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ABSTRACT

We address the problem of controlling the production rate of a

failure prone manufacturing system so as to minimize the discounted

inventory cost, where certain cost rates are specified for both positive
and negative inventories, and there is a constant demand rate for the

commodity produced.

The underlying theoretical problem is the optimal control of a continuous
time system with jump Markov disturbances, with an infinite horizon dis-
counted cost criterion. We use two complementary approaches. First, pro-

ceeding informally, and using a combination of stochastic coupling, linear

system. arguments, stable and unstable eigenspaces, renewal theory, parametric
optimization etc., we arrive at a conjecture for the optimal policy. Then

we address the previously ignored mathematical difficulties associated with

differential equations with discontinuous right hand sides, singularity of

the optimal control problem, smoothness and validity of the dynamic programming

equation etc., to give a rigorous proof of optimality of the conjectured

policy. It is hoped that both approaches will find uses in other such problems

also.

We obtain the complete solution and show that the optimal solution is

simply characterized by a certain critical number, which we call the optimal

inventory levelo If the current inventory level exceeds the optimal, one

should not produce at all, if less, one should produce at the maximum rate,

while if exactly equal one should produce exactly enough to meet demand. We

also give a simple explicit formula for the optimal inventory level.
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I. "Tr. ODUCTION

We consider a manufacturing system product-ng a single comodity. There

is a constant demand rate d for the c=oodd:y, and the goal- of the anufac-

turing system is to try to meet this demand. The manufacturing system is

however subject to occasional breakdowns and so there are two states, a

"functional" state and a "breakdown" state, in which it can be. The transi-

tions between these two states occur as a continuous time Markov chain,with

q! the rate of transition from the functional to the breakdown state, and

q2 the rate of transition from the breakdown to the functional state.

(Alternatively, the mean time hetween failures is q and the mean repair

time is q2i). When the manufacturing system is in the breakdown state it

cannot produce the commodity; while if it is in the functional state it can

produce at any rate u upto a maximun production rate r. We assume that

r > d > 0.

Let x(tI be the inventory of the commodty at time t, i.e., z(t) =

Ctota. production upto time t) - (total demand upto time t). x(t) may be

negative, which corresponds to a backlog. We suppose that positive in-

ventories incur a holding cost of c per unit caoodity per unit time,

while negative inventories incur a cost of c-, with c, > O, c > O. Our

goal is to control the production rate u(t) at time t, so as to minimize

the expected discounted cost,

I +t
+ c x (t) + c-x-(t))et ( )

0



w-hre S :=max(x,O), x :o max (-z,O) an y'> 0 is the discount rate 

M. e problem that we acddrcess is t Wse. 'ie mhe nufa:-X-trig system

is fuctionin Ca: is the op: -l -eztio n rate u as a unc:tion of tha

inventory x? This problem has been motivated by the pioneering work of

/imemia fi and Kimemia and Gershwin [2], where a more general problem is

formulated (see Section XIII also).

We obtain the complete answer to this question. The optimal solution,

u(t) xz*(t)), is given by a critical number z*o The opti-al policy is,

it 2 eg* r if Wg:) < z*

d if x(t) t z* (2)

- 0 if X(t) > z*

Thus, whenever the manufacturing system is in the functional state, one

should produce at the maxim=u rate r if the inventory x(t) is less than z*,

one should produce exactly enough to z:eet demand if the inventort x(t) is

exactly equal to z*, and one should not produce at all if the inventory x(t)

exceeds z*. Hence the production rate should always be controlled so as

to driVeo the inventory level as rapidly as possible towards. z*, and once

there should maintain it at the level z*. For this reason we shall call z*

the optimal inventory level.°

We also obtain the following simple formula for the optimal inventory

level.

2* 0, t g I + _ (y1 + q+dX) d (3))d
c + s cf 

where X is the only negative eigenvalue of the matrix,
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++7q, q, + Y

The movivation for the problem studied here is thaz it is a basic

probleto for manufacturing systems. The optimal policy is trivial to

compute and qualitatively simple to implement, and it is hoped that these

two features will render it attractive enough for use as a guideline.

From a theoretical viewpoint also, both our solution procedure and

method of proof pp.os.ess.ss several interesting features. First note. that the

system under consideration is the following.

5.i) i(t) - u(t) - d

5oii)2 {S(t); t > O} is a continuous time Markov chain with state.

space {1,2} and generator [-

_q. 2

5iii). The constraint on u(.t2 is,

u(t) - O if s(t) - 2

* £o,r] if s(t) ~ 1

5oivl The go-l is to inimi.ze E (c xz (t) + c-x-(t))e-Y : dt

Here x(t) is the inventory at time t, u(t) is the production rate at time t,

and s(t) - 1 or 2 depending on whether the manufacturing system is in the

functional state or the breakdown state respectively. Thus we have a con-

tinuous time system with jump Markov disturbances and an infinite horizon

discounted cost criterion. For previous work on problems of this type, we

refer the reader to Rishel 3]1 for the case of a finite horizon cost

criterion; and Krassovskii and Lidskii [4] and Lidskii [5] for a case of.

an infinite horizon problem. In dealing with these types of systems there

are two problematical issues.



