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ABSTRACT

We address the problem of controlling the production rate of a
failure prone manufacturing system so as to minimize the discounted
inventory cost, where certain cost rates are specified for both positive
and negative inventories, and there is a constant demand rate for the
commodity produced.

The underlying theoretical problem is the optimal control of a continuous
time system with jump Markov disturbances, with an infinite horizon dis-
counted cost criterion. We use two complementary approaches. First, pro-
ceeding informally, and using a combination of stochastic coupling, linear
system arguments, stable and unstable eigenspaces, renewal theory, parametric
optimization etc., we arrive at a conjecture for the optimal policy. Then
we address the previously ignored mathematical difficulties associated with
differential equations with discontinuous right hand sides, singularity of
the optimal control problem, smoothness and validity of the dynamic programming
equation etc., to give a rigorous proof of optimality of the conjectured
policy. It is hoped that both approaches will find uses in other such problems
also.

We obtain the complete solution and show that the optimal solution is
simply characterized by a certain critical number, which we call the optimal
inventory level. If the current inventory level exceeds the optimal, one
should not produce at all, if less, one should produce at the maximum rate,
while if exactly equal one should produce exactly enough to meet demand. We
also give a simple explicit formula for the optimal inventory level.
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I. INTRODUCTION

We counsider a ma.uuéacﬁur:’.ug systam procductiag a2 sing;a commodity. There
is a comstaat demaad rate d for the commodity, ané the goal of the manufac~
turing system is to try to meet this demand. The manufacturing system is
howaver subject to cccasionzl breakdowns and so there are two states, a
"functional" state and a "hreakdown" state, in which it can-be. The transi-
tions between these two states occur as a continuous time Markov chain,with
qy the rate of transition from the functional te the bresakdown state, and
4, the rate of transition from the breakdown to the functional -state.
(Alcernatively, the mean time becween failures is q;l and the mean repair
time is q;l) . When the manufacturing system is in the breakdown state it
cannot éroc;uce the commodity; while if it is in the functional state it can
produce at any rate u upto a maximum production rate r. We assume that
r>d>0Q.

| tet x(t) be the inventory of the commodity at time t, i.e., x(t) =

(total production upto time t) - (total demand upto time t). x(t) may be
negative, which cbrresponds to a backlog. We suppose that positive in-
ventories imcur a holding cost of c+ per umit commodity per unit time,
while negative j.nven:or:‘.es incur a cost of ¢ , with c+ >0, ¢ >0. Our
goal is to control the production rate u(t) at time t, so as to minimize

the expected discounted cost,

E[ Cc,+x+(:) + e x (£))e It 4¢ 1)
0




wvhere x :=max(%,0), ¥ := max(-x,0) and Y>0 is the discount rate,

k]

. Tae problesm that we address is this. Waez the manufasscuring svstem

2

ig fumctioning, what is the oprizal produstion rate v z2g & funection of che
£ s i

s

inventory x? This problem has been motivated by the picneering work of
"Kimemia [i1] and Kimemia and Gershwin [2], where a more gemeral problem is
formulaced (see Sectiom XIII also). |

We obtain the complete answer to this question. The optimal selution,

: z% . . . : . . .
u(e) = 7 (x(£)),is given by a2 cricical number z*., The optimzl policy is,

@) = 4F x() < 2%
=d if x(c) = z* (2)
608 0 if x(e) > z*

Thus, whenever the manufacturing system is in the functional state, one
should produce at the maximum rate r if the inventory x(t) is less than z¥%,
cné should produce exactly emough to zeet demand if the inventory x(t) is
exactly equal to z*, and one should not produce at all if the inventory x(t)
exceeds z*, Hence the production rate should always be conﬁrolled so as

to dri%ea the igventory level as rapidly aé possible towards z%*, and once
there should maintain it at the level z*, For this reason we,shall call z*

the optimal inventory level.-

We also obtain the following simple férmnla for the optimal inventory

-

level.

- mafo, L <’ vd '

where A is the only negative eigenvalue of the matrix,
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The movivation fér the problem studied here>is that it is a basic
problem for ménufacﬁuring systems. The optimal policy is trivial to
compute and qualitcatively simple to implémen:, and it is hoped that these
two features will reander it attractive enough for use as a guideline.

From a theoretical viewpoint also, both our solutiom procedure and
method of proof possess. several interesting features. First note that the
system under coansideration is the following.

S.i)  x(t) = u(e) - d

5.1£) {s(t); t > 0} is a continuous time Markov chain with state

space {1,2} and generator ! qi‘
- | 49 T4
5.iii) The cons:r;int on u(r) is;
| u(t) =0 1f s(t) = 2
€ [0,r] if s(t) = 1

. - . "i"l" - - -
5.iv) Thagoalis to minimize EI:(C x () + cx (£))e e 4

Here i(t) is the inventory at time t, u(t) is the production rate at time ¢,
and s(t) = 1 or 2 depending on whether the manufacturing system is in the
functional state or the breakdown state respectively. Thus we have a con-
tinuous time system with Jump Markov disturbances and an infinite horizon
discounted cost criterion. For previous work on problems of this type, we
refer cﬁé reader to Rishel [3] for the case of a finite horizon cost
criterion; and Krassovskii and Lidskii [4] and Lidskii [5] for a case of.

an infinite horizon problem. In dealing with these types of systems there

are two problematical issues.
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The first set of problems arises because one encounters many mathe-
matical difficulties, see Rishel [3], whez studying the problem of optimal

control for continuous time systems with jump Markov disturbances. Con-

sider a feedback policy u = w(x). Then the system (5.i) satisfies

$ =) -d | N 6)

However, the types of functiocns T we wish to consider are essentially dis-
conﬁinnous'ﬁunc:ions. Standard existence and uniqueness conditions for

the solution of the differential equation (6) are not satisfied. Rishel [3]
has considered one notion of a solution; we use another method....There.

are also other difficulties. Let
ViCx) = minimm value of the cost (5.iv) when starting in the

state s(0) = i, x(0) = =x.

