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We investigate the newsvendor problem when one has n observations of p features related to the demand

as well as past demands. Both small data (p/n = o(1)) and big data (p/n = O(1)) are considered. For

both cases, we propose a machine learning algorithm to solve the problem and derive a tight generalization

bound on the expected out-of-sample cost. The algorithms can be extended intuitively to other situations,

such as having censored demand data, ordering for multiple, similar items and having a new item with

limited data. We show analytically that our custom-designed, feature-based approach can be better than

other data-driven approaches such as Sample Average Approximation (SAA) and separated estimation and

optimization (SEO). Our method can also naturally incorporate the operational statistics method. We then

apply the algorithms to nurse staffing in a hospital emergency room and show that (i) they can reduce the

median out-of-sample cost by up to 46% and 16% compared to SAA and SEO respectively, with statistical

significance at 0.01, and (ii) this is achieved either by carefully selecting a small number of features and

applying the small data algorithm, or by using a large number of features and using the big data algorithm,

which automates feature-selection.
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theory, quantile regression
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1. Introduction

The classical newsvendor problem assumes that the probability distribution of the demand is fully

known. It is clear, however, that one almost never knows the true distribution of the demand. In

reality, one would instead have past demand data, as well as data on features that are associated

with the demand. In this paper, we investigate the newsvendor problem when one has access to

past demand observations as well as a potentially large number of features about the demand. By

features we mean exogenous variables (factors) that are predictors of the demand and are available

to the decision maker before the ordering occurs. Examples of relevant features are: the weather

forecast, features related to seasonality (e.g. day of the week, month of the year and season) and
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various economic indicators (e.g. the interest rate and the consumer price index). With plummeting

costs of data storage and processing, many organizations are systematically collecting or purchasing

such information. This paper investigates the newsvendor problem for precisely this type of a

situation. Formally, we assume that an unknown joint probability distribution exists between the

demand and the p features used to predict the demand, and that we have a sample of size n

drawn from this distribution. We consider both “small data”, i.e. the feature-to-observation ratio is

small (formally, p/n= o(1)) and “big data”, i.e. the feature-to-observation ratio is large (formally,

p/n=O(1)). In this paper, we consider how the decision maker can choose an appropriate order

quantity given a new decision period and a new set of features by learning from past data, in both

the small and big data regimes.

In the classical newsvendor problem, one assumes the true demand distribution is known. Then

the optimal order quantity is the critical fractile of the inverse cumulative distribution of the

demand. In practice, however, it is quite restrictive to assume that the demand distribution is

known, and in recent years there have been many efforts to relax this assumption. One main

perspective has been the nonparametric (“data-driven”) approach, whereby instead of the full

knowledge of the demand distribution, the decision maker has access to independent and identically

distributed (iid) demand data to estimate the expected newsvendor cost. Levi et al. (2007) first

considered the Sample Average Approximation (SAA) approach to the newsvendor problem as

well as its multiperiod extension. There they derived a sample size bound; that is, a calculation

of the minimal number of observations required in order for the SAA solution to be near-optimal

with high probability. In this paper, we build on Levi et al. (2007) by deriving a bound on the

out-of-sample cost when feature data is available.

Other perspectives on the data-driven newsvendor include those of Liyanage and Shanthikumar

(2005), who proposed ordering according to a statistic (function) of past demand data whose form

is cleverly chosen based on a priori assumptions on the class of distributions the demand belongs

to, Huh et al. (2011) and Besbes and Muharremoglu (2013) who provided theoretical insights into

the newsvendor problem with iid censored demand data, and Levi et al. (2012), who improved

upon the bound of Levi et al. (2007) by incorporating more information about the (featureless)

demand distribution, namely through the weighted mean spread.

Alternatively, Scarf et al. (1958) and Gallego and Moon (1993) considered a minimax approach;

whereby the decision maker maximizes the worst-case profit over a set of distributions with the

same mean and standard deviation. Perakis and Roels (2008) considered a minimax regret approach

for the newsvendor with partial information about the demand distribution.

None of the above mentioned works, however, consider the presence of feature data. As far as

we are aware, this is the first paper to derive insights about the data-driven newsvendor problem

when feature information is available.
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One work that does consider feature information is He et al. (2012), who modeled booking a hos-

pital operating room with two features (number and type of cases) as a feature-based newsvendor

problem. Motivated by this work, we also investigate a case study in a healthcare setting in Sec. 6.

Our work is, however, fundamentally different from He et al. (2012) in that (i) we investigate the

effects of having a large number of features, whereas He et al. (2012) consider just two, and (ii) we

focus primarily on probabilistic guarantees and theoretical insights whereas the work of He et al.

(2012) is an empirical paper.

Summary of Contributions

In Sec. 2, we investigate the newsvendor problem when the decision-maker has access to past feature

information as well as the demand. We show that the optimal order quantity can be learned via

a linear programming (LP) algorithm in the case of small data (small p/n) and a regularization-

based algorithm in the case of big data (large p/n). The latter algorithm is a quadratic program

(QP) with L2 regularization, an LP with L1 regularization and a mixed-integer program (MIP)

with L0 regularization. Both algorithms can be used broadly for both iid as well as time-dependent

data. The algorithms are based on the empirical risk minimization principle that has been widely

adopted by the Machine Learning community for classification and regression problems [for an

in-depth discussion of this principle, see Vapnik (1998)].

In Sec. 3, we provide generalization bounds on the out-of-sample cost of the data-driven newsven-

dor algorithms described in Sec. 2. Our bounds do not make any assumption about the feature-

demand relationship, or the distribution of the demand beyond the existence of finite mean. Both

results show how the out-of-sample cost (the “generalization error”) of a decision deviates from the

in-sample cost by a complexity term that scales gracefully as 1/
√
n and as

√
ln(1/δ), where 1−δ is

the probabilistic accuracy of our bound. The small data bound depends on p, hence it demonstrates

the curse of dimensionality in generalizing the in-sample result to out-of-sample result when p is

too large. On the other hand, the big data bound does not depend explicitly on p (it depends

inversely on the regularization parameter instead). The practical implication is that given a large

number of feature information at hand, the decision-maker is advised to either use a small subset

of the available dataset by carefully choosing a small number of features, or use the whole dataset

but regularize, which automates feature selection.

In Sec. 4, we show how the feature-based newsvendor model introduced in Sec. 2 can be ex-

tended to other realistic situations. First of all, we consider having data on product prices, sales,

competition, budling and marketing, and argue that they can simply be considered as features.

Hence the algorithms of Sec. 2 do not need to be modified to incorporate such information. Next,

we show how to modify the original model when the demand data is censored, due to a constraint
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on the maximal order quantity. We then consider a situation where one has a prior knowledge on

the sign of the feature-demand information, and show that this can be incorporated by adding

extra linear constraints to the original model. We further show that the following scenarios can be

handled with fairly intuitive modifications of the original model: ordering for multiple items, where

some features may play a similar role in predicting the demand for all products; and having a new

product on the market with limited demand information, but where the new product is similar to

old products for which one has sufficient data.

In Sec. 5, we give theoretical justifications for using our feature-based approach over other main

data-driven approaches known in the literature. First, we compare our method with using the SAA

method without any feature information. We prove that using the featureless SAA approach can

lead to an ordering decision that is biased and asymptotically sub-optimal whereas our feature-

based algorithm yields a near-unbiased (in the sense that the bias is bounded by O(logn/n)) and

asymptotically optimal decision. Second, we consider the separated estimation and optimization

approach — a common sense approach of first estimating and then deciding. In this method, the

decision maker performs a regression to estimate the conditional demand distribution, then applies

the corresponding optimal newsvendor ordering formula. The key to this approach, however, is

in the distributional assumption required for the regression, and we show that this approach can

lead to a nonsensical negative order quantity if the model is mis-specified. In practice, it is easy to

mis-specify such a model. Lastly, we show that our feature-based algorithms can incorporate the

operational statistics (OS) approach of Liyanage and Shanthikumar (2005) quite naturally.

Finally, in Sec. 6, we demonstrate that our algorithms can be effective on a real dataset. Specif-

ically, we show that the nurse staffing cost in the emergency room of a large teaching hospital in

the United Kingdom can be reduced by up to 46% compared to the featureless SAA approach (in

terms of the median out-of-sample cost, statistically significant at the 1% level) by appropriately

incorporating high-dimensional feature data. Our algorithms are also better than the separated

estimation and optimization approach and Scarf’s Minimax approach by 16% and 29% respectively

(also in terms of the median out-of-sample cost, statistically significant at the 1% level).