The firs: set of problems arises because one encounters many mathe-

= rt ca! a dfic ul-_ias, se F Pishl- [3], 'he= studying the probl.em of ot:ima! l

control for continuous time systems wieh jump MarkBov disturbances. Con-

sider a feedback policy u i w(x). Then the system (5.i) satisfies

ir (x) - d (6)

However, the types of functions ' we wish to consider are essenelly d is -

continuous functions. Standard ezxistence and uniqueness conditions for

the solution of the differential. equation (6) are not satisfied. R/shel [3]

has considered one notion of a solution; we use another methd6. .. There.

are also other difficulties. Let

Vi(x) :- mini value of the cost (5.iV) when starting in the

state s(O) = i, x(O) = x.

Then, informally, we have the HamilEto-Jacobi-Bellman dynamic programming

equation:

fmi (u - d)V (x) q -q7v 1 [I'

r( EtOF J qL +j [ ( ) J + (7)-dV ZW L-q 2 y~q( +v2 )

ib

It is not a priori clear that Vi () is a differentiable function. It is not

also clear that there exists an optimal control law. Moreover, it turns out

that Vi(x) does vanish for some x, and for such a value of x, the left hand

side of (7) is minimized by every u, and so the Hamilton-Jacobi-Bellman (HJB)

dynamic programming equation does not prescribe the optimal u for such x.

Thus, the optimal control problem is a singular one. I: is this collection

of mathematical problems that we shall address rigorously in the second

half of this paper.



The second set of proboles is this. Even ignoring all the mathemati-

ca- difficulties mentioned above, how do we actually :tbain the optimal

.solution? Why should we suspect that the optimal policy is of the critical

number type? Why is. the critical number z* always nonnegative? Given that

we want to solve the HJR equation (7), what are the appropriate boundary

conditions? After determining boundary conditions how does one determine

an optimal choice for z*? It is this collection of issues dealing with

the actual obtaining of the optimal policy that we address. in the first half

of the paper.

The two approaches complement each other and we hope that they wll also

be useful in dealing with other problems of the sort considered here.

The paper is organized as follows. In Sections II-VIII we ignore some

technical questions and arrive at a conjecture for the optimal policy.

Beginning with Section IX we address all the mathematical difficulties and

rigorously_prove the optdimality of the conjectured policy.

II. OPTIMALITY OF CRITICAL NUMBER POLICY

Beginning with this section and continuing through Section VIII, we

provide a sequence of informal arguments which will lead us to conjectures.

about the optimal policy and the optimal cost function.

In this section we give an argument to show that the optimal policy is

characterized by a critical number.

Let us assume the existence of'an optimal feedback policy u(t) =wt*(x(t))

and let Vi(x) denote the optimal cost when starting in the state (s(O) - i,

x(O) = x). Fix {s(t,w); t > O}, a realization of the continuous time Markov

chain, with s(O,w) = i.



Now we consider two different initfi. conditions x0 (O) and x (O)

and also a convex combination x (0) 5 (lj)xo(O) + CX(O) here 0 < ( < 1_

If * (-) is used, then the trajectories sarting with the initial condi-

tions x0 ( 0 ) and: (O) satisfy,

6,tW) - i (xk(t,w)) - d if s(tc,) a 1 (8)

-d i s(t,W) = 2

xk(O,W) - Xk(O)

for k 0,1. Also, we have

V((0))) =Ef(. cCtW) + c d(t,w))e dt (9)

where E . signifies that the expectation is taken over W.

Suppose now that for the initial state x (0), we use the concrol

* *
~-_ ( )'-- 9 (l a) (x 0(te,S)) + ctr (lg(t,)L) (10)

Note that such a control is in fact. implementable because by observing

(s;(t,); t > 01 one can in fact deduce what {xk(t,w), t > O} would have

been for k - 0,1. Such a control gives rise to the erajectory satis.fying,

X:a C(o) - (1-ctO (xO(t,w)) + 7r* (x:(t,w)) W d if s(t,W) 1 :

-d if s(t,w) = 2
(11)

x (0,s) = (1 -a)x0(0) + axl(0)

it iS easy to check from (8) and (11) that

g(t,W) (1-)Xo(t,w) + axl(t,w) for every t > 0

From the convexity of the integrand in (5.iv) it follows that

(c x+(t,w) + c x (tw).)e t dt < (1-a)V (X (0)) + aVl (x (0)) (12)
W~~~~ , 



However, for the initial state x (O) the control (10) is not necessarily

opcti-al., ard. so

v1 (x(O)) <_ W f(c x:(t,Ca ) + c : (, )eY: d (13)

From (13) and (12) we deduce that V1(-) is a convex funcction. Assumin

tna: VL(-) is continuously differentiable, we see that there is some z* for

-1 ~~~~~~~~~~(14)
> 0 for x > z*

From the left-hand side of the HJB equation (7), which we suspect (V (O);

.i - 1,2} satisfy, we see that

u r minimizes (u-d)Vl (x) if x < z*

- 0 minimizes (u-d)V1 ( x) if x > z*

Hence, we suSpect that the optimal policy u(t) I r (x(t)) is of the form

a (x) ' r if x < z*
(15)

s0 if x > z*

for some critical number z*.

What happens at x - z*? Any uE [O,r] minimizes (u-d)V1 (z*), but from

the form of (15) it is clear that the inventory level is quickly driven back

to z*'if it deviates from z*. Hence, due to this "chattering" phenomenon,

we suspect that

* (x) - d if x = z* (16)

because such a choice keeps the inventory level exactly at z*, once it

reaches Z*o

(15) and (16) show that the optimal policy is characterized by



the critical number Z*, which we have called the optimal inventory level.

IlIo NONENGATIVT Y OF OPTT4L INVa-_TORY LEVEL

In this section we show that the op-mai in ventory level is nonegative.

