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1. Introduction.

Much of the classical work on epidemiological models has been restricted to
situations where the affected population is of constant size. This assumption is
relatively valid for diseases of short duration with limited effects on mortality.
However, it clearly fails to hold for diseases that are endemic in communities with
changing populations, and for diseases which raise the mortality rate
substantially. Well known examples of such diseases are malaria in developing
countries with growing populations, and the current AIDS pandemic. In such
situations, the effects of the disease induced mortality and of the change in
population size are far from negligible, and in fact, may have a crucial influence
on whether or not the disease can reach epidemic levels. In recent years there have
been a number of studies on disease transmission models in populations of varying
size, and some of these have given a complete global analysis of the model
equations. We will discuss the relation between this past work and our present
results later, and here only briefly note the work that is related to ours. In
Busenberg, Cooke and Pozio (1983) a complete global analysis is given for an
S+1-95 model of avertically transmitted disease in a population of varying
size. Partial results on a similar model are obtained in Anderson and May (1979,
1981). Jacquez et al (1988), May, Anderson and McLean (1989) and Busenberg, Cooke
and Thieme (1989) study S-I-+R models in populations with varying size. The
work that is most closely related to the present is the study of an S+ I-R=S§
model by Mena—Lorca (1988). We have only mentioned models that use ordinary
differential equation formulations as we shall do here.

Qur main result, which we present and discuss in the next section, gives a

complete global stability analysis foran S-I-+R-=+ S model with vital dynamics



effects of this coupling are not present in models where the population is assumed
to remain constant, and this hypothesis can cause some important epidemiological
effects to be missed. In section 3 we give the details of the proof of our main
result. We also give an argument which establishes the global stability of the
endemic equilibrium for the model studied by May et al (1989). The proof of our
main theorem relies on a new result that allows us to establish the non—existence
of periodic solutions. We provide the proof of this result in our final section 4,

and give applications to other disease transmission models.



2.  The Hodel and Hain Results.

In deriving our model equations, we divide the population into three classes,
the susceptible, the infective and the recovered (removed) individuals with total
numbers respectively denoted by S, I and R. We set N=§+ I +R, and use the

following notation

b= per capita birth rate, assumed to be positive,

d = per capita disease free death rate,

€ = excess per capita death rate of infected individuals,

§ = excess per capita death rate of recovered individuals,

c= per capita recovery rate of infected individuals,

e= per capita loss of immmnity rate of recovered individuals,

A = effective per capita contact rate of infective individuals.

We assume that each infective individual comes into contact with an average number
C of other individuals per unit time. Hence, the total number of contacts per unit
time by infectives is CI, and of these, a proportion S/(S+I+R) is with
susceptibles. We assume that a proportion p of the contacts between an infected
and a susceptible individual are effective in transmitting the disease. Thus the
rate at which susceptibles become infected is
S IS

Pl T5R=4 %>

where 1 =pC. Thus the "force of infection" term that we use is 1I/N, and is of the

proportionate mixing type introduced by Nold (1980).
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derivative d/dt is denoted by ‘:



S* = bN—dS— 4 SI/N + eR, (2.1)
I’ = —(d+e+c)I + A SI/N, (2.2)
R’ = ~(d+6+e)R + cI. (2.3)

The equation for the total population N is obtained by adding (2.1)—(2.8):
N’ = (b-d)N — €I — 4R. (2.4)

All the parameters in this model are non—negative, and ve are interested in
solutions which are also non—negative, It is a simple matter to show that the model
equations (2.1)—(2.3) are well-posed in the sense that the initial data for
(S,I,R) which are non-negative lead to solutions which are defined for all time
t 2 0 and remain non—negative.

We are interested in studying this model in situations where the population
N(t) is not stationary. We note that N(t) can remain constant only if the

following special restriction on the model parameters holds:

E_i_ij__"_f. [e(d+e+6)+éc] = e¢(d+e+d) + bc - (b—d) (c+d+e+d). (2.5)

Special cases of this model with condition (2.5) holding have been studied
already. For example, Hethcote (1976) studies the case with b=d, e= § = 0 which
makes (2.5) hold, and obtains the threshold criterion 4/(c+d) > 1 for an endemic
state to hold in a constant size population, (see Hethcote (1976) and references

therein for earlier work). As we shall soon see, the more general case that we



treat here is considerably more intricate. Mena—Lorca (1988) considers the case
with § =0, and shows that the line of equilibria which exists when (2.6) holds is
neutrally stable.

