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Deep learning using convolutional neural networks (CNN) gives state-of-the-art 
accuracy on many computer vision tasks (e.g. object detection, recognition, 
segmentation).  Convolutions account for over 90% of the processing in CNNs 
for both inference/testing and training, and fully convolutional networks are 
increasingly being used. To achieve state-of-the-art accuracy requires CNNs 
with not only a larger number of layers but also millions of filters weights, and 
varying shapes (i.e. filter sizes, number of filters, number of channels) as shown 
in Fig. 1.  For instance, AlexNet [1] uses 2.3 million weights (4.6MB of storage) 
and requires 666 million MACs per 227x227 image (13 kMACs/pixel). VGG16 
[2] uses 14.7 million weights (29.4 MB of storage) and requires 15.3 billion 
MACs per 224x224 image (306 kMACs/pixel). The large number of filter 
weights and channels results in substantial data movement, which consumes 
significant energy.  
Existing accelerators do not support the configurability necessary to efficiently 
support large CNNs with different shapes [3], and using mobile GPUs can be 
expensive [4].  This paper describes an accelerator that can deliver state-of-
the-art accuracy with minimum energy consumption in the system (including 
DRAM) in real-time, by using two key methods: (1) efficient dataflow and 
supporting hardware (spatial array, memory hierarchy and on-chip network) that 
minimize data movement by exploiting data reuse and support different shapes; 
(2) exploit data statistics to minimize energy through zeros skipping/gating to 
avoid unnecessary reads and computations; and data compression to reduce 
off-chip memory bandwidth, which is the most expensive data movement. 
Fig. 2 shows the top-level architecture and memory hierarchy of the 
accelerator. Data movement is optimized by buffering input image data (Img), 
filter weights (Filt) and partial sums (Psum) in a shared 108KB SRAM buffer, 
which facilitates the temporal reuse of loaded data. Image data and filter 
weights are read from DRAM to the buffer and streamed into the spatial 
computation array allowing for overlap of memory traffic and computation. The 
streaming and reuse allows the system to achieve high computational efficiency 
even when running the memory link at a lower clock frequency than the spatial 
array. The spatial array computes inner products between the image and filter 
weights, generating partial sums that are returned from the array to the buffer 
and then, optionally rectified (ReLU) and compressed, to the DRAM. Run-
length-based compression reduces the average image bandwidth by 2x. 
Configurable support for image and filter sizes that do not fit completely into the 
spatial array is achieved by saving partial sums in the buffer and later restoring 
them to the spatial array. The sizes of the spatial array and buffer determine the 
number of such ‘passes’ needed to do the calculations for a specific layer. 
Unused PEs are clock gated. 
Fig. 3 shows the dataflow within the array for filter weights, image values and 
partial sums. If the filter height (R) equals the number of rows in the array (in 
our case 12), the logical dataflow would be as follows: (1) filter weights are fed 
from the buffer into the left column of the array (one filter row per PE) and the 
filter weights move from left to right within the array; (2) image values are fed 
into the left column and bottom row of the array (one image row per PE) and 
the image values move up diagonally; (3) partial sums for each output row 
move up vertically, and can be read out of the top row at the end of the 
computational pass. If the partial sums are used in the next pass, they are fed 
into the bottom row of the array from the buffer at the beginning of the next 
computational pass. 
In order to maximize utilization of a fixed-size array for different shapes, the 
mapping may require either folding or replication if the shape size is larger or 
smaller than the array dimension, respectively. Replication results in increased 
throughput as compared to the purely logical dataflow described above. Cases 
II, III, IV, and V in Fig. 3 illustrate the replication and folding of image values for 
various layers of AlexNet. The same data values are shown in the same color. 
Across the six example cases, which include physical mapping of filter weights, 
image values and partial sums onto the fixed-size spatial array, we see the 
logical dataflow patterns translating to myriad physical dataflow patterns that 
need to be supported. Furthermore, the same data value is often needed by 

multiple PEs, whose physical location in the array depends on the data type 
(filter, image or partial sum) and layer. 
Since different layers have different shapes and hence different mappings, a 
design-time fixed interconnect topology will not work. Every PE can potentially 
be a destination for a piece of data in some particular configuration, and so a 
Network-on-Chip (NoC) is needed to support address based data delivery. 
However, traditional NoC designs with switches at every PE to buffer/forward 
data to one or multiple targets would result in multi-cycle delays. A full-chip 
broadcast to every PE could work, but would consume enormous power.  
To optimize data movement, it is important to exploit spatial reuse, where a 
single buffer read can be used by multiple PEs (i.e. multicast). Fig. 4 shows our 
NoC that supports configurable data patterns, and provides an energy-efficient 
multicast to a variable number of PEs within a single-cycle. The NoC comprises 
one Global Y bus, and 12 Global X buses (one per row).  Each PE is configured 
with a (row, col) ID at the beginning of processing via a scan chain. Multicast to 
any subset of PEs is achieved by assigning the same ID to multiple PEs. Data 
from the buffer is tagged with the target PEs’ (row, col) ID, and multicast 
controllers at the input of each X bus and each PE deliver data only to those X 
buses and PEs, respectively, that match the target id to avoid unnecessary 
switching.  Data is sent on the buses only if all target PEs are ready (i.e., have 
an empty buffer) to receive. To support high bandwidth, we use separate input 
NoCs for filter, image, and partial sums. The partial sum NoC has a separate 
set of output links to the buffer to write the final partial sums. The NoC data 
delivery for four of the cases from Fig. 3 is shown in Fig. 4. 
Each processing engine, shown in Fig. 5, is a three-stage pipeline responsible 
for calculating the inner product of the input image and filter weights for a single 
row of the filter. The sequence of partial sums for the sliding filter window is 
computed sequentially. The partial sums for the row are passed on a local link 
to the neighboring PE (see Fig. 4) where the cross-row partial sums are 
computed. Local scratch pads allow for energy-efficient temporal reuse of input 
image and filter weights by recirculating values needed by different windows. A 
partial sum scratch pad allows for temporal reuse of partial sums being 
generated for different images and/or channels and filters. Data gating is 
achieved by recording the input image values of zero in a ‘zero buffer’ and 
skipping filter reads and computation for those values resulting in a 45% power 
savings in the PE.  
The test chip is implemented in 65nm CMOS. It operates at 200MHz core clock 
and 60MHz link clock, which results in a frame rate of 34.7fps on the five 
convolutional layers in AlexNet and a measured power of 278mW at 1V. The 
PE array, NoC and on-chip buffer consume 77.8%, 15.6% and 2.7% of the total 
power, respectively. The core and link clocks can scale up to 250MHz and 
90MHz, respectively. This enables us to achieve a throughput of 44.8fps at 
1.17V. Fig. 6 shows the performance at each layer including compression ratio, 
power consumption, PE utilization, and memory access to highlight the 
reduction in DRAM bandwidth, efficiency of the reconfigurable mapping and 
reduced data access due to data reuse, respectively.  A die photo of the chip 
and the range of the shapes it can support natively are shown in Fig. 7. 
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Figure 14.5.1: Deep CNNs are large with varying shapes 

 
Figure 14.5.2: Top level architecture with 168 PEs 

 
Figure 14.5.3: Logical and physical dataflows 

 
Figure 14.5.4: Network-on-Chip (NoC) for multicasting 

 
Figure 14.5.5: 3-stage pipelined processing engine 

 
Figure 14.5.6: Performance of AlexNet conv layers 



 
Figure 14.5.7: Chip spec and die photo 