Consider two policiesa t (°) and r Z (.), where

W0 (X) g r if x < 0

* d if x = 0 . (17)

0g O > O

and

wita )W r if x < z

-= d if x ~ z (18)

0 if x > z

Lea z < 0 be some srictely negat:ive number. Denote by V (x) and Vi(x) the

0 z
costs resulting from the policieis T (.0) and ITz() respectively, when start-

ing in the state (s(O) = i, x(0) = z).

I wz3(-) is optimal, then f:rom (14) we see that 4&(e) should attain a

minim at x = z, i.eo

V1 (z) < t1 (x) for all x (19)

Moreover, if (o) is optimal, we should also have

Z(x) < V(x) for all x.

In particular, from the above two inequalities we should have

z(Z) < v(0) (20)
v~gz) 9v 1 (0)

Hence, to show that 9z(,) with z < 0 is not optimal, it w}ll suffice to show

that (20) is not true.
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Indeed, let {s(t,w); t > O} with s(0,c) = 1 be a realization, and con-

sider the two t:ra j c:ries

0(:,m) ' r -d if xO;(,=) < 0, s(;,~.O) -1- 0 if x (t,) - 0, s(t,W) - 1

-- d otherwise

0
x2 (O,) - O

and

i:(t,w) r r-d if xZ(t,W) < Zs s(t,m) 1

- 0 if xZ (t,) - °, s(t,W) - 1

. -d otherwise

x (O,) " z

which emanate from the initial states 0 and z, when the policies it
0 () and

%r(-) are respectively used. It is easy to verify that

xO(t,W) + z - xz(t,w) < z < 0 for all t > 0

Henace,

c x (t,c) + c - (t,,) - cx (tw)

0-
c fx (t,;) +z ]

+ + 0-
- C xr (t,) + cx (t:,) + Cjz[

Hence

0 xO+ (t, + c o-0(,- ))et- Y dt < E (¢+ -Z+ + CrxZ (t,d))e:tdt
J~c x (tW.) + cx (tw))e cx(t, W)

i.e.

v°(o) < vz(z)

showing that (20) is violated, and thus that tz(-) cannot be an optimal.

policy.



Hence z*, the optiml inventory level, has to be nonnegativeo

IV-. I- ?T IEC-W!$SE LITN'iA. EQUIATIONS FOR. - COST FNiCTION

Lt: z > 0 and denote by Vi(x) the -s:t function for the porlic¢ (.)

defined in (18). The analog of (7) for the policy TZ(o) is

Vb:(x) := 6oaahg)}g

A2 T 

Cx) - b 1 xx for x < od d.1

.AVZ(x) + bcx for x > z2 2(2)
Be ( +b2cxfor w ca ul 



12
function corresponding to iz(-l, w.e need to determine appropriate boundary

conditions for (23).

V. 3BOURDARY CONDITIONS

Since the vector VZ(x) is two-dimensional, we need two boundary con-

ditions for (23).

V.1 The First Boundary Condition

Let {s(t,w); t > 0} be a realization. Under the policy rz(-), the

inventory is given by the differential equation,

;(,tQ)' w 7; (X('tw)) - d if S(te,) - 1

- .d - if s(t,W) - 2

In any case 1x(t,,) | < r for all (t,w), and so

ix(.t,S)I < !x(Q))l + rt for all (t,,).

Hence,

VY(X(O)) + E[J(c x (t,W) + c x (t,w))e dts(Ow) i, x(O,w) x(O)]

< kljx(O) + k for some constants k and k2.

Hence, we see that

VZ(xl - O(IxI)' as x - + (24).

Let us. see how we can make (24). more usable. Solving (231 for x < 0 in

terms of V (0), we get

v e vZo1 ) C for X < O (25)

Now note the following easily verified fact.

Al has one strictly positive eigenvalue, say X., and one strictly
(26)

negative eigenvalue, say X.
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Let

w {J :- eigenvector of A1 corresponding to A+o (27)

To satisfy (24) as x ~ , we clearly need

v (0) - 51 c () (28)

Xx 

for otherwse, VZ(x) - O( ) as x Ho Here, ( .+) is the eigenspace

generated by w+)}.

(28) is one boundary condition for (23)>

V o2 The Second Boundary Condition

To obtain the second boundary condition, let us see what Vl(z) is.

Consider a system starting in state (s(0) = !, x(O) z) and let t, a

stopping time, be the first time at which s(T+) 2 Clearly x(t z

for 0 < t < T when IZ(o) is used. Hence

V (z) * IE' e Ytc zdt + e V2 (z)]

Noting that T is exponentially distrihuted with mean qme by e@valuating the

expectation in the above equation, we get

Z 1 Z +z)
,1 q (q1 V2(z) + c Z) (29)

or, equivalently,

[1,a]A v(z) -d Z (30)

(30) is the second boundary condition for (23)o

By using the two boundary conditions (28) and (30) one can solve the

piecewise linear differential equations (23) to obtain VZ()), the cost

function for any policy rZ(o) with z > 0o
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The next question we have to face is; what is the optima, choice of z?

V1. OPTLMAL CHOICE OF z

Suouose z* (') with z* > 0 is optimal. Then,

i) V1 (z*) < (x) for a1l x, since by (19), the optimal cost

function attains a miaimm at z

ii) V2} (x) < VtZ(x) for all x,z, since WIZ*() is optimal and therefore

has lower cost than any other TrZ(-).

