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Abstract

Optimal decision making under uncertainty is critical for control and optimization of
complex systems. However, many techniques for solving problems such as stochastic
optimal control and data assimilation encounter the curse of dimensionality when
too many state variables are involved. In this thesis, we propose a framework for
computing with high-dimensional functions that mitigates this exponential growth in
complexity for problems with separable structure.

Our framework tightly integrates two emerging areas: tensor decompositions and
continuous computation. Tensor decompositions are able to effectively compress
and operate with low-rank multidimensional arrays. Continuous computation is a
paradigm for computing with functions instead of arrays, and it is best realized by
Chebfun, a MATLAB package for computing with functions of up to three dimen-
sions. Continuous computation provides a natural framework for building numerical
algorithms that effectively, naturally, and automatically adapt to problem structure.

The first part of this thesis describes a compressed continuous computation frame-
work centered around a continuous analogue to the (discrete) tensor-train decompo-
sition called the function-train decomposition. Computation with the function-train
requires continuous matrix factorizations and continuous numerical linear algebra.
Continuous analogues are presented for performing cross approximation; rounding;
multilinear algebra operations such as addition, multiplication, integration, and dif-
ferentiation; and continuous, rank-revealing, alternating least squares.

Advantages of the function-train over the tensor-train include the ability to adap-
tively approximate functions and the ability to compute with functions that are pa-
rameterized differently. For example, while elementwise multiplication between ten-
sors of different sizes is undefined, functions in FT format can be readily multiplied
together.

Next, we develop compressed versions of value iteration, policy iteration, and
multilevel algorithms for solving dynamic programming problems arising in stochastic
optimal control. These techniques enable computing global solutions to a broader
set of problems, for example those with non-affine control inputs, than previously
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possible. Examples are presented for motion planning with robotic systems that have
up to seven states. Finally, we use the FT to extend integration-based Gaussian
filtering to larger state spaces than previously considered. Examples are presented
for dynamical systems with up to twenty states.
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Chapter 1

Introduction

Numerical methods and algorithms that enable computational modeling are impor-

tant drivers of advancement in science and engineering. They help increase the scope

and capabilities of computational models that, in turn, have dramatic impacts on so-

ciety. For example, computational modeling has played a primary role in discovering

unseen planets in our solar system [5], has assisted in the creation of autonomous

systems that are able to identify new biological mechanisms [111], and has led to

novel airplane designs that are largely designed, tested, and verified using computa-

tional techniques [114]. Society also depends heavily on computational modeling for a

diverse set of needs such as weather prediction, financial market management, evalu-

ation of economic policies, medical data analysis, and more. All of these systems rely

on fast, effective, and accurate numerical algorithms that underpin computational

models.

The utility of computational modeling and simulation for design, analysis, and

control has resulted in an ever growing desire to increase the complexity of modeled

systems. As computational scientists continue to try to model real systems with

increasing levels of reality, they begin to use more detailed equations and larger

amounts of data. The resulting increase in model complexity causes trouble for many

existing numerical algorithms.

In this thesis, numerical techniques are developed that strive to enable compu-

tation for the increasingly complex models that are encountered in practice. The
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techniques are the result of an integration of two areas: tensor decompositions and

function approximation. Tensor decompositions have been shown to mitigate the

curse of dimensionality associated with storing large amounts of discrete data. Func-

tion approximation has become extremely effective for developing accurate simplifica-

tions of complex models to aid in their analysis. Integrating these two areas produces

a framework that automatically adapts to problem structure, provides an efficient rep-

resentation for computation, and mitigates the curse of dimensionality in a variety of

application areas. Applications of the resulting techniques are shown for stochastic

optimal control and data assimilation.

1.1 Motivation: decision making under uncertainty

This research is motivated to create computational algorithms that perform auto-

mated decision making under uncertainty. Arguably, decision making under uncer-

tainty is one of the biggest factors motivating the development of computational

science. Optimal decision making in the presence of real-world uncertainties can

potentially revolutionize countless scientific, engineering, and societal endeavors. Al-

gorithmic breakthroughs in this area have potential for being the enabling technology

for autonomous robotic systems that can effectively explore and monitor dangerous

environments on and off Earth. They can enable efficient resource allocation and ro-

bust performance of national infrastructure such as the energy grid and transportation

networks. Finally, optimal automated decision making under uncertainty will become

a critical tool for analyzing and regulating complex systems such as social networks;

applications can include resource allocation for preventing the spread of contagious

diseases and optimal sensor placements for safety monitoring of water networks.

Automated decision making under uncertainty, however, remains a challenging

task that is plagued by the curse of dimensionality: its computational expense grows

exponentially with the number of degrees of freedom. Indeed, all aspects of decision

making under uncertainty including data analysis [39], Bayesian inference and un-

certainty quantification [10, 34], and Markov decision processes (MDP) [102,105] are

16



afflicted.

Richard Bellman, whose namesake is the well known Bellman equation, defined

the term curse of dimensionality [8] in the context of optimization methods. He

provides the following example about the difficulty of optimization by enumeration

in tensor product spaces: if each dimension is discretized into 10 points, then a ten-

dimensional problem would have a search space of 1010 points, a twenty-dimensional

problem would have a search space of 1020, and a hundred-dimensional problem would

have a search space of 10100 dimensions - more than the number of estimated atoms

in the universe (1078 - 1082)!

The Bellman equation describes the solution of a dynamic programming (DP)

problem. Mitigating the curse of dimensionality associated with DP would greatly

enhance the capabilities of automated decision making under uncertainty since DP is a

general and versatile framework for formulating decision problems [12,13,15,102]. For

example, stochastic shortest path [14] problems, stochastic optimal control problems,

and more generally, Markov decision processes can be formulated as dynamic pro-

gramming problems. Parallel computing methods can sometimes reduce the compu-

tational time for finding its solution, but some results suggest that stochastic Markov

decision processes are inherently sequential and may not benefit too greatly from

parallelization [99]. Thus, fundamentally new algorithms are needed to enable so-

lutions for DP for a wider variety of systems. The algorithms that we propose in

Chapter 4 are indeed sequential,f but they exploit a particular type of problem struc-

ture that enables computational feasibility. Other areas related to MDPs also suffer

in high dimensions. For example, partially observable Markov decision processes

(POMDPs) [20,25,85,115], which can be formulated as an MDP with states that are

probability distributions, are notoriously difficult to solve.

Beyond optimization, Donoho points out that this problem also exists in function

approximation and numerical integration [39]. He notes that to approximate a func-

tion of d variables, when it is only known that the function is Lipschitz, requires on

the order of (1/E)d evaluations on a grid to obtain a uniform approximation error of

e. Similarly, he notes that integrating a function of d variables also requires order

17



(1/E)d for an integration scheme to have an error of c.

Despite these incredible demands, effective numerical optimization, function ap-

proximation, and numerical integration are vital to the pursuit of computational

algorithms for decision making under uncertainty. Many uncertainty quantification

methods such as uncertainty propagation and Bayesian inference can be argued to

be exercises in integration. Consider that extracting information from probability

distributions requires the evaluation of integrals. In order to be able to solve these

problems effectively, numerical methods that exploit more problem structure than

just Lipschitz continuity must be developed.

The Monte Carlo method is one example of a ubiquitous algorithm within un-

certainty quantification and optimization that is relied upon to mitigate the curse of

dimensionality. However, many Monte Carlo algorithms themselves run into the curse

of dimensionality. For example, the particle filtering algorithm for data assimilation

attempts to propagate a distribution represented by samples through a dynamical

system and through Bayes' rule. Particle filtering notoriously runs into problems due

to sample impoverishment [10, 34], and an exponentially growing number of samples

are needed as the dimension of the system increases [110].

Furthermore, the standard Monte Carlo estimator (without particle filtering) can

also run into the curse of dimensionality since the variance of the estimator is pro-

portional to the variance of the random variable whose mean is being estimated.

Consider the simple function fd(X1, . . . , Xd) = X, .. Xd where Xi are independent

and identically distributed random variables with mean 0 and variance 2. In this case

we have

var(fd) = E [(X1 ... Xd) 2 ] - (E [X1 ... Xd])2

=E [X2 --- X2] - (E [X1]) 2 ...- (E [Xd])2

E1 [X2] ... E [X2] _-1 XI2.. E[d

d d

= ] (var(Xi) + (E [Xi]) 2) -- (E [Xi]) 2 ,
i=1 i=1

18



which for our case means

var(fd) = 2

Therefore, the number of samples required to estimate the expectation of fd grows

exponentially with dimension to achieve similar levels of accuracy. Practitioners typ-

ically hope that the variance of their outputs does not grow exponentially with the

complexity of their models, so that the number of required samples (and therefore

the computational cost of analysis) does not grow exponentially.

We are motivated to seek other methods that can mitigate the curse of dimension-

ality to develop algorithms that converge faster than the AfNf rate associated with

Monte Carlo. While Monte Carlo requires that the variance of our models does not

grow too fast, the primary type of structure exploited in this research is that of output

separability. The separability of a function refers to the notion that a multivariate

function can be approximated by the sum of the products of univariate functions,

e.g.,
R

f (X1, . .. , Xd) = 1 # (XI) . .. O (Xd).
i=1

If the rank R is "small", then f is considered to be a low-rank function. Low-rank

functions can be integrated with complexity that is linear in dimension and polynomial

with the rank. For example, the function fd described above is rank 1, and it can

be integrated with a computational cost that scales linearly with dimension. We

hypothesize that separable structure is prevalent in many relevant application areas,

and we show that its exploitation is indeed feasible for certain stochastic optimal

control and data assimilation problems. The resulting methods can be viewed as

complementary tools to Monte Carlo methods for high dimensional problems.

1.2 Computing with functions

One of the main ways to combat the computationally intensive nature of algorithms

in high dimensions is through approximating the computationally expensive aspects

of the problem in a simpler way. For example, one expensive aspect of Markov chain
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Monte Carlo, a Monte Carlo variant that is useful for sampling from arbitrary dis-

tributions, is repeated evaluations of the likelihood function. These evaluations are

particularly expensive when they involve solutions to partial differential equations

(PDEs). A common strategy in these situations is to replace the likelihood with a

surrogate model or emulator [31,88]. Then, instead of evaluating a PDE, the surrogate

model is used within the evaluation of the likelihood. Surrogate models also play a role

in solving Markov decision processes. Approximate dynamic programming [15,102]

often use surrogate modeling techniques to transform a computationally infeasible

problem to a simpler one by using a finite dimensional representation for the ap-

proximation of a value function. In general, function approximation techniques for

generating surrogate models play an important role in a wide variety of numerical

algorithms.

This thesis is partially inspired by the pioneering view on the use of function ap-

proximation within computation developed by Trefethen, Battles, Platte, Townsend,

and others, that is realized through the Chebfun package for the MATLAB computer

language [4,101,117-119]. Their view is that end users of numerical software are

typically interested in computing with functions instead of arrays. Users often have

PDEs, optimization problems, or inference problems that are defined in continuous

spaces in terms of functions. Extracting information from these functions, represent-

ing them on the computer, and performing operations with them should be within

the domain of the software, not the user. The user should not have to specify that

they would like to discretize their functions using a particular grid or represent them

with a particular parameterization. Instead, the user should only need to specify the

accuracy with which they want to compute or a storage level they would like to stay

within.

The fundamental backbone that allows for such a beautiful possibility lies in in-

terpreting continuous objects on a computer not as being discretized but rather pa-

rameterized. We purposely make a subtle, but vitally important, distinction between

discretization and parameterization. For us, discretization implies that the computer

can only "see" a function on a computer through its evaluation at a set of points. Pa-
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Parameterized

struct { struct {
int n; int n;

double * fvals; double * fvals;

} Function; } Function;
double evalf(struct Function f, double x);
double innerproduct(struct Function f, struct Function g);
double add(struct Function f, struct Function g);
double multiply(struct Function f, struct Function g);
double max(struct Function f);

Figure 1-1: Discretized vs. parameterized functions.

rameterization implies that the computer can "see" a function on a computer through

a finite set of parameters and a set of routines that map those parameters to outputs

of interest.

As an example, consider a function discretized onto some grid of n points that

results in the function values {fl, . . . , fn'}. A discretization viewpoint might store

this function as an array of floating point values.

fl f 2  .. . ffn

The continuous framework utilizing the parameterized viewpoint, on the other hand,

would store this function as an object that contains the function values and various

routines for evaluating the function at arbitrary locations, computing inner prod-

ucts, finding its maximum, etc. These routines would be created by interpreting the

discretized function values as, for instance, nodes of a spline or linear element approx-

imation. The encoding for the discretized and the parameterized functions in the C

programming language would then look similar to Figure 1-1.

The resulting effect on numerical algorithms is tremendous. Consider a matrix

whose columns consists of m different functions. Performing matrix-factorization such

as the QR or LU decompositions now takes on a new meaning. In the discretized

framework, the m functions are each evaluated at n locations and the standard ma-

trix QR and LU decompositions are performed. In the parameterized format the

m functions may still be evaluated at n locations, but the QR and LU decomposi-
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tions are modified because the inner product is a continuous inner product in the

QR decomposition and the pivots for the LU are chosen using a continuous max-

imization technique. Put another way, in the discretized framework linear algebra

algorithms can only work with discrete inner products, discrete maximization, ele-

mentwise addition, elementwise multiplication, etc. These discrete algorithms use no

other information about the function that is actually being represented.

There are both theoretical and practical advantages to using this continuous frame-

work. Theoretically, one can begin to link the convergence of matrix factorizations

such as the QR, LU, and SVD decompositions to properties of the original func-

tions [118]. The practical advantages include automated adaptation and better error

control for operations with functions. For example, if an algorithm calls for multi-

plying two functions together, the resulting function often needs to be parameterized

by a larger set of parameters to maintain accuracy. Instead, if functions are simply

multiplied using elementwise multiplication of their discretizations, then the resulting

product may not accurately represent the continuous product between the original

functions. Furthermore, performing multiplication, addition, and taking the inner

product between functions that are discretized in different ways is ill-defined. Such

operations would effectively force the user to provide the computer with more infor-

mation.

While continuous computation has been effectively developed for univariate and

bivariate functions by the Chebfun package, theory and routines for representing

and operating with general multivariate functions has up to now been lacking. The

major goal in this thesis is to develop a framework for continuous computation for

high-dimensional functions. One realization of this framework is the new numerical

computing software package Compressed Continuous Computation (C3 ) [54] that is

used for most of the numerical examples within this thesis.

The new framework relies on representing functions in a compressed format that

is a continuous extension of low-rank tensor decompositions. In contrast to other

low-rank functional approaches [26,40, 103], however, our framework provides more

flexibility and generality. The previous approaches all rely on converting a low-rank
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functional approximation problem to a low-rank tensor approximation problem, where

the tensor represents certain parameters of the function approximation scheme that

are linearly related to the output. Our framework never requires this conversion, in

fact, the resulting algorithms for high-dimensional computation are independent from

the underlying parameterization. In the end, our ability to incorporate a wider variety

of, even nonlinear, parameterizations results in a more general framework than these

previous approaches.

1.3 Objectives and contributions

The primary objective of this research is to develop a framework for continuous com-

putation with multivariate functions. Two secondary objectives are to develop scal-

able algorithms for (1) stochastic optimal control and (2) data assimilation. The

solution to the primary objective enables the design of novel algorithms for tackling

the secondary objectives. The major high-level contributions of this research are then

1. A framework for continuous computation with multivariate functions that ex-

ploits low-rank tensor decompositions,

2. Application of a low-rank framework for the solution of dynamic programming

equations arising in stochastic optimal control, and

3. Application of continuous computation to integration-based Gaussian filtering.

Numerous lower-level contributions were necessary for the realization of these

objectives. For the development of continuous computation, we make the following

contributions:

e Development of maximum-volume based CUR/skeleton decompositions of vector-

valued functions,

e Extension of continuous matrix factorizations to the case of QR and LU factor-

ization of matrix-valued functions, and
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* Continuous versions of cross approximation, rounding, and alternating least

squares for a continuous tensor-train decomposition - called the function-train

(FT) decomposition.

For the application of the low-rank framework to stochastic optimal control and

data assimilation, we make the following contributions:

" Utilization of the function-train decomposition within value and policy iteration

for solving Bellman's equation,

" Utilization of the function-train decomposition for multi-level schemes by en-

abling evaluations of optimal value functions and policies in continuous domains,

and

* Utilization of the function-train for multivariate integration within integration-

based Gaussian filtering.

1.4 Thesis outline

The thesis is organized as follows. In Chapter 2, the continuous linear algebra back-

ground is provided. In that chapter, all of the continuous linear algebra that is used

throughout this thesis is described and discussed. Chapter 3 describes the novel low-

rank functional decomposition, the function-train (FT). The FT is shown to be the

continuous analogue of the discrete tensor-train decomposition. All the continuous

analogues of operations performed with the discrete tensor-train are then described.

These operations include cross approximation, rounding, multilinear algebra, and al-

ternating least squares. Chapter 4 applies the framework described in Chapters 2

and Chapter 3 to the problem of stochastic optimal control and introduces low-rank

algorithms for value iteration and policy iteration. Chapter 5 applies the framework

to the problem of Gaussian filtering. Chapter 6 is a summary and conclusion.
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Chapter 2

Continuous linear algebra

Continuous linear algebra and, specifically, continuous matrix factorizations form the

basis for a framework to design flexible, efficient, and adaptive function approxima-

tion algorithms. One theoretical benefit of this framework is that function properties

can inform convergence properties of corresponding factorizations, e.g., determine

the decay of singular values from a property on the regularity of the function. A

practical algorithmic benefit of designing continuous algorithms is that they are nat-

urally adaptive and efficient. For instance, elementwise multiplication of discretized

functions may not yield the best representation of the product; however, the errors

involved with multiplying two functions represented in a basis of polynomials can be

well controlled.

In effect, designing computational algorithms based on continuous linear algebra

requires carrying the knowledge of how a discretization represents a function, e.g., a

vector of floating numbers represents coefficients of a polynomial or the nodes of a

spline, through the entire algorithm. This knowledge can then be automatically used

to maintain accuracy through every step of a numerical algorithm. Examples of soft-

ware developed using these principles include the MATLAB-based Chebfun [101], the

Julia-based ApproxFun [92], and the author's own C-based Continuous Compressed

Computation (C) toolbox [54].

In this chapter, we discuss three topics: interpreting scalar-, vector-, and matrix-

valued functions as continuous analogues to vectors and matrices; defining and per-
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forming continuous matrix factorizations such as the LU, QR, and CUR decomposi-

tions; and computing with a specific realization of this framework where the functions

are represented as an expansion of orthonormal basis functions. These topics form

the foundation for the low-rank multivariate algorithms that are later described in

Chapter 3. This chapter is an adaptation of the first part of [57].

2.1 Scalar-, vector-, and matrix-valued functions

Just as the primary elements of discrete linear algebra are vectors and matrices, the

primary elements of continuous linear algebra are scalar-, vector-, and matrix-valued

functions. These elements appear in both the theory and algorithms behind the

low-rank functional decompositions that are discussed in Chapter 3. The difference

between these elements lies in the type of output. Corresponding to the names of

these elements, for a fixed input x, the output of a scalar-valued function is a scalar,

the output of a vector-valued function is a vector, and the output of a matrix-valued

function is a matrix.

The inputs to these functions typically lie in a d-dimensional input space X C Rd

that is formed through the tensor product of sets Xi C R according to X = Xi x

... x Xd. Unless explicitly stated otherwise, each of the subsets Xi are closed intervals

Xi = [ai, bi] with bi > aj. Furthermore, each element of the input space x E X refers

to a tuple x = (x 1 , x 2 ,..., X) where xi E Xj.

It is sometimes useful to think about functions that take d-inputs as equivalent

to functions that take two inputs such that, in the second function, each input is a

grouping of a subset of the original d inputs. For example, consider a six-dimensional

input space X= Xi x X2 x X3 x X4 x X5 x X6 then we can group the first three

and last three variables according to

z = {x1, x2, X3} and y = {x 4 , X5 , X6 } such that

f (z,y) = f (x1, x2, x3, x4, x5, X6 ),
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where on the right side of the second line we treat the function f : X1 x ... x X6 -+ R

as taking six inputs, and on the left side of second line we define the sets _6Y =

X1 x X2 x X3 and W= X4 x X5 x X6 and treat f : _x 3'-+ IR as taking two

inputs.

Such an interpretation has two advantages. First, many continuous matrix fac-

torizations have been defined only for bivariate functions, and we would still like

to use them for general multivariate functions. Second, low-rank decompositions

of multidimensional arrays and multivariate functions often rely on computing with

two-dimensional objects, e.g., matrices obtained through reshaping of a tensor. The

particular type of grouping that is most useful in this work is that of splitting an

input domain at the kth variable. To this end, we will often refer to the following

groupings of variables

X<k E X<k where i<k = X1 X ... X xk,

X>k E X>k where X>k = Xk+1 X ... X Xd.

We also consider the integration of certain functions through out this dissertation.

To this end, let pi denote the Lebesgue measure over the interval [ai, bi] and [ =

P1 X A2 ... X P denote the Lebesgue measure over X. The integral of a scalar-valued

function, f : X - R, denoted as f f dx, is always with respect to this Lebesgue

measure. For example, for xi E [ai, bi] and x E X we have f f (xi)dxi - f f (xi)p(dxi),

and for the product space we have f f(x)dx - f(x)IL(dx).

Scalar-, vector-, and matrix-valued functions and the relationships between these

elements are now described in more detail.

