
MIT Open Access Articles

Rounding-based heuristics for nonconvex MINLPs

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Nannicini, Giacomo, and Pietro Belotti. “Rounding-Based Heuristics for Nonconvex
MINLPs.” Mathematical Programming Computation 4.1 (2012): 1–31.

As Published: http://dx.doi.org/10.1007/s12532-011-0032-x

Publisher: Springer Berlin Heidelberg

Persistent URL: http://hdl.handle.net/1721.1/105215

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/105215

Math. Prog. Comp. (2012) 4:1–31
DOI 10.1007/s12532-011-0032-x

FULL LENGTH PAPER

Rounding-based heuristics for nonconvex MINLPs

Giacomo Nannicini · Pietro Belotti

Received: 15 August 2010 / Accepted: 12 August 2011 / Published online: 1 September 2011
© Springer and Mathematical Optimization Society 2011

Abstract We propose two primal heuristics for nonconvex mixed-integer nonlinear
programs. Both are based on the idea of rounding the solution of a continuous nonlin-
ear program subject to linear constraints. Each rounding step is accomplished through
the solution of a mixed-integer linear program. Our heuristics use the same algorith-
mic scheme, but they differ in the choice of the point to be rounded (which is feasible
for nonlinear constraints but possibly fractional) and in the linear constraints. We
propose a feasibility heuristic, that aims at finding an initial feasible solution, and an
improvement heuristic, whose purpose is to search for an improved solution within the
neighborhood of a given point. The neighborhood is defined through local branching
cuts or box constraints. Computational results show the effectiveness in practice of
these simple ideas, implemented within an open-source solver for nonconvex mixed-
integer nonlinear programs.

Mathematics Subject Classification (2000) 90C11 · 90C57 · 90C59

1 Introduction

Mixed-integer nonlinear programming (MINLP) problems are a class of optimization
problems whose objective and constraints are, in general, nonlinear, and such that a

G. Nannicini (B)
Singapore University of Technology and Design, Singapore, Singapore
e-mail: nannicini@sutd.edu.sg

G. Nannicini
Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA, USA

P. Belotti
Department of Mathematical Sciences, Clemson University, Clemson, SC, USA
e-mail: pbelott@clemson.edu

123

2 G. Nannicini, P. Belotti

subset of variables is constrained to be integer. These problems find application in
several fields [4,14] and are very difficult to solve in practice. In this paper we focus
on nonconvex MINLPs, that is, mathematical programs which involve both integer
and continuous variables, and where the objective function and constraints can be
nonconvex. Note that when we write nonconvex MINLPs, we simply indicate that the
constraints and objective function need not be convex. This is the most expressive class
of single-objective mathematical programs, in that all single-objective deterministic
optimization problems can be cast in this form. MINLPs generalize both nonlinear
programs (NLPs) and mixed-integer linear programs (MILPs), and hence inherit diffi-
culties from both classes. In recent years, some attempts have been made in developing
exact solvers for nonconvex MINLPs [2,29]. These solvers are based on the branch-
and-bound (BB) algorithm, where lower bounds (we assume a minimization problem)
at each node of the BB tree are typically obtained by solving a linear program (LP) that
defines a relaxation of the corresponding MINLP. Examples of LP-based BB solvers
for nonconvex MINLPs are Baron [25], Couenne [2], and Lindoglobal [20].

For most MINLP solvers, obtaining good upper bounds as quickly as possible is of
great practical importance. In this paper we study two heuristics for this purpose. Our
primal heuristics are based on the same algorithmic scheme: first, we obtain a feasible
point for the continuous relaxation by solving an NLP. Then we round the solution
to this NLP, subject to linear constraints, to obtain an integral feasible point. This
rounding is accomplished through the solution of an MILP. Finally, we fix the integer
variables and act on the continuous variables to generate an MINLP feasible point.

We design two heuristics of this type in such a way that they are fast in practice: the
first one has the purpose of obtaining an initial feasible solution, the second one acts on
a feasible solution and tries to compute a better one, searching within a neighborhood
of the starting point. The difference between the two lies in the definition of the NLPs
that are solved to obtain the point to be rounded, and in the linear constraints to which
the rounding phase is subject.

The rest of this paper is organized as follows. In Sect. 2 we provide the necessary
notation and preliminaries. In Sect. 3 we introduce the basic scheme for our heuristics.
Section 4 describes the linear inequalities called no-good cuts that are employed by
our heuristics. Then, the basic scheme is specialized to define a feasibility heuristic
that finds a first solution (Sect. 5), and an improvement heuristic (Sect. 6). Some issues
related to dealing with a nonconvex optimization problem are discussed in Sect. 7.
In Sect. 8 we provide computational experiments on a set of benchmark instances to
show the practical usefulness of the heuristics that we propose. Section 9 concludes
the paper. The appendix contains more details on the computational experiments.

2 Notation and Preliminaries

Consider the following mathematical program:

min f (x)

∀ j ∈ M g j (x) ≤ 0
∀i ∈ N x L

i ≤ xi ≤ xU
i∀i ∈ NI xi ∈ Z,

⎫
⎪⎪⎬

⎪⎪⎭

P (1)

123

Rounding-based heuristics for nonconvex MINLPs 3

where f and all gi ’s are possibly nonconvex functions, N = {1, . . . , n} is the set of
variables, M = {1, . . . , m} the set of constraints, and x = (xi)i∈N is the vector of
variables with finite lower/upper bounds x L = (x L

i)i∈N , xU = (xU
i)i∈N . The vari-

ables with indices in NI ⊂ N are constrained to take on integer values in the solution.
Difficulties arise from the integrality of the variables in NI , as well as nonconvex non-
linear objective and constraints (if present). Exact solution methods typically require
that the functions f and g j ’s be factorable, that is, they can be computed in a finite
number of simple steps, starting with model variables and real constants, using unary
and binary operators. When the function f is linear and the g j ’s are affine, P is an
MILP, for which efficient branch-and-bound methods have been developed [24,31].
State-of-the-art MILP solvers (e.g. Cplex, Gurobi, or Xpress) are capable to solve, in
reasonable time, problems with thousands of variables. Branch-and-bound methods
for MINLPs attempt to closely mimick their MILP counterparts, but many difficulties
have to be overcome. In particular, obtaining lower bounds is not straightforward.
The continuous relaxation of each subproblem may be a nonconvex NLP, which is
NP-hard. One possibility is to compute a convex relaxation (simply convexification
from now on) of the feasible region of the problem, so that lower bounds can be easily
computed.

In the following, we assume that a linear convexification of the original problem
is available; that is, the objective function f and all constraints g j are replaced by
suitable linear terms which underestimate the original functions over all the feasi-
ble region. The computation of this linear convexification is a key step for LP-based
branch-and-bound solvers for nonconvex MINLPs, and has been investigated exten-
sively in the past [21,28]. The accuracy of the convexification greatly depends on
the variable bounds. If the interval over which a variable is defined is large, the
convexification of functions which contain that variable may be a very loose esti-
mate of the original functions, leading to a poor lower bound. Furthermore, bounds
can be tightened by branching or by applying various techniques, such as Feasi-
bility Based Bound Tightening [26,27] and Optimality Based Bound Tightening
[3,26]. A good incumbent solution not only provides a better upper bound to be
used as a cutoff value within the branch-and-bound, but also allows for the propa-
gation of tighter bounds through bound tightening techniques based on expression
trees. Reduced cost-based bound tightening also benefits from a better upper bound.
Therefore, finding good feasible solutions is doubly important for BB algorithms for
MINLPs.

Much work has been done on primal heuristics for MILPs and convex MINLPs: see
e.g. local branching [13], RINS [11], Feasibility Pump [5,12]. Bonami and Gonçalves
[6] describe how to modify several heuristics for linear integer programs in order to
deal with the nonlinear convex case. On the other hand, not much work has been
carried out on heuristics for nonconvex MINLPs. A VNS-based heuristic is given in
[19]. In a technical report [23], we described a way to perform local branching on
nonconvex MINLPs in a computationally efficient way; in this paper, we extend those
ideas to a more general framework. An earlier version of this work was published
in [22]. Very recently, a Feasibility Pump for nonconvex MINLPs was also proposed
[8, Chapter 2; 9].

123

4 G. Nannicini, P. Belotti

3 Main algorithmic ideas

The heuristics presented in the paper follow a common scheme, whose main compo-
nent is the rounding of a feasible solution to the continuous relaxation of P , subject to
linear constraints. These linear constraints always include the convexification of the
original feasible region, but are not limited to it. We introduce some notation.

Let Q be the continuous relaxation of P , that is, P without integrality requirements
on the variables. In the following, we denote a solution x ∈ Q a constraint feasible
or NLP feasible point. An MINLP feasible point is a feasible solution to the original
problem P . We denote by F the convexification of the feasible region of P amended
with integrality constraints on the variables xi with i ∈ NI . Since we assume that the
convexification involves linear constraints only, F is the intersection of a polyhedron
with R

|N\NI | × Z
|NI |. A feasible solution to F is denoted an integral feasible point.

With a slight abuse of notation, for a problem P and an inequality S, we denote by
P ∩ S the problem which is obtained by intersecting the feasible region of P with the
points that satisfy S; in other words, we append S to the list of constraints. Given a
point y ∈ R

n , we denote by Q(y) the problem:

min f (x)

∀ j ∈ M g j (x) ≤ 0
∀i ∈ N\NI x L

i ≤ xi ≤ xU
i∀i ∈ NI xi = yi .

⎫
⎪⎪⎬

⎪⎪⎭

Q(y) (2)

Q(y) is the NLP that we obtain from P by fixing the integer variables of y; therefore,
if y has integer components y j ∈ Z ∀ j ∈ NI and Q(y) has a feasible solution z, then
z is feasible for the original problem P .

The heuristics described in this paper require an additional ingredient: a no-good
cut NG(x̂) for a given point x̂ . No-good cuts were originally introduced in [1], and have
been used by the Constraint Programming community and in several other contexts (see
e.g. [9,10,18]). In general, a no-good cut for x̂ takes the form NG(x̂) = ‖x − x̂‖ ≥ ε,
where the norm is typically the 1-norm, but is not restricted to be so. In this paper,
for the most part we will employ canonical no-good cuts with 1-norm. However, to
simplify notation, in the remainder we label NG(x̂) any linear inequality violated by x̂ .
In some cases (see Sect. 4), we use inequalities that do not take the form ‖x − x̂‖ ≥ ε.

We now describe the main steps carried out by the heuristics proposed in this paper.
Our idea is to start from a feasible solution x ′ to Q, and look for an integral solution
x I which is close to x ′ and is in F . This can be achieved by solving the following
problem:

min
x∈F
‖x − x ′‖1 (3)

which is equivalent to rounding x ′ subject to the linear constraints that constitute a
relaxation of the feasible region of P . Note that (3) can be formulated as an MILP;
it suffices to introduce an n-vector of extra variables and 2n constraints, to obtain the
following problem, which can be easily shown to be equivalent to (3):

123

Rounding-based heuristics for nonconvex MINLPs 5

min
∑

i∈N wi

∀i ∈ N xi − x ′i ≤ wi

∀i ∈ N x ′i − xi ≤ wi

x ∈ F
w ∈ R

n .

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(4)

Therefore, the point x I = arg minx∈F ‖x − x ′‖1 can be obtained by solving (4) with
an MILP solver; we call this a rounding iteration. x I is certainly integral feasible,
but it is not necessarily constraint feasible with respect to the original problem P . To
regain MINLP feasibility, we solve Q(x I) with an NLP solver and hopefully obtain a
feasible solution x∗ to P . If a termination criterion is not satisfied (which may depend
on the feasibility of x∗ or on different conditions), we iterate the algorithm by setting
F ← F ∩ N G(x I), and resolving (4), i.e. we try a different rounding of x ′.