Generally, (2.5) is not satisfied and N(t) is not constant, which is the case
we consider here. In such situations, it is often necessary to consider the

proportions of individuals in the three epidemiological classes, namely

s=S/N, i=I/N and r=R/N. (2.6)
The feasibility region becomes

P={s20,i20,r20,8+i+r=1}, (2.7)

and ve define 2= 9 - {(1,0,0)}.

There are two distinct ways of considering a disease as being brought under
control in a population of increasing or decreasing total size. The stricter way
requires that the total number of infectives I(t) - 0, while a weaker requirement
is that the proportion i(t) -+ 0. This distinction is discussed in some detail in
Busenberg et al (1989). Thus, we seek conditions for the existence and stability
of the endemic proportion steady state (s*,i*,r*) with i* > 0 and for the
stability of the disease—free steady state (s,i,r)=(1,0,0). The following are

the pertinent threshold parameters:

. A .
Jg if Ry <1 Ja-a-_;-e-lfﬂ.lS1
R, =

L = DFCHE 0 D .~ B, 1 ’ P 1 & (2-8)
% 1T > 8 .
ld+ei wr 1 lc—:a:? if B> 1.
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Ve now state our main result.

Theorem 2.1.  (Conssder the epidemsological model (2.1), (2.2), (2.3) with b> 0

and all other paramelers non—negative. Then

(a)

(b)

(c)

(d)

The discase free equilibrium proportion (s,i,r)=(1,0,0) elways
exists, and s3 globally asymptotically stable sn the feasibslitly region
D whenever R1 <1, and it ss unsiable vhen R,1 >1.

Fhen R1 >1, there exisls ¢ unique endemsic proportion equslsbrium
(8,1,0) = (s 51 ,r ) with i >0, r >0, ubich is globally

asymptolically slable in .@0

The total population N(t) has the asymptotsc behavior N(t) -0 if

Ry <1, end N(t) 2o if By > 1.
Khen R0> 1, the total infected population has the asymptotic behavior
I(t) -0 if Ry <1, and I(t) o f Ry > 1.

The proof of this result will be given in the next two sections, and we now

discuss its epidemiological implications. First, we present our results in

tabular form.

Ry Ry Ry N~ (s,i,r)~ (S,I,R)-
<1 <1 <1(a) 0 (*1 ,0*,0)* (0,0,0)
<1 >1 <1(a) 0 8 ,i ,r ) g0,0,0

>1 <1 <1 & 1,0,0} 0,0,0

1 | <1 |>1 w 1,0,0) (w0 c0)
>1 >1 > 1(3) o (S s1 T ) (m,m,m)

Table 2.1. Threshold Criteria and Asymptotic Behavior
Note: (a) means that, given Ry, Ry, this condition is automatically

satisfied.



The threshold parameter B,1 governs whether or not an endemic proportion can exist
and be globally stable. R1 = A/(b+c+e), can be viewed as measuring the relative
strength of the transmission of the disease via contacts versus the dilution of the
infective proportion either through recovery, or through excess death, or else
through the increase of the disease-free population via births. The threshold
parameter B’O is the basic reproduction rate of the population and has two
different values depending on whether or not the excess death rate of the disease
is of import. When R’l <1, RG = b/d and represents the net reproduction rate in a
disease free population. When R >1, R’O = b/(d+ei*+6r*) and is the net
reproduction rate of the population when the excess death rates due to the
significant presence of the disease are taken into account. The threshold Ry also
has two distinct forms. When R’l <1, R2 = A/(c+d+¢) and equals the net
reproduction rate of the infective population, since additions to the infectives
come only via the transmission of the disease and removals occur via both death and
recovery. When R, > 1, then R, = .ls*/(c+d+e) = J(l—i*—r*)/(c+d+e) , which differs
from the previous formo RQ cause the contacts between infectives and the
nonsusceptible portion of the population, which do not lead to additional
infectives, are removed from the numerator of R2 . Note that the two forms of B‘O
and H‘Z are seen to coincide when we observe that (s*,i*,r*) -+(1,0,0) as By 1.

| The dependence of R.1 on the model parameters is clear, and when R’l <1,s01is
the beha.vior of R’O and R2 . However, when R1 > 1, both RO and R2 are affected by
the values of the endemic proportions, and their behavior as R,1 increases is more

complicated.



