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Discriminating quantum-optical beam-splitter channels with number-diagonal signal states:
Applications to quantum reading and target detection

Ranjith Nair*

Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
(Received 27 May 2011; published 8 September 2011)

We consider the problem of distinguishing, with minimum probability of error, two optical beam-splitter
channels with unequal complex-valued reflectivities using general quantum probe states entangled over M signal
and M ′ idler mode pairs of which the signal modes are bounced off the beam splitter while the idler modes
are retained losslessly. We obtain a lower bound on the output state fidelity valid for any pure input state. We
define number-diagonal signal (NDS) states to be input states whose density operator in the signal modes is
diagonal in the multimode number basis. For such input states, we derive series formulas for the optimal error
probability, the output state fidelity, and the Chernoff-type upper bounds on the error probability. For the special
cases of quantum reading of a classical digital memory and target detection (for which the reflectivities are real
valued), we show that for a given input signal photon probability distribution, the fidelity is minimized by the
NDS states with that distribution and that for a given average total signal energy Ns , the fidelity is minimized
by any multimode Fock state with Ns total signal photons. For reading of an ideal memory, it is shown that
Fock state inputs minimize the Chernoff bound. For target detection under high-loss conditions, a no-go result
showing the lack of appreciable quantum advantage over coherent state transmitters is derived. A comparison of
the error probability performance for quantum reading of number state and two-mode squeezed vacuum state (or
EPR state) transmitters relative to coherent state transmitters is presented for various values of the reflectances.
While the nonclassical states in general perform better than the coherent state, the quantitative performance gains
differ depending on the values of the reflectances. The experimental outlook for realizing nonclassical gains from
number state transmitters with current technology at moderate to high values of the reflectances is argued to be
good.

DOI: 10.1103/PhysRevA.84.032312 PACS number(s): 03.67.Hk, 42.50.Ex

I. INTRODUCTION

Consider, for b ∈ {0,1}, an optical beam-splitter channel
taking an input signal mode annihilation operator âin to the
output mode annihilation operator âout in the manner of Fig. 1
under the mode transformation:(

âout

êout

)
=
(

rbe
iθb tb

tbe
iθb −rb

)(
âin

êin

)
. (1)

Here, rb = √
Rb and tb = √

Tb are real and non-negative field
reflectivities with Rb and Tb the corresponding reflectances and
transmittances with Rb + Tb = 1. We will assume R0 � R1

throughout the paper. We have included, for later purposes,
the input and output annihilation operators êin and êout

of the other (environment) mode incident at the beam splitter,
whose input is assumed to be in the vacuum state. Denoting
the b-dependent quantum channels induced on the signal mode
by the above beam-splitter operation by Eb, and assuming
that each of these channels has equal a priori probability,
we consider the following general strategy to discriminate
these two channels with minimum error probability illustrated
in Fig. 1: A quantum state source S prepares a pure state
|ψ〉 on the system consisting of M “signal” optical modes
{âm

in}Mm=1 and M ′ “idler” modes {b̂m′
in }M ′

m′=1, allowing for any
entanglement across the signal modes and between the signal
and idler modes. The M signal modes are passed through Eb

*rnair@mit.edu

with the idler modes unchanged, giving rise, in general, to
mixed density operators

ρb = E⊗M

b ⊗ id⊗M′
(|ψ〉〈ψ |) (2)

on the signal-idler Hilbert space depending on the value of
b, where id denotes the identity channel on the idler modes.
This joint state is now measured at the detector D using the
Helstrom quantum measurement that yields minimum error
probability in distinguishing the two states [1]. In view of
the fact that loss is ubiquitous in quantum state transmission,
processing, and detection, and because of the well-known
sensitivity of nonclassical states to loss, we will, in general,
assume that rb < 1. On the other hand, at room temperature
and at optical wavelengths ∼1 μm, the average number of
thermal noise photons per space-time mode is ideally around
10−21, allowing us realistically to neglect it, although it is
known that interesting nonclassical gains are obtained in
high-loss high-noise conditions such as those in “quantum
illumination” [2].

Many interesting problems are encompassed by the above
model. The case of r0 = 0 (and possibly r1 	 1) corresponds
to a target detection scenario (identical to quantum illumina-
tion [2] but for the absence of thermal noise) in which b = 0 (1)
represents the absence (presence) of a reflecting target of
effective field reflectivity r1. The more general case of nonzero
r0 but � ≡ θ1 − θ0 = 0 corresponds to the recently proposed
quantum reading of a classical digital memory [3]. The case
of r0 = r1 < 1,� �= 0 models the lossy discrimination of
channels differing only in phase shift (or path length) and
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FIG. 1. Schematic of setup for determining which of two beam-
splitter channels (indexed by b) of the form of Eq. (1) is present
within a black box B. A quantum state source S produces a pure state
of M signal modes {âm

in}M
m=1 and M ′ idler modes {b̂m′

in }M ′
m′=1 of which

one signal-idler pair is shown. Each signal mode reflects off the beam
splitter while the idler mode is unaffected. The environment modes
{êm

in}M
m=1 coupling to the beam splitter are all in the vacuum state.

The detection module D performs the minimum error probability
(Helstrom) measurement for distinguishing the two possible (M +
M ′)-mode quantum states corresponding to b = 0 and b = 1.

is related to the problem of estimation of a continuous optical
phase parameter.

Given this background, the following question may now
be posed: Among all |ψ〉’s with average total energy Ns in
the signal modes, which state minimizes the average error
probability in distinguishing the channels, and how much
improvement over a classical state of the same energy is
attainable? A multimode classical state is a state with a
non-negative P representation [4,5]. Thus, ρ given by

ρ =
∫

P (α)|α〉〈α|d2α (3)

is classical if P (α) � 0 for |α〉, an M-mode coherent state,
so ρ is a probabilistic mixture of product coherent states.
Comparison of the performance of a proposed input state to
this class of states is important since, as their definition implies,
the latter are readily prepared by modulating laser fields with
classical random numbers. In particular, we will compare
performance with the pure coherent state |√Ns〉 ⊗ |0〉⊗M−1