Then, informally, we have the Hamilton=-Jacobi-Bellman dynamic programming

equation: .
. - A4 - -
min (u &)Vl(x) Y-bql ql Vl(x) 1 '
u€ [Q,rl + o - o
T = -] @+ D N
| -dv, (x) -4, Y+q2J v, (x) Ll

It is not a priori clear that V,(-) is a differemntiable fumction. It is nmot
also élear ;hat there exists an optimal control law. Moreover, it turms out
that ﬁl(x) does vaniéh for some x, and for such a value of x, the left hand
side of (7) is minimized by every u, and so the Hamilton-Jacobi-Bellman (HJIB)
dyuaﬁic programming equation does not prescribe the optimal u for such x.
Thus, the optimal control problem is a singular one. It is this collection
of mathematical problems that we shall address rigorously in the second

half of this paper.
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The second set of problems is this, Even ignoring all the mathemati-
ezl difficulcies mentioned zbove, hew do we actually shrain the optimal
»soiution? Why should we suspect that the optimal policy is of the critical
qumber type? Why is. the critical number z* always nomnegative? Given that'
we want tc solve the EJB equation (7), what are the appropriate boundary
cdndi:iéns? After determining boundary conditions how does one determine
an optimal choice for z*? It is this collection of issues dealing with
the actual obtaining of the optimal policy that we address in the first half
of the paper.

The two apéroaches complement each other and we hope that they will also
be useful in dealing with other problems of the sort considered here.

The paper is organized as follows. In Sections II—VIII we ignore some
technical questions and arrive at a conjecture for the optimal policy.
Beginning with Section IX we address all the mathematical difficulties and

rigorously prove the optimality of the conjectured policy.

II. boPTIMALITY OF CRITICAL NUMBER POLICY

Beginning with this sectiop and continuing through Section VIII, we
provide a sequence of informal arguments which will lead us to conjectures |
about the optimal policy and the optimal cost function.

In this section we give an argument to show that the optimal policy is
characterized by a critical number.

Let us assume the existence of an optimal feedback policy w(e) =7 (x(t))
and let Vi(x) denote the optimal cost when starting in the state (s(0) = i,
x(0) = x). Fix {s(t,w); ¢t 2.0}, a reali;acion of the continuous time Markov

chain, with s(O,w) = 1i.




Now we consider two different initizl coanditions xO(O) and xl(O)
and also a convex combimation xa(O) =_(l~=a)xo(0) <+ &xl(O) where 0 < @ < 1.
o |
If % (°) is used, then the trajectories sctawrting with the inigial condi-

tions xo(o) and xl(G) satisfy,

x (£,0) = w*(xkcz,mn -d  if s(c,w) =1 (8)

- d 1f s(e,w) = 2

xk(o,m) = xk(O)
for k= 0,1. Also, we have

v, (%, () =E, Ecc*"x;f(c,w + e (e,w))e” T dx (9)

where Em signifies that the expectation is taken over w.

Suppose now that for the initial state xa(O), we use the com=rol

alt,w) = (@ a.c.)‘rr*(xo(t,w)) + azr*(xlcz,mn (10)

Note that such a control is in fact implementable because by observing
{s(t,w); £ > 0} one can in fact deduce what {xk(c,w), t > 0} would have

°

been for k = 0,1, Such a coutrol gives rise to the trajectory satisfying,

ia(.t,w). = (lc»a)‘tr*(xo(c,m)) + cm'*(xl(t,m)) - d if s(t,w) =1

= wd : if s(t,w) = 2
(11)

x@(o,w) = (l‘-a)xo(o) + axl(O)
It is easy to check from (8) and (11) that
xa(tgw} = (l«=a)xo(ﬁ,w) + axl(ﬁ,m). for every t > 0

From the convexity of the integrand in (5.iv) it follows that

-]

E, Jo(c+xZ(:,w) +xoeu)e ™ dr € -V (2 (@) + oV, (5, (@) 12)
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However, for the initial scate xa(O) the control (10) is not necessarily

cptizmal, and so

+ + - - - -
v, (%, (@) < E, Ecc x_(2,6) + ez (z,eDE) " de 13)

From (13) and (12) we deduce that V]_('), is 2 convex function. Assuming
that Vl(') is continuously differentiable, we see that there is some z* for
‘whiéh
v, () 20 for x < 2%
(14)
20 for x > z*
From the left-hand side of the BJB equatiom (7), which we suspect {V £€0)3

4 = 1,2} satisfy, we see that

u = r mininizes (u-d)¥, (x) if x < z*

= 0 minimizes (u—d)&l(x) if x > z*

' : *
Hence, we suspect that the optimal policy u(t) = ® (x(t)) is of the form

% .

T (x) = ¢ if x < z*

’ (15)
= Q if x > z2*
for some critical number z*.

What happens at x = 2*? Any ug [0,r] minimizes (u-—d)\}l(z*), but from
the form of (15) it is clear that the inventory level is quickly driven back
to z%* if it deviates from z*, Hence, due to this "chattering" phenomenon,
we suspect that

11’*(::). = 4 if x = z% (16)

-

because such a choice keeps the inventory level exactly at z*, once it
reaches z*,

(15) and (16) show that the optimal policy is characterized by




S

the critical number z*, which we have called the optimal inventory level.

III. NONNEGATIVITY OF OPTIMAL INVENTORY LEVEL
In this section we show that the optimal Inveatory level is nomnegative.

Consider two policies W0(°) aad ﬂz(°), where

ﬂo(x) = ifx<0
=4 ifx=0 o oan
= 0 ifx>0 |
ani
Te(x) = ¢ if x < 2
=4 if 2 = 2 ' (18)
=0 if £ > z |

Let z < 0 be some strictly negaﬁxve number. Denote by VZCX) and Vz(x) the

costé resulting from the‘policies ﬁo(?) and ©2(°) respectively, when start-

izg in the state (s(0) = i, x(0) = x). 6
;g,ﬁ2(°) is optimal, then from (14) we see that V§(°) should attain a

minimum at x = 2z, i.e.

via) < Vi(x') for all x | (19)
Moreover, if ﬂz(°) is optig?l, we should alsoc have

Vi) < V) ) for all x.

In particular, from the above two inequalities we should have
vZ(2) < v3(0) (20)
1 -1 _ .