The fact that the thresholds RO, R’l R H,2 represent basic reproduction rates
follows from the following argument, which we give only for the case of R, when
R’l > 1. Suppose that IG nev infectives are introduced at time t=0 in a steady
state population (s*,i*,r*) with Ry > 1. These infectives have probability

e“(cil'd"'f)t of remaining in the infective class until time t, and produce new

—(c+d+e)t I, ¥

infectives at the rate le . The total number of these new infectives

- *
produced by this one individual is Ior le (c+dre)t s dt= B.2 IO' Hence R2 is
0

the basic reproduction rate of the disease in this case. An alternate
interpretation of these types of threshold parameters as "elimination efforts" is
given and discussed in Dietz and Hadeler (1988).

A basic aspect of our results is that, in an increasing population, the
proportion of infectives i can tend to zero while the total number of infectives
is increasing (see the case Ry>1, Ry <1, Ry >1 inTable 2.1). Alternately, ina
decreasing population, the proportion of infectives may tend to a positive endemic
value i* > 0, while the total number of infectives is tending to zero (see the case
Ry<1,By>1, Ry <1 in Table 2.1). Thus, in an increasing populat
the two distinct notions of eradicating the disease which we stated earlier are
indeed possible. In fact, in order to achieve a total eradication (I(t) - 0) when
By>1,both A<b+c+e (R €1) and A<c+d+e (Rg <1) are needed, while the
proportion of infectives can be driven to zero (i(t) - 0) by only requiring the
condition A ¢brc+e (R <1).

We note that for the special case ¢ = §, that is when the excess death rate is

the same for infectives and removeds, the unique endemic equilibrium for R.1 >1,

can be found explicitly. We have



5 = (b+c)/(I—€), i +r*=1—(b+c)/(A~—e),
(2.9)
r*= c(A—(b+c+e))
a(Dtcte) — ce ’
This gives, in the case B.1 >1,
b(A-

By =ao=7= E(J-e-)(b+c+e)) ’ (2.10)

and
A(b+ .
Ry = (c+ﬂ£e)c(:,)l—e) (2.11)

The effects of the excess mortality ¢ on the threshold parameter R.2 is
interesting to note. From (2.11) we see that, for 1> 0, R2 starts at the value
(b+c)/(c+d) when e=0. Then, if 1> c +d, By decreases to the value

4} (b+c)/(c+d+,l)2 which is attained at ¢ =é— (A—c—d), and then increases to
A/(c+d+e) as ¢ approaches J — (b+c). Thus, in an increasing population, as the
excess mortality €= § increases, there are possible conditions under which R2
may also increase.

When this special condition € =4 does not hold, r* can be obtained as the
solution of the quadratic equation (3.10) below and, hence, i* is explicitly
solvable from (3.9). These expressions are, however, quite complicated and do not
yield expressions for R‘O and R1 that have simple explanations.

Qur results give the complete global behavior of the model and rule out any

possibility of the existence of periodic or other more complicated solutions. The

leave open the question of what actually happens when the initial data are not near
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the equilibrium values. Similar complete global results in epidemic models with
non—constant populations are obtained in Busenberg et al. (1983). In Mena-Lorca
(1988), a special case of our model with §=0 is studied, but the global behavior
of the endemic proportion equilibrium (s*,i*,r*) is not treated. This question
is settled by taking 6§ =0 in Theorem2.1. We shall also give a proof of the global
stability of the endemic equilibrium for the model treated by May et al (1989).
This question was left open in that paper.

Finally, we mention two less closely related models of AIDS which are of the
5-1 type. The first by Jacquez et al {(1988) can be obtained from ours by setting
e =¢ =0 and using a force of infection term of the form AI/(S+I) instead of
A1/(5+I+R), and a constant birth term b instead of bN. These authors give a
global stability analysis which involves the single parameter 1/(c+d).
Castillo~Chavez et al (1989), analyze a similar model for AIDS with a force of
infection term of the form AC(I+S)SI/(I+S), where C is a functionof I +S. They
provide a complete global analysis involving a threshold parameter which
generalizes the simpler one A/(c+d). They also discuss this model in a version
that allows a fraction of the susceptibles to not go into the AIDS class. The
threshold 1/(c+d), which corresponds to our threshold R’l when ¢ =0, also occurs

in the constant population S5-I +R model studied by Hethcote (1976).



