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Abstract

This thesis presents Bayesian geoacoustic inversion of seabed reflection-coefficient

data as part of the U.S. Office of Naval Research Seabed Characterization Experiment

2017 at the New England Mud Patch. First, a linearized, ray-based Bayesian inver-

sion of acoustic arrival times is carried out for high-precision estimation of experiment

geometry and uncertainties, representing an important first step to inferring seabed

properties using geoacoustic inversion methods such as reflection inversion. The high-

precision estimates for source-receiver ranges, source depths, receiver depths, and wa-

ter depths at reflection points along the survey track are used to calculate grazing an-

gles, with angle uncertainties computed using Monte Carlo methods. The experiment

geometry uncertainties are obtained using analytic linearized estimates, and verified

with nonlinear analysis. Second, a trans-dimensional (trans-D) Bayesian inversion of

reflection-coefficient data is carried out for geoacoustic parameters and uncertainties

of fine-grained/cohesive sediments. The trans-D inversion samples probabilistically

over an unknown number of seabed interfaces and the parameters of a zeroth- or

first-order autoregressive error model. The numerical method of parallel tempering

reversible jump Markov-chain Monte Carlo sampling is employed. Spherical-wave re-

flection coefficient modelling is applied using plane-wave decomposition in the Som-

merfeld integral. The inversion provides marginal posterior probability profiles for

Buckingham’s viscous grain-shearing parameters: porosity, grain-to-grain compres-

sional modulus, material exponent, and compressional viscoelastic time constant as a

function of depth in the sediment. These parameters are used to compute dispersion

relationships for each layer in the model, providing marginal posterior probability

profiles for compressional-wave velocity and attenuation at different frequencies, as

well as density. The geoacoustic inversion results are compared to independent mea-
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surements of sediment properties.



v

Table of Contents

Supervisory Committee . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Epigraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Linearized Bayesian Inversion for Experiment Geometry at the
New England Mud Patch . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Theory and Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Forward Problem: Ray tracing . . . . . . . . . . . . . . . . . . 13
2.3.2 Linearized Bayesian Formulation . . . . . . . . . . . . . . . . 15
2.3.3 Track Prediction Prior . . . . . . . . . . . . . . . . . . . . . . 17
2.3.4 Grazing Angles and Uncertainties . . . . . . . . . . . . . . . . 19

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Monte Carlo Uncertainty Analysis . . . . . . . . . . . . . . . . . . . . 21
2.6 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Trans-dimensional Bayesian Geoacoustic Inversion of Reflection
Coefficients at the New England Mud Patch . . . . . . . . . . . . . 26
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Experiment and Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.2 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . 30



vi

3.3 Forward and Inverse Theory . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.1 Sediment Model: Viscous Grain-shearing . . . . . . . . . . . . 31
3.3.2 Forward Modelling: Spherical-wave Reflection Coefficients . . 33
3.3.3 Trans-dimensional Bayesian Formulation . . . . . . . . . . . . 34
3.3.4 Likelihood Function . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.5 Parallel Tempering . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.5 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64



vii

List of Tables

2.1 Summary of data and prior uncertainty estimates for linearized Bayesian
inversion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Summary of prior parameter bounds for trans-D inversion . . . . . . 40
3.2 Summary of mean parameters and 95% CI at selected depths for the

SWAMI site. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Summary of mean parameters and 95% CI at selected depths for the

PC52 site. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



viii

List of Figures

2.1 Range and direct-arrival time differences between GPS measurements
during the survey and acoustic inversion results estimated here. (a)
shows the source-receiver range differences between GPS and inver-
sion as a function of source transmissions (referred to as pings) (upper
curve) and inversion range uncertainties (lower curve). (b) shows differ-
ences between direct-path arrival times computed for the GPS source
and receiver locations and the locations estimated by acoustic inver-
sion. The horizontal and vertical dashed lines indicate mean values
and CPA, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Sound-speed profile measured by CTD cast at the experiment site. . . 9
2.3 Experiment geometry showing the direct, bottom-reflected, and bot-

tom-surface-reflected paths. The data considered are for a tow that
passed nearly overtop of the receivers, starting at an approximate range
of 1000 m, ending at a range of ∼600 m. . . . . . . . . . . . . . . . . 10

2.4 Acoustic time series for the shallow receiver. (a) shows a section of
data near CPA. The four distinct arrivals (from earliest to latest) are
the direct path, bottom-reflected path, sub-bottom-reflected path, and
bottom-surface-reflected path arrivals. (b) shows the first three ar-
rivals at longer ranges, with the arrow indicating the bottom-reflected
arrival. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Procedure for augmenting the range prior through CPA based on track
predictions. The inaccurate initial range estimates through CPA from
arrival-time inversion are shown by crosses. The more-stable initial
range estimates further from CPA from the same inversion, shown by
filled circles, are used to determine the track-prediction model param-
eters. The augmented prior estimates near CPA determined via track
prediction are shown by open circles. The final estimates for all ranges
computed by incorporating the augmented prior in the linearized in-
version are shown by the solid line. . . . . . . . . . . . . . . . . . . . 19

2.6 Fit to the data for the direct, bottom-reflected, and bottom-surface-
reflected paths for the shallow receiver are shown in (a), (b), and (c),
respectively. In these panels, filled circles represent observed data and
the line is the predicted data (indistinguishable). (d), (e), and (f)
present the corresponding residuals (differences between observed and
predicted data). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21



ix

2.7 Results and uncertainties for ranges and grazing angles. (a) and (c)
show the results for ranges and grazing angles, respectively. (b) shows
the linearized uncertainties for range and (d) shows the uncertainties
obtained via nonlinear Monte Carlo approach for grazing angles. . . . 22

2.8 Monte Carlo uncertainty analysis and inversion results. A comparison
of grazing angle versus range with uncertainties (one-standard devia-
tion error bars) for the shallow receiver between Monte Carlo uncer-
tainty analysis in (a) and (c) and inversion results in (b) and (d), for
short-range and long-range track segments. . . . . . . . . . . . . . . . 23

2.9 Comparison of Monte Carlo uncertainty distributions to analytic marg-
inal probability densities from the linearized inversion of measured data
(smooth curves) for six selected ranges. The negative ranges represent
source-receiver ranges before CPA (i.e., inbound leg). . . . . . . . . . 24

3.1 Seabed reflection-coefficient data averaged across frequency using
1/15th octave bands, and angle averaged and interpolated over 0.75◦

evenly-spaced angular bins at the (a) SWAMI site and (b) PC52 site. 30
3.2 Trans-D marginal posterior probability profiles for interface depths and

VGS parameters with plot boundaries representing prior bounds at the
SWAMI site. The probabilities for the parameter profiles are normal-
ized independently at each depth for display purposes. Porosity from
two cores taken near the SWAMI site are plotted (dashed lines) on the
porosity profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Marginal posterior probabilities for VGS depth-independent parame-
ters with plot boundaries representing prior bounds at the SWAMI
site. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Trans-D marginal posterior probability profiles at 400 Hz for interface
depths and fluid model parameters at the SWAMI site. The proba-
bilities for the geoacoustic parameter profiles are normalized indepen-
dently at each depth for display purposes. Interface estimates from the
chirp seismic reflection survey are plotted over the interface marginal
probability densities and densities from core data are plotted (dashed
lines) over the geoacoustic parameter profile. In the interface depth
marginal probability density plot, the upper (dashed) line represents
the mud base, the middle (solid) line represents the sand base, and the
lower (dotted) line represents the deep sand base interface estimates
from TWTT data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 Dispersion-curve marginal probability distributions for selected (indi-
cated) depths at the SWAMI site. . . . . . . . . . . . . . . . . . . . . 45

3.6 Sampling history and distribution of the number of interfaces k and
likelihood values at the SWAMI site. The prior for k is a Poisson
distribution with λ = 3 and a uniform bounded prior [1, kmax] with
kmax = 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



x

3.7 Fit to the data achieved at the SWAMI site. The upper two rows com-
pare observed reflection-coefficient data (crosses) and predicted data
for an ensemble of models (red dots) at each frequency. The lower two
rows show marginal probability densities for the data standard devia-
tions sampled explicitly in the inversion. The standard deviation plot
bounds indicate the uniform prior bounds implemented in the inver-
sion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.8 Autoregressive error model at the SWAMI site. The upper row shows
marginal densities for the autoregressive coefficients. The lower row
shows the probabilities of having an AR(0) or AR(1) error model (in-
dicated by 0 and 1, respectively) as determined by the trans-D sampling
algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.9 Ensemble residual analysis at the SWAMI site. The upper two rows
show histograms of total data residuals compared to Gaussian dis-
tributions. The lower two rows show the residual autocorrelation
functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.10 Marginal posterior probability profiles for VGS depth-dependent pa-
rameters with a uniform bounded prior (only) on k at the SWAMI
site. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.11 Marginal posterior probability profiles at 400 Hz for compressional ve-
locity, density and log-attenuation as a function of depth in the sedi-
ment with a uniform bounded prior (only) on k at the SWAMI site. . 50

3.12 Trans-D marginal posterior probability profiles for interface depths and
VGS parameters with plot boundaries representing prior bounds at the
PC52 site. The probabilities for the parameter profiles are normalized
independently at each depth for display purposes. Porosity from a core
taken at the site is plotted (dashed line) over the porosity marginal
profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.13 Trans-D marginal posterior probability profiles at 400 Hz for estimated
compressional velocity, density and attenuation at the PC52 site. Den-
sities from core data are plotted (dashed lines) over the geoacoustic
parameter profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.14 Dispersion-curve marginal probability distributions for selected (indi-
cated) depths at the PC52 site. . . . . . . . . . . . . . . . . . . . . . 54

3.15 Sampling history and distribution of the number of interfaces k and
log-likelihood values at the PC52 site. The prior for k is characterized
by a Poisson distribution. . . . . . . . . . . . . . . . . . . . . . . . . 55

3.16 Fit to the data achieved at the PC52 site. The upper two rows compare
observed reflection-coefficient data (crosses) and predicted ensembles
(red dots) at each frequency. The lower two rows show marginal prob-
ability densities for the data standard deviations sampled explicitly
in the inversion. The standard deviation plots bounds indicate the
uniform prior bounds implemented in the inversion. . . . . . . . . . . 56



xi

3.17 Autoregressive error model at the PC52 site. The upper row shows
marginal densities for the autoregressive coefficients. The lower row
shows the probabilities of having an AR(0) or AR(1) error model (in-
dicated by 0 and 1, respectively) as determined by the trans-D sampling
algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.18 Ensemble residual analysis at the PC52 site. The upper two rows
show histograms of total data residuals compared to Gaussian dis-
tributions. The lower two rows show the residual autocorrelation
functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.19 Marginal posterior probability profiles at 400 Hz for compressional ve-
locity, density and log-attenuation as a function of depth in the sedi-
ment with a uniform bounded prior (only) on k at the PC52 site. . . 59



xii

Acknowledgements

I would like to thank my supervisor and teacher Stan Dosso for significantly in-

creasing the likelihood of my success with his prior knowledge and immense support

throughout my degree; my co-author Jan Dettmer for providing the code and techni-

cal support that made this thesis possible; my co-author Charles W. Holland for the

measured data presented in this work, quality assurance at every step, and for being

an excellent host during my visit to the Applied Research Laboratory at Penn State

University; and the U.S. Office of Naval Research and the Canadian Department of

National Defence for financially supporting this work.



xiii

Dedication
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Chapter 1

Introduction

Sound propagation in shallow water is strongly influenced by interaction with the

seabed. The study of bottom-interacting sound is an active area of underwater

acoustic research for shallow-water areas, namely the continental terrace (shelf and

slope), are of great geotechnical, economic, and military importance. Yet, knowl-

edge of seabed geoacoustic parameters (e.g., sound velocity, density, and attenuation)

often represents the limiting factor in modelling ocean bottom-interacting acoustic

fields [1,2]. Recently, the geoacoustic properties of soft, muddy seabeds have become

of interest to shallow-water acoustic research as they are commonly found on the con-

tinental terrace [2–4], but have been studied less and are poorly understood compared

to harder seabeds such as sands [5, 6].

The inversion of acoustic data provides a non-intrusive and economical alternative

to direct measurements (e.g., coring) for estimating seabed parameters. For example,

seabed reflection coefficients, measured as a function of grazing angle and frequency,

provide an informative data set for inferring the geoacoustic parameters of a layered

seabed model, and geoacoustic inversion of reflection-coefficient data has received

wide attention over the years, e.g., [7–12]. However, inferring geoacoustic parameters

(in general) requires solving an inherently nonunique, nonlinear inverse problem, and

rigorous estimates of data and model uncertainties are required, e.g., [13–16].

Two of the main objectives of the U.S. Office of Naval Research (ONR) Seabed

Characterization Experiment 2017 (SCBEX) at the New England Mud Patch are to

quantify uncertainties in seabed parameters estimated by geoacoustic inversion and

assess the resulting geoacoustic models and inversion methods [17]. Accordingly, this

work presents trans-dimensional (trans-D) Bayesian inversion of reflection-coefficient

data from two sites at the New England Mud Patch, providing geoacoustic parameter

estimates and uncertainties for fine-grained/cohesive (muddy) sediments as part of
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SCBEX.