2.1.1 Definitions and interpretations

Formally, a scalar-valued function, f : X I R is a map from X to the reals and

is denoted by a lowercase letter. For the purposes of continuous linear algebra, it

is useful to think of various "vector" and "matrix" representations of f. Two such

interpretations are provided in Figure 2-1. The first interpretation, shown in Figure 2-
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X>k -4

X f -<k fk'(x~k, X>k)

(a) "oo x 1" column vector (b) "oo x oo" matrix of the
separated form fk

Figure 2-1: Vector and matrix interpretations of scalar-valued functions

la views f as vector with an (uncountably) infinite number of rows, where each "row"

is indexed by x E X. This interpretation motivates the inner product between scalar-

valued function as a continuous analogue to the inner product between discrete vector,

e.g., let g : X-+ R, then

(f, g) = f(x)g(x)dx,

where the sum of the discrete inner product is effectively "replaced" with an integral

for the continuous inner product.

A second interpretation of a scalar-valued function, shown in Figure 2-1b, is as

an "oC x o" matrix obtained through a separated form, or unfolding, of f obtained

by the variable splittings X<k and X>k. The superscript k will often be added to

a function to encourage this interpretation, e.g. fk denotes that the variables are

separated after the kth variable. Formally, we have fk : X<k X X>k -+ R where

fk (xzk, X>k) = fk({,... , Xk}, {Xk+1, - ,Xd}) = f(Xi, ... , Xd). (2.1)

In this interpretation, the rows of the "matrix" are indexed by X<k E 9 <k and the

columns are indexed by X>k E X>k.

Formally, a vector-valued function F : X - R", where n E Z+, is a map from X

to a vector with n elements, and it is denoted by an uppercase letter. Analogously to

the scalar-valued function case, various "vector" and "matrix" interpretations of F are

useful. These interpretations arise from viewing a vector-valued function as an array
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of scalar-valued functions. Consider a set of n scalar-valued functions fi : - R.

Then, the i-th output of F can be indexed according to

F[i](x) = fi(x), i = 1, ... , n.

The particular interpretation of a vector-valued function depends on the arrangement

of the scalar-valued functions. Three visualizations that are important in this work are

provided in Figures 2-2 and 2-3. The first interpretation of a vector-valued function

(1,x)

(2X)

(n, x) if

1 2n

"oc x 1" column vector

2-2: Vector-valued functions

(b) "oo x n" quasimatrix

as vectors and matrices in continuous linear al-

provided by Figure 2-2a is that of a vector with an infinite number of elements.

This vector is formed by the concatenation, or vertical stacking, of the scalar-valued

functions fi. Due to this concatenation, the rows of this vector are now indexed by

a tuple (i, x) E {1, . . . , n} x X. This viewpoint motivates the following definition for

an inner product. Let G : X --+ Rn be another vector-valued function whose outputs

are referred to by the scalar-valued functions gi : X -+ R, then the inner product

between F and G is

n n

(F, G) = (F[i](x), G[i](x)) = (fi(x), gi(x)).
i=1 i=1

(2.2)
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The second interpretation of a vector-valued function is that of an "Do x n" quasi-

matrixi, and is shown by Figure 2-2b. The rows of the quasimatrix are indexed by

x E X and the columns are indexed by i = 1,.... , n such that each column corre-

sponds to the scalar-valued function fi. This interpretation of a vector-valued function

arises in the context of continuous matrix factorizations such as the continuous LU

or continuous QR decomposition of Sections 2.2 and 2.2, respectively.

The final interpretation comes from considering separated forms, or unfoldings,

of vector-valued functions. These unfoldings Fk are obtained by splitting the input

space at the kth input. Thus, an unfolding Fk : &Ck X X>k -+ Rn takes values

Fk (X<k, X>k) = F k({Xi,.. . , 4}, {Xk+1, ... , Xd}) = F(xi, ... , Xd).

A visualization of this representation as an "oo x oc" matrix is provided in Figure 2-3.

In Figure 2-3, the rows are indexed by an index-value pair (i, k) where i = 1, ... , n

X>k -

(1, X~k) X~k fk (X~k, X>k)'I - _ _ _ _

(2,Xsk) X<k fk(x<k,x>k)

(iX~k) ~ 4 ______

I (n, X k) X~k fk (X~k, X>k)

Figure 2-3: Visualization of unfoldings Fk of a vector-valued function F

and the columns are indexed by X>k. This interpretation will be used heavily when

considering the skeleton decomposition of a vector-valued function in Section 2.3.1.

Formally, a matrix-valued function F : X -- R" n , where n, m E Z+, is a map

from X to a n x m matrix, and is denoted by an upper-case, calligraphic, non-bold

letter. The matrix-valued function can be visualized as an array of vector-valued

'Called a quasimatrix in, e.g., [4,118] because it corresponds to a matrix of infinite rows and n
columns
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1 2 - m

I I

I I

jy172 ___

Figure 2-4: Visualization of a matrix-valued function F.

functions F : -+ R' for j = 1 ... m according to

F= [F F2 ... Fm] such that F[:,j](x) = F(x), j = 1,...,m.

If we consider that each F is itself an array of scalar-valued functions fij : X R for

i = 1, ... , n and j = 1, . .. , m then the matrix-valued function can also be visualized

as a two-dimensional array of scalar-valued functions given by

fn,1 I ... fn,m _

In Chapter 3, we show that the cores of a function represented in the function-

train format are matrix-valued functions, and this interpretation of a matrix-valued

function becomes important.

We can interpret the matrix-valued function as a matrix with an infinite number

of rows and m columns, as shown in Figure 2-4. Each "row" of this matrix is indexed

by the pair (i, x) where i E {1, ... , n} and x E X. Each column refers to the vector-

valued function F and is indexed by a discrete variable j = 1, ... , m.

The inner product between F and another matrix-valued function G : X - Rnxm

is defined as

(F, G) = E (F[i, j](x), [i, j](x)) = (fij (, gi, (x)). (2.3)
i=1 j=1 i=1 j=1
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This inner product can be interpreted as the inner product between two flattened

vector-valued functions, and it is analogous to the square of the Frobenius norm of a

matrix.

2.1.2 Multiplication

In addition, we define products between arrays of functions (vector- and matrix-valued

functions) and arrays of scalars (vectors and matrices), as shown in Table 2.1.

_1_F : X-+ R___ F_: K Rmxn

g = Fx <=
n G = Fx

v E g(x) = Zv[i]F[i](x) G[i](x) = F[i,:](x)x
i=1_______________________

A E Rnxi G = FA FA
G[i] (x) = FA[:, i] g[i, ij](x) = F[i, :] (x)A[:, j]

Table 2.1: Product of a vector-valued function and a vector (top left); a vector-valued
function and a matrix (bottom left); a matrix-valued function and a vector (top right);
a matrix-valued function and a matrix (bottom right).

We also define products between functional elements. Let X c Rd and Y C R

where d2 E Z+. Then products between vector-valued or matrix-valued functions on

these domains yield vector-valued or matrix-valued functions on the space X x Y.

Notation and a summary of these operations are provided in Table 2.2. We now

F : X a Rn _T: X M Rmxn

g = FIH ->G = FH
H: Y -+ R g(X, y) = [i](x, y)=

i=1 F[i](x)H[i](y) 1 x [i, j] (x)H[j](y)

x E n -+ G[i (x y) - x )= F x'
j= I F [j] () 7 [, i] (y)

Table 2.2: Product of two vector-valued functions (top left); a vector-valued function
and a matrix-valued function (bottom left); a matrix-valued function and a vector-
valued function (top right); two matrix-valued functions (bottom right).

turn to factorizations of vector- and matrix-valued functions.
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2.2 Continuous matrix factorizations

Approximating a black box tensor in tensor-train format requires performing a se-

quence of standard matrix factorizations. Our continuous framework requires con-

tinuous equivalents of these factorization for the elements of continuous linear al-

gebra, scalar-valued functions, vector-valued functions, and matrix-valued functions,

described above.

The LU and QR factorizations and the singular value decomposition (SVD) of a

vector-valued function are primary ingredients of any continuous numerical linear al-

gebra package such as Chebfun [101] or ApproxFun [92]. For vector-valued functions

of one variable, these decompositions are discussed in [4]. Computing these decom-

positions often requires continuous analogues of standard discrete algorithms. For

example, Householder triangularization may be used to compute the QR decompo-

sition of a vector-valued function [119]. Extensions of these algorithms to functions

of two variables are described in [118]. We will use these bivariate extensions as

building blocks for our higher dimensional constructions, and we discuss the relevant

background.

LU decomposition

To extend the cross approximation and maxvol algorithms to the continuous set-

ting, we will require the LU decomposition of a vector-valued function. The key

components of this decomposition are a set of pivots {z 1 , z2 ,... , zn}, zi E X, and

a vector-valued function L = [ l f2 ... n] (here written as a quasimatrix, with

scalar-valued functions fi) that is "psychologically" lower triangular [118].

A psychologically lower triangular vector-valued function is defined such that col-

umn k has zeros at all zi for i = 1, . . . , k - 1. Furthermore, if fi(zi) = 1, then L is

unit lower triangular. Finally, if |ik(X)l |fk(Zk)| for all x E X, then L is diagonally

maximal. Using these definitions we recall the definition of an LU decomposition of

a vector-valued function [4,118]:

Definition 1 (LU factorization of a vector-valued function [4]). Let F: X - Rn be
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a vector-valued function. An L U factorization of F is a decomposition of the form

F = LU, where U C R"'< is upper triangular and L : X --+ Rn is unit lower

triangular and diagonally maximal.

The LU factorization may be computed using Gaussian elimination with row piv-

oting according to the algorithm in [118].

We can extend this definition of an LU factorization to matrix-valued functions. In

particular, the decomposition will result in a set of pivots {(ii, zi), (i2, z2 ), ... , (in, zn)};

a psychologically lower triangular matrix-valued function L; an upper triangular ma-

trix U. The definition of the pivots is motivated by viewing L : X -+ Rm"' as

collection of n columns [L[:, 1] ... L[:, n]], where each column is a vector-valued func-

tion to be interpreted as an "oc x 1" vector, as described in Section 2.1. Each pivot is

then specified by a (row, value) tuple. A lower triangular matrix-valued function is

defined such that L [:, k] has zeros at all {(i1 , z1 ), (i2 , z2 ), . . (ik-1, zk_1)]; that is, L[:, 1]

has no enforced zeros, L[:, 2] has a zero in row i1 at the value zj, L[:, 3] has zeros at

(ii, zi) and (i2 , z 2 ), etc. Furthermore, if L[ik, k](zk) = 1 then L is called unit lower

triangular, and if IL[i, k](x)I < L[ik, k](zk)I for all x E Xand for all i E 1, ... , M},

then L is diagonally maximal. Using these notions we define an LU decomposition of

a matrix-valued function.

Definition 2 (LU factorization of a matrix-valued function). Let F : X -+ R' n be

a matrix-valued function. An LU factorization of F is a decomposition of the form

F = LU where U C Rxfl is upper triangular, and L : X 4 Rm"' is unit lower

triangular and diagonally maximal.

We also implement the LU decomposition of a matrix-valued function using Gaus-

sian elimination with row-pivoting.

QR decomposition

Another decomposition that will be necessary for function-train rounding and for the

cross approximation of multivariate functions is the QR factorization of a quasimatrix.
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Definition 3 (QR factorization of a vector-valued function [4]). Let F : X -+ R n

be a vector-valued function. A QR factorization of F is a decomposition of the form

F = QR, where the vector-valued function Q : X - R' consists of n orthonormal

scalar-valued functions and R E Rx is an upper triangular matrix.

This QR factorization can be computed in a stable manner using a continuous

extension of Householder triangularization [119]. In this dissertation, we also require

the QR decomposition of a matrix-valued function.

Definition 4 (QR factorization of a matrix-valued function). Let F : X -+ Rmxn

be a matrix-valued function. A QR factorization of F is a decomposition of the form

F = QR, where the columns of Q : X -+ R"X are orthonormal vector-valued

functions and R e R.x. is an upper triangular matrix.

Since we have defined the inner product of vector-valued functions in (2.2) and

therefore are able to take inner products of the columns of F, we can also compute

this factorization in a stable manner using Householder triangularization. We can

consider the ranks of both vector-valued and matrix-valued functions as the number

of nonzero elements of the diagonal of R.

Singular value decomposition

Many of our theoretical results will employ the functional SVD.

Definition 5 (Functional SVD). Let Y x Z C Rd and let g : Y x Z -+ R be in

L 2(y x Z). A singular value decomposition of g is

00

g(y,z) = Z juj (y)v (z), (2.4)
j=1

where the left singular functions uj : Y -+ R are orthonormal in L 2(y), the right

singular functions vj : Z -+ R are orthonormal in L2 (Z) , and a1  o2 ; > 0 are

the singular values.

In practice, the summation in (2.4) is truncated to some finite number of terms

r and we group the first r left singular functions ul, . . . , u, into the vector-valued
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function U : y --+ R' such that U[i] = uj. Similarly, we group the right singular

functions into a vector-valued function V: Z -4 R1, with V[i] = vi. If we also define

S = diag(u,... , o-), then we can write the functional SVD as g = USV. In this

form, we say that g is a function that has an SVD rank of r. This notion of the

SVD of a function has existed for a while [108,112] and is also called the Schmidt

decomposition [108]. In general, convergence can be assumed to be in L2(y x Z). As

described in [118], when g : [a, b] x [c, d] -* R is also Lipschitz continuous, then the

series in (2.4) converges absolutely and uniformly.

The functional SVD is useful for analyzing certain separated representations fk

of multivariate functions f. For example, in Section 3.2.1 we show that the ranks

of our function-train representation are bounded by the SVD ranks of the separated

functions fk y x Z -- R, where we put Y = X<, and Z = X,, in the above

definition.

Next, we present a decomposition similar to the functional SVD, but for vector-

valued rather than scalar-valued functions. We call the decomposition an extended

SVD, because it shares some properties with the functional SVD, such as a separation

rank, and because it decomposes the vector-valued function into a sum of products

of orthonormal functions. This decomposition appears in the proofs of Theorems 3

and 4, as well as in the skeleton decomposition of a multivariate function described

in Section 3.3.1.

Definition 6 (Extended SVD). Let 3(x T c R' and let G : Y x _ - R' be a

vector-valued function such that G[i] E L2 (& x 2) for i = 1, ... , n. A rank r extended

SVD of G(y, z) is a factorization

r

G[i](y, z) =Zoj U [i](y)vj (z), (2.5)
j=1

where the left singular functions Uj : -* R' are orthonormal2 and vector-valued,

the right singular functions vj : _ -÷ R are orthonormal and scalar-valued, and

-l ;> o2 ;> -- - > 0 are the singular values.
2 Orthonormality here is defined with respect to the inner product in (2.2).
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We can combine the left singular functions to form the matrix-valued function

U : -+ R" where U[:,j] = Uj, and as in the functional SVD, we can group the

right singular functions to form the vector-valued function V : Y - R' such that

V[j] = v3 . If we also gather the singular values in a diagonal matrix S, then the

extended SVD can be written as G = USV.

The main interpretation of this decomposition is that G contains n functions that

have the same right singular vectors and different left singular vectors. We will exploit

two properties of this decomposition for the proof of Theorem 1. The first is the fact

that for any fixed 2, the vector-valued function G(y) = G(y, 2) can be represented

as a linear combination of the columns of U(y). Second, for any fixed y and column

2, the function (z) = G[i](y, z) can be represented as a linear combination of the

columns of V.

Again, in the case of functions of more than two variables, the extended SVD can

be applied to the function's k-separated representation. In particular, if X c R d and

we have a vector-valued function F : X -+ R" , then we can consider the extended

SVD of the separated form F : 3x _T-+ R, where we put G = F, 9= 9 <k, and

-= a>k in the definition above.

2.3 Skeleton decomposition and cross approximation

In Section 3.2.1 we show that the FT representation of a function f can be computed

by performing a sequence of SVDs of various separated versions of f. Such an algo-

rithm would require a prohibitive number of function evaluations, however. In this

section, we develop an alternative low-rank decomposition that requires evaluations

of the function only at relatively few points, lying along certain "fibers" of the input

domain. This decomposition is a continuous version of the skeleton/CUR decompo-

sition of a matrix [18,52,87], and is critical to the practical black box approximation

algorithm described in Section 3.3.1. In particular, we now develop this continuous

CUR decomposition for the specific case of vector-valued functions.

This section is split into three parts. First we establish conditions for the exis-
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Figure 2-5: Column fibers (blue) and row fibers (red) of a vector-valued function for a
particular k-separated form. The black circles form a sub-matrix of the vector-valued
function.

tence of a continuous CUR decomposition. Then we motivate a construction of the

decomposition based on the maximum volume concept. Finally, we describe a cross

approximation algorithm for computing the decomposition.

Before introducing the continuous CUR decomposition, we formally describe its

components. In particular, we need to formulate the notion of a fiber of a vector-

valued function, which is analogous to a row or column of a matrix. In particular,

we consider the k-separated form of a vector-valued function Fk -X Zk x X>k -+ R',

and view it as an "oo x oo" matrix, shown in Figure 2-3, where the rows are indexed

by (i, Xzk) and the columns are indexed by (X>k). According to this interpretation,

row fibers are scalar-valued functions and column fibers are vector-valued functions.

The intersection of the row and column fibers forms a sub-matrix of the vector-valued

function. These choices are graphically highlighted in Figure 2-5.

Definition 7 (Row fiber). A row fiber of a vector-valued function Fk is the scalar-

valued function ra : 3 >k -+ R obtained by fixing an (index, value) pair a = (i, z) E

{1,...,f} x Ck so that

ra(x>k) = Fk [i](z, x>k).

Definition 8 (Set of row fibers). A set of row fibers of a vector-valued function

Fk is the vector-valued function R, :X> - R' obtained by fixing a set of tuples

a = {(ii, zi), ... , (it, ze)}, where (ij, zj) E {,.. ., n} x Xsk, so that

Ra = [r., r.2 - al - 7]
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where aj = (ij, zj), j = 1, ..., if.

We have corresponding definitions for column fibers and a set of column fibers.

Definition 9 (Column fiber). A column fiber of a vector-valued function Fk is the

vector-valued function C, :X< k -+ R' obtained by fixing an element y X k>k such

that

CV(xsk) = Fk(xsk, y).

We can group a set of f column fibers together to obtain a matrix-valued function

C. as follows.

Definition 10 (Set of column fibers). A set of column fibers of a vector-valued func-

tion Fk is the matrix-valued function C, : X<k -4 RflX obtained by fixing a set

Y = {yi,... , ye}, where yj E X>k for i E 1, ... , }, such that

C=[Cy C 2 ..- Cy,.

The intersection of a set of row fibers and a set of column fibers forms a submatrix.

Definition 11 (Submatrix of a vector-valued function). A submatrix of a vector

valued function Fk is the matrix k E R' obtained by fixing a set of columns y =

{yi, ... , y} and a set of rows a = {(ii, zi),... , (it, ze)}, as in Definitions 8 and 10

respectively, such that

F k[a, b] = F[ia](Za, Yb) for 1 < a, b < f, (2.6)

or equivalently,

Pk[a, b] = Cy[ia, b](Za) = Ra[a](yb). (2.7)

Next, we discuss the notion of a skeleton or CUR decomposition of vector-valued

functions.
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2.3.1 Existence of the skeleton decomposition of vector-valued

functions

In this subsection, we define the skeleton decomposition of a vector-valued function

and establish conditions for its existence based on the SVD of the k-separated form of

the function. The existence of a skeleton decomposition for a scalar-valued function

can then be obtained by choosing n = 1. Note that the skeleton decomposition of a

function has already been used, for example, in [6,7]. These analyses make smooth-

ness assumptions on the function. Our results, in contrast, formulate the skeleton

decomposition using only low-rank properties of the function, without introducing

any explicit smoothness assumptions.

Definition 12 (Skeleton/CUR decomposition of a vector-valued function). Let F

X -+ R' be a vector-valued function. The rank f skeleton decomposition of separated

form Fk is a factorization of the type

F k [i (xsk, ix>k ) = Cy [i, :(xsk) )GR, R(x>k), (2.8)

for all i E {1,... , n}, Xsk E 2 1 k, and X>k E X>k. The matrix valued function

Cy : Xk - R"x represents a set of column-fibers (Definition 10), G is an i x f

matrix, and the vector-valued function R, : X>k -+ R represents a set of f row-fibers

(Definition 8).

Theorem 1. Let F : X -+* R' be a vector-valued function and let Fk : X<k X X>k-+

Rn be its k-separated form for any 1 < k < d. If Fk has a rank-r extended SVD, then

a rank r skeleton decomposition (2.8) of Fk exists.

Proof. The proof is constructive and requires one to choose r linearly independent 3

column- and row-fibers of Fk. The intersection of these fibers will form the submatrix

pk such that choosing G = [Fk]t, where At refers to the Moore-Penrose pseudoinverse

of matrix A, will yield a correct construction. The proof strategy then involves
3A set of r linearly independent scalar-valued functions (fi)r 1 , fi : X-* R is one in which the

only solution to the equation r aifi(x) = 0 is ai = 0 for i = 1,..., r. An analogous definition
holds for vector-valued functions.
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partitioning the input space into four sets and showing pointwise equality on each

partition.

Choose a set of f row indices a (see Definition 8) such that the vector-valued

function Ra contains r linearly independent scalar-valued functions rQi, i = 1, ... I.

Next, choose a set of f column indices y (see Definition 10) such that the matrix-

valued function C, contains r linearly independent vector-valued functions Cyi, i =

1,... , f. Note that these choices also define a submatrix Fk. Furthermore, let P be

the proposed skeleton decomposition

F(x<k, X>k) = Cy(xsk) [fFk]t Rc(x>k). (2.9)

We now seek to show that F and Fk are pointwise equal.