Hence, to show that ﬂz(°) with z < 0 is not optimal, it will suffice to show

that (20) is not true.
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Indeed, let {s(t,w); t > O} with s(0,w) = 1 be a realizatiom, ana con-

sider the twe trzjectcries

io(:,w) a7 ~d if xo(t,m) < C, s(o,w) =1
-0 1£ x%(c,w) = 0, s(e,w) = 1
' = =g otherwise
xo(O,m) =0
and
éz(t,m) = r=d if xz(t,m) <z, s(t,w) =1

if x°(c,w) = 0, s(t,w)

L}
[

0
= -d otherwise

x°(0,w) = z
which emanate from the initial states O and z, when the policies wo(-) and

wz(-) are respectively used. It is easy to verify that
xo(;,m) +z= xz(t,w) Lz< 0  forallc>0

Hence,

+ -z= - z=
¢ xz+(t,m) e x> (Ew) =¢ %27 (e,w)

== () +27)
= M=% e + (W) + ez

Hence

* -0=, . - + z+ - 2=
ij (c+x°+(t,w2 +c xo (t,w)de T® 4e < Em r(c %2 (t,w) + ¢ x* (t,w))e“f:dc
a 0

i.e..

0 z
Vl(O) < Vl(z)

-

showing that (20) is violated, and thus that wz(-) cannot be an optimal

policy.




1l

Hence z*, the optimal inventory level, has to be nonnegative.

v, T

-

PIECEIWISE LINZAR EZQUATIONS

(¥}
)

Q

T
& so,

1 4]

COST FUNCTION

[ o

et z > 0 and dencte by Vz(x) the =sst fumctiocn for the policy 7% ()

defined in (18). The amalog of (7) for the policy T2 () is

=z o2 Z,.
(@ <x)—a)vl<x)} Y+q ~qﬂ vy &) (1

= =t - e x ) (21)
© = . 2 )
-d Vz(x) J -d, ‘Y+q?J Vz(x)} {l
Denoting
z
v (x)
Vz(x) 1= [i" )
Vz(x)
i Y‘{Dql QI 7
e K3
A, =
2 q Y+q
£ -(—%)
. 4 d “J
.f 1
T r-d
b, =
t 1
L d
1 i
b‘?_ .= ] | (22)
1
d

and letting Al be as defined in (4), it is clear that (21) can he rewritten
as,
2 02y P » - '
§£V x). Alv (x) - blc X for x < 0
=5 V2 * <x <
=4V (x) +bex for 0 £x < z (23)
z + >
=A2V (x) + bzc X forx > z

Before we can utilize these piecewise linear equations to determine the cost
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2z . .
function corresponding to W (+), we need to determine appropriate houndary

conditions for (23).

V. BOUNDARY CONDITIONS
Since the vector Vz(x) is two-dimensional, we need two boundary coan-

ditions for (23);

V.l Ihe First Boundary Condition

Let {s(t,w); ¢t 2_0} be a realization. Under the policy ﬁz(-), the

inventory is given by the differential equation,

x(t,w) = T5(x(e,0)) -d  1f s(e,w) = 1
- if s(ew) = 2
In any case |x(t,w)] <r for all (t,w), and so

[x(e,w) | < [x(0)] + £t for all (t,w).

Hence,- -
z £ -- e
Vi(x()) = Euijo(c x (c,0) +cx (t,w))e  "dels(0,w) = i, x(0,w) = x(0)]
§_k1[x(0)l + k, for some' constants k, and k-

Hence, we see that
V(x) = 0(x]) asx+te : (24)

Let us see how we can make (24) more usable. Solving (23) for x < 0 in -

terms of VZ(O), we get

Alx

VE(x) = e ~ [VE(0) - Azzhlc-l + [A‘l'lblc"x + A_Izblc‘J for x < 0 (25)

. Now note the following easily verified fact,
Al has one strictly positive eigenvalue, say k+, and one strictly

(26)
negative eigenvalue, say A_.




13

Let
f1 3

e

W o= := eigenvector of Al corresponding to X+° 27)
-
2

To satisfy (24) as x + ==, we clearly need

v3(0) - 7B cTe () (28)

A x
for otherwise, Vo(x) = O(e ~ ) as x = -=, Here, (w+) is the eigemspace

generated by {w }.

(28) is one boundary condition for (23).

V.2 The Second Boundary Condition

To obtain the second boundary’condi;ion, let us see what Vi(z) is.
Consider a system starting in state (s(0) = 1, x(0) = 2) and let T, a
stopping time, be the first time at which s(T+) = 2. Clearly x(t) = z

for 0 £ € < T vwhen ﬁz(°) is used. Hence

(T _ _
Vi(z) = Et[Jo e th+édt + e vag(z)l

Noting that T is expomentially distributed with mean qml, by evaluating the
, 1 _

expectation in the above equation, we get
z 1 z + '
Vi(z) = ql‘*Y'(qlVZ(Z) +cz) (29)

or, equivalently,

3
(1,018 V(@) = 355 . (30)

(30) is the second boundary conditiom for (23).
By using the two boundary conditioms (28) and (30) one can solve the
piecewise linear differential equa;icns (23) to obtain Vz(°), the cost

function for any policy Nz(e) with z > 0.
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The next question we have to face is; what is the optimal choice of z?

Vi. OPTIMAL CHOICE OF z

>

%
Suppaose T~ (*) wich z# > 0 is optimal.

Then,
i) ij.*(z*) < vi*(x) for all x, since by (19), the optimal cost
function attains a minimum at z*. ‘
ii) Vif(x) < Vi(x) for all x,z, since n’z*(°) is optimal and therefore

has lower cost than any other ‘n’z(').

From the above, we get

. V;_*(z.*) iVi*(z) < Vi(z) for all z

Hence Vi (2) attains 2 minimum when z = z*X, Assuming now that Vi(,z), is a Cl
function of z, we see that

d .,z ‘ '
‘d_qu(z)]z.z* =0 : . —

We will call (31) the optimality condition and in the next section we will

see how it can be exploited to give the optimal solution.

VII. OPTIMAL INVENTORY LEVEL

We will now utilize the piecewise linear differential equatioms (23),
‘the two boundary conditions (28) and (30)? and the optimality condition (31)
to obtain the optimal choice for z=*.