The basic scheme described above is formalized in Algorithm 1; we call this heu-
ristic Iterative Rounding (IR). In Sects. 4, 5 and 6 we define the elements which are
necessary for our algorithm: (i) the no-good cuts; (ii) how to compute the initial point
x ′ to be rounded; and (iii) termination conditions. Depending on these details, and
on additional constraints for the rounding phase, we obtain different heuristics. Note
that all subproblems which have to be solved to apply Algorithm 1 need not be solved
to optimality: in principle, only feasibility is required. However, typically Q(x I) is
solved to (at least) local optimality, because early termination could yield a solution
with a worse objective function value.

Algorithm 1 Basic algorithm
1: Initialization: stop← false,
2: Compute point x ′
3: Set R← F
4: while ¬stop do
5: Compute x I = arg minx∈R ‖x − x ′‖1 with an MILP solver
6: Solve Q(x I) with an NLP solver and obtain point x∗
7: if Termination condition is satisfied then
8: Set stop← true
9: else
10: Set R← R ∩ N G(x I)

11: if x∗ feasible then
12: return x∗
13: else
14: return failure

Some of the ideas that led to devising our IR scheme have also been employed
by the recently developed Feasibility Pump (FP) for nonconvex MINLPs [8, Chapter
2;9], even though the aim of the FP is to find any feasible solution, whereas in our case,
we want to find a good solution. We briefly highlight the main differences between
the two approaches:

1. FP generates two trajectories of points, one of which is NLP feasible, and the
other is integral on the integer variables, until the two trajectories converge to an
MINLP feasible solution. It alternates between them in such a way that, at each

123

6 G. Nannicini, P. Belotti

step, the point generated in one trajectory tries to get closer to the other trajectory.
IR generates only one NLP feasible point x ′ (in different ways, see Sects. 5 and
6), and then generates several integer feasible points close to x ′.

2. FP generates integer feasible points by solving an MILP involving the linear con-
straints included in the original problem P , if present, and Outer Approximation
cuts [5] that are computed from convex constraints by the heuristic during its
execution. IR generates integer feasible points by solving an MILP involving a
linearization of the original problem, and (in some cases) linear constraints that
define a neighborhood for the search: see Sect. 6.

3. FP uses a tabu list [15] to avoid cycling, and resorts to no-good cuts if the tabu
list fails. IR uses (different kinds of) no-good cuts at each iteration.

In general, IR focuses on the integer part of the problem: the nonlinearities (and the
continuous variables) are dealt with only subsequently—the MILP solver does most
of the work. Computational experiments (Sect. 8) show that IR is not as successful as
FP in finding feasible solutions; on the other hand, it finds solutions of much better
quality. Our explanation for this fact is that FP, unlike IR, generates a trajectory of
points that possibly deteriorate the objective function value with the aim of reaching
feasibility. IR keeps a point x ′ with good objective value fixed instead, i.e. it does not
trade objective function value for feasibility, at least in the first iterations. Details on
the different choices for the point x ′ will be discussed in Sects. 5 and 6.

Intuition tells us that the no-good cuts are likely to play an important role in practice,
hence the following question arises: how do we efficiently cut off an integral point x I

from a polyhedron F by means of linear constraints? This will be discussed in the
next section.

4 No-good cuts

The term no-good cut is used in the literature to indicate an inequality of the form
N G(x̂) = ‖x − x̂‖ ≥ ε (see [1]) that prevents x from getting too close to x̂ . This can
be useful whenever we perform some kind of search, to avoid looking in a region that
we know not to be promising (or already searched).

There are several issues that should be taken into account when designing the no-
good cuts used within our heuristics. The most important aspect is the number of
integer solutions that we want to cut off. On the one hand, there is an advantage if
a no-good cut NG(x I) cuts off the given point x I only, so that all remaining integer
solutions can potentially be found in the subsequent rounding iterations. On the other
hand, if we cannot regain MINLP feasibility by solving Q(x I), then it is appealing
to cut off a whole neighborhood of x I , in order to diversify the computed integer
solutions. Hence, we have to carefully balance these two objectives.

We employ two types of no-good cuts. They are described in detail below.

4.1 Type 1

Given an integer feasible point x I that we want to cut off, let BL := {i ∈ NI |x I
i =

x L
i }, BU := {i ∈ NI |x I

i = xU
i } be the sets of integer variables at their lower and upper

123

Rounding-based heuristics for nonconvex MINLPs 7

bound, respectively. We assume that integer variables have integer bounds. The first
type of no-good cut can only be used if |BL |+ |BU | ≥ 1; under this condition, we can
employ the linear inequality:

∑

i∈BU

(xU
i − xi)+

∑

i∈BL

(xi − x L
i) ≥ δ. (5)

The effect of (5) is to cut off all points in a 1-norm neighborhood of x I of size δ − 1
(restricted to the space of the BL∪BU variables); therefore, this is a proper no-good cut.
This type of constraint is very flexible, and it allows us to choose exactly the size of the
neighborhood of x I that we want to exclude at each rounding iteration. However, there
are some drawbacks to this approach. If BL∪BU = NI , then we are cutting off feasible
integer points of F based on the projection onto the space of the BL ∪ BU variables.
This implies that we will cut off any integer solution y such that yi = x I

i ∀i ∈ BL∪BU ,
regardless of the value of yi for i ∈ NI \(BL ∪ BU). Hence, if |BL | + |BU | is small
compared to |NI |, we may exclude more solutions than we want to. This suggests that
no-good cuts of Type 1 should be employed when |BL | + |BU | is of the same order
of |NI |. After some computational experimentation on a small set of instances (taken
from MINLPLib [7]), we decided to use Type 1 no-good cuts only when:

|BL | + |BU | ≥ min{50, max{|NI |/10, 5}}. (6)

Note that, if P has binary variables, then BL ∪ BU = ∅. Thus, if a “sufficient”
number of the integer variables are restricted to be binary, we can always employ
no-good cuts of Type 1. If all integer variables are binary, (5) is a reverse local branch-
ing constraint [13], which requires δ variables to flip their value with respect to x I . The
inequality (5) can be dense if |BL | + |BU | is large; however, it is a linear inequality
with unitary coefficients and integer right hand side, and only a limited number of
these cuts can be added to (4) at a given time (one per iteration of the main loop of the
heuristic), thus it is not computationally burdensome.

How do we choose δ? Our intuition is that it should be problem-dependent. Indeed,
consider a mixed binary problem (i.e. a problem where all integer constrained vari-
ables are binary): in this case, binary variables typically encode key decisions of the
model, therefore even if only one binary variable is required to change its value with
respect to x I , we expect that this should be sufficient to diversify the solution obtained
at the following rounding iteration. Now consider a problem with general integer vari-
ables with very loose bounds: in this case, if we set δ = 1, then we can expect that
there exists some integer feasible solution y to F that also satisfies (5) and is very
“close” to x I , i.e. they encode almost the same solution from a modeling standpoint.
So we risk that, in the following rounding iteration, we obtain another point that is
very similar to x I , and most likely will not lead to an MINLP feasible point satisfying
the termination condition of the heuristic. Our approach is to choose δ based on the
bounds of the integer variables:

δ =
⌊∑

i∈BL∪BU
(xU

i − x L
i)

|BL | + |BU |

⌉

, (7)

123

8 G. Nannicini, P. Belotti

i.e. δ is equal to the average distance between the bounds of the variables involved
in (5), rounded to the nearest integer. For the mixed binary case, this translates to
δ = 1; when general integer variables are involved in the formulation, we believe that
choosing δ this way should guarantee sufficient diversification of the integer points
generated during the rounding phase. Note that efficient bound tightening techniques
are very important for this approach whenever general integer variables are present:
not only do they increase the chance that BL ∪ BU = ∅, but they also allow a more
meaningful estimation of δ. Finally, δ is always finite as we assume that all integer
variables are bounded.

If the condition (6) is not satisfied, we employ a different scheme to generate no-
good cuts; this will be discussed in the next section.

4.2 Type 2

No-good cuts of Type 1 (5) cannot be employed in a straightforward manner when
none of the integer components of the point we wish to cut, x I , is at one of its bounds.
Note that this implies that P does not have any binary variable. It is possible to write
a linear inequality similar to (5) for the case where no variables are at one of their
bounds, following [13]. However, this would require the addition of one binary vari-
able and two constraints for every integer variable involved in the inequality, because
this is a more general case where the no-good cut is nonconvex. In other words, since
we do not know in which direction each original variable is going to move, we need to
introduce some kind of disjunctive constraint, hence the extra binary variables. This
is not an efficient way of dealing with this issue: the MILP (4) would rapidly become
very large, increasing running time.

We opted for a simpler approach. Whenever we cannot or decide not to employ
Type 1 no-good cuts because (6) is not satisfied, we randomly choose one variable
i ∈ NI , and “branch” on xi , i.e. impose the constraint xi ≤ x I

i − 1 with proba-
bility μ = (x I

i − x L
i)/(xU

i − x L
i), or the constraint xi ≥ x I

i + 1 with probability
1 − μ = (xU

i − x I
i)/(xU

i − x L
i). Clearly, this cuts off x I , but it can potentially cut a

large number of feasible solutions to F , and the MILP (4) could rapidly become infea-
sible after the addition of no-good cuts of Type 2—even though unexplored integer
feasible solutions exist.

To deal with this issue, we keep a list L of the variables that were “branched” on at
previous iterations. L = ∅when the heuristic starts. Throughout the procedure, the set
of candidate branching variables is NI \L if NI \L = ∅, or NI otherwise. If xi is the
randomly selected candidate, we update L ← L∪{i}. In other words, we never branch
twice on the same variable, unless |L| ≥ |NI |, i.e. there are no more integer variables
to branch on. Whenever we detect infeasibility of (4) and Type 2 no-good cuts were
employed, we remove all Type 2 no-good cuts from the MILP (4), but we do not erase
L; then, we branch on some variable in NI \L from the last integral feasible solution
obtained. If |L| ≥ |NI |, cycling could happen since the list of forbidden branchings
L is ignored; however, this is an extremely rare occurrence in practice, and in general
we eventually escape the cycle due to the random choice of the branching variable.
Therefore, we did not take steps to prevent this type of cycling.

123

Rounding-based heuristics for nonconvex MINLPs 9

Note that both types of no-good cuts have pros and cons. The first one is more
flexible, but can only be applied under certain conditions, whereas the second type
can always be used, but is not as appealing as the first type. Both are linear inequalities
with integer coefficients, and are therefore computationally efficient: the size of the
LP relaxation of (4) does not increase substantially if we introduce a small number
of no-good cuts, hence we can keep computing time under control. As remarked in
Sect. 3, only the no-good cuts of Type 1 satisfy the definition of no-good cut given in
[10], whereas those of Type 2 do not; we label both of them “no-good cuts” because
this allows a significant simplification of the notation.

5 Feasibility-based Iterative Rounding

Based on Algorithm 1, we tailor a heuristic aimed at discovering a first feasible solu-
tion. Recall that we need to specify how to obtain an initial constraint feasible point
x ′, and a stopping criterion. For this heuristic, we are satisfied with finding a fea-
sible solution to the original problem P; hence, we stop as soon as such a point is
found.

How do we choose x ′? Ideally, we would like to find a feasible solution to P that
yields a good objective function value. Hence, it is a natural choice to set x ′ as the solu-
tion to Q, i.e. a (locally) optimal solution of the continuous relaxation of the original
problem. Note that, since Q is in general nonconvex, computing a global optimum
would require a significant computational effort. Thus, we pick x ′ as the first local
optimum of Q provided by an NLP solver.