Before proceeding, we also mention that just as the featureless newsvendor algorithm performs

quantile estimation, the basic version of our feature-based newsvendor algorithm reduces to non-

parametric quantile regression. The results in this paper thus also extend the literature on non-

parametric quantile regression [see Koenker (2005) for a general reference on quantile regression,

Takeuchi et al. (2006) and Steinwart and Christmann (2011) for up-to-date results at the time of

writing].
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2. Algorithms for the Newsvendor with Feature Data

2.1. The Newsvendor Problem

A company sells perishable goods and needs to make an order before observing the uncertain

demand. For repetitive sales, a sensible goal is to order a quantity that minimizes the total expected

cost according to:

min
q≥0

EC(q) :=E[C(q;D)], (1)

where q is the order quantity, D ∈D is the uncertain (random) future demand,

C(q;D) := b(D− q)+ +h(q−D)+ (2)

is the random cost of order q and demand D, and b and h are respectively the unit backordering

and holding costs. If the demand distribution, F , is known, one can show the optimal decision is

given by

q∗ = inf

{
y : F (y)≥ b

b+h

}
. (3)

2.2. The Data-Driven Newsvendor Problem

In practice, the decision maker does not know the true distribution. Again assume that no external

covariates are available to predict the demand. If one has access to historical demand observations

d(n) = [d1, . . . , dn], then the sensible approach is to substitute the true expectation with a sample

average expectation and solve the resulting problem:

min
q≥0

R̂(q;d(n)) =
1

n

n∑
i=1

[b(di− q)+ +h(q− di)+], (SAA)

where we use the ˆ notation to emphasize quantities estimated from data. This approach is called

the Sample Average Approximation (SAA) approach in stochastic optimization [for an excellent

general reference, see Shapiro et al. (2009)]. One can show the optimal SAA decision is given by

q̂n = inf

{
y : F̂n(y)≥ b

b+h

}
, (4)

where F̂n(·) is the empirical cdf of the demand from the n observations. Note that if F is continuous,

and we let r= b/(b+h), then q̂n = ddnre, the dnre-th largest demand observation.
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2.3. The Feature-Based Newsvendor Problem

In a realistic situation, the data-driven newsvendor problem is too simplistic to represent many

real situations because one can collect data on exogenous information about the demand as well

as the demand itself. In other words, the newsvendor has access to a richer information base from

which s/he can make the present decision. We thus consider the newsvendor who has access to

the historical data Sn = [(x1, d1), . . . , (xn, dn)], where xi = [x1
i , . . . , x

p
i ] represents features about the

demand such as seasonality (day, month, season), weather and planning data for the local area.

It is possible for the decision maker to have big data, where the number of features p is of a

non-negligible size compared to the number of observations n, that is, p/n=O(1). We assume the

newsvendor observes the features xn+1 before making the next ordering decision.

The goal now is to compute an order quantity at the beginning of period n+ 1, after having

observed the features xn+1. Thus the problem now becomes that of finding the optimal function

q(·) that maps the observed features xn+1 ∈ X to an order q(xn+1) ∈ R. Then the data-driven

newsvendor problem with features is:

min
q∈Q={f :X→R}

R̂(q(·);Sn) =
1

n

n∑
i=1

[b(di− q(xi))+ +h(q(xi)− di)+] (NV-features)

where R̂ is called the empirical risk of function q with respect to dataset Sn. This algorithm is

based on the empirical risk minimization principle that has been widely adopted by the Machine

Learning community for classification and regression problems [for an in-depth discussion of this

principle, see Vapnik (1998)].

To solve (NV-features), one needs to specify the function class Q. The size or the “complexity”

of Q controls overfitting or underfitting: for instance, if Q is too large, it will contain functions that

fit the noise in the data, leading to overfitting. Let us consider linear decision rules of the form

Q=

{
q :X →R : q(x) = q>x =

p∑
j=1

qjxj

}
,

where x1 = 1, to allow for a feature-independent term (an intercept term). This is not restrictive,

as one can easily accommodate nonlinear dependencies by considering nonlinear transformations

of basic features. The choice of Q can then be made more or less complex depending on which

transformations are included. We can solve (NV-features) via the following linear program:

2.4. NV Algorithm with Features

min
q:q(x)=

∑p
j=1 q

jxj
R̂(q(·);Sn) =

1

n

n∑
i=1

[b(di− q(xi))+ +h(q(xi)− di)+]
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≡ min
q=[q1,...,qp]

1

n

n∑
i=1

(bui +hoi)

s.t. ∀ i= 1, . . . , n :

ui ≥ di− q1−
p∑
j=2

qjxji

oi ≥ q1 +

p∑
j=2

qjxji − di

ui, oi ≥ 0 (NV-algo)

where the dummy variables ui and oi represent, respectively, underage and overage costs in period

i.

Linear decision rules have also been studied in the stochastic programming literature [see for

example, Ben-Tal et al. (2005), Chen et al. (2007) and Chen et al. (2008)]. There is a fundamental

difference, however, because whereas our decision rule is a linear combination of primitive features,

in stochastic programming the decision rule is a linear combination of underlying uncertainties.

In the case of big data, i.e., when the ratio of the number of features to observations p/n

is O(1), one could solve the LP (NV-algo) by selecting a subset of the most relevant features

according to some criterion, for example via model selection criteria such as the Akaike Information

Criterion [Akaike (1974)] or Bayesian Information Criteria [Schwarz (1978)]. Alternatively, one

could automate the feature-selection by solving the following regularized version of (NV-algo):

2.5. NV Algorithm with Regularization

min
q:q(x)=

∑p
j=1 q

jxj
R̂(q(·);Sn) +λ‖q‖22 =

1

n

n∑
i=1

[b(di− q(xi))+ +h(q(xi)− di)+] +λ‖q‖2

≡ min
q=[q1,...,qp]

1

n

n∑
i=1

(bui +hoi)

s.t. ∀ i= 1, . . . , n :

ui ≥ di− q1−
p∑
j=2

qjxji

oi ≥ q1 +

p∑
j=2

qjxji − di

ui, oi ≥ 0, (NV-reg)

where λ > 0 is the regularization parameter and ‖q‖2 denotes the L2-norm of the vector q =

[q1, . . . , qp]. This problem is a quadratic program (QP), which can be solved efficiently using widely

available conic programming solvers.
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If we believe that the number of features involved in predicting the demand is very small, we can

choose to regularize by the L0 semi-norm or the L1 norm to encourage sparsity in the coefficient

vector. That is, the regularization term changes from ‖q‖2 to either ‖q‖0 or ‖q‖1. The resulting

problem then becomes, respectively, a mixed-integer program (MIP) or an LP.

Further, we may want a set of coefficients to be either all present or all absent, for instance if

they fall into the same category (e.g., all are weather-related features). We can accommodate this

by the group lasso technique [Yuan and Lin (2006) ], whereby a regularization term

G∑
g=1

‖qIg‖2

is included, with Ig being the indicator of group g. This regularization term is an intermediate

between L1 and L2 regularization, where sparsity at the group level is encouraged by the sum over

groups.

3. Generalization Bounds on the Out-of-Sample Cost

In what follows, we provide probabilistic bounds on the out-of-sample cost of the ordering decisions

chosen by (NV-algo) and (NV-reg). As we formulated the algorithms to fit into the framework of

empirical risk minimization, we are able to use modern tools from machine learning.

Let us define the true risk as the expected out-of-sample cost, where the expectation is taken

over an unknown distribution over X ×D, where X ⊂Rp. Specifically,

Rtrue(q) :=Ex,d[C(q(x);d)].

We are interested in minimizing this cost, but we cannot measure it as the distribution is unknown.

Recall that the empirical risk is the average cost over the training sample:

R̂(q;Sn) :=
1

n

n∑
i=1

C(q(xi), di).

The empirical risk can be calculated using the data, and we would wish that a combination of the

empirical risk and other calculable features lead to a bound on the true risk.

Statistical learning theory provides the foundation for creating bounds on the true risk, in terms

of the empirical risk and a complexity (“generalization error”) term. These bounds highlight the

important quantities for learning, as they appear directly in the complexity term. Most often,

statistical learning theory bounds are uniform bounds, meaning they are applicable for all decisions

in some function class. One downside, however, is that uniform bounds are not algorithm-specific

and thus do not consider the way in which the algorithm traverses the space of possible models. The

bounds we provide in this section are thus not uniform bounds. Instead, we provide bounds based
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on algorithmic stability theory, which does consider the solution created by the algorithm. To use

algorithmic stability theory, we first show that the algorithm is “stable”, meaning that we bound

how much the algorithm’s predictions change when one of the training examples is removed1. If

the algorithm is robust to such a change, it tends to generalize better to new observations, and

this is quantified by the bound.