Differentiating (29) and using (31), we get

d g2 <"
iz z(z)]zgz* iy (32)

However, by the chain rule,
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im] -] a—%;vzcz*)j

z=z*® X=z¥®

z . . i e e s
Sizce Vz (x) cozsiderad as z functica of = is mizizized at z = z*, by assum~

ing concinucus differenciability, we have,

é—xrz(z*)] = 0,

z 2 R
Henee,
d ..z ¢ . z® 2% +
-3 (z)} - Sy (::)] = [011{a V3  (2%) + b 2%} (33)
22 T Y, 2 2

where we have also used (23). Frem (32) and (33) we have

. 4

® q0 - e
10,1]{a, 7% (z#) + by z*) = - o
However, since IG,.L]AZ = I,Ci,lja.l, [O,J.Ibz - %,, we have

¥
[0, 1], V" (z#%) = - c*(%jm+ ‘?’

1

Combining the above equaticn with (30), we have

c:*z* (g
T=d . +*
%
AV (z%) = . | b | | S (342
ok 1 q
-l BE tl L
9 d

Setting (34) temporarily aside, we turn to (28). .Solving (23) for

v (0) in terms of Vz(oz)g we get

i 2 .
VE() = e gl V¥ (z) + A‘{lblc*"z + Azzblc+] - Afl“zblc"

and substituting this in (28), we have
-8 %
Al - + =2, + -2 o+ - +, .
+ -
e [vZ(2) Allhlc z * A b,lc, ] 4 bl(c +ec )€ (w)

z
Since (w‘i’) is invarizat under e , we have
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A z

- + 42 o+ - +
[Vz(z) + Allblc z + A zblc ] - l cl(c +c ) €lw) (35)
.Combining (34) and (35), and noting that (w*) is iﬁvariant under AI,
we get
+10 A.z . .
o T R v T M Tl v Y Ui I o S (36)
1 |; 1 - 1%

This equation now gives ‘us a."formula" to choose z*.

Recall now from Sec;ién VI, that in obtaining (36) we made cthe implicit
assumption that z* > 0. Therefore we now have to de:ergine when there will be
a positive solution z* for (36).

Let us first simpli%y (36) a bit. Note that

=Y (Y +qi + qz)

. de:,A1 = K+K_ =

d(r -4d)
. 1 .
A -t (37
1-71 Y{l] )
Hence (36) simplifies to
A_z*!1 + 1 + 0.
I,
1) o +c¢ 1 (c +¢ )ql 1 _

°

Now let
v = [vz, v;] 1= a left eigenvector of A

1 corresponding to A (39)

Since left and right eigenvectors correspounding to different eigenvalues are

orthogonal f.e., v w = 0, (38) is true, if an& only if,

%*
& TTF, SV T TFE v =0
1 ¢ +c¢ 1 (¢ + ¢ )ql 1/

Since v e = e v , this reduces to



A z*® + v
e L b
c + e lv2+v1

Since vaAl = kovo, by equating the second ccmponents‘of both sides,:

A z* +
e = rl + Yd

N c-[ qld - (y + qy * A_d)(r wd)]

(40)

It is easy to check that

qld - (y + a4, +Ad)(r=d) >0 (41)

and so the right hand side of "(40) is strictly positive. Tazking logarithms,

°

we therefore get

2*.8';L'2°g{ +é+ @ +73 * X F X d > )]
T R G, T D

However, such a value of z* may not be positive, and we already know from
Section III, that if 2z* > 0 is not optimal, then 2% = 0 is. Hence we arrive

at our conjecture:

1 < xd
2k = max{o, ""’Zog{ zi =+ qd = (y +q, + A d)(z “d))}} “a

Yd '] > 1.

Note: Due to (41),. it follows that {1 + . -(Y‘*q2‘+ G )

1

- +
Hence, for every ¢ > 0, there exists ¢* > 0 such that if ¢ > c*, then
e ' +
z%# = 0. Thus the optimal inventory level may be zero even though ¢ < +%., .

This is somewhat counteriantuitive and surprising.
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VIII. OPTDMAL COST FUNCTION
~In the previous section we have conjectured the optimal pelicy. In
th:.s section we shall conjecture the optimal cost function also.
Let us consider separately the two cases where z* as givea by (42)

is zero, and where it is positive.

VIII.1l Case l: z* = Q

" When z* = .0, the optimal cost function is VO(-) which satisfies (23)
with z = 0, and has the boundary conditions (28) and (30) with z = 0.

Defining w+ as in (27), (28) says that

v{0) = kw+ + A{Zblc-' for some constant k

Then, from (30), we get

‘ -1 - c
0 = [1,0]4,V(0) = kA_+ Lol e =k - &

andsc;ktTc . Hence
‘{+ -

v(0) - 'Y-"%: W+ Azzhlc' _ (43)
i + .

Solving the differential equations (23) with the boundary condition (43), we

get

- A X '
v ===t W+ Thcx+ 2y " for x < 0
™, A 45 "

Ax -
-e’ [..Y-%.: R S R R 8 5yc ]

forx >0




VIII.2 (Case 2: z* > 0

From (34) we have

o} +.
o S =11 " |e
{z% - : - - .8
V(z*) = Ai olc z*® A1 2 (¢5)
1;°*1 .
and so, solving the piecewise linear differentizl equatioms (23) with

boundary condition (45), we get

Axp =hyzE o, m [0+ L e
V(x) = e {; [Alzhlc - 1di;i - A zb (¢ + ¢ )} + Allblc xi-Alzblg
for x < 0
%
A (x=2) 0} +
! T N NN
= e I c = 1 - A e'x e
All 'Alglﬂl 171

for 0 < x < 2% (46)
A (x = z%)

= {Azlb z*«Allbcz*mAl(} Azbc}

- A;lhzc*k - Agzbzc+ for x > z*

By simplification it can also be seen that

A (x - z*) o}
V(z) = e 2 [ J A b e z - A, lb e x = ; zé+

- (&7)
for x zaz*

Our conjectures for the optimal cost function in the two cases z2* = 0

and z* > 0 are given by (44) and (46) respec:iveiyn

IX. SOLUTION OF HJB EQUATION

In the previous sections we have arrived at the conjecture that if %*
is és specified by (42), then nz*(oj defined as in (2) is the optimal policy
and V(°) defined as in (44) and (46), for the two cases z* = Q and z* > 0,
is the Bptimal cost function.

Beginning with this section, we commence the rigorous proof of the

validity of our conjectures.