We show Fk = F by decomposing the space ({1,... ,n} x Xsk) x X>k into four

partitions: (a x y), (al x y), (a x yL), and (aL x yL), where aL = ({1, . .. , n} x

X<k) \ a and y' = X>k \ y. We also rely on the following property of the Moore-

Penrose pseudoinverse At of a matrix A:

AAtA = A. (2.10)

First, we define matrices C, R E R XE such that

C[a, b] = Cy[ia, b](Za) = Cyb[ia](Za), and (2.11)

R[a, b] = Ra[a] (Yb) = raa (yb), (2.12)

where for 1 < a, b < f, (ia, Za) e a and Yb E y. One can verify that

C = R =F k (2.13)

using (2.7).

Now we consider the first partition a x y. Showing equality over this partition is

equivalent to showing the equality of Pk and the corresponding submatrix Fk of F.
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We proceed using (2.9), (2.11), and (2.12) to represent the elements of jfk as

k[a b] = P[ia](Za, Yb) = Cy[ia, :(za)[F k tRa(yb),

= C[a, :][Fk]ftR[:, b],

where for 1 < a, b < f, (ia, Za) E a and Yb E y. According to (2.13) and (2.10), we

obtain

k C[FktR = -[ ]tFk - f

Thus, F and F are equivalent over this partition.

Next we consider the partition al x y. By definition of linear independence and

the SVD rank of a function, V(i, X<k) E {1,... , n} x X<k there exists a q, E R

such that

(2.14)Fk [i](Xzk,x >k) = 1qi,<, [j]r (y) VX>k E X>k.
j=1

In other words, every scalar-valued function F[i](Xzk, .) : X>k -+ R can be written

as a linear combination of the scalar-valued functions comprising Ra. This property

follows directly from the fact that Ra contains r linearly independent functions and

that Fk has an extended SVD of rank r. In particular, for all Yb E y we have

Fk[i](xzk, Yb) = Cy[i, b](xzk) = qi,X< R[:, b], V(i, X<k) E {1, . . . , n} x Xsk (2.15)
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We now show that (2.8) holds for (i, X<k) E a1 and Yb E Y:

F[i](X<k, Yb) = Cy[i, :](xsk) [fk]I R[:, b]

= qix< R [Fk]t R[:, b]

= qijx7kFk [F k]t f~k [:, b]

= q k k[:, b]

= q ,X<R[:, b]

= Fk[i](Xzk, yb)

where the first equality comes from the definition of F, the second comes from (2.15),

the third comes from (2.13), the fourth equality comes from using (2.10), the fifth

also comes from (2.13), and the sixth comes from another application of (2.15).

We can proceed with a symmetric argument for the partition a x y . Linear

independence and finite rank require that for all X>k E X>k, there exists a qx>k E R

such that

f

Fk [i] (Xk, y) = Cy [i, j] (xzk)qy[j]
j=1

V(i, Xk) E , .... , n} x X<k-

We can obtain an analogue to (2.15) by noticing that for all (ia, Za) E a we have

Fk[ia](Za, X>k) = Ra[a](X>k) = C[a,:]q,>,, VX>k E X>k.

Using (2.16), a symmetric argument yields the desired equivalence for elements of the

partition a x y'.

Finally, we show that (2.8) holds pointwise for all (Xzk, X>k) E (a' x y'). First,
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by (2.14) and (2.16) we have

Fk[i] x<kx>k) =

Now we show that the

result:

Sqix<j j]Ra[j](x>k)
j=1

(2.17)

R

- 5q [j]Fk[i ]z , xy), where (ij, zj) = a[j],
j=1

= qSX< [j]C[j, :]qx>k
j=1

qi,x<kCqx>k

application of (2.15) and (2.16) to (2.8) yields the desired

F[i](xsk, X>k) = Cy[i, :1(xsk) [Fk]t Ra(X>k)

= qj, X<R [Fk]t Cqx>k

= qij, fk [Fk]t fkq

= qi,X< qx>k

= qi,X<C qx>k

= Fk[i](xxkx>k),

where the first equality follows from the definition of F, the second follows from an

application of (2.15) and (2.16), the third follows from (2.13), the fourth follows from

the Moore-Penrose pseudoinverse (2.10), the fifth is another application of (2.13),

and the final equality follows from (2.17). LI

This proof shows the general strategy needed to construct a CUR decomposition

of a vector-valued function when one can afford to evaluate f > r row and column

fibers. In this case, one must seek at r linearly independent row and column fibers to

obtain an exact reconstruction. A natural question to ask, however, is what happens

when one wants to obtain an approximation with f < r for a particular separated

representation Fk of F? In particular, how do we choose y and a to obtain a well-
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behaved approximation? The answer is to choose them so that submatrix Fk lying at

the intersection of the row and column fibers has maximum volume among all possible

combinations of f row and column fibers.

2.3.2 Optimality of maxvol

In this section we consider the case f < r, where we would like to use fewer terms in

a skeleton approximation than the actual rank of the function. This situation arises

because many functions of interest are approximately low-rank. Consider the SVD of

a function with a possibly infinite number r of nonzero singular values, and explicitly

separate the first f terms from the remainder:

f
f (x, y) = o-iU (x)vi(y) + g(x, y). (2.18)

i=1

If 1g1L2 = e, then f will have a relatively accurate rank f approximation whenever

e/if |L2 < 1-for instance if the singular values c-i quickly decay to zero. Now

consider the extended SVD of a vector-valued function F (xsk, x>k) of rank r. Choose

an approximation rank f < r and form a CUR decomposition defined by a set of

column fibers y and a set of row fibers a:

Pk [il(xk, x>k) = C,[i, :1(xsk)GRa(x>k). (2.19)

The goal of this section is to bound IF - F11 and to show that this bound holds

when the matrix Gt in the skeleton decomposition is chosen to be a maximum vol-

ume submatrix of F, where the "volume" of a matrix refers to the modulus of its

determinant.

Definition 13 (Maximum volume submatrix). A submatrix Fk of the k-separated

representation Fk of a vector-valued function F has maximum volume if its determi-

nant has maximum modulus among all possible sub-matrices of Fk. The maximum

volume submatrix is denoted as F*, k

A result analogous to the following was proven for matrices by Goreinov [51];
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here, we extend it to multivariate vector-valued functions. Let the norm ||F11c =

max F[i](Xsk, X>k), denote the maximum-in-modulus value of the vector-valued
i,X<k ,X>k

function F. Similarly, ||F11c denotes the maximum modulus element of the matrix F.

Theorem 2. Let F : X -+ R" be a continuous vector-valued function with k-separated

representation Fk, and let Fk have an extended SVD with singular functions uniformly

bounded by p, i.e., maxI U [i](xsk) I p and maxlvj(x>k)| p. Furthermore, let
_13,~ .,X>k

F be a skeleton approximation of Fk comprising f row and column fibers, and let

the matrix F*, k E Rx formed by the intersection of these fibers be a nonsingular

maximum volume submatrix of Fk. Then it holds that

||F - F||c < Mp 2 (t + 1)1+ 2 oe+1 (2.20)

where e > -, M is independent of f, and uj+1 is the (f + 1)th singular value of Fk.

The proof of this theorem is provided in Appendix A.1.

Theorem 2 implies that using a maximum volume submatrix F*,k allows us to

bound the error of the skeleton decomposition of a function by a constant factor

greater than the error of the SVD, the optimal low-rank decomposition. This result

is different from the result of [6], in which the error of a skeleton decomposition was

related to the error of a polynomial approximation of the function. The present result

refocuses the problem directly on the rank of the function instead of the accuracy of

polynomial approximation.

2.3.3 Cross approximation and maxvol

Next, we describe an algorithm for finding a good skeleton decomposition of a vector-

valued function. Computing the skeleton decomposition of a matrix is the subject of

much current research. Some approaches employ random sampling of the rows and

columns of the matrix [18, 42, 87]. Another class of methods attempt to explicitly

find the rows and columns that maximize the volume of the submatrix. Goreinov [51,

53] describes how a skeleton decomposition with a maximum-volume submatrix is
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quasioptimal. We follow this second route because it has been successfully extended

to the tensor-train format [98], and subsequently shown to be quasioptimal [107].

This section focuses on extending maximum-volume cross approximation algorithms

to the continuous/functional setting.

Cross approximation of a vector-valued function

Cross approximation of a vector-valued function involves a fairly straightforward row-

column alternating algorithm. Pseudocode for this approach is given in Algorithm 1.

This algorithm is a continuous analogue of Algorithm 2 by Oseledets and Tyrtysh-

nikov [98]. The algorithm works by first fixing a set of column fibers y and computing

a set of rows a to maximize the volume of a submatrix of the associated matrix-valued

function C.. Next, the set of row-fibers a are fixed and a new set of indices for the

column fibers y are identified such that they maximize the volume of a submatrix of

R,. These indices y and a are found by solving continuous optimization problems.

In other words, no discretization is required to choose the fibers, and the choice of

optimization algorithm is flexible. In Section 2.3.3 we provide more detail on the how

these optimization problems are solved.

The algorithm continually alternates between rows and columns until the differ-

ence between successive approximations falls below a particular tolerance. Note that

this algorithm requires the prescription of an upper bound on the rank. Later, in

Section 3.3.2 of Chapter 3, we describe a rank estimation scheme in the context of a

multivariate cross approximation algorithm.

Algorithm 1 requires several subroutines: qr-mvf refers to the QR decomposition

of a matrix-valued function and is computed using Householder triangularization;

qr-vvf refers to a QR decomposition of a vector-valued function and is also computed

using Householder triangularization; maxvol-mvf refers to Algorithm 2, discussed in

Section 2.3.3.

We would like to point out the distinction between this row-column alternating

algorithm, which can be viewed as an LU decomposition with partial pivoting, and

the adaptive cross approximation algorithm [6]. Adaptive cross approximation algo-
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Algorithm 1 Cross approximation of a vector-valued function

Require: Separated form Fk - <k x ->k - Rr of a vector-valued function F; Up-
per bound on rank r; Initial column fibers y = [Yi, Y2, ... ,yr]; Stopping tolerance

across > 0
Ensure: (a, y) such that sub-matrix F has " large " volume

1: F(o) = 0

2: k = 1
3: C(xsk) = [Fk(x<k, y1) Fk(Xxk, Y2) ... Fk(xxk, Yr)]

4: repeat
5: QT = qr-mvf (C)

a = maxvol-mvf(Q)
R(x>k) = [Fk [ii](zi, X>k) ... Fk [i](z,, X>k)]
UT = qr-vvf (R)
y = maxvol-mvf (U)

where (ij, zj) = a[j]

# Interpret U as a 1 x r matrix-valued function.
C(x<k) = [Fk(xXk,yi) Fk(x<k, Y2) ... Fk(xsk,yr)

Q = [U(y1) U(y 2) ... U(yr)]
F(k)(xsk, X>k) = C(xsk)QtU(x>k)

6 = |F(k) - F(k--1)1/HF(k)jj
k k + 1

15: until 6 6cross

Algorithm 2 maxvol-mvf: Maximum volume of matrix-valued function

Require: A: -+ Rnx', a matrix-valued function.
Ensure: a = [(ii, x1 ,) ... (ir, Xr)] such that Amat is dominant

1: L, U, a = lu-mvf (A) # LU decomposition of the
2:

natrix-valued function
6 = 2

3: while 6 > 1 do
4: Amat <- sub-matrix defined by by a
5: x*, * j* = arg max A[i,: :(x)iAt : j]

(x,i,j)
6: 6 = A[i*, :1(x*)At at[: j*]
7: if J > I then
8: xj* = X*, ij* =

9: end if
10: end while

rithms for the approximation of bivariate functions build up a set of row and column

indices by sequentially choosing points which maximize the volume. In other words,

they do not require a prescribed rank, nor do they require evaluating entire function

fibers. These algorithms, which are equivalent to an LU decomposition with complete

pivoting, can use two-dimensional optimization methods to seek the optimal locations
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for function evaluation (which become the pivots). This methodology is attractive for

bivariate problems but difficult to extend to the multivariate case, because it would

require us to optimize over locations in d dimensions. To retain good scaling prop-

erties, we use the row-column alternating algorithm that is standard for computing

with tensors.

Maxvol computation

Algorithm 1 contains calls to maxvol-mvf with two types of arguments, matrix-valued

functions and vector-valued functions. In both cases, the goal of maxvol-mvf is to

find indices that describe a maximum volume submatrix. Pseudocode for computing

the maximum volume submatrix of a matrix-valued function is given in Algorithm 2;

it mirrors the algorithm provided by Goreinov [50] for "tall and skinny" matrices.

The algorithm attempts to find a submatrix which is dominant, because a dominant

submatrix has volume which is "close" to that of the maximum volume submatrix, as

described below. In this section we will always assume that a matrix-valued function

A : X -+ R7 n has rank r according to the notion of rank defined by the QR

decomposition in Section 2.2. All of the results below can be specialized to vector-

valued functions by assuming that n = 1.

Definition 14 (Submatrix of a matrix-valued function). A submatrix of a matrix-

valued function A: - Rnx is the matrix Amat n , rxr obtained by fixing a set of r

tuples {(ii, X 1 ), (i 2 , x 2 ), . ( , (, Xr)}, where (ik, Xk) E {1, ... ,n} x X for k, 1 = 1... r

and (ik, Xk) Z (i1 , xi) for k # 1, such that

Amat[k, j] = A[ik, j(Xk). (2.21)

Note the distinction between Definitions 11 and 14: the former defines subma-

trices of vector-valued functions in separated form Fk, whereas Definition 14 defines

submatrices of matrix-valued functions.

While the results below consider the general case of matrix-valued functions, it is

useful to keep in mind how they arise in the context of cross approximation. In that
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specific context, the matrix-valued function of interest will be a set of column fibers.

For example, after finding a set of r column fibers C, : X<k -+ R"(, we seek new

values of (i, X<k) E {1, ... , n} x X k that form the row fibers. These new indices

also define a submatrix of Cy, and we seek to choose those indices that maximize the

volume of that submatrix.

Next, we need the notion of a dominant submatrix of a matrix valued function.

Definition 15 (Dominant submatrix). A dominant submatrix of a matrix-valued

function A : X - R"x is any submatrix Amat such that for all values (i, x, k) E

{ 1,..., n} x Xx {1,..., r} the matrix-valued function B = AA-a is bounded as

18[i, k] (x) i <.

Lemma 1. A maximum-volume submatrix A*at E Rrxr of a matrix-valued function

A: X -+ R is dominant.

Proof. The proof follows exactly the case for matrices [50]. Here we interpret a

matrix-valued function as a matrix with r columns and an infinite number of rows,

where each row is indexed by (i, x) E {1, ... , n} X X.

Suppose, without loss of generality, that we first rearrange the "rows" of A such

that

[A*nat] IrXr B

where A*at is a maximum-volume submatrix of A. In other words, if we view A

as an "oo x r" matrix, we have moved the rows corresponding to A*at, with indices

{(il, xi), ... (ir, x,)}, to the "top" of A. As a result, the first r rows of B correspond

to the identity matrix, and the remaining rows are indexed by (i, x) pairs (but with

each (ij, xj), for j = . . . r, missing).

Now recall that det(CD) = det(C) det(D) for square matrices C, D of equal size.

This property implies that multiplying A by a nonsingular r x r matrix does not

change the ratio between the determinants of any pair of r x r submatrices of A.

Therefore the upper submatrix Ixr is a maximum-volume submatrix of B.
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Suppose A*at is not dominant so that there is an (i, J, x) where Z[ij](x) > 1.

In such a situation, we would be able to increase the volume of the upper submatrix

by swapping row j of the upper r x r submatrix of B with Z[i, :](x). The new upper

submatrix of B, called Bupper, would no longer be the identity Irxr; we would have

det(Bupper) = Z[ij](x) > 1 instead of det(Irxr) = 1. Then Irxr would not be a

maximum volume submatrix of B and hence i*at would not be a maximum volume

submatrix of A.

Furthermore, analogous to Lemma 2 by Goreinov [50] we can show that any

dominant submatrix cannot have a volume that is too much smaller than that of the

maximum-volume submatrix.

Lemma 2. For any full rank matrix-valued function A: X n R',

d det(A* at)
det(Xmat)l > , -

where Amat is any dominant submatrix and A* at is the submatrix of A with maximum

volume.

The proof is almost equivalent to that in [50] and is omitted here for brevity. Of

course, we also have the upper bound, Idet(A*at)l > Idet(Amat)l.

Together, Lemmas 1 and 2 imply that searching for a maximum volume submatrix

of a matrix-valued function A via the row switching scheme described in Algorithm 2

is a good idea. The algorithm swaps "rows" of A (recall that these are specified by (in-

dex, x-value) combinations) until all the elements of B are less than 1. This is exactly

what the operations in Lines 5 and 8 of Algorithm 2 are doing. To find an initial set

of linearly independent "rows" of A, the algorithm first performs a continuous pivoted

LU decomposition, denoted by lu-mvf, yielding pivots a = {(ii, xi),... , (ir, Xr)}.

The optimization problem specified in Line 5 of Algorithm 2 is where we obtain

tremendous benefits over the discretized tensor-train approach. First, it is a contin-

uous optimization problem in x, allowing us to search over the entire space X; in

the discretized version, this maximization can only occur over the discretized points.
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Secondly, when A : [a, b] R", the continuous optimization problem involves a

one-dimensional decision variable and can exploit the structure of the scalar-valued

functions that comprise A. For example, if these scalar-valued functions are repre-

sented as orthonormal polynomials, then the maximization reduces to an eigenvalue

problem [35].

2.4 Operations with functions expressed in an or-

thonormal basis

The algorithms described in this chapter were all provided in a general form. However,

for practical purposes we need to be able to add, multiply, and take inner products

of functions in a parameterized format. In this section, we provide the details for

a sample implementation of a framework in which all functions are represented as

an expansion in an orthonormal basis. Suppose that we define a complete basis

{q1 (X), # 2 (X), . . .} such that (#i(x), #j (x)) = 6Jj for all i, j.

We describe the complexity of the algorithms using asymptotic notation repre-

sented by Landau's symbol (.

Definition 16 (Asymptotic notation with Landau's symbol). We write f(x) =

O(g(x)) as x --+ oc if and only if for every c > 0 there exists a real number N

such that for all x > N we have If(x)| < clg(x)|; if g(x) -, 0, this is equivalent to

limmoo f (x)/g(x) = 0.

Next, we detail the main operations, and their complexity, for scalar-valued,

vector-valued, and matrix-valued functions.

2.4.1 Scalar-valued functions

Let f : - R and g : X-+ R refer to scalar-valued functions, and suppose that

both of these functions are represented using the P basis functions with coefficients
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f E RP and g E R' respectively

P

f(x) = f[i]q$i(x)
i=1

P

g(x) = g[i]#i(x)
i=1

Addition of functions is of primary importance for computing with functions.

Proposition 1 (Addition of scalar-valued functions). Let f : X -+ R and g : X - R

be represented in an expansion of P orthonormal basis functions. Then, addition

f(x) + g(x) requires 9(P) operations.

Proof.

P P P

f(x) + g(x) = f [i]i (x) + g[j] O(x) = E (f [i] + g[i]) #i (x)
i=1 j=1 i=1

Addition of P coefficients costs O(P).

Proposition 2 (Multiplication of scalar-valued functions). Let f : X -+ R and

g : X - R be represented in an expansion of P orthonormal basis functions. Assume

that the third order tensor with entries f Oi(x)#j(x)#k(x)dx for i, j, k = 1,... P is pre-

computed and that its values can be accessed in 0(1) operations. Then, multiplication

f(x)g(x) requires 0(P3 ) operations.

Proof. Let h(x) = f(x)g(x) and notice that h(x) has an exact expansion in terms of

2P polynomials with coefficients h E R2P. Then we have

2P P

h(x)= Eh[k]Ok(x) = E f[i]g[j]#bO(x)qO(x)
k=1 ij=1

Each coefficient h[k] can be obtained by projecting the right side of the equation

above onto Ok

P

h[k] = f [i]g[j] J#Oi(x)#Oj(x) Ok(x)dx
i,j=1
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The computation of this coefficient first requires the multiplication of all combinations

of the pair (f[i], g[j]), an O(P2 ) operation. This computation can be reused for all the

coefficients h[k], and is therefore not the dominant cost. Next, for each k = 1, ... , 2P,

the summation of the P2 terms can be performed in O(P 2 ). Thus, the total cost is

0(2P3 ) = 0(P3 ) operations.

The inner product is important for defining the QR decomposition.

Proposition 3 (Inner product between scalar-valued functions). Let f : X -÷ R and

g : X--+ R be represented in an expansion of P orthonormal basis functions. Then

the inner product (f(x), g(x)) requires O(P) operations.

Proof.

P P

(f(x),g(x)) = f[f]# O(x) 1 g[j]#Oj(x)dx
t=1 j= 1

P

= f [f]g[i]J j (x)#ji(x)dx
ej=1

P

SZ f[]g[t]
t=1

Multiplication of each of these coefficients costs O(P) operations, and adding these

coefficients costs O(P) operations yielding a total of 0(2P) = O(P) operations. E

2.4.2 Vector-valued functions

Next, we consider vector-valued functions. Let F : X - R' and G : X -4 R

refer to vector-valued functions consisting of scalar-valued functions fi : X R and

gi : IR, respectively, such that

P

F[i] = fi= fj[f]#,, (2.22)
f=1
P

G [i] = gi 1gi [f?] O. (2.23)
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The two most widely used operations needed with vector-valued functions will be

addition and taking the inner product.

Proposition 4 (Addition of vector-valued functions). Let F : X -+ R' and G : X -+

R n be defined according to (2.22) and (2.23), respectively. Then addition F(x) + G(x)

requires 9(Pn) operations.

Proof.

F(x) + G(x) = [(fi(x) + gi(x)) ... (fn(x) + fn(x))]

Addition of n scalar-valued functions costs 09(Pn).