[6].
A related version of the general problem of discriminating

two beam-splitter channels has been addressed recently in
Ref. [7]. The scenario of Ref. [7] differs from ours in that
it is assumed, referring to Fig. 1, that the combined state of
êin and âin may be chosen subject to a total energy constraint
and that both the beam-splitter output modes âout and êout are
available for a Helstrom detector to measure, in addition to
the idler mode b̂in. As such, the problem of Ref. [7] is one
of discrimating two unitary transformations as opposed to the
nonunitary channel discrimination problem considered here.
Nevertheless, it is clear that, for M = 1, the minimum error
probability attainable at given Ns in the setting of Ref. [7] is not
greater than that for our more restrictive setting. On the other
hand, the case of M > 1 was not considered in Ref. [7]. We
note that the problem in the form addressed here is of more
relevance to long-range scenarios where the black box B of

Fig. 1, and, therefore, the input and output environment modes,
are not directly accessible to the user who controls the state
source S and the detector D. It also models quantum reading
scenarios where the memory itself (e.g., a CD or DVD) need
not be modified in a major way. When such modifications to
the memory are contemplated, the scenario of Ref. [7] becomes
interesting.

This paper provides several partial answers to the broad
question posed above. In Sec. II, we derive a lower bound on
the Jozsa-Uhlmann fidelity [8,9] between ρ0 and ρ1

F = Tr2
√√

ρ0ρ1
√

ρ0 (4)

that is valid for any input state |ψ〉 [10]. This further
yields a lower bound on the minimum error probability of
distinguishing the output states. In Sec. III, we specialize
to input states whose reduced density operator on the signal
modes is a mixture of multimode number states; in this paper
such states are referred to as number-diagonal signal (NDS)
states. It was shown recently in Ref. [11] that NDS states are
optimum input states according to many possible performance
criteria for a large class of image sensing problems of which
the minimum error probability discrimination between two
beam-splitter channels that is the subject of the present
paper is a special case. We mention that, in the contexts of
communication and key distribution between two users, a class
of states related to the NDS states was introduced in Ref. [12]
and referred to as photon-number entangled states (PNES). A
PNES is a pure state of a single signal-idler mode pair that
is diagonal in the number state basis of both the signal and
idler modes. Since the states we consider do not have to be
number state diagonal in the idler modes, we believe the term
number-diagonal signal state is more appropriate. However, it
is the case that a given single-mode NDS state can be related
to a corresponding PNES by a unitary transformation on the
idler modes without changing the error performance.

The NDS states include, but are not limited to, number
states, the two-mode squeezed vacuum (or EPR) states used in
Refs. [2,3], the NOON states [13], the related |m :: m′〉 states
of Ref. [14], the pair coherent states (PCS) [15], and several
other states studied in the context of phase estimation [16]. For
this class of states, we show that ρ0 and ρ1 of Eq. (2) are easily
diagonalized. The minimum possible error probability of
discriminating any two states (with equal a priori probabilities)
is given by the Helstrom formula [1]

P e = 1
2 − 1

4 ‖ρ0 − ρ1‖1 , (5)

where ‖A‖1 is the trace norm which equals, for self-adjoint
A, the sum of the absolute values of the eigenvalues of A.
For noncommuting mixed states, P e is notoriously hard to
calculate. For input NDS states, however, we show in Sec. III
that the eigenvectors of ρ0 and ρ1 have a mutual inner product
structure that permits the calculation of P e as an, in general,
infinite series. The fidelity (4) also yields the following upper
and lower bounds on P e [17] (the first inequality follows from
a binomial expansion of its right-hand side):

1

4
F � 1

2

(
1 − √

1 − F
)

� P e � 1
2

√
F . (6)
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Also of interest are the “Chernoff-type” upper bounds:

P e � 1
2Q(s), s ∈ [0,1], (7)

where Q(s) = Tr[ρs
0ρ

1−s
1 ] and the Chernoff bound Q [18] is

the best such bound:

P e � 1
2Q, (8)

where

Q = min
s∈[0,1]

Q(s). (9)

The Bhattacharyya bound is (7) with s = 1/2. This terminol-
ogy was introduced in Ref. [19] and the bound was applied
for the first time in Ref. [2]. We show here that, for NDS
input states, F and Q(s) are also calculable as infinite series
in general and have closed-form expressions in some cases.

In Sec. IV, we apply these results to quantum reading and
target detection, i.e., to the cases where � = 0. The input state
consisting of M signal and idler mode pairs from the output of
a parametric down-conversion process was shown in Ref. [3]
to yield, in some regions of M and Ns , surprisingly better error
probability in quantum reading than that obtainable from any
classical state of the same energy [20]. In this paper, we first
show in Sec. IVA that, for any given signal photon number
distribution, the general fidelity lower bound derived in Sec. I
is attained by NDS states. Further, the NDS states minimizing
the fidelity for a given Ns and M are the multimode Fock
states of total photon number Ns . In Sec. IVA1, we lower
bound the error probability for quantum reading and target
detection via the fidelity for general input states. In Sec. IVA2,
for the case of R1 = 1, we show that the Fock states give the
lowest Chernoff bound among all pure input states of given
energy. In Sec. IVA3, we state a fidelity-based error probability
lower bound for target detection with a general input state. In
the limit R1 	 1 of large loss, we derive a no-go result that
rules out appreciable quantum advantage over coherent states.

In Secs. IVB– IVD, we characterize in detail the error
probability performance of coherent states, number states,
and the EPR states. We show that the performance of all the
multimode Fock states of total photon number Ns are identical,
a fact that helps practical implementation. For EPR states,
we show that the application of the results of Sec. III yields
the same analytical results as the methods used in Ref. [3].
In Sec. IVE1, we compare the quantitative performance of
coherent, number, and EPR states for some typical reflectance
values and demonstrate nonclassical gains. In Sec. IVE2,
we consider the technological feasibility of achieving the
nonclassical gains in quantum reading.