The New England Mud Patch is a ∼13,000 km2 area roughly 100 km south of

Cape Cod, MA, characterized by fine-grained sediments, including clay- and slit-

sized particles, over a strong reflecting layer composed of coarse-grained (sandy) sed-

iments [18–20]. In this work, reflection-coefficient data were collected at the Shallow

Water Acoustic Measurement Instrument (SWAMI) and Piston Core 52 (PC52) sites

within the New England Mud Patch area. The measurement geometry involved a

broadband source towed near the surface of the water, and two omni-directional re-

ceivers moored far enough above the seabed to prevent interference between direct-

and bottom-reflected acoustic paths. The reflection-coefficient data are computed

from time-windowed acoustic arrivals and corrected for various experimental effects

(source directivity, geometric spreading, and absorption) [21, 22]. To do so, accurate

knowledge of the experiment geometry is required. Hence, the first part of this thesis

develops a linearized, ray-based Bayesian inversion of acoustic arrival time data for

high-precision experiment geometry and uncertainties. The second part of this work

presents the trans-D Bayesian geoacoustic inversion of seabed reflection coefficients

for fine-grained/cohesive sediments.

In general, an inverse problem uses observed data to estimate (infer) parameters

of a postulated model that characterizes a physical system [23]. Conversely, a forward

problem computes (predicts) data that would be observed in an experiment given a

model of the physical system. The inverse problem cannot be solved without being

able to first solve the forward problem. Here, the observations are high-resolution

seabed reflection coefficients and the physical system (seabed) is described by the

physics of Buckingham’s viscous grain-shearing (VGS) theory [24–26] which considers

unconsolidated sediments as a viscous fluid containing sediments grains in contact.

The theory predicts frequency dependence similar to Biot’s theory [27] at low to

intermediate frequencies, although the physics of dispersion differ. According to Biot

theory, dispersion in poroelastic media is caused by fluid viscosity only, whereas VGS

theory considers both fluid viscosity and friction (grain-to-grain shearing).

The estimated parameters (from VGS theory) consists of a set of depth-dependent

parameters (i.e., vary from layer to layer), and another set of parameters which are

taken to be layer/depth independent (i.e., a single value for all sediment layers) [10,28].

The depth-dependent parameters include porosity, grain-to-grain compressional mod-

ulus, material exponent, and compressional viscoelastic time constant. The depth-

independent parameters include interstitial fluid density and bulk modulus, and gran-

ular density and modulus. In this work, the forward problem predicts spherical-wave



3

(full-wave) reflection coefficients because the common plane-wave approximation is

not sufficient when measurements include sub-bottom waves that arrive at multiple

angles different from the specular [11, 21, 29]. Computationally, spherical-wave re-

flection coefficients are predicted using plane-wave decomposition in the Sommerfeld

integral [10,11].

The Bayesian approach to inverse problems assumes the model is not determin-

istic but a random variable to be described statistically (probabilistically) [23]. The

method samples the posterior probability density (PPD), incorporating both data

and prior information. The solution can be quantified in terms of properties of the

PPD representing model parameter estimates and uncertainties which are computed

using numerical methods for highly nonlinear inverse problems.

The choice of model parametrization (e.g., number of seabed interfaces) is non-

trivial and strongly influences parameter uncertainty estimates. Trans-D inversion

is a general and powerful approach to Bayesian model selection in geoacoustic in-

verse problems for depth-dependent seabed models [30–32]. The trans-D formulation

incorporates the number of parameters (e.g., number of seabed interfaces and param-

eters of a zeroth- or first-order autoregressive data error model) as an unknown in

the problem. The trans-D PPD intrinsically addresses model selection and accounts

for parameter uncertainty due to model parametrization by integrating over possi-

ble parametrization choices [33, 34]. This thesis explores trans-D Bayesian inversion

based on a parallel tempering reversible-jump Markov-chain Monte Carlo (rjMCMC)

sampling method [33–37]. The method is applied to measured reflection-coefficient

data to estimate the geoacoustic parameters of a depth-dependent seabed model of

an unknown number of interfaces.

The body of this thesis contains two chapters which correspond to two papers

on Bayesian inversion associated with SCBEX at the New England Mud Patch. As

these articles were produced as stand-alone works, there is some repetition across

the chapters in the introductory material, experiment geometry, and theory. The

following provides a brief overview of this work.

Chapter 2 (to be submitted as [38]) presents a linearized Bayesian approach to

inverting acoustic arrival-time data for high-precision estimation of experiment ge-

ometry and uncertainties. The source-receiver ranges, source depths, receiver depths,

and water depths at reflection points along the track are estimated to much higher

precision than prior information based on GPS and bathymetry measurements. The

high-precision experiment geometry is used to calculate seabed reflection (grazing)

angles, with angle uncertainties computed using Monte Carlo methods. The experi-
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ment geometry uncertainties, obtained using analytic linearized estimates, are verified

with nonlinear analysis.

Chapter 3 (to be submitted as [39]) presents the trans-D Bayesian geoacoustic

inversion. The inversion is applied to high-resolution broadband reflection-coefficient

data from two sites of contrasting mud-layer thicknesses. Trans-D inversion, sampling

over an unknown number of seabed interfaces and the parameters of a zeroth- or first-

order autoregressive error model, and spherical-wave reflection coefficient modelling

are employed. The inversion provides parameter estimates with uncertainties quan-

tified in terms of marginal posterior probability profiles for VGS model parameters.

The VGS parameters are used to compute dispersion relationships for each layer in

the model to yield compressional-wave velocity and attenuation as functions of fre-

quency, as well as density as a function of layer. Results of the acoustic inversion

are compared to independent measurements of sediment properties collected at the

experiment sites.

Chapter 4 gives a brief summary and discussion of the work presented in this

thesis.
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Chapter 2

Linearized Bayesian Inversion for

Experiment Geometry at the New

England Mud Patch

This chapter presents a linearized Bayesian approach to inverting acoustic arrival-

time data for high-precision estimation of experiment geometry and uncertainties

associated with geoacoustic inversions as part of the U.S. Office of Naval Research

(ONR) Seabed Characterization Experiment 2017 (SCBEX) at the New England

Mud Patch. The data were collected at the Shallow Water Acoustic Measurement

Instrument (SWAMI) site using an impulsive ship-towed source and two moored omni-

directional receivers for the purpose of carrying out broadband reflectivity inversion,

a geoacoustic inversion method that requires accurate knowledge of the survey geom-

etry. To provide this, a Bayesian ray-based inversion is developed here that estimates

source-receiver ranges, source depths, receiver depths, and water depths at reflection

points along the track to much higher precision than prior information based on GPS

and bathymetry measurements. Near the closest point of approach, where rays are

near vertical, data information is low and inaccurate range estimates are improved

using priors from analytic predictions based on nearby sections of the track. Uncer-

tainties are obtained using analytic linearized estimates, and verified with nonlinear

analysis. The high-precision experiment geometry is subsequently used to calculate

grazing angles, with angle uncertainties computed using Monte Carlo methods.

The measured data presented here were collected at sea by Charles W. Holland.

Stan Dosso provided an initial MATLAB code for array element localization which

was substantially adapted by the author of this thesis for the purpose of this work.

Moreover, the author picked arrival times for direct, bottom-reflected, and bottom-
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surface-reflected acoustic paths as data for the linearized inversions, carried out the

inversions, and wrote the paper on which this chapter is based.

2.1 Introduction

The inversion of acoustic arrival-time data for high-precision estimation of experi-

ment geometry and uncertainties is an important first step to inferring seabed prop-

erties using geoacoustic inversion methods such as broadband, wide-angle reflection

inversion [9, 21, 22, 40]. Quantifying uncertainties in seabed parameters estimated by

geoacoustic inversion and assessing the resulting geoacoustic models and inversion

methods are two of the main objectives of SBCEX at the New England Mud Patch,

a major collaborative study funded by ONR [17]. The initial step of high-precision

estimation of experiment geometry is key as sufficiently-accurate source and receiver

locations are often not known after deployment at sea and precise experiment ge-

ometry is required to calculate reflection coefficients used to infer the geoacoustic

properties of the seabed. While this chapter presents a new high-precision inversion

to estimate experiment geometry for the purpose of reflection-coefficient inversion

(carried out in Chapter 3), many other applications in geoacoustic inversion and

advanced signal processing also require accurate knowledge of experiment geometry.

Although the data considered here were collected for acoustic reflection-coefficient

inversion, the survey design lends itself to using the arrival times for high-precision

estimation of experiment geometry without the need for a separate localization survey.

The acoustic measurements involved a broadband source mounted to a catamaran

equipped with GPS towed behind a ship with signals recorded at two bottom-moored

omni-directional receivers. The source emitted a short acoustic pulse every second

along a ∼1.6-km (20-minute) radial track designed to pass close to directly above the

receivers, with the track roughly centered on the closest point of approach (CPA) to

the receivers. Arrivals of interest include the direct, bottom-reflected, and bottom-

surface-reflected paths. The survey is described in greater detail in Section 2.2.

To further motivate the high-precision estimation of experiment geometry, Fig. 2.1

shows range and direct arrival-time differences between the source/receiver geometry

based on GPS measurements taken during the experiment and the geometry estimated

in the acoustic inversion carried out in this chapter. Fig. 2.1(a) shows an average range

difference of 4.7 m with variability of ∼1 m (upper curve) due to errors/variability in

source and receiver GPS locations. In comparison to these range differences, the lower

curve of Fig. 2.1(a) shows the inversion range uncertainties which are about 0.2–0.3 m
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Figure 2.1: Range and direct-arrival time differences between GPS measurements
during the survey and acoustic inversion results estimated here. (a) shows the source-
receiver range differences between GPS and inversion as a function of source trans-
missions (referred to as pings) (upper curve) and inversion range uncertainties (lower
curve). (b) shows differences between direct-path arrival times computed for the GPS
source and receiver locations and the locations estimated by acoustic inversion. The
horizontal and vertical dashed lines indicate mean values and CPA, respectively.

over most of the track but increase to about 1.8 m near CPA. The figure highlights the

significant reduction in uncertainty achieved by inverting acoustic arrival-time data.

Fig. 2.1(b) shows that the direct arrival-time differences are about 3 ms over most

of the track, with a variability of about 1 ms. To compute the time differences in

Fig. 2.1(b), the GPS range information was converted to direct-arrival estimates using

ray tracing and compared to the measured direct arrivals. Using an average sound

speed of 1473 m/s, the mean time difference of 3 ms equates to a range difference of

4.2 m, which is roughly consistent with the mean range difference of 4.7 m observed

in Fig. 2.1(a).

The high-precision experiment geometry estimation carried out here uses a lin-

earized, ray-based Bayesian inversion algorithm [41–43]. The Bayesian inversion ad-

dresses significant sources of error in the experiment, and incorporates physical prior
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information about the solution in addition to the measured data. The acoustic data

include arrival times of direct-path signals over the entire track, and bottom-reflected

and bottom-surface-reflected arrivals out to moderate ranges where these arrivals

could be clearly identified. The unknown geometric parameters considered in the

inversion include source-receiver ranges, source depths, water depths for the bottom-

reflected paths, receiver depths, and receiver synchronization corrections. In addition

to the data, the Bayesian inversion applies Gaussian prior densities based on GPS

and bathymetry measurements. A track estimation algorithm [44] is used to augment

range priors near CPA where the data poorly constrain the solution. The inversion

results are subsequently used to compute reflection (grazing) angles at the seabed, as

required to calculate reflection coefficients for geoacoustic inversion.

The experiment geometry uncertainties are estimated efficiently from the lin-

earized approximation of the posterior covariance matrix and compared to uncertain-

ties obtained by a nonlinear Monte Carlo [23] approach based on calculating error

statistics from an ensemble of noisy synthetic inversion results. The grazing angle un-

certainties are also estimated by a similar Monte Carlo appraisal. The Monte Carlo

method is computationally intensive but represents a fully nonlinear solution which

can be used to confirm results obtained by linearized approximation.

The remainder of this paper is organized as follows: Section 2.2 describes the ex-

periment and data collection process. Section 2.3 presents the theory and implemen-

tation of the ray-tracing algorithm (Section 2.3.1), develops the linearized Bayesian

inversion and uncertainty estimation (Section 2.3.2), presents the track prediction

approach to augmenting the range prior near CPA (Section 2.3.3), and explains the

computation of grazing angles and uncertainties (Section 2.3.4). The inversion results

are presented in Section 2.4. Section 2.5 describes the nonlinear uncertainty estima-

tion carried out to validate the linearized inversion. Finally, Section 2.6 summarizes

and discusses this work.

2.2 Experiment

The SCBEX experiment site is located approximately 110 km south of Cape Cod,

MA, and characterized by a smooth, flat seabed with predominantly silt-sized parti-

cles. The acoustic data presented in this chapter were collected at the SWAMI site

on March 31, 2017, at 40.4614◦N, −70.5753◦W. The nearly isothermal sound-speed

profile measured by a conductivity, temperature, and density (CTD) cast during the

experiment is shown in Fig. 2.2.
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Figure 2.2: Sound-speed profile measured by CTD cast at the experiment site.
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Source

Receivers

Figure 2.3: Experiment geometry showing the direct, bottom-reflected, and bottom-
surface-reflected paths. The data considered are for a tow that passed nearly overtop
of the receivers, starting at an approximate range of 1000 m, ending at a range of
∼600 m.

The survey geometry, illustrated in Fig. 2.3, was designed to implement the

reflection-coefficient measurement technique developed by Holland and Osler [21].

The survey involved two bottom-moored omni-directional receivers and a broadband

Uniboom source towed behind a ship along a ∼1.6-km radial track in approximately

76 m of water. The receivers were positioned at nominal depths of 61 and 65 m,

far enough above the seabed to prevent interference between the direct and bottom-

reflected acoustic arrivals. The source was mounted to a catamaran equipped with

GPS and towed at a depth of ∼0.4 m, thus allowing the direct and sea-surface-

reflected acoustic arrivals to be considered as one waveform. The source emitted a

short pulse (<1 ms) with a broad bandwidth (0.1–10 kHz) every second. The ship

speed was approximately 3 knots (1.5 m/s). An initial estimate of the deployment

location of the receivers was estimated by using an Ultra Short Baseline system where

one transponder was near the base of the mooring and the other transponder was on

a pole deployed beneath the ship. Each receiver had its own clock which was synchro-

nized with GPS on-board ship; however, the clocks drifted at different and unknown

rates following deployment. Hence, absolute travel time between the source transmis-

sion and signal arrival at the receiver could not be directly measured. Accordingly,

synchronization corrections were included as unknown parameters in the inversion.