From the above, we get

Vzl(Z) _ V,1(Z) 9< v(z) for all z

ence VZ(z) attains a nmum he z*. Assuming now that l(z). is a C
1 1

function of z, we see that

_W.(Z..] 0 ° (31)

We will call (31) the optimality condition and in the next section we will

see how it can be exploited to give the optimal solution.

VII. OPTIMAL INVENTORY LEVEL

We will now utilize the piecewise linear differential equations (23),

the two boundary conditions (28) and (30), and the optimality condition (31)

to obtain the optimal choice for z*.

Differentiating (29) and using (31), we get

dz (z)j]z~* q1z (32)

However, by the chain rule,



dz'2 1Z-Z 2 * z1W*

Sice VZ(x) coasidee d as a fuc:ic of o is ai/.;ze5 a: z *, by ass 

ing cont:nuous 4d3ferentiab/i-:=y, We have,

z(z *)] MO0

Hence,

jz (0) 1 L1z* (A1 [0, {2V (zrz) + b2 + z~} (33)dz( 2 a% 2 * 8 2' 2

where we have also usecd (2{)o From (32) and (33) we have

10°11£d. g*(*) + b* q 

fO, 11A1 Vz* (*) + 1 z 

AVZrz*) - [ dI +A V (z bC *w c |(34)

Setting (34) te:porarily aside, we tu= to (28) .Solving (23) for

Q(0) in terms of 9 (z ), we get

V: (P ) - e A LA(zj) + b1 c + A1 bc +1 - Al C

and substituting this in (28), we have

e £vZ(z) + A1 Iaz + 2%.C4J - A 1 blJ + C) (+ > '

Since (w' is invariant under e , we have
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Al 2 A' -V (z) + A-lbc z + AAb 1 c -elA 1Zb + +c)E(w) (35)

Combining (34) and (35), and noting that (w') is invariant under Al,

we get

-51J*+ AZ +
-Ct + Alblc _ e I A7b (CC +C ) ( ) (36)

This equation now gives'us a "formula" to choose z*.

Recall now from Section VI,' that in obtaining (36) we made the implicit

assumption that z* > 0. Therefore we now have to determine when there will be

a positive solution z* for (36).

Let us first simplify (36) a bit. Note that

-Y(Y +q + q2)

det: AM ' + - d(r -d)

Al "b Y(] (37)

Hence (36) simplifies to

AlZ [1]_ c c Y (+)e U -+ + E9 [ (w t(38)
1 C :-,,zj (+C+ C )q 1

Now let

v' ~ [vl, v2] :- a left eigenvector of A1 corresponding to X (39)

Since left and right eigenvectors corresponding to different eigenvalues are

orthogonal, i.e., v w a 0, (38)is true, if and only if,

v eZ* + v j ' v o
e Pf l Jc +1 (c + c )ql

Aiz* X z*
Since v e = e v , this reduces to



X* _+ V2v
@ - + +vy°

69C c 1 v 2 1

Since vA 1 " X v-, by equating the second components of both sides,

Vl ~ v2kr -d)- +
;>% ' -- 2 q +, 2

2
and now substituting for , we get

v2 I

* - + ,..
ce + + cd -t ( + q2 + d i d )( (r d (40)

It is easy to check that

q d - (y q+ X + d)(r -d) > 0 (41)

and so the right hand side of°(40) is strictly positive. Taking logarithms.

we therefore get

°Z* ts g' ag + _ + Xd+ +A q d (y + q% y " ) -d)

However, such a value of z* may not be positive, and we already know from

Section III, that if z* > 0 is not optimal, then z* 0 is. Hence we arrive

at our conjecture:

z* ,. max{. ; t0~og i (1 + .d .. (42)
'X L ·+ c qld -(y + q2 + )(r --d)

Note: Due to (41).it follows ehat + -q > 1*
q d -(y +q2 + X_ d)(r -d) I

Hence, for every c- > 0, there exists c* > 0 such that if c+ > c*, then

z* O. Thus the optimal inventory level may be zero even though c < + .

This is somewhat counterintuitive and surprising.



VIII. OPTZAL COST FUNCTION

In the previous section we have conjectured the optimal policy. In

this section we shall conjecture the optimal cost function a-Lso.

Let us consider separately the two cases where z* as given hy (42)

is zero, and where it is positive.

VIIol Case 1: z* O0

'When z* - 0, the optimal cost function is V (-) which satisfies (.23)

with z - 0, and has the boundary conditions (28) and (30) with z - 0o

Defining w as in (27), (28) says that

V(O) kw' + A 1 b for some constant k

Then, from (30), we get

0 - [1r,o ]A1 v() - ki+ [1, 0]Jpb 1 J - kx 

and so k - -. fence

Solving the differential equations (23) with the boundary condi;tion (43), we

get

yX
_ + + -lhl A b c+ for x < O
c (~6). ee(44)

A2x C-

Ve2. c w+ 2 + A2 + A b2cx+ - foLbc x + + 22b2 

for x > 0
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V!I!.2 Case 2: z* > 0

V(Z*) .. A.. L Z*i A1qJ- (45)

and so, solving the piecewise inear differential equations (23) with

boundary condition (45), we get

_ e-- AA c( + } + A7blc +A7b

for x < 0

m e l e" C tb -l-l' A 2 b c+

for 0 < x < (46)

Ae O {* h2 c Z* -lcl_+z* AitJ2=+ A 2 b 2tc 

a A2 2 cx A 2 b 2 c+ for x > z*

By simplification it can also he seen that

* V() - e - + AZ b } b 2 2 

(47)f 
for x > z*

Our conjectures for the optimal cost function in the two cases. z* 0

and z* > 0 are given by (44) and (46) respectively.

