for T" and T”, there would be subsets of vertices
from one or more leaves to the root () that differ in 7" and 7”. Therefore,
if every meet path for any two given subtrees in 7" and 7", exists in 7" and
T', it follows from the TCIMP that the collection of Markov properties of T
hold also in 7". O

In order to illustrate the notion of Markov equivalence among trees, let’s
look at figure 8. The pairs of trees on part (a) are Markov equivalent because
although two vertices are swapped for every pair, the paths from the leaves
to the root remain the same. The two trees on part (b) are not Markov
equivalent because given the swap of vertices 2 and 4, although it does not
change the paths from vertices 5 and 6 to the root ), it does it from vertex
3 to the root 0.

T VANERAN “\ |
VARV L
/N /N L VANEVAN
VANRVAN VANVAN
(a) (b)

Figure 8: Markov equivalence between TCI models. The two pairs on (a)
are Markov equivalent, while the pair on (b) is not.

5.1 How many different Markov models

The notion of Markov equivalence uncovers the fact that two graphical Markov
models determined by two different graphs, represent the same model of
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conditional independence. Very often, model selection on graphical Markov
models is carried out over the space of graphs that determine the type of
graphical Markov model we are selecting. While the number of different
graphs that determine certain class of Markov models, provides an estima-
tion of the hardness of selecting a good set of models, the expressive power of
a given class of graphical Markov models may be quantified by the number of
different models of conditional independence that we can represent using this
class. When the equivalence class of a given type of graphical Markov mod-
els has a precise graphical definition, one may use standard tools of graph
theory and graphical enumeration to count how many models of conditional
independence may be represented.

The most straightforward case is that of UDG models, which are rep-
resented by undirected graphs, since there is a one to one correspondence
between undirected graphs and models of conditional independence. Two
UDG models Uy (G1), Uy (Gy) are Markov equivalent, Uy (G1) = Ux(Gs),
iff G; = G5. Thus, there is the same number of different models of conditional
independence, as different undirected graphs, i.e., 2(3).

The case of DEC models is also straightforward, since chordal graphs also
have a one to one correspondence with Markov equivalence classes. Their
enumeration is slightly more difficult and it will be treated in this section,
firstly since it is related to the enumeration of Markov equivalence classes of
TCI models and secondly DEC models have not been counted yet*.

The case of DAG models is a difficult one. Markov equivalence classes
of DAG models are represented by essential graphs (Andersson, Madigan, &
Perlman, 1997), which are partially directed acyclic graphs. An efficient way
of enumerating such graphs is not yet known, and they have been counted
only up to five vertices. For comparison, in table 2 their number is given
together with those of DEC and TCI models.

The enumeration of Markov equivalence classes of TCI models, provides
insight into their nature such that, afterwards, it will be easy to devise a
canonical representation for a given equivalence class of TCI models.

The basic mathematical tool used in enumeration of graphs is that of
generating functions. A generating function is a power series. The coefficients
of the polynomial that forms these power series store the counts of the object
we intend to enumerate. The exponents of this polynomial describe some
structural feature associated to its attached coefficient, as for instance, the

4to the best knowledge of the authors
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number of vertices of a graph. In the case of labeled enumeration, one uses
an exponential generating function as the one in (1). For full insight into this
subject the reader should consult the book of Harary and Palmer (1973).

oe) = X'y (1)

Let g(x) be the generating function for connected labeled chordal graphs.
Then a,, corresponds to the number of such graphs with n vertices. Let’s
consider now another exponential generating function to count, not only
connected labeled chordal graphs, but all of them.
x'fl
Gl@) = X A7y @)
In this generating function, the coefficients A, equal the number of all
chordal graphs with n vertices, which correspond to the number of Markov
equivalence classes of DEC models. These two exponential generating func-
tions are related through the following theorem.

Theorem 5.3. Harary and Palmer (1973, p. 8)
The exponential generating functions G(x) and g(x) for labeled graphs and
labeled connected graphs come to terms in the following relation

1+ G(z) = 5@

Where the constant 1 refers to the null graph, i.e. the graph with no
vertices. In the way we have expressed the generating function G(X), the
constant 1 is included in G(X) since n starts on 0 vertices. In such case
one may remove the constant 1 of the previous expression. As we shall see
now, by differenciating the previous equation and equating coefficients, it
is possible to find a recurrence for both the number of all labeled chordal
graphs A,, and labeled connected chordal graphs a,. First, g(z) is isolated,
by taking logarithms on both sides, and afterwards we can differenciate the
equation, which leads to the following form.