II. LOWER BOUND ON OUTPUT STATE FIDELITY

Consider an arbitrary (M ′ + M)-mode state |ψ〉 in the
photon number representation

|ψ〉 =
∑
m,n

cm,n|m〉I |n〉S, (10)

where |m〉I = |m1〉I1 ⊗ · · · ⊗ |mM ′ 〉IM′ and |n〉S = |n1〉S1 ⊗
· · · ⊗ |nM〉SM

are, respectively, the photon number states of
the M-mode (M ′-mode) signal (idler). After augmenting the
above state with the vacuum |0〉E of the M environment modes

{êin}Mm=1 of (1), we may write the Schrödinger-picture evolution
corresponding to the Heisenberg-picture evolution (1) of the
joint system to one of two pure states as

|ψ (b)〉 =
∑
m,n

cm,n

∑
k�n

A
(b)
n;k |m〉I |n − k〉S |k〉E, (11)

where the amplitude A
(b)
n;k is given by

A
(b)
n;k =

M∏
m=1

[√(
nm

km

)
einmθb r

nm−km

b t
km

b

]
. (12)

In Eq. (11), k � n is to be understood as a component-wise
inequality. We then have ρb = TrE[|ψ (b)〉〈ψ (b)|] so the |ψ (b)〉
are purifications [21] of the respective ρb. From Eq. (11), it
follows that the overlap O = |〈ψ (0)|ψ (1)〉|2 equals

O (13)

=
∣∣∣∣∑

m,n

|cm,n|2
∑
k�n

M∏
m=1

[(
nm

km

)
einm� (r0r1)nm−km (t0t1)km

] ∣∣∣∣
2

(14)

=
∣∣∣∣∑

n

pn

∑
k�n

M∏
m=1

[(
nm

km

)
einm� (r0r1)nm−km (t0t1)km

] ∣∣∣∣
2

(15)

=
∣∣∣∣∑

n

pn

M∏
m=1

[einm�(r0r1 + t0t1)nm ]

∣∣∣∣
2

(16)

=
∣∣∣∣

∞∑
n=0

pne
in�(r0r1 + t0t1)n

∣∣∣∣
2

, (17)

where pn = ∑
m |cm,n|2 is the multimode photon probability

distribution in the signal modes. In going from Eq. (16) to
Eq. (17), we have reordered the sum of Eq. (16) over the single
index n = ∑M

m=1 nm, with pn being the probability distribution
of the total signal photon number

pn =
∑

n:
∑M

m=1 nm=n

pn. (18)

Uhlmann’s theorem [8,9,21] states that the fidelity F is the
maximum overlap over all purifications of ρ0 and ρ1, so we
have the lower bound

O � F (19)

for the O of Eq. (17). For any proposed input state |ψ〉, the
overlap O(|ψ〉) can be calculated via Eq. (17) in terms of the
signal photon probability distribution of |ψ〉. Application of
the inequalities (19) and (6) yields the following lower bound
on P e:

1
2 (1 −

√
1 − O(|ψ〉)) � P e[|ψ〉]. (20)

The cases of quantum reading and target detection for which
� = 0 are further developed in Sec. IVA.
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III. NDS STATES: MINIMUM ERROR PROBABILITY,
OUTPUT STATE FIDELITY, AND CHERNOFF-TYPE

BOUNDS

We define NDS states to be states whose reduced density
operator in the M signal modes is diagonal in the product
number (Fock) state basis. A pure NDS state then has the
representation

|ψ〉 =
∑

n

cn|φn〉I |n〉S, (21)

where |φn〉I is any orthonormal set of states on the idler
modes; the above equation is essentially a Schmidt decom-
position [21] of |ψ〉. This is a wide class of states, many
of which have been intensively studied in quantum optics
and have interesting applications in quantum information and
metrology [2,3,12–16].

We now show that, for NDS inputs, ρ0 and ρ1 have a form
helpful for calculations. After propagation through the beam-
splitter channel we obtain, as in Eq. (11), the purifications

|ψ (b)〉 =
∑

n

cn

∑
k�n

A
(b)
n;k |φn〉I |n − k〉S |k〉E (22)

=
∑

k

( ∑
n:n�k

cnA
(b)
n;k |φn〉I |n − k〉S

)
|k〉E (23)

≡
∑

k

∣∣ψ (b)
k

〉|k〉E, (24)

where ∣∣ψ (b)
k

〉 = ∑
n:n�k

cnA
(b)
n;k |φn〉I |n − k〉S (25)

are un-normalized joint signal-idler states. Since the {|φn〉I }
are an orthonormal set by the NDS state assumption, we see
that the orthogonality relations〈

ψ
(b)
k

∣∣ψ (b)
k′
〉 = p

(b)
k δk,k′ (26)

hold because the |ψ (b)
k 〉 and |ψ (b)

k′ 〉 of Eq. (25) are termwise
orthogonal when k �= k′. Here p

(b)
k is the probability, condi-

tioned on b, of finding k photons in the output environment
modes and is given by

p
(b)
k =

∑
n:n�k

∣∣cnA
(b)
n;k

∣∣2 ≡
∑

n:n�k

pn
∣∣A(b)

n;k

∣∣2 (27)

=
∑

n:n�k

pn

M∏
m=1

[(
nm

km

)
R

(nm−km)
b T

km

b

]
. (28)

Again by the NDS state assumption, we have〈
ψ

(0)
k

∣∣ψ (1)
k′
〉 = Ikδk,k′ (29)

for

Ik =
∑

n:n�k

|cn|2
(
A

(0)
n;k

)∗
A

(1)
n;k (30)

=
∑

n:n�k

pn

M∏
m=1

[(
nm

km

)
einm� (r0r1)nm−km (t0t1)km

]
. (31)

The orthogonality relations (26) and (29) are key to the
mathematical tractability of the optimal error probability
problem for NDS input states.

A. Optimal (Helstrom) detection: Error probability and
measurement operators

Tracing over the environment modes in Eq. (24), we obtain
ρ0 and ρ1, which are already in diagonal form by virtue of
(26):

ρb =
∑

k

∣∣ψ (b)
k

〉〈
ψ

(b)
k

∣∣. (32)

For Hk = span{ψ (0)
k ,ψ

(1)
k }, we have, via Eqs. (26) and (29),

that the two-dimensional spaces {Hk} are mutually orthogonal.
The joint signal-idler Hilbert space H may then be expressed
as an orthogonal direct sum of the {Hk} with an additional
component H⊥ orthogonal to all the Hk:

H =
⊕

k

Hk ⊕ H⊥. (33)

For the purpose of distinguishing ρ0 and ρ1, we may restrict
the domain of definition of the difference density operator
�ρ ≡ ρ0 − ρ1 appearing in the Helstrom formula (5) to⊕

k Hk since the support of both ρ0 and ρ1 is orthogonal
to H⊥. Corresponding to (33), �ρ may be decomposed into a
direct sum of operators on Hk