The data used for the high-precision geometry inversion include the acoustic ar-

rival times for the direct, bottom-reflected, and surface-bottom-reflected paths at the

receivers picked from the recorded time series. The acoustic data are treated as ab-

solute arrival times along direct and reflected paths relative to the (unknown) source
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Figure 2.4: Acoustic time series for the shallow receiver. (a) shows a section of data
near CPA. The four distinct arrivals (from earliest to latest) are the direct path,
bottom-reflected path, sub-bottom-reflected path, and bottom-surface-reflected path
arrivals. (b) shows the first three arrivals at longer ranges, with the arrow indicating
the bottom-reflected arrival.

transmission instants. With knowledge that successive source transmissions were

separated by precisely 1 s (pulse repetition rate), only the initial source transmission

instant is included as an unknown parameter in the inversion. This allows direct-path

arrival times to provide useful data even at longer ranges where reflected arrivals were

difficult to distinguish and only direct arrivals could be picked. Fig. 2.4(a) shows time

series recorded near CPA which include four distinct arrivals that are, from earliest

to latest: the direct, bottom-reflected, sub-bottom-reflected, and bottom-surface-

reflected paths. Fig. 2.4(b) shows a close up of the first three arrivals at longer ranges

(prior to CPA). Here, the bottom-reflected arrivals (indicated with the arrow) are

much weaker than the sub-bottom arrivals which follow. At even longer ranges, the

bottom-reflected arrivals become difficult to identify and pick. A total of 1197 source

transmissions (i.e., pings) were recorded over a 20-minute period. The direct arrivals

were picked by searching for the largest peak along the time series. The reflected-path
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Table 2.1
Summary of data and prior uncertainty estimates for linearized Bayesian inversion.

Data/Parameter (Units) Standard deviation
Direct arrival (s) 0.0002
Bottom-reflected arrival (s) 0.0003
Bottom-surface-reflected arrival (s) 0.001
Range, r (m) 100
Source depth, zi (m) 0.5
Water depth, W (m) 0.5
Receiver depth, zj (m) 1.0
Synchronization correction, τj (s) 0.001

arrivals were picked by windowing the direct arrival waveform and cross-correlating

the windowed signal along the time series. The bottom-reflected and bottom-surface-

reflected arrivals become increasingly indistinct at long ranges, as illustrated for the

bottom-reflected arrival in Fig. 2.4(b). Therefore, the reflected arrivals were confi-

dently picked between pings 550 and 949 (or about 265 and 230 m) while the direct

arrivals were picked for all 1197 pings. In total, including both receivers, 2394 direct,

800 bottom-reflected, and 800 bottom-surface-reflected arrivals were picked for a total

of N = 3994 acoustic arrival-time data for the inversion.

Using this data set, the inversion seeks to estimate 1197 source-receiver ranges,

1197 source depths, 400 water depths for the bottom-reflected paths, 400 water depths

for the bottom-surface-reflected paths, 2 receiver depths, and 2 receiver synchroniza-

tion corrections for a total of M = 3198 model parameters. Water depths can only

be estimated for the centre 400 pings given that the arrivals that interact with the

seafloor were only picked for this region.

The prior information applied in the Bayesian inversion consists of Gaussian prior

densities for each parameter based on a prior estimate and uncertainty (standard

deviation). The prior model estimates are taken from GPS, bathymetry, and available

knowledge of the experiment geometry setup. The uncertainties assigned to these

prior estimates and to the data are given in Table 2.1. The range uncertainties are

intentionally over-estimated for two reasons. First, the uncertain location of the

receivers on the seabed represents a bias in the prior information for range, i.e., all

prior range estimates along the track are affected by this error in the same way;

one way to accommodate this bias is to increase uncertainties. Second, ranges (and

grazing angles) are the most important parameters required for reflection-coefficient

estimation, and we prefer to have the data, rather than the prior, primarily constrain
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these. Note that the acoustic data may not have sufficient information to estimate all

parameters (e.g., source depths and water depths) beyond their prior, but including

these parameters in the inversion includes the effect of their uncertainties in the

uncertainty estimates for the ranges (and grazing angles).

2.3 Theory and Algorithms

2.3.1 Forward Problem: Ray tracing

This section summarizes the ray-tracing forward model and ray derivatives used in

the inversion algorithm [41–43]. The range r and arrival time t between source i and

receiver j along a non-turning direct ray (i.e., a ray that does not change vertical

direction as the result of reflection or refraction) is given by

r =

∫ zj

zi

pc(z) dz

[1− p2c2(z)]1/2
, (2.1)

t = τj +

∫ zj

zi

dz

c(z)[1− p2c2(z)]1/2
, (2.2)

where τj represents the time correction to synchronize receiver and source, c(z) is the

water sound speed as a function of depth z, and p is the ray parameter (constant

along a ray path) given by

p =
cos θ(z)

c(z)
, (2.3)

where θ(z) is the ray grazing angle at depth z. The ray parameter for an eigenray

connecting source and receiver is determined by searching for the value of p which

produces the correct range (to a specific tolerance) according to (2.1).

Dosso and Ebbeson [42] developed an efficient procedure to determine p applying

Newton’s method. An initial estimate p0, calculated for straight-line propagation

with constant sound speed, is given by

p0 =
r

cH [r2 + (zj − zi)2]1/2
, (2.4)

where cH is the harmonic mean sound speed over the propagation path given by

cH = (zj − zi)

/∫ zj

zi

dz

c(z)
. (2.5)
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An improved estimate p1 is obtained by expanding r(p) in a Taylor series about p0

neglecting second-order terms leading to

p1 = p0 +

[
∂r(p0)

∂p

]−1
(r(p)− r(p0)). (2.6)

In (2.6), ∂r/∂p is determined by differentiating (2.1) according to Leibnitz’s rule to

yield [42]
∂r

∂p
=

∫ zj

zi

c(z) dz

[1− p2c2(z)]3/2
. (2.7)

If r(p1) calculated from (2.1) is within the desired range tolerance (10−5 m was used

here), the procedure is considered complete. If not, the starting value is updated

p0 ← p1 and the procedure is repeated iteratively until a satisfactory value is obtained.

For reflected paths, this formulation can be applied by treating sea-surface and bottom

reflections as direct rays using the method of images (i.e., by representing the reflected

ray path by a direct path from an image source located above the surface or below

the bottom).

The linearized inversion in Section 2.3.2 requires the computation of partial deriva-

tives of acoustic arrival-times t with respect to the unknown model parameters. These

partial derivatives can be derived analytically and are given by [41,42,45]

∂t

∂r
= p1, (2.8)

∂t

∂zi
= − 1

c(zi)
[1− p2c2(zi)]1/2, (2.9)

∂t

∂zj
=

1

c(zj)
[1− p2c2(zj)]1/2, (2.10)

for the direct and bottom-surface-reflected arrivals, and

∂t

∂zj
= − 1

c(zj)
[1− p2c2(zj)]1/2, (2.11)

for the bottom-reflected arrival. For water depth W

∂t

∂W
=

2

c(W )
[1− p2c2(W )]1/2, (2.12)
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for the reflected arrivals and zero for the direct arrival. Lastly, for all paths

∂t

∂τj
= 1. (2.13)

However, in this work, τj in (2.2) is replaced by (c̄τj)/c̄ such that c̄τj is considered

the unknown parameter, where c̄ represents a representative sound speed (1500 m/s

here). This scales the unknown synchronization time correction to the same physi-

cal units (distance) and similar uncertainty as the other model parameters, thereby

improving the numerical stability of the inversion algorithm [42]. In this case, the

partial derivative becomes
∂t

∂(c̄τj)
=

1

c̄
. (2.14)

The integrals in (2.1), (2.2), (2.5), and (2.7) are evaluated analytically by assuming

that a discrete sound-speed profile can be represented by a series of layers with a (non-

zero) linear gradient in each layer. Let
{

(zk, ck), k = 1, Nz

}
represent the piece-wise

linear sound-speed profile and {gk} the corresponding layer sound-speed gradient,

then,

r =

j−1∑
k=i

wk − wk+1

p gk
, (2.15)

t = τj +

j−1∑
k=i

1

gk

[
loge

ck+1 (1 + wk)

ck (1 + wk+1)

]
, (2.16)

cH = (zj − zi)

/
j−1∑
k=i

1

gk

[
loge

gk (zk1 − zk) + ck
ck

]
, (2.17)

∂r

∂p
=

j−1∑
k=i

wk − wk+1

p2 gk wk wk+1

, (2.18)

where wk ≡ (1− p2c2k)1/2.

2.3.2 Linearized Bayesian Formulation

Although fully-nonlinear methods are often applied to solve Bayesian inverse prob-

lems, linearization can be applied to weakly nonlinear problems and can provide much

more efficient approximate solutions [42, 46–48]. To present this approach, consider

first the linear inverse problem

d = Am, (2.19)
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where d and m are vectors of data and model parameters, respectively, and A is the

Jacobian (or sensitivity) matrix containing the physics of the forward problem given

by

Aij =
∂di
∂mj

, (2.20)

for i = 1, . . . , N data and j = 1, . . . ,M model parameters. Assuming m and d to be

random variables, they are related through Bayes’ rule [23]

P (m|d) ∝ P (d|m)P (m). (2.21)

In (2.21), P (m) is the prior density representing knowledge about m independent

of d. P (d|m), when interpreted as a function of d, represents the data uncertainty

distribution. However, for the observed (fixed) data, P (d|m) can be interpreted

as a function of m, which defines the likelihood function. Finally, P (m|d) is the

posterior probability density (PPD), representing the total information about the

model including both data and prior information. Assuming the data errors are zero-

mean, Gaussian-distributed random variables with data covariance matrix Cd and a

Gaussian prior density about a prior model estimate mp with prior model covariance

matrix Cp, the PPD can be expressed as

P (m|d) ∝ exp

[
− 1

2

{
(d−Am)TC−1d (d−Am)

+ (m−mp)
TC−1p (m−mp)

}]
,

(2.22)

where (·)T represents transpose. The most probable or maximum a posteriori (MAP)

model m̂ is obtained by setting ∂P (m|d)/∂m = 0 leading to

m̂ = mp + [ATC−1d A + C−1p ]−1ATC−1d [d−Amp]. (2.23)

The PPD is represented by an M -dimensional Gaussian probability density centered

at m̂ with posterior model covariance matrix [23]

Ĉm = [ATC−1d A + C−1p ]−1. (2.24)

The inverse problem of estimating experiment geometry from acoustic arrival-

times is nonlinear. However, a local linearization is achieved by expanding d = d(m)

in a generalized Taylor series about an arbitrary starting model m0 and neglecting
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second-order terms leading to

d = d(m0) + A(m−m0), (2.25)

with the Jacobian derivatives estimated at the starting model

Aij =
∂di(m0)

∂mj

. (2.26)

The MAP solution to the linearized inverse problem in (2.25) is then given by

m̂ = mp + [ATC−1d A + C−1p ]−1ATC−1d [d− d(m0) + A(m0 −mp)]. (2.27)

Since nonlinear terms are neglected, the linearized inversion is repeated iteratively

until convergence. To stabilize the linearized iterations by keeping steps small and

controlled, a trade-off parameter µ is incorporated such that the MAP model is ob-

tained by iterating

m̂ = mp + [ATC−1d A + µC−1p ]−1ATC−1d [d− d(m0) + A(m0 −mp)], (2.28)

where µ starts at a high value (e.g., 1000 here) and is decreased to unity over the

set of iterations leading to the MAP solution (2.27) (typically, 10 iterations provided

good convergence for the cases considered here).

The linearized approximation to the PPD is a Gaussian distribution about m̂ with

posterior model covariance matrix [23]

Ĉm = [ATC−1d A + C−1p ]−1, (2.29)

where A is evaluated at the final model estimate m̂. The square root of the diagonal

elements of Ĉm provide standard deviation (uncertainty) estimates for the model

parameters.

2.3.3 Track Prediction Prior

It was found that the linearized algorithm described in the previous section provided

poor results (large uncertainties) for source-receiver range estimates near CPA, in-

dicating the data have little information to constrain ranges here. The low data

information is due to near-zero ∂t/∂r sensitivities for near-vertical ray paths which

occur near CPA. To address this problem, more-accurate estimates for ranges near
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CPA are determined using a track prediction algorithm [44] to augment the prior

where data information is low.

The track-prediction approach makes use of a set of ranges estimated by the

linearized inversion for source locations along the track where the data information

content is high (farther from CPA) to predict ranges where the information is low

(near CPA). The model for predicting ranges R(t) near CPA is given by

R(t) =
[
(x0 − vt)2 +R2

CPA

]1/2
, (2.30)

where x0 represents the distance along the track from CPA to the point where the

track model is initiated, with time t set to zero at this point. The parameter v is the

ship speed (assumed constant over the track segment considered), and RCPA is the

range at CPA.