2Q
In this secticn we will show that V(+) satisfies the Hamilron-Jacocbi-

Bellman dynamic programming equation (7).

Lemma 1

V{+) is continuocusly differentizhle.

Proof
Consider first the case z* = O where V(*) is specified by (44). We only

need to check the continuous differentiazbhility at x = Q. Denote by 6(a+),

ii: V(a-#h; = V@) o4 similarly for V(a~). Now, from (44)
- -1} <fo h)
V) =Sw v AT =S - EY-U«%- w+-lJ
o 2

. =10

V(O+) = Aw +AZA1%1 9,{— . (48)

) Y2
where we ha;e used (27), (37) and

=t o)
‘er.’2 = A : (49)

0 1
Hence V(°) is.con:inuOusly differenciable whenever z* = Q, Now consider the
case z* > Q, where V(¢) is specified by (46). We only need to check the
continuous differentiability at x = 0 and x = 2%, \Now, clearly, from (46),
-4 z*

V(0=) = V(O+) = e [All‘bl * 3—-{ J] - A l‘bl (50)

and so we proceed to comsider x = z*, for which,

] L] 0 +
V(zk=) = V(zn+) = = | |S= ' ~(51)
1/4

as can be seen from (46) and (47). o



Lezma 2

- .
v(0) - Abic e (=5

Proof
From (44), this is clearly true for the case z*'= (. Comsidering z%* > 0,

we see from (46) that

=fp 2R
T(0) = e Al

- 410
{Alzblc-b - All [1}3;1 - A 2 " 16 : ’
42"

and so noting that (vﬁ3i is invariant under e Ay, we get
z* + [o +
o1 e ] - ﬁlhé@)
(¢ +¢ )ql 1 (c, +c )

Noting that lefe and right eigenvectors corresponding to different eigeavalues
are orthogonal, i.e. ’V&%i:l. = 0, where v and w' are given by (39) and (27), we

only need to verify that,

‘ A z* ok : #
A_ll'b + J Ailb 1=0
(" +e )ql (e +eD)
. _ A z* A z® )
Noting that v e =e v , by using (37) and simplifying, we see that we

only have to show that

\ g 1 é+ _10 é* - _1E
e~ vl T TF -~ v -—V = 0,
1 (cmc)ql 1y (e + ¢ ) 1

But noting the equivalence of this and (.40) and (42) when 2z* > Q, the

assertion follows. : ]

Now we are ready to comsider the case z* = 0 and show that V() satisfies

the HJB. dynamic programming equation (7).




Lemmaa 3

. Suppose z* given by (42) is equal tc 0, and V(+) is delfined hy (44).

Then
@ x) - d)ﬂ’tl(x) T+a - vl(x)l 1
+4+ ==
SZ.i) = - (c X +cx )
~dv, (x) -, Y+ad{v,() J 1
for all x
52.41) (7% (x) - OV ) = min (- OV @) for all x
‘ u€ [Q,r] :
Procf

It is easily checked that V(<) defined by (44) satisfies (23) for
x< 0 and x> 0, and se (52.1) is valid for x < 0 and x > Q. Now con-

sidering x = 0 and using (48), we have

@ (0) - 417, (@) _ fo }
N |

~a¥,(0) v - 1J

while, by using (43), we have

-y )
T +aq 4 _
. _ =d¢ + -2, -
v(Q) -dAZV(O) T A - dAZA1 hlc
4, Y+,
= -c d °
Y w; -1

where we have also used (49) and (37). Hence (52.i) is also valid at x = 0.

*
Now turning to (52.ii), since T2 (*) satisfies (2), we only need to show that
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V.(x) <0  forx<0 and ¥ x) 20  for x>0 (53)

Considez x < 0 £irsc. Then, from (4'4) it follows that

e A, AX
’+e+>0 for x < 0

‘5’1 (=) =

where, by vi(,o), we mean Vl(O'-)o Since (48) shows that {5’1(,0) = 0, it
follows that (53) holds for x < 0. Now turming 2o x > 0, from (43) and

(5%4) we see that
760 = o T a1 + £h,e'] - byt -
x) = e LAZV(O)+A2 zc.l«-Az 2 for x > 0

From (43), (49) and (37), we have

- =f0
e w4+ eaa s
AZV(O) A*:{ Azw + ¢ AZAJ, bl Y

Recalling (22) we thus have,

. Ax - 0} + 1 + 1 .
V(x) = e 2 {-———;S——-—-—» + Eé-» A;l' }w% Azl for x > 0 (54)
Yy - 1) (1 1) 1 =

Now
1 =4 | ' ’
and [ are right eigenvectors of AZ corresponding to the
1 q
2 (55)
' » Y+ 9 *q
eigenvalues (%), and ~ (- 3 ) respectively
and
0! q 1 =45 ‘
= s | (6)
1 9T {y WY |4,
Moreover, equating the first compoments of both sides of the equation
Alw+ = A +w+ and noting (&), we have
I Wy )
2 1 + i

9
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Using (55), (56) and (57) in (54), we get

- ¥ + q, +q,)
. S omEE S -Alz-a, -tz L 2
:Vl(x) s—Y— tl -e ] Y(ql+q2) 1e -8 } for xf;O

IfY = X_l_(r - d) > 0, then clearly \'fl(x) >0 for x>0 and (53) is valid.

So suppose that Y - k+(r ~ d) < 0 and note, by differentiating, that

o=, e g omgx T A -d) (Ot tay)

d ’

v x) = [E—-- . }e +
1 d Y(q; * q,) d Y(q; +q,) d
(Y + q, +q,)
~Ys _ L7
Ifp>Cadn 10 are comstants, then pe + ne d >0
for all x > 0 if and oniy if p +n > 0. Hence, to show that
i;l(x) >0 for all x EO
we ounly need to verify that
+ (Y -A(r-d) Y +q, +q : '
< - "¢ [ 1 2 _1] >
d+ TERTI | 3 . dg_o for all x > 0
1 72 .
or equivalently, that
+ -
ecY+c (¥ - X+(r -d)) >0
It is easy to check that A + A )(xr =~ d) = (v +q;) = (Y + qz)(r =d) o4

so, substituting for A_, we only need to verify that

ca[:%q-l- 4, (rd.d) - (y + qy - A_(r - d))] + c+‘{ >0

But this is in turn equivalent to,

—

forxg_o
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¢ [ vd J
- 1+ > 1
I N TR N Yy

which is in faet true, since z* given by (42) satisfies 2% = 0. Hence

(53) is valid, proving (52.ii). a

Turning now to the case z* > Q we show a similar result.