Our intuition is that, if we are able to find an MINLP feasible point by rounding
an x ′ with good objective function value for Q, then the feasible solution discovered
this way will likely yield a good objective value for P as well. However, we may not
be able to find a suitable rounding. If this happens, we try to generate a new x ′, which
satisfies the constraints of Q by a larger amount; we hope that this will yield better
chances of discovering, through (4), a rounding that leads to an MINLP feasible point.
In other words, we initially focus on the objective function value, and if we cannot
discover MINLP feasible points, we switch our focus on feasibility.

More specifically, we try to round a sequence of h NLP feasible points x ′,1, . . . , x ′,h ,
where each x ′,i , i = 1, . . . , h is obtained by solving with an interior point method (see
e.g. [30]) the barrier problem associated with Q with a different minimum value μ′,i
for the barrier parameter μ. For i = 1, . . . , h, we set μ′,i = ω(i − 1), where ω > 0
is a parameter; that is, we do not allow the log-barrier term in the objective function
to go to zero, except during the computation of x ′,1 (which is a local optimum of Q).
This way, each point in the sequence x ′,1, . . . , x ′,h should be more in the interior of
the feasible region with respect to its predecessors, at the expense of a worse objective
function value.

We call this heuristic Feasibility-based Iterative Rounding (F-IR); we give a descrip-
tion in Algorithm 2. In practice, it is also reasonable to put a maximum time limit on
the main loop, to avoid spending too much time running the heuristic if the auxiliary
NLPs or MILPs that are solved turn out to be time-consuming.

123

10 G. Nannicini, P. Belotti

Algorithm 2 Feasibility-based Iterative Rounding
1: Input: parameters ω, h, MaxIter
2: Output: feasible solution x∗
3: Initialization: stop← false
4: for j = 0, . . . , h − 1 do
5: Set NumIter← 0
6: Solve the log-barrier problem of Q with μ′ = ω j to obtain x ′
7: Set R← F
8: while ¬stop do
9: Compute x I = arg minx∈R ‖x − x ′‖1 with an MILP solver
10: Solve Q(x I) with an NLP solver and obtain point x∗
11: if (x∗ MINLP − feasible) ∨ (NumIter ≥ MaxIter) then
12: Set stop← true
13: else
14: Set R← R ∩ N G(x∗)
15: Set NumIter← NumIter+ 1
16: if x∗ feasible then
17: return x∗
18: else
19: return failure

6 Improvement-based Iterative Rounding

Most BB solvers for MILPs employ improvement heuristics, i.e. heuristics that start
from a feasible solution (the incumbent) and seek another feasible solution with a bet-
ter objective function value. Typically, this is carried out by exploring a neighborhood
of the incumbent. This neighborhood can be defined and explored in different ways,
hence the number of existing improvement heuristics. Local branching [13] and RINS
[11] are two among the most successful, within the domain of MILPs.

We have devised an improvement heuristic for nonconvex MINLPs using the
scheme described in Sect. 3. In particular, given the incumbent x̄ , i.e. the solution
that we aim to improve, we want to define a neighborhood N (x̄) of x̄ , and search for a
better solution within this neighborhood with the machinery that we have introduced
above. This means that the solution to the rounding problem (4) is restricted to be
within N (x̄); hence, N (x̄) must be defined with linear constraints, so that we can still
employ an MILP solver for the solution of (4). Note that the neighborhood should
be small, so that it can be explored effectively, but also large enough that it has a
good probability of comprising an improved solution. Therefore, we have to carefully
balance this tradeoff.

We define the neighborhood to explore by means of a local branching constraint
[13], if possible. Define, as in Sect. 4.1, BL and BU as the sets of variables at
lower/upper bound at the incumbent x̄ . If either or both of them are nonempty, we
define a local branching neighborhood through the following constraint:

∑

i∈BU

(x̄i − xi)+
∑

i∈BL

(xi − x̄i) ≤ k. (8)

If all integer variables in the original problem are binary, we can always use this con-
straint, whose effect is to allow only k variables to flip their value with respect to x̄ .

123

Rounding-based heuristics for nonconvex MINLPs 11

This neighborhood has been shown to be very effective in practice on difficult MILP
instances [13], in the sense that improved solutions can typically be found within
this neighborhood even with a small right hand side, e.g. k = 10 or 15. It was also
shown to be effective within the MINLP world [19,23]. Again, we face the problem
of choosing k; for the binary case, we can follow the suggestion of [13] and use a
small k ∈ [10, 20]; for general integer variables, we will choose a k based on the
distance between the bounds involved in (8), as in Sect. 4.1. This will be discussed in
the computational experiments, Sect. 8.

If the number of variables at their bounds in x̄ is not large enough (which implies
that there are few or no binary variables), then we define the neighborhood as a box
on the integer variables only centered on x̄ , where the length of each side of the box is
equal to half of the distance between the original bounds of the corresponding variable.

More formally: if |BL | + |BU | ≥ min{50, max{|NI |/10, 5}}, we define the neigh-
borhood N (x̄) of x̄ as N (x̄) = F ∩ {x |∑i∈BU

(x̄i − xi) +∑
i∈BL

(xi − x̄i) ≤ k},
otherwise we define N (x̄) = F ∩ {x |x L

i + (x̄i − x L
i)/2 ≤ xi ≤ xU

i − (xU
i −

x̄i)/2 ∀i ∈ NI }.
We iterate the rounding phase until we find an MINLP feasible solution that has

a better objective function value with respect to the incumbent x̄ , up to a maximum
number of times. We have now defined all necessary ingredients; the improvement
heuristic proceeds as indicated in Algorithm 3. We call this heuristic Improvement-
based Iterative Rounding (I-IR). In practice, we will also set a maximum allowed time
for the heuristic to run.

Algorithm 3 Improvement-based Iterative Rounding
1: Input: incumbent x̄ , parameters k, MaxIter
2: Output: improved solution x∗
3: Initialization: stop← false,NumIter← 0
4: Solve Q ∩N (x̄) with a NLP solver to obtain x ′
5: Set R← F ∩N (x̄)

6: while ¬stop do
7: Compute x I = arg minx∈R ‖x − x ′‖1 with an MILP solver
8: Solve Q(x I) with an NLP solver and obtain point x∗
9: if ((x∗ MINLP-feasible ∧ f (x∗) < f (x̄)) ∨ (NumIter ≥ MaxIter)) then
10: Set stop← true
11: else
12: Set R← R ∩ N G(x∗)
13: Set NumIter← NumIter+ 1
14: if x∗ feasible then
15: return x∗
16: else
17: return failure

For a mixed binary problem, if |B| is the number of binary variables and k is the
rhs of (8), Algorithm 3 will stop after at most

∑k
i=1

(|B|
i

)
iterations, returning either

an improved incumbent or no solution. Trivially, this follows from the fact that there
are at most

∑k
i=1

(|B|
i

)
different realizations of the vector of binary variables in the

neighborhood of x̄ defined by the local branching constraints (each vector differs on
at most k components from x̄), and each one is generated at most once.

123

12 G. Nannicini, P. Belotti

7 Considerations on efficiency

Our heuristic scheme is mainly focused on dealing with the integer part of P: no
particular effort is made to make sure that the nonlinear part of the constraints is
satisfied (except choosing a point to round x ′ which is NLP feasible). However, the
nonlinear constraints, and in particular the nonconvex ones, can be a source of trouble,
as we will see in the remainder of this section. We now state some basic facts on the
theoretical behaviour of our heuristic, which depend on the convexity/nonconvexity
of the constraints.

7.1 Nonconvexity and no-good cuts

In defining the no-good cuts (Sect. 4) we disregard the continuous variables of P . Our
no-good cuts impose a minimum amount of diversification of the integer variables
with respect to the point x I that is cut off. This implies that all integral feasible points
whose components in NI are equal to those of x I , but the continuous variables are
different, are cut off as well. Since we do not employ a global optimizer to solve
the nonlinear nonconvex problem Q(x I), an NLP solver may fail to find a feasible
solution, but an MINLP feasible point x∗ such that x∗i = x I

i ∀i ∈ NI may exist (note
that if Q(x I) is convex, i.e. P is convex when the integer variables are fixed, this
situation cannot occur). If this is the case, we would generate a no-good cut N G(x I),
preventing the possibility of discovering x∗.

Solving Q(x I) to global optimality would require a significant computational effort
and could be as difficult as the original problem P; within a heuristic method such as
the one described in this paper, with no guarantee of finding an MINLP feasible point
even by globally solving Q(x I) due to the use of no-good cuts, the approach would
be time-consuming, therefore we are content with local solutions.

7.2 Termination for the convex mixed-binary case

If all integer variables of P are restricted to be binary, and Q is such that Q(y) is
a convex NLP for each integral vector y ∈ F , then our Iterative Rounding heuristic
eventually finds an MINLP feasible point if one exists, and indeed a global optimum,
provided that the maximum number of iterations is set to 2|B|, where B is the set of
binary variables. This follows from the fact that, in this case, the heuristic solves a
sequence of convex NLP problems Q(y) for all possible assignments y of the integer
variables which are feasible to F (which are at most 2|B|), and repetition is not allowed
because of the no-good cuts of Type 1 (5) with δ = 1. One of these NLPs must yield
the global optimum.

8 Computational experiments

In this section, we provide computational experiments to assess the practical useful-
ness of the proposed heuristics. Detailed results for all the experiments can be found
in the appendix. In the rest of this section, we only provide aggregated results.

123

Rounding-based heuristics for nonconvex MINLPs 13

Both F-IR and I-IR where implemented within Couenne [2], an open-source BB
solver for nonconvex MINLPs. Through the rest of this section, the convexification
of the feasible region of the original problem P is assumed to be the one provided
by Couenne at the root node of the BB tree, after the bound tightening phase which
is carried out with the default parameters. We used Cplex 12.1 [17] as the MILP
solver, and Ipopt [30] as the NLP solver. We set a time limit of 5 s and at most 50
nodes for the solution of all MILPs arising during the application of the heuristics;
however, if no integral solution is found by Cplex after one of these two limits is hit,
we continue the search (for another 5 s or 50 nodes). This is iterated until a solution is
found, or until we hit the global time limit for the application of the heuristic. No time
limit was given for the solution of NLPs, but the NLP solver is stopped after 3,000
iterations. All experiments were run on one core of a machine equipped with an Intel
Xeon clocked at 3.20 GHz and 2.5 GB of RAM, running Linux.

Cplex was parameterized in the following way:MIPEmphasis = HIDDENFEAS,
FPHeur = 2, LBHeur = 1, RINSHeur = 99. The node selection strategy was
set to depth first (NodeSel = 0). These parameters are meant to drive the MILP
solver towards finding an early feasible solution of good quality. Cut generation did
not seem to help in this task, but it required additional time; since we are not interested
in proving optimality of the computed solution, i.e. increasing the lower bound, cuts
were disabled (CutsFactor = 1.0).

Recent versions of Cplex provide a solution pool that can be used to obtain multiple
integer points x I during the solution of (4). Each point could be used for the NLP
searches Q(x I). We decided not to pursue this approach for the following reasons.
First, the solutions stored in the pool typically have larger 1-norm distance to the
rounded point x ′ than the best solution found. This is because the objective function
of (4) is the distance to x ′, and by default the solution pool stores the integer points
discovered during branch-and-bound only. Since the additional integer candidates are
farther from x ′ than the best solution found, we believe that they are less likely to
lead to a good MINLP feasible solution. Solving the NLP subproblems Q(x I) can
be time-consuming, therefore we want to maximize the chances that their solution
yields an MINLP feasible point. Another reason is that for problems with continuous
and general integer variables, it is difficult to specify the amount of diversification
that the solutions in the pool should satisfy. Finally, generating many integer solu-
tions with good objective value requires modifications of Cplex’s default parameters
that result in an overall slowdown of the branch-and-bound search. For these reasons,
we do not use solutions in the pool as integer candidates for the NLP subproblems
Q(x I). However, note that Cplex automatically takes advantage of these solutions in
subsequent branch-and-bound searches after problem modification (e.g. addition of
no-good cuts), for instance to derive solutions for the modified problem.