11.

3. Analysis of the Hodel Equations.
When the proportions s, i, r given by (2.6) are used as the independent

variables, the system (2.1)—(2.3) becomes

8’= b—bs +er— (l—¢)si + fsr, (3.1)
i’ = —(btcee)i + Asi + i + fir, (3.2)
r’ = —(bte+f)r +ci+€ir + 52, (3.3)

We introduce the parameter
r=b+c+te,

which gives the expression B‘l = A/7 for the endemic threshold. We start our
analysis with a basic result concerning the non-existence of certain types of
solutions. Recall that (see Hahn (1967)), a closed curve connecting several
equilibrium points whose segments between successive equilibria are solution
orbits of a differential equation system is called a phase polygon. A phase

polygon whose sides are solutions traversed in the same sense will be called an

oriented phase polygon.

Lesma 3.1. The model system (3.1)—(8.3) has no periodic solutions, homoclinic

loops, or orsented phase polygons inside the invarsen! region 9.

Proof: 0Qur proof is based on the following result which includes the well-known

Dulac criterion as a special case; the proof is given in section 4. Let

g(s,i,r) = {gl(s,l,r), gy{s,i,r), gs(.s,l,r)] be a vec
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smooth on &, and which satisfies the conditions
g-£f=0 and (curlg) - (1,1,1)<0 on &= 9-i 9,

where ¢ is the boundary of 2, and where f = (f1 ,f2 ,f3) is a Lipschitz
continuous field on 9. Then the differential equation system s’ = fl , 17 = f2,

r’'= f3, has no periodic solutions, homoclinic loops, or oriented phase polygons in

L.
Let £, f,, 3 denote the right hand side of (3.1), (3.2) and (3.3),

respectively, and use the relation s +1i+r=1 to rewrite these in the equivalent

forms:

£,(8,i) =b + e - (bre=8)s —ei + (c—b—f)si — b’

fi(s,r) =b—(b+l+e)s +er+ (A+6—€)sr + (,l—-e)'ei2

fg(s,i) = —(btcte—§)i + (I-6)si + (E—J)i?
fz(i ,x) =—(btcte—A)i + (§-A)ir + (6-—))12

f3(s,r) =c —cs — (bte+f+c—€)r — €sT + (5—e)r2

fa(i,r) =—(bte+d)r + ci + eir + ir”

Let g= g1 + g2 + g3 with

i) - [0, —f3§i,r) ’ f2(i;r)} o) - [fs(:;r) " —f1(:;r)} ,

(3.4)

[ f,(8,i) f,(8,i) ]
3/ 2 1
g (8,1) = {" rE 5T OJ-
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Clearly, g-f=0 on 4, since the alternate forms of f1 R f2 and f3 are all

equivalent on . A few computations yield the expression

. 2 ' 9
curl g(s,i,r) - (1,1,1) __csi+br 2+?l?r1 +er ,
s“r

which is negative on 9P. From Corollary 4.2 of the next section, there are no
solutions of the stated type in 4. The invariance of the region @ is easily
obtained by noting that the field f given by the right hand side of (3.1)—(3.3),
when evaluated on the boundary 4 @ of 9, never points towards the exterior of

9. Also, since 8’(0,i,r) =b> 0, the boundary ¢ 9 is not a phase polygon for the
system. Thus, there are no solutions of the stated type in P= P UIPD , and the

proof of the lemma is completed. g

Qur next result concerns the existence and stability of the disease free

equilibrium.

Lemma 3.2. The system (3.1)—(3.8) always has the disease free equilibrium (DFE),
namely (s,i,r) =(1,0,0). This equilibrium is globally asymptotically stable in
F (GAS9) if Rl 1, and unstable if R1 >1. Fhesn R.1 €1, the only equilibrium in
@ is DFE.