Lerma 4
Suppose z* given by (42) is strietly positive, and ¥(°) is defined by

(46), then (52.1) and (52.ii) are valid.

Proof

It is easily checked that V{(*) satisfies (23) for x <0, 0 < x < z*
and x > z#*, and so in all three ¢f these cases (52.1i) is satisfied. At
x = 0, (50).and (46) again show that'§(0) = Alvco) and_so (52.1) is also

valid at x = 0. Turning now to x = z%, we note from (S1) that

@ @) - aF EM) Ay
: = ca J = _,dv;(z*)

-»di;z(z*) 9% 1
Also,
Y*q o =Y 1
. V(z*) = é+z* = - d{AZV(z*) + b2c+é*}
=45 Y+ q 1
= -d fin {A,V() + hzc‘*"x} = =d fim V(x) = -dV(z*)

KXz % x+z®

-where we have used the continuous differentiability of V(-). Hence (52.1i) is
%
valid for all x. Now turning to (52.ii), since T2 {*) is of the form shown

in (2), we need to show that
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\;l(x) <0 for x < z*  and ‘.ll(x) >0 for x > z* (58)

Comnsider 0 < x < z* first, From (46) we obtaina

" Al(x - Z%) " 0.+
¥(x) = e {hc'--A.l -—-} for 0 < x < z*
L 1j% - -

where, by .V.’(,O) and G(z*) we mean G(Q-i-) and ;;(z*-) respectively. Now

ol+ fo
-l [

where 6 := -3--1--3-—--;—--—- >0. Let £t 3=~ (x = z2%) > 0 and denoting
l .
by Z k the inverse Laplace transform, we have

-A_tfo) 0
. - 1 o -1f -1
V) (x) = [1,0}e L} .£ {[l,O](sI-&-Al) U)
-+ -
.zl 8q; Yo uée -e ) .o
| G -6 -1 )& - ) C-dG,_-1) =

with strict inequalicty for x # z*, Moreover, from (51), \71(;*) = Q, and
so the validity of (58) for 0 < x < z* is established. By continuity of
‘}l(x),vwe see now that ﬁ’l(o) < 0, thereby 'es:ablishing (58) for x = 0 also.
Now we comsider x < 0. Since (23) is satisfied for x < 0, we see that
V(x) = eAlx{vw) T N B N e S for x< 0 (59)
, Ay 1 °1 1 %1 <
Hence
A.x
] = 1 Ead - - - -
v(x) Ale [V(0) Alzblc ] + Allblc forx <0
From Lemma 2, we know that V(0) - Azzﬁlc” = kv for some comstant k, and so
ALX
V(x) =kie Tt A{lhlc- for x £ 0

Noting (27) and (37), we have
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. Ax - Ax, < Ax
Vl(x) = k}‘_be - ;" = e Vl(D) - ;—{-{l -2 ) for x < 0

Since A,+x < 0 for x £ 0 and since 3;1(0) < Q as previously shown, it follows
that ¥ (x) < 0 for x < 0 and so (58) is valid for x <0 in addition to
0 < x < z*, Now we consider x > z*, From (47) we have,

“ A (2 = z%) o) + _ :
¥ (x) ﬁez =A, S.+b c,+ for x > z*
. Y -Zlq'l 2 . -

AZ (x = z%) {0}

= e for x > 2z*
1l
c‘*»« T + qz e oo )
where U = 3-(1 + ) > 0, and by V(z*) we mean V(2*+), Now using
l .
(55) and (56) we get ]
(v +4q, +4q,)
o fqy - %(x - z%) = : dl’ 2 (x - z%)
Vlix) _—— ~e >0 for x> z*

BN Le

with striect imequality éxcepg at x = z*, Since {)’l(z*) = 0, the validity

of (58) is ‘also established for x > 2%, o

Theorem 5
Let

60.1) z* be defined as in (42)

60.41) 727(-) be defined as in (2)

60.iii) V(-) be defined as inm (44) or (46) depending on whether z* = 0 or
z* > 0.

Then

60.iv) V() is continuously differentiable

60.v)  w2°() and V() sacisfy (52.i) and (52.11) and hence the
Hamilton-Jacobi-Bellman dynamic programming equation.

60.vi) V) '—'0((2;1) as X + t®,
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Proof
;_We have already established (60.iv) a=d (60.v) ia Lemmas 1, 3 and 4.
To show (60.vi) noce that (44) and (46), (26), (27) together with Lewmma 2
show that V(x) = 0(|x|) as x = - = Moreover, since both eigeavalues of
A2 are strictly nega:ive, it follows from (44) and (46) that V(x) = 0(x)

as x - + also. ' a

X. ADMISSIBLE POLICIES
It is now time for us to address more general issues. We begin by

defining the class of admissible policies.

. Definition: A measurable fumetion ® : R -+ [0,r] will be called an admissible

2

policy if, for every.(t,f) € R with T > 0, there exists a fungtion y_(£;T,8)

which satisfies
(61.1) yw(t;T’g) is absolutely continuous in t

- €t

(61.i1) y (e57.8) =& + J w(y (s57,8)) - d)ds  fort >
T

(61.iii) yﬂ(:;t,g) is continuwous in (t,T,§).

(61.4iv). Y“(P) is the unique function satisfying (i and ii) above.

Given such an admissible we now describe the manner in which we interpret
the differential equation (5.i). Let {s(t,w); t > O} be a realization of -

(5.ii) with, say, s(0,w) = 1 and suppcse %, is the initial inventory level.