ZX. SOLUTION OF HJB EQUATION

In the previous sections we have arrived at the conjecture that if z*

is as specified by (42), then r *(-) defined as in (2) is the optimal policy

and V(o) defined as in (44) and (46), for the two cases z* = 0 and z* > 0,

is the optimal cost function.

Beginning with this section, we commence the rigorous proof of the

validity of our conjectures.
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In this section we will show that V(-) satisfies the Hamilton-Jacobi-

Bellman dynamic progra-ing equation (7).

LeLa 1

V(-) is continuously differentiable.

Proof

Consider first the case z* - 0 where V(-) is specified by (44). We only

need to check the continuous differentiability at x - 0e Denote by V(a+),

iV Y(a+h) - V() and similarly for V(a'). Now, from (44)

h+Oh

V(O-) w+ -:' {Y ---- {-
Y Y Y4+

2

where we have used (27), (37) and

0 1[I A oJ (49)

Hence V(.') is continuously differencia'ble whenever z* a 0. Now consider the

case z* > 0, where V(-) is specified by (46). We only need to check the

continuous differentiability at x - 0 and x z*. Now, clearly, from (46),

V(O-) - (O+) - e a 1 [A'clc - A1{J] - A 1b c (50)

and so we proceed to consider x = z*, for which,

as ca e seen from (46) (51)

as can be seen from (46) and (47). 0
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Lea 2

Proof

From (44), this is clearly true for the case z*
' Qo Considering z* > 0,

We see flrom (46) that

v(0) Ie 2 b - Abl -)q b c 

and so noting that (w ) is invariant under e A1, we get

k : rolc2 - --
c c le 

(c +Q )q 1 +c )

Noting that left and right eigenvectors corresponding to different eigenvalues

are orthogonal, i.e. v F% s 0 where v and w are given by (39) and (27), we

only eed to verify that;, .

Az* *

Noting that v e = e -v , by using (37) and simplifying, we see that we

only have to show that

f , J q1 H 0 H
e (c[

But noting the equivalence of this and (40) and (42) when z* > 0, the

assertion follows.

Now. we are ready to consider the case z* = 0 and show. that V() satisfies

the gJB dynamic programming equation (7)o
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Lema 3

Suppose z* given by (42) is equal to 0, and V(-) is Cefined by (44).

Then

(r (X) - d)V1 (x) - +q -q1 ( 

52.i) -( (x + c x)

-d2(X ) - q 2 Y + q 2Vz )J 1

for all x

52.1i) (.wZ*( x)- d)VlCx) m Cin (u d)V (x) for all x
uE [t,rJ

Proof

I:t is easily checked that V(-) defined by (44) satisfies (231 for

= < O and x > O; and so (52.±). is valid for x < O and x > Now. con-

sidering x - 0 and using (48), we have

[(Z*

[t(~ (OI - d ).v (.-) o c d

while, by using (43), we have

Y + ql -2-
V(Q<) - -A2V(O --Y+ AZW dA2 h e

SI' a2 Y + 2 '21

_c dfo 
Y +

where we have also used (49) and (37). Hence (52.i) is also valid at x = 0.

Now turning to (52.ii), since Tz*(-) satisfies (2), we only need to show that
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VI(9) c < for x < 0 and V() W>O for x > 0 (53 )

Consider x < 0 first. Thea, fr-m (44) it follows that

00 cA+ +> for x < 0

-- e . oe<
where, by V1 (0 ) , we mean V1 (0-). oSince (48) shows that Vi(Q) = 0, it

fol6ows that (53) holds for x < 0 Noe w turning to 2 > 0, from (43) and

(44) we see that

Vo.(x) - aeco [A · 'J ^2" 2: ]2 for x> 0 

From (43), (49) and (37), we have

2 - pcp b-f 0 1
+ 2P ~ C 2-lJA2 V (0) - 7-A 2w e b;

Recalling (22) we thus have,

2c c)J +.-A 2 L _c A72 1 f'or x > O (54)

and are right eigenvectors of AI corresponding to the

q2 (55)
y+ q +q

eigenvalues () ai- (: . .. 2 ) respectively

and

[:j= -q- [f: + E ' [3rs (56)
ql+ q 2 ql +q 2 q2

Moreover, equating the first components of both sides of the equation

A W + X and noting (4), we have

+ 1
+ = y + q - X(r - d) (57)
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Using (55), (56) and (57) in (54), we get

il- · d I c (Yf C(Y + ql +q 2)

1() 1 e (q, + q2) e - d X]

If y -X(r - d) > 0, then clearly V(X) > O0 for x > O and (53) is valid.

So suppose that y - X+(r - d) < 0 and note, by differentiating, that

+ c-(y- X+ (r-)) - c(y - X(r-d)) (y + q +q 2 )

V (x) y' +( q .) die Y(q 1 +q 2 ) d

for x > 0

(y + ql + q2 )

If p > 0 and n < 0 are constants, then pe + ne > 0

for all x > 0 if and only if p + n > O. Hence, to show that

Vi ( x) > 0 for allx> 0

we only need to verify that

+ c(Y - (r-d)) y + q + qc + ¥ + 1 2 > .
d Y(q +q2) d d -f

or equivalently, that

.c y +.c (y - +(r - d)) > o

It is easy to check that (?+ + X)(r d) (y + ql) - (y + q)(rd d and

so, substituting for X+, we only need to verify that

I d q2 d ( + qL X (r - d)) + c y > 0

But this is in turn equivalent to,
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C+ -l~+>
c + c q 1d - ( + q2 + A d)(r d)

which is in fact true, since z* given by (42) satisfies z* - Oo Hence

(53) is valid, proving (52.ii).