8.1 Test instances

Our test set initially consisted of the 251 instances included in MINLPLib [7]
(http://www.gamsworld.org/minlp/minlplib.htm) in March 2010. MINLPLib is a
freely available collection of convex and nonconvex MINLPs taken from different

123

http://www.gamsworld.org/minlp/minlplib.htm

14 G. Nannicini, P. Belotti

sources; we reformulated them in AMPL format to make them readable for Cou-
enne. We then eliminated instances because of the following reasons:

1. The instance cannot be read in AMPL due to unimplemented operators;
2. Couenne is not able to process the root node due to numerical problems or

because the processing time exceeds 30 min;
3. The problem is found to be infeasible;
4. An MINLP-feasible solution is found at the root node by Couenne when pro-

cessing the LP relaxation.

Note that in principle we could have kept instances that satisfy criterion 4), but these
are mostly very easy instances, which are therefore uninteresting in this context: there
is no need to apply sophisticated and possibly time-consuming heuristics if feasible
solutions can be found at almost no cost using the simple heuristics incorporated in
default Couenne.

99 instances satisfied one of the rejection criteria above; we are left with 152
instances, which are listed in Table 1. Details on these instances can be found at:
http://www.gamsworld.org/minlp/minlplib/minlpstat.htm.

8.2 Number of rounding iterations

To determine the maximum number of rounding iterations that yields the best practical
performance, we set up an experiment as follows. We applied F-IR and I-IR (if a fea-
sible solution is found by F-IR) on all instances in the test set at the root node, where
F-IR is parameterized with h = 5 (we try to round at most 5 different points x ′) and
ω = 0.2 (every time we solve the barrier problem to obtain a point x ′, we increase μ′
by 0.2), and the rhs of (8) for I-IR is chosen as k = min{15, max{1, |NI |/2}}+ δ− 1,
where δ is equal to the average distance between the bounds of the variables involved in
the inequality as in (7). Note that for a mixed binary case, this is equivalent to picking
k = 15 except for very small problems; if general integer variables are involved, then
the rhs is increased. These values for the parameters were dictated by our experience
while developing the heuristics, and were found to perform well in a practical setting.
With this setup, we test three values for the maximum number of rounding iterations
MaxIter: 5, 10 and 20. We set a maximum running time for the combined heuristics of
300 s when MaxIter = 5, 10, and of 1,000 s for MaxIter = 20 (to make sure that we
allow enough time to apply more rounding phases than for smaller values of this param-
eter). Note that, after the time limit is hit, the heuristic will not immediately exit if it is
solving an NLP; in that case, it will return as soon as the NLP solution process ends.

Detailed results are reported in Table 6. A brief summary of the results is given in
Table 2: we report, for each value of MaxIter, the number of instances for which a
feasible solution is found (first column), the number of instances for which a solution
at least as good as the remaining values of MaxIter is found (second column), the
number of instances for which a solution strictly better than the remaining values of
MaxIter is found (third column) and the average CPU time (fourth column). For the
computation of the second column, instances such that no feasible solution was found
(by any method) are excluded. The average time is a geometric average, computed

123

http://www.gamsworld.org/minlp/minlplib/minlpstat.htm

Rounding-based heuristics for nonconvex MINLPs 15

Table 1 Set of test instances

batchdes fo7_ar25_1 no7_ar5_1 qapw

cecil_13 fo7_ar3_1 nuclear14a ravem

contvar fo7_ar4_1 nuclear14b ravempb

csched1 fo7_ar5_1 nuclear24a saa_2

deb10 fo7 nuclear24b space25

deb6 fo8_ar2_1 nuclear25a space960

deb7 fo8_ar25_1 nuclear25b spectra2

deb8 fo8_ar3_1 nuclear49a st_e29

deb9 fo8_ar4_1 nuclear49b st_e31

detf1 fo8_ar5_1 nuclearva st_e32

eg_disc2_s fo8 nuclearvc st_e35

eg_disc_s fo9_ar2_1 nuclearvd st_e40

eg_int_s fo9_ar25_1 nuclearve st_miqp2

elf fo9_ar3_1 nuclearvf st_test2

eniplac fo9_ar4_1 nvs03 st_test3

enpro48 fo9_ar5_1 nvs10 st_test5

enpro48pb fo9 nvs12 st_test6

enpro56 gastrans nvs13 st_test8

enpro56pb gear3 nvs15 st_testgr3

ex1224 hmittelman nvs17 synheat

ex1225 lop97ic nvs18 tln12

ex1233 lop97icx nvs19 tln2

ex1243 m3 nvs23 tln4

ex1244 m6 nvs24 tln5

ex1263a m7_ar2_1 o7_2 tln6

ex1263 m7_ar25_1 o7_ar2_1 tln7

ex1264a m7_ar3_1 o7_ar25_1 tloss

ex1264 m7_ar4_1 o7_ar3_1 tls12

ex1265a m7_ar5_1 o7_ar4_1 tls2

ex1265 m7 o7_ar5_1 tls4

ex1266a netmod_dol1 o7 tls6

ex1266 netmod_dol2 o8_ar4_1 tls7

ex4 netmod_kar1 o9_ar4_1 tltr

fac2 netmod_kar2 oil2 uselinear

fac3 no7_ar2_1 ortez var_con10

feedtray no7_ar25_1 parallel var_con5

fo7_2 no7_ar3_1 prob10 water4

fo7_ar2_1 no7_ar4_1 qap waterz

adding 1 to each value before the calculation, and subtracting 1 from the result; this
way, we avoid troubles when computing the logarithm of numbers close to zero.

These results suggest that increasing the number of rounding iterations does not
have an effect on the number of feasible solutions found, but it has a major impact on

123

16 G. Nannicini, P. Belotti

Table 2 Summary of the results
of Table 6

of instances CPU time

Feasible Obj ≤ Obj <

MaxIter = 5 107 58 5 25.71

MaxIter = 10 107 70 13 38.51

MaxIter = 20 107 90 30 70.71

the quality of the solutions discovered. Indeed, setting MaxIter = 20 typically yields
solution of better quality, as is shown by the fact that on 90 instances out of 107, our
heuristics with MaxIter = 20 find a feasible point which is at least as good as the ones
found by using a smaller value of the parameter, and in 30 cases, it is strictly better.
On the other hand, this leads to longer CPU times: on average, one application of the
heuristics with MaxIter = 20 takes more than 1 min. However, the runs that take the
longest time are the unsuccessful ones, i.e., when no feasible solution is found: in only
three cases a successful run terminates after 500 s.

It should be noted that increasing MaxIter does not always yield better objective
values. This can be seen in Table 6 for example on the fo7, m7, o7 instances. In
most of these instances, all integer variables are general integers, and many Type 2
no-good cuts are used. The randomness involved in Type 2 no-good cuts partially
explains this behaviour. In other cases, we found that the quality of the solutions is
volatile because of the time limit imposed for solving the rounding MILP (4), which
may lead to slightly different integer solutions in different runs. In our experiments
this happens especially on instances involving products between variables. We do not
have an explanation of why this is the case.

Another observation is that on some instances, the heuristic terminates very quickly
without a solution (examples are batchdes, eg_int_s, ex1225, nvs15). There
are several reasons for this. The rounding iterations take a short time for one or more
of these factors: the instance is very small, there are no continuous variables (hence
we skip solution of the NLP subproblem), or Cplex finds that the rounding MILP (4) is
infeasible. In the latter case, the heuristic terminates immediately without a solution.
In the remaining cases, it can happen that the subsequent NLP subproblem is quickly
solved to optimality, but the solution returned by the NLP subsolver is deemed infea-
sible by Couenne. Hence, the heuristic’s main loop takes little time but no feasible
solution is found.

In the following, we keep MaxIter = 10, and set the maximum execution time of
the heuristics at the root to 300 s, in order to balance CPU time and quality of the solu-
tions; we remark that, from a practical point of view, smaller values of MaxIter yield
a much faster heuristic, whereas larger values yield better solutions at the expense of
computing times.

8.3 Feasibility-based Iterative Rounding

We now focus our attention on F-IR only, and analyse its results on our set of test
instances, for different values of the parameters. There are two parameters whose
influence should be assessed: the number h of different points x ′ that are successively

123

Rounding-based heuristics for nonconvex MINLPs 17

Table 3 Summary of the results reported in Table 7

ω = 0.05 ω = 0.10 ω = 0.20 ω = 0.25

Feasible solutions 101 104 109 108

Times best solution 5 6 6 7

Avg. CPU time 14.28 13.61 13.08 13.59

In the first row we report the number of instances for which a feasible solutions is found. In the second row
we report the number of instances for which an algorithm yields a solution that is strictly better than all
remaining algorithms. The third row shows the geometric average of the CPU time

rounded and the factor ω by which the value of the minimum barrier parameter μ′ is
increased whenever we generate a new x ′ (see Sect. 5).

The parameter h has a considerable effect on the running times: each point x ′ is
rounded up to MaxIter times through the solution of an MILP, which may be time
consuming. Therefore, small values of h yield a faster heuristic, whereas larger values
increase running times but allow more possibilities of finding a feasible point. Fur-
thermore, h and ω should always be considered together: for instance, consider the
case h = 5, ω = 0.2 and the case h = 10, ω = 0.1. It is easy to see that the sequence
of points x ′ generated in the first case is a subsequence of the points generated in the
second case (assuming that the solution of each log-barrier subproblem is unique). In
general, h determines the amount of effort that we are willing to invest into generating
a feasible solution, and ω determines how much we are willing to lose in terms of
objective function value to favour feasibility.

Based on our previous experience [22] and on these observations, we picked h = 5
and varied ω. We tested four different values: ω = 0.05, 0.1, 0.2, 0.25. Full results
are reported in Table 7; a summary can be found in Table 3.

By looking at Tables 3 and 7, we can see that varying ω indeed has an effect on the
solution returned by F-IR. In particular, increasing ω typically leads to more feasible
solutions found (with the exception of switching from ω = 0.20 to ω = 0.25), which
is expected: a larger ω means that we put our focus on feasibility, possibly disregard-
ing the objective function value. However, it seems that the objective function value
is usually good even for large values of ω. This is because, for a large number of
instances, a feasible solution is found by rounding the solution to Q, i.e. the contin-
uous relaxation of P , therefore the value of ω does not have any effect. There are
cases where ω is important, though, as can be seen in all instances where the different
algorithms compared in Table 7 find different solutions. There does not seem to be a
clear winner in terms of solution quality. Since ω = 0.20 yields the largest number of
feasible solutions with shortest average CPU time, we use ω = 0.20 in the rest of this
paper.

8.4 Improvement-based Iterative Rounding

In this section we study the effects of applying an improvement phase (I-IR) on the
solutions returned by F-IR. We design an experiment as follows: we apply F-IR with
h = 5 and ω = 0.2, with a time limit of 300 s. Then we apply I-IR (if a feasible

123

18 G. Nannicini, P. Belotti

Table 4 Summary of the results reported in Table 8

k′ = 10 k′ = 15 k′ = 20 F-IR only

Improved solutions 55 57 54 0

Geom. avg. distance from best (%) 0.87 0.76 0.97 4.17

Arithm. avg. distance from best (%) 3.52 3.25 3.95 22.12

Arithm. avg. # improving steps 1.21 1.24 1.07 0

Avg. CPU time 30.97 32.15 32.14 6.65

In the first row, we report the number of instances for which I-IR improves over F-IR alone. In the second
and third row, we report the average objective function value increase of the solutions with respect to the best
solution found for each instance. The fourth row contains the average number of times that I-IR returned
an improved solution (note that I-IR can improve the solution more than once per instance), while the last
row shows the average CPU time

solution is found), with different values of the rhs of the local branching constraint k;
we keep applying I-IR as long as the incumbent improves, or until the time limit of
300 s is hit. MaxIter is set to 10 as usual, which means that after 10 failed rounding
iterations, the heuristic returns with a failure (keeping the best solution found up to
that point, if any).