In what follows, the random demand is denoted by D, and is assumed to be bounded: D ∈D :=

[0, D̄]. The feature domain is also bounded, in particular, we assume all feature vectors live in a ball:

‖x‖22 ≤Xmax for all x. As before, the historical (‘training’) set of data is given by Sn = {(xi, di)}ni=1.

We defer all proofs to Appendix B.

Theorem 1 (Generalization Bound for (NV-algo)). Let q̂ be the model produced by Algo-

rithm (NV-algo). Define D̄ as the maximum value of the demand we are willing to consider. The

following bound holds with probability at least 1− δ over the random draw of the sample Sn, where

each element of Sn is drawn iid from an unknown distribution on X ×D:

|Rtrue(q̂)− R̂(q̂;Sn)| ≤ 2(b∨h)2D̄

b∧h
p

n
+

(
4(b∨h)2D̄

b∧h
p+ D̄

)√
ln(2/δ)

2n
. (5)

For small p, Theorem 1 suggests that the generalization error of the newsvendor cost scales grace-

fully as O(1/
√
n). In addition, if p = 0, we retrieve the well-known bound of Hoeffding (1963),

which is the key result behind the sample-size bounds of Levi et al. (2007).

On the other hand, for large p, Theorem 1 is not very informative. In Sec. 2, we suggested

regularizing the original algorithm instead. Below we present the generalization bound for (NV-

reg), which serves as a theoretical justification for regularizing in the case of big data.

Theorem 2 (Generalization Bound for (NV-reg)). Define X2
max as the largest possible value

of ‖x‖22 that we are willing to consider. Let q̂ be the model produced by Algorithm (NV-reg). Define

D̄ as the maximum value of the demand we are willing to consider. The following bound holds with

probability at least 1−δ over the random draw of the sample Sn, where each element of Sn is drawn

iid from an unknown distribution on X ×D:

|Rtrue(q̂)− R̂(q̂;Sn)| ≤ (b∨h)2

X−2max

1

nλ
+

(
2(b∨h)2

X−2max

1

λ
+ D̄

)√
ln(2/δ)

2n
. (6)

This bound does not depend explicitly on p, indicating that Algorithm (NV-reg) can handle prob-

lems with the curse of dimensionality through regularization. In fact p can implicitly enter the

bound through the choice of the regularization parameter λ, which should necessarily be chosen

depending on the ratio of features to dimensions. For large p, the bound indicates that it is sensible

to choose λ≤O(1/p), for example λ=O(1/p2). Note additionally that λ should be chosen relative

to X2
max.
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Last but not the least, both bounds of Theorem 1 and 2 scale appropriately with δ, as

O(
√

ln(1/δ)).

To illustrate how the generalization error scales with the various parameters, we plot the gener-

alization error of Theorem 1 as the number of observation n grows in Fig. 1. In Fig. 1 (a), we show

the error versus n for a fixed accuracy level 1− δ= 0.9 and varying p, and in (b), the error versus

n for fixed p= 4 and varying δ. We abbreviate illustrating the generalization error in Theorem 2

as the only difference is that the scaling of the error in λ is inverse to that of in p.

Figure 1 Plots of the generalization error in Theorem 1 as the number of observation n grows for (a)

different p with fixed 1− δ = 0.9 and (b) different δ with fixed p= 4.

4. Extensions to the Big Data Newsvendor

As the feature-based newsvendor algorithms can incorporate complex data, it can be altered to

accommodate extensions of the basic scenario in a straight-foward manner. We outline several

realistic scenarios that may arise, and show how the algorithms can be altered to accommodate

them.

4.1. Pricing, Sales, Competition, Bundling and Marketing

The major benefit of employing a feature-based approach is that anything that affects the demand

can be included as a feature. The price of the product, along with nonlinear transformations of it,

can be used as features in the model. To encode whether the item is on sale (of a certain type -

say 10% off) we can use an indicator variable (1 if sale, 0 otherwise). The prices of competitors

could also be included directly as features. Features can be created to encode discounts offered for

bundling the item with other items. Further, the amount and type of marketing of the item can be

included as features. This flexibility to naturally model scenarios that have not arisen in the past

is the core of the feature-based newsvendor problem investigated in this paper.
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4.2. Censored Data: Limited Ordering Capacity

We would have censored demand data if the ordering capacity is limited. In other words, if the

i-th historical demand is equal to the maximum capacity qmax, then we would only know that the

actual demand was greater than or equal to qmax. For demands that hit this limit, i.e. di ≥ qmax,

we can change the objective function to penalize our in-sample estimate q(xi) if it is less than qmax.

Our objective then becomes

min
q:q(x)=

∑p
j=1 q

jxj

∑
i:demand less than capacity

[b(di− q(xi))+ +h(q(xi)− di)+]

+
∑

i:demand equals capacity

[b(qmax− q(xi))+] +λ‖q‖2.

4.3. Prior Knowledge on Signs of Coefficients

Often we have prior knowledge on whether a certain feature should have a positive or negative influ-

ence on the order quantity. In that case, we can constrain the coefficient to have the required sign.

For instance, if feature j represents outdoor temperature, and q(xi′ ) is the quantity of lemonade

to stock for a lemonade stand on day i, we might want to restrict qj ≥ 0.

4.4. Similar Influences for Multiple Items

We consider the situation where we have multiple items, and we believe that some of the features

play a similar role in predicting the demand for all of these items. In that case, we can create a

joint objective for both items, and regularize the decisions to be close together. An example for

two items (denoted by (1) and (2)) is below:

min
q:q(x)=

∑p
j=1 q

jxj

n∑
i=1

[b(1)(d
(1)
i − q(1)(xi))+ +h(1)(q(1)(xi)− d(1)i )+]

+
n
′∑

i
′
=1

[b(2)(d
(2)

i
′ − q(2)(xi′ ))

+ +h(2)(q(2)(xi′ )− d
(2)

i
′ )+] +λ‖q(1)−q(2)‖2.

Here we have included only the regularization term that encourages the jth coefficient from item

(1) to be similar to that of item (2) for clarity, but other regularization terms can be included as

well.

4.5. The ‘Cold Start’ Problem with New Items

When a new item becomes available, we may not have sufficient historical demand data to draw

inferences about its future demand. In our framework, we can accommodate this by using data

about related products to inform our predictions. We do this by training our model on a combina-

tion of historical data from the new item and from the existing items. This way, the data from the
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existing items can act as a form of regularization. In a related work, Chang et al. (2012) use data

from other items for predicting quality rankings for product categories that contain few products.

If we regularize using one additional product, the objective would become:

min
q:q(x)=

∑p
j=1 q

jxj

1

n

n∑
i=1

[b(di− q(xi))+ +h(q(xi)− di)+]

+λexisting

1

nexisting

existing∑
i
′
=1

[b(di′ − q(xi′ ))
+ +h(q(xi′ )− di′ )

+] +λ‖q‖2

Here we would use b and h for the new item rather than the existing items, even if the backorder

and holding costs for the existing items were different. This is because we want to estimate the

order quantity for the new items and not the existing items. We choose λexisting based on our belief

of the similarity of the new product to the existing product. As n increases, λexisting should decrease

so that the influence of the existing product fades. For instance, if desired, λexisting could be set to

αnexisting/n where α < 1 so that each observation from an existing item is worth fraction α of an

observation from a new item.

5. Comparison with Existing Data-Driven Methods

In this section, we highlight the differences between the learning algorithms of Sec. 2 to three other

main data-driven methods known in the literature. We accompany the conceptual differences with

examples where the existing methods may not work.

5.1. Comparison with SAA

To reiterate, the difference between the SAA approach and ours is in the data used for decision-

making. In SAA, one assumes that only past demand observations are available, whereas we

consider relevant features about the demand as well as the demand itself. If there is a strong

relationship between the demand and some feature, the SAA approach would yield biased and

inconsistent decisions, unlike (NV-algo). We illustrate this point with the following example.

Consider the following demand model:

D=D0 +D1x,

where D0 and D1 are non-negative continuous random variables and x∈ {0,1} is a binary feature

(e.g. 0 for weekday and 1 for weekend). Let p0 be the proportion of time x= 0. We have n historical

observations: [(x1, d1), . . . , (xn, dn)], of which n0 = np0 are when x = 0 and n1 = n− n0 are when

x= 1 (assume rounding effects are negligible). Note the observations dk can be decomposed into:

{dk|xk = 0}= d0k and {dk|xk = 0}= d0k + d1k. Also let r= b/(b+ h) for ease of notation. Let F0 and
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F1 denote the cumulative distribution functions (cdfs), F−10 and F−11 denote the inverse cdfs, and

f0 and f1 the probability density functions (pdfs) of D0 and D1 respectively.