Proposition 5 (Inner product between vector-valued functions). Let F : X -+ R'

and G : X -+ Rn be defined according to (2.22) and (2.23), respectively. Then the

inner product (F(x), G(x)) requires 0(Pn) operations.

Proof.

n

(F(x), G(x)) = (x), gt(x))

Each scalar-valued function inner product costs O(P) operations (Proposition 3), n

inner products have to be computed, and n summations must be performed leading

to a complexity of O(Pn + n) = O(Pn). E

2.4.3 Matrix-valued functions

Next, we consider matrix-valued functions.

refer to matrix-valued functions consisting

and gij : 2 - R, respectively, such that

.F[ij] = fij =

G[ij] = gij =

Let F: X-+ Rn' and G: X-+ Rnxm

of scalar-valued functions fij : X -+ R

P

E fi, [t]# ,f
t=1
P

Z g, [fe

(2.24)

(2.25)
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Throughout this dissertation, considerably more operations are performed using matrix-

valued functions than using vector-valued functions. Thus, in addition to addition,

multiplication, and inner product, we also discuss integration of products of matrix-

valued functions, Kronecker products, and vector-times-Kronecker products.

Proposition 6 (Addition of matrix-valued functions). Let F : X --+ Rmx' and

g : -+ Rrn" be defined according to (2.24) and (2.25), respectively. Then, addition

F(x) + g(x) requires O(Pnm) operations.

Proof.

F(x)+g(x) =

fi,1(x) + gi,i(x) ... fi,m(X) + gl,m(x)

fa,1 (x) + gn,1(x) ... fn,m(X) + gn,m(x)

Addition of nm scalar-valued functions costs O(Pnm). Iz

Proposition 7 (Multiplication of matrix-valued functions). Let F: X a Rmx and

g : X-+ RT n be defined according to (2.24) and (2.25), respectively. Assume that the

third order tensor with entries f #i(x)Oj(x)Ok(x)dx for i, j, k = 1,... P is precomputed

and that its values can be accessed in 0(1) operations. Then, multiplication F(x)g(x)

requires 0(P3 rmn) operations.

Proof. Let R : X 9 Rmx" such that for i = 1, . . . , m and j = 1.... n

[i, j] (x) = F[i, k](x)9[k, j](x)
k=1

r P P

= Z : fi,[f]01(x ) E
k=1 f=1

P Pr

d~qe(x)#~e(x)

f=1 P'=1 k=1

P P

= fZ=1e(x)#I() D^,
e=1 e'=i
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where the matrix Di,, E RPxP represents the coefficients of D[i, j] in a "double" basis

consisting of products of #t and #j. Each element of this matrix can be computed

through the sum of r coefficients fi,k and gki in O(r) operations.

We project this expansion back onto a single basis. The single basis now has

maximum order 2P and be represented as

2P

D[i, j](x) = [d1, ] [l1#i(x)
1=1

This computation is performed by projecting the double expansion onto #i for 1

P P

di, [] = # Y J e(x)e(x i(x)dx Oij[e, l']
f=1 f,=1

If the triple product is precomputed and stored in memory, then each coefficient

di,j[l] requires O(P2r) operations. Since there are 2P coefficients, the total cost for

computing D[i, j] (x) is O(P3 r) since there are mn such functions the final complexity

of the computation is O(P3rmn).

Proposition 8 (Inner product between matrix-valued functions). Let F : X -+ Rmxn

and g: X m xn be defined according to (2.24) and (2.25), respectively. Then, the

inner product (F(x),!g(x)) requires O(Pnm) operations.

Proof.

n m

(F(x), g(x)) = (fe, (x), g, (x))
t=1 f'

Each scalar-valued function inner product costs O(P) operations (Proposition 3),

nm inner products and a summation of nm elements must be computed, leading to

a complexity of O(Pnm + nm) = O(Pnm). D

Next we consider additional operations between matrix-valued functions and ma-

trices that will, especially, be useful for designing efficient alternating least squares
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algorithms in Section 3.5.

Proposition 9 (Multiplication of a matrix-valued function and a matrix). Let F :

X - R"'x be defined according to (2.24) and let A E R"'*. Multiplying FA requires

((Pnmr) operations.

Proof. Let g(x) = F(x)A be a matrix-valued function such that g X: R - r.

n

g[ij](x) = ZF[i,k](x)A[k,j]
k=1

n P

= E Z fi,k[f]#j(x)A[k, j]
k=1 i=1

P n

=E Efi,k[f]A[k, j] #j(x)
i=1 (k=1

P

where as set of P coefficients gij [] = En 1 i, k[f]A[k, j] for f = 1... P has to be

computed at a cost of O(Pn) operations for each element i, j. Thus, the total cost is

o (Pnmr) operations. E

Proposition 10 (Integration of matrix-valued function products). Let F : X -+

R"'n and g : X -j R"'x be defined according to (2.24) and (2.25), respectively.

Then, integration of the product f F(x)g(x)dx requires ((Pmnr) operations.

Proof. Let A C R m'" be such that A = f F(x)g(x)dx. Then for i = 1, ... , n and

j 1,. . , m we have

r

A[ij] = J FZ[i, k](x)g[k, j]dx
k=1

- E 1 fi,k[f1gkj[1i(X)Of'(x)dx
rP P

k=1 i=1 i'=1
r p

E 5 f,k [t] gk,j[
k=1 e=1
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Thus the cost of computing each element of A is O(Pr) yielding a total cost of

O(Pmnr). E

Finally, we describe fast operations for multiply a Kronecker product of matrices

by a vector and a matrix. These operations will be critical for taking the inner

product between continuous low-rank decompositions and for alternating least squares

in Chapter 3.

Proposition 11. Let c E Rxn, F : X Rx"", and 9 : X -+ R"'. Then

computing

c(F g) (2.26)

requires

O(Pknm + P3nml)

operations.

Proof. The computation can be broken into two steps. First, c is reshaped into an

n x k matrix C, then product D(x) = Cg(x), where D: X - RrXl, is computed in

O(Pknm) operations according to Proposition 9. Then after an appropriate reorder-

ing of the scalar-valued functions making up D, we can obtain a new matrix-valued

function D : X - RIxf , and we compute DF in O(P3 nml) according to Proposi-

tion 7. The final result is then obtained by flattening this product into vector-valued

that maps X -+ R"D. E

Proposition 12. Let C E Rrxnk, F X Rnxm, and g : X -+ Rkxl. Then

computing

C(.F g) (2.27)

requires

O(r (Pknm + P3nml))

operations.

Proof. The proof simply applies Proposition 11 to each row of C. El
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Chapter 3

Function-train decomposition

To compute with multivariate functions it is important to represent them in a scal-

able manner that tackles the curse of dimensionality. Specifically, we seek to represent

multivariate functions in a format whose storage cost grows polynomially, rather than

exponentially, with dimension. Furthermore, we pursue representations and associ-

ated algorithms that scale with the intrinsic complexity associated with a function's

"rank," rather than with the number of inputs. Consider the example of representing

the function f (x1, . .. , Xd) = x1 as d increases. Since this function is only a func-

tion of the first variable, expressing this function on a computer should not take an

exponentially growing amount computational resources.

The notion of the SVD rank of a function of two variables, discussed in Chapter 2,

does not readily extend to the multivariate case. Instead, we will borrow the notion

of rank from the literature on tensor decompositions. In essence, we view low-rank

decompositions of functions as continuous extensions of low-rank decompositions of

tensor.

In this chapter, we present algorithms for converting and computing with functions

in a low-rank format called the function-train (FT) decomposition. In particular, we

describe an algorithm that, under certain conditions, provably converges to an FT

representation of the function with a prescribed accuracy after a finite number of

function evaluations. We specifically distinguish this notion from approximation of a

function in a data fit context. In data fit problems, one is given a set of data and is
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tasked to build a functional representation for it. In those cases, one cannot create an

algorithm that can even attempt to guarantee convergence of the approximation to

the "true" function that generated the data without the ability to obtain more data.

Our goal, on the other hand, is to develop a framework for building algorithms that

can accurately approximate multivariate functions. For low-rank functional approxi-

mation in the context of data-fit problems we refer to the recent work by Doostan [40],

Chevreuil et al. [26], and the dissertation by Rai [103].

In Section 3.1 we provide background on tensor decompositions. In Section 3.2

we provide conditions under which an FT decomposition achieves a certain accuracy.

In Section 3.3, we describe both how to perform cross approximation to accurately

decompose a function into its FT representation and how to use rounding for reap-

proximating a function in FT format to a certain accuracy with smaller FT ranks.

In Section 3.4 we describe how to perform multilinear algebra in FT format, and in

Section 3.5 we describe examples when these operations can be performed faster with

a continuous and rank-revealing alternating least squares. Finally, in Section 3.6 we

provide examples involving function approximation and integration.

3.1 Discrete tensor decompositions

A tensor is a multidimensional d-way array, i.e., a first order tensor is a vector, a

second order tensor is a matrix, etc. Tensor decompositions extend ideas of SVD

based reduction to multiple dimensions and allow the complexity and structure of

the problem to guide computational cost rather than the dimension. Generalizations

of the SVD to multiway arrays are not straightforward, and as a result, many types

of tensor formats have been created. In this section, we review the basics of tensor

decompositions to put into context the continuous analogue that we develop. For a

broad overview of tensor computation and discussion of various tensor decompositions

we refer to [29, 60,61,75].

Some of the first tensor decompositions [65,66] involved approximating a tensor

through finite sum of r outer products of vectors. The method is now called the
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canonical decomposition [23] or the parallel factors (PARAFAC) [63] decomposition.

Consider a tensor F E Rn 1X..Xl with mode sizes nk E Z+. The canonical decompo-

sition of the tensor represents each element of the tensor as

r

[ii, i2, ... , id] = Ui[ii, a]U2[i2, a]. . .Ud[i, a] (3.1)
a=1

where r is called the canonical rank and the matrices Uk E R nkXr are called the

canonical factors. This representation has a storage capacity that is linear in dimen-

sion d, mode size n, and rank r. For simplicity we have assumed equal mode sizes

nk = n for all k. One issue with this decomposition is that there is no finite algorithm

for determining the rank of a tensor, as it is NP complete [64,76]. Another problem is

that, for fixed rank, the problem of finding the best approximation in the Frobenius

norm can be ill-posed [36].

Another tensor decomposition that has better properties is the Tucker decom-

position [82, 122]. This representation decomposes a tensor into a small core tensor

multiplied by a matrix along each mode. It is written as

ri r2 rd

.F[ii, i 2 ,... ,id] = S ... g[i,... ,a]Ul[ii, a]U2[i2, a2] ... Ud[id, ed],

aQl a21 Cd 1

(3.2)

where rk are called the Tucker ranks, the small tensor g E Rr' x...xrd is called the

Tucker core, and Uk E Rnk X'k are called the Tucker factors. Techniques for computa-

tion of this format are stable; however, because the Tucker core is an order d tensor,

it has exponential storage cost with dimension, 0 (dnr + rd), where we again assume

nk = n and rk = r.

An instructive interpretation of the Tucker decomposition is as a subspace ap-

proximation [62]; the Tucker core g describes the coefficients of F with respect to

basis vectors Uk [:, i] spanning certain subspaces. The notion of subspace approxima-

tions is an important way in which different kinds of tensor decompositions can be

understood. Consider a tensor product space X = X1 x ... x &- where Xk c R1

such that a tensor F is an element of this space F E X. Now suppose that we take
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subspaces of each set X1, denoted as W C Xk, where each subspace O is spanned

by an orthonormal basis {Uk[:, a] : 1 < a < dim 3}. Then, a Tucker representation

of the tensor F E X is defined by the subspaces 9 so that F E 0= 3"1 x ... X 9,

and the Tucker factors Uk are matrices whose columns are the collection of basis

vectors spanning the corresponding dimension's subspace. In this situation, it is clear

that the g represents the coefficients of all the possible combination of basis func-

tions. The 0(rd) storage cost arises because all combinations of the basis vectors are

considered.

To reduce this storage expense, Hackbusch and Kuhn [62] and Grasedyck [591

developed the notion of a hierarchy of subspaces that describe the interaction between

groups of variables, instead of considering interactions between all of them. In this

way, the exponential cost with respect to tensor rank can be reduced. The resulting

Hierarchical Tucker (HT) format is a flexible generalization of tensor formats that

allows for any groupings of variables. Such groupings are essentially a way to take

advantage of the separability of the problem.

Consider the example by Hackbusch and Kuhn [62] of a function f (Xi, X2, 3, X4) =

a(Xi, X2) 0 (X3, x4 ). Clearly, this function is separable between dimensions X2 and 3.

In this case, one does not need to consider the interaction of all basis functions Uk.

Instead, one can build a low rank representation of a using only the basis U1 and U2 ,

and a low-rank representation of 3 using basis U 3 and U4. The HT generalizes this

example by introducing levels of subspaces, where each level is a recursive splitting of

the previous level. One special splitting, a binary splitting, first splits the variables

in half, e.g., f (X1, X2, X3, X4) = a(x 1, x 2 )3(X 3, x 4 ). Then at the next level, each of the

halves are again split in half. In the example above, since a and 0 are only functions

of two variables the process would stop.

We now provide a more abstract example of this binary splitting, let 1 denote

a subspace level. For 1 = 0, the tensor approximation subspace X 0 is the tensor

product of each each dimension of the corresponding level 3?'0 for i = 1, .. . , d. At

level 1 = 1, subspaces are grouped together two at a time. These grouped subspaces

g+ = gi x gio, form a new a vector space for the combined variables xi and
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xj+i termed X,1 The 1 = 1 level approximation subspace for these variables is

correspondingly defined by all of the Yi,'. The splitting then proceeds recursively

until a final level L, where all of the variables are grouped together. This process is

visualized in the adaptation of a figure from [62] below

2 3,4 d-1,d

X = x X .X 4 x - x1

1 ,2,3,4 d-3,d-2,d-1,d

1 52,3,4 d-3,d-2,d-1,d

XL 1.............. d

Note the hierarchy of tensor spaces formed by these levels XL C XL 1 C ... C

XO c X. Intuitively, at level 1 there are half as many variables as in level I - 1,

because the variables of level 1 - 1 were grouped together to form the variables of

level 1. Therefore, at level 1 one only has to consider a set of interactions of basis

functions from two subspaces, interactions between all of the subspaces are never

required. Such a hierarchy allows one to reduce the computational storage cost to

one that grows polynomial with rank because interactions between all the variables

are never considered.

A special case of the HT format that has good numerical properties is the tensor-

train (TT) decomposition [95, 98]. The TT is obtained by a particular splitting of

variables corresponding to pruning away one dimension at a time. This procedure

can be visualized as
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0 _ X g2' X X --- X d-1X d

1,.,2 d--1 d

L-1X__.L-X X L-L
1, . . , d -1 dXLl2 gyL-1 2x

1 _d-1 d

1.d

L _ ,..,d

The TT decomposition of tensor .F E R"i.X- Xnd represents each element as a

product of matrices

TO rk rd

F[i, i 2 ,. ,i ] = -. .- .Fi[ao, ii, a1]F2[al, i 2, a2] --F2[ad_1, ic ad],
a0=1 a1=1 ad=1

= Fl[:, ii, :]7C2[:, i2, :] . .Fd[:, id,: (3.3)

where rk are called TT ranks with r0 = rd = 1 and .Fk E Rrk_1xnkxrk are third-

order tensors called the TT cores. The storage complexity of this representation is

linear with dimension and quadratic with the TT ranks, i.e., storage complexity is

o (dnr2) where we let nk = n and rk = r. Because of the simplicity associated

with decomposing a tensor into its TT format and of performing multilinear algebra

operations with tensors in TT format, we consider this format most heavily in this

thesis. In fact, it is this format for which we develop a continuous analogues of discrete

algorithms.

The subspace interpretation of the TT allows us to link the TT ranks to the SVD

ranks of various unfolding matrices. An unfolding matrix is the discrete equivalent of
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the separated forms discussed in Section 2.1. It refers to the reshaping of a tensor into

a matrix, i.e., converting a multidimensional array into a two dimensional array. For

example the kth reshaping Fk of F refers to grouping the first k variables together

and the last (d - k) variables together,

FN~i . .. ,ik; ik+1, .. - -' d] -= -F1il- .. - id],I F E: R = M+ *

Oseledets [95] showed that the ranks of the reshapings provide an upper bound

for the TT ranks, i.e., rk < rank Fk. This result underpins the notion that tensor

decompositions exploit the separability of the function. In other words, they take

advantage of the fact that functions can often be written as the product of a small

number of functions of a subset of the dimensions.

In the rest of this chapter, we describe a continuous analogue for many techniques

that are typically performed with discrete tensor decompositions. Continuous version

of all the major discrete algorithms are provided, and they include cross approxima-

tion of black box tensors, tensor rounding, multilinear algebra, and alternating least

squares.

3.2 Continuous low-rank decompositions

In this section we describe the continuous analogue of the tensor-train decomposition.

In Sections 3.2.1 and 3.2.2, we extend the existence results for the discrete tensor-train

developed in [95,98] to the continuous case. These proofs formalize the construction

used in [96] to obtain FT representations of particular example functions. 1

The algorithms that result from the framework, and that will be discussed in later

sections, are completely decoupled from-and hence agnostic to-the representation

of the univariate functions that underly the separated representation we discuss in

this section. This decoupling is a critical distinction between our work and previous

'Note that [96] called these representations functional tensor-train (FTT) decompositions. We
prefer the name "function-train" because tensor typically refers to a discrete multidimensional array,
while function-train better reflects the continuous nature of the decomposition.
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work on low-rank functional decompositions [17, 26, 40, 103]. These previous efforts

essentially translate the problem of approximating a function in low-rank format into

the problem of approximating the tensor of parameters describing the underlying

univariate functions. This translation is possible if the univariate approximations

are linear in the parameters-for example, when the parameters are coefficients of

a prescribed basis. The present framework and algorithms are generalizations of

these previous methods: because of our "computing with functions" approach, we can

seamlessly incorporate adaptive and nonlinear representations of univariate functions

within the overall low-rank format. As such, we are better able to adapt to local

structure, for instance, by identifying knot locations for piecewise approximation.

Some illustrative implementations of the framework, on discontinuous functions and

other problems requiring adaptive or heterogeneous univariate approximations, are

given in Section 3.6.1.

We refer to a hypercubic input space X= [ai, b1 ] x ... x [ad, bd]. A function-train

is defined by a set of d matrix-valued functions {1(XI), 72 (x2 ),... , Td(Xd)} and a

set of FT-ranks r = [ro, ri, . . . , rd] such that ro = rd = 1 and F, : [ai, bi] -+ Rr-ixrj

for i = 1, ... , d. Furthermore, an evaluation of a function f : X -+ R in FT format is

obtained through a sequence of vector-matrix products

f (X) = F1(Xi)F2(x 2 ) ... Fd(Xd). (3.4)

It will also be helpful to think of these cores Fi as matrices of univariate functions,

e.g.,

f (2) g(2) g(d)
1,1 .2,r2 f, 1

f(1) =(1.) f.. (3.5)

f(2) g(2) f(d)
.,1 J r,r2 Jrdl,1

where f) : [ak, bk] -+ R. Note the equivalence between the cores in the FT and the

cores of the TT (3.3). If the third-order tensors representing the cores of the TT are
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discretized into an infinite number of grid points we arrive at matrix-valued functions

that represent the FT cores. Analogously to the discrete case, the FT of a function

f inherits many of the properties of the separated forms fk. For example, if the

functional SVD of each of these fk exists, then we can prove the FT exists. Also, the

ranks of the truncated SVD upper bound the FT rank rk, just as in the discrete case.

3.2.1 FT for functions with finite-rank unfoldings

We start with a result bounding the FT ranks of a function whose unfoldings are all

finite rank.

Theorem 3. If each separated form fk (2.1) of a d-dimensional function f has a

finite rank SVD (2.4) with ranks

rank fk = rk, (3.6)

then there exists an FT decomposition i of form (3.4) with FT-ranks not higher than

rk such that |f - f |L2 = 0.

The proof of this theorem is the continuous analogue of the corresponding theorem

by Oseledets [95] and is provided in Appendix A.3. The proof is constructive and

it describes an SVD based algorithm for decomposing the function. In particular,

beginning with the right singular functions of the first unfolding of f, a sequence of

extended SVD are performed for a sequence of right singular functions.

3.2.2 FT for functions with approximately low-rank unfold-

ings

We continue by showing that if the unfoldings functions fk of f are approximately

low-rank (see (2.18)), then we can obtain a FT whose error is bounded.

Theorem 4. Suppose that the unfoldings fk of the function f satisfy

f = - gk + ek, rank gk = rL, ||ek| I2 = Ek, fork= 1,..., d - 1 (3.7)
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Then a rank r = [ro, r1 ,... , rd] approximation j of f in the the FT-format may

obtained with bounded error

d-1

f -f)2dx < E .(3.8)

k=1

The proof is provided in Appendix A.4. As with Theorem 3, the proof of this

theorem is constructive, and it follows the corresponding proof in the discrete TT

case [98].

Similar results for the function-train are developed in [17]; in particular, see [17,

Prop. 9]. There, the FT approximation error is expressed in terms of the singular

values of the extended SVD of each collection of right singular functions. These

singular values are further related to the Sobolev regularity of f, thus yielding results

on the approximation rate of the FT format (e.g., error bounds that depend on rank,

regularity, and dimension). In the present paper, however, we sidestep this functional

analytic perspective and obtain error bounds directly from an assumption about the

properties of unfoldings of f. (These bounds do not directly involve regularity; for

instance, even a discontinuous unfolding might be low rank.) Our approach thus

closely follows the discrete TT results in order to provide a general link to a variety

of subspace-based [611 tensor decompositions. The properties of an FT decomposition

can then be seen directly from the properties of the unfoldings. For example, to find

an ordering of the input variables that yields the lowest storage cost, one can search

for orderings that yield low-rank unfoldings.