�ρ =
⊕

k

�ρ|k, �ρ|k ∈ L(Hk), (34)

where

�ρ|k = ∣∣ψ (0)
k

〉〈
ψ

(0)
k

∣∣− ∣∣ψ (1)
k

〉〈
ψ

(1)
k

∣∣. (35)

Performing a Gram-Schmidt orthonormalization on each
Hk = span{ψ (0)

k ,ψ
(1)
k } with ψ

(0)
k / ‖ψ

(0)
k ‖ as the first basis

vector, we may write the 2 × 2 matrix of �ρ|k in the Gram-
Schmidt basis as [22]:

�ρ|k =

⎛
⎜⎝p

(0)
k − |Ik|2/p(0)

k − Ik

p
(0)
k

√
p

(0)
k p

(1)
k − |Ik|2

− I ∗
k

p
(0)
k

√
p

(0)
k p

(1)
k − |Ik|2 −p

(1)
k + |Ik|2/p(0)

k

⎞
⎟⎠.

(36)

On calculating the eigenvalues and trace norm of the above
matrix, the minimum error probability follows as

P e = 1

2
− 1

4

∥∥∥∥⊕
k

(�ρ|k)

∥∥∥∥
1

(37)

= 1

2
− 1

4

∑
k

‖�ρ|k‖1 (38)

= 1

2
− 1

4

∑
k

[(
p

(0)
k + p

(1)
k

)2 − 4|Ik|2
]1/2

. (39)

Although the above sum may be hard to evaluate analytically,
numerical computation to any desired accuracy is always
possible.
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The discussion above also yields the abstract mathematical
description of the measurement operators for optimally dis-
criminating ρ0 and ρ1. The optimal measurement consists of
two orthogonal projection operators �0 and �1 augmented
with an additional projection operator �⊥ onto H⊥ to make a
complete projective measurement with �0 + �1 + �⊥ = IIS,

the identity on H. Note that the state never projects onto H⊥.
�0 and �1 are given in the usual way [1] by

�0 =
∑

k

�+{�ρ|k} (40)

and

�1 =
∑

k

�−{�ρ|k}, (41)

where �+ (�ρ|k) and �+ (�ρ|k) are respectively the projec-
tion operators onto the one-dimensional eigenspaces corre-
sponding to the positive and negative eigenvalues of �ρ|k.
In somewhat more physical language, we may view the
optimum measurement as a two-stage measurement. In the
first stage, we perform a quantum nondemolition (QND)
measurement, i.e., a measurement that projects the state onto
one of several orthogonal Hilbert spaces without destroying
it. In our case, the received state is projected into one of
the orthogonal spaces Hk. Depending on the value of k,
we further make on Hk the binary Helstrom measurement
corresponding to the optimum discrimination of |ψ (0)

k 〉 and
|ψ (1)

k 〉 with conditional probabilities p
(0)
k /(p(0)

k + p
(1)
k ) and

p
(1)
k /(p(0)

k + p
(1)
k ), respectively. From this description, we may

expect that this measurement is hard to realize in the laboratory
since the eigenvectors of �ρ|k are (M ′ + M)-mode entangled
states in general.

The case of unequal a priori probabilities, say π0 and π1

for ρ0 and ρ1, may be handled similarly. P e is now given by

P e = 1
2 − 1

2 ||π0ρ0 − π1ρ1||1. (42)

The operator π0ρ0 − π1ρ1 also has an orthogonal direct
sum decomposition over the {Hk} (which are unchanged).
However, the matrices for �ρ|k differ from Eq. (36) and
include the prior probabilities. Diagonalizing these matrices
yields the optimal error probability and the measurement
operators.

B. Fidelity and Chernoff-type bounds

The optimum error probability P e is usefully bounded by
the fidelity and Chernoff-type bounds (6) and (7). For NDS
states, it is straightforward to show, using Eqs. (26) and (29)
in the definition (4), that the fidelity is given by

F =
(∑

k

|Ik|
)2

(43)

=
[∑

k

∣∣∣∣ ∑
n:n�k

pn

M∏
m=1

(
nm

km

)
einm� (r0r1)nm−km (t0t1)km

∣∣∣∣
]2

,

(44)

where we have used (31). The presence of the absolute value
sign prevents simplification of the above expression without

further assumptions, but we note that, for � �= 0, Eq. (44) is
greater, and hence more informative, than the general lower
bound (15).

The Chernoff-type quantities may be likewise computed to
equal

Q(s) =
∑

k

[
p

(0)
k

]s−1[
p

(1)
k

]−s |Ik|2, (45)

for s ∈ [ 0,1]. The “singularity” in the terms for which p
(b)
k =

0 is only apparent as Ik is also zero for those terms. Therefore,
we need sum only over terms for which both p

(b)
k �= 0. We see

that Q(0) and Q(1) do not equal 1, since |Ik|2 < p
(0)
k p

(1)
k in

general (see Ref. [22]). This is explained by the fact that the
support of ρ0, i.e., span{ψ (0)

k } �= span{ψ (1)
k }, the support of ρ1.

Indeed, since ψ
(0)
k �∝ ψ

(1)
k for any k, ρ0 and ρ1 do not have the

same support on Hk, and, consequently, also on ⊕kHk. As
a result, Q(0) = Tr[ρ0

0ρ1] = Tr[P0ρ1] �= Tr[Iρ1] = 1, for P0

the projection operator onto the support of ρ0 and I the identity
operator on ⊕kHk. Similarly ρ0

1 = P1 �= I is the projector onto
the support of ρ1 and so Q(1) = Tr[ρ0P1] �= 1.

For a transmitted state |
〉 = ⊗M
m=1|ψm〉 that is a product

of M signal-idler states |ψm〉, we have the multiplicative
properties

F(|
〉) =
M∏

m=1

F(|ψm〉) (46)

and

Q(s)(|
〉) =
M∏

m=1

Q(s)(|ψ〉), (47)

which simplify computations by converting the sum over
vector k to a product of scalar sums. We illustrate the results
of this subsection in Sec. IVD by applying them to quantum
reading with the EPR state.