Proof: Using the relation s=1—1i~r in (3.2) we get

i* = 7(R-1)i - (Ry7-¢)i% - (Ry1~6) ir, (3.5)
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which, together with (3.3), forms a system in the i,r planar region .251 ={i2>0,
r>0,1i+r<1}. Fromthe equilibrium conditions 8’ =i’ =r’ =0, wve see that
i=0 implies r=0, hence, s =1. Thus the DFE always exists. Note that we also
get the equilibriumwith (i,r) = (0, (bte+6)/§) which is alvays outside 2. The

local stability of the DFE is governed by the matrix

0 I 0 (3.6)

b A€ A-e-4
0 ¢ ~(bre+d)]

with eigenvalues {—b, 7(R.1-1) R -(b+e+6)}. Thus, DFE is locally asymptotically
stable (LAS) if Ry <1, and unstable when Ry >1.
: Kk
We next rule out the possibility of an endemic equilibrium (s ,i,r) in @
* *
with i >0, hence, s € (0,1). From (3.1), if 8’ =0, then
(A-€)si =b(1-8) + er + §rs, (8.7)

and from (3.5) if i’=0 and i#0, we get

7(1-Ry) + (A=€)i + (J=6)r=0, (3.8)

where ve have used the relation Ry7=4. Multiplying (3.8) by s and substituting

the expression for (A—€)si given by (3.7) we obtain
7(1-Ry)s + drs + b(1-s) +er=0,

which cannot hold when R < 1,8€(0,1) and r2 0, since b> 0. Thus, the DFE is

the unique equilibrium solution in & when R’l <1.
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For Rl <1, the DFE is locally asymptotically stable, and by the
Poincaré-Bendixson theorem applied to the system (3.3) and (3.5) on 9, , any
periodic solution in % must enclose a critical point, which we have shown cannot
exist when Ry <1. Since (i,r) = (0,0) is the only critical point in the invariant
region 4, it attracts all orbits which start in 4. From (3.1), when
(i(t), r(t)) = (0,0), s(t) + 1, thus the DFE is GAS#. When R; =1, the above
argument again shows that all solutions in 2 tend to (0,0), however, (0,0) is
only a neutrally stable critical point of the system (3.3) and (3.5) , thus a
homoclinic orbit containing (0,0) may occur. However, by Lemma 3.1 such an orbit
is impossible, and (i(t), r(t)) - (0,0), hence, (s(t), i(t), r(t)) +DFE, in this

case also. g

Remark: When R’l <1 and € > §, the function V=1 can be used as a Lyapunov
function in 9 to also prove, via the Lasalle invariance principle, that DFE is

GAS 2.
Our next result deals with the existence and stability of the endemic equilibrium.

Lemma 3.3. Fhen Ry > 1, the system (3.1)—(8.3) has a unique endemic equilibrium
"
(s"i",r") in @ which is GAS in 2, (GAS ).

Proof: The region 2 of the system (8.3) and (8.5) is invariant, and for By > 1,
the equilibrium point (0,0) is unstable. Thus, by the Poincaré-Bendixson
theorem, there must exist at least one equilibrium inside .@1 , consequently, at

least one DFE in 90.
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The uniqueness of the endemic equilibrium is obtained in two steps. For
R.1 > 1, at an endemic equilibrium, (3.8) must hold. From (3.3), when r’ =0 we also
get
—(bte+d)r + ci + €ir + 6r2=0, (8.9)

which is (one branch of) a hyperbola. When i is eliminated from (3.8) and (3.9),

the resulting equation for € # § is a quadratic in r, namely
r2A(6—e) + r[-A(b+cte+d—e) + e(e—c+d—¢) + cd] + c(h—(btcte)) = 0. (3.10)

When €> § la.nd B’l > 1, the signs of the terms easily show that there is at most one
positive root r> (. When ¢ =4, the r isocline reduces to a linear equation,
giving this same conclusion.

When § > ¢, the signs show there must be two positive roots, and we use the
following argument. In all cases, we have a simple root at (0,0), one at
(0,(b+e+6) /) which is outside 2, and one inside 4, . Thus, there remains only
one other simple root of the system (3.8)—(3.9) which we shall now show cannot be in
.@1 . Already we have shown this to be the case when ¢ ) §, hence, as § increases, a
simple root can enter 2 only if the system (3.8)—(3.9) has aroot on 4.9, for
some value of §> ¢. However, when i=0, (3.9) does not vanish for r € (0,1]; and
when r=0, (3.8) and (3.9) yield the impossible condition y(Ry—1) =0 (recall
that Ry >1). Finally, for i+r=1, ve mltiply (3.8) by i and add it to (3.9) to
obtain, after some cancellations, the expression: —e(1-i) -b< 0, for 0<i<1.
Thus, (3.8)—(3.9) has no roots on @#, when Ry >1, and the uniqueness of the

endemic equilibrium is established.