Define -to(m) := inf{t > 0 : s(t,w) = z} and Ti-!-l(w) = inf{t > 'L"i(cu);

s(t+, w) # s(t-, w)}. Then we construct the process'{xT(t,w)} by,

xn(t,w) 1= yﬁ(t;O,xol foro<t 5,10(“)

= x (7 (W),w) = dle = 1;W)) for T, W) £ 2T W

and i = 0,2,4,...
°= . <
p= (et (W), % (T (W),e) for T, (W) ST, (W

and i = 1,3,5,... .
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Noce that an immediate consaquence is

t
x (c,w) =x_ <+ { (u_(s,w) = d)ds for 211 £ > 0 (62)
w L P , -
where
uﬁ(tsw). =0 if s(cw) = 2
= w(x%(c,w>) if s(e,w) = 1

Thus, the differential equation (5.i) is interpreted in integral form in
62). |

One can use the theory of semigroups of nonlinear con:gactions in
ABa.nach spaces, see Barbu [6], to obtain sufficient conditious for a policy T
to be admissible. We now use this to establish the admissibility of policies

of the 'n’z(o) type.

Theorem 6

#2(e) defined by (18) is admissible.

Proof

Let A, a multivalued operator, or equivalently a suhset of RZ, be

defined by

©

Alx) := {£ - d} if x < z
3= [=d, = d] if x =2

s= {=d} ifx> 2

-

- - <
Then %, < X, and yle A(xl), yzé A(xz) implies that (xl xz) (yl YZ) <0

1
and so A is a dissipative operator, see Definmition 3.1, page 71 of Barbu [6].

Moreover

U U {x-y}==r
XxER y€AX)

and so A is m-dissipative, see [6, page 71]. Also, for évery € R,
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(n’z(x) - d) € A(x) and [wz(x) - d[ < [y{ - for évery y € Alx)

By Corollary 1.l and Theorem 1.6 of [6, page 118] we see that (61.i, ii, and
iv) are satisfied. Moreover, by Propositiom 1.2 [6, page 110], y z(v:;T,E) as
a function of t, for each §, is a semigroup of nonlinear ccﬁtractzons, and .
so from Definition 1.1 of [6, page 98] we see that [yn_z(t;r,gl)

- yﬁz (t;t,iz?!f_[gl-izl. Since by uniqueness yﬁz(:;t,E) = yn’z(t-‘r; 0,5)

for all t > T, it follows from [ywz(t;Tl,El) - yvz(s;fz,iz)(‘ilyﬁé(:-tl; 0,§))
=Y 2(5Ty5 OEDIH Iy (eTys 08| -y (e-Tys 0,6 that v (1) is s

continuous function, and so (6l.iii) is also sacisfied. ) a

. XI. INTEGRAL EQUATION FOR COST FUNCTION

In this section we will show that the cost functiom corresponding to
a policy w satisfies a certain integral equatiom.
Let {ti} be the successive jump times of {s(e)}. 1If {xﬂ(t); t> 0}

is the trajéctory resulting from a policy 7w, define

V?_f T‘,(&:) 1= E[Jr : C(xn_(t))e-\'cdt s(0) = 1, xn,(O) = £]

s 0.

as the.cost of using T upto the n-th jump ;f {s(£)}. Here

c(x) := c+x+ +cx
Clearly

Vi, 5 (€)= Ua Vi, 2 ® ' (63)
is the corresponding expected cost of using 7 indefinitely.

Define

xi(c,ﬁ) = y,(€50,8)

x2(c,E) t= E-td
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Clearly x;;,(t,a') represents. the inventory level at time t if inieizlly the
inveatory level is £, s(0) = i, and there are no jumps of {s(t)} in [0,2).

By a renewal argument it follows that

Q
L&) =0
and
Ve = e“’q""’ajLf?e“"Yc (t(e,8))de + e 10V <x (,E))1ds  (64)
1,7 Oqi o omerd j@),m -
where

J@ e {2k, §(i) #41 fori = 1,2.
For € > 0, let % be the Banach spacs of all measurable fuoctions
mapping R into R, with norm defined by HE;E = sup{e~e !x‘gf(x){, and

o ’ .
let :seg‘lo }g. On f = é x Jég define H(EI’EZ)HG ::s_m;xﬂfiﬂes

and mote that F % = [ }"2 For (£.,£)€F%, define T_(£.,£,) =
o ® ) )

Ty, nf20 To,afl) BY

Lemma 7
1) If (€606 F Y, then T (£ £ € F
i1) T_ is a contraction with respect to the nomm {111 ¢ for every

€ >0 sufficiently small.

Proof -

It suffices to show that '1‘ )ef and that 'Ifi T is a contraction
9

i, w 3(1,
for 1 = 1,2. Note first thatr by (62),

[xi(ﬁ,&){ < lgl + kit
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In the above and what follows, all the ki's are constants chosen appropri-

ately. Since c(x) £ kzlx‘,, it follows that

-q.g g _ . .
Eqie i [joe th(xi‘(:,ﬁ))dt]dc _<_k3}g| fka

&+ q;)
Also, for 0 < € <—_i—_
.1
@+ e = G4y Mo €lx (0,8}

. r q,e'“i + Y)?H T e(l&l o

=g 1 j(:-) € _

< kseem + kg
Hence ]'1‘ ( )(E)I eelgl + k3{5[ +'k7 and so, Ti T (:L) e? for all € > 0' '

sufficiently small, i. e T. i, 1r j (1) &f. To show that Ti,‘zr is a cqncraction, :

consider 0 <€ < i then

B

-

(T, £ >(€> < Y)c[f i i
Tynt = Ti,n8 = oqle (x7(0,8)) - g(x (0,8))|do
-(qy +Y)O e!x (@,8)|
f.r.e lE - gl do
e flewm
=(q, +Y)O e(s + k,0)
a3 Eqie t o ollE - sl

-q,0 (&, - Y)o
c e el [ e T e
0

< 8efl8l|1e - gl

where 0 < 8 < 1. Henee |T, /£ - T, ;all. < Blf - gll, a

. . .= n ntl _
From (64) it follows that if V:‘; : (Vz’n, VZ,Tr)’ then Vn, Tﬂ,\fn
0

for n = 0,1,2,... with VW := 0.