Turning now to the case z* > 0 we show a similar result.

Lema 4

Suppose z* given by (42] is strictly positive~, ad iV() is defined by

(46)., then (52.i) and (52oii) are valid.

Proof

It is easily checked that Ve). satisfies (23) for x < 0, 0 < x < z*

and x > z*, and so in all three of these cases (52 0i) is satisfied. At

x O, (50) and (46) again show that V(0) - A½V(O) and so (52oi) is also

valid at x = 0. Turning now to x - z*, we uote from (51) that

(Z* d-V(z (z*) 
-dl (Z*) q 1i , 'dVZ*)

Also,

Y + V t* + bq

.+ q JV(z*) c z d{A2V(z*) + b2 CZ}

= -d im {A2V(x) + b 2c} x d Lim V(a) W -dV(z*)

where we have used the continuous differentiability of V(o). Hence (52.i) is

valid for all x. Now turning to (52.ii), since KTz () is of the form shown

in (2), we need to show that



26

Vl (x ) < 0 for x < z* and Vl(x) > 0 for x > z* (58)

Consider 0 < x < z* first. From (46) we obtain

A (x z*l 
v(x) e fh c+ - for 0 < z < z*

where, by V(O) and V(z*) we mean V(0+) and V(z*-) respectively. Now

hb c -% l .

+ +c Y + q2 )
where 8 :-= + c q > O. Let t :=- (x - z*) > 0 and denoting

Bd d ql
by t-1 the inverse Laplace transform, we have

,(x) ,O]e = .z[ lr[,o](sI + Al)-I

eq __________ q1 e(e e )
-xQ+ (s - d) (r d)(X+ -d) +

with strict-inequality for x- z*. Moreover, from (51), V1(z*) = O, and

so the validity of (58) for 0 < x < z* is established. By continuity of

V.(x), we see now that V 1(0) < O, thereby establishing (58) for x - 0 also.

Now we consider x < O. Since (23) is satisfied for x < O, we see that

V(x2 Ie4 V(O) -1 blc _] + lbl + lA 2 lc for x < 0 (59)

Hence

t(x) - Ale 1V (o) A_ bl-c] + Alblj for x <0

From Lemma 2, we know that V(O) -A2blc b kw for some constant k, and so

+x +x
V(x) = kX+e+ w + ALb for x < 0

Noting (27) and (37), we have
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Lx) k0Xe ) r Xe V (O)- L ) fo x O

Since Xax 0 for x < 0 and since (0) < 0 as previously shown,it follows

that Vl(X) < 0 for x < 0 and s.O (58) is valid for z < 0 in addition to

0 < x < Z*. Now we consider x > *o Fprom (47) we have,

A (x z*) +

s= P for x > z*

+ Y e q
where := *(g + - > 0, and hy V(z*) we mean V(z*+) Now using

(55) a bd (56) wde get
r (i + ql b d2)

V () °- e- r a e > for x > z.

with strict inequality except at x - z*. Since V!(z*) - 0, the validity

of (8) is Iso established for x > Z*o 

Theorem 5

Let

60.i) z* be deainefd as in C42)

60 i). 7*b() be definaed as in (2)

60.iii) VCe) be defined as in (44) or (46) depending on whether z* Q 0 or

z* > 0.

60.iv) V(-) is continuously differentiable

60.v). wt Z*() and V(.-) satisfy (52.i) and (52.ii) and hence the

Hamilton-Jacobi-Bellman dynamic programming equation.

60.vi). V(r.) =0( I) as x ±
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Proo f

We have already established (60.iv) and (60.v) in Leas 1, 3 and 4.

To show (60.vi) note that (44) and (46), (26), (27) together with Lea 2

show that V(x) - O(IxI) as x . - ". Moreover, since both eigenvalues of

A2 are strictly negative, it follows from (44) and (46) that V(x) - O(x)

as x .- + aLSo. 

X. ADJMISSIBLE POLICIES

It is now time for us to address more general issues. We begin by

defining the class of admissible policies.

Definition: A measurable function r : R - f[O,r] will be called an admissible

policy if, for every. (r,) R 2 with Z > 0, there exists a function y (t;T,r)

which satisfies

(61.i) y (t;e,g) is absolutely continuous in t
_- t

(61.ii) y1T(t;r,g) = + J-(Ir(s; r i)) d)ds for t > t

(61.iii) y (t;T,~) is continuous in (t,Tr,).

(61.iv). yC(-) is the unique function satisfying (i and ii) above.

Given such an admissible we now describe the manner in which we interpret

the differential equation (5.i), Let {s(t,w); t > 0} be a realization of

(5.ii) with, say, s(O,w) - 1 and suppose x0 is the initial inventory level.

Define tr0 () :- inf{t > 0 : s(t,w) - z} and Ti + l () inf{t > Ti(W);

s(t+, w) # s(t-, w)}. Then we construct the process {(x (t,w)} by,

x (t,w) := y (t;O,x 0 for 0 < t < tO(W)

:= x (ri(), w) - d(t - ri(W)) for ri(<) < t < Ti+ l(W)

and i = 0,2,4,...