Ap n—1 [e%9)

00 An
n=0 " p = Zna_"x"_l
n=0 n! n=1 :

The polynomial at the right-hand side of the equation should be multi-
plied by the polynomial at the bottom-left of the equation.
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—~ An .1 (v a1 Ank \ n
Enn!x _g(g(k—f_l)(k—kl)!(n—k)!)x

In order to equate coefficients, the exponents of both polynomials should
match. Therefore we are going to shift the running indexes on the right-hand
side of the equation. First, the index k£ of the inner sum, and after the index
n. Further, the first term of the sum in the left-hand side may be discarded
since it cancels for n = 0.

o0 An . o /n+l ag An—|—1—k
T aen — fo——__TnhmimR n
S =2 (S k)

gt 35 (30 Anck ) o
Soinar = 5 (S hgh sty ) -

We can now equate coefficients, and for our purposes, we will write out
of the sum the term for £ = n. In this term, we can substitute afterwards
Ap = 1 since the null-graph is unique.

An (07%) AO s Qg An—k:
In_ 0 Rl
R TIMD DL Y a1

Finally, by multiplying the whole expression by n! and dividing it by n,
we obtain the recurrence for all the chordal graphs for n vertices.

A, —a,+ % (; K (Z) akAn_k> (3)

Wormald (1985) provides the numbers a,, for labeled connected chordal
graphs, thus by using these and the formula 3, we obtain the numbers of all
labeled chordal graphs; which equals to the number of Markov equivalence
classes of DEC models, of table 1.

Next we count the Markov equivalence classes of TCI models. Andersson,
Madigan, Perlman, and Triggs (1997) characterized these models as those
DEC models Ux(G) determined by a chordal graph G such that G' does not
contain the following induced undirected subgraph,
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8

61

822

18154

617675

30888596
2192816760
215488096587 | 10
28791414081916 | 11
5165908492061926 | 12

W00~ U WS

Table 1: Number of Markov equivalence classes of DEC models

which is a path on four vertices. In the graph theory literature Golumbic
(1978) characterized in such way these graphs and called them P;-free chordal
graphs. From this characterization Wormald and Castelo (2000) derived the
following two propositions.

Proposition 5.1. Wormald and Castelo (2000)
Let G be a connected Py-free chordal graph. Let G have more than one clique.
The intersection of all the cliques of G is non-empty.

Proposition 5.2. Wormald and Castelo (2000)

Let G = (V, E) be a connected Py-free chordal graph, such that G is not com-
plete. Let D C 'V be the non-empty set of vertices that form the intersection
of all the cliques of G. Let G' = (V', E") be the graph that results of removing
the set of vertices D fromV in G, thus V' = V\D and E' = EN{V'xV'}. G’
will consist of a number of k components which are again connected P,-free
chordal graphs and k > 1, i.e. G' will be disconnected.

These two propositions allowed the authors in (Wormald & Castelo, 2000)
to enumerate P,-free chordal graphs, which in our context, correspond to
Markov equivalence classes of TCI models. In particular, Wormald and
Castelo (2000) provide the following recurrence for connected Py-free chordal
graphs.

4 =1+ nf (Z) (Apeie — an_g)

In this recurrence, the term A, _j, refers to the number of all P;-free
chordal graphs. As shown in (Wormald & Castelo, 2000), since the generating
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functions for P,-free chordal graphs are the same as for chordal graphs, A, &
can be computed using the recurrence in 3. We may see in table 2 the
numbers for connected P,-free chordal graphs (a,) and all P,-free chordal

graphs (A4,). The latter A,, corresponds to Markov equivalence classes of
TCI models.

an A, | n

1 I 1

1 2| 2

4 8| 3

23 49| 4

181 02| 5

1812 444 | 6
22037 51515 | 7 essential graph__UDG_DEC_DECNLCL (TCD) | n
315569 750348 | 8 1T T
5201602 12537204 | 9 s 2 o 2| 2
97009833 | 236424087 | 10 noo8 8 8|3
2019669961 | 4967735806 | 11 185 64 61 49 | 4
46432870222 | 115102258660 | 12 8782 1024 822 402 | 5

Table 2: On the left: counts of A,, correspond to the number of Markov equiv-
alence classes of TCI models. On the right: comparison of Markov equiva-
lence classes of DAGs (essential graphs), UDGs, DECs and TCIs (DECNLCI)

Hence, TCI models may be defined as those graphical Markov models
determined by P,-free chordal graphs. From the characterization presented in
the previous section of moral TDAGs as trees, it follows as well that there are
(n+1)""! different moral TDAGs on n vertices. As it has been already said,
these quantities on different graphs may serve to quantify, roughly, hardness
of model selection and expressiveness of the graphical Markov model. Thus,
it may be interesting to look at the plot of the cardinalities of the different
graphs that determine in several forms different types of graphical Markov
models, that we may find in figure 9.