These experiments are meant to assess the usefulness of the improvement heuristic
I-IR. Note that the application of I-IR is in principle not restricted to using a solu-
tion found by F-IR: any feasible solution discovered during branch-and-bound can
be employed as a starting point. However, for comparison purposes it is much easier
for us to only consider solutions found by F-IR, as they are found at the root node in
a short time. In our implementation of I-IR within Couenne, the heuristic is called
after a new feasible solution is found, during branch-and-bound; in this section we
initialize I-IR with the solutions discovered by F-IR only.

Here we only consider the 107 instances for which a feasible solution is found by
F-IR with h = 5 and ω = 0.2, so that I-IR can start at the root node. Our choice
of k depends on the bounds of the integer variables involved in the constraint (8):
we pick k = min{k′, max{1, |NI |/2}} + δ − 1, where k′ is a given value and δ is
defined as in (7). For instances where only binary variables are involved, k = k′; oth-
erwise, if general integer variables with loose bounds are present, then k is increased
accordingly, to allow exploration of a larger neighbourhood around the incumbent.
We test three different values of k′: k′ = 10, k′ = 15, k′ = 20, as suggested
in [13].

Detailed results can be found in Table 8. Table 4 summarizes the results of the
experiment. We report, for each value of k′ (as well as for F-IR employed alone) the
average CPU time and the average distance from the best solution found. To compute
the latter, for each parameterization of the heuristic and for each instance, we calculate
the increase in objective function value with respect to the best solution reported on
that instance by any of the heuristic runs. This value is then averaged with a geo-
metric mean as usual, and with an arithmetic mean as well. The reason for reporting
the arithmetic mean is that in several cases the relative distance with respect to the
best solution is 0% for all algorithms, therefore the geometric mean tends to be very

123

Rounding-based heuristics for nonconvex MINLPs 19

Table 5 Summary of the results reported in Table 9

Iterative Rounding Feasibility Pump RECIPE

Feasible solutions 107 122 132

Times best solution 11 10 86

Avg. distance from best known (%) 4.56 2,989.77 0.35

Avg. CPU time 29.74 11.14 173.77

In the first row, we report the number of feasible solutions found. In the second row, we indicate the number
of instances for which one of the heuristics discovers a solution strictly better than the other ones. In the
third row, we report the average relative increase of objective function value with respect to the best known
solutions. In the last row, we report average CPU times

small and thus misrepresents the differences. Additionally, we report the (arithmetic)
average number of solution improvements through I-IR.

Table 4 shows that the improvement heuristic I-IR really pays off: the objective
function value improves considerably with respect to applying F-IR alone, although
this comes at the cost of some CPU time. In particular, for roughly half of the instances,
I-IR is able to improve on the solution returned by F-IR, and on average F-IR finds
a solution that is in relative terms 22% worse than that reported by one of the tested
parameterizations of I-IR.

All three values for the parameter k′ yield similar results, with a slight advantage
for k′ = 15, that is able to improve on a few more solutions than its competitors,
achieving better average behaviour. In particular, I-IR k′ = 15 is able to perform a
marginally larger number of improving steps (i.e. moving from one incumbent to a
better one).

Overall, I-IR seems very effective, even though CPU time increases on average by
a factor of 5: we are able to greatly improve the quality of the solutions returned, while
still requiring, on average, only ≈30 s at the root node.

8.5 Comparison with existing heuristics

We conclude our computational experiments with a comparison of the heuristics pro-
posed in this paper with two existing heuristics for nonconvex MINLPs: the Feasi-
bility Pump [9] and RECIPE [19]. The Feasibility Pump is discussed at the end of
Sect. 3. RECIPE is based on the Variable Neighbourhood Search metaheuristic [16]
and explores the solution space of a problem using a combination of different solvers.
We compare the results obtained by: the Feasibility Pump; RECIPE (with minlp_bb
and Ipopt as subsolvers, see [19]); an application of F-IR + I-IR at the root node
(with a time limit of 300 s, parameters h = 5, ω = 0.2, k′ = 15). It is important
to remark that a faster machine than ours is used for the computational experiments
in [9,19].

Detailed results are reported in Table 9. A summary is given in Table 5. We report
the number of instances for which each heuristic finds a feasible solution (over 152
instances), the number of instances for which a heuristic returns a solution that is
strictly better than the one found by the other heuristics, the average relative distance

123

20 G. Nannicini, P. Belotti

from the best solution known for the instance,1 and the average CPU time.2 We remark
that on the four netmod instances, saa_2 and oil2, we do not have results for the
FP, as they are not reported in [9]. However, these instances are not taken into account
when computing the averages. Note that on saa_2 and oil2, our heuristic fails
to find any feasible point, whereas close to optimal solutions are found on the four
netmod instances.

Table 5 highlights the main practical differences between Iterative Rounding, Feasi-
bility Pump and RECIPE. If we compare FP and IR, we see that FP finds more feasible
solutions, and is on average much faster (almost 3 times faster—even though part of
this difference is due to the more powerful machine used for the experiments). A com-
parison between RECIPE and IR shows that RECIPE finds more feasible solutions,
but is considerably slower (more than 5 times slower even with a faster machine). In
terms of solution quality, RECIPE comes out as the winner, with IR close behind.
Indeed, solutions found by RECIPE and IR are very close to the best known solutions
(the average increase in the objective function value is 0.35 and 4.56%, respectively),
whereas FP does not make any effort to find good solutions (the average objective
function increase is 2,989.77%). As a consequence, IR finds a better solution than FP
on 92 instances out of 152. FP reports a better objective value than IR in 45 cases,
the majority of which correspond to instances on which FP finds a feasible solution
whereas IR does not. Overall, Table 5 shows that RECIPE is clearly the better algorithm
in terms of solution quality, but it can take considerable CPU time. FP and IR are faster
alternatives: FP excels at finding feasible solution, but of poor quality; IR finds fewer
feasible solutions, but typically very close to the best known points.

9 Concluding remarks

We have presented two heuristics for finding feasible solutions to nonconvex MINLP
problems, based on a common Iterative Rounding scheme. Our computational experi-
ence shows that these heuristics find solutions for the majority of the MINLPs in our
test set. The main advantage of these heuristics over other heuristics for MINLP is the
fact that they obtain a good solution in a relatively short time, and hence are a fair trade
off between fast heuristics such as the Feasibility Pump, which does not aim at finding
tight upper bounds, and procedures such as RECIPE that obtain good solutions but
at a high computational cost. It is worth pointing out that the improvement heuristic
I-IR can be applied during the whole branch-and-bound search, and is not limited to
the root node as tested in this paper.

Appendix: detailed tables of results

We report here detailed results for the experiments discussed in Sect. 8. The tables
follow the same order in which they are discussed in the paper. In order to facilitate
comparison, in all tables below we omit rows that correspond to very similar results

1 Computed as a geometric average by taking into account instances for which all heuristics find a feasible
solution.
2 Computed on instances for which CPU time for the Feasibility Pump is known.

123

Rounding-based heuristics for nonconvex MINLPs 21

and retain those where different methods obtain significantly different results, in terms
of objective function value or CPU time. In each row, if one column has an objective
value that is strictly better than the other ones, it is highlighted in boldface.

Number of rounding iterations

In Table 6 we report detailed results for the experiments discussed in Sect. 8.2. For
each instance, we record the objective value of the solution returned by the heuristics
(or “–” if none is found) and the corresponding CPU time in seconds. For clarity, we
omit the results on those instances for which the objective function is the same for
all three variants. Note that for all of these eliminated rows the CPU time increases
with the number of iterations, and follows the same pattern shown in the table: for
MaxIter = 20, the CPU time is between two and five times that required for MaxIter = 5.

Feasibility-based Iterative Rounding

In Table 7 we report detailed results for the experiments discussed in Sect. 8.3. Again,
the results on those instances whose objective function is independent on ω are omitted.
This time, however, the CPU time for all eliminated rows is also independent of ω.

Improvement-based Iterative Rounding

Table 8 presents detailed results for the experiments in Sect. 8.4, where we apply
I-IR varying the value k′. Recall that k′ is involved in the computation of the local
branching constraint (8) because we pick k = min{k′, max{1, |NI |/2}}+δ−1, where
δ is defined as in (7). In the last two columns, we report results obtained by applying
F-IR only (i.e. the improvement heuristic I-IR is not employed) for comparison. The
column labeled “# impr” indicates the number of times that I-IR was able to improve
the solution on each instance; since the heuristic is applied as long as the solution
keeps improving, this number can be greater than one. We omit all rows of instances
where the resulting objective value is the same.

Comparison with existing heuristics

In Table 9 we report detailed results of the experiments discussed in Sect. 8.5. This
table shows results for all instances, as each heuristic exhibits a radically different
behavior on each instance. The results with the Feasibility Pump are taken from [9],
the results with RECIPE are taken from [19]. Note that in [9], CPU times are rounded
to the nearest second, and no more than two digits after the decimal point are reported
for objective function values; therefore, we do the same for all the results. In the last
column of Table 9, we report the best known solution for each instance, as obtained
from the MINLPLib website. For the instances where the Feasibility Pump could not
find a feasible solution, CPU time is not available and is indicated by “–”. The exper-
iments with RECIPE reported in [19] have a time limit of 2 h per instance. Whenever
this time limit is hit, we report “>2 h” as CPU time, and we assume a value of 7,200 s
when computing the average CPU time.

123

22 G. Nannicini, P. Belotti

Table 6 Results obtained at the root node by applying F-IR followed by I-IR as long as the solution keeps
improving, or up to the time limit