3.3 Continuous cross approximation and rounding

The proofs of the two theorems described in sections above are constructive in the

sense that they describe an algorithm that may be used to obtain the FT approx-

imation. In particular, the algorithm requires taking the SVDs of a sequence of

vector-valued functions V to obtain the next core. However, taking an SVD of high

dimensional functions is infeasible, and Oseledets and Tyrtyshnikov [98] propose re-
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placing the SVD of each V with the skeleton decomposition to obtain the discrete

TT. In this section, we extend their cross approximation algorithm to the continuous

case for obtaining a FT approximation of a black box function. Then, we describe

tensor rounding and show how it can be used for rank adaptation in situations for

which the rank is not known.

3.3.1 Cross approximation of multivariate functions

The cross approximation of a multivariate function is a straightforward extension of

the cross approximation of the separated representation of a vector-valued function

(described in Section 2.3.3). The idea is that whenever the extended SVD of a vector-

valued function is required, Algorithm 1 is used to obtain a skeleton decomposition

of the function instead.

Furthermore, since we consider sequences of unfoldings corresponding to different

partitions of the input variables, the skeleton decomposition is defined by more than

just a single pair of fiber sets a and y as in Section 2.3. Instead, we have d - 1 pairs

of fiber sets {(zi, y 1),... , (zd-1, yd-1)}, where each pair (zk, Yk) corresponds to the

fibers used in the skeleton decomposition of the unfolding fk. For example, if we

consider an unfolding f 2(X<2, X>2) of rank r2 , then we can use the fiber sets

z =Z{Z2,..., 2} 2, i = r2,

and

y2 y EX>2, i=1,...,r 2 ,

to write the skeleton decomposition of this unfolding as

f 2(X<2 , X>2) = f ({xi, x 2 }, y 2)G 2f (z 2 , {X 3, X4 .... Xd})

= U2 (Xi, x 2 )G 2 V2 (X3 , X4, ... Xd),

where U2 is a vector-valued function composed of r2 scalar-valued functions, each

from X1 x X2 -+ R; G2 = [f(z 2, y2 )]t; and V2 is a vector-valued function composed of
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r2 functions, each from X3 x ... x d -+ R. Here we use the notational convention

that if f accepts a vector argument, it returns a vector-valued function, e.g.,

f (x<2, Y 2) = [f (x<2 , Y2) ... f (X 2, y 2 )] =U2(2)

As with the cross approximation algorithm in [98] we enforce a nestedness con-

dition on the sequence (zk)dy : if zk 1 = (x 1 , ... , Xk, Xk+l) E zk+1 for some i E

{1,..., rk+l} then there exists a j E {1,... , rk} such that = (X1,... Xk). Our

algorithm also enforces an analogous nestedness condition for (yk)d 1 .

We now walk through the cross approximation procedure for a function f whose

unfoldings have ranks (rk)d-1. Cross approximation starts with the skeleton decom-

position of the first unfolding

f 1(xI, X>1) = f (xi, y')Gif (z, x> 1)

= F1(x1)V(x>1),

where F,(xi) f(xi, y')G, and V is a vector-valued function such that Vi[i](x>i) =

f (zi, x>1 ) where z is the i-th element of z1 . Now, V is a vector-valued function with

a rank-r2 extended SVD, and thus, by Theorem 1 its skeleton decomposition exists

and can be written as

V1(x>,) = V(x 2 , x>2 )

=f(z1 , x 2,x>2 )

= PZ1, X2, Y2 )G2f (Z2, X>2),

where the second equality is simply the definition of V, and the third equality follows

from the definition of the skeleton decomposition and the fact that z' and y 2 are

nested in the corresponding sequences of zk and yk, respectively.

From the last line above, we can write F 2 (x2 ) := f(z 1 ,x 2 ,y 2 )G 2 and V2

f (z 2 , x>2). We now have have the first two cores F and F2, and can proceed recur-
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sively to decompose V2, and so on. Once we finish this forward sweep, we can perform

a similar backwards sweep. Further sweeps may be performed until convergence.

3.3.2 Rounding and rank adaptation

The cross approximation procedure discussed above relies on specifying the ranks rk

a priori. In practice, one can find the ranks adaptively through a procedure called

rounding. The idea is that if an FT with certain ranks can be well approximated

by an FT of smaller ranks, then we have overestimated the ranks used in the cross

approximation algorithm and can be confident about its results. Rounding begins

with a given FT decomposition and aims to generate an approximation of it with

relative error c. Rounding is useful not only as a way of verifying the ranks used

in cross approximation, but also because the ranks of an FT representation may be

higher than necessary depending on how it was created. We now describe a continuous

rounding procedure, which is similar to the procedure for discrete TT representations

in [95], with the primary distinction being the notions of left and right orthogonality.

The rounding procedure follows directly from the definition of the ranks of the

separated form of the function f. Suppose we start with the first unfolding of a

function in FT format given by

f1 (Xi, X>1) = .F1 (Xi) [E2(X 2).F3 (X 3) . . .F(Xd)]

= F1V 1 ,

where V1 : X> 1 -+ Rr . This equation expresses f' as a rank r1 singular value

decomposition. Next we seek to compress f' through a truncated SVD. The trun-

cated SVD is obtained by first performing two QR decompositions of matrix-valued

functions according to Definition 4:

FI(xi) = Q1(x1)R1 and V[(x> 1 ) = Q1(x,1)R 1 , (3.9)
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such that

f ,(Xi, x> 1) = Qi (xi)R iaT 1(x>1) T .

Then, one obtains the truncated SVD of R1 Rf ~ U1 D1VT, where U1 E Rrixfi,

v1 E Rfixri, and D1 is a diagonal matrix whose values are all truncated so that we

obtain an approximation of g1 that has an error 6:

g1 = Q 1U 1 D1V1T T],

1 .F2 Y3 T.d

where I|f - gil 5S and E1 now has a reduced size 1 x 1 where i < ri. Now that we

have reduced the number of columns of the first core and the number of rows of the

second core from r1 to f1 , we move on to the second unfolding of the approximate g,

using the updated cores. Again, a truncated SVD will be performed on this unfolding

to reduce r2 to f2. In this case we have

gf (X2,X>2) = [t(X1)B 2 (X2)J [F3(X3 ) ... Fd(Xd)],

= U 2 V2 ,

where U2 : -+ Rixr2 and V2 : 2 -+ Rr2X1. The QR decomposition of matrix-

valued functions is again used to obtain a truncated SVD

U2(X<2) = Q2 (X 2 )R 2 , Matrix-valued QR of the left cores

T(X>2 ) = 9 2 (X> 2 )R 2, Matrix-valued QR of the right cores

2 ~ U 2 D 2 VT Truncated SVD

92= 2U2 D 2 V2 2 , New approximation

such that 192 - 9| I I < The truncated SVD in the third equation is responsible for

making the second and third cores smaller such that i 2 K r2 . After the truncation
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associated with the first and second cores we obtain a total error

1192 - f 1= g2 - g1 + gi - fl,

<6+6= 26.

We can repeat this procedure (d - 1) times to obtain a final approximation f = gd-1

such that

If - ffl 1 (d - 1)6.

Thus we can obtain a relative error of E by setting 6 = d1 1IfI

The computational difficulty with the algorithm described above is obtaining the

QR decomposition of the matrix-valued functions Uk(X<k) and Vk(Xyk), since they

have multivariate, potentially high dimensional inputs. A computationally feasible

algorithm must be limited to one in which the QR decompositions are feasible. In the

discrete setting, we can obtain an algorithm that only requires the QR decompositions

of reshapings of single cores. In the continuous setting, we analogously obtain an

algorithm that requires only the QR decompositions of each FT core. This algorithm

starts by assuming that all the cores F2, ... , Fd have orthonormal rows. Then, we

can show that V, also has orthonormal rows and that we are not required to take

its QR decomposition in (3.9). Thus in the first step of the rounding procedure we

only need to compute the QR of T1. The concept of orthonormal rows is analogous

to left orthogonality [95] and, relatedly, orthonormal columns is analogous to right

orthogonality. The two definitions are explicitly given below where the inner products

refer to the inner products between quasimatrices as given in (2.2).

Definition 17 (Orthonormal rows). A function train core Fk : k - R'k-1 xrk has

orthonormal rows iff

(Tk[i, (x), .k[j, :(x)) = 6ij for ij = 1 ... rk_1 (3.10)

Definition 18 (Orthonormal columns). A function train core .7 : X - Rrk-1 xk
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has orthonormal columns iff

(Fk[:, i](x), Fk[:, j](x) = ij, for i, j = I ... rk (3.11)

Now to show that V, has orthonormal rows we consider the inner product between

the rows of V1. Since evaluations of V, take values in R" " we will denote by Vk

Vk(X2, - - - , Xd) = F2[k, :(X2 )F 3 (x 3 ) - - - Fd(Xd),

the scalar-valued function representing the k-th row of V1. The inner product between

row k and 1 can be obtained as

(k, V1) Vk (X2,... , xd)V1(X2,... , Xd)dx2 ... dXd

= ( 2 [k,:](x2 )F 3(x2) ... .- (xd)) ( 2 [l,:]( 2)F 3(x2) ... Td (xd))dx2 .. .dXd

= (F2 [k, :](x 2 )F 3 (x2 ) ... .F(xd)) (Fd(xd)T .. 3 (x2)T F 2[l,:](x2)T ) dx 2 ... dXd

J 2 [k,:](x2) (Fa(x 3)(... (JFd(xd)d(xd)T dxd) ... )F3 (x3 )T dx3 )F2 [l, :](x2)T dx2

(3.12)

Row orthonormality implies that

I Tk(xk )E-jxk )dXk = for all k = 2,. . ., d,

and therefore

(VkV) = .F2[k, :](x2)Ir2,F2[l, :](x2 )Tdx 2 = Jkl.

Since V, has orthonormal rows, we have R, = Iri, and there is no need to take the

QR decompositions of V1 in the first step. Furthermore, one can apply this reasoning

to each Vk to show that the QR decomposition is never required as long as the cores

from which it is formed has orthonormal rows.

We now move onto dealing with taking the QR decomposition of U2. Recall

that U2 = F 1Y2 where F1 has orthonormal columns obtained from the SVD at the
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previous step. Since one can use the same reasoning as above to show that the product

of matrix-valued functions with orthonormal columns has orthonormal columns, we

can orthogonalize the columns of U2 by only orthogonalizing the columns of F2. This

procedure only requires the QR decomposition of a univariate matrix-valued function

(e.g., F 2 ), a computationally feasible procedure. Therefore, when considering the QR

decompositions of the successive Uk, only the QR decomposition of 4k obtained from

the previous iteration is required.

The entire rounding algorithm is given in Algorithm 3. It starts with a sweep

through cores k = 2... d from the right to the left to orthogonalize all of their

rows. Once this is completed, a left-to-right sweep is performed in which the reduced

SVD is performed. Core orthogonalization is performed by taking a sequence of QR

decompositions denoted by qr-mvf. The reduced SVD algorithm performed by first

taking the QR decomposition followed by a reduced SVD of Rk, and it is denoted by

svd-core.

Algorithm 3 ft-round: Function-train rounding

Require: An FT f; accuracy parameter c
Ensure: f with reduced ranks such that IIf - f <l efII

1: 6 = 11|f |

2: Fd = d
3: for k = d to 2 do
4: .Fk(Xk)R = qr-mvf (xTi) # Orthonormalize all e
5: Ek_1 = EkkRT

6: end for
7: for k = 1 to d - 1 do
8: TkAV = svd-core(fk, 6) # Truncated SVD with
9: Ek+1 = AVEk

10: end for

lements of core k

tolerance 6

The overall approximation algorithm with rank adaptation can then be imple-

mented by successively increasing, or "kicking," the FT ranks higher until rounding

leads to a reduction of all ranks. This type of algorithm ensures that the FT ranks

are overestimated for the cross approximation procedure. The pseudocode for the

rank-adaptation procedure is provided by Algorithm 4.
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Algorithm 4 ft-rankadapt: Function-train approximation with rank adaptation

Require: A d-dimensional black box function f : -+ R; cross approximation
tolerance 5cross; Number of ranks to increase with each adaptation kickrank;
Rounding accuracy Cround; Initial ranks r

Ensure: Approximation f such that a rank increase and rounding does not change
ranks.

1: f = cross-approx(f, r, 6 cross)
2: fr = ft-round(f, round)

3: r = rank(fr)
4: while 3i s.t. ij = ri do
5: for k =1 -+ d - do
6: rk =rk + kickrank
7: f = cross-approx(f, r, 6 cross)
8: end for
9: fr = ft-round(f, Eround)

10: r = rank(fr)
11: end while
12: f = fr

3.4 Continuous multilinear algebra

Performing continuous multilinear algebra is one of the main advantages of the con-

tinuous framework discussed in this dissertation. The operations of addition, mul-

tiplication, differentiation, integration, and inner products are easily performed for

functions in FT format.

Addition and multiplication of two functions are performed similarly to addition

and multiplication of tensors in TT format. For addition, the cores of g(x) = f(x) +

h(x) are

91(x) = [Fi(x) 1(x)], k (x) = (X) 0 9 g(X(X)

L0 Hk (X) L ?i(x)

for k = 2 ... d. For multiplication, g(x) = f (x)h(x), we have

gk(X) = Fk(X) 7-k(X) for k =1...d.

For both of these operations, the continuous functional decomposition has an impor-
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tant advantage compared with operations based on discretized representation of f

and h. Primarily, this advantage comes from the ability to add functions of differing

discretization levels, e.g., functions represented with bases of different orders. In the

discrete case, one can only add functions with identical discretizations.

The continuous nature of the FT also allows us to perform differentiation. To

perform this operation in the discrete case, one would be required to choose some

finite difference rule. From the purely discrete perspective of multidimensional ar-

rays, the concept of differentiation is not well defined or unique, e.g., one can choose

different finite difference rules. In the continuous case, performing differentiation re-

quires differentiating scalar-valued functions that make up the corresponding core.

For example, consider the partial derivative of a d dimensional function f

dflj9 df)

dxk . . . dxk

Of_
OXk F1 k...F-1 Fk+ - Fd-

df$ ,1k df rk

dxk ... dxk

If each of the corresponding univariate functions is expressed in, for example, a basis

of orthonormal polynomials, then this operation is unique, well defined, and compu-

tationally inexpensive to compute.

Integration is another area of difference between the discrete and continuous cases.

In the discrete case, integration involves a sequence of tensor-vector contractions,

where the vectors denote quadrature weights. Again, this requires both a non-unique

interpretation of the values of the tensor as quadrature nodes and an explicit deci-

sion as to what integration rule to use. In the continuous case, integration involves

integrating over all the one dimensional functions in each core and then performing
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matrix-vector multiplication d - 1 times

f (x)dx = JF1(x1)T 2 (x2). . .Fd(xj)dx1 ... dxd

= ( 1(x1)dx1) (JF 2 (x2)dx 2) ... (JFd(xd)dXd

=F1i2... rd (3.13)

where 7k = f .Fk(Xk)dxk contains entries Fk[i,.j] = f fi (Xk)dXk. Furthermore, since

each of the univariate functions is typically represented in a known basis, this integral

is well defined, unique, and computationally inexpensive to obtain.

The inner product between two functions is another important operation that is

ubiquitous. Naively, the inner product can be implemented by first computing the

product g(x) = f(x)h(x) and then integrating g(x), requiring O(dr4 ) operations.

However, this operation can be made more efficient by combining the operations

needed for integration and multiplication. For example, Algorithm 5 uses an efficient

computation of JT (A 0 B) to perform the inner product in O(dr3 ).

Algorithm 5 f t -inner: Inner product between two functions in FT format

Require: Functions f with ranks r j) and g with ranks r g) in FT format
Ensure: y =f f (x)g(x)dx

1: y = f 91 (xi) O F1 (x1 )dx1
2: for k = 2 to d do
3: Y = reshape(y, r _ ,r ()
4: T=Fk(x)TY
5: A = k(x)T T(x)
6: Y = f A(xk)dxk

7: y = reshape(Y, 1, 4f)rr )
8: end for
9: y = y[1]

Furthermore, once in FT format, many other familiar operators may be applied

to a function with relative ease. Consider the Laplacian Af(x) = g(x) = I 9f

Written in this form, one can consider the Laplacian as the summation of d functions

80



gk(x) in function-train format where

0kx 2 f (X)

One can imagine using the ability to apply this operator directly on the functional

format to construct iterative linear system solvers. In the context of low-rank tensor

decompositions, these types of solvers are the subject of much current research [37,

74, 116]

3.5 Continuous rank-revealing alternating least squares

Alternating least squares (ALS) is a ubiquitous optimization algorithm for tensor-

based computation [38,40, 75,94,97,123]. The main idea of ALS is to sequentially

solve a multivariate optimization problem by solving a sequence of least squares sub-

problems that result from fixing all but one or two variables. In the context of low-

rank tensor decompositions, the separated form of the decompositions means that the

notion of dealing with one or two variables at a time is conceptually attractive.

Many operations, for example multiplication of low-rank functions, can poten-

tially be performed more efficiently by solving a corresponding optimization problem

using ALS. Recall from Section 3.4 that multiplication of two functions results in a

function with squared ranks, and in practice, rounding is then used to decrease the

rank once more. Alternatively, posing such operations as solutions of corresponding

optimization problems can potentially bypass intermediate results that have large

rank. In other words, when the rounded result of a multilinear algebraic operation

may indeed be low-rank, solving a corresponding optimization problem with ALS can

yield computational advantages. We discuss specific optimization problems corre-

sponding to multiplying functions and applying high-dimensional diffusion operators

in Sections 3.5.2 and 3.5.3, respectively.

In this section, we first show how to use continuous linear algebra within ALS to

obtain an adaptive and rank-revealing solution of an optimization problem. Loosely
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speaking, we want to find the "best" approximation f : X -+ R in FT format to

another function g : X -+ R. Recall (3.4) where f in FT format is written as

f (x) = F1(Xi) ... Fd(Xd),

the FT cores are denoted Fk(Xk) : Xk a Rlk-xrk, and the core sizes ro,... rd are the

TT/FT ranks.

Mathematically, this optimization problem can be formulated in two related ways.

The first way is

d

minimize Erklrk subject to 11f - gA2  C, (3.14)
k=1

where the norm is the L2 norm. This formulation seeks to find the function-train

approximation to g(x) that has the smallest FT cores. In spirit, this formulation is

related to

minimize 1|f - g11 2 subject to rk < r, k = 1, ... , d. (3.15)
f

The difference between these two formulations is that in (3.14) we specify a maximum

error bound E, and seek to find an approximation f with the smallest ranks that satis-

fies this error. Formulation (3.15) reverses the constraint and seeks an approximation

within a set of functions whose FT ranks are bounded by r. Formulation (3.14)

can be more attractive if a tight error tolerance is desired, while (3.15) can be more

attractive if the memory or computational time is constrained.

Algorithms that solve these optimization problems require indirect access to the

cores of the FT decomposition of g, i.e.,

9(X) = g 1 (X 1 ) ... d(Xd),

that has ranks o,..., kd. Typically, the ranks of g will be much larger than the

ranks of a good approximation f, i.e., Tk > rk, and the purposes of the optimization

is to obtain a good approximation that has smaller ranks. Furthermore, the need

82



for performing ALS typically arises because each core g is itself too expensive to

form; instead, it has some structure that can be exploited by the ALS algorithm. For

example, if g is the result of multiplying two functions g(x) = h(x)z(x) with cores

Wk and Zk, respectively, then in Section 3.4 it is shown that each core of !9 is given

as

gk (xk) = Wk(Xk) 0 Zk(xXk).

The algorithm described in this section never explicitly forms 9k because this

operation is too expensive; it requires 0(r4 ) operations and a corresponding increase

in storage. Together with rounding, such an algorithm requires 0(r6 ) operations

with respect to the rank of h and g. Instead, our algorithm uses these cores indirectly

through multiplication by matrices on the left and right. In other words, we only

compute gk(Xk)Ti or 'Pi9 k(xk), and this computation can be performed in 0(r')

operations according to Proposition 12. Furthermore, we never compute a SVD of

the large matrix-valued function 9k; instead, we perform QR decompositions of the

smaller matrices gk(Xk)T! and Pigk to achieve a total complexity of 0(r') operations,

an order of magnitude better than the rounding based approach.

The rank-revealing algorithm developed in this section utilizes the framework of

the ALS-DMRG algorithms used in the tensor-train literature for performing multi-

linear algebra [94] and solving linear systems [97]. The ALS-DMRG methods slightly

modifies the classical ALS algorithm by first fixing all but two FT cores and then split-

ting the cores using a truncated SVD to obtain a rank estimate. Next, we develop

continuous analogues of the ALS-DMRG algorithm.

3.5.1 Optimization algorithm

The continuous rank-revealing ALS algorithm requires solving a sequence of least

squares problems obtained by fixing all but two neighboring cores. Once the two

neighboring cores are optimized, the left-right or right-left sweep proceeds by opti-

mizing for the next pair of cores. This pseudocode for this algorithm is provided in

Algorithm 6. There are two main tasks in this algorithm, and these tasks are shown
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in Lines 7 and 8 in the context of the left-right sweep. Note that they also reappear

for the right-left sweep.

The first task is solving an optimization problem (3.16) over a two-dimensional

core We : Xi x + 1 Ri Xri+2 that represents the product of two cores Wi = FiFi+:

minimize ,1. .. Fi_1wiFi+2 ... d - g11 2 . (3.16)
Wi

The solution to this problem is described in Section 3.5.1. Once Wi is obtained, it

needs to be split into new components FJ and Fi+1.