In addition to continuity of F0 and F1, we assume the following in order to arrive at the conclu-

sions in this subsection.

Assumption 1. Assume F0 and F1 are twice differentiable (i.e. f0 and f1 are differentiable) and

that there exists a 0<γ < 2 such that

sup
0<y<1

y(1− y)
|Ji(y)|

f(F−1i (y))
≤ γ, (7)

where Ji(·) is the score function of distribution Fi defined by

Ji(y) =
−f ′i(F−1i (y))

fi(F
−1
i (y))

=− d

dy
fi(F

−1
i (y)). (8)

Assumption 1 is satisfied by many standard distributions, and we list some in Table 1. The values

of f(F−1(y)) and J(y) for the distributions in Table 1 can be found in Parzen (1979). The critical

ratios for the uniform, exponential and logistic distributions follow immediately; for the normal

distribution it is easier to compute the critical ratio by using the following equivalent formulation

for the critical ratio:

sup
x∈dom(D)

F (x)(1−F (x))
|f ′(x)|
f(x)2

. (9)

It is then tedious but straight-forward to compute the supremum of the critical ratio over −∞<

x<∞ for the normal. For the lognormal distribution, it is tedious but straight-forward to establish

the continuity and boundedness of the critical ratio over 0< x<∞, then to compute a bound to

this supremum numerically.

Distribution f(F−1(y)) J(y) Is sup
0<y<1

y(1− y)
|J(y)|

f(F−1(y))
< 2 ?

Uniform 1 0 Yes, LHS = 0
Exponential 1− y 1 Yes, LHS = 1

Logistic y(1− y) 2y− 1 Yes, LHS = 1
Normal 1√

2π
exp{− 1

2
|Φ−1(y)|2} Φ−1(y) Yes, LHS = 1

Lognormal φ(Φ−1(y)) exp{−Φ−1(y)} exp{−Φ−1(y)}(Φ−1(y) + 1) Yes, LHS . 1.24
Table 1 Some standard distributions that satisfy the requirement of Assumption 1. The standard normal cdf

and pdf are denoted as Φ(·) and φ(·) respectively.

We defer all proofs of results in this subsection to Appendix A.
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Lemma 1 (Optimal ordering decision of (NV-algo)). Let F̂i denote the empirical cdf of

D|x = i with ni iid observations for i = 0,1. Then the optimal decision that solves (NV-algo) is

given by

q̂0n = inf

{
q : F̂0(q)≥

b

b+h

}
= d0(dn0re), if xn+1 = 0

q̂0n + q̂1n = inf

{
q : F̂1(q)≥

b

b+h

}
= d1(dn1re), if xn+1 = 1.

Put simply, q̂0n solves the SAA problem for the subsample of data corresponding to x= 0 and q̂0n+ q̂1n

solves the SAA problem for the subsample of data corresponding to x= 1.

Proposition 1 (Finite-sample bias and asymptotic optimality of (NV-algo)). We can

show

∣∣E[q̂0n]−F−10 (r)
∣∣≤O( logn

n

)
∣∣E[q̂0n + q̂1n]−F−11 (r)

∣∣≤O( logn

n

)
,

i.e. the finite-sample decision of the feature-based decision is biased by at most O(logn/n), and

lim
n→∞

q̂0n
a.s.
= F−10 (r) =: q0opt

lim
n→∞

q̂0n + q̂1n
a.s.
= F−11 (r) =: q1opt

i.e. the feature-based decision is asymptotically optimal, correctly identifying the case when x= 0

or 1 as the number of observations goes to infinity.

Lemma 2 (Optimal SAA ordering decision). Let Fmix denote the cdf of the mixture distribu-

tion Dmix = p0D0 + (1− p0)D1 and F̂mix
n its empirical counterpart with n observations. Then the

optimal SAA decision is given by

q̂SAAn = inf

{
q : F̂mix

n (q)≥ b

b+h

}
= d(dnre).

Proposition 2 (Finite-sample bias and asymptotic (sub)-optimality of SAA). With

probability 1,

q̂0n < q̂
SAA
n < q̂0n + q̂1n. (10)

Moreover,

∣∣E[q̂SAAn ]− (Fmix)−1(r)
∣∣≤O( logn

n

)
, (11)
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where (Fmix)−1 is the inverse cdf of Dmix. Hence we also have∣∣E[q̂SAAn − q̂0n]
∣∣= ∣∣(Fmix)−1(r)−F−10 (r)

∣∣+O

(
logn

n

)
=O(1)∣∣E[q̂1n− q̂SAAn ]

∣∣= ∣∣F−11 (r)− (Fmix)−1(r)
∣∣+O

(
logn

n

)
=O(1). (12)

That is, on average, if x= 0 in the next decision period, the SAA decision orders too much and if

x= 1 the SAA decision orders too little. In addition,

q0opt < lim
n→∞

q̂SAAn

a.s.
= (Fmix)−1(r)< q1opt, (13)

hence the SAA decision is not asymptotically optimal (is inconsistent).

As a final point, we remark that these observations are similar to the bias and inconsistency of

regression coefficients when there are, in econometric parlance, correlated omitted variables in the

model [Greene (2003)].

5.2. Comparison with Separated Estimation and Optimization

One alternative, common-sense approach to incorporating feature information in the newsvendor

decision-making is by first regressing the demand on the features assuming a normally distributed

error term (estimation) then applying the appropriate formula for the optimal order quantity

(optimization). Let us call this method separated estimation and optimization (SEO). The key to

this method is in the normality assumption of the residual error. In the following, we show that

this may lead to nonsensical negative ordering decisions if the normality assumption does not hold.

This is in contrast to (NV-algo), a nonparametric method that yields sensible (small finite-sample

bias and asymptotically optimal) ordering decisions.

Consider the following demand model:

D= β0 +β1x+ ε,

where β0 and β1 are non-negative constants, x ∈ {0,1} is a binary feature and ε is a zero

mean error term. Let p0 be the proportion of time x = 0. We have n historical observations:

[(x1, d1), . . . , (xn, dn)], of which n0 = np0 are when x= 0 and n1 = n− n0 are when x= 1 (assume

rounding effects are negligible). Again let r= b/(b+h) for ease of notation.

Under the SEO approach, one would assume ε∼N (0, σ2), solve the true newsvendor problem (1)

under this assumption, then plug-in estimates of the conditional mean and variance of the demand

to this solution. One can show, with straight-forward calculations, that the optimal newsvendor

solution to (1) under the assumption D(x)∼N (β0 +β1x,σ
2) is given by

qopt(x) = µ(x) +σΦ−1(r). (14)
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To estimate µ(x), one can employ ordinary least squares (OLS) regression; that is, solve

min
β0,β1

n∑
i=1

(di−β0−β1xi)
2,

to find estimates β̂0 and β̂1, yielding a mean estimate of µ̂(x) = β̂0 + β̂1x. One can then estimate

the variance by the standard error of regression (SER):

ŝ2 =

∑n1
i=1(di− β̂0− β̂1xi)

n− 1
.

The resulting order quantity under the SEO approach is thus

q̂sep(x) = µ̂(x) + ŝΦ−1(r). (15)

By properties of the OLS estimators µ̂(x) and ŝ2(x), we make the following observation.

Lemma 3. If indeed ε∼N (0, σ2) in truth, the order quantity q̂sep(x) is unbiased and asymptotically

optimal. That is, E[q̂sep] = qopt(x) and q̂sep
P→ qopt(x) as n→∞.

A problem arises, however, if the normality assumption ε ∼ N (0, σ2) does not hold. In the

following, we show that mis-specficiation of the model can lead to a nonsensical negative order

quantity.

Lemma 4 (Negative order quantity with model mis-specification). Sup-

pose 0< r <Φ(−1) and ε∼ exp(θ), where

0< θ <
(Φ−1(1− r)− 1)

d0 + d1
.

Then the SEO approach with the incorrect assumption ε∼N (0, σ2) yields a solution that is negative

on average and almost surely in the limit as n tends to infinity.

5.3. Comparison with Operational Statistics

Our last comparison is with operational statistics (OS), which was first introduced by Liyanage and

Shanthikumar (2005). The idea behind OS is to integrate parameter estimation and optimization

rather than separate them. Let us illustrate how OS works by an example similar to the one used

in Liyanage and Shanthikumar (2005).