Instance MaxIter = 5 MaxIter = 10 MaxIter = 20

Obj Time Obj Time Obj Time

ex1243 125,705 1.47 125,705 3.11 98,519 15.00

ex1263a 26 16.24 22 45.28 24 39.14

ex1264 19 18.86 17 30.26 11.1 10.19

ex1266 24.5 51.11 23.5 81.38 22.5 167.20

fac3 3.6423×107 1.20 3.1982×107 4.49 3.1982×107 8.51

fo7_2 28.4047 102.31 23.4379 120.45 28.4047 215.71

fo7_ar2_1 28.0401 100.66 37.3996 101.65 27.8046 305.01

fo7_ar25_1 37.8891 51.02 37.8891 88.20 28.9773 385.30

fo7_ar3_1 34.3721 86.86 26.2713 162.68 24.2226 365.22

fo7_ar4_1 28.4095 41.73 25.8207 117.90 25.8207 185.88

fo7 28.091 52.23 22.763 249.44 22.8167 336.14

fo8_ar2_1 39.3033 86.70 38.7744 207.75 35.9943 398.97

fo8_ar25_1 39.3741 82.94 37.2123 132.50 30.6629 229.62

fo8_ar3_1 45.2436 54.33 39.5087 176.17 40.4129 359.81

fo8_ar4_1 42.1725 128.85 33.3922 105.06 28.4667 275.97

fo8_ar5_1 40.0166 54.21 37.2742 155.56 34.1368 321.90

fo9_ar2_1 47.485 237.99 46.984 269.30 43.375 946.19

fo9_ar25_1 50.841 150.54 41.5975 299.90 37.4879 322.70

fo9_ar3_1 42.75 99.06 42.7649 181.63 48.3489 392.62

fo9_ar4_1 52.5276 121.46 38.7566 120.81 41.3571 411.51

fo9_ar5_1 59.3221 75.90 37.2903 172.79 59.3221 175.29

fo9 42.4015 45.20 40.75 108.78 42.4015 156.63

lop97icx 4327.66 64.61 4323.73 66.03 4342.86 142.10

m7_ar2_1 210.403 63.72 190.235 205.05 195.035 325.34

m7_ar25_1 143.585 71.45 163.185 192.47 143.585 169.24

m7_ar3_1 228.403 59.41 228.403 76.02 164.89 194.40

m7_ar5_1 182.035 84.56 136.871 115.31 174.598 259.12

netmod_dol1 −0.454748 85.28 −0.454748 110.84 −0.47079 465.96

no7_ar2_1 122.364 56.58 131.871 113.81 122.364 176.68

no7_ar25_1 132.664 76.00 133.021 96.06 124.238 309.47

no7_ar3_1 139.184 66.02 115.116 145.69 139.184 155.75

no7_ar4_1 151.855 67.45 134.18 139.67 108.513 463.26

no7_ar5_1 119.726 98.05 104.558 96.14 103.063 330.50

nuclear14b −1.09391 115.32 −1.11081 161.68 −1.11676 584.44

nuclear24b −1.10724 96.98 −1.11563 295.50 −1.11697 408.52

nuclear25b −1.09687 107.59 −1.08116 301.90 −1.10294 842.22

nuclearva – 137.77 −1.01174 128.74 −1.01174 242.82

nuclearve −1.02878 74.31 −1.02883 130.44 −1.02883 244.22

123

Rounding-based heuristics for nonconvex MINLPs 23

Table 6 continued

Instance MaxIter = 5 MaxIter = 10 MaxIter = 20

Obj Time Obj Time Obj Time

o7_2 140.826 88.45 139.345 160.09 139.345 215.88

o7_ar2_1 169.798 90.98 161.528 135.93 143.132 479.97

o7_ar25_1 160.693 70.60 159.493 72.14 142.229 253.59

o7_ar3_1 163.234 138.90 161.471 145.39 158.822 298.08

o7_ar4_1 150.918 71.34 144.108 135.93 150.918 151.73

o7_ar5_1 143.306 65.72 152.821 85.88 143.336 129.79

o7 157.671 63.28 157.671 93.74 148.1 326.86

o8_ar4_1 304.773 117.88 341.553 109.08 301.287 206.16

o9_ar4_1 320.375 102.31 289.404 102.30 291.821 270.65

tln12 305.8 147.57 378.8 119.29 367.8 222.11

tln5 17.7 44.41 18.5 91.69 16.5 105.60

tln6 26.1 72.25 – 136.75 – 360.25

tls2 12.3 0.72 10.3 2.55 8.3 6.55

tls4 18.6 12.02 17.6 27.04 17.6 44.39

tls6 41.1 62.40 41.1 137.12 40.1 206.15

tls7 47.8 82.05 55.8 275.18 48.8 260.23

tltr 129.412 30.17 68.2792 75.89 61.1333 126.60

var_con10 452.69 15.44 444.214 56.97 444.214 109.76

var_con5 285.874 9.28 285.874 29.39 278.145 158.59

Table 7 Results obtained at the root node by applying F-IR with h = 5 and different values of ω

Instance ω = 0.05 ω = 0.10 ω = 0.20 ω = 0.25

Obj Time Obj Time Obj Time Obj Time

ex1263a 24 26.11 24 24.74 26 26.45 27 26.20

ex1264 − 43.63 − 43.46 17 26.38 18 23.37

ex1265a − 94.50 18.5 94.98 22.5 49.10 20.5 26.74

ex1266a 22.5 150.49 20.5 54.61 22.5 35.24 22.5 40.79

ex1266 − 187.83 22.5 160.05 23.5 71.82 23.5 74.13

fo8_ar2_1 41.2522 111.39 42.1832 16.75 47.0345 20.98 40.6316 71.28

fo8_ar25_1 40.8052 19.50 38.7791 23.62 38.9245 26.25 43.9553 20.63

fo8_ar4_1 52.8443 66.36 54.1692 6.51 54.1692 6.49 52.8443 66.30

fo9_ar2_1 55 79.72 38.6 20.68 47.9808 15.47 51.875 158.68

fo9_ar25_1 52.75 20.82 52.971 21.21 52.971 46.18 48.6825 15.39

fo9_ar3_1 70.0139 15.64 54.5696 15.51 64.1514 10.03 45.4966 20.11

m7_ar2_1 281.177 5.38 281.177 5.37 281.177 5.41 281.177 5.41

m7_ar25_1 187.185 31.00 224.833 30.68 187.185 30.85 224.833 30.72

m7_ar3_1 254.499 11.19 254.499 11.12 254.499 11.20 254.499 11.18

m7_ar4_1 148.62 7.71 148.62 7.70 148.62 7.72 148.62 7.71

123

24 G. Nannicini, P. Belotti

Table 7 continued

Instance ω = 0.05 ω = 0.10 ω = 0.20 ω = 0.25

Obj Time Obj Time Obj Time Obj Time

m7_ar5_1 257.513 42.47 190.33 20.61 190.33 20.76 257.513 42.93

m7 200.93 7.35 200.93 7.39 200.93 7.41 200.93 7.40

no7_ar3_1 139.184 15.08 127.53 14.64 127.53 14.75 139.184 15.27

nuclear14a −1.12967 12.01 −1.11997 12.92 −1.11997 12.94 −1.11997 11.97

nuclear14b −1.09088 77.30 −1.06989 37.15 −1.11081 68.74 −1.10362 53.29

nuclear24a −1.12967 11.93 −1.11997 12.80 −1.11997 12.92 −1.12967 12.04

nuclear24b −1.04799 54.45 −1.06989 36.20 −1.09321 77.28 −1.10362 51.99

nuclear25a − 299.30 − 302.67 − 299.23 − 300.39

nuclear25b −1.05817 53.58 −1.06736 53.74 −1.06736 38.89 −1.06736 39.30

nuclearva − 224.83 − 226.01 −1.01174 128.61 − 296.19

nuclearvd −1.03371 5.45 −1.03336 4.40 −1.03336 4.43 −1.03371 5.37

nuclearve − 220.97 − 218.89 −1.02719 128.95 −1.02704 75.82

nuclearvf − 226.81 − 226.97 −1.0105 131.76 −1.0105 79.89

nvs17 −1,097 10.91 −1,086.2 43.26 −1,086.2 21.43 −1,086.2 21.15

nvs18 −771 0.42 −771 0.41 −771 0.45 −771 0.44

nvs19 −1,068.6 13.78 −1,095.4 27.77 −1,095.4 14.25 −1,096.8 42.49

nvs23 −1,119.6 19.20 −1,118.2 18.88 −1,109.4 19.42 −1,101.2 19.03

nvs24 −1,029.6 26.26 −1,021 25.67 −1,026.2 26.53 −1,023.4 25.98

o7_ar2_1 145.319 26.12 177.836 5.05 177.836 5.04 177.836 5.04

o7_ar3_1 166.636 10.26 188.998 51.23 191.027 15.11 163.013 68.21

o9_ar4_1 345.941 15.58 297.202 30.88 289.404 15.50 326.648 35.55

tln12 364.8 63.75 294.8 115.02 378.8 70.36 353.8 80.84

tln2 5.3 0.17 5.3 0.18 5.3 0.18 5.3 0.17

tln4 − 49.94 − 48.38 − 52.52 − 52.80

tln5 − 90.74 − 81.90 18.5 80.38 21.5 84.79

tloss 23.1 165.63 23.1 63.45 23.1 35.36 26.1 65.01

tls7 49.8 172.55 55.8 60.74 55.8 87.66 44.8 87.11

tltr − 105.98 68.075 83.89 74.8125 44.17 68.075 21.90

Table 8 Results obtained at the root node by applying F-IR with h = 5 and ω = 0.2, followed by I-IR
with different valued of k′

Instance k′ = 10 k′ = 15 k′ = 20 F-IR only

Obj Time # Obj Time # Obj Time # Obj Time
Impr Impr Impr

elf 0.19166 2.02 4 0.19166 1.54 3 0.19166 1.53 3 1.67499 0.31

ex1263a 23 37.99 1 22 45.28 1 22 44.65 1 26 26.45

ex1264 11.6 33.11 1 17 30.26 0 17 30.95 0 17 26.38

fac3 3.1982× 107 4.48 1 3.1982× 107 4.49 1 3.1982× 107 4.50 1 3.6423× 107 0.21

123

Rounding-based heuristics for nonconvex MINLPs 25

Table 8 continued

Instance k′ = 10 k′ = 15 k′ = 20 F-IR only

#
Obj Time Impr Obj Time Impr Obj Time Impr Obj Time

fo7_2 29.0094 105.89 2 23.4379 120.45 3 17.7493 87.27 1 36.5729 7.39

fo7_ar2_1 33.2223 113.17 1 37.3996 101.65 1 28.0401 116.88 1 39.3889 30.46

fo7_ar25_1 31.1553 135.02 3 37.8891 88.20 0 28.0401 108.33 2 37.8891 7.23

fo7_ar3_1 35.3501 66.93 0 26.2713 162.68 3 27.8046 103.94 2 35.3501 7.36

fo7_ar4_1 28.4095 76.74 0 25.8207 117.90 1 27.8046 94.40 1 28.4095 7.68

fo7 28.091 161.65 3 22.763 249.44 5 24.3794 187.25 6 34.7516 7.37

fo8_ar2_1 39.1862 131.03 2 38.7744 207.75 1 38.1266 137.07 1 47.0345 20.98

fo8_ar25_1 43.9553 105.58 0 37.2123 132.50 2 41.0169 148.48 1 38.9245 26.25

fo8_ar3_1 40.7348 164.14 1 39.5087 176.17 2 43.5048 212.85 1 45.2436 6.01

fo8_ar4_1 31.6739 186.01 2 33.3922 105.06 2 37.7757 168.06 3 54.1692 6.49

fo8_ar5_1 38.1066 90.68 1 37.2742 155.56 2 31.2631 117.66 1 41.4533 7.38

fo8 34.0253 96.36 1 32.425 159.43 3 32.4705 111.62 2 38.0277 7.54

fo9_ar2_1 52.1968 301.31 2 46.984 269.30 1 43.375 302.97 1 47.9808 15.47

fo9_ar25_1 43.8228 154.31 1 41.5975 299.90 3 39.1346 227.23 2 52.971 46.18

fo9_ar3_1 41.7981 179.24 1 42.7649 181.63 2 47.0615 147.00 2 64.1514 10.03

fo9_ar4_1 44.3698 261.78 4 38.7566 120.81 2 63.3674 104.12 1 66.732 30.14

fo9_ar5_1 36.5714 215.14 3 37.2903 172.79 4 40.9286 167.00 2 63.2228 23.40

fo9 42.4015 82.53 0 40.75 108.78 1 42.4015 82.22 0 42.4015 7.52

lop97icx 4,354.65 108.30 2 4,323.73 66.03 1 4,291.36 229.57 9 4,471.64 5.19

m3 37.8 2.65 1 37.8 2.68 1 37.8 2.64 1 46.3063 0.14

m6 82.2569 89.35 1 82.2569 79.35 1 82.2569 79.42 1 106.257 5.36

m7_ar2_1 196.028 86.58 2 190.235 205.05 3 195.035 88.66 1 281.177 5.41

m7_ar25_1 172.86 130.02 1 163.185 192.47 3 153.26 183.04 2 187.185 30.85

m7_ar3_1 152.579 172.28 3 228.403 76.02 1 180.504 183.86 4 254.499 11.20

m7_ar5_1 190.778 206.64 3 136.871 115.31 2 190.778 114.25 1 190.33 20.76

m7 106.757 113.76 2 106.757 143.43 4 130.757 124.89 3 200.93 7.41

netmod_dol1 −0.475417 161.79 13 −0.454748 110.84 8 −0.468264 178.16 10 −0.225944 5.20