The track prediction algorithm used 30 estimated range points at > 25 m on

each side of CPA (obtained from the previous linearized inversion step) as data d to

estimate the track model m = [x0, v, RCPA]T . Subsequently, these model parameters

were used to predict 40 range points for the region between ∼25 m before to 25 m

past CPA. The range-prediction approach is illustrated in Fig. 2.5. In this figure, the

inaccurate range estimates near CPA are represented by crosses, the ranges used as

data in estimating the track model are represented by filled circles and the predicted

range points are represented by open circles. An iterative linearized approach is used

to compute the track model parameters m̂ similar to (2.27) but without the use of

prior information since the problem is strongly overdetermined, i.e.,

m̂ = [ATC−1d A]−1ATC−1d [d− d(m0) + Am0], (2.31)

where the columns of the N × 3 Jacobian matrix A in (2.31) are given by

Ai1 =
∂Ri

∂x0
= (x0 − v ti)

[
(x0 − v ti)2 +R2

CPA

]−1/2
, (2.32)

Ai2 =
∂Ri

∂v
= ti (v ti − x0)

[
(x0 − v ti)2 +R2

CPA

]−1/2
, (2.33)

Ai3 =
∂Ri

∂RCPA

= RCPA

[
(x0 − v ti)2 +R2

CPA

]−1/2
, (2.34)

where N represents the 60 range values used to define the track model parameters,

and Cd is a diagonal matrix with variances on the main diagonal corresponding

to standard deviations of 0.5 m (roughly the range uncertainties from the arrival-
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Figure 2.5: Procedure for augmenting the range prior through CPA based on track
predictions. The inaccurate initial range estimates through CPA from arrival-time
inversion are shown by crosses. The more-stable initial range estimates further from
CPA from the same inversion, shown by filled circles, are used to determine the track-
prediction model parameters. The augmented prior estimates near CPA determined
via track prediction are shown by open circles. The final estimates for all ranges
computed by incorporating the augmented prior in the linearized inversion are shown
by the solid line.

time inversion). The resulting MAP parameters for the track-prediction model were

subsequently used to estimate source-receiver ranges R(t) along the track segment

through CPA according to (2.30). The range prior was then updated with the 40

predicted range points near CPA and the prior model uncertainties for these ranges

were reduced to 2 m. Finally, with the updated prior, the linearized Bayesian inversion

of acoustic arrival-time data was re-run. The final inversion results obtained with the

augmented prior near CPA is represented by the line in Fig. 2.5. As shown in this

figure, the final inversion results do not include the unphysical fluctuations in range

that were present in the initial arrival-time inversion (crosses).

2.3.4 Grazing Angles and Uncertainties

The calculation of reflection coefficients requires seabed reflection (grazing) angles as

well as ranges. The grazing angles along the track are computed using ray tracing

and the estimated experiment geometry according to (2.3) evaluated at z = W ,

where W is the water depth at the reflection point. The estimated water depths

for the centre 400 pings are used to calculate the centre 400 grazing angles while
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an average water depth is used for all other grazing angle calculations. The grazing

angle uncertainties, based on experiment geometry uncertainties, are computed using

a Monte Carlo approach. This nonlinear procedure involves drawing a large number of

random samples (1000 was used here) from the experiment-geometry PPD, calculating

grazing angles for each random model, and computing the standard deviations for the

ensemble of grazing angles.

2.4 Results

This section presents the results of the linearized Bayesian inversion of acoustic

arrival-time data for high-precision estimation of experiment geometry and grazing

angles. Fig. 2.6 illustrates the fit to the data for the direct, bottom-reflected, and

bottom-surface-reflected arrivals for the shallow receiver. The figure shows excellent

agreement between observed and predicted arrival times, with small residuals (differ-

ences between observed and predicted data) in all cases. The apparent discretization

in the residuals is due to the finite precision of the measured data (0.01 ms).

Fig. 2.7 shows the results in terms of estimated ranges and grazing angles and

their uncertainties. At the start of the survey, the source-receiver range is found to

be 977 ± 0.23 m and the calculated grazing angle for the bottom-reflected path is

5.2 ± 0.03◦. At CPA, the source-receiver range is 9 ± 1.8 m and the grazing angle

is 84 ± 1◦. The final source-receiver range is 570 ± 0.23 m with a grazing angle of

9 ± 0.05◦. The small jumps in range and grazing angle uncertainties at ping number

744 and 784 are due to the augmented prior used through this portion of the track.

The small jumps in range and grazing angle uncertainties at ping number 550 and 949

are due to the fact that water depths were only estimated for the centre 400 source

transmissions.

The remainder of the inversion results are summarized as follows. The average

source depth along the track determined by inversion is 0.39 m with an uncertainty of

0.49 m (computed as the root mean square (RMS) of the source-depth standard de-

viations along the track). These results are almost identical to the prior information,

indicating that the data had little ability to resolve source depths beyond the prior in

this problem. Nonetheless, incorporating source depths as unknown parameters in the

inversion accounts for source-depth uncertainties in the range and grazing angle uncer-

tainty estimates. The average water depth for the bottom-reflected paths determined

by inversion is 76.1 m with an RMS uncertainty of 0.28 m. No significant variation

of water depth along the track was detected. The mean water depth value agrees
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Figure 2.6: Fit to the data for the direct, bottom-reflected, and bottom-surface-
reflected paths for the shallow receiver are shown in (a), (b), and (c), respectively. In
these panels, filled circles represent observed data and the line is the predicted data
(indistinguishable). (d), (e), and (f) present the corresponding residuals (differences
between observed and predicted data).

with the expected value based on bathymetry measurements taken at the survey site.

The uncertainties are slightly smaller than the prior uncertainties. The depths and

uncertainties for the shallow and deep receivers, determined by inversion, are 60.2 ±
0.05 m and 64.5 ± 0.05 m, respectively. Finally, the synchronization corrections for

the shallow and deep receivers, determined by inversion, are 0.48 ± 6 × 10−5 s and

0.69 ± 6× 10−5 s, respectively.

2.5 Monte Carlo Uncertainty Analysis

The previous section described linearized uncertainty estimates which can be evalu-

ated efficiently from the linearized solution. Monte Carlo [23] appraisal provides an
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Figure 2.7: Results and uncertainties for ranges and grazing angles. (a) and (c)
show the results for ranges and grazing angles, respectively. (b) shows the linearized
uncertainties for range and (d) shows the uncertainties obtained via nonlinear Monte
Carlo approach for grazing angles.

alternate approach which provides fully nonlinear uncertainty estimates, but is much

more computationally intensive. The Monte Carlo approach is applied here to verify

that linearization errors are small in the acoustic inversion results. In the Monte

Carlo approach, the experiment geometry determined by inversion of the measured

data is assumed to define the true model for a synthetic inverse problem, and acoustic

arrival-time data are computed for this synthetic model using ray theory. A series

of independent inversions are then carried out, each with different random errors ap-

plied to the computed data, the prior estimates, and the starting model (these errors

are drawn from Gaussian distributions with standard deviations equivalent to the

corresponding estimated uncertainties of the data and priors from Table 2.1). Error

distributions and standard deviations can then be computed from the ensemble of

inversion results providing fully nonlinear uncertainty estimates.

Fig. 2.8 shows reasonably close agreement between Monte Carlo uncertainty anal-

ysis (Fig. 2.8(a) and 2.8(c)) and inversion results (Fig. 2.8(b) and 2.8(d)) for graz-

ing angles and ranges with estimated one standard-deviation uncertainties on both

quantities indicated by error bars. The RMS error between mean Monte Carlo and

inversion results for range is 0.08 m and for grazing angles is 0.07◦. The RMS stan-

dard deviation for range determined by Monte Carlo is 0.4 m and by inversion 0.4 m.
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Figure 2.8: Monte Carlo uncertainty analysis and inversion results. A comparison
of grazing angle versus range with uncertainties (one-standard deviation error bars)
for the shallow receiver between Monte Carlo uncertainty analysis in (a) and (c) and
inversion results in (b) and (d), for short-range and long-range track segments.

For grazing angles, the Monte Carlo analyses produced close RMS standard devia-

tions of 0.23◦ (computed for linearized inversion) and 0.28◦ (Monte Carlo estimate).

This close agreement indicates that the linearization errors are small and that lin-

earization provides a useful and efficient method for estimating experiment geometry

uncertainties.

Fig. 2.9 compares Monte Carlo uncertainty normalized distributions (computed

from the ensemble of solutions) to the analytic marginal PPDs from the linearized

inversion of the measured data for six selected ranges along the track. The generally

good agreement between nonlinear and linearized analysis indicates that the linearized

Bayesian approach is well justified. Finally, it is worth noting that the Monte Carlo

approach based on 1000 iterations took roughly 1000 times longer than the linearized

inversion in computing uncertainty estimates.
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Figure 2.9: Comparison of Monte Carlo uncertainty distributions to analytic marginal
probability densities from the linearized inversion of measured data (smooth curves)
for six selected ranges. The negative ranges represent source-receiver ranges before
CPA (i.e., inbound leg).

2.6 Summary and Discussion

This chapter presented linearized Bayesian inversion of acoustic arrival-time data

for high-precision estimation of experiment geometry and grazing angles and uncer-

tainties at the SWAMI site. The approach is based on inversion of the acoustic

ray-tracing equations accounting for uncertainties in the data and prior estimates

for source-receiver ranges, source depths, receiver depths, water depths for bottom-

reflected paths, and receiver synchronization corrections. The Bayesian formulation

incorporates prior estimates from GPS and bathymetry measurements. Track predic-

tions are used to provide improved range priors near CPA where the data information

is low. Posterior uncertainties are estimated efficiently from the linearized model co-

variance matrix. The model parameters are used to calculate grazing angles along the

track with angle uncertainties determined by Monte Carlo methods. The uncertain-

ties obtained using analytic linearized estimates for the model parameters are verified

with a fully nonlinear Monte Carlo appraisal procedure.

The high-precision estimation of experiment geometry and uncertainties are re-

quired for reflection-coefficient measurements and Bayesian geoacoustic inversion of
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reflection-coefficient data at the New England Mud Patch. However, the methods pre-

sented here are general and can be used in other applications where accurate source

and receiver locations and/or experiment geometry are required.
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Chapter 3

Trans-dimensional Bayesian

Geoacoustic Inversion of Reflection

Coefficients at the New England

Mud Patch

This chapter presents nonlinear Bayesian geoacoustic inversion for fine-grained/cohes-

ive sediments recorded in the U.S. Office of Naval Research (ONR) Seabed Charac-

terization Experiment 2017 (SCBEX) at the New England Mud Patch. In particular,

the inversion is applied to high-resolution broadband reflection-coefficient data from

two sites of contrasting mud-layer thicknesses. Trans-dimensional (trans-D) inversion,

sampling over an unknown number of seabed interfaces and parameters of a zeroth-

or first-order autoregressive error model, is employed with forward modelling based

on spherical-wave (full-wave) reflection coefficients. The inversion provides marginal

posterior probability profiles for Buckingham’s viscous grain-shearing (VGS) param-

eters: porosity, grain-to-grain compressional modulus, material exponent, and com-

pressional viscoelastic time constant as a function of depth in the sediment. The

VGS parameters are used to compute dispersion relationships for each layer in the

model to yield compressional-wave velocity and attenuation as functions of frequency,

as well as marginal posterior probability profiles for compressional-wave velocity and

attenuation at different frequencies, and density. Results of the geoacoustic inversion

are compared to independent measurements of sediment properties collected at the

experiment sites.

The data presented here were collected at sea by Charles W. Holland, who also

computed the reflection coefficients using previously-developed methods [21]. Jan
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Dettmer provided the computer algorithms used in carrying out the trans-D inversion.

The author of this thesis further processed the frequency-averaged data, carried out

the inversions to produce the results presented here, and wrote the paper on which

this chapter is based.

3.1 Introduction

Inferring seabed geoacoustic model parameters from ocean acoustic measurements

has received considerable attention over the years, e.g., [49–53]. This approach rep-

resents an economical alternative to direct measurements (e.g., coring) with many

geotechnical, geologic, and sonar applications. However, geoacoustic inversion re-

quires solving an inherently nonunique, nonlinear inverse problem, and necessitates

rigorous estimations of data and model uncertainties, e.g., [10, 11, 32, 37]. As such,

two of the main objectives of SBCEX at the New England Mud Patch, a major col-

laborative study funded by ONR, are to quantify uncertainties in seabed parameters

estimated by geoacoustic inversion and assess the resulting geoacoustic models and

inversion methods [17]. This chapter applies a trans-D Bayesian geoacoustic inversion

of seabed reflection-coefficient data for fine-grained/cohesive (muddy) sediments for

two locations at the New England Mud Patch.

Reflection coefficients represent the ratio of the amplitudes of a reflected wave to

a wave incident on an interface separating two media of different physical proper-

ties [2], and are a highly informative measure of the effect of the bottom on sound

propagation. The measurement geometry for the data considered here involved an

impulsive broadband acoustic source towed near the surface of the water, and two

omni-directional receivers moored far enough above the seabed to prevent interference

from direct- and bottom-reflected acoustic paths. The reflection coefficients are com-

puted from time-windowed acoustic arrivals and corrected for various experimental

effects (e.g., source directivity, geometric spreading, and absorption) [21,22].

In a Bayesian inversion formulation, the statistical distribution of the data errors,

including both measurement and theory errors, must be specified, but is often not a

well known a priori. Moreover, the theory errors (e.g., due to model parameterization

and approximations of the forward problem) are generally difficult to estimate inde-

pendently and can strongly influence model uncertainty estimates. For example, the

model parameterization (e.g., number of seabed interfaces), if under-parametrized,

can lead to under-estimating uncertainties [14]. Conversely, if the model parame-

terization is over-parameterized, the model can over-fit the data and over-estimate
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uncertainties. In many cases, lack of knowledge suggests that a simple error distri-

bution (e.g., Gaussian) be assumed, with statistical parameters estimated from the

data. This chapter applies a trans-D Bayesian formulation of the inverse problem

to sample the posterior probability density (PPD) of geoacoustic parameters for an

unknown number of seabed interfaces and parameters of a zeroth- or first-order au-

toregressive error model [10, 11, 32, 37]. The unknown standard deviations of the

assumed Gaussian distributed errors plus coefficients of the autoregressive model of

error correlations are sampled explicitly as additional (nuisance) parameters in the

inversion. This approach provides marginal posterior probability profiles for geoa-

coustic parameters with uncertainties that include the model parametrization, and

accounts for error covariance, avoiding over- or under-parameterizing the error model.