:= Y (t;tri()., X (,i(w),W)) for T.i() < t < i+ l(W)

and i = 1,3,5,...
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Noce that an i{ediate consequence is

X (t,) 0+ (ar(sw) - d)ds for all t > 0 (62)

where

u (t,c) 0 if s (t,) = 2

" 'rrSC~(t,9z)) if s(tw) 1 X

Thus,- the differential equation (5.i) is interpreted in integral form in

(62) .

One can use the theory of semigroups of nonlinear contractions in

Banach spaces, see Barhu 16J., to obtain sufficient conditions for a policy W

to be admissible. We now use this 'to establish the admissibility of policies

of t:he z () type.

Theorem 6

i (o) defined by (18) is admissible.

Proof

Let A, a multivalued operator, or equivalently a subset of R2 b.e

defined by

A(x) :-'{r d} if xg< z

0S-d, r d] if x - z

:e {-%} H 9if > z

Then x1 < and Y!E A(x1), Y2 I A(x2) implies that (x - x 2)(y - y2) 0

and so A is a dissipative operator, see Definition 3.1, page 71 of Barb.u 16].

Moreover

U U {x - y} - R

R A A -dssipa, see , page 7 Ar e

and so A is m-dissipative, see £6, page 71]. Also, for every x6 R,
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(itZ(x) - d) A.(x) and IZTZ(x - d < _ fyI for every yEA(x)

By Corollary 1.1 and Theorem 1.6 of [6, page 118] we see that (61.i, ii, and

iv) are satisfied. Moreover, hy Proposition 1.2 [6, page 110], y z(t;'r,) as

a function of t, for each g, is a semigroup of nonlinear contractions, and

so from Definition 1.1 of 16, page 98] we see that |Y z(t;r, 1 )

y- rz(t;tZ 2 )I <_. 1-z 2 1. Since by uniqueness y Z(t;,S) - y (t-t; 0,,)

for all t > r, it follows from {y Z(t;:-l,,) - y Z(s;T2,i 2 ) < Y Z(t --r; 0,1)

y( ,-'(t ; o )+ IY z(t-rT 2 ; O·,l)l - Y (t=-T:; O,2) that y is a

continuous function, and so (61.iii) is also satisfied. .

.XI. INTEGRAL EQUATION FOR COST FUNCTION

In this section we will show that the cost function corres.pondiag to

a policy ar satisfies a certain integral equation.

LetTil} be the successive jump times of (s(t)}. If {x (t); t > O}

is the trajectory resulting from a policy T, define

V' (9) : £C. C(x(t))e dt Is(O) -i, x (0) 

as the. cost of using T upto the n-th jump of {s(t)}. Eere

c). : ca x + C x

Clearly

(V ) zaim V, () (63)

is the corresponding erxpected cost of using it indefinitely.

Define

xa(<,9) :, y(t ;0O,)

x(t,S) :- t- :d
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Clearly x (t, ) represents the inventory level at time t if initially the

inventorv level is e, s(Q) - i, and there are no jups of {s(t)} i .f0,t),

By a renewal argument it follows. that

V ( 0)-0vi,1(T) - 0

and

rt T Y:(x;( ,g))dt + a ve (x ,))) (64)VUf~ a i (x (64 
)i, rT i j j I (i), ,a

where

j (i)E{fl,l2, j(i) P i fo~rt l, 

For > O0, let { be the Banach space of all measurable functions

mappig a into R, with norm defined by tfik :" sup{e {: 'f(x)l, and

letF: fl eF 0nf 2 aF x F ge4{ {p (19f21 i : max l lt

and no te ,h2 ,, - _2 Ftor (flf2 2 define T (f1, 2

( ,f2, TZ f ) by

(,r fji) ) : fq i ((t))dt + je (a ( )da

(65)

Lelma 7

i. If (fl,f 2 )EYf 2 then T(flf 2 ) E 2

ii) T is a contraction with respect to the noarm j EI for every

> 0 sufficiently smaall.

Proof

It suffices to show that Ti f j (f ) E jFand that Ti is a contraction

for i f1,2o Note first thar by (62),

-( t<,O. i I + k1 t



32

In the above and what follows, all the kt's are constants chosen appropri-

ately. Since c (x) < k2Ixl, it follows that

fqie a t eY c(xi(t, ))dt]da < kI + k4

(y + q1)
Also, for 0 < E < k

~~.~~~~~" I

ence ±T f(l < k e El+ + k and so, T f f

sufficiently small, i.e. Ti f E To show that T. is. a contraction,

consider 0 <E <Y , then

~(T: f - T (irXg) ()< fJ±e ±+d ei o I(4)qi | f +- g(xi ( a,))(T r <i> ! T ) ei

·- (q. i+ Y)a E(I9, + ka)I - d

,, l l if t 1qe i l da

< 5eEll[lf +glI E

where 0 <c < 1. hence I - T<- ei ' !If -elt E dg w,~=, o < B < ~.. ~-,',~- l~:i,re - ~:i,,gl i~ <_ sl !e - ~! .

From (64) it follows that if Vl : (V< 1 V2 ,) then V n+ T1 

for n = 0,1,2,... with V0 := 0.'~~~~~T
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The oram 8

Let V. ,,.() denote the cost of using I starting in the state (s(O) 1s

x(O) ). Let ( :V (Vl (M), V2 (i))O Then

660i) :V is thhe integral equation.

Vt ' q= te-(x qecf7r,))dt + e-YV IT (xT (F, ))jda

for every R E R.

(n)66.ii) For every f E 2 , Zim T' f V.