netmod_dol2 −0.463025 192.19 7 −0.475425 91.29 3 −0.474371 64.00 1 −0.445448 6.00

netmod_kar1 −0.39908 25.39 3 −0.39908 37.58 3 −0.402038 55.99 4 −0.344592 5.89

netmod_kar2 −0.39908 25.38 3 −0.39908 37.46 3 −0.402038 56.15 4 −0.344592 5.91

no7_ar2_1 132.283 82.83 0 131.871 113.81 1 132.283 79.82 0 132.283 5.72

no7_ar25_1 118.639 110.15 1 133.021 96.06 1 129.208 182.51 4 166.026 15.05

no7_ar3_1 112.912 172.73 2 115.116 145.69 2 132.3 94.30 1 127.53 14.75

no7_ar4_1 118.372 206.32 2 134.18 139.67 3 142.203 121.05 2 151.855 32.86

no7_ar5_1 110.038 149.68 5 104.558 96.14 1 104.194 78.80 2 138.871 7.34

nuclear14a −1.12967 12.18 0 −1.12967 40.46 2 −1.12054 300.50 1 −1.11997 12.94

nuclear14b −1.11908 256.29 5 −1.11081 161.68 0 −1.10724 242.27 3 −1.11081 68.74

nuclear24a −1.12967 109.68 2 −1.12967 40.34 2 −1.12054 298.99 1 −1.11997 12.92

nuclear24b −1.10593 236.22 3 −1.11563 295.50 8 −1.10362 110.43 0 −1.09321 77.28

nuclear25b −1.10039 298.08 4 −1.08116 301.90 4 −1.07008 168.18 1 −1.06736 38.89

nuclearva −1.01183 130.22 0 −1.01174 128.74 0 −1.01174 134.63 0 −1.01174 128.61

123

26 G. Nannicini, P. Belotti

Table 8 continued

Instance k′ = 10 k′ = 15 k′ = 20 F-IR only

#
Obj Time Impr Obj Time Impr Obj Time Impr Obj Time

nuclearvd −1.03371 5.55 0 −1.03369 5.26 1 −1.03371 5.55 0 −1.03336 4.43

nuclearve −1.02804 137.28 2 −1.02883 130.44 2 −1.02814 136.34 1 −1.02719 128.95

nuclearvf −1.0132 137.68 2 −1.0132 133.34 2 −1.0132 129.90 1 −1.0105 131.76

o7_2 145.38 99.53 4 139.345 160.09 6 138.154 128.91 4 183.735 5.05

o7_ar2_1 157.76 124.51 1 161.528 135.93 1 169.847 92.24 1 177.836 5.04

o7_ar25_1 154.531 118.17 3 159.493 72.14 2 158.342 91.23 2 179.303 5.23

o7_ar3_1 154.53 102.70 1 161.471 145.39 3 155.774 130.88 1 191.027 15.11

o7_ar4_1 154.174 113.17 2 144.108 135.93 2 176.182 80.65 2 181.841 16.16

o7_ar5_1 134.563 71.46 1 152.821 85.88 1 143.135 77.42 1 196.798 10.41

o7 147.867 92.78 2 157.671 93.74 3 148.536 84.20 1 171.283 5.14

o8_ar4_1 313.08 146.60 1 341.553 109.08 0 309.257 118.03 1 341.553 49.83

o9_ar4_1 285.153 177.65 4 289.404 102.30 0 317.75 131.51 0 289.404 15.50

synheat 154,997 11.22 1 154,997 11.24 1 154,997 11.16 1 196,206 0.58

tln12 407.8 120.34 0 378.8 119.29 0 407.8 124.32 0 378.8 70.36

tls2 10.3 2.58 4 10.3 2.55 4 10.3 2.48 4 14.3 0.05

tls4 19.6 12.28 0 17.6 27.04 2 18.6 31.14 1 19.6 1.95

tls7 46.8 113.36 0 55.8 275.18 0 47.1 299.51 1 55.8 87.66

tltr 74.8125 57.54 0 68.2792 75.89 1 74.8125 60.56 0 74.8125 44.17

var_con10 444.214 60.03 1 444.214 56.97 1 444.214 59.33 1 452.69 1.56

Table 9 Comparison between the Iterative Rounding heuristic applied at the root node with a time limit
of 300 s, the Feasibility Pump for nonconvex MINLPs, and RECIPE