Suppose the true demand has an exponential distribution, i.e.D∼ exp(1/θ), and that the decision

maker has access to d1, . . . , dn observations of past data. Then with straight-forward calculations,

one can show

q̂SEO = log

(
b+h

b

)
d̄n,
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where d̄n is the sample average of the demand, is the optimal SEO order quantity. Now consider

instead the decision

q̂1OS(α) = αd̄n (16)

parameterized by a constant α> 0. The OS approach then picks α by the following optimization:

min
α≥0

Eθ[C(q̂1OS(α);D)]. (17)

As α= log((b+h)/b) is a feasible solution of (17), this guarantees the OS decision to yield a true

expected cost that is bounded above by the true expected cost of the SEO decision. In other words,

by construction we have

Eθ[C(q̂1OS(α∗);D)]≤Eθ[C(q̂SEO;D)], (18)

where α∗ is the optimal parameter in (17). With some computations, one can show

α∗ =

[(
b+h

h

)1/n+1

− 1

]
n.

Liyanage and Shanthikumar (2005) also shows that one can also improve upon the SAA optimal

decision in terms of the true expected cost by considering the decision

q̂2OS(α,β) = ddβ−1e+α(ddβe− ddβ−1e), (19)

where β ∈ {1, . . . , n} and α≥ 0 are parameters to be chosen via

min
α≥0,β∈{1,...,n}

Eθ[C(q̂2OS(α,β);D)]. (20)

As the above example illustrates, OS takes insight from the form of the decision derived by

other methods (e.g. SEO and SAA) and constructively improves upon them in terms of the true

expected cost simply by considering a decision that is a function of past demand data rather than

a scalar quantity. In the parlance of our feature-based approach, the OS method is essentially

considering meaningful statistics of past demand data as features. However, there is an important

difference between the OS approach and ours, and this is in the way the unknown coefficients

(parameters) of the decision function are chosen. Under our decision-making paradigm, one would

simply input the sample average of past demand and differences of order statistics of past demand

as features and choose the coefficients that minimize the in-sample average cost. In contrast, OS

is based on the premise that one knows the distributional family the demand belongs to, and

thus is able to compute the coefficients that minimize the true expected cost. That one knows the

true distributional family is not a weak assumption, however the insights from OS analysis are

not trivial. In Sec. 6, we will consider solving (NV-algo) and (NV-reg) both without and with

OS-inspired features, to evaluate their practical benefit in terms of the out-of-sample cost.
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6. Case Study: Nurse Staffing in a Hospital Emergency Room

6.1. Problem Description

In our numerical study, we consider nurse staffing in a hospital emergency room. Assuming a

mandatory nurse-to-patient ratio, nurse staffing in an emergency room can be cast as a newsvendor

problem in that the hospital would incur an underage cost if too many patients arrive and expensive

agency nurses have to be called, and an overage cost if too many regular nurses are scheduled

compared to the number of patients. As nurse staffing contributes to a significant portion of hospital

operations [see Green et al. (2013) and references therein], a machine learning algorithm that can

better predict staffing levels with demand uncertainty has potential for much impact.

In this section, we apply the two algorithms introduced in Sec. 2, (NV-algo) and (NV-reg), to the

nurse staffing problem. Our data comes from the emergency room of a large UK teaching hospital

from July 2008 to June 2009. The data include the total number of patients in the emergency

room at 2-hour intervals. To get some sense of the data, we provide boxplots of the number of

patients by day and by time periods in Fig. 2. We assume a nurse-to-patient ratio of 1 to 5, hence

the demand is the total number of patients divided by 5. We do not require the staffing level to

be an integer in our predictions, as multi-skilled workers could be used for part-time work. We

also assume that the hourly wage of an agency nurse is 2.5 times that of a regular nurse, that

is b= 2.5/3.5 and h= 1/3.5, resulting in a target fractile of r = b/(b+ h) = 2.5/3.5. We consider

two sets of features: the first set being the day of the week, time of the day and m number of

days of past demands; the second set being the first set plus the sample average of past demands

and the differences in the order statistics of past demands, which is inspired by the observation in

Liyanage and Shanthikumar (2005) as described in Sec. 5.3. We use n= 12× 7× 16 = 1344 past

data as training data and compute the critical staffing level 3 periods ahead. We then record the

out-of-sample newsvendor cost of the predicted staffing level on 1344/2 = 672 validation data on a

rolling horizon basis 2.

For all numerical results, we used CVX, a package for specifying and solving convex programs

[CVX Research (2012), Grant and Boyd (2008)] with the solver MOSEK.

6.2. Comparison of (NV-algo) and (NV-reg) with SAA

In Table 2 and 3, we report the ratio of the median of the out-of-sample cost of (NV-algo) and

(NV-reg) to the median of the SAA newsvendor cost respectively on the same validation dataset. In

parentheses we report the p-values from the Wilcoxon rank-sum test, to see whether the deviations

from the SAA result are statistically significant. In Sec. 5.3, we saw that differences of order

statistics of past demands can be used as features. We consider using the same algorithms, but
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Figure 2 A boxplot of the number of patients in the emergency room (a) by day and (b) by time period.

with extra features inspired by OS, under the column marked “with OS”. The best performances

are highlighted in bold. We find that both our feature-based algorithms substantially reduce the

out-of-sample costs with strong statistical significance (p-values are all less than 0.001). This shows

the potential value of including features for medical staffing decisions.

6.3. Comparison of (NV-algo) and (NV-reg) with SEO and Minimax

In Table 4, we report the median of the out-of-sample cost of the SEO approach described in

Sec. 5 and Scarf’s Minimax approach [Scarf et al. (1958)]. The best performances of both methods,

in bold, are also strongly statistically significantly better than the SAA method. However, both

methods are worse than (NV-algo) results, which are also shown for comparative purposes, both

without and with OS features. Again, this is not surprising given that (NV-algo) aims to more

directly optimize the quantity that all methods are being evaluated on.

To see whether the best-performing cases of the six different methods considered in this section

[(NV-algo) and (NV-reg) without and with OS features, SEO and Minimax] are statistically differ-

ent from each other, we report the p-values from the Wilcoxon rank-sum test in Table 5, comparing

the results pair-wise. We can see from this table that the four base-case results of solving (NV-algo)

and (NV-reg) without and with OS features, are not statistically distinguishable from each other.

These four results, however, are statistically different from the SEO and Minimax results at the

0.01 level.



Rudin & Vahn: Big Data Newsvendor
20 Article submitted to Operations Research; manuscript no.

6.4. Discussion of Predicted Staffing Decisions

Let us further investigate the staffing decision of Method 3: (NV-reg) with λ= 5×10−7 and no OS

features. There is no loss of generality here because Table 5 ascertains that this result is statistically

indistinguishable from the other best-performing results of (NV-algo) and (NV-reg).

In Fig. 3, we display the empirical cdf of the 672 out-of-sample costs of Method 3 and SAA. Re-

markably, we find that the empirical cdf of the feature-based algorithm is stochastically dominated

by that of SAA, i.e. the cost of the feature-based solutions are smaller than the SAA solution at

every quantile of the out-of-sample distribution, which is a very strong result.

In Fig. 4 (a), we display the staffing levels predicted by Method 3 along with the actual required

levels. The black dots indicate where the algorithm under-staffs with respect to the required level.

Fig. 4 (b), we provide a scatter plot of the actual versus predicted staffing levels. It is apparent

from both subplots that the algorithm over-predicts more than under-predicts, which reflects the

asymmetry in the underage and overage costs due to agency nurses charging a higher hourly wage

than regular nurses.

Let us now suppose the hospital indeed implements our algorithm for its nurse staffing decisions.

We wish to gain some insight into the predictions made by the algorithm. In particular, we would

like to know when the hospital is over- or under-staffed, assuming the hospital chooses to imple-

ment the best possible method, provided by Algorithm (NV-reg). In Figs. 5 and 6, we show the

conditional probability (frequency) of under- and over-prediction by day of the week and by time

period. We derive the following insights from these plots, which could be useful for patients and

managers directly: (i) weekdays are more likely to be under-staffed then weekends, thus, given the

choice to visit the emergency room on a weekday or weekend, we would choose a weekend, (ii) the

period from noon to midnight is substantially more likely to be under-staffed then the period from

midnight to noon, thus, given the choice of time to visit the emergency room, we would choose

an early or a late morning, and (iii) the algorithm is most likely to over-staff by at least 20%

of the required level on a Wednesday or a Sunday then any other day of the week (i.e. there is

a middle-of-the-week effect), hence, given the flexibility, we would choose to visit the emergency

room on a Wednesday or a Sunday.