Proof

-(=)0 ee (n)
Fromt (63) and (64), we see that V Lim TI(T)O where denotes the

n-fold ittrate of Tw s and 0 is the identically zero function, However, since

TI is a contraction, Lim Tn) f is a unique fixed point of T7 , for every

f E . Htnce Vn is the unique solution, in, F of VT - RV Cl

It is important to note that the boundary condition for the integral

equation is really the condition that the solution be in . This is a

condition on the asymptotic growth rate, and serves to differentiate the

infinite horizon problem treated here from the finite horizon problem in [31.

XIIo OPTeIALITY of fz*

We are now ready to prove the optimality of the s.ugges.ted policy. We

shall actually show that optimality is a consequence of it* and V(-) satisfying

the HJB equation (60iv, , vvi) for the infinite time problem and so our proof is

quite general.

Theorem 9

Let z* and rz*(.) be as. 'in (3) and (2). If z* = 0, define V(.) b.y (44),

while if z* > 0, define V(-) by (46). Then

i) If V (') represents the cost function corresponding to an admissible policy w,

then

V *(V) < V (5) for i = 1,2; Z R and all admissible wT
- ii
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ii) V ,(~) - v(M) for every E R
iT

Proof

We will show that

TV * > V * for every admissible i (67)

i.e. i g z*( ) -> z*(v) for every 5 E R and i 1,2. (68)

Since Tr is monotone, (67) implies that T()V > V Taking the limit
it it Z* - Z*

in n and using (66.ii), we obtain % V z*> that is (i) for i = 1,2. So our

goal is to show (67), along with. equality when rt = T . Considering (52.i,-ii)

we have

mmn (u - d)l(x) - (Y + ql)VCl(x) - q1 V2(x)- C( (69)

u E [O,r]

-dV2(x) -q 2V1 (x) + ( + q2)V2(x) - c(x)(70)

For any iT therefore, (69) implies that

c(x) > (y + ql)v (x) - q (X) (r(x) - d)7(x) (71)

and so for any admissible T,

1. 1 1 1 1
c(X I(ti)) > (y + ql)V1 (x (t:,)) - qiV2 (x (tOT) - (i(x (ti)) d)V (x Cit ))

(72)

Now noting that x (t,Q) is absolutely continuous in t, with derivative

( 1r(x(,t)) - d),and V1(' ) is continuous, we can apply Corollary 7 of [7]

showing that the chain rule is valid, and so obtain

d V 1 (x (7-dv CX (t, V (x (t ~ (t') - d) a.e. (73)
l,'(XIT 'IT(,' )) O )-
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Hence, from (72) and (73), we have

-| YC(X (t,%))dt > eY[(y + q)v( (t,) x- v2 t )d

(74)

fJeYt ~ Vl(t (,))d: for a > 0

Integrating the last term in (74) By parts, see Hewitt and Stromherg [9, po 287L .

we have

|e- C(:1(t,D)dt > |aeY q1tv (x-(it,)) - V (x (teg)))dt

+ vl( e- v(x(,)) for a > 0

joqla (=,O j)d: vl(~ ~0z vlx~( f) +
(e I V xa(ago))daa

+ fqe ? ytq (V1 (x1(t,')) - V2 (xi(t9,)))dajdC
l - Jo X 71 Jo: 2) d 

-(Y + q) i (tS))de

Hence

:qe e ¥@ (Xx l(t,t))d +e VlgC(za))

i.e.

(T~ v2)(9) > V (g)

noting that from (60.iv), V(x) = O(x) and so V Ef 2 Domain (T )o Using

(70), similarly we deduce that (T V2,l)(9) = V2 (g), Thus we have shown

T V > V. On the other hand since Tr *() attains equality in (71), we have
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T V V. Thus V Z* V < T V T V with equality when r Ir .
iT 12 r i

XI%. CONCLUDING RMARKS

There are two directions in which more work is needed. The first

is to realize the full program for flexible manufacturing systems outlined in

Kimemia and Gershwin £2J.- Consider a flexible manufacturing sy.stem making p

parts on m machines.. Part j requires. ai units of time on machine i.. Thus if a

subset sk c {1,2,...,m} of machines is functioning, while the rest have

failed, then a vector u - (u 1,u 2 ,... ,up) of production rates is feasible

if and only if u E Uk where Uk : {u : a iu.< if . E $k or

if i £ sk}. Suppose now that each machine is subject to occasional failure

and let (s(t); t > 0} be a Markov chain with state space {Sls2,... ,Sm}S

Given a demand rate vector d - (dl,d 2 ,...,dp), we have the problem

x u(t)-d

s(tj); t > O} is a Markov chain with state space {s 1'.. . 5s }
2m

u(t) E Uk if s(t) = sk

Minimize E e-Ytc(x(t))dt

where c(-) is some convex cost function. Due to the multidimensional nature

of x(t), this problem is much more difficult than the one solved here. £2]

has proposed an approximation, but the optimal solution needs more study.

The other direction in which more research is needed is theoretical, and is

the problem of optimal control of continuous time systems with jump Markov

disturbances. As in Rishel (3], we also have proved optimality only with-

in the class of Markov policies. For discrete time systems, see Blackwell [1o]

for example, much more progress has been made on optimal control, and one

usually considers a much more general class of policies within which optimality

is proven. The question of existence of optimal controls also needs more study.

Finally, more work needs to be done on the average cost problem for systems

with jump Markov disturbances, see Tsitsiklis [8].
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