The trans-D PPD is sampled numerically using reversible-jump Markov-chain

Monte Carlo (rjMCMC) methods [33, 34] that jump between subspaces of differ-

ent dimensions (number of parameters) using a birth-death scheme to add/remove

interfaces [35]. Fixed-dimensional perturbation steps are proposed in a principal-

component (PC) parameter space providing both directions and length scales for

effective parameter updates [37]. Parallel tempering (i.e., running a sequence of in-

teracting Markov chains in which the likelihood functions are successively relaxed) is

applied to improve chain mixing within dimensions, and to increase the acceptance

rate of jumps between dimensions [16,36].

Given the experiment geometry, data prediction requires the computation of

spherical-wave (full-wave) reflection coefficients, which is carried out using plane-

wave decomposition in the Sommerfeld integral [10, 11]. In this chapter, the esti-

mated model consists of homogeneous layers (over a semi-infinite halfspace), with

each layer characterized by VGS [24–26] parameters: porosity, grain-to-grain com-

pressional modulus, material exponent, and compressional viscoelastic time constant.

The underlying assumption of VGS theory is that unconsolidated marine sediments

can be considered as viscous fluids containing sediment grains in contact [24,25]. VGS

theory predicts frequency dependence similar to Biot’s theory at low to intermedi-

ate frequencies, but the physics of dispersion differ. Grain-to-grain shearing and the

viscous losses of the very thin pore fluid layer at the grain-to-grain (micro) contacts

describe dispersion according to VGS theory, whereas only viscous losses associated

with the movement of the pore fluid through the mineral structure explain dispersion

according to Biot theory [24–27].

The remainder of this chapter is organized as follows: Section 3.2 describes the

experiment and data collection (Section 3.2.1), and data processing (Section 3.2.2).
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Section 3.3 presents the theory of the forward model involving VGS (Section 3.3.1)

and spherical-wave reflection-coefficient calculations (Section 3.3.2), and the Bayesian

trans-D inversion formulation (Section 3.3.3) including likelihood function (Sec-

tion 3.3.4) and parallel tempering (Section 3.3.5). The inversion implementation and

results are presented in Section 3.4. Finally, Section 3.5 summarizes and discusses

this work.

3.2 Experiment and Data

This section describes the experiment geometry, data collection and data processing

common to both the Shallow Water Acoustic Measurement Instrument (SWAMI) and

Piston Core 52 (PC52) sites at the New England Mud Patch.

3.2.1 Experiment

The high-resolution, wide-angle seabed reflection data were collected in late March,

2017, during SCBEX at the New England Mud Patch. This region is characterized by

a relatively smooth, flat seabed with pre-dominantly silt-sized particles. The survey

geometry involved a ship-towed broadband Uniboom source and two bottom-moored

omni-directional receivers. The source was mounted to a∼1×2 m catamaran deployed

roughly 30 m aft of the ship, towed at a depth of ∼0.4 m, and emitted a short pulse

(<1 ms) with a broad bandwidth (0.1–10 kHz) every second. The acoustic data

were recorded by the two receivers positioned at nominal elevations of 11 and 15 m,

far enough above the seabed to prevent interference between the direct and bottom-

reflected acoustic arrivals. The ship transited as slowly as practical (roughly 3 knots

or 1.5 m/s) while navigating along a radial track with the track centre intended to

be directly over the vertical array position. More precisely, the SWAMI site data

were collected March 31, 2017, at 40.4614◦N, −70.5753◦W in ∼76 m of water, and

the PC52 site data were collected on March 28, 2017, at 40.4838◦N, −70.7469◦W

in ∼77 m of water. At both sites, conductivity-temperature-depth casts measured

nearly isothermal water column sound-speed profiles around 1473 and 1470 m/s at

the SWAMI and PC52 sites, respectively.

Two independent surveys of the New England Mud Patch were conducted in

2015 and 2016 in support of SCBEX [19]. In 2015, a dense (∼250 m line spacing)

chirp seismic reflection survey produced two-way-travel-times (TWTT) interpolated

over the approximately-even grid of measurements. These TWTT can be used with



30

Figure 3.1: Seabed reflection-coefficient data averaged across frequency using 1/15th

octave bands, and angle averaged and interpolated over 0.75◦ evenly-spaced angular
bins at the (a) SWAMI site and (b) PC52 site.

sediment velocities to estimate interface depths. The following year, a core survey,

collected for engineering/geology purposes, characterized other sediment properties

(e.g., density and porosity) that can be compared to inversion results. Note, the

TWTT data for the PC52 site was not available at the time of this work.

3.2.2 Data Processing

First, the linearized ray-based inversion of acoustic travel-time data for high precision

experiment geometry and uncertainties described in Chapter 2 was performed for both

sites. The estimated high-precision experiment geometries were used in computing

grazing angles along the survey tracks, with uncertainties computed using Monte

Carlo methods. Subsequently, the reflection-coefficient data (as a function of grazing

angle and frequency) were computed from time-windowed direct and bottom-reflected

arrivals and corrected for experimental effects including source directivity, geometric

spreading, and absorption in the water [21, 22]. The bottom response was time-

windowed to ∼16 and 14 m depth below the seafloor at the SWAMI and PC52 sites,

respectively.

The reflection-coefficient data inverted here were computed using acoustic time

series from the shallow receiver at both sites. The reflection coefficients were frequency

averaged over 1/15th octave bands, and angle averaged and interpolated over 0.75◦

evenly-spaced angular bins. Moreover, reflection coefficients > 1.4 (outliers) were

excluded. For the SWAMI site, a total of 46 reflection-coefficient data for grazing
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angles between 25◦ and 60◦ at each of nine frequency bands selected from 400 to

1200 Hz are considered in this chapter. For the PC52 site, 42 data for grazing angles

between 29◦ and 60◦ at each of nine frequency bands chosen between 400 to 1300 Hz

are used here. The angular ranges were selected to remove high-noise levels and

low information content in reflection-coefficient data at low- and high-grazing angles,

respectively.

The reflection-coefficient data at all frequencies for both sites are shown in Fig. 3.1.

The constructive/destructive interference from up- and down-going waves between the

water-sediment interface and deeper interfaces causes the interference patterns shown

in the figure. At the SWAMI site (Fig. 3.1(a)), the critical angle [2] is observed at

approximately 27◦, below which there is high (near unity) reflectivity.

3.3 Forward and Inverse Theory

This section provides an overview of the forward model involving VGS and spherical-

wave reflection-coefficient calculations, and the Bayesian trans-D inversion method

applied in this chapter.

3.3.1 Sediment Model: Viscous Grain-shearing

The VGS theory is based on the assumption that unconsolidated marine sediments

can be considered as a viscous fluid containing sediment grains in contact [24,25]. The

assumed bonding/loss mechanisms are due to grain-to-grain shearing (i.e., friction)

and fluid flow around the grains in contact (i.e., viscosity). The VGS parameteriza-

tion used here for geoacoustic inversion consists of a set of parameters which vary

from layer to layer and another set of parameters which are taken to be layer/depth

independent (i.e., a single value for all sediment layers) [10,28]. The layered parame-

ters include porosity φ, grain-to-grain compressional modulus γp, material exponent

n, and compressional viscoelastic time constant τp. The time constant is an impor-

tant parameter as it governs the transition between the two bonding/loss mechanisms

(i.e., viscous and frictional losses) which cause different attenuation-frequency depen-

dencies. The depth-independent parameters include interstitial fluid density ρw and

bulk modulus κw, and granular density ρg and modulus κg. These depth-independent

parameters are reasonably well known and therefore constrained by uniform priors,

representing uncertainties of the expected values to take these into account in the

inversion [10,28].
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The bulk density ρ0 and bulk modulus κ0 of the sediment may be expressed in

terms of the mean of the water and grain properties weighted by porosity, i.e., [24]

ρ0 = φρw + (1− φ)ρg, (3.1)

1

κ0
= φ

1

κw
+ (1− φ)

1

κg
. (3.2)

The compressional-wave velocity of an equivalent suspension is given by the Mallock-

Wood approximation [12,28]

c0 =

√
κ0
ρ0
. (3.3)

The dimensionless grain coefficient χ is defined as [25]

χ =
γp + (4/3) γs

ρ0 c20
, (3.4)

where γs is the grain-to-grain shear modulus. The sediment compressional-wave ve-

locity and attenuation at angular frequency ω = 2πf (where f is frequency) are

then [25,26]

cp =
c0

Re

[
1 + χ(jωT )n

(
1 + 1

jωτp

)n−1]−1/2 , (3.5)

αp =
ω

c0
Im

[
1 + χ(jωT )n

(
1 +

1

jωτp

)n−1]−1/2
, (3.6)

where Re and Im represent real and imaginary parts, respectively, j =
√
−1 is the

imaginary unit, and T = 1 s is an arbitrary time introduced to avoid awkward units

in the terms that are raised to a fractional power.

The VGS theory implemented here in fact follows a modified form of Buckingham’s

VGS(λ) theory [26]. The theories differ only when considering shear wave properties.

In this work, the grain-to-grain shear modulus γs in (3.4) is not inferred but rather

approximated by [26,28]

γs =
γp0
10

[
(1− φ)ug

(1− φ0)ug0

]2/3
, (3.7)

where

γp0 = γp

[
(1− φ)ug

(1− φ0)ug0

]−1/3
. (3.8)
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In (3.7) and (3.8), the terms φ0 = 0.377 and ug0 = 10−3 are fixed, and the mean grain

size ug is given by

ug =
2∆ (2B − 1)

1−B
, (3.9)

where ∆ = 10−6 represents an approximation to the mean roughness of the surface

of the grains, and

B =

(
1− φ

1− φmin

)1/3

, (3.10)

where φmin = 0.37 represents the minimum porosity in coarse-grained sands [24].

The VGS parameters and dispersion relationships given by (3.5) and (3.6) can

be used to compute compressional-wave velocities and attenuations at various fre-

quencies to investigate dispersion for each layer in the sediment model, as well as the

parameters of a fluid model of the sediments.

3.3.2 Forward Modelling: Spherical-wave Reflection Coeffi-

cients

This section summarizes the reflection-coefficient forward model used in the inversion

algorithm. Here, the forward model computes spherical-wave (full wave) reflection

coefficients Rs as required due to the experiment geometry and source-frequency

bandwidth [10,11,29,54]. Accordingly, predicted data for a geoacoustic model m are

computed by scaling the acoustic pressure by the Green’s function along the specular

path (of length D) and accounting for the source beam-pattern S [54]

Rs(θ, f, zt,m) =
jkD

ejkD S(θ, f)

∫ π/2−j∞

0

S(θ′, f) J0(k r cosθ′) e−jkztsinθ
′

×Rp(θ
′, f,m) cosθ′ dθ′, (3.11)

where θ represents the specular reflection angle for a given offset, zt represents the sum

of the two distances from the source and the receiver to the seabed, k is the wavenum-

ber, Rp represents the plane-wave reflection coefficient computed recursively, and J0

is the zeroth-order Bessel function. The integral in (3.11) is solved numerically using

Levin integration [11] and evaluated for each frequency and angle considered in the

inversion. This computationally-intensive forward model is implemented massively

in parallel using a compute unified device architecture on graphics processing units

(GPUs), greatly reducing computation time [10,11].
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3.3.3 Trans-dimensional Bayesian Formulation

The trans-D inversion formulation applied here is a generalization of the fixed-D

problem that includes the number of model parameters as an unknown in the prob-

lem [33–35, 37]. In this chapter, the inversion samples probabilistically over an un-

known number of sediment-layer interfaces and parameters of a zeroth- or first-order

autoregressive error model. Consider d and m to be vectors of data and model

parameters, respectively, and hyper-parameter k the unknown number of sediment

interfaces. Assuming all of these to be random variables, they are related through

Bayes’ rule for a hierarchical model [33, 34]

P (k,mk|d) =
P (k)P (mk|k)P (d|k,mk)∑

k′∈K

∫
Mk′

P (k′)P (m′k′|k′)P (d|k′,m′k′) dm′k′

, (3.12)

whereMk represents the Mk-dimensional parameter space defined for k and K is the

set of possible values for k. In (3.12), P (k)P (mk|k) is the prior probability of the state

(k,mk), and P (d|k,mk) is the conditional probability of d given (k,mk), which is

interpreted as the likelihood L(k,mk). P (k,mk|d) is the PPD representing the total

information about the model including both the data and prior information. This

PPD is defined over the trans-D model space which represents the union of all fixed-

D spaces specified by K, i.e., ∪k∈K
(
{k} × RMk

)
. The denominator (normalization)

in (3.12) represents the total evidence over all models specified by K.

The trans-D PPD can be approximated by the numerical sampling method of

rjMCMC, which transitions (or jumps) between system representations specified by

k for models of dimension Mk while maintaining reversibility (detailed balanced)

according to [33,34]

P (k,mk|d)T (k′,m′k′ |k,mk) = P (k′,m′k′|d)T (k,mk|k′,m′k′). (3.13)

In (3.13), T (k′,m′k′|k,mk) represents the transition probability to go from the current

model (k,mk) to a proposed (perturbed) model (k′,m′k′). The proposal can be taken

to be

T (k′,m′k′ |k,mk) = Q(k′,m′k′|k,mk)A(k′,m′k′ |k,mk), (3.14)

where Q is an arbitrary (but fixed) proposal probability density and A is the ac-

ceptance probability of a proposed transition. To satisfy reversibility, in rjMCMC,

transitions are accepted with a probability given by the Metropolis-Hastings-Green
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criterion [33,34]

A(k′,m′k′ |k,mk) = min

[
1,
P (k′,m′k′)

P (k,mk)

L(k′,m′k′)

L(k,mk)

Q(k,mk|k′,m′k′)
Q(k′,m′k′|k,mk)

|J|

]
, (3.15)

where |J| is the determinant of the Jacobian matrix ensuring proper matching of di-

mensions between (k,mk) and (k′,m′k′). The most commonly-applied formulation of

rjMCMC adds and removes interfaces (referred to as birth and death steps, respec-

tively) such that the determinant of J is unity [35,55].