6.5. Operational Recommendations

Based on the observations in this and previous sections, we derive the following guideline for

effectively incorporating feature data for the newsvendor problem, which is not restricted to nurse

staffing:

• Systematically record or obtain data on any information that may be associated with the

demand.
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• Invest in finding out what features are appropriate based on the information collected. Note

nonlinear transformations of basic features (such as time of the day) can quickly enlarge the total

number of features under consideration.

• Either perform some form of feature selection and use the small data newsvendor algorithm

(NV-algo) if p/n is small (a good rule of thumb is 10%), otherwise automate feature-selection via

the regularization-based big data algorithm (NV-reg).

• It is important to keep track of the performance of the algorithm over time, and revise in-

formation collection and feature selection. This way, one can incorporate domain expertise gained

through implementation and experimentation as well as protect the system against any fundamen-

tal changes to the feature-demand dynamics.

7. Conclusion

This work shows how a newsvendor decision-maker who has access to past information about var-

ious features about the demand as well as demand itself can make a sensible ordering decision. We

proposed two tractable algorithms, one when the feature-observation ratio is small and one when

the feature-observation ratio is large. For these algorithms, we derived tight generalization error

bounds on the expected out-of-sample cost. We demonstrated how to modify the basic model to

other realistic extensions, such as having censored demand data, having data on multiple, similar

items, and introducing a new item with limited data. We further justified the feature-based ap-

proach by comparing it with other methods known in the literature. Finally, we investigated nurse

staffing in a hospital emergency room and showed that our custom-designed, feature-based algo-

rithms compute staffing decisions that yield substantially lower cost than several main benchmarks

known in the literature.
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without OS Features with OS Features
No. of past days Median Cost Total no. Median Cost Total no.

as % of SAA of Features as % of SAA of Features
(p-value) (avg. chosen) (p-value) (avg. chosen)

0 61.90 (0.000) 12 (3.00) 61.90 (0.000) 12 (3.00)
1 63.07 (0.000) 15 (4.00) 62.73 (0.000) 27 (6.28)
2 61.90 (0.000) 27 (5.31) 67.17 (0.000) 51 (9.11)
3 61.84 (0.000) 39 (6.23) 57.24 (0.000) 75 (21.12)
4 57.53 (0.000) 51 (7.97) 57.45 (0.000) 99 (28.07)
5 57.50 (0.000) 63 (8.25) 56.63 (0.000) 123 (36.68)
6 58.29 (0.000) 75 (8.63) 58.79 (0.000) 147 (43.36)
7 57.85 (0.000) 87 (9.53) 58.53 (0.000) 171 (52.41)
8 57.63 (0.000) 99 (9.52) 54.31 (0.000) 195 (56.51)
9 57.64 (0.000) 111 (9.56) 58.19 (0.000) 219 (62.62)
10 57.70 (0.000) 123 (9.55) 61.23 (0.000) 243 (69.68)
11 57.64 (0.000) 135 (9.68) 60.05 (0.000) 267 (73.43)
12 57.64 (0.000) 147 (9.85) 66.13 (0.000) 291 (82.24)
13 57.88 (0.000) 159 (10.33) 59.22 (0.000) 315 (91.78)
14 57.67 (0.000) 171 (10.30) 60.54 (0.000) 339 (97.22)

Table 2 The median out-of-sample cost of (NV-algo) relative to SAA on the validation dataset. We use day of

the week, time of the day and x number of days of past demand as features. The column marked “with OS” refer to

results using differences of past demands as features, as inspired by OS. The best results without and with OS are

highlighted in bold. In parentheses we report the p-values from the Wilcoxon rank-sum test to compare the result

against SAA.

without OS Features with OS Features
Regularization Param. Median Cost Total no. Median Cost Total no.

as % of SAA of Features as % of SAA of Features
(% of SAA) (avg. chosen) (% of SAA) (avg. chosen)

1× 10−4 67.21 (0.000) 171 (8.80) 67.09 (0.000) 339 (8.78)
5× 10−5 61.16 (0.000) 171 (11.31) 61.22 (0.000) 339 (11.28)
1× 10−5 57.52 (0.000) 171 (13.13) 57.52 (0.000) 339 (13.13)
5× 10−6 57.49 (0.000) 171 (13.58) 57.92 (0.000) 339 (13.96)
1× 10−6 56.83 (0.000) 171 (15.24) 57.05 (0.000) 339 (22.85)
5×10−7 55.04 (0.000) 171 (10.90) 57.49 (0.000) 339 (35.57)
1×10−7 57.39 (0.000) 171 (12.01) 56.31 (0.000) 339 (107.53)

Table 3 The median out-of-sample cost of (NV-reg) relative to SAA on the validation datset. We use day of the

week, time of the day and 2 weeks of past demand as features. Without OS features, p= 171 and with OS features,

p= 339. Note the average number of features chosen by the decision is calculated using the criteria that the decision

element be at least 0.1% of the maximum element. The best results without and with OS are highlighted in bold. In

parentheses we report the p-values from the Wilcoxon rank-sum test to compare the result against SAA.

Appendix A: For results in Sec. 5

A.1. Proofs of Main Theorems in Sec. 5

Proof. (Of Lemma 1) The feature-based algorithm (NV-algo) solves

min
q(x)=q0+q1x

R̂(q(x);Sn) =
1

n

n∑
i=1

[b(di(x)− q(x))+ +h(q(x)− di(x))+]
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Median Cost (% of SAA)
No. of past days SEO Minimax (NV-algo) without OS (NV-algo) with OS

1 64.56 (0.000) 93.15 (0.068) 63.07 (0.000) 62.73 (0.000)
2 65.15 (0.000) 94.45 (0.102) 61.90 (0.000) 67.17 (0.000)
3 65.55 (0.000) 96.74 (0.151) 61.84 (0.000) 57.24 (0.000)
4 65.69 (0.000) 94.51 (0.152) 57.53 (0.000) 57.45 (0.000)
5 67.89 (0.000) 90.87 (0.047) 57.50 (0.000) 56.63 (0.000)
6 67.78 (0.000) 90.52 (0.028) 58.29 (0.000) 58.79 (0.000)
7 71.93 (0.000) 89.26 (0.034) 57.85 (0.000) 58.53 (0.000)
8 71.40 (0.000) 86.28 (0.005) 57.63 (0.000) 54.31 (0.000)
9 70.68 (0.000) 81.66 (0.001) 57.64 (0.000) 58.19 (0.000)
10 71.95 (0.000) 79.83 (0.001) 57.70 (0.000) 61.23 (0.000)
11 72.57 (0.000) 81.72 (0.001) 57.64 (0.000) 60.05 (0.000)
12 72.39 (0.000) 76.40 (0.000) 57.64 (0.000) 66.13 (0.000)
13 72.74 (0.000) 76.95 (0.000) 57.88 (0.000) 59.22 (0.000)
14 73.58 (0.000) 76.93 (0.000) 57.67 (0.000) 60.54 (0.000)

Table 4 The median out-of-sample cost of SEO and Scarf’s Minimax approaches relative to SAA on the

validation dataset. We also report results from (NV-algo), without and with OS features, for comparison. We use

day of the week, time of the day and x number of days of past demand as features. The best results are highlighted

in bold. In parentheses we report the p-values from the Wilcoxon rank-sum test to compare the result against SAA.

Method 1 2 3 4 5 6
1. (NV-algo), 5 days - N (0.076) N (0.739) N (0.186) Y (0.011) Y (0.000)
2. (NV-algo), 8 days + OS N (0.076) - N (0.147) N (0.649) Y (0.000) Y (0.000)
3. (NV-reg), λ= 5× 10−7 N (0.739) N (0.149) - N (0.337) Y (0.004) Y (0.000)
4. (NV-reg), λ= 1× 10−7 + OS N (0.187) N (0.649) N (0.337) - Y (0.000) Y (0.000)
5. SEO, 1 day Y (0.011) Y (0.000) Y (0.004) Y (0.000) - Y (0.008)
6. Minimax, 12 days Y (0.000) Y (0.000) Y (0.000) Y (0.000) Y (0.008) -

Table 5 Results from the Wilcoxon rank-sum test to compare the best-performing cases of the methods

considered in this paper. Note the four results from (NV-algo) and (NV-reg) are not statistically distinguishable

from each other but they are statistically different from SEO and Scarf’s Minimax at the 1% level.