Iterative Rounding Feasibility Pump RECIPE Best

Instance Obj Time Obj Time Obj Time Known

batchdes − 1 228,396.00 0 167,427.67 2 167,428.00

cecil_13 −115,657.00 59 − − −114,379.07 >2 h −115,570.00

contvar − 252.40 19,442,300.00 608 809,149.54 >2 h 769,977.00

csched1 − 13 −21,049.20 0 −30,639.26 156 −30,639.30

deb10 209.43 8 − − − 674 209.43

deb6 − 505 237.10 4 − 1,217 201.74

deb7 − 413 369.83 13 − 4,544 116.58

deb8 − 405 1,451,450.00 2 − 4,482 116.58

deb9 − 533 426.57 18 − 4,920 116.58

detf1 − 300 15,976.00 128 − 0 12.16

eg_disc2_s − 303 100,004.00 7 5.64 554 5.64

eg_disc_s − 303 100,005.00 9 5.76 635 5.76

eg_int_s − 2 − − 6.45 196 6.45

123

Rounding-based heuristics for nonconvex MINLPs 27

Table 9 continued

Iterative Rounding Feasibility Pump RECIPE Best

Instance Obj Time Obj Time Obj Time Known

elf 0.19 1 2,399,200.00 0 0.19 165 0.19

eniplac − 23 −102,095.00 2 −132,117.03 >2 h −132,117.00

enpro48 − 296 1,642,170.00 609 187,277.16 40 187,277.00

enpro48pb − 297 1,642,180.00 610 187,277.16 560 187,277.00

enpro56 − 152 707,303.00 607 263,428.36 62 263,428.00

enpro56pb − 152 707,303.00 607 263,428.36 2,515 263,428.00

ex1224 −0.94 0 −0.30 0 −0.94 2 −0.94

ex1225 − 0 34.00 0 31.00 1 31.00

ex1233 200,571.00 3 253,382.00 1 155,010.67 0 155,011.00

ex1243 125,705.00 3 168,498.00 0 83,402.51 10 83,402.50

ex1244 96,380.60 10 95,415.20 0 82,042.91 102 82,042.90

ex1263a 22.00 45 31.00 1 19.60 7 19.60

ex1263 − 61 121.00 66 19.60 233 19.60

ex1264a 12.00 4 12.00 0 8.60 5 8.60

ex1264 17.00 30 18.30 29 8.60 35 8.60

ex1265a 22.50 54 16.50 2 11.50 10 10.30

ex1265 − 88 12.30 158 15.10 8 10.30

ex1266a 22.50 58 10.30 0 16.30 5 16.30

ex1266 23.50 81 34.60 628 16.30 19 16.30

ex4 − 14 2,556,590.00 0 −8.06 21 −8.06

fac2 331,837,000.00 4 1,951,970,000.00 1 331,837,498.18 7 331,838,000.00

fac3 31,982,300.00 4 104,966,000.00 0 31,982,309.85 9 31,982,300.00

feedtray − 1 −12.41 0 −13.41 46 −13.41

fo7_2 23.44 120 1,200,000.00 11 17.75 4,169 17.75

fo7_ar2_1 37.40 101 − − 24.84 >2 h 24.84

fo7_ar25_1 37.89 88 1,199,990.00 3,066 23.09 >2 h 23.09

fo7_ar3_1 26.27 162 1,200,000.00 8 22.52 >2 h 22.52

fo7_ar4_1 25.82 117 1,200,000.00 141 20.73 >2 h 20.73

fo7_ar5_1 17.75 74 1,200,000.00 7 17.75 >2 h 17.75

fo7 22.76 249 − − 20.73 >2 h 20.73

fo8_ar2_1 38.77 207 − − 30.34 >2 h 30.34

fo8_ar25_1 37.21 132 − − 33.31 >2 h 28.05

fo8_ar3_1 39.51 176 − − 30.57 >2 h 23.91

fo8_ar4_1 33.39 105 1,399,990.00 430 37.04 >2 h 22.38

fo8_ar5_1 37.27 155 1,399,990.00 13 23.91 >2 h 22.38

fo8 32.42 159 1,400,000.00 1,330 22.38 >2 h 22.38

fo9_ar2_1 46.98 269 − − 36.67 >2 h 32.62

fo9_ar25_1 41.60 299 − − 54.08 >2 h 32.19

fo9_ar3_1 42.76 181 1,599,990.00 417 37.01 >2 h 24.82

123

28 G. Nannicini, P. Belotti

Table 9 continued

Iterative Rounding Feasibility Pump RECIPE Best

Instance Obj Time Obj Time Obj Time Known

fo9_ar4_1 38.76 120 1,599,990.00 3,986 45.42 >2 h 23.46

fo9_ar5_1 37.29 172 1,599,990.00 15 − >2 h 23.46

fo9 40.75 108 1,600,000.00 196 − >2 h 23.46

gastrans 89.09 4 – − 89.09 19 89.09

gear3 0.00 0 0.73 0 0.00 1 0.00

hmittelman 13.00 0 21.00 0 13.00 4 13.00

lop97ic − 298 – − 4,232.69 >2 h 4,284.59

lop97icx 4,323.73 66 – − 4,099.06 5,381 4,099.06

m3 37.80 2 2,400,000.00 0 37.80 5 37.80

m6 82.26 79 6,480,000.00 0 82.26 1,414 82.26

m7_ar2_1 190.24 205 7,880,030.00 1 190.24 >2 h 190.24

m7_ar25_1 163.19 192 7,879,970.00 1 143.59 2,919 143.59

m7_ar3_1 228.40 76 7,880,030.00 0 143.59 >2 h 143.59

m7_ar4_1 148.62 71 7,880,040.00 0 106.76 >2 h 106.76

m7_ar5_1 136.87 115 7,880,040.00 0 106.46 >2 h 106.46

m7 106.76 143 7,880,000.00 0 106.76 2,251 106.76

netmod_dol1 −0.45 110 – − − >2 h −0.56

netmod_dol2 −0.48 91 – − −0.55 >2 h −0.56

netmod_kar1 −0.40 37 – − −0.42 >2 h −0.42

netmod_kar2 −0.40 37 – − −0.42 >2 h −0.42

no7_ar2_1 131.87 113 – − 107.82 >2 h 107.81

no7_ar25_1 133.02 96 3,999,990.00 2,986 107.82 >2 h 107.81

no7_ar3_1 115.12 145 3,999,980.00 14 107.82 >2 h 107.81

no7_ar4_1 134.18 139 3,999,990.00 138 98.52 >2 h 98.52

no7_ar5_1 104.56 96 3,999,990.00 7 90.62 >2 h 90.62

nuclear14a −1.13 40 −1.11 1,839 −1.13 2,732 −1.13

nuclear14b −1.11 161 −1.10 670 −1.11 >2 h −1.11

nuclear24a −1.13 40 −1.11 1,826 −1.13 2,769 −1.13

nuclear24b −1.12 295 −1.10 668 −1.11 >2 h −1.11

nuclear25a − 299 −1.09 902 − 0 −1.12

nuclear25b −1.08 301 −1.08 627 −1.10 >2 h −1.10

nuclear49a − 299 – − − >2 h −1.15

nuclear49b − 372 – − − 0 −1.11

nuclearva −1.01 128 −1.01 132 −1.01 1,323 −1.01

nuclearvc − 240 −0.99 119 −1.00 1,370 −1.00

nuclearvd −1.03 5 −1.03 424 −1.03 1,806 −1.03

nuclearve −1.03 130 −1.03 406 −1.03 2,013 −1.04

nuclearvf −1.01 133 −1.02 373 −1.02 1,911 −1.02

nvs03 17.00 0 16.00 0 16.00 1 16.00

123

Rounding-based heuristics for nonconvex MINLPs 29

Table 9 continued

Iterative Rounding Feasibility Pump RECIPE Best

Instance Obj Time Obj Time Obj Time Known

nvs10 −310.80 0 −102.40 0 −310.80 1 −310.80

nvs12 −481.20 0 −188.00 0 −481.20 1 −481.20

nvs13 −573.80 0 −166.40 0 −585.20 1 −585.20

nvs15 − 0 1.00 0 1.00 1 1.00

nvs17 −1,086.20 21 −279.00 0 −1,100.40 2 −1,100.40

nvs18 −771.00 0 −209.00 0 −778.40 1 −778.40

nvs19 −1,095.40 14 −282.40 0 −1,098.40 2 −1,098.40

nvs23 −1,109.40 19 −454.80 1 −1,125.20 4 −1,125.20

nvs24 −1,026.20 26 −536.20 1 −1,033.20 4 −1,033.20

o7_2 139.34 160 4,800,000.00 10 116.95 >2 h 116.95

o7_ar2_1 161.53 135 − − 140.41 >2 h 140.41

o7_ar25_1 159.49 72 4,799,980.00 2,987 141.62 >2 h 140.41

o7_ar3_1 161.47 145 4,799,980.00 7 138.86 >2 h 137.93

o7_ar4_1 144.11 135 4,799,990.00 136 131.65 >2 h 131.65

o7_ar5_1 152.82 85 4,799,990.00 8 116.95 >2 h 116.95

o7 157.67 93 − − 131.65 >2 h 131.65

o8_ar4_1 341.55 109 8,199,970.00 622 254.98 >2 h 243.07

o9_ar4_1 289.40 102 8,199,960.00 3,953 316.01 >2 h 236.14

oil2 − 9 − − − 0 −0.73

ortez −9,532.04 39 −0.39 0 −9,532.04 68 −9,532.04

parallel − 104 4× 1010 0 924.30 1 924.30

prob10 − 0 4.79 0 3.45 1 3.45

qap − 300 499,512.00 0 388,870.00 1,541 388,214.00

qapw − 300 460,118.00 610 388,988.00 4,410 388,214.00

ravem 269,590.00 28 764,412.00 171 269,590.27 2 269,590.00

ravempb 269,590.00 27 764,412.00 185 269,590.27 57 269,590.00

saa_2 − 301 − − − 0 12.78

space25 485.57 50 650.69 446 484.33 1,146 484.33

space960 − 300 − − − >2 h 7,610,310.00

spectra2 − 10 304.79 0 13.98 228 13.98

st_e29 −0.94 0 −0.30 0 −0.94 2 −0.94

st_e31 −2.00 0 −0.42 1 −2.00 24 −2.00

st_e32 − 0 −1.43 0 −1.43 0 −1.43

st_e35 − 6 132,703.00 0 − 0 64,868.10

st_e40 − 0 − − 30.41 4 30.41

st_miqp2 − 0 7.00 0 2.00 7 2.00

st_test2 −9.25 0 0.00 0 −9.25 1 −9.25

st_test3 −7.00 0 0.00 0 −7.00 1 −7.00

st_test5 −110.00 0 −110.00 0 −110.00 1 −110.00

123

30 G. Nannicini, P. Belotti

Table 9 continued

Iterative Rounding Feasibility Pump RECIPE Best

Instance Obj Time Obj Time Obj Time Known

st_test6 471.00 0 567.00 0 471.00 1 471.00

st_test8 −29,605.00 0 24,728.00 0 −29,605.00 2 −29,605.00

st_testgr3 −20.06 2 0.00 0 −20.59 2 −20.59

synheat 154,997.00 11 248,724.00 0 154,997.33 11 154,997.00

tln12 378.80 119 − − 106.80 >2 h 90.50

tln2 5.30 0 28.30 1 5.30 7 5.30

tln4 − 52 12.00 1 8.30 541 8.30

tln5 18.50 91 16.50 0 10.30 442 10.30

tln6 − 136 25.10 1 15.40 >2 h 15.30

tln7 − 212 107.80 1,072 15.60 >2 h 15.00

tloss 23.10 62 24.10 5 16.30 5 16.30

tls12 − 302 − − − >2 h −
tls2 10.30 2 5.30 1 5.30 7 5.30

tls4 17.60 27 10.00 22 8.80 >2 h 8.30

tls6 41.10 137 − − 16.40 >2 h 16.60

tls7 55.80 275 − − − >2 h 27.30

tltr 68.28 75 48.07 0 − 2 48.07

uselinear − 531 1,951.37 51 − 816 −1,050.34

var_con10 444.21 56 463.17 10 444.10 2,550 444.21

var_con5 285.87 29 315.17 7 278.04 2,293 278.14

water4 945.85 31 3,335,260.00 5 907.02 298 913.16

waterz − 127 3,355,460.00 3 910.88 >2 h 1,037.64

In the last column we report the best solution known for the instance as reported on the MINLPLib website

References

1. Balas, E., Jeroslow, R.: Canonical cuts on the unit hypercube. SIAM J. Appl. Math. 23(1), 61–69 (1972)
2. Belotti, P.: Couenne: a user’s manual. Tech. Rep., Lehigh University (2009). http://www.coin-or.org/

Couenne
3. Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds tightening techniques

for non-convex MINLP. Optim. Methods Softw. 24(4–5), 597–634 (2008)
4. Biegler, L., Grossmann, I., Westerberg, A.: Systematic Methods of Chemical Process Design. Prentice

Hall, Upper Saddle River (NJ) (1997)
5. Bonami, P., Cornuéjols, G., Lodi, A., Margot, F.: A feasibility pump for Mixed Integer Nonlinear

Programs. Math. Program. 119(2), 331–352 (2009)
6. Bonami, P., Gonçalves, J.: Primal heuristics for mixed-integer nonlinear programs. Tech. Rep.

RC24639, IBM (2008)
7. Bussieck, M.R., Drud, A.S., Meeraus, A.: MINLPLib—a collection of test models for Mixed-Integer

Nonlinear Programming. INFORMS J. Comput. 15(1) (2003). http://www.gamsworld.org/minlp/
minlplib.htm

8. D’Ambrosio, C.: Application oriented Mixed Integer Nonlinear Programming. Ph.D. thesis, DEIS,
Università di Bologna (2009)

123

http://www.coin-or.org/Couenne
http://www.coin-or.org/Couenne
http://www.gamsworld.org/minlp/minlplib.htm
http://www.gamsworld.org/minlp/minlplib.htm

Rounding-based heuristics for nonconvex MINLPs 31

9. D’Ambrosio, C., Frangioni, A., Liberti, L., Lodi, A.: Experiments with a Feasibility Pump approach for
nonconvex MINLPs. In: Festa, P. (ed.) Proceedings of the 9th Symposium on Experimental Algorithms
(SEA 2010), Lecture Notes in Computer Science, vol. 6049. Springer, Berlin (2010)

10. D’Ambrosio, C., Frangioni, A., Liberti, L., Lodi, A.: On interval-subgradient and no-good cuts. Oper.
Res. Lett. 38(5), 341–345 (2010)

11. Danna, E., Rothberg, E., Le Pape, C.: Exploring relaxation induced neighborhoods to improve MIP
solutions. Math. Program. A 102, 71–90 (2005)

12. Fischetti, M., Glover, F., Lodi, A.: The feasibility pump. Math. Program. A 104(1), 91–104 (2005)
13. Fischetti, M., Lodi, A.: Local branching. Math. Program. 98, 23–37 (2003)
14. Floudas, C.: Global optimization in design and control of chemical process systems. J. Process Control

10, 125–134 (2001)
15. Glover, F.W.: Tabu search—part I. ORSA J. Comput. 1(3), 190–206 (1989)
16. Hansen, P., Mladenović, N.: Variable neighbourhood search: principles and applications. Eur. J. Oper.

Res. 130, 449–467 (2001)
17. IBM ILOG: IBM ILOG CPLEX 12.1 User’s Manual. IBM ILOG, Gentilly, France (2010)
18. Kilinç Karzan, F., Nemhauser, G.L., Savelsbergh, M.W.P.: Information-based branching schemes for

binary linear mixed-integer programs. Math. Program. Comput. 1, 249–293 (2009)
19. Liberti, L., Mladenović, N., Nannicini, G.: A good recipe for solving MINLPs. Math. Program. Comput.

(2011). doi:10.1007/s12532-011-0031-y
20. Lindo Systems: LINDO Solver Suite: user manual. http://www.gams.com/solvers/lindoglobal.pdf
21. McCormick, G.: Computability of global solutions to factorable nonconvex programs: Part i — convex

underestimating problems. Math. Program. 10, 146–175 (1976)
22. Nannicini, G., Belotti, P.: Rounding-based heuristics for nonconvex MINLPs. In: Bonami, P.,

Liberti, L., Miller, A., Sartenaer, A. (eds.) Proceedings of the European Workshop on MINLP. CIRM,
Marseille, France (2010)

23. Nannicini, G., Belotti, P., Liberti, L.: A local branching heuristic for MINLPs. Tech. Rep. 0812.2188
(2008). http://arxiv.org/abs/0812.2188

24. Nemhauser, G., Wolsey, L.: Integer and Combinatorial Optimization. Wiley, New York (1988)
25. Sahinidis, N.: BARON: a general purpose global optimization software package. J. Glob. Optim.

8(2), 201–205 (1996)
26. Shectman, J., Sahinidis, N.: A finite algorithm for global minimization of separable concave programs.

J. Glob. Optim. 12, 1–36 (1998)
27. Smith, E.: On the optimal design of continuous processes. Ph.D. thesis, Imperial College of Science,

Technology and Medicine, University of London (1996)
28. Smith, E., Pantelides, C.: A symbolic reformulation/spatial branch-and-bound algorithm for the global

optimisation of nonconvex MINLPs. Comput. Chem. Eng. 23, 457–478 (1999)
29. Tawarmalani, M., Sahinidis, N.: Global optimization of mixed integer nonlinear programs: a theoretical

and computational study. Math. Program. 99, 563–591 (2004)
30. Wächter, A., Biegler, L.T.: On the implementation of a primal-dual interior point filter line search

algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)
31. Wolsey, L.: Integer Programming. Wiley, New York (1998)

123

http://dx.doi.org/10.1007/s12532-011-0031-y
http://www.gams.com/solvers/lindoglobal.pdf
http://arxiv.org/abs/0812.2188

	Rounding-based heuristics for nonconvex MINLPs
	Abstract
	1 Introduction
	2 Notation and Preliminaries
	3 Main algorithmic ideas
	4 No-good cuts
	4.1 Type 1
	4.2 Type 2

	5 Feasibility-based Iterative Rounding
	6 Improvement-based Iterative Rounding
	7 Considerations on efficiency
	7.1 Nonconvexity and no-good cuts
	7.2 Termination for the convex mixed-binary case

	8 Computational experiments
	8.1 Test instances
	8.2 Number of rounding iterations
	8.3 Feasibility-based Iterative Rounding
	8.4 Improvement-based Iterative Rounding
	8.5 Comparison with existing heuristics

	9 Concluding remarks
	Appendix: detailed tables of results
	Number of rounding iterations
	Feasibility-based Iterative Rounding
	Improvement-based Iterative Rounding
	Comparison with existing heuristics

	References