The birth-death rjMCMC algorithm for the depth-dependent seabed model in this

chapter is based on adding or removing sub-bottom interfaces which define homoge-

neous layers. The parameters consist of k interface depths zk above a (fixed) bounding

depth zb and geoacoustic parameters gi, i = 1, . . . , G for each of the k + 1 layers (k

finite layers over a semi-infinite halfspace). The bounding depth zb is pre-selected

such that the data are insensitive to variations below this depth. The priors for gi are

taken to be bounded uniform distributions over physically-realistic values; the prior

for interface depths is uniform over [0, zb]; and the prior for k is represented by a

Poisson distribution, i.e., [56]

P (k) =
λke−λ

k!
, (3.16)

where λ is a real (fixed) positive number and P (k) represents the probability of k

interfaces bounded between [1, kmax].

The Markov chain is constructed by one of three types of steps (chosen with

equal probability) at each iteration: birth, death, or perturbation. A birth step

proposes adding a layer by uniformly sampling a depth on [0, zb] and inserting an

interface at that depth. The physical properties of the new layer are chosen from the

prior. A death step proposes removing an interface chosen at random and setting the

parameters of the resulting (thicker) layer to either those above or below the interface

being removed. In a perturbation step, the model parameterization is unchanged but

perturbations are proposed in a PC parameter space where the axes align with the

dominant correlation directions (i.e., PC parameters are uncorrelated). To do so,

the PC transformation and appropriate perturbation length scales are obtained by

eigenvector decomposition of the unit-lag covariance matrix (i.e., covariance averaging

over the differences between successive models along the Markov chain) [37]

C1
m =

S−1∑
s=1

(ms+1 −ms)(ms+1 −ms)
T , (3.17)
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where S indicates the number of samples averaged over and (·)T represents transpose.

When a birth or death step results in a model with a value of k which has not been

encountered previously, a linearized approximation to the model covariance matrix

Cm = [ATC−1d A + C−1p ]−1, (3.18)

is computed at the current model ms and applied initially. In (3.18), A is the sensi-

tivity (Jacobian) matrix of partial derivatives evaluated at ms, Aij = ∂di(ms)/∂mj,

and Cp is the prior model covariance matrix representing a Gaussian prior density

designed to approximate the uniform bounded priors (i.e., prior bound widths of

∆mi are approximated by taking Cp to be a diagonal matrix with variances equal to

those of uniform distributions,
(
∆mi

)2/
12). Subsequently, the initial estimate for the

model covariance matrix (3.18) is updated with the unit-lag covariance matrix (3.17)

estimated from MCMC sampling, with the proposal density updated periodically

(typically at intervals of hundreds to thousands of MCMC moves), which represents

a diminishing adaptation [37,57].

The orthogonal transformation (rotation) between physical parameters m and PC

parameters m̃ is [23]

m̃ = UTm, m = Um̃, (3.19)

where U is the column-eigenvector matrix of the model covariance matrix

Cm = U W UT , (3.20)

and W = diag[wi] is the eigenvalue matrix, with wi representing the variance pro-

jected along eigenvector ui (i.e., the variance of PC parameter m̃i). PC parameters

are perturbed individually, with the perturbation for m̃i drawn from a Cauchy pro-

posal distribution with scale factor wi, and the perturbed models rotated back to

physical space for likelihood evaluation. Thus, the PC decomposition provides both

directions and length scales for effective parameter updates.

All proposed birth, death, and perturbation steps are accepted with probability

given by the Metropolis-Hastings-Green criterion (3.15). The acceptance criterion is

applied by drawing a random number ξ from a uniform distribution on [0, 1] and

accepting the new model (k′,m′k′) if ξ < A(k′,m′k′ |k,mk) as computed from (3.15).

If the proposed step is rejected another copy of the current model is included in the

Markov chain. Given the use here of uniform priors, symmetric parameter proposal
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distributions, and geoacoustic parameters proposed from the prior in birth steps, the

acceptance probabilities in (3.15) simplify to the likelihood ratio [37]

A(k′,m′k′|k,mk) = min

[
1,
L(k′,m′k′)

L(k,mk)

]
, (3.21)

for all steps.

3.3.4 Likelihood Function

The likelihood function L(m) requires specifying the statistical distribution of the

data errors including both measurement and theory errors. In many cases, the data

uncertainty distribution is not well known a priori and the lack of specific informa-

tion suggests that a simple distribution (e.g., Gaussian) be assumed (supported by

the Central Limit Theorem and maximum entropy [56]), with statistical parameters

estimated from the data. Assuming Gaussian-distributed errors, the general form of

the likelihood is [23]

L(m,Cd) =
1

(2π)N/2|Cd|1/2
exp

[
− 1

2
r(m)TC−1d r(m)

]
, (3.22)

where r(m) = d − d(m) are data residuals (i.e., difference between measured and

predicted data for model m). The data covariance matrix Cd is often unknown.

Here we consider a first-order autoregressive AR(1) data error model to charac-

terize the residual covariance [15, 31, 32]. The AR(1) error model is equivalent to

a Toeplitz covariance matrix with exponentially decreasing off-diagonal terms [58].

Assuming ND subsets of the N data (e.g., ND different frequencies for reflection-

coefficient data), with Ni data, standard deviation σi, and AR(1) parameter ai for

the ith subset, the likelihood becomes

L(m,σ) =
1

(2π)N/2
∏ND

i=1 σ
Ni
i

exp

[
−

ND∑
i=1

Ni∑
j=1

| r(t)ij (m)|2

2σ2
i

]
. (3.23)

For the AR(1) hierarchical model, r
(t)
ij (m) in (3.23) represents the total data residuals

given by

r
(t)
ij (m, a) =

{
dij − dij(m), j = 1,

dij − dij(m) + ai

[
di(j−1) − di(j−1)(m)

]
, j = 2, . . . , Ni.

(3.24)
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The total data residuals are assumed to be uncorrelated Gaussian distributed with

standard deviations σi, assumptions that are checked a posteriori by considering the

data residuals. For unknown standard deviations it is straightforward to sample (3.23)

over σi using MCMC methods [37].

The AR(1) coefficients are sampled as unknowns on the interval [−0.5, 0.99], ac-

counting for the AR-estimate uncertainty in the model when required. AR(1) coeffi-

cients are defined mathematically on the interval ±1, where negative values indicate

anti-correlated errors. However, strongly anti-correlated errors are not generally found

in natural processes and hence a cut-off at −0.5 is applied. Utilizing both trans-D

sampling and hierarchical error modeling provides a rigorous and general inversion

approach.

3.3.5 Parallel Tempering

A challenge in trans-D inversion is achieving a reasonable acceptance rate for dimen-

sion jumps and complete sampling of potentially multi-modal structure within fixed-

D subspaces. An effective approach is parallel tempering [10, 16, 37] which applies

a sequence of interacting Markov chains that sample the PPD at different temper-

ing parameter values 0 < β ≤ 1 (β is the reciprocal of what is sometimes referred

to as sampling temperature). The acceptance criterion (3.21) for birth, death, and

perturbation moves is relaxed by raising the likelihood to the power β, [36, 37]

A(m′|m) = min

[
1,
Lβ(m′)

Lβ(m)

]
, (3.25)

(models m and m′ may be of different dimensions, but as this does not affect parallel

tempering the distinction is not made here to simplify notation). The low-β chains

have an increased probability of accepting lower-likelihood models, providing a wide

search of the parameter space and increasing the possibility of bridging isolated modes.

Conversely, high-β chains provide efficient local sampling. Probabilistic interchange

(swaps) between chains of different temperings ensures high-β chains can access all

regions of the space. To define the swap acceptance probability, consider two Markov

chains with temperings βi and βj and current models mi and mj, respectively. For

randomly-chosen chains, the proposal is symmetric and the acceptance probability
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for going from the current joint state to the proposed (swap) state is [37]

A
(
(mj, βi), (mi, βj)|(mi, βi)(mj, βj)

)
= min

[
1,

(
L(mi)

L(mj)

)(βj−βi)]
. (3.26)

Since chains at β < 1 provide biased sampling of the PPD (i.e., sample from

P (m)Lβ(m)), only the samples collected by the β = 1 chains(s) are retained.

Although the computational expense increases linearly with the number of parallel-

tempering chains, the rate of PPD convergence may substantially outweigh this

factor for suitably chosen temperings [16, 37]. Also, this approach provides much

greater assurance that the PPD has been properly explored in sampling.

Lastly, a tempering-dependent proposal is applied to match the tempered accep-

tance criterion for each Markov chain. In other words, the likelihood (3.22) is raised

to the power β to become [37]

Lβ(m) ∝ exp

[
− 1

2
r(m)T

(
Cd

β

)−1
r(m)

]
, (3.27)

which is equivalent to dividing the data covariance matrix by β. Subsequently, the

starting covariance estimate used to initialize the PC proposal for tempering β is

taken to be

Cm(β) =

[
AT

(
Cd

β

)−1
A + C−1p

]−1
. (3.28)

After this initialization, the unit-lag covariance matrix C1
m(β) is computed from the

rjMCMC sampling with tempering β and used to replace the initial linearized ap-

proximation. This procedure takes advantage of both the parallel tempering and PC

proposal schemes described above, and is computationally inexpensive.

3.4 Results

This section presents results of trans-D Bayesian inversion of seabed reflection-

coefficient data for geoacoustic parameters and uncertainties for two sites at the

New England Mud Patch. For both data sets, trans-D inversions are carried out

in parallel on 19 central processing units (CPUs), i.e., one master (host) and 18

workers, with the workers accessing two GPUs in a staggered fashion to hide the

communication overhead [59]. A total of 18 Markov chains (one chain per worker)

are simulated with logarithmically-spaced tempering values β, including four β = 1
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Table 3.1
Summary of prior parameter bounds for trans-D inversion.

Model parameter (Units) Lower bound Upper bound
Error model parameters
Data standard deviation σi 0.03 0.10
Autoregressive coefficients ai −0.50 0.99
Depth-dependent model parameters
Porosity φ 0.22 0.85
Grain-to-grain comp. modulus γp (Pa) 7.943× 106 3.981× 108

Material exponent n 0.0398 0.3981
Viscoelastic time constant τp (ms) 0.03 50
Depth-independent model parameters
Fluid density ρw (g/cm3) 1.024 1.028
Granular bulk modulus κg (Pa) 3.550× 1010 3.650× 1010

Granular density ρg (g/cm3) 2.60 2.64
SWAMI fluid bulk modulus κw (Pa) 2.225× 109 2.235× 109

PC52 fluid bulk modulus κw (Pa) 2.215× 109 2.225× 109

chains (unbiased).

An adaptive tempering schedule based on swap acceptance rates is applied to the

first 50,000 samples. The average swap acceptance rate is computed for every 5,000

samples (acceptance rates are only assessed between β = 1 and the adjacent chain).

The tempering parameter values are updated if the average swap acceptance rate is

less than 0.2 or greater than 0.6. The tempering adaptation occurs on the master

and the updated tempering schedule is sent to all workers thereafter. The tempering

parameter values are fixed after 50,000 samples, which is discarded as burn-in.

Predicted spherical-wave reflection coefficients are computed for all grazing an-

gles considered for nine centre frequencies, with the data at each centre frequency

representing a seven-point average over a bandwidth of 1/15 the centre frequency (in

keeping with the way the measured reflection-coefficient data were processed).

Trans-D inversions are all initiated from a simple one-interface, layer-over-a-

halfspace model. Bounded uniform priors are used for all model parameters with the

bounds used in this chapter given in Table 3.1. The results presented here are from

100 hours of parallel-computing time and 105 samples at β = 1, after chain thinning

and removing the first ∼5 × 104 samples from the start of the chains as burn-in.

Chain thinning is applied by only saving every 30th sample of the β = 1 chains for

inference; i.e., the number of samples presented represents 1/30 of the total samples

accepted by the algorithm. Convergence of the inversions was assessed by comparing
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Figure 3.2: Trans-D marginal posterior probability profiles for interface depths and
VGS parameters with plot boundaries representing prior bounds at the SWAMI site.
The probabilities for the parameter profiles are normalized independently at each
depth for display purposes. Porosity from two cores taken near the SWAMI site are
plotted (dashed lines) on the porosity profile.

marginal posterior probability profiles computed for the first and second halves of

the 105 samples. The profiles in all cases were virtually identical with no noticeable

differences, indicating the PPD ceased to change significantly and convergence was

achieved.

SWAMI Site

Two inversions with different priors on the number of interfaces k were considered at

the SWAMI site. The first applied a prior on k characterized by a Poisson distribution

(3.16) with λ = 3 as well as a uniform bounded prior on [1, kmax] with kmax = 20.

The second applied a uniform bounded prior with kmax = 6 but no Poisson prior

distribution. The results from the Poisson prior and wide bounds on k are presented

first.