= min
q(x)=q0+q1x

1

n0

∑
i:xi=0

[b(d0i − q0)+ +h(q0− d0i )+] +
1

n1

∑
i:xi=1

[b(d0i + d1i − q0− q1)+ +h(q0 + q1− d0i − d1i )+]

= min
q0≥0

{
1

n0

∑
i:xi=0

[b(d0i − q0)+ +h(q0− d0i )+]

+ min
q1≥0

{
1

n1

∑
i:xi=1

[b(d0i + d1i − q0− q1)+ +h(q0 + q1− d0i − d1i )+]

}}
, (21)

where the outer and inner minimization problems correspond to the SAA problem for the subsample

of data corresponding to x= 0 and x= 1 respectively. Hence the solutions are the corresponding

SAA solutions for the appropriate subsample of data, which is the well-known critical fractile of

the inverse empirical cdf as in (4). �

Proof. (Of Proposition 1) Under Assumption 1, the following strong result holds via Theorem

4.1.2. pp. 31 of Csörgö (1983): there exists, for each ni, a Brownian Bridge {Bni(y),0≤ y≤ 1} such
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Figure 3 The empirical cdf of the best-performing case of (NV-reg) in dotted red (λ= 5× 10−7, no OS

features). The empirical cdf of the SAA solution is in solid blue. The SAA out-of-sample cost

stochastically dominates that of (NV-reg).

that

sup
0<y<1

∣∣∣∣fi(F−1i (y))(F̂−1i (y)−F−1i (y))−
Bni(y)
√
ni

∣∣∣∣ a.s.= O

(
logni
ni

)
. (22)

The above implies, for y= r:∣∣∣∣(F̂−1i (r)−F−1i (r))−
Bni(r)

fi(F
−1
i (r))

√
ni

∣∣∣∣ a.s.≤ O

(
logni
ni

)
=⇒

∣∣∣∣F̂−1i (r)−F−1i (r)

∣∣∣∣ a.s.≤ Bni(r)

fi(F
−1
i )
√
ni

(r) +O

(
logni
ni

)
=⇒

∣∣∣∣E[F̂−1i (r)]−F−1i (r)

∣∣∣∣≤E
∣∣∣∣F̂−1i (r)−F−1i (r)

∣∣∣∣≤ EBni(r)
fi(F

−1
i (r))

√
ni

+O

(
logni
ni

)
=O

(
logni
ni

)
,

where the last line uses Jensen’s inequality and the fact that the mean of a Brownian Bridge is

zero everywhere. Hence we get both the finite-sample bias result and the asymptotic optimality

result. �

Proof. (Of Lemma 2) This is simply the SAA solution for the complete dataset. �

Proof. (Of Proposition 2) Proof of (10). By assumption, the demand is almost surely greater

when x= 1 compared to when x= 0. Hence the r-th quantile of the empirical distribution of Dmix

is almost surely greater than the r-th quantile of the empirical distribution of D|x= 0. The same

observation holds for the second inequality.
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Figure 4 (a) A time-series plot of actual staffing demand (solid blue) versus staffing levels predicted by

the best-performing case of (NV-reg) in dotted red (λ= 5× 10−7, no OS features). The black

circles indicate time periods where the staffing level has been under-predicted. (b) A scatter

plot of actual staffing demand versus predicted by the best-performing case of (NV-reg). The

green solid line shows a 1:1 relationship. It is apparent that the algorithm over-predicts more

than under-predicts, which reflects the asymmetry in the underage and overage costs due to the

more unfavorable consequences of being under-staffed.

Proof of (11) & (12). Proof of (11) parallels that of Proposition 1. Proof of (12) then follows

from (11) and Proposition 1.

Proof of (13). The asymptotic convergence of q̂SAAn to its true value is again due to the asymptotic

convergence of the sample quantile estimator, as shown in Proposition 1. The statement then

follows from 10. �

Proof. (Of Lemma 3) The result follows from the well-known fact that µ̂(x) and ŝ are unbiased

and strongly consistent estimators of µ(x) and σ2 respectively. For details, we refer the reader to

Greene (2003). �

Proof. (Of Lemma 4) If ε ∼ exp(θ), µ(x) = E[D|x] = d0 + d1x+ 1/θ and σ2(x) = V ar[D|x] =

1/θ2. We have thus

q̂sep(x) = d0 + d1x+
1

θ̂
+

1

θ̂
Φ−1(r) = d0 + d1x+

1

θ̂
− 1

θ̂
Φ−1(1− r), (23)

where 1/θ̂ is the OLS estimator of 1/θ. Note the last equality is due to the identity Φ−1(r) =

−Φ−1(1−r), which holds because of the symmetry of the normal cdf. That this quantity is negative

on average and in the limit follows from the unbiasedness and strong consistency of OLS estimators.

�
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Figure 5 A plot of the conditional probabilities of under-prediction (a) by day and (b) by time period

for the best-performing case of (NV-reg) (λ = 5× 10−7, no OS features). The conditioning is

done by the particular day or the time period, i.e. the probability of over-prediction given it is

a Monday.

Figure 6 A plot of the conditional probabilities of over-prediction by at least 20% (a) by day and (b)

by time period for the best-performing case of (NV-reg) (λ = 5× 10−7, no OS features). The

conditioning is done by the particular day or the time period, i.e. the probability of over-

prediction given it is a Monday.

Appendix B: Proofs of Main Theorems in Sec. 3

We will use tools from algorithmic stability analysis to prove our results. Stability bounds were

originally developed in the 1970’s [Rogers and Wagner (1978), Devroye and Wagner (1979a) and

Devroye and Wagner (1979b)], and was revitalized in the early 2000’s Bousquet and Elisseeff (2002).
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Figure 7 A plot illustrating that the difference |C(qn(x),D(x))−C(qn\i(x),D(x))| is bounded.

Denoting the training set by Sn = {z1 = (x1, d1), . . . , zn = (xn, dn)}, we define the following mod-

ified training set:

S\in := {z1, . . . , zi−1, zi+1, . . . , zn},

which will be handy for the rest of the paper.

A learning algorithm is a function A from Zn into Q ⊂ DX , where DX denotes the set of all

functions that map from X to D. A learning algorithm A maps the training set Sn onto a function

ASn : X → D. A learning algorithm A is symmetric with respect to Sn if for all permutations

π : Sn→ Sn of the set Sn,

ASn =Aπ(Sn) =A{π(z1),...,π(zn)}.

In other words, a symmetric learning algorithm does not depend on the order of the elements in

the training set Sn.

The loss of the decision rule q ∈Q with respect to a sample z = (x, d) is defined as

`(q, z) := c(q(x), d),

for some cost function c, which in our work will become the newsvendor cost C.

In what follows, we assume that all functions are measurable and all sets are countable. Also

assume Q is a convex subset of a linear space. Our algorithm for the learning newsvendor problem

turns out to have a very strong stability property, namely it is uniformly stable. In what follows

we define this notion of stability and prove that the BDNV algorithm is uniformly stable in two

different ways, in Theorem 3 and Theorem 4. The fact that the algorithm possesses these properties

is interesting independently of other results. As we will discuss later, the proofs of Theorems 2 and

1 follow immediately from the stability properties.
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Definition 1 (Uniform stability, Bousquet and Elisseeff (2002) Def 6 pp. 504). A

symmetric algorithm A has uniform stability α with respect to a loss function ` if for all Sn ∈Zn

and for all i∈ {1, . . . , n},

‖`(ASn , ·)− `(AS\in , ·)‖∞ ≤ α. (24)

Furthermore, an algorithm is uniformly stable if α= αn ≤O(1/n).

The following will be the main result we need to prove Theorem 1.

Theorem 3 (Uniform stability of (NV-algo)). The learning algorithm (NV-algo) with iid

data is symmetric and uniformly stable with respect to the newsvendor cost function C(·, ·) with

stability parameter

αn =
D̄(b∨h)2

(b∧h)

p

n
. (25)

We will use the following lemma in the proof of Theorem 3.

Lemma 5 (Exact Uniform Bound on the NV Cost). The newsvendor cost function C(·, ·) is

bounded by (b∨h)D̄, which is tight in the sense that:

sup
(x,D)∈X×D

|C(qn(x),D(x))|= D̄(b∨h).

Proof. (Of Lemma 5) Clearly, D̄(b∨h) is an upper bound on |C(q, d)| for all q, d∈ [0, D̄]. Now

if d= 0 and qn(x) = D̄, |C(qn(x), d)|= D̄h. Conversely, if d= D̄ and qn(x) = 0, |C(qn(x), d)|= D̄b.

Hence the upper bound is attained. �

Now for the proof of the theorem.

Proof. (Of Theorem 3) Symmetry follows from the fact that the data-generating process is iid.

For stability, we will change our notation slightly to make the dependence on n and Sn explicit.