WUn mav atn
W< |1
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8’ +1i’ +1’ =0), we only need to consider the planar system (3.3) and (3.5) for i

® K
and r in .@1. The stability of the equilibrium (i ,r ) is governed by the matrix

* *
—(Ryr-€)i  —(Rr-9)i

A= . (8.11)
* * *
C + €r —(bte+8) +€i +26r

* ok *
The (2,2) entry can also be written (by using (3.9)) as —i /r +4r . So when
§ =0, the matrix is in fact sign-stable. For §> 0, we compute

* ok k%
Trace A=—(1—€)i —ci /r +ér . But from (3.7) at equilibrium,

ES
*
g = b + gr L <1,
b + (A-€)i - ér
* K * *[cq* *
so Trace A<—i /r —er <0. Also, det A=i |S5 (J—€) + (A=6)c + A(e=b)r

r
which is positive if ¢ > §. (Recall that R1 >1 implies 1> €). For € < §, we have

* .
*| 1 ;
Thus det A> i | S5 (A—€) + 1’%5— 6c] . Substituting from (3.8) for (A-—-e)i*, gives
r 1
LT Loood

det A> i*c(,\—-’y) (1—1'*) >0.
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The above inequalities show that (i*,r*) is LAS. But s =1- i* - r*, 80 the
endemic equilibrium is LAS.

Finally, all solutions must, by the Poincaré-Bendixson theorem and by Lemma
3.1, tend to the endemic equilibrium, which is hence globally asymptotically
stable in 90 -

We now address the asymptotic behavior of the total population. From (2.4) we

obtain as t - w,

(b—d), if By <1
N’ = N(b—d-ei-ér) — . x (3.12)
N[b-d~(ei +6r )], if Ry > 1.

Recalling the definition of R’O , this immediately yields the following threshold

result.

Lemma 3.4. The totel population N(t) for the sysiem (2.1)—(2.3) decreases to zero
i f R‘O <1 end increases o w if B‘O >1 a3 t+w. The asymplotic rate of decrease
or increase i3 d(RO-i) when R1 <1, and the asymptotic rate of increase is

(dvei'+or') (Ry-1) if By>1.

The behavior of the actual number of infectives is given by (2.2). As t- w,

I’ + I(c+d+e) (Ry=1) , vhere Ry is given in (2.8), and ve have the following result.

Lemma 3.5. The total number of infectives 1(t) for the model system (2.1)—(2.3)
decreases sf R2 <1 and increases if R2 >1. The asymplotic rate of decrease or

increase is given by (cvd+e)(Ry-1).
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We note that, when R1 >1, and (s*,i*,r*) exists, then B,2 >1 if and only if
R‘O > 1. But, vwhen Rl <1 then R’O >1 puts no restriction on R2 Theorem 2.1 and
Table 2.1 summarize the results we have proved in the above lemmas.

We conclude this section by giving the arguments which complete the proof of
the GAS of the endemic equilibrium in the model studied by May et al (1989). The
basic AIDS model studied by these authors has no recovery or death due to disease in
the removed class (e=§=0), but does allow for vertical transmission. The net
birth rate is assumed to be diminished below bN at a rate b(1-e)I, a € [0,1]. The
case a=1 corresponds to no vertical transmission. We show that, in their model,
the endemic equilibrium (i*,r*) is GAS. They proved LAS and conjectured that it
is globally attracting. Equatioms (2.12), (2.13) in May et al (1989) are, in our

notation,

i’ = £, =~(brcte-d)i ~ (d-e-b(1-a))i’ - Jir,
r’ =fy=-br +ci + (e+b(1-0))ir.

Taking p(i,r) =1/(ir), Dulac's criterion gives
V- (pfy,pfy) =—(d—e-b(1-a)) [ - c/r2.

* %
Thus, provided (i ,r ) exists as anontrivial equilibrium, and 1> ¢ + b(1-2),

which follows from the assumption that B’l > 1, there are no limit cycles in
{(i,r): 0¢i,0<r,1i+r<1}. Byour previous arguments, this equilibrium is

globally attracting in 9 .
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4. Nonexistence of Closed Orbits.