The inversion results for the VGS model parameters are shown in Fig. 3.2 and

Fig. 3.3. The estimated depth-dependent parameters are illustrated in terms of

marginal posterior probability profiles in Fig. 3.2, where warmer colours indicate
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Figure 3.3: Marginal posterior probabilities for VGS depth-independent parameters
with plot boundaries representing prior bounds at the SWAMI site.

regions of higher probability. Porosity φ is well resolved with comparatively smaller

uncertainties (relative to its prior bounds) than the other parameters. The porosity

profile indicates three general regions: (1) an upper region with a slow rate of gen-

eral decrease in φ down to a depth of ∼9.5 m, (2) a steeper transition to smaller

φ values from 9.5–12 m, and (3) a slow rate of general decrease in porosity below

12 m. A summary of mean porosities and 95% highest-probability density credibility

intervals (CI) is given in Table 3.2 for selected depths. The grain-to-grain compres-

sional modulus γp, material exponent n and compressional viscoelastic time constant

τp are reasonably well determined relative to their priors. The VGS profiles include

two dubious layers extending from about 1.5–3.5 and 12–13 m depth. For these lay-

ers φ reverses its overall trend, and γp makes abrupt changes to very high values.

These may represent unphysical layers, possibly caused by theory errors, and will be

discussed later.

The porosity profile is compared to values obtained from two piston cores taken

near the SWAMI site (PC17 and PC33). The two cores both show relatively uniform

porosities of ∼0.57 over their 7 m length. The inversion results are also relatively

uniform over this depth with a porosity of about 0.65, except for the potentially

unphysical layer. The small differences between cores and profile may be due to the

fact that the cores may not have captured the correct amount of water in the fine-
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Table 3.2
Summary of mean parameters and 95% CI at selected depths for the SWAMI site.

φ cp (m/s) ρ0 (g/cm3) αp (dB/m/kHz)
Depth (m) Mean CI Mean CI Mean CI Mean CI

0 0.64 [0.62, 0.65] 1454 [1444, 1454] 1.59 [1.57, 1.60] 0.018 [0.005, 0.059]
5 0.65 [0.63, 0.67] 1454 [1448, 1460] 1.58 [1.55, 1.62] 0.028 [0.008, 0.070]

8.5 0.58 [0.55, 0.60] 1491 [1481, 1500] 1.70 [1.66, 1.75] 0.039 [0.012, 0.110]
11.5 0.27 [0.26, 0.28] 1795 [1770, 1817] 2.18 [2.15, 2.20] 0.022 [0.005, 0.083]
16 0.25 [0.23, 0.27] 1856 [1833, 1873] 2.22 [2.19, 2.25] 0.086 [0.012, 0.340]

grained sediments (due to their high permeability) [60]. This potentially inaccurate

measure of water content can affect the calculations of the core porosity and density

data presented here.

The marginal probabilities of the depth-independent parameters shown in Fig. 3.3,

i.e., interstitial fluid density ρw and bulk modulus κw, and granular density ρg and

modulus κg, are essentially flat over prior bounds for all four parameters, indicating

the data have little ability to resolve these model parameters.

The parameters of a fluid model of the sediments, density ρ0, compressional-wave

velocity cp, and attenuation αp, can be computed from the VGS parameters using

(3.1), (3.5), and (3.6), respectively. Marginal posterior probability profiles for the

fluid parameters and interface depths at a frequency of 400 Hz are shown in Fig. 3.4.

The same general depth regions are evident: (1) an upper region with a slow rate

of general increase in cp and ρ0 down to a depth of ∼9.5 m, (2) a steeper transition

to higher cp and ρ0 values from 9.5–12 m, and (3) a slow rate of general increase of

these parameters below 12 m. The compressional-wave attenuation profile is relatively

uniform with somewhat wider uncertainties compared to compressional-wave velocity

and density. The potentially unphysical layers mentioned above manifest themselves

as an anomalous high-velocity/low-density/high-attenuation layer from about 1.5–

3.5 m depth and a low-density/high-attenuation layer from roughly 12–13 m depth. A

summary of mean parameters and 95% CI at selected depths is included in Table 3.2.

The velocities in the upper region are generally low given the relatively-high den-

sity values and previously reported velocity/density relationships for unconsolidated

marine sediments [3, 12, 61]. The density in the upper 7 m region is reasonably con-

sistent with the values obtained from the cores (except for the potentially unphysical

layer). The relatively low, water-like velocities and low attenuations suggest the up-

per region is acoustically transparent which is supported by the critical angle shown

in Fig. 3.1. The critical angle indicates that waves transited the upper region with lit-

tle reflection or attenuation loss to encounter a deeper sediment layer with a velocity
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Figure 3.4: Trans-D marginal posterior probability profiles at 400 Hz for interface
depths and fluid model parameters at the SWAMI site. The probabilities for the
geoacoustic parameter profiles are normalized independently at each depth for display
purposes. Interface estimates from the chirp seismic reflection survey are plotted over
the interface marginal probability densities and densities from core data are plotted
(dashed lines) over the geoacoustic parameter profile. In the interface depth marginal
probability density plot, the upper (dashed) line represents the mud base, the middle
(solid) line represents the sand base, and the lower (dotted) line represents the deep
sand base interface estimates from TWTT data.

faster than that in the overlying region.

The geoacoustic and porosity profiles are indicative of a thick (∼9.5 m) region of

fine-grained sediments (such as mud) over a deeper region of coarse-grained sediments

(sand). Although the trans-D formulation estimates properties of discrete homoge-

nous layers, the geoacoustic and VGS profiles may represent a transition between

sediment types involving a gradient over which the properties change smoothly with

depth. This transition region estimated by trans-D inversion agrees with chirp-seismic

reflection horizon estimates (computed from harmonic-mean velocities and TWTT)

included in Fig. 3.4. The TWTT reflection horizons (from shallowest to deepest) are

the mud base, sand base and deep sand base. The mud base and sand base horizons

are in agreement with the transition region estimated by trans-D inversion of about

9.5–12 m depth.

Fig. 3.5 shows compressional-wave velocity and attenuation as a function of fre-
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Figure 3.5: Dispersion-curve marginal probability distributions for selected (indi-
cated) depths at the SWAMI site.

quency across the band of the measurement frequencies at depths of interest (indi-

cated on the velocity plots). The compressional-wave velocities appear to be essen-

tially unchanged across frequency at all depths, indicating little evidence of dispersion

across the frequency band considered. The compressional-wave attenuation plotted

as log10(αp) is nearly constant over 400–1200 Hz at various depths, suggesting a first

power dependence f 1 of attenuation on frequency in the fine-grained/cohesive sedi-

ments.

The sampling history and distribution of the number of interfaces k and likelihood

values as a function of sample are shown in Fig. 3.6. The sampling history is consistent

with stationary sampling (randomly distributed with no systematic change over a

large number of samples). The k-distribution has uncertainty in number of interfaces

between 6 and 14, with a peak at k = 10 well within the prior bounds.

The fit to the data achieved in the inversion is illustrated in Fig. 3.7 by comparing

measured and predicted reflection coefficients as well as plotting marginal probability

densities for standard deviations at each frequency. The measured reflection coeffi-

cients (crosses) are compared to predicted reflection coefficients (red dots) for a large

ensemble of models drawn randomly from the PPD. The predictions fit the data well
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Figure 3.6: Sampling history and distribution of the number of interfaces k and
likelihood values at the SWAMI site. The prior for k is a Poisson distribution with
λ = 3 and a uniform bounded prior [1, kmax] with kmax = 20.

across all angles and frequencies with the exception of a small number of outliers

(particularly for high reflection coefficients). The estimated standard deviations at

each frequency are generally small, between 0.04 and 0.06.

The order (zeroth or first) of the AR process and the distributions of the AR(1)

coefficients are shown in Fig. 3.8. Five of the nine frequency bands favoured AR(1)

error models (i.e., correlated errors) while one band was strongly AR(0), and three

were seemingly undetermined. These marginals indicate that the data at some fre-

quencies (particularly the lowest three frequencies) contain correlated errors. The

AR(1) coefficient values are usually between 0–0.5.

The assumption of Gaussian-distributed residual errors with correlations described

by a zeroth- or first-order autoregressive process is considered in Fig. 3.9. Histograms

for the ensemble average of the total residual error (3.24) at each frequency are

compared to Gaussian distributions in the upper two rows of this figure. The residuals

at all frequencies appear unimodal, symmetric about zero, and generally Gaussian

distributed with a small number of outliers (as far as four standard deviations).

The narrow-peaked residual autocorrelation functions at each frequency (shown in

the lower two rows of the figure) indicate the residuals at all frequencies are largely

uncorrelated (when covariance is taken into account through the trans-D AR process).

The ensemble residual analysis generally supports the initial assumptions about the

residuals.
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Figure 3.7: Fit to the data achieved at the SWAMI site. The upper two rows compare
observed reflection-coefficient data (crosses) and predicted data for an ensemble of
models (red dots) at each frequency. The lower two rows show marginal probability
densities for the data standard deviations sampled explicitly in the inversion. The
standard deviation plot bounds indicate the uniform prior bounds implemented in
the inversion.
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Figure 3.8: Autoregressive error model at the SWAMI site. The upper row shows
marginal densities for the autoregressive coefficients. The lower row shows the proba-
bilities of having an AR(0) or AR(1) error model (indicated by 0 and 1, respectively)
as determined by the trans-D sampling algorithm.

A second trans-D inversion of the SWAMI data was carried out. In this inversion,

a uniform bounded prior on the interval [1, 6] is applied for the number of interfaces

k. This was carried out because the profiles in Fig. 3.2 and Fig. 3.4 show two layers

at ∼1.5–3.5 and 12–13 m depth with properties that may be unphysical and are

likely due to theory errors that are not properly taken into account. Theory errors

can occur due to approximations and/or assumptions made in the forward problem

(e.g., interface roughness and non-horizontally stratified sub-bottom layers) [62]. To

address these possibly unphysical layers, the number of interfaces resolved by the data

was estimated by considering the Bayesian information criterion (BIC) defined [63]

BIC(k) = −2 loge L(k,mML
k ) + k G logeN, (3.29)

where mML
k represents the maximum-likelihood model, G is the number of parameters

per layer, and N is the total number of data (layer-independent parameters are not

counted here for convenience). The first term on the right side of (3.29) favours high-

likelihood models but is balanced by the second term which penalizes unjustified

free parameters (e.g., too many interfaces). The number of interfaces resolved by

the data estimated by minimizing the BIC was six. The BIC represents a point

approximation of Bayesian evidence and is not a definitive approach to estimating

the number of parameters for nonlinear inverse problems. Nonetheless, it provides a

basis for considering simpler models to address the potentially unphysical layers.

The marginal posterior probability profiles for the VGS and fluid model param-

eters at 400 Hz obtained with a uniform bounded prior distribution for k between
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Figure 3.9: Ensemble residual analysis at the SWAMI site. The upper two rows show
histograms of total data residuals compared to Gaussian distributions. The lower two
rows show residual autocorrelation functions.
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Figure 3.10: Marginal posterior probability profiles for VGS depth-dependent param-
eters with a uniform bounded prior (only) on k at the SWAMI site.

Figure 3.11: Marginal posterior probability profiles at 400 Hz for compressional veloc-
ity, density and log-attenuation as a function of depth in the sediment with a uniform
bounded prior (only) on k at the SWAMI site.
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[1, 6] are illustrated in Fig. 3.10 and Fig. 3.11, respectivey. The profiles display the

same major features (with slightly wider uncertainties) as obtained with the Poisson

prior distribution on k without the potentially unphysical structure shown in Fig. 3.4.

The dispersion-curve marginal probability distributions are nearly identical to those

from the initial inversion but with slightly wider uncertainties (not shown). Further,

the fit to the data, AR(1) error model coefficients, and standard deviations for this

inversion are very similar to those obtained with the Poisson prior for k. These results

highlight the nonunique nature of geoacoustic inverse problems. This simpler model

is presented as an alternate representation of the seabed that may be preferred in

practice.

PC52 Site

As for the SWAMI site, two inversions with different k priors were considered for

the PC52 site. The first applied a prior characterized by a Poisson distribution with

λ = 3 together with a uniform bounded prior on [1, kmax] with kmax = 20. The

second applied a uniform bounded prior on [1, kmax] with kmax = 5 but no Poisson

prior distribution, where kmax was estimated using the BIC. The results from the

Poisson prior and wide bounds on k are presented first.

The inversion results for the VGS model parameters and interface depths in terms

of marginal posterior probability profiles are shown in Fig. 3.12. The porosity φ

profile suggests four general regions: (1) an upper region with a slow rate of decrease

in φ down to a depth of ∼2 m, (2) a steeper transition to smaller φ values between

2–3 m, (3) a generally uniform region (or slight decrease) in φ between 3–11 m,

and (4) a region of highly-variable porosity below ∼11 m, which may be unphysical.

A summary of mean porosities and 95% CI at selected depths is given in Table 3.3.

The grain-to-grain compressional modulus γp, material exponent n and compressional

viscoelastic time constant τp are reasonably well determined relative to their priors,

but are highly variable with depth.

The porosity profile is compared to values obtained from a core (PC52) taken

at the site. The trend of the core porosity agrees closely with the inversion results

with differences in values that may be caused by inaccurate water-content measures.

The upper region at the PC52 site has a comparatively higher porosity than at the

SWAMI site, suggesting a higher content of silt- and/or clay-sized particles at the

PC52 site [6, 64]. The marginal probabilities of the depth-independent parameters

(not shown), are essentially flat over prior bounds for all four parameters.
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Figure 3.12: Trans-D marginal posterior probability profiles for interface depth and
VGS parameters with plot boundaries representing prior bounds at the PC52 site.
The probabilities for the parameter profiles are normalized independently at each
depth for display purposes. Porosity from a core taken at the site is plotted (dashed
line) over the porosity marginal profile.