The second task, splitting VV is referred to as core-decimation in Line 8 of

Algorithm 6, and its solution is described in Section 3.5.1. Briefly, core decimation

uses a truncated SVD to separate the bivariate core W into two univariate cores Fi

and Fi+1 . The ranks of f are learned during this step.

Solution of ALS subproblem

An efficient solution to this optimization relies on row orthonormality (Definition 17)

and column orthonormality (Definition 18) of the FT cores Fk. Additionally, we use

the following properties, derived in Section 3.3.2, of products of orthonormal matrix-

valued functions.

Proposition 13. Let f : X1 x ... x Xd -+ R have the FT decomposition f =

F1(x1) ... Fd (xd). Suppose that the matrix-valued functions F : Xi -+ Rri-1xri for

i = f,... ,d have orthonormal rows according to Definition 17. Then R : et x ... x

Xd - R jxrd defined by

R(xi, Xi+, .. - -,xd) = i(xi).T+1(xt+1) -d Fj(xd)

also has orthonormal rows.

A similar proposition holds for matrix-valued functions with orthonormal columns.

Proposition 14. Let f : X1 x ... x Xd -+ R have the FT decomposition f =

F1(xI) ... Fd(Xd). Suppose that the matrix-valued functions Fj : X - Rri-1xri for
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Algorithm 6 Alternating least squares with DMRG for RHS in FT format

Require: FT cores of g, g for k = 1,..., d;
Initial cores approximate TO for k = 1,... ,d

SVD truncation tolerance c;
Convergence tolerance 6;

Ensure: YF) T.. - 1 . . - 1 where f is the iteration number
1: d = 1
2: while not converged do
3: {Left-Right Sweep}
4: W, = arg min W1 7( ) ... 7- -1 1 ... d112

5: [-Fi ] = core-decimate(Wi, E) # SVD truncation tolerance e
6: for i =2... d - 1 do
7: Wi = arg min||Fj7.. .(') E(t1) ... y - 1)!1 .g.. !9||2

8: [, ,T+] = core-decimate(W, E)
9: end for

10: f() = . . .#)

11: if < 6 then
12: return
13: end if
14: f = f + 1
15: {Right-Left Sweep}
16: Wd_1 = arg minI I(T- 1-) T.(t-l)1 - ... gd 2

17: [ = core -decimate(Wd1, c)
18: for i =d - 2 .. 1 do
19: Wi= arg minI.F .1) ... y1 M 2- - 2

20: = core-decimate(Wi)
21: end for
22: f() - 7.(1) .

23: = If(t) - f(v-1 I
24: if 6 < 6 then
25: return
26: end if
27: k = k + 1
28: end while

2 = 1,... , have orthonormal columns according to Definition 18. Then L :1 x

x X -* R'ox ' defined by

L(xi, x 2, . . .,x) = F1 (xt)T2 (Xe) . .. h(xt)
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also has orthonormal columns.

These notions provide the solution for (3.16) that is shown Theorem 5.

Theorem 5. Let O'c Rd consist of the tensor product of three subspaces 9= Wi x

2 x 3. Furthermore, let L : -- R' "I have orthonormal columns, let W : % -

Rnlxml and let R : 3 -+ Rmixi have orthonormal rows. Let g1 : 3 - Rn2

!2 : 2 -+ Rn2xm2, and 9 : 9 3- Rm2X1. Finally, let the cost function be defined as

J(W = J (1(yl)W(y 2)R(Y3) - g1(Y1)g2(Y2)g3(Y3))
2 dyidy 2dy 3-

Then the local extremum of the minimization problem

W(Y2) *= arg minJ(W(y 2))W

is

W*(Y2) = Ij, 1T (y1)91(y1)dyj1 2(Y2) [J g3(Y3)RT(Y3 )dY 3 . (3.17)

The proof is provided in Appendix A.5. Theorem 5 can be used for solving (3.16)

by associating X<j_1 with 3, Xi x Xj+j with 2 and X>i+1 with 3. Furthermore,

if we equate F<i = F1 ... Ti_1 with L and F>i+ 2 = Fi+2 ... F with R we achieve the

following solution:

W*(i,xi+) =X)

(3.18)

for i = 2, ... , d-2, where g<j = 1 . .. gi_1 and g>i+1 = gi+2 ... gd. A straightforward

extension to Theorem 5 can be made for the cases where all but the first two cores

are fixed (corresponding to searching for W(X 1 , X2 )) and when all but the last two

cores are fixed (corresponding to searching for W(Xd1, Xd). The solution for the first
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core is

(X1, X2) =91 (X1)G2(X2) G>2(>2 )1>2(X>2)d> , (3.19)

and the solution for the last core is

W*(Xd-1, Xd) = F<dl9<d-1(X<d_1)dx<d_1 g!d_.(Xd_ 1 )g(Xd). (3.20)

L-< d- 1

Core decimation

After the solution of each least squares problem, the bivariate core W* must be

separated into two univariate cores. This operation is called decimation and is the

step where rank adaptation occurs by using a truncated SVD. Consider (3.18) re-

written as

VV*(xi,xi+i) = 4igi(xi)Gi+i(xi+1)Ii, (3.21)

where the matrix 'j E R xi corresponds to (Pi = fX d and the

matrix 'i E Rfi+2xr+1 corresponds to 4i = 9>i+1(xi+1)/>ri+,(x>i+1)d>i+1-

Note the sizes of these matrices, (Di E RGr-_,1x0- is a "short and fat matrix" and

xi E Vji+ixr+1 is "tall and skinny", correspond to the fact that the number of rows

and columns of g is greater than the number of rows and columns of Fk.

We decompose the bivariate core with a truncated SVD of a matrix-valued func-

tion, i.e.,

W*(Xi, Xi+ 1) = U(xi)SV(xi+1 ),

where the matrix-valued function U has orthonormal columns according to Defini-

tion 18 and the matrix-valued function V has orthonormal rows according to Defini-

tion 17. When this optimization problem is a part of a left-right sweep, U becomes

the updated core T,( in Line 8 of Algorithm 6; and when the optimization problem

is a part of the right-left sweep, the new core V becomes the updated core . The

diagonal matrix S can be absorbed into either the left or right eigenfunctions.
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This SVD can be obtained in four steps that are similar to the process used for

rounding in Section 3.3.2:

1. QR of a matrix-valued function: Q(xi)R = bigi(X)

2. QR decomposition: Q(xj+ 1)R = (9j+1(Xi+1)Ti)

3. (Truncated) SVD decomposition: USV = RRT

4. Compute l1(xi) = Q(xi)U or V(xi+1) = VT(xi+,) depending on sweep direc-

tion

While these steps seem similar to those taken for rounding, the primary factor that

contributes to higher efficiency is that in step 1, we are taking the QR decomposition

of a matrix-valued function that takes values in ri x j+j instead of ?i x ri+1 The

latter case would arise if we first formed g and then proceeded to perform rounding.

Similarly, we are taking the QR decomposition of a smaller matrix-valued function in

step 2. In practice, further benefit will be achieved through taking advantage of the

special structure of each core gi, for example by using a fast matrix times Kronecker

of matrix-valued functions operation.

Recursive computation of matrices Ii and '

As we sweep through each core it may be expensive to compute each new 'Ji and

1@j by evaluating the integrals in (3.18). Instead, we use a recursive relation for each

update. From (3.19) it is obvious that 41 = 1, and, analogously from (3.20) the last

bivariate core, we have '@d-1 = 1. A recursive relationship can then be created for

the subsequent matrices (2, P3, . .. by considering that

(2= J (x1 )g1(xi)dxi = J (F(i)#1 1(xi)dx1 , and
X1 Jg1

D3 2 L2 FIT( 2)1(X 1g(Xl)2(X2)dx1dX2

Jrx2
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Proceeding recursively we have

4k+1 - f~ k j(Xk)49k(Xk)dXk, (3.22)

for k = 1... d - 2. A similar relationship holds for X'k, i.e.,

9XFk = J gk+ 2 (Xk+2) 'k+1'Fk+2 (xk+2)dxk+2, (3.23)

for k= 1...d-2.

3.5.2 Example: multiplication

We now illustrate the advantage of rank-revealing ALS for function multiplication.

Recall that the direct method for multiplying two functions with FT ranks equal to

r involves first taking the Kronecker product of all the cores, an 0(r4) operation.

After this initial multiplication the resulting ranks are r2 . The second step is to

round the resulting function, an operation that scales cubically with rank. Thus,

the total computational cost of the direct method is 0(r'). Posing this operation

as the minimum of an optimization problem, and using rank-revealing ALS, allows

us to lower this cost to 0(r'). The advantage is gained by exploiting the Kronecker

structure of the cores by using the fast matrix times the matrix-valued function

Kronecker product algorithm provided in Proposition 12.

Our experiment compares the computational cost of computing g(X) = f(x)f(x)
for increasing rank r of f using rank-revealing ALS and the direct method. In the

experiment, the univariate scalar-valued functions making up each of the cores of the

function f are represented in a basis of 10 Legendre polynomials. The coefficients

of each basis function are sampled uniformly on [-1, 1] and independently for each

univariate function. The truncated SVD tolerance is chosen to be C = 10-10 for

both the rank-revealing ALS algorithm and for the FT rounding algorithm. The

convergence tolerance of the ALS algorithm is set to 6 = 10- 5 , and the dimension of

f is fixed to d = 5. Next for ranks ranging from 2 to 22, we average the computational
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time for computing g over five realizations of f. The results are shown in Figure 3-1.

a.)

a)
bO
'-4a)

102 y Continuous ALS
-+w- Exact + Round

101 T

100

10-1
4.92

10-2

1o-3
5.85

10-4
I~~~~ I I11

100.2 100 -4  100.6 100.8 101 101.2 101'.

rank(f)

Figure 3-1: Comparison of the computational time required for continuous rank-
revealing ALS and the direct method for function multiplication.

3.5.3 Example: diffusion operator

Consider the ubiquitous diffusion operator that arises, for example, in an elliptic PDE.

Iterative linear solvers for PDEs typically require an application of the linear operator,

and in this section we show how to leverage continuous alternating least squares for

this task. Consider a function in FT format: f(x) = F1(X 1) ... Fd(Xd). Let the

application of the diffusion operator result in the new function g(x) = ! 1 (X1) ... gd(Xd)

through the operation

g(x) = V - [a(x)Vf (x)], (3.24)

where a(x) = A1(xi) ... Ad(xd) represents a conductivity field. The structure of the

resulting cores of g are given in the following proposition.

Proposition 15. Let f(x) be a function in FT format f(x) = F1(x1)... Fd(Xd). Let

a(x) be another function in FT format a(x) = A1(xi) ... Ad(xd). Then applying the
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diffusion operator g(x)

FT representation g(x)

V - (a(x)Vf(x)) to f(x) results in a function g(x) whose

= (X1)... 9d(xd) has the following cores

Fd d.F1(x1)\
! 1(x1 ) = [d Ai(xi) dx 1 ) Al(xl)®@Fl(x)

dxl dxi

Ak(Xk) 0Fk(xk) 0

Ak(xk) 9 d-Fk(X k) Ak(xk) 9 F(xk )

L d~rk dxk
!9d(Xd)= [Ad(Xk) (D Ed(Xd) 1

L dXd\ dXd/J

(3.25)

Proof. The diffusion operator is given by

d

g(x) = g (x)
i=1

g(x) a(x)

Recall from Section 3.4 that multiplying functions together requires taking the Kro-

necker product of their cores, and taking the derivative with respect i-th variable only

requires modifications to the ith core. Therefore, each g(') has cores given by

Ak(Xk) 0 .Fk(xk) for k $ i,

d (Ak (Xk) 0 dFk(Xk)) otherwise.

Further recall that adding functions in FT format requires concatenation of the cores.

However, since the contribution to core 9k is identical for all gi) for k # i, a trian-

gular structure emerges. The first core, for example, is the concatenation of the two

contributions given by

G1(x1) = [d Ai(xi) ® dFI(xi) A1 (xi) G Q(xi).
dxT dxl 1 s t

The middle cores have an upper triangular structure such that the upper left and
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lower right block stores all the interactions between derivative and non-derivative

terms. The lower left block stores the derivative terms for that dimension

[k(k Ak (Xk) 0Fk (Xk) 0gk xk) = ) 0 dFk (Xk)) Ak (Xk) 0Fk (Xk)I
Note that the derivative term in the kth core never interacts with the derivative terms

of the other cores. A similar analysis for the last core yields

gd(xd) =

Ad xk) ® Td xd)

dXd (AdX0dxd ®

Recall that fast versions of pre- and post-multiplication of each core by matrices

4 and 'I are needed for the rank-revealing alternating least squares algorithm to

be efficient. Since post-multiplication can be derived in a similar manner, we only

describe the specialized pre-multiplication by 4 for the diffusion operator. First we

consider cores k for 1 < k < d.

Proposition 16. Let Ak(xk) : Xk 4 RIk-1Xrk, Ek(xk) : k Rr'k-1Xrk, and D C

Rx2r 2_ Furthermore, let the scalar-valued functions making up Ak and T k consist

of an expansion of P orthonormal basis functions. Let Gk : EX R-+ -R x k be

computed according to (3.25). Then computing (1 9 k costs

O(P3rk1r2)

for cores 1 < k < d.
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Proof. We first split the core 9k into two components:

'gk(xk) = [B(xk) C(xk)],

1 3 (xk) = [:, 1 : r'- 1 ] (Ak(xk) ( Fk(xk))

__ d.Fk(xk )
+ D[:, r2_1 + 1: 2rk_11 d Ak(Xk) 0 dk ) and

C(xk) = P[:,r 2_ 1 + 1: 2rk_1] (Ak(xk) Fk(xk)).

Recall that the product between a matrix and the Kronecker product of two matrices

can be computed in O(P'frklr2) operations according to Proposition 12. Thus,

computing the first element in B(Xk) and C(xk) requires this many operations.

To compute the second element in the summation forming B, it is convenient to

work with derivatives of the individual cores in order to avoid computing the full

Kronecker. To this end we use the fact that

d (dF(xk)' _dAk(xk) d.Fk(xk) _____

Ak(xk)® = + Ak(xk)@ d Fk.(Xk)
dxk dxXk dxk dxk dx2 (3.26)

Now premultiplying each of these elements by 4 costs O(P3irk_1r2). The total com-

plexity of this operation is thus dominated by four matrix times matrix-Kronecker

products for a cost of O(P'irklrE).

Note, that the algorithm for efficiently calculating 'J gd follows the same pattern.

The algorithm used in the proof of Proposition 16 is considerably less expensive than

first computing the Kronecker product and then premultiplying by 4. Computing

the Kronecker product first would costs O(P3 r2_Ir2) operations, thus the algorithm

would be O(rk_) more expensive.

Numerical verification

We now verify the computational benefit of continuous alternating least squares for

the application of the diffusion operator. In particular, we perform three benchmark-

ing tests: a test for scaling with dimension, a test for scaling with polynomial order,
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and a test for scaling with rank of the conductivity a(x). For each of these tests we

generate random functions f and random conductivities a by uniformly sampling the

coefficients of a Legendre polynomial spectral expansions making up their cores on

[-1, 1]. Ten repetitions are made for each benchmark, and the algorithm parameters

that are the same across the tests are the truncated SVD tolerance E = 10-10 and an

ALS convergence tolerance J = 10-8.

In the first benchmark we fix the polynomial order to P = 5 and the FT-ranks of

a and f to 2. The dimension is then varied from 2 to 152 in steps of 5. The results,

shown in Figure 3-2, show the predicted linear growth with dimension.

100

a> 10-1

10-2 1.07

10-3

1 I 1 11 11 11 11 t

101 102

Dimension

Figure 3-2: Linear growth of computational time with dimension obtained by apply-
ing the diffusion operator using continuous rank-revealing alternating least squares.
Computational time is averaged over 10 realizations of a and f.

The second benchmark tests the scaling with the number of basis functions. The

dimension is fixed to d = 5 and the ranks of a and f are again fixed to two. The poly-

nomial order is varied between 2 and 82 using a step size of two. The results, shown

in Figure 3-3, agree with the theoretical prediction of cubic growth with polynomial

order.

The third benchmark compares the scaling of the continuous rank-revealing ALS

method with the direct method of first computing the exact solution and then round-
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10

100

01

10-2-

10-3

2.89
1 -4

101 102

Polynomial order

Figure 3-3: Cubic growth of computational time with univariate expansion order P
obtained by applying the diffusion operator using continuous rank-revealing alter-
nating least squares. Computational time is averaged over 10 realizations of a and

f.

ing. The dimension is fixed to d = 5 and the polynomial order is fixed to P = 3. The

FT-ranks of f are again fixed to 2. The ranks of a are varied between 2 and 62 in

steps of two. For this experiment we set the SVD truncation tolerance to E = 10-5.

The results, shown in Figure 3-4, display at least an order of magnitude benefit ob-

tained by ALS. This benefit is achieved because the continuous rank-revealing ALS

never has to obtain an exact representation of the function, instead it directly finds

an approximation with smaller ranks by using a truncated SVD with tolerance 10-.

3.6 Numerical examples

We now discuss some implementation details and show applications of the FT for

a variety of integration and approximation test problems. Showing the benefits of

using the FT for approximation and integration highlights its applicability for a wide

variety of applications. The benefits will be discussed in further detail for the two
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rank(a)

Figure 3-4: Comparison of the computational time required for continuous rank-
revealing ALS and the direct method, with respect to rank of the conductivity field
rank(a). Computational time is averaged over 20 realizations of a and f.

specific applications of stochastic optimal control and Gaussian filtering in Chapters

4 and 5, respectively.

All of the experiments performed in this section utilized the publicly available

Compressed Continuous Computation (C) library [54].

3.6.1 Implementation details

We briefly turn to the practical issues surrounding the implementation of some of the

algorithms described in this chapter, and we show simple examples highlighting how

this implementation allows the FT to differ from the TT. We focus on two specific

areas: representing each univariate function in the FT core in a known basis for cross

approximation and integrating functions by first representing them in FT format.

These implementation details set the stage for the higher-dimensional examples in

Sections 3.6.2 and 3.6.3.
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One-dimensional fiber adaptation for cross approximation

We start with cross approximation. When performing cross approximation to convert

a function to its FT format, one only needs to compute with one dimensional fibers

of the function, i.e., we fix all variables except one. These fibers are necessary, for

example, to create R and C of Algorithm 1. When such operations are required we

first approximate the fiber in some basis. These bases are adapted independently to

each fiber that needs to be approximated. The choice of the approximation can vary

from fiber to fiber. The algorithms we have described for compressing and computing

functions are agnostic to the way that the fibers are approximated.

For instance, if one expects the fibers to be smooth functions, then one can use an

orthogonal expansion of Legendre polynomials. Alternatively, if one expects or de-

tects local phenomena such as discontinuities, one can turn to piecewise polynomials.

Notice that representing fibers with adaptive piecewise polynomials is a nonlinear pa-

rameterization of the fiber because one seeks the optimal locations for the knots. This

approach highlights the significant generality that our framework presents compared

with approaches that convert the problem of low-rank functional approximation to

the problem of low-rank approximation of tensors of coefficients [17, 26, 40, 103].

To make this idea concrete, we define a routine approx-f iber that takes in a

univariate function and produces an approximation in an appropriate basis. Using

univariate fiber approximations, we reproduce Algorithm 1 for the special case of a

scalar-valued function of two variables for illustration purposes in Algorithm 7.

Note that we can implement different approximation schemes for different dimen-

sions and even for different fibers within each dimension. Furthermore, once R and C

are represented in a known basis, the steps required for the maxvol algorithm can be

adapted to the types of approximations. For example, Line 5 of Algorithm 2 requires

finding the maximum element of a vector-valued function. If each column of the

quasimatrix is a Legendre polynomial, then the maximum element in each column

can be found through a root finding or eigenvalue procedure to arbitrary precision.

Such a procedure removes any need for discretization or gridding. The other methods
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Algorithm 7 Cross approximation of a two dimensional function using fiber adaptive
approximation

Require: A two-dimensional function f E [a, b] x [c, d]; Rank upper bound r; Initial
y index y = [Yi, Y2, ... Yr]; Stopping tolerance Scross > 0; Approximation scheme
approx-f iber(f, Eapprox), Fiber approximation tolerance Capprox;

Ensure: x, y such that F = f (x, y) has " large " volume
1: f(0) = 0

2: k = 1
3: repeat
4: Initialize vector-valued function R E R[a,b] xr

5: R[k](x) = approx-f iber(f(x, Yk), 6approx) for k = 1... r
6: QT = qr-vvf (R)
7: x = maxvol-mvf(Q)
8: Initialize vector-valued function C E R[cd]xr

9: C[k](y) = approx-f iber(f(Xk, y), Eapprox) for k = 1 ... r
10: QT = qr-vvf (C)
11: y = maxvol-mvf (Q)
12: Q = [Q(Y1) Q(Y2) - - Q(Yr)]
13: f(k)(XY) f f(X y)Q t Q(Y)
14: J = If(k) _ f(k-1) 1/1f(k) 1

15: k = k + 1
16: until 5 < 6cross

such as qr-qm and lu-qm can be performed for quasimatrices made up of polynomial

expansions just as in [4,118,119]. If splines are used, the procedures can be adapted

appropriately.