A basic step in our proof of Theorem 2.1 involves the demonstration that the
system (3.1)—(3.3) does not have any closed orbit solutions in the invariant
region 9. The existence of closed orbit solutions for planar systems is often
ruled out by applying the criterion of Bendixson and its well—known generalization
due to Dulac (see Hahn (1967)). We were not able to apply these classical criteria
to our system; however, we have demonstrated a more general and flexible method
which includes them as special cases, and which solves our problem. Here we
present and prove a simple version of this result which suffices for the

application in this paper.

Theorem 4.1. et f: R3-+R3 be a Lipschitz continuous vector field and let 7(t)
be a closed, piecewsse smooth, curve which is the boundary of an orientable smooth
surface SC RS. Suppose that g: R3—0 R3 is defined and piecewise smoolh in a

neighborhood of S, and that ¢t satisfies

g(y(t)) - £(7(%)) €0 (or 20) foreall t, (4.1)

and
(curlg) -n20(£0)onS, and (curlg) -n>0
(<0) for some poini on S, (4.2)

where n is the unil normal to S. Then 7(t) is mot the finile union of solulion

trejectorses of
x’ = f(x) (4.3)

which are traversed in the posstive sense relatsve o the direcison of m.
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Proof: We first note that 7(t) is an orbit of solutions of (4.3) if, and only if,
it is an orbit of the system x’ = —f(x), which is traversed in the opposite
direction. Thus, the two sets of inequalities in (4.1) and (4.2) are equivalent,

and we give the proof only for the first set. By Stokes' theorem and by (4.2)

0<JJ (curlg) - ndA = Jg('y(t)) .y (8)dt. (4.4)
T

Now, if 7(t) is piecewise smooth with 77 (t) =£(7(t)), except for a finite number

7

of points, then from (4.1)

Jg('r(t)) -7’ (t)dt = j g(7(%)) - £(7(t))dt < 0.
7 7

This contradicts (4.4) and the theorem is proved. g

An immediate corollary to this theorem yields the criterion that we used in

the proof of Lemma 3.1.

Corollary 4.2. let SC R3 be a smooth, orieniable, surface such that any
piecewise smooth closed curve 7(t) €S is the boundary of a surface 5° CS. If

3 3 U S e
y: RO ~+R° is smooth, f: 7(t) = R" is Lipsechiiz, and f and g satssfy

g(7(t)) - £(7(¢)) =0 (4.5)
curlg-n>0 on S (<0 on 5) (4.6)
where n i3 the unii normal fo S, ihen 7(t) is noi o phese polygon of the

differential equation x’(t) =f(x(t)).
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Proof: If 7(t) €S were aphase polygon of x’ =f(x(t)), then {7(t), t > 0} = 45’
for some oriented smooth surface S5’ CS when 7 is given a positive orientation
relative to the normal n to 5. Now, apply Theorem4.1 to 7(t) and S’ to see that

this is not possible. g

Remarks: This corollary is a generalization of a result of Hall and Busenberg
(1969) in which the surface S was restricted to be a subset of the surface of a
sphere in R3.

It is easy to see that this corollary generalizes Dulac's criterion. In fact,

if

x =£(x,y) v =1fy(x,y) (4.7)
is a planar system, we extend it trivially to IR3 by

' =f1(x,y), y’ =f2(x,y), z’ =0 (4.8)

and we pick g(x,3) = [-p(x,9)Ex(x¥) s p(x,)E (6,9) 5 0. Then g - (f1,£,,0) = 0,
and letting S be the x, y plane, we have n=(0,0,1). Assuming p, f;, and 5 to
be smooth, we have curl g - n=div(pf,,pfy). Thus, condition (4.6) becomes the
Dulac criterion div(pf1 ,pf2) >0 (<0), in this special case of our corollary.