5.2 A canonical representation of an equivalence class
of TCI models

The P,-free chordal graph characterization of TCI models suggests a canon-
ical representation of Markov equivalence classes of TCI models. This rep-
resentation will have again the form of a tree, but its nodes will contain,
possibly, more than one single vertex (i.e. more than one single random vari-
able). First we show how the cliques of a connected P,-free chordal graph
lead to a tree organization of their intersections. This allows a representation
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Figure 9: Cardinalities of the types of graphs that determine the different
subclasses of chain graph Markov models

for the canonical element of an equivalence class of TCI models. Finally, it
will be shown how to extract all the members of the equivalence class, from
this canonical representation.

By proposition 5.1 a connected P,-free chordal graph containing more
than one clique has a non-empty subset of vertices D which correspond to
the intersection of all cliques of the graph. By proposition 5.2 the resulting
graph of the removal of D, will consist of £ > 1 disconnected components
that are again P,-free chordal graphs. Let’s repeat the previous operation
recursively until no disconnected component contains more than one clique.
At each step of this operation, we will keep track of the different intersecting
sets, and we will draw undirected edges from a given intersecting set, to
those intersecting sets formed upon the disconnected components that were
created. It follows directly, that such an undirected structure cannot have
undirected cycles, thus has the form of a tree. In figure 10b we may see the
P,-free chordal graph corresponding to the TCI model of figure 10a, which
corresponds to one of the branches of the TCI model of figure 7. In figure
10c we may see a first step of the procedure we just described, and in 10d we
may see the second and last step, from which we already obtain the canonical
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representation.
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Figure 10: On (a) a TCI model. In (b) its corresponding P-free chordal
graph. In (c) and (d) the two steps to obtain the canonical form of the
equivalence class

In graph-theoretic terms, the canonical representation of a TCI model,
as for instance the one in figure 10d, corresponds to homeomorphically irre-
ducible trees (Harary & Palmer, 1973). Homeomorphically irreducible trees
are those trees in which no vertex has degree of adjacency equal to two.

In order to find the members of the equivalence class, one only needs to
perform all possible permutations on those nodes of the canonical element
that contain more than one vertex, and build a path for a given permuta-
tion, on which the vertices on the extremes of the path will connect to the
adjacent nodes in the canonical element. For a given TCI model with more
than one branch hanging from the root () one just applies all this process to
each of the branches separately, and hang the top roots (the first intersection
set removed) from the root (). For a given canonical element with sy, ..., sk
nodes that contain more than one vertex, the amount of trees on that equiv-
alence class will amount to [s1]!...|sg|!. The reason is obvious since it just
corresponds to the number of possible permutations of those nodes that may
be exchangeable on the tree.
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6 Discussion

In this paper a new class of graphical Markov models, called TCI models,
determined by labeled trees has been introduced. It is shown that the class
of TCI models coincides with the intersection class of DECNLCI. Moreover,
a new Markov property, specific for trees, is introduced, and its relationship
with the other Markov properties, is investigated.

We have also studied the notion of Markov equivalence among TCI mod-
els, which is based on a new concept also introduced in this paper: the
concept of a meet of two subtrees, and their meet path. The one-to-one cor-
respondence between Markov equivalence classes of TCI models and Py-free
chordal graphs, allowed the computation of the number of different Markov
models contained in DECNLCI. In this way, we could compare the cardinal-
ities of all the different subclasses of chain graph —-CG Markov models. Par-
ticular properties of P,-free chordal graphs have lead to devise a canonical
representation of an equivalence class of TCI models. This canonical repre-
sentation also shows the correspondence between P,-free chordal graphs and
homeomorphically irreducible trees. Moreover, from theorem 4.1 it follows
that there are (n + 1)"~' moral TDAGs on n vertices. These last two facts
are interesting graph-theoretic results in its own right, and possibly could
have some consequence, in our context, from a model selection perspective.

TCI models complete the scene of possible formalisms for conditional
independence within the superclass of CG Markov models. Their expres-
siveness is smaller than any other subclass of CG Markov models, but in
turn, they provide much more clarity of representation. Also the graphical
structure is very close to the Markov properties represented as a graphical
Markov model. This is because of the correspondence between such an intu-
itive concept as the meet path with a conditioning set, and a subtree with a
separated set in the TCI model.

Andersson et al. (1995, p. 38) claimed that since every conditional inde-
pendence statement A1 B|C' is equivalent to a simple LCI model, then any
DAG model is the intersection of all LCI models that contain it. We can see
further that every conditional independence statement A1 B|C' is equivalent
to a simple TCI model, therefore any DAG model is the intersection of all
TCI models that contain it. A remaining question is how TCI models can

be combined graphically to determine the DAG structure of the intersection
of TCI models.
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