We now demonstrate the advantage of adapting each fiber via two examples where

the resulting function evaluations do not lie on a tensor product grid. The example

further shows one of the primary ways this algorithm is different from the tensor-train

representation and from other functional tensor-train approaches 117]. Consider the

approximation of two canonical rank-1 functions

fi(Xi, x 2) = sin(lOxi + -) (X 2 + 1) (3.27)
4

2 (0 if x, > 0.5 or x 2 > 0.5 (3.28)
exp(5x1 + 5X 2 ) otherwise

where (3.28) is a two dimensional Genz function of the discontinuous family [47].
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For (3.27) we use a global expansion of Legendre polynomials qi to represent each

fiber

f (x) = ai i(x), #i(x)#j(x)dx = 6 ij,
i=1

where the coefficients are determined through projection using Clenshaw-Curtis quadra-

ture. The order of the approximation n is progressively increased until four sequential

coefficients are ai < Capprox = 10-10. Furthermore, even though (3.27) is a FT-rank 1

function we use a rank-2 approximation in order to further illuminate the difference

in locations of function evaluations between our method and existing tensor-based

approximation methods. In particular, we see that fibers at different positions are

approximated using different numbers of evaluations. The number of evaluations re-

quired in the oscillatory portion of the function when x2 = 1 is greater than in the

constant portion when x 2 = -1. Such an adaptation of the grid would be difficult to

achieve with discrete TT, and it highlights the flexible adaptivity of the continuous

approximation framework.

For (3.28) we can no longer use a global polynomial expansion due to the discon-

tinuity, and therefore we turn to a piecewise polynomial approximation. We first use

a one-dimensional edge detection method based on polynomial annihilation [2,3, 58]

to locate the discontinuities. We then approximate each polynomial piece using the

same polynomial expansion scheme described above. Furthermore, we employ a rank-

1 approximation of this function.

Figure 3-5 shows the function and the resulting evaluation locations, where both

approximations achieve machine precision accuracy. In the left panel, we see that

the function is evaluated densely along the top of the plot and coarsely along the

bottom- i.e., the evaluations again do not lie on a tensor product grid. In the right

panel, we see that the algorithm clusters points around the discontinuity as desired.

Another point to note is that once we have the function-trains of each of these

functions we can perform computation with them directly in compressed form. For ex-

ample, we can now integrate the discontinuous function f2. Such integration cannot

be performed using array-based tensor-train algorithms without manually splitting
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Figure 3-5: Contour plots and evaluations of fi and f2.

the domain because it would require specialized integration rules to deal with the dis-

continuity. When representing everything in functional form, we are able to perform

the integration and approximation automatically, without specifying any specialized

integration or approximation rules. In Section 3.6.2, we will show integration perfor-

mance on higher dimensional discontinuous Genz functions.

Function-train integration

Suppose that we have a FT representation in which each core consists of Legendre

polynomial expansions. We can integrate each core easily if we know how to inte-

grate Legendre polynomials. More concretely, suppose that the fibers of core k are

represented using a Legendre polynomial expansion

4 () n a(k) (k) E) = (k

e=1

Then we can compute its integral

n k

f(x)dx a= O(x)dx a k) (x)dx =ai)
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This means that the integral of each core results in the matrix consisting of the first

coefficient of each function

(k) (k)
1,1,1  . . . a1,rk,1

Fk(xk)dxk =

(k) (k)
al,rk_1,1 . . . ark-l,rk,l

From here we use (3.13) to obtain the integral.

3.6.2 Integration

We now show the performance of the FT algorithm on two high dimensional integra-

tion examples.

Rank-2 Sin function

Analogously to [16,98], we consider the FT rank-2 function

f (x) = sin(x1 + 2 + ... + Xd) (3.29)

for which we know the analytic integral

f (x)dx = Im . (3.30)
[0,)1]d (

We seek to study the performance associated with computing this integral as a

function of dimension and fiber adaptation error. Specifically we choose an adaptive

procedure based on approximating each fiber as Legendre polynomial series expansion.

Each approximation begins with a fifth order expansion, and each time adaptation

occurs the expansion order goes from k -+ 2k-1. We stop adaptation after the last two

coefficients of the expansion drop below a tolerance Capprox. Figure 3-6 presents results

studying the integration error as a function of this Capprox and the dimensionality of

the problem.

101



- --p

I I-I

0 200 400 600
d

250

200

150

100

50

0

---

0 200 400 600
d

-- - Eapprox = 10 -1-3 Eapprox = 2.2 X 10-8 _-_0_ Eapprox = 10

Figure 3-6: Errors (left panel) and linear growth in the number of evaluations (right
panel) involved in the integration of (3.29) as a function of dimension d and fiber
adaptation parameter Eapprox.

Figure 3-6 shows that, as expected, the number of function evaluations grows

linearly with the number of input dimensions. Furthermore, for the three tightest

approximation tolerances, the errors are virtually constant across dimensions. Note

that the y-axis is on a log scale and therefore the variation of the errors for the

three tightest tolerances would be virtually invisible on the Capprox = 10-1 curve. In

contrast to [98], our integration algorithm is adaptive. Furthermore, it is adapted at

a local fiber level rather than at a dimension level. Obtaining such adaptivity would

be extremely nontrivial without the continuous framework.

Rank-1 discontinuous Genz function

We now demonstrate integration on the Genz discontinuous functions of various di-

mensions. Specifically, we integrate the function f : [0, 1]d -+ R defined as

0
f (Xi, x 2, ... , Xd) =

{exp( Z~5xi)

if xi > 1 for any i = 1.. .d

otherwise
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The analytical integral of (3.31) is

(exp d

i~f] =2 5

where we see that this problem is quite challenging because the integral grows ex-

ponentially with dimension. For example, for 10 dimensions this integral is I e

3.131 x 103 and for 100 dimensions this integral is I ~ 9.05455 x 1034.

We integrate this function by first converting it to its rank-1 function-train rep-

resentation. The fibers are approximated by sixth order piecewise polynomials. The

discontinuities are located automatically using a polynomial annihilation edge de-

tection routine [2, 3, 58]. After conversion to the function-train representation, we

integrate the FT using the technique described in Section 3.4. The resulting errors

and required function evaluations as a function of dimension are depicted in Figure 3-

7.

10-2 60-

20-

10-4- --

0 50 100 0 50 100
d d

Figure 3-7: Errors (left panel) and number of evaluations (right panel) involved in
the integration of (3.31) as a function of dimension d.

The results indicate that we are able to achieve 0(10-3) relative accuracy for

all of the dimensions and that the number of function evaluations required scales

linearly with dimension. Furthermore, we are able to approximate large integral

values, indicating a general robustness of the algorithm. We also note that such an

integration would be extremely difficult to perform using either the discrete tensor-

train or the spectral tensor-train [17] techniques because the discontinuities pose
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Fiber approximation Cross Rank
approximation adaptation

Initialize to 7th degree 6 cross = 10-3 Cround = 10-5
Increase degree k - 2k + 1 <5 sweeps kickrank = 5
Eapprox = 10-7 < 5 adaptations

Table 3.1: Algorithmic parameters used for approximation of the simulation library
benchmark problems shown in Table 3.2.

problems for most integration rules. Individual fiber adaptation is critical in order to

locate the discontinuities.

3.6.3 Approximation

We now test the FT approximation on a set of benchmark approximation problems.

The first set of test functions we use are taken from the Emulation/Prediction Test

Problems set in [113]. In particular, we have chosen to examine a subset of functions

which have more than two input dimensions. Secondly, we explore some of the effects

of different algorithm parameter choices for the approximation of a quantity of interest

arising from an elliptic PDE.

Simulation library benchmark problems

To standardize our algorithm for each benchmark function we fix the algorithmic

parameters to those shown in Table 3.1. In particular, we utilize Legendre polynomial

expansions with Gauss-Legendre quadrature for fiber adaptation and we perform rank

adaptation using Algorithm 4.

For each problem we normalize each input to [-1, 1] and compute the Relative

RMSE error using ten thousand Monte Carlo samples as

wE000 _X, f ()2
error = = )

10000 f(X,)2

Table 3.2 show our results. Except for the Robot Arm function, each of the test

functions are found to be low rank. Note that we are not attempting to approximate
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the functions with the least number of evaluations, instead we are attempting to de-

compose the functions to achieve an approximation tolerance in line with algorithmic

parameters. One interesting aspect of note is the behavior for the Gramacy and Lee

2009 function, where the fifth and sixth input variables are not active. Our algorithm

discovers this behavior as the corresponding ranks are found to be r4 = r5 = 1.

The results indicate that many of the benchmark problems are indeed low-rank.

Since these benchmark problems come from a wide variety of fields and are represen-

tative of certain behaviors of more complex models, we believe the results promote

the potential wide-spread applicability of the the approximation framework. The

Robot Arm function appears to be the only high rank function in these benchmarks.

Thus the application of cross approximation led to excessive basis adaptation and a

un-converged maximum rank after 5 rank increase steps.

Further note that our goal is not to obtain the best possible approximation with

the fewest number of function evaluations. Nor are we approaching this problem in a

data-fit context where an approximation is built from a fixed set of data. Rather, we

are decomposing functions into their low-rank representation. After setting the pa-

rameters of the decomposition, the algorithm automatically chooses where and how to

evaluate the function to ensure particular error tolerances specified by the algorithm,

and the resulting numbers of evaluations are but one realization of the framework we

have created in this thesis. While we suspect that one could achieve good approxi-

mation results with fewer numbers of evaluations, the evaluations presented here take

into account both approximation, estimation of rank, and certification of convergence.

Elliptic PDE

We next explore the effects of various parameters of the FT approximation algorithm

on a model of subsurface flow typically encountered in uncertainty quantification

(UQ) applications. Consider the following one-dimensional elliptic partial differential

equation:

- k(s, w) -2 (3.32)
as (s)
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Name Number of
(dimension) Ranks evaluations / Comments

error

Borehole (8) (1,2,2,2,3,3,2,2,1) 7032 / 1.8 x 10-5

OTL Circuit (6) (1,3,2,2,2,2,1) 3264 / 1.5 x 10-4

Piston (7) (1,2,4,4,3,2,2,1) 27472 / -
1.0 X 10-2

Robot Arm (8) 45445 / No Id basis
(1,1,7,21,24,25,21,11,1) 9.8 x 10-2 adaptation

Wing Weight (1,2,2,2,2,22,2,2,2,1) 9520/ 3.0 x 10-11
(10)

Friedman (5) (1,4,2,2,2,1) 1816 / 3.1 x 10-5

Gramacy and Lee (1,2,3,21,1,1) 4800 / 3.2 x 10- 7  X 5 , x6 not active
2009_(6) _______

Dette and
Pepelyshev
(2010) (1,3,2,3,3,3,2,2,1) 5376 / 1.5 x 10-5
8-Dimensional
(8)

Dette and
Pepelyshev (1,2,2,1) 3304/ 1.4 x 10-8
(2010)
Exponential (3)

Table 3.2: Performance of the FT approximation algorithm on a set of multi-
dimensional test functions from the Simulation Library Test Functions [113].
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for s E (0, 1) with u(s),=O = 0 and s=1 = 0. In the UQ context, we would like to

consider the effects of an unknown permeability field k(s, w) on some function of the

output pressure u. To this end, k(s, w) is modeled as a random process due to the

random variable w, typically with a log-Gaussian distribution:

log [k(s, w) - a] ~ .(0, c(s, s'))

where the covariance kernel is c(s, s') = a2 exp(-18s'L). In order to obtain a finite

dimensional representation of k(s, w) we use the Karhunen-Loeve expansion to ex-

press the random field as a weighted sum of the eigenfunctions of c. In partic-

ular, if we compute the eigenfunctions and eigenvalues of the correlation function

f c(s, s')#i(s')ds' = Aj#/(s), then any realization of this Gaussian process may be

represented as k(s, w) = i (s) i(w), where &g w) are now Gaussian random

variables. We approximate these eigenfunctions and eigenvalues on a 100 point dis-

cretized grid and truncate the expression after 24 modes.

The approximation objective of this problem is to represent some quantity of

interest Q(u(s, 1,... , 4)), where u(s, (1, ... , 24) is the solution of the PDE at a

particular spatial locations s for a realization of the permeability field defined by the

realizations of i. For simplicity, we fix s = 0.7 to obtain a quantity of interest that

is only a function of the random variables Q( I, ... , x24 ) = u(0.7, (1, ... , 24).

We will obtain an approximation for Q using 3 different parameter settings for

(a, o2 , 1) that correspond to various difficulties of the problem. In particular, we will

investigate 3 problems corresponding to an "easy" problem (P1) where (a, a2 , 1) =

(0.0, 0.1, 0.25), a "moderate" difficulty problem (P2) where (a, a2 , 1) = (0.5, 1.0, 0.15)

and a more difficult problem (P3) where (a, u2 , 1) = (0.0, 1.0, 0.15).

We now seek to build an FT approximation of 24 dimensions to map from the

KL modes & to the quantity of interest. In order to still use Legendre polynomial

expansions to represent our one dimensional fibers we need to reparameterize the

problem to one with uniform random variables on [0, 1]. We can do this using the

inverse CDF of a Gaussian random variable to make new variables i = 1K- (si), where
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<D- is the inverse CDF j are the new, uniformly distributed, random variables. Now

the approximation is constructed from ( i, l2, .. , ')24) - u(0.7, 1, ... 24).

Our experiments investigate how the error, number of function evaluations and

maximum rank change with capprox and Cround- We fix the cross parameters to 3 cross =

10-3 and a maximum 3 sweeps. The rank adaptation parameters are fixed at kickrank =

5 and maximum 4 rank adaptations. Finally, we initialize the fiber approximations

with a second order polynomial expansions. The results for the three problem setups

described above are provided in Figure 3-8.

Several patterns are apparent in the results of Figure 3-8. We first consider the

ranks for each problem, shown in the third column. We immediately see that the

approximation accuracy practically does not impact the maximum rank found by

the rank adaptation. The maximum rank found by the adaptation only changes as

rounding tolerance decreases. Furthermore, we see that the rank increases as we move

down the table. This corresponds to the notion of the difficulty of each problem,

and is analogous to the eigenvalue decay. Furthermore, the rank is higher for the

last problem showing that the problem is more difficult when a = 0 rather than

a = 0.5. One further concept is that unlike in array-based tensor-train algorithms or

the spectral tensor-train algorithm, the maximum rank attainable by the numerical

procedure is not bounded by discretization level. Rounding is critical to restricting

the growth of the rank.

The number of function evaluations shown in column 2 also display some inter-

esting properties. In particular, for each of the three models, there are two separate

regimes of patterns. Before the rounding tolerance becomes tight enough so that

the rank increases, the number of function evaluations is unaffected by the tolerance.

The number of evaluations is only affected by the fiber approximation accuracy. This

makes sense because the number of function evaluations is proportional to O(ndr2),

where n can be thought of as the average function evaluations for each fiber, and in

this regime, the rank is constant. Once the rank starts decreasing we see that the

number of function evaluations grows with both tighter approximation and rounding

tolerances. However, the changes in the number of evaluations change more rapidly
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Figure 3-8: log(error 2) (left column), log(number of evaluations) (middle column),
and maximum rank (right column) for three different configurations of the elliptic
problem (3.32) corresponding to different combinations of (a, o.2, 1). In particular, the
top row corresponds to (0.0, 0.1, 0.25), middle row corresponds to (0.5,1.0, 0.15), and
the bottom row corresponds to (0.0, 1.0, 0.15).
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with increasing rounding tolerance because reducing the rounding tolerance results

in a rapid increase in rank.

Column 1 shows that the log of the error exhibits a similar pattern as the number

of function evaluations. In particular, the error is fairly constant until the rank

starts decreasing. Once the rank starts decreasing both approximation tolerance and

rounding tolerance affect the error. Furthermore, if we fix the rounding tolerance

and decrease the approximation tolerance we see a rapid change in approximate error

followed by a relatively large plateau area, suggesting that beyond a given approx the

fiber approximation accuracy can no longer increase. Overall, these results suggest

that it is possible to find a reasonable value for the rank before increasing the fiber

approximation accuracy. Future work will require investigating how to adapt these

two parameters in the best way.

Finally, if one compares the error plots for P2 and P3 one notices that the plots

look similar, but the number of evaluations and ranks are larger for the bottom

row than the middle row. This characteristic is highly desirable from an adapt-to-

tolerance scheme as a given setting for the tolerances yields similar errors but with

larger computational effort.

3.7 Summary

In this chapter we develop a set of low-rank function approximation techniques that

extend the tensor-train decomposition using continuous linear algebra. Algorithms

extended into the continuous domain include a cross approximation algorithm for

decomposing a black box multivariate function into FT format, a rounding algorithm

for reapproximating a FT with one of lower ranks, and a continuous alternating least

squares framework for various computations.

Creating these algorithms using continuous linear algebra provides a flexible way

for incorporating and exploiting more than just low-rank structure. For example, rep-

resenting the univariate functions making up the cores of the FT with a polynomial

approximation allows us to exploit function regularity. This characteristic is impor-
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tant for problems, such as the solution of differential equations, that traditionally

require discretization of high dimensional functions. The solutions of such problems

are typically sensitive to the choice of discretization, and the problem of adapting the

discretization to capture local features is critical for achieving high accuracy. Our

continuous representation automatically performs adaptation to local features and

does not require the specification of a tensor product set of candidate evaluation

locations.

Our framework also enables polynomial time performance for various multilinear

algebra algorithms applied to low-rank multivariate problems. We anticipate that

these tools will be useful for the design of many algorithms. In the context of the

solution of partial differential equations [93] provides a method for transitioning away

from the traditional discretize-then-solve methodology, and future work will aim at

extending these methods using the FT.

In the next two chapters we will demonstrate how to exploit these algorithms for

stochastic optimal control and Gaussian filtering.
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Chapter 4

Low-rank algorithms for stochastic

optimal control

In this chapter we consider our first application of the FT decomposition. We use it

to mitigate the curse of dimensionality encountered by stochastic optimal control. In

particular, we show how to generate low-rank approximations to value functions and

how standard dynamic programming algorithms can leverage the continuous com-

putation framework. This work builds upon prior work [56] where the tensor-train

representation was used for representing discretized value functions.

This chapter begins with an overview of the continuous-time continuous-space

stochastic optimal control problem. The algorithms for its solution are based on dis-

cretizing the continuous system into a discrete Markov decision process (MDP), and

then solving the MDP with value or policy iteration. These algorithms are detailed

in Section 4.2. In Section 4.3 we propose approximate value or policy iteration algo-

rithms that use rank-adaptive cross approximation to generate FT representations of

value functions. We also demonstrate how the continuous FT representation enables

efficient restriction and prolongation for multi-level methods. An analysis of the con-

vergence properties and computational cost of the proposed algorithms is provided

in Section 4.4. Several numerical examples arising from motion planning problems in

robotics are demonstrated in in Section 4.5.
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4.1 Continuous-time and continuous-space stochas-

tic optimal control

Let us denote the set of integers and the set of reals by Z and R, respectively. We

denote the set of all positive real numbers by R+. Similarly, the set of positive integers

is denoted by Z+. Let d, du, dw e Z+, C Rd and V C R d be compact sets with

smooth boundaries and non-empty interiors, let 7 C R+, and let {w(t) : t > 0} be a

dw-dimensional Brownian motion defined on some probability space (Q, T, P), where

Q is a sample space, F is a --algebra, and P is a probability measure.

Continuous-time continuous-space stochastic optimal control (SOC) is an infinite-

dimensional optimization problem with differential constraints defined by stochastic

differential equations. The solution to SOC is a policy that maps each state to an opti-

mal control action. SOC is often formulated as a dynamic programming (DP) problem

in order to represent it in a form for which many classes of solution methods have been

developed. In this section, we provide the background for SOC problems that can be

formulated as two classical DP models: the fixed-cost finite horizon (FCFH) Markov

decision process (MDP) and the discounted-cost infinite-horizon (DCIH) MDP.

Section 4.1.1 describes stochastic differential equations, Section 4.1.2 describes

SOC cost functions, Section 4.1.3 describes Markov policies, and Section 4.1.4 de-

scribes the dynamic programming formulation.

4.1.1 Stochastic differential equations

A stochastic dynamical system is described by a stochastic ordinary differential equa-

tion (SDE) in the following differential form:

dx(t) = B(t, x(t), u(t))dt + D(t, x(t))dw(t), for all t E 37, (4.1)

where B : 7 x X x V 4 Rd is a vector-valued function, called the drift, and

D : 7 x X -+ Rdxdw is a matrix-valued function, called the diffusion. Strictly
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speaking, for any admissible control process' {u(t) : t ;> 0}, the solution to this

differential form is a stochastic process {x(t) : t > 0} that solves the following integral

equation:

ft
x(t) = X(O) + ]0 B (T, X(T), u (7)) dTr

+ 'D( x(T), u(T)) dw(), for all t s.t. x(t) E- X, (4.2)
0

where the last term on the right hand side is the usual Ito integral [91]. In this work,

we assume that the drift and diffusion are measurable, continuous, and bounded func-

tions. These conditions guarantee existence and uniqueness of the solution to (4.2) [91].

For further details regarding existence and uniqueness, we refer the reader to the work

by Oksendal [91].

4.1.2 Cost functions

Next, we describe the SOC formulations that lead to FCFH and DCIH MDPs. Our

description and notation closely follows the work by Fleming and Soner [44]. We

first begin by defining notation and assumptions that are necessary throughout the

exposition.

Let 61 C Xdenote an open subset. If 6 : R' then let its boundary a6 be a com-

pact (d- 1)-dimensional manifold of class C' (the set of 3-times differential functions).

Also, let g, 4 denote continuous stage and terminal cost functions, respectively, that

satisfy polynomial growth conditions

g(t, x, U)| I C(1 + xIk + Iuk)

|'(tx)| 5 C(1 + xjk)

'Suppose the control process {u(t) : t > 0} is defined on the same probability space (Q, F, P)
which the Wiener process {w(t) : t > 0} is also defined on. Then, {u(t) : t > 0} is said to be
admissible with respect to {w(t) : t > 0}, if there exists a filtration {Ft : t > O} defined on (Q,.7, IFP)
such that u(t) is Ft-adapted and w(t) is an Ft-Wiener process. See [81] for the precise measure
theoretic definitions.
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for some constants C E R, k E N.