Let

qn(x) := q>nx =

p∑
j=1

qjnxj

and

qn\i(x) := q>n\ix =

p∑
j=1

qjn\ixj

where

[q1n, . . . , q
p
n] = arg min

q=[q1,...,qp]

R̂(q;Sn) =
1

n

n∑
j=1

b(dj − p∑
j=1

qjxj

)+

+h

(
p∑
j=1

qjxj − dj

)+

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is the solution to (NV-algo) for the set Sn without regularization, and

(q1n\i, q
1
n\i) = arg min

q=[q1,...,qp]

R̂(q;S\in ) =
1

n

n∑
j=1

b(dj − p∑
j=1

qjxj

)+

+h

(
p∑
j=1

qjxj − dj

)+


is the solution to (NV-algo) for the set S\in without regularization. Note that:

R̂(q;Sn) =
n− 1

n
R̂(q;S\in ) +

1

n
R̂(q;Si),

where Si = (xi, di).

By definition, the algorithm is stable if for all Sn ∈Zn and i∈ {1, . . . , n},

sup
(x,D)∈X×D

|C(qn(x),D(x))−C(qn\i(x),D(x))| ≤ αn,

where αn ≤O(1/n). Now for a fixed x, we have, by the Lipschitz property of C(q; ·),

sup
(x,D)∈X×D

|C(qn(x),D(x))−C(qn\i(x),D(x))| ≤ sup
(x,D)∈X×D

(b∨h)|qn(x)− qn\i(x)|.

(See Fig. 7). So we want to bound

|qn(x)− qn\i(x)|=

∣∣∣∣∣
p∑
j=1

qjnxj −
p∑
j=1

qjn\ixj

∣∣∣∣∣ .
By the convexity of the function R̂n(·, S), we have (see Section 23 of Rockafellar (1997)):

p∑
j=1

νj(q
j
n\i− q

j
n)≤ R̂(qn\i;Sn)− R̂(qn;Sn)

for all ν = [ν1, . . . , νm] ∈ ∂R̂(qn;Sn) (set of subgradients of R̂(·, Sn) at qn). Further, because 0 ∈
∂R̂(qn;Sn) by the optimality of qn, we have

0≤ max
ν∈∂R̂(qn;Sn)

p∑
j=1

νj(q
j
n\i− q

j
n)≤ R̂(qn\i;Sn)− R̂(qn;Sn)

where the max over ν can be attained because ∂R̂(qn;Sn) is a compact set. Denote this maximum

ν∗. We thus have

R̂(qn\i;Sn)− R̂(qn;Sn)≥ |ν∗>(qn\i−qn)|=
p∑
j=1

ν∗j (qjn\i− q
j
n)

≥ |ν∗j (qjn\i− q
j
n)|= |ν∗j ||q

j
n\i− q

j
n| for all j = 1, . . . p

where the second inequality is because ν∗j (qjn\i−qjn)> 0 for all j because R̂(·;Sn) is piecewise linear

and nowhere flat. Thus we get, for all j = 1, . . . , p,

|qjn\i− q
j
n| ≤

R̂(qn\i;Sn)− R̂(qn;Sn)

|ν∗j |
.
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Let us bound R̂(qn\i;Sn)− R̂(qn;Sn). Note

R̂(qn;Sn) =
n− 1

n
R̂(qn;S\in ) +

1

n
R̂(qn;Si)

≥ n− 1

n
R̂(qn\i;S

\i
n )

since qn\i is the minimizer of R̂(·;S\in ). Also, R̂(qn;Sn)≤ R̂(qn\i;Sn) since qn is by definition the

minimizer of R̂(·;Sn). Putting these together, we get

n− 1

n
R̂(qn\i;S

\i
n )− R̂(qn\i;Sn)≤ R̂(qn;Sn)− R̂(qn\i;Sn)≤ 0

=⇒ |R̂(qn;Sn)− R̂(qn\i;Sn)| ≤
∣∣∣∣n− 1

n
R̂(qn\i;S

\i
n )− R̂(qn\i;Sn)

∣∣∣∣
=

∣∣∣∣n− 1

n
R̂(qn\i;S

\i
n )− n− 1

n
R̂(qn\i;S

\i
n )− 1

n
R̂(qn\i;Si)

∣∣∣∣
=

1

n
|R̂(qn\i;Si)|.

Thus

sup
(x,D)∈X×D

(b∨h)|qn(x)− qn\i(x)| ≤ sup
(x,D)∈X×D

(b∨h)

(
p∑
j=1

|qjn− q
j
n\i||xj|

)

≤ sup
(x,D)∈X×D

(b∨h) ·
p∑
j=1

|xj|
|ν∗j |
· (R̂(qn\i;Sn)− R̂(qn;Sn))

= sup
(x,D)∈X×D

b∨h
n
·

p∑
j=1

|xj|
|ν∗j |
· |R̂(qn\i;Si)|. (27)

We can further simplify the upper bound (27) as follows. Recall that ν∗ is the subgradient of

R̂(·;Sn) at qn that maximizes
∑p

j=1 νj(q
j
n\i− qjn); and as ∂R̂(qn;Sn) is compact (by the convexity

of R̂(·;Sn)), we can compute ν∗ exactly. It is straightforward to show:

ν∗j =

{
−bxj if qjn\i− qjn ≤ 0

hxj if qjn\i− qjn ≥ 0 ∀ j.

We can thus bound 1/|ν∗j | by 1/[(b∧h)|xj|]. By using the tight uniform upper bound (b∨h)D̄ on

each term of |R̂(·, ·)| from Lemma 5, we get the desired result. �

We move on to the main result needed to prove Theorem 2.

Theorem 4 (Uniform stability of NV-reg). The learning algorithm (NV-reg) is symmetric,

and is uniformly stable with respect to the NV cost function C with stability parameter

αrn =
(b∨h)2

2X−2max

1

nλ
. (28)

Let us build some terminology for the proof of Theorem 4.
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Definition 2 (σ-admissible loss function). A loss function ` defined onQ×D is σ-admissible

with respect toQ if the associated convex function c is convex in its first argument and the following

condition holds:

∀ y1, y2 ∈Y, ∀ d∈D, |c(y1, d)− c(y2, d)| ≤ σ|q1− q2|, (29)

where Y = {y : ∃ q ∈Q, ∃ x∈X : q(x) = y} is the domain of the first argument of c.

Theorem 5 (Bousquet and Elisseeff (2002) Theorem 22 pp. 514). Let F be a reproducing

kernel Hilbert space with kernel k such that ∀ x ∈X , k(x,x)≤ κ2 <∞. Let ` be σ-admissible with

respect to F . The learning algorithm A defined by

ASn = arg min
g∈F

1

n

n∑
i=1

`(g, zi) +λ‖g‖2k (30)

has uniform stability αn wrt ` with

αn ≤
σ2κ2

2λn
.

Note that Rp is a reproducing kernel Hilbert space where the kernel is the standard inner product.

Thus, κ in our case is Xmax.

Proof. (Of Theorem 4) By the Lipschitz property of C(·;d),

sup
d∈D

|C(q1(x), d)−C(q2(x), d)| ≤ (b∨h)|q1(x)− q2(x)|, ∀q1(x), q2(x)∈Q (31)

as before, hence C :X ×D→R is (b∨h)-admissible. Hence by Theorem 5 the algorithm (NV-reg)

has uniform stability with parameter αrn as given. �

We have thus far established the stability of the big-data newsvendor algorithms (NV-algo)

and (NV-reg), which lead immediately to the risk bounds provided in Theorem 2 and Theorem 1

following the established theorems relating stability to generalization, as follows.

Denote the generic true and empirical risks for general algorithm A as:

Rtrue(A,Sn) :=Ezn+1
[`(ASn , zn+1)] and R̂(A,Sn) :=

1

n

n∑
i=1

`(ASn , zi).

Theorem 6. Let A be an algorithm with uniform stability αn with respect to a loss function `

such that 0≤ `(ASn , z)≤M , for all z ∈ Z and all sets Sn of size n. Then for any n≥ 1 and any

δ ∈ (0,1), the following bound holds with probability at least 1 − δ over the random draw of the

sample Sn:

|Rtrue(A,Sn)− R̂(A,Sn)| ≤ 2αn + (4nαn +M)

√
ln(2/δ)

2n
. (32)
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Proof. (Of Theorem 6) The result is obtained by extending Theorem 12 of Bousquet and

Elisseeff (2002) on pp. 507 by using the two-sided version of McDiarmid’s inequality. �

We can now put the results together to prove Theorems 1 and 2.

Proof. (Of Theorem 1) The result follows from Theorems 3 and 6. �

Proof. (Of Theorem 2) By Lemma 5, 0≤ `(AS, z)≤ D̄(b∨ h) for all z ∈ Z and all sets S. The

result then follows from Theorems 4 and 6. �
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