IV. QUANTUM READING AND TARGET DETECTION

A. Output state fidelity and related error probability bounds

For the quantum reading and target detection scenarios, we
have � = θ1 − θ0 = 0. In Sec. II, we obtained the lower bound
(19) on the output state fidelity in terms of the input state’s
signal photon probability distribution {pn}. For an NDS input
state with that {pn}, the fidelity (43) evaluates to

F =
[ ∞∑

n=0

pn(r0r1 + t0t1)n
]2

, (48)

which is exactly the general fidelity lower bound [Eqs. (17)–
(19)] of Sec. II with � = 0. Thus, among all input states with a
given {pn}, the NDS states with that {pn} minimize the fidelity.

Further, since μ ≡ r0r1 + t0t1 < 1 when at least one rb < 1,
we have by the convexity of the function x �→ μx and Jensen’s
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inequality [23] that, for a given total signal energy Ns ,

F =
[ ∞∑

n=0

pn(r0r1 + t0t1)n
]2

(49)

�
[
(r0r1 + t0t1)

∑∞
n=0 npn

]2
(50)

= (r0r1 + t0t1)2Ns (51)

≡ Fmin(Ns). (52)

The inequality (50) is an equality (at least at integer values
of Ns) for precisely the states having Ns total signal photons
with probability 1. The only NDS states with this property
are the multimode Fock states |N1〉 ⊗ · · · ⊗ |NM〉 with total
number of photons

∑M
m=1 Nm = Ns . We have thus shown that

a (possibly multimode) Fock state with Ns photons minimizes
the output fidelity at given Ns .

The above argument, employing convexity as it does, does
not go through when � �= 0. Moreover, even for � = 0,
achieving minimum fidelity is not equivalent to achieving
minimum P e, as will be evident in the examples to follow
in Secs. IVC–IVE.

1. Error probability lower bounds

Since Fmin(Ns) of (52) is a lower bound on the output state
fidelity for any multimode pure input state |ψ〉 of energy Ns ,
we obtain the universal lower bound

1
2 [1 −

√
1 − Fmin(Ns)] = 1

2 [1 −
√

1 − (r0r1 + t0t1)2Ns ]

� P e[|ψ〉] (53)

on the output error probability P e[|ψ〉] using (6).
For any input state |
〉 consisting of N copies of an (M +

M ′)-mode signal-idler state |ψ〉

|
〉 =
N⊗

n=1

|ψ〉, (54)

we may also obtain an upper bound on the quantum Chernoff
exponent ξQCB = − ln Q[
]

N
[18]. It was shown in Ref. [18] that

while the finite-N behavior of P e[
] is complicated, P e[
]
is asymptotically exponential in N in the sense that

lim
N→∞

− ln P e[
]

N
= ξQCB. (55)

Assuming |ψ〉 has finite average energy Ns (so |
〉 has
average energy NNs), we have from the fidelity lower bound
Fmin(Ns) � F[ψ] coupled with the lower bound of (6) that

1
4 [Fmin(Ns)]

N = 1
4 (r0r1 + t0t1)2(Ns )N � P e[
], (56)

from which the bound

ξQCB � ln[(r0r1 + t0t1)−2Ns ] (57)

follows on taking logarithms.

2. Reading of an ideal memory

For the case of R1 = 1 (called “ideal memory” in Ref. [3]),
the channel E1 is simply the identity channel. Therefore, the
return state ρ1 is pure: to wit, the transmitted state |ψ〉〈ψ |. In
such a situation, the fidelity F[|ψ〉] equals the Chernoff bound

Q(|ψ〉) [18], so we have the bound [which is stronger than the
upper bound of (6)]:

P e[|ψ〉] � 1
2F[|ψ〉]. (58)

In conjunction with the result of Sec. IVA that the multimode
Fock states attain the minimum fidelity, we have the remark-
able consequence that among all the 2M-mode signal-idler
states with signal energy Ns , a signal mode Fock state with Ns

total photons has the best (lowest) Chernoff bound. See also
the discussion in Sec. IVC1.

We mention in this connection that an optimization of the
Chernoff bound was carried out in Ref. [24]. However, for
a fixed total energy in signal and idler, it was restricted to
the cases when the input state is a single-mode squeezed
thermal state and an M = 1 signal-idler two-mode squeezed
thermal state. It was shown that the single-mode and two-mode
squeezed vacuum states minimize the ideal memory Chernoff
bound in that class.

3. Target detection: No-go result for large loss

The case of target detection corresponds to r0 = 0 and t0 =
1. Under these conditions, the universal lower bound (53) reads

1
2

[
1 −

√
1 − (1 − R1)Ns ] � P e[|ψ〉]. (59)

It is easy to check [see Eq. (61)] that the error probability
obtained from a pure coherent state of energy Ns is

P eCS = 1
2

[
1 −

√
1 − e−R1Ns

]
. (60)

The case of large loss R1 	 1 is of practical importance for
standoff target detection. Because e−R1 � 1 − R1 in Eq. (60)
under such conditions, we see that the error probability of a
general input state of energy Ns , which is lower bounded by
the left-hand side of (59), is not appreciably smaller than the
coherent state error probability (60). We thus have a no-go
result for appreciable quantum advantage in target detection
under high-loss conditions that applies to any multimode input
state. Note that this does not contradict the 6-dB advantage
in the error exponent of the EPR state over coherent states
claimed in [2] for high-loss target detection because that
analysis was carried out with the additional assumption of
large thermal background noise in each signal mode.

The question arises if one can connect the fidelity with the
Chernoff bound as we did in Sec. IVA2 above. If the input
state has signal-idler entanglement, R0 = 0 and R1 �= 1 imply
that both ρ0 and ρ1 are mixed in general so the argument
connecting the fidelity and the Chernoff bound no longer
applies. However, for the case of a pure transmitted state that
is not entangled to any idler modes kept at the receiver (this
is called a Type I target detection scenario in Ref. [25]), ρ0

is a pure state, namely the vacuum state of the signal modes.
Thus, it is again true that in a Type I target detection scenario,
the number state transmitter yields the lowest Chernoff bound
among all pure transmitted states of energy Ns . When R1 	 1
prevails, the no-go result given above is in force even in this
case. In such regimes, the coherent state performance differs
little from the number state performance [see Eq. (70) below].
This holds even for moderately large R1, as we will see in
Sec. IVE1 (see Fig. 3).
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In the remaining subsections, we compare in detail the
performance of coherent states, number states, and the EPR
states of Ref. [3].

B. Coherent states

For a coherent state input of energy Ns , say, the single-mode
state (see Ref. [6]) |√Ns〉 of mean amplitude

√
Ns , the optimal

error probability (5) for discriminating ρ0 and ρ1 evaluates to

P eCS = 1
2

[
1 −

√
1 − e−(r1−r0)2Ns

]
. (61)

The right-hand side is exactly the lower bound on the optimal
error probability of any classical state derived in Ref. [3]
(Theorem 1 therein). Therefore, pure coherent states are the
optimal classical states for quantum reading in the absence
of added thermal noise. A physical realization of the optimal
error probability (61) is provided by the so-called Dolinar
receiver [26] and some other receivers exist which approximate
that performance. We discuss these issues briefly in Sec. IVE2.

C. Number states

Let us now consider the P e obtained by transmitting number
states. For a transmitted Fock state |N〉 = |N1〉 ⊗ · · · ⊗ |Nm〉
with Ns = ∑M

m=1 Nm, it is seen that |ψ (b)
k 〉 =

√
p

(b)
k |N − k〉,

for p
(b)
k a product of binomial probabilities:

p
(b)
k =

M∏
m=1

[(
Nm

km

)
R

Nm−km

b T
km

b

]
. (62)

The output states ρ0 and ρ1 commute, so the techniques of
Sec. III are not required to evaluate the performance. The
optimal quantum measurement is photon counting on the
individual modes followed by classical processing of the count
results. It is easy to verify that the optimal decision rule is given
by

RT
1 · T

Ns−T
1

RT
0 · T

Ns−T
0

say E1

�
<

say E0

1, (63)

for T the observed total photon count (recall that we are
assuming R0 < R1). This is equivalent to the rule

T

say E1

�
<

say E0

T∗, (64)

where the threshold T∗ equals

T∗ = Ns

ln
(

T0
T1

)
ln
(

R1T0
R0T1

) . (65)

Note that the decision rule is independent of the actual Fock
state chosen as long as Ns is fixed. Moreover, we can show
from Eq. (62) that the probability of counting T photons is
also independent of the distribution of input photons among
the modes as long as the total number is Ns . Consequently, P e

is independent of the details of the distribution of the photons
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FIG. 2. (Color online) Number state vs. coherent state Chernoff
exponent gain G of Eq. (69) for values of R0 and R1 above 0.4.
Appreciable gain is seen for larger values of the reflectances.

as well. This feature has practical implications that we discuss
in Sec. IVE2. From Eq. (62) and inequality (63), P e is easily
computed numerically, as we will do in Sec. IVE1.

We also have the essentially classical Chernoff bound

P e � 1
2

(
R

s∗
0 R

1−s∗
1 + T

s∗
0 T

1−s∗
1

)Ns ≡ 1
2e−ξNumNs , (66)

where

s∗ =
{

ln

[−R1 ln(R0/R1)

T1 ln(T0/T1)

]}{
ln

(
T0R1

T1R0

)}−1

(67)

so ξNum is the number state Chernoff exponent. This bound
is obtained by computing Q(s) directly from the definition
(7) and finding the optimum exponent analytically. The above
results apply when R0 �= 0 and R1 �= 1.

For a coherent state transmitter, the Chernoff bound is

P e � 1
2e−(r1−r0)2Ns ≡ 1

2e−ξCSNs , (68)

for ξCS the coherent state Chernoff exponent. A useful measure
for quantifying the improvement obtainable from a number
state transmitter from coherent state performance is the ratio
of their Chernoff exponents, which we call the “gain” G:

G = ξNum

ξCS
. (69)

In Fig. 2, we plot G against the reflectances R0 and R1, which
shows that the gain is appreciably greater than unity only
when both R0 and R1 are fairly large. Further performance
comparisons at varying values of Ns are made in Sec. IV E.

1. Ideal memory and target detection

For the case R0 = 0 (target detection), we have the exact
result

P e = 1
2T

Ns

1 . (70)

The optimum decision rule in this limit is to declare the target
present if and only if the total count T > 0. In the opposite
limit R1 = 1 (the ideal memory of Ref. [3]), we likewise obtain

P e = 1
2R

Ns

0 (71)
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and the optimum decision rule is to declare b = 1 if and only
if T = Ns . The ideal memory case is exceptional in that,
irrespective of the particular (pure) state transmitted, ρ1 is
a pure state—the transmitted state itself. In such a situation,
as mentioned in Sec. IVA2, the fidelity F equals the Chernoff
bound [18]. Thus, the Chernoff bound reads

P e � 1
2F (72)

which, on comparing (52) with r1 = 1 to Eq. (71), is in fact an
equality for Fock states.

D. EPR state

We now consider the M-mode EPR state with per-mode
energy N = Ns/M of Ref. [3], which will afford an illustration
of the techniques developed in Sec. III. The EPR state is
an M-fold tensor product of a two-mode squeezed vacuum
state which, for a single mode-pair, has the photon number
representation

|ψ〉EPR =
√

1

N + 1

∞∑
n=0

(
N

N + 1

)n/2

|n〉I |n〉S, (73)

where |ψ〉EPR is evidently an NDS state. For the case of no
added thermal noise being considered in this paper, it was
shown in Ref. [3] using the Bhattacharyya bound Q(1/2)
that, for Ns > Nth(R0,R1), a threshold total energy depending
on the reflectances, there exists an M for which the classical
error probability is worse than the EPR Bhattacharyya bound
(Theorem 2 of Ref. [3]). For the case of ideal memory, a similar
threshold theorem was shown to hold with Nth = 1/2 for all
M greater than a threshold M (Theorem 3 of Ref. [3]). We
show here that the techniques of Sec. III may be used to derive
these results in an alternative manner, as well as to provide
numerical results at chosen N and M .

We first obtain the output fidelity and Q(s) for the state
|ψ〉EPR, i.e., for M = 1. The photon probability distribution
pb

k of Eq. (27) in the output environment mode is in the Bose-
Einstein form of a thermal state with TbN average photons:

p
(b)
k = 1

TbN + 1

(
TbN

TbN + 1

)k

. (74)

Evaluating (30) yields

Ik = (t0t1N )k

[(1 − r0r1)N + 1]k+1
. (75)

We may now use (43) and (45) to get:

F |M=1 = 1

[(1 − r0r1 − t0t1)N + 1]2
(76)

and

Q(s)|M=1 = 1

Cαs − Dβs
, (77)

with

α = T0N + 1

T1N + 1
> 1, (78)

β = T0

T1
> 1, (79)

C = [(1 − r0r1)N + 1]2

T0N + 1
, (80)

and

D = T1N. (81)

We may verify that the inequalities

α < β (82)

and

C > D (83)

hold [27]. For a given N , obtaining the Chernoff bound entails
finding the exponent s∗ that minimizes (77). We know that Q(s)
is a convex (and continuous [28]) function of s in [0,1] [18].
It is, from Eq. (77), evidently also twice differentiable in s.
Accordingly, two cases logically arise depending on the sign
of Q′(0):

(i) If Q′(0) � 0, Q(s) is an increasing function of s, so
s∗ = 0.

(ii) If Q′(0) < 0, then s∗ may be found by setting Q′(s∗) =
0. If this equation has no solution in [0,1], s∗ = 1.

Differentiating Eq. (77), we find that

Q′(s) = (Cαs − Dβs)−2[(ln βD)βs − (ln αC)αs]. (84)

Consequently, the condition for deciding among the above two
cases is

δ ≡ βD

αC

Case 1

�
<

Case 2

1. (85)

In the event of Case 2, setting Q′(s∗) = 0 gives s∗ as

s∗ =
ln
(

ln αC

ln βD

)
ln
(

β

α

) . (86)

In the event that the right-hand side of (86) is greater than 1,
we have s∗ = 1.

Finally, from the multiplicative properties of the fidelity and
the Chernoff-type quantities, we have that, for the M-mode
input state |ψ〉 = ⊗M

m=1|ψ〉EPR, the fidelity equals

FEPR = [(1 − r0r1 − t0t1)N + 1]−2M (87)

and the Chernoff bound is

P e � 1
2QEPR = 1

2Q(s∗) = 1
2 [Cαs∗ − Dβs∗ ]−M (88)

for the s∗ obtained from the above case analysis.
When the input state |ψ〉 is a multimode Gaussian state,

i.e., a state whose Wigner function is a Gaussian probability
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distribution (see, e.g., Ref. [29]), so are ρ0 and ρ1 since E⊗M

b ⊗
id⊗M′

is a linear, and hence Gaussian, channel. The input state
|ψ〉EPR is a Gaussian state. We could, therefore, use the general
Gaussian state technique of Ref. [30] to derive the fidelity
between ρ0 and ρ1. Similarly, the technique of symplectic
diagonalization [19] may be used to derive Q(s), as it was in
Ref. [3].

Let us now connect these results to Theorems 2 and 3 of
Ref. [3]; the statements of these theorems were reviewed in the
first paragraph of this subsection. Theorem 2 makes essential
use of the large M limit of the Bhattacharyya bound Q(1/2)
given by (7). Some lengthy but straightforward algebra verifies
that the M → ∞ limit (at constant Ns = MN ) of the M-pair
Bhattacharyya bound B(Ns)

B(Ns) = 1

2
lim

M→∞
[Q(1/2)|M=1]M (89)

for Q(1/2)|M=1 obtained from Eq. (77) is identical to the
corresponding result (117) of Ref. [31] after adjusting for
different notation (see Ref. [32]). The same reasoning in
Ref. [31] that establishes the “threshold energy” theorem
(Theorem 2 of Ref. [3]) may then be carried out from Eq. (89)
to give an identical threshold energy as before.

Consider now the case of an ideal memory with T1 = 0 for
comparison to Theorem 3 of Ref. [3]. That theorem depends
on the expression (129) of Ref. [31] for the Chernoff bound
which we rederive using the method of this section. The same
analysis as in Ref. [31] can then be used to reproduce the result
of Theorem 3. From Eq. (81), we have D = 0 so Eq. (77) is
clearly minimized at s∗ = 1 so the M-mode Chernoff bound
is

P e � 1
2Qideal = 1

2 [(1 − r0)N + 1]−2M (90)

which agrees with (129) of Refs. [31,32]. Further, we see that
the fidelity (87) also equals Qideal as it should because ρ1 is
a pure state. In the general case of R1 �= 1, we can study the
behavior of the Chernoff bound as a function of M and Ns by
numerically obtaining s∗ for each value of these parameters.

E. Comparison of coherent state, number state, and EPR state
transmitters

1. Numerical comparison of error probability

In this subsection, we compare quantitatively the error
probability performance of the three types of states considered
in the previous subsections for target detection and reading of
nonideal and ideal memories. The representative plots below
show the error probability on the y axis in logarithmic scale
against the total average signal energy Ns on the x axis. We
assume the number of modes M = 50. We reiterate that the
number of modes has no effect on either the coherent state or
number state performance, which depend on Ns alone. For the
EPR state, varying M changes the performance (as given by
the Chernoff bound), although the change is not appreciable
once M is around 20–30. Thus, the plots given here are fairly
representative of the best possible EPR state performance.

We summarize how the plots were made. For each Ns ,
the universal lower bound of (53) was plotted in Figs. 2–5.
The coherent state error probability is given by the closed
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FIG. 3. (Color online) Error probability bounds versus Ns for
target detection with R0 = 0 and R1 = 0.3. The number of modes
M = 50 for the EPR state curves.

form expression (61). The number state error probability was
calculated numerically for each value of Ns using the count
probability distribution (62) and the decision rule (63) for
the cases of reading of nonideal memories. The number state
Chernoff bound (66)–(67) was also plotted for these cases.
Closed-form expressions (70) and (71) were used for the
detection and ideal memory cases. The EPR state fidelity
expression (87) in conjunction with (6) gives the EPR fidelity
lower bound

1
2 (1 −

√
1 − FEPR) � P eEPR. (91)

Finally, for each value of NS , the EPR Chernoff bound (88)
was calculated for the detection and nonideal memory cases
using the procedure for obtaining s∗ described in Sec. IV D.

In all the figures, we see that the number state and EPR state
transmitters eventually outperform the coherent state trans-
mitter, in tune with the conclusions of Ref. [3]. In the target
detection case (Fig. 3), the number state also outperforms the
EPR state lower bound, although the performance difference
between the three states is not appreciable. We see that, even
for an R1 that is much larger than that expected in a realistic
target detection scenario, the coherent state performance is not
appreciably worse than the number state performance. As R0

increases, the perfomance gain over classical increases also
as evidenced in Figs. 4–7. Figure 4 shows a case where the
difference R1 − R0 is small and the reflectances themselves are
not very high. In such cases, the number state and coherent state
performances do not differ appreciably. However, the EPR
Chernoff bound drops below the number state performance
for Ns greater than about 40 photons. Figure 5 also shows
a case of small R1 − R0, but the reflectances themselves
are appreciable. We see that the nonclassical transmitters’
gain over the coherent state increases. Further, the crossover
between the number state performance and the EPR Chernoff
bound occurs later (at about 65 photons) and the slopes of these
two curves different less than in Fig. 4. Figure 6 represents
distinguishing channels with large R1 − R0. We see that the
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FIG. 4. (Color online) Error probability bounds versus Ns for
quantum reading with R0 = 0.3 and R1 = 0.6. The number of modes
M = 50 for the EPR state curves.

nonclassical gain over the coherent state transmitter is even
greater, with the EPR state doing better than the number
state; the crossover of the number state performance with
the EPR Chernoff bound now occurs at about 20 photons.
Finally, Fig. 7 represents the reading of an ideal memory with
R0 = 0.5. The nonclassical gain is now very large, and the
number state transmitter performs better than the EPR state,
as evinced by the fact that it lies below the EPR state lower
bound. All the plots are consistent with the number state versus
coherent state Chernoff exponent gain of Fig. 2, and Fig. 7
confirms and strengthens the conclusion of Section IVA2 that
the number state transmitter has the lowest Chernoff bound for
reading of an ideal memory.
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FIG. 5. (Color online) Error probability bounds versus Ns for
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2. Experimental considerations

In this section, we indicate some technological considera-
tions regarding the availability of sources and detectors that
bear on the implementation of quantum reading with coherent,
number, and EPR states.

While coherent sources of any energy are readily available,
the optimal Helstrom detector of Ref. [26] is not easy to
realize as it employs feedback in addition to linear optics
and photodetection. Nevertheless, the Kennedy receiver [33]
and the so-called optimum displacement receiver (ODR)
[34] achieve the same error exponent and are more easily
implemented since they do not involve feedback. Indeed, the
ODR was recently demonstrated [35] with an overall detection
efficiency of ∼90%.

A single-mode number state with Ns > 1 is hard to generate
with current technology. However, we saw in Sec. IVC that
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FIG. 7. (Color online) Error probability bounds versus Ns for
reading of an ideal memory with R0 = 0.5 and R1 = 1. The number
of modes M = 50 for the EPR state curves.
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a state consisting of Ns spatial or temporal modes, each
of which is in a single photon state, i.e., a state of the
form |1〉 ⊗ · · · ⊗ |1〉 with Ns total photons, has identical
performance. As a large variety of single-photon sources
are available (see, e.g., Ref. [36]), the generation of multi-
mode Fock state with many modes each in a single photon
state does not appear problematic with current technology.
The optimal Helstrom measurement is photon counting on
the individual modes followed by classical processing. While
high-quantum-efficiency photon number-resolving detectors
are still a developing technology (see, e.g., Ref. [37]) and
require cooling to superconducting temperatures, the source
described above consisting of multiple single-photon states
requires only standard single-photon avalanche diode (SPAD)
[38] technology with either one or many detectors depending
on the mode implementation. Detector quantum efficiencies
and other system losses act as multiplicative factors to R0 and
R1 and do not essentially change the analysis described in
Sec. IVC, as also is the case for the coherent state transmitter
result of Sec. IVB. SPADs, for instance, can attain quantum
efficiencies of around η ∼ 0.75. After adjusting R0 and R1

to account for system inefficiencies, it is fair to say that the
optimum Helstrom receiver for quantum reading with number
states is realizable with current technology.

Generating multimode EPR states of high total energy
Ns and large M also does not seem to present a huge
experimental problem (see, e.g., Ref. [39]). Unfortunately,
the optimum Helstrom detector, while given abstractly by
Eqs. (40) and (41), is an entangling measurement over the
M modes and has no known concrete realization. A realizable
suboptimal measurement involving homodyne detection was
proposed in Refs. [3,31] and was shown, significantly, to also
outperform the coherent state transmitter. However, it appears
that this comparison was made in Ref. [31] only for rather
high R0 and R1. The effects of nonunity homodyne detector
quantum efficiency, analogously to the Fock state and coherent
state cases above, have also not yet been considered in that
measurement. Moreover, given the comparisons made in this
paper, it is of interest to see how the suboptimal measurement
compares to the number state performance for reasonable
values of Ns and M .

V. CONCLUSION

The problem of distinguishing two optical beam-splitter
channels using multimode signal-idler entangled pure states
was considered. A general lower bound on the output state
fidelity and minimum error probability for any such input
was derived. For NDS states, series formulas for the optimum
error probability, the output state fidelity, and the Chernoff-
type upper bounds were derived. For quantum reading and
target detection, for a given signal photon probability mass
function, the fidelity bound was shown to be attained by NDS
states, with multimode Fock states minimizing the bound
for a given total photon number. For reading of an ideal
memory with arbitrary states and for Type I (signal-only)
target detection, the number state was shown to yield the best
Chernoff bound among all states of given energy. For target
detection under high-loss conditions, a general no-go result
for quantum advantage over coherent states was obtained.
The above results were applied to quantitatively studying
the performance gains over classical states obtainable by
number state and EPR state transmitters, which were found
to outperform the classical transmitters to varying degrees
over a wide range of reflectances. The experimental outlook
on realizing the optimal measurement for the number state
transmitter was argued to be good. It is of interest to compare
the performance, taking into account realistic experimental
parameters, of the non-Helstrom measurement on the EPR
state transmitter suggested in Ref. [3] and the number state
transmitter suggested here. Finally, the techniques developed
here are likely to prove useful for other interesting problems
fitting the same framework, e.g., the lossy discrimination of
optical phase shift channels.
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