For the FCFH MDP, we a seek a control law that acts upon the system until a

finite time is reached or until the state exits the space 6Y. Define 9 = [to, ti) for fixed

to, ti E R+ with to < t1 < oc. Furthermore, let - = [to, tj) x 61 denote the product

space of times and states. Then, the exit time T of the system is defined to be

T = inf{s : (s, x(s)) 0 a}, s > t.

For example, we have T = t1 , if for all times t < s < t1 the state remains in the

interior of the state space, i.e., x(s) E el. For any product state (t, z) E a and

admissible process u = {u(t) t > 0}, we can define a functional

c(t, z; u) = E [jg (s, x(s), u (s))ds + O(T, x(T)) , x(t) = z.

This functional describes the expected cost incurred by a system initialized with the

initial condition (t, z) under a control u.

For the DCIH MDP, we consider only time-invariant dynamical systems where (4.1)

is modified according to

dx(t) = B(x(t), u(t))dt + D(x(t), u(t))dw(t), x(0) = z, for z E 6Y.

In this case, the exit time must be modified because the system could evolve indef-

initely. Therefore, we follow Fleming and Soner [44] and define the exit time T as

either the first time that the state x(s) exits from 0, or we set T = oc if the state

remains forever within 0, i.e., x(s) E 61 for all s > 0. Within this formulation, we

can still use a terminal cost 4 for the cases when T < oc. In order to accommodate

finite exit times, we use the indicator function xr<O that evaluates to one if the state

exits 61 and to zero otherwise. The cost functional for the DCIH MDP is

c(z; u) = E [jTe-4Sg(s, x(s), u(s))ds + XT<OOe-' (T, x(r)) , x(0) = z,
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where # > 0 is a discount factor. For this problem to be well-defined, we require that

the cost until exit is bounded [44]

E [jexp-sIg (s, x(s), u(s))Ids < oc.

4.1.3 Markovian policies

A Markov control policy is a mapping p : 7 x X -* V that assigns a control input

to each time and state. An admissible control is then obtained as a realization of the

policy u(t) = p(t, x(t)).

For each of the problem formulations described above, we can correspondingly

denote the cost functional associated with a specific Markov policy p to be

c,,(t, z) = E [j g (s, x(s), p(s, x(s))ds + '(T, x(7))j , x(t) = z,

for the FCFH MDP, and

cm(z) = E [J e-'3g (s, x(s), p.(s, x(s))ds + X,<e (X(T)), x(0) = z,

for the DCIH MDP. Let y = (t, z) denote the product state of the FCFH MDP and

y = z refer to the state of the DCIH MDP. The goal of the stochastic control problem

is to seek an optimal cost c,* with the following property

cy*(y) = inf c,(y),

for all y subject to (4.1). Under certain conditions one can show that a Markov

policy is at least as good as any other arbitrary Tt-adapted policy; see for example

Theorem 11.2.3 by Oksendal [91]. In this dissertation, we assume these conditions

exist and only work with Markov control policies. Markov control policies allow us

to avoid storing full state trajectories of the system when considering what action

to apply. Since they only require knowledge of the current time and state, they are

computationally efficient to use in practice.
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4.1.4 Dynamic programming

In the dynamic programming problem, we seek an optimal value function v (t, z) that

is equal to the optimal cost functional

v (t, z) = inf c.(t, z) for all z E Y.

For continuous-time and continuous-space SOC the optimal value function is the

solution of a Hamilton-Jacobi-Bellman (HJB) partial differential equation (PDE) [44].

The HJB PDE is defined using a function called a Hamiltonian. Let Sd denote the

set of symmetric, nonnegative definite matrices. Let A E S +d and A = DDT, then

the trace tr AA is defined as

d

tr AA = ZA[ij]A[ij].
i~j

Finally, for (t, z) E a, p C X, A E Sd, the Hamiltonian is defined as

A(t, z, p, A) = sup -B(t, z, f) -p - -tr A(t, z, ii)A - g(t, z, d)[_ 2

The dynamic programming equation, called the HJB PDE, for the FCFH MDP

is then defined as

- + (t, z,VD) = 0,at (t, z) E -9,

where D2 is the Hessian operator. Let

= ([to, t1 ] x &e) U ({t1} x 6),

denote the boundary of the product state space. Then, the boundary conditions for

the HJB PDE are given by

v(t, z) = 0(t, z) for (t, z) E 0*-.
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This PDE is of parabolic type. It is called uniformly parabolic if there exists a c > 0

such that
d

A[i, j] (t, x, d)Ujg ;> C1 12, (4.3)
i~j

for E Rd, otherwise it is of degenerate parabolic type [44].

For the DCIH MDP, the Hamiltonian and corresponding HJB PDE are no longer

time dependent. The HJB PDE is defined according to

3v + I(z, Vv, D v) = 0, z ,

with boundary conditions

v(z) = ?/(z), z E O9f6.

If the diffusion satisfies condition (4.3) then the HJB PDE is a uniformly elliptic

equation having a smooth and unique solution when 6 is bounded. Otherwise, the

equation is of degenerate elliptic type [44].

4.2 Discretization-based solution algorithms

The Markov chain approximation (MCA) [81] and other discretization based methods,

e.g., the method prescribed by Tsitsiklis [121], for solving the SOC problem rely on

first discretizing the state space and dynamics described by (4.1) and then solving

the resulting discrete-time and discrete-space MDP. The discrete MDP can be solved

using standard techniques from dynamic programming such as value iteration (VI)

or policy iteration (PI) or other approximate dynamic programming techniques [12,

13,15,81,102].

In Section 4.2.1, we provide a brief overview of discrete MDPs. In Section 4.2.2

we describe the MCA framework for discretizing continuous SOC to a discrete MDP.

Finally, in Section 4.2.3, we then describe three classical solution algorithms: value

iteration, policy iteration, and multilevel methods.
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4.2.1 Discrete-time and discrete-space Markov decision pro-

cesses

The MDP resulting from the MCA with discretization level h is a tuple .Wh -

(Xh) o& h, I gh, kh), where X ' is the set of discrete states, ph(., 1.) : Xhx Xh X,

[0, 1] is function that denotes the transition probabilities satisfying Ez/&9Zh ph(z, z'Ii) =

1 for all z E Xh and all U E V/, gh is the stage cost of the discrete system, and bh

is the terminal cost of the discrete system.

The transition probabilities replace the drift and diffusion terms of the SDE as

the description for the evolution of the state. For example, when the process is at

state z E Xh and action U E 0& is applied, the next state of the process becomes

Z' EXh with probability ph(z, z'Ki). Define the state transitions to occur at discrete

intervals yh = {to, ti, t2 ,... t}.

In this discrete setting, Markov policies are now mappings p : x jh X

1W defined from a discrete state space rather than from the continuous space X.

Furthermore, the cost functional becomes a multidimensional array c, : jh x Xh _

R. The cost associated with a particular trajectory and policy, for a finite horizon,

discrete time system, i.e., to = 0, ti = 1, t2 = 2, . . . , is

N~

c12 (to, z) = E yigh (tk, X (tk) , (tk, iX (tk))) + 74 h (tN, X (tN) X (to) = z

for z E Xh, where 0 < -y < 1 is the discount factor. The Bellman equation, a discrete

analogue of the HJB PDE, describing the optimality of this discretized problem is

v hNk, Z) = min [gh N, Z, fl) +_ zE P(i li)h Jt~i '

where vh is the optimal discretized value function. The solution of the Bellman

equation satisfies

vh(tZ) = infcg(tz),

and therefore also solves the discrete optimal stochastic control problem [13].
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In this dissertation, we only consider the value function to be a function of the

state and independent of time. In this case, we are required to assume that the stage

costs are also independent of time, i.e., gh Xh - - R, and the Bellman equation may

be modified according to

vh (Z) = min [gh(Z ii) + PhZ Z11Li)Vh(Z1) ~ (4.4)

For those cases when the value function is time dependent, for example in finite

horizon problems, one can always augment the state space with the time variable to

create a new value function that is a function of the augmented (or product) state

space.

4.2.2 Markov chain approximation method

The MCA method, developed by Kushner and co-workers [79-81], constructs a se-

quence of discrete MDPs such that the solution of the MDPs converge to the solution

of the original continuous-time continuous-space problem.

Let {f Wh : f E N} be a sequence of MDPs, where each Yhe -- (Xhe, phi, ghi, /he)

is defined as before. Define OC9h as the subset of Xh that falls on the boundary

of X, i.e., OXh- = aXn jh. Let {Ate : e E N}, where At' : Xh -+ R+, be a

sequence holding times. Let {{7 i E N}, where ( E Xhe, be a (random) sequence

of states that describe the trajectory of Wh,,. We use holding times as interpolation

intervals to generate a continuous-time trajectory from this discrete trajectory as fol-

lows. With a slight abuse of notation, let " : R>. -+ Xhe denote the continuous-time

function defined as follows: ("(T) = ( for all T E [tf, t' 1 ), where t' = E'-' At'(G).

Let {uf : i E N}, where u E W, be a sequence of control inputs defined for all f E N.

Then, we define the continuous time interpolation of {uf : i E N} as W (T) = uf for

all T E [tf, tt+1 ). An illustration of this interpolation is provided in Figure 4-1.

The following result by Kushner and co-workers characterizes the conditions under

which the trajectories and value functions of the discrete MDPs converge to those of

121



3 

3 0

tl1 t t3  t4

Figure 4-1: An illustration of a continuous-time interpolation of a discrete process
arising from the Markov chain approximation.

the original continuous-time continuous-space stochastic system.

Theorem 6 (See Theorem 10.4.1 by Kushner and Dupuis [81]). Suppose the sequence

{sK' : f E N} of MDPs and the sequence {te : e E N} holding times satisfy the

following conditions: For any sequence of inputs {u : i E N} and the resulting

sequence of trajectories {(J : i E N} if

lim At(z) = 0, for all z E X,

and

.~~~~~~u E[i-( j=z j s
him = B(Z, ii),t-i00 Att(z)

.Cov[ j+1 - j' I j = Z, dj=n
lim = D(z, U),Ii-00 AtI(z)

for all z cX and u E V{. Then, the sequence {{( ,ut) : f c N} of interpolations

converges in distribution to (x,u) that solves the integral equation with differential

form given by (4.1). Let v h denote the optimal value function for the MDP Wh,.

Then, for all z E Xh ,

lim IV he(z) - v(z)I = 0.
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The conditions of this theorem are often called the local consistency conditions.

Roughly speaking, the theorem states that the trajectories of the discrete MDPs will

converge to the trajectories of the original continuous-time stochastic dynamical sys-

tem if the local consistency conditions are satisfied. Furthermore, in that case, the

value function of the discrete MDPs also converge to that of the original stochastic op-

timal control problem. A discretization that satisfies the local consistency conditions

is called a consistent discretization. Once a consistent discretization is obtained, stan-

dard dynamic programming algorithms such as value iteration or policy iteration [12]

can be used for its solution.

Discretization procedures

In this section, we provide a general discretization framework described by Kushner

and Dupuis [81] along with a specific example. For the rest of the dissertation, we

will drop the subscript f from he, and simply refer to the discretization level h with

h > 0.

First, let Xh C X denote a discrete set of states. For each state z E Yh define a

finite set of vectors M(z) = {vi,z : i < m(z)}, where vi,z E Rd and m(z) : Xh -+ N is

uniformly bounded. These vectors denote directions from a state z to a neighboring

set of states {y : y = z + hvi,z, i < m(z)} c X. A valid discretization is described

by the functions ql(z) : Xh -+ R and q9(z, u) :X x W -+ R that satisfy

B(z, f)= q (z, i)vi,z, for all ft,
vi,z EM(z)

D(z) = q3(z)vi,zvz
vi,z E M(z)

q (z)vi,z = 0,
vi,zEM(z)

hq9(z, fL) + qg (z) > 0,

qg (z) > 0,

where the third condition is used to guarantee that each qi only contributes to the
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variance of the chain and not the mean, and the fourth and fifth conditions will

guarantee non-negative transition probabilities. After finding q and qj1 that satisfy

these conditions, the discrete MDP is described by the normalizing constant

qh(Z'jf)= E [hq(zi)+qi(z)]
vj,zEM(z)

that satisfies qh(z, i) > 0, the interpolation interval

Ath(Z, f) = h
q (z, ')

that must tend to zero as h -+ 0, the transition probabilities

h (Z'Z+hviI) hq (z, U) + q (z)

qh (z I)

the stage costs

g (Z, jj) = t(Ii) g , ,qh (z, )

and, finally, the discount factor

- = exp(--3Ath).

It is easy to verify that these conditions satisfy local consistency, and we refer the

reader to the work of Kushner and Dupuis [81] for more details.

Example: Upwind differencing. One valid discretization of the MCA is ob-

tained using upwind differencing. This procedure tries to "push" the current state of

the system in the direction of the drift dynamics on average, and we use it for all of

the numerical examples in Section 4.5.

Consider the sample discretization of a two dimensional state space provided in

Figure 4-2. The state is discretized with a spacing of hi in the first dimension and

h2 in the second dimension. In this example, the directions vi,z are independent of z,

and thus we drop the subscript z and refer simply to vi. Let the discretization level

124



h2

V3

Figure 4-2: Sample discretization of a two-dimensional state space.

be defined according to h = min(hi, h2) so that transition directions vi are defined

according to

V 1 = -ehi v2 = -hi, v h=-2 , h4 -2.
h h h h

The directions vi do not need to be the same length as the discretization size of

the state space. In particular, their length is the ratio between the grid size in

the particular direction and the finest discretization. This characteristic will ensure

local consistency even for cases when the discretization is different in each direction

by causing the transition probabilities to take the relative discretizations of each

dimension into account.

In the two dimensional state space, the output of the drift can be indexed ac-

cording to B[1] and B[2]. Furthermore, assume that the diffusion is defined so that

A(z) = D(z)DT(z) is a diagonal matrix-A(z) = diag([A[1, 1](z), A[2,2](z)]). Let

B[i](z, )+ = max(O,B[i](zu)), and finally let B[i](z,u)~ = max(O,-B[i](z,ii)).

Then, a locally consistent discretization is one defined by
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q10(z i) =h B[1](zii), q' = h ) 2 A[1, 1](z)2

q (zI) = -B[2](z, f) , q1 = (h) 2  A[2,2](z) 2

3h2 h2 2

h h 2 A[2,21](z)2
q (z,'ii) = -B[](z, j)+ _~()2 20 h h )2 A[2,12] (Z)2
qi(,n = -B[2] (z, u)- q2 = -(I h2 3 h2 2

Suppose the drift is such that B[1](z, u) > 0 and B[2](z, U) < 0 then we can verify

Z q (z Ii)vi = jhB[1](z, i)+ hiel1+ B[2](z, )- e2)
iEZM(z)hih '(h

qO(z,fi) V2 qO(zu V3[B[1](zi~ 1 B),
=z B(z, f)

B[2](z, U) ]
All the other conditions can be similarly verified.

We can also tally the computational cost of this upwind differencing procedure.

The computation of the transition probabilities, for some state z and control ii, re-

quires the evaluation of the drift and diffusion. Suppose that this evaluation requires

nop operations. Assembling each qi (z, i) and qi requires two operations: multiplica-

tion and division. Since there are 2d neighbors for each z, the evaluation of all of

them requires 4d operations.

Next, the computation of the normalization qh involves summing all of the qij

and ql, a procedure requiring 4d operations. Computing the interpolation interval

requires a single division, computing the discrete stage cost requires a division and

multiplication, and computing the discount factor requires exponentiation. Together,

these operations mean that the computational complexity of discretizing the SOC for

some state z and control U using upwind differencing is linear with dimension

O(nop + d). (4.5)
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Boundary conditions

The discretization methods described in the previous section apply to the interior

nodes of the state space. To numerically solve optimal stochastic control problems,

however, one typically needs to restrict the state space to a particular region. Fur-

thermore, to utilize low-rank tensor methods in high dimensions, we design 6 to be

a hypercube. Because of the state truncation, we assign boundary conditions for the

discrete MDP. Three boundary conditions are commonly used: periodic, absorbing,

and reflecting boundary conditions.

A periodic boundary condition maps one side of the domain to the other. For

example consider 6 = (-1,1)2. Then, if we define a periodic boundary condition for

the first dimension, we mean that z = (-1, -) and z' = (1, -) are equivalent states.

Absorbing boundary conditions dictate that if the Markov process enters &0 at

the exit time r, then the process terminates and terminal costs are incurred.

Reflecting boundary conditions are often imposed when one does not want to end

the process at the boundary and periodic boundaries are not appropriate. In these

cases, the stochastic process is modeled with a jump diffusion. The jump diffusion

term is responsible for keeping the process within 6. In our case, we will assume that

the jump diffusion term instantaneously "reflects" the process using an orthogonal

projection back into the state space Y. For example, if the system state is z E a

and the Markov process transitions to z' = z + hek such that z' E 06, then the

system immediately returns to the state z. Therefore, we can eliminate z' from the

discretized state space and adjust the self transition probability to be

pI(z z s) ph(z, zI) + ph (z',If).

In other words, the probability of self transitioning is increased by the probability of

transitioning to the boundary.
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4.2.3 Value iteration, policy iteration, and multilevel methods

We now describe algorithms for solving the DCIH MDP given by (4.4). In particular,

we describe the value iteration (VI) algorithm and the policy iteration (PI) algorithm.

Then, we describe a multi-level algorithm that is able to use coarse-grid solutions to

generate solutions of fine-grid problems. FT-based versions of these algorithms will

then be described in Section 4.3.

DP equations

We now describe some notation and basic properties of the DP equations that are

used within VI and PI. Let Mh be the set of real-valued functions wh: h -+ R. Let

the functional Hh: Xh x,& x Mh be defined as

Hh(z, ' , wh) = gh(z, ') + y ph(z, z'ji)wh(z'). (4.6)
z' E~Kh

Then, for a given policy p we define operator T : ,h _ gh as

T, (wh)(z) := H(z, (z),wh) Vz E X E, E

We denote another mapping Th - Mh _ Mh that corresponds to the Bellman equa-

tion (4.4) describing the optimal value function according to

T h(wh)(z) := min Hg (Zi W h) E W E h .

Using these operators we can denote two important fixed-point equations. The first

describes the value function wh that corresponds to a fixed policy p

Ah =j(Wh). (4.7)

The second equation describes the optimal value function vh

h h (4.8)
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Assumptions for algorithm convergence

Three assumptions are necessary to guarantee existence and uniqueness of the above

DP equations, and to validate their associated solution algorithms.

Assumption 1 (Assumption A1.1 by Kushner and Dupuis [81]). The functions

ph(z, z'|ii) and gh(z, f) are continuous with respect to U for all z, z' E X".

The second assumption involves contraction, and we provide a definition of con-

traction below.

Definition 19 (Contraction). Let 3Y be a normed vector space with the norm ||-f|. A

function f : Y-4 Yis a contraction mapping if for some -y E (0, 1) we have

f(y) - f(y') | < -i'y - y'11, Vy, y' E Y

The second assumption is now provided.

Assumption 2 (Assumption A1.2 by Kushner and Dupuis [81]). (i) There is at least

one admissible feedback policy A such that Th is a contraction, and the infima of the

costs over all admissible policies is bounded from below. (ii) Th is a contraction for

any feedback policy for which the associated cost is bounded.

The third assumption involves the repeated application Tr.

Assumption 3 (Assumption A1.3 by Kushner and Dupuis [81]). Let P, - {ph (z, z'ly (z)):

z, z' e h} be the matrix formed by the transition probabilities of the discrete-state

MDP for a fixed policy A. If the value functions associated with the use of policies

p1,... , pA,... in sequence, is bounded, then

lim PA PM2 '''Pn = 0
n-+oo

Value iteration algorithm

Value iteration is a fixed-point (FP) iteration for obtaining the optimal value function

vh. It works by starting with an initial guess vh E qh and defining a sequence {vh}
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of value functions through the iteration vk+ 1 = Th(kg). Theorem 7 guarantees the

convergence of this algorithm.

Theorem 7 (Jacobi iteration, Theorem 6.2.2 by Kushner and Dupuis [81]). Let it

be an admissible policy such that T is a contraction. Then for any initial vector

wo C Yh, the sequence wk defned by

= T(w ) (4.9)

converges to wh, the unique solution to (4.7). Assume Assumptions 1, 2, and 3. Then

for any vector vo E R, the sequence recursively defined by

hk+1 = T (vk) (4.10)

converges to the optimal value function vh, the unique solution to (4.8).

Indeed (4.10) is the FP iteration that is the value iteration algorithm. In Sec-

tion 4.3.2, we will describe how to exploit low-rank structure within this algorithm.

Policy iteration algorithm

Policy iteration (PI) is another way to solve the MDP. Roughly, it is analogous to

a gradient descent method, and our experiments indicate that it generally converges

faster than VI. The basic idea is to start with a Markov policy [o and to generate a

sequence of policies {[kp}, according to

pk= arg min [T(wii)] , (4.11)

and associated value functions {wk}, that satisfy (4.7), i.e.,

T1r 8 Te te h). (4.12)

Theorem 8 provides the conditions under which this iteration converges.
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Theorem 8 (Policy iteration, Theorem 6.2.1 by Kushner and Dupuis [81]). Assume

Assumptions 1 and 2. Then there is a unique solution to (4.8), and it is the infimum

of the value functions over all time independent feedback policies. Let uo be an admis-

sible feedback policy such that the corresponding value function wo is bounded. For

k > 1, define the sequence of feedback policies p and costs wh recursively by (4.11)

and (4.12). Then wk -+ vh. Under the additional condition