=)




Theorem 8
Let ¥, T(ﬁ) dencte the cost of using T stzrting in the state (s(0) = 1,
. oy N
x(0) = §). Let Vﬁ(;) i= (Vl’w(E), szw(g))» Then

66.1) VK is the unique solution in‘?a of the integral equatiom.

o

v, () = T _—
i,w ) e oe efx (£,6))de + e 7V

500,70 (0, 1do

0

for every § € R.
66.1i) For every £ G.fa, 2im,T§n)f = V.,
e
Proof

From (63) and (64), we see that V& = Lim Ién)Q, where Tén) denotes the

. Ao
o-fold iterate of T“, and 0 is the identically zero function. However, since
I is a contraction, 2im Tén)f is a unique fixed point of Tw’ for every
o]
£ € 7. Hence Vn is the unique solution, in,<?nof Vw = Tﬁvﬂ, ]

It i; important to note that the boundary coundition for the integral
equation is really the condition that the solution be inl?é. This is a
condition on the asymptotic growth rate, and serves to differentiate the
infinite horizon problem treated here f;om the finite horizonm problem in [3].
XTI, OPTIMALITY of 7°

We are now ready to pré&e the optimality of the suggested pclicy; We

shall actually show that optimality is a consequence of wz* and V() satisfying
the HJB equation (60.iv,v,vi) for the infinite time problem and so our proof is

quite general.

Theorem 9
Let z* and T2*(e) be as in (3) and (2). If z* = 0, defime V(<) by (44),

while if z* > 0, define V(°) by (46). Then

i) 1If Vﬂ(°) represents the cost function corresponding to an admissible policy T,

then
Voo kB 2V (8) for 1 = 1,2; £€R and all admissible ™
i,n ’
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.ii) v %8 = V(&) for every § € R
T

Proof

We will show that

I"V z*.z v 2% for every admissible T 67
T T
i.e. ri‘nv z*(E)‘Z V' z*(E) for every £ € R and i = 1,2. (68)
ji),m i,

Since T is monotone, (67) implies that T(“)v z*‘z v A Taking the limit
T T
in n and using (66.ii), we obtain V > V 2% that is (i) for i = 1,2. So our

goal is to show (67), along with equality when T =T . Considering (52.%i,-1ii)

we have
min (u = AV, (x) = (¥ + q )V, (%) = q.V,(x) = c(x) (69)
o€ [0,1] 1 1" 12

-dVZ(X) = —qzvl(x) + (y + qz)Vz(X) - c(x) _ - (70)
For any T therefore, (69) implies that
e(x) > (¥ + q )V () = q ¥, (@) = (1(x) = )V (x) (71)
and so for any admissible T,

cGE(E)) > (v + 4V, (E(E) = T, GE(5,6) - (Map(e,8) - O, G (e, ©)
(72)

Nowvnoting that x;(t,i) is absolutely continuous in t, with derivacive
(ﬁ(xi(t,i)) - d), and Gl(.) is continuous, we can apply Corollary 7 of (7]

showing that the chain rule is valid, and so obtain

S L, D) = T G, (Ml (e,8) - ) ae (73)
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Bence, frem (72) and (73), we have

9 ye 1 O -ve 1 | 1 T4t
joe e(x (e, 8))de > joe (& + qp)V, (= (2,8)) - q;V, (% (2,8)) Jde
o (74)
- J e g (it for ¢ > 0
RSO 3

Integrating the last term ia (74) by parts, see Hewitt and Stromberg [2, p.287],

we have

g 9
Ioe"“{tc(x%xt’g))d: > Ioe""‘!ﬁql(vl(xi,(t,ﬁ)) - T, (xp(e,8)))de

£ 9,(8) = &Y%V, (00, E)) for ¢ > 0
Hence, .
-q,0. ¢ _ . -(Y + q;)0
que 1 er YEe(xk(e,8))dedo > v, (B) - qule Uy, x2(0,60)d0
=q - i
+ E‘lf f{ﬁe Yeq, (v, (=2 (e, B)) = ¥, (xi(e,©)))dt|de
- O(Y + ql)‘j l
= v, (0 - qu H v, ek (0, ©))do
e (a7 e W atee, ) - v, ke £| e_qlgdc}dt
ol Lt Eel ] T Tt Jaf
= =y *+gqde
= v, - | g v, (ke ©))ar
T
Hence

uqc G- o o'
J:éle . {Joe th(xi(t,i))dt + e chz(xi(c,s))}dc‘ > V(&)

i.e..

(T, V)(E) > V(&)

noting that from (60.iv), V(x) = 0(x) and so V e‘?a = Domain (Tv)° Using
(70), similarly we deduce that (T2 TrVl)(E) = VZ(E), Thus we have shown

% .
T7V > V. On the other hand since 7° (°) attains équality in (71), we have
7 =
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: . z*
= . - <
rﬁz*v V. Thus Vﬂz* v __TﬂV = Tﬂvvz* with equality whea ™ = n~ . a

XIII. CONCLUDING REMARKS

There are two directions in which more work is needed. The first
is to realize the full program for flexible m2nufacturing sys:emé outlined in
Kimemia and Gershwin [2].- Consider a flexible manufacturing system making P

parts on m machines.. Part j requires.a units of time on machine %. Thus if a

i3

subset sk‘= {1,2,...,m} of machines is functioning, while the rest ‘have

failed, then a vector u = (ul, 2,9..,up) of production rates is feasible

if and only if u € U where U {u : E
k'’ =1 213%3

if 1 £ sk}; Suppose now that each machine is subject to occasional failure

u, <1if § G s & or = 0

and let {s(t); t > 0} be a Markov chain with state spacev{sl,sz,.:.,szm}.
Given a demand rate vector d = (dl,dz,...,dp)r, we have the problem
x = u(t)-d
{s(ﬁa; t > 0} is a Markov chain witﬁ state space {sl,...,szm}
u(t) €U if s(t) = s,

" Minimize Eja th(x(t))dt
]

where c(*) is some convex cost function. Due to the multidimensional nature -
of x(t), this problem is much more difficult than the one solved here. [2]
has propqsed an approximation, but the optimal solution needs more study.

' The other direction in which more research is needed is theoretical, and is
the problem of optimal.honcrol of continuous time systems with jump Markov
disturbances. As in Rishel (3], we also have proved optimality only with-
in the class of Markov policies. For discrete time systems, see Blackwell {ld]
for e#ample, much more progress has been made on optimal control, and one
usually considers a much more general class of policies within which optimality

is proven. The question of existence of optimal controls also needs more study.
Finally, more work needs to be done on the average cost problem for systems

with jump Markov disturbances, see Tsitsiklis [8].
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