We also note that both Theorem 4.1 and Corollary 4.2 do not require that the
field f be smooth or even differentiable. In fact, even the Lipschitz condition
on f, which implies that f is differentiable almost everywhere, can be replaced
by requiring that f be continuous and that the problem x’ = f(x), x(0) = X, has a

. .
wniane anlntian
uniQul SCauvilil.
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The proof of Lemma 3.1 gives an illustration of the use of Corollary 4.2 in
analyzing a disease transmission model. Another illustration is provided by
including immunization rates 6 and ¢ € [0,1] in our model; see Hethcote and
Thieme (1985) for a discussion of immunization in a constant population model with
subgroups. Including these immunization rates in our model of section 2, we obtain

the same equation (3.2) for i’ and the following equations for s’ and r’

8’ = b(1-¢) — s(b+8) +er — (d—¢€)si + §sr, (4.9)
r’ =bg — (bte+d)r + ci + 8 + €ir + 5re. (4.10)
In Lemma 3.1, we use g= g1 + 52 + g3 vhere gi have the same forms as in (3.4) to

obtain

curl g(s,i,r) - (1,1,1) = -—21127 {csi+er2+b(r2+r) (1—-¢)+b¢s(i+s)+6’82} <0,

8Tl

thus ruling out the existence of periodic solutions in 9.

As another example, consider an S- E- I~ S model where we now include an
exposed (latent) class but ignore the removeds. The parameter & is now the
disease induced mortality in the exposed class, and a is the rate of transfer out
of the exposed into the infectious class. With e = E/N, the equations for

proporfions are (cf. (3.1)-(3.3))

s’ =b-bs +ci— (J-¢)si + fes =1, (4.11)
e’ = —(atb+f)e + Jsi + fe? + eei = £y, (4.12)

i’ =—(btc+e)i + ae + bei + ei? =f,. (4.13)
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In Lemma 3.1, we now use g= g1 + g2 +g" where gi have forms corresponding to

those of (3.4), with the f, given by (4.11)—(4.13), to obtain

curl g(s,ei) - (1,1,1) = --—-2——%——2- {)52i2+cei2+bei(i+e)+a,se2} <0,

8% "1

thus ruling out the existence of periodic solutions in {s>0,e>0,1i>0,

s+et+i =1}.

Acknowledgements. We thank Professor H.W. Hethcote for sending up a copy of J.

Mena—Lorca's unpublished thesis.

24.



References

Anderson, R.M., May, R.M.: Population biology of infectious diseases: Part II.
Nature 280 455—461 (1979)

Anderson, R.M., May, R.M.: The population dynamics of microparasites and their
invertebrate hosts. Phil. Trans. Royal Soc. London B. 291, 451-524 (1981)

Busenberg, 5., Cooke, K.L., Thieme, H.: Investigation of the transmission and
persistence of HIV/AIDS ina heterogeneous population. Preprint (1989)

Busenberg, S., Cooke, K.L., Pozio, M.A.: Analysis of a model of a vertically
transmitted disease. J. Math. Biol., 17, 305-329 (1983)

Castillo—Chavez, C., Cooke, K., Huang, W., Levin, S.A.: 0On the role of lon
incubation perlods 1n the dynanucs 0 acqulred 1mmunodef1c1ency syndrome FAIDS)
Part 1: Single population models. J. Math. Biol., to appear (1989)

Dietz, K., Hadeler ,K.P.: Ep 1dem1010%1ca.l models for sexually transmitted
diseases. J. Math. Biol., 26, 1-25 (1988

Hahn, W., Stability of Motion. Springer—Verlag, 1967

Hall, W., Busenberg, S.: On the viscosity of magnetic suspensions, J. Chem. Phys.
b1, 137-144 (1969)

Hethcote, H.W.: (ualitative analysis of communicable disease models, Hath.
Biosci. ?R 2335-3566 (1976\

Hethcote, H.W. & Thieme, H.R.: Stability of the endemic equilibrium in epidemic
models with subpopulatlons Math. Biosci. , 76, 205—-227 (1985)

Jacquez, J.A., Simon, C.P., Koopman, J., Sattenspiel, L., Perry, T.: Modeling and
analyzing HIV transmission: the effect of contact patterns. Math. Biosci., 92,
119-199 (1988)

May, R.M., Anderson, R.M. and McClean, A.R.: Possible demographic consequences of
HIV/AIDS epldemlcs IT, Assuming HIV infection does not necessa.rlly lead to AIDS.
Preprint (1988)

Mena—Lorca, J.: Periodicity and stability in epidemiological models with
disease~related deaths. Ph.D. thesis, University of lowa, 1988

Nold, A.: Heterogeneity in disease—transmission modeling, Math. Biosci. b2,
227-240 (1980)