Marginal posterior probability profiles for the fluid parameters at a frequency of

400 Hz are shown in Fig. 3.13. The same general depth regions are evident: (1) an

upper region with a slow rate of increase in velocity cp and density ρ0 down to a

depth of ∼2 m, (2) a steeper transition to higher cp and ρ0 values between 2–3 m, (3)

a generally uniform region (or slight increase) in these parameters between 3–11 m,

and (4) a region of highly variable properties below ∼11 m. The compressional-

wave attenuation αp profile varies considerably with depth but seems to be centered

about approximately 0.1 dB/m/kHz. A summary of mean parameters and 95% CI

at selected depths is given in Table 3.3.

The density in the upper region is reasonably consistent with the values obtained

from the core (to ∼3 m depth) with excellent agreement in near-surface values. The

decrease in core densities below roughly 3 m depth may be due to core decompression

which can occur in the bottom section of the core. The overall geoacoustic and

porosity profiles are indicative of a thin (∼2 m) region of fine-grained sediments

(such as mud) over a deeper region of coarse-grained sediments (sand).

The PC52 and SWAMI sites have very similar near-surface compressional-wave ve-
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Table 3.3
Summary of mean parameters and 95% CI at selected depths for the PC52 site.

φ cp (m/s) ρ0 (g/cm3) αp (dB/m/kHz)
Depth (m) Mean CI Mean CI Mean CI Mean CI

0 0.72 [0.69, 0.74] 1451 [1434, 1460] 1.47 [1.42, 1.50] 0.077 [0.028, 0.180]
1.5 0.62 [0.60, 0.64] 1464 [1456, 1473] 1.64 [1.60, 1.66] 0.031 [0.012, 0.110]
2.5 0.47 [0.45, 0.48] 1543 [1528, 1550] 1.87 [1.83, 1.89] 0.022 [0.008, 0.060]
4.0 0.29 [0.28, 0.30] 1759 [1751, 1767] 2.15 [2.13, 2.18] 0.034 [0.008, 0.140]
8.5 0.30 [0.29, 0.31] 1751 [1735, 1765] 2.14 [2.11, 2.17] 0.820 [0.450, 1.200]
10 0.24 [0.23, 0.27] 1858 [1826, 1887] 2.23 [2.18, 2.26] 0.190 [0.052, 0.550]

locities of 1451 and 1454 m/s, respectively (see Tables 3.2 and 3.3) and sound-velocity

ratios (between near-surface sediment compressional-wave velocity and bottom-water

velocity) < 1. Although there are small differences in near-surface density values be-

tween the two sites (1.47 and 1.59 g/cm3 at the PC52 and SWAMI site, respectively),

both sites show good agreement with core density data.

Fig. 3.14 shows compressional-wave velocity and attenuation as a function of fre-

quency at selected depths. There is little evidence of dispersion to ∼7.5 m depth

across the frequency band considered (i.e., velocities are essentially unchanged across

frequency) and log10(αp) from 400–1300 Hz is nearly constant at various depths, indi-

Figure 3.13: Trans-D marginal posterior probability profiles at 400 Hz for estimated
compressional velocity, density and attenuation at the PC52 site. Densities from core
data are plotted (dashed lines) over the geoacoustic parameter profile.
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Figure 3.14: Dispersion-curve marginal probability distributions for selected (indi-
cated) depths at the PC52 site.

cating a linear attenuation-frequency dependence. At 10.5 m depth there appears to

be an increase in cp with frequency, although it is not clear that this exceeds uncer-

tainties. Likewise, log10(αp) appears to increase over frequency at a depth of about

10.5 m, suggesting a higher order frequency dependence.

The sampling history and distribution of the number of interfaces k and likelihood

values of the sampled models at PC52 are shown in Fig. 3.15 and are consistent

with stationary sampling. The k-distribution has uncertainty in number of interfaces

between 7 and 18, with a peak at k = 13.

The fit to the data achieved in the inversion is illustrated in Fig. 3.16. The

predicted reflection coefficients generally fit the measured data well across angles

and frequencies, with the exception of 920 Hz where some of the structure of the

measured reflection coefficients at low- and medium-grazing angles are not captured

by the prediction ensemble. The estimated standard deviations at each frequency

are generally small, between 0.04 and 0.05, with the exception of 920 Hz where the

standard deviation is ∼0.07.

The order of the AR process and the distributions of the AR(1) coefficients are

shown in Fig. 3.17. Six of the nine frequency bands favour AR(1) error models while
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Figure 3.15: Sampling history and distribution of the number of interfaces k and
log-likelihood values at the PC52 site. The prior for k is characterized by a Poisson
distribution.

two bands are strongly AR(0), and one is seemingly undetermined, indicating that

the data contain correlated errors at some but not all frequencies.

The assumptions about the residuals are examined by comparing histograms of

the ensemble average of the total residual error to Gaussian distributions, and by

examining residual autocorrelation functions, shown in Fig. 3.18. The residuals at

all frequencies appear generally Gaussian distributed with very few outliers. The

residual autocorrelation functions show narrow peaks at each frequency, suggesting

uncorrelated total residuals.

A second trans-D inversion of the PC52 data was carried out due to the high

variability in parameter estimates (particularly at depth) which suggests the trans-

D inversion may have over-parametrized the model due to unaccounted for theory

errors. In this inversion, a uniform bounded prior on the interval [1, 5] is applied for

the number of interfaces k to constrain structure. The upper bound of this uniform

prior was estimated using the BIC.

The marginal posterior probability profiles at 400 Hz for compressional-wave ve-

locity, density and attenuation obtained with a uniform bounded k prior distribution

are shown in Fig. 3.19. The profiles display four major regions: (1) a uniform low-

velocity and density region to about 2 m depth, (2) a transition region to higher values

in cp and ρ0 from ∼2–3 m, (3) a uniform region between roughly 3–11 m, and (4) a re-

gion of high variability below about 11 m. The profiles also show three dubious layers
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Figure 3.16: Fit to the data achieved at the PC52 site. The upper two rows compare
observed reflection-coefficient data (crosses) and predicted ensembles (red dots) at
each frequency. The lower two rows show marginal probability densities for the data
standard deviations sampled explicitly in the inversion. The standard deviation plots
bounds indicate the uniform prior bounds implemented in the inversion.
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Figure 3.17: Autoregressive error model at the PC52 site. The upper row shows
marginal densities for the autoregressive coefficients. The lower row shows the proba-
bilities of having an AR(0) or AR(1) error model (indicated by 0 and 1, respectively)
as determined by the trans-D sampling algorithm.

with potentially unphysical structure: a thin, low-density/high-attenuation layer at

∼2 m depth; a thin, low-velocity/low-density/high-attenuation layer at about 11 m

depth; and a high-velocity/low-density/high-attenuation layer below ∼12 m. The

density profile is in good agreement with the core data taken at the site with the

exception of the thin layer at about 2 m depth. With the exception of this layer, the

geoacoustic profiles are believed to be reliable to a depth of about 11 m.

The dispersion-curve marginal probability distributions, fit to the data, AR(1)

error model coefficients, and standard deviations for this inversion (not shown) are

very similar to those obtained with the Poisson prior and wide prior bounds for k.

3.5 Summary and Discussion

This chapter presented trans-D Bayesian geoaoustic inversion of seabed reflection-

coefficient data for fine-grained/cohesive sediments for two sites of contrasting

mud-layer thicknesses at the New England Mud Patch. The broadband wide-angle

reflection-coefficient data were collected during SCBEX at the (thick-mud layer)

SWAMI and (thin-mud layer) PC52 sites. The data are inverted to estimate VGS

parameters of porosity, grain-to-grain compressional modulus, material exponent,

and compressional viscoelastic time constant as a function of depth in the sediment.

The geoacoustic parameters of a fluid model of the sediments are computed from

VGS parameters, providing marginal probability profiles for compressional-wave

velocity, density, and attenuation, and to investigate frequency-dependent behaviour

of velocity and attenuation.
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Figure 3.18: Ensemble residual analysis at the PC52 site. The upper two rows show
histograms of total data residuals compared to Gaussian distributions. The lower two
rows show residual autocorrelation functions.



59

Figure 3.19: Marginal posterior probability profiles at 400 Hz for compressional veloc-
ity, density and log-attenuation as a function of depth in the sediment with a uniform
bounded prior (only) on k at the PC52 site.

The inversion is based on parallel tempering rjMCMC sampling methods. The

algorithm samples probabilistically over an unknown number of seabed interfaces

and parameters of a zeroth- or first-order AR error model, with steps that include

birth/death steps (adding/removing interfaces) and parameter perturbations. The

parameters of new layers are proposed from uniform priors and fixed-D parameter

perturbations are proposed in a PC parameter space. Parallel tempering is imple-

mented to improve birth acceptance rates by running a series of interacting MCMC

chains with successively relaxed (tempered) likelihoods. Data error covariance is ad-

dressed by a hierarchical AR error model. The total data residuals are examined a

posteriori to confirm the general validity of the error model assumptions.

Model selection can be challenging in geoacoustic inverse problems. To control

excessive and possibly unphysical structure in an initial trans-D inversion with wide

bounds on the number of interfaces k, a second inversion was carried out with a more

constrained upper bound, estimated using the BIC. At both sites, the trans-D inver-

sion results obtained with the more constrained prior on k exhibited the same overall

structure as obtained with the wider bounds but with less variability. The potentially

unphysical layers at the SWAMI site were removed with the more constrained prior,

but some dubious structure (particularly at depth) remained at the PC52 site.
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The trans-D inversions of reflection coefficients suggest a thick (∼9.5 m) and thin

(∼2 m) region of fine-grained/cohesive (muddy) sediments at the SWAMI and PC52

site, respectively, over a deeper region of coarse-grained (sandy) sediments. The trans-

D inversion results agreed reasonably well with independent measurements, i.e., core

measurements at both sites and chirp-seismic reflection horizons at the SWAMI site.
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Chapter 4

Conclusion

Knowledge of geoacoustic properties of seabeds often represents the limiting factor

in modelling shallow-water sound propagation. In particular, unconsolidated marine

sediments have been little explored and are therefore less understood than harder

coarse-grained sediments. Still, muddy seabeds are of interest to shallow-water acous-

tic research as they are commonly found. While direct measurements (e.g., coring)

can be difficult, time consuming, and expensive, inferring geoacoustic properties from

acoustic measurements is an economical alternative.

This thesis presented a Bayesian approach to inverting seabed reflection-coefficient

data for geoacoustic properties of soft-layered seabeds at the New England Mud Patch,

consistent with the objectives of the U.S. Office of Naval Research Seabed Charac-

terization Experiment 2017 (SCBEX) to quantify uncertainties in seabed parameters

estimated by geoacoustic inversion, and assess the resulting geoacoustic models and

inversion methods [17].

The broadband wide-angle reflection-coefficient data were collected in late March,

2017, at the Shallow Water Acoustic Measurement Instrument (SWAMI) and Piston

Core 52 (PC52) sites. The measurement geometry involved a broadband source towed

near the surface of the water, and moored omni-directional receivers.

The first part of this thesis presented a linearized, ray-based Bayesian inversion of

acoustic arrival-time data for high-precision estimation of experiment geometry and

uncertainties, representing an important first step to inferring seabed properties us-

ing geoacoustic reflectivity inversion. Source-receiver ranges, source depths, receiver

depths, and water depths at reflection points along the track were estimated to much

higher precision than prior information based on GPS and bathymetry measurements.

Grazing angles were computed using the high-precision experiment geometry with

angle uncertainties computed using Monte Carlo methods. The experiment geome-
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try uncertainties were obtained using analytic linearized estimates and verified with

nonlinear analysis. The methods presented are general and can be used in other ap-

plications where accurate source and receiver locations and/or experiment geometry

are required.

The second part applied nonlinear Bayesian geoaoustic inversion to the measured

reflection-coefficient data. The trans-dimensional (trans-D) Bayesian formulation ap-

plied in this thesis is a general and powerful approach that rigorously estimated

uncertainties by incorporating the geoacoustic model parametrization and data error

model as unknowns in the problem. The trans-D posterior probability density (PPD)

was sampled numerically by parallel tempering reversible jump Markov-chain Monte

Carlo methods. The PPD provided parameter estimates with uncertainties quan-

tified in terms of marginal posterior probability profiles for viscous grain-shearing

(VGS) model parameters: porosity, grain-to-grain compressional modulus, material

exponent, and compressional viscoelastic time constant. The VGS parameters were

used to compute the geoacoustic properties of a fluid model of the sediment and

dispersion within sediment layers. The porosity and density estimates at both sites

compared well to core data for these parameters, and the interface depths at the

SWAMI site agreed with reflection horizons estimated from two-way-travel-time data

from a chirp-seismic survey. The assumption of Gaussian-distributed data residuals

with correlations described by an autoregressive process were examined a posteriori

to support parameter uncertainty estimates.

Two trans-D inversions with different priors on the number of interfaces k were

applied at each site: one characterized by a Poisson distribution and wide bounds

on k, and one with uniform bounds constrained to a smaller number of interfaces.

The second inversion was carried out because the initial inversion results at each

site appeared to include extraneous, potentially unphysical structure possibly due

to theory errors caused by factors such as interface roughness and/or non-horizontal

sediment layers. The more constrained upper bound on number of interfaces in the

second inversion was based on the Bayesian information criterion (BIC) to provide

an estimate of the number of interfaces resolved by the data. The more parsimonious

model may be preferred in practice, although the BIC is only an approximate approach

to model selection.

While the trans-D method estimates geoacoustic parameters for discrete homoge-

nous layers in the sediment, the profiles obtained could be interpreted in terms of

gradational transition regions of the mud-sand interface at both sites. The geoacous-

tic and porosity profiles at the SWAMI and PC52 sites pointed to a thick (∼9.5 m)
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and thin (∼2 m) region, respectively, of fine-grained/cohesive (muddy) sediments over

a deeper region of coarse-grained (sandy) sediments in agreement with independent

knowledge of the seabed structure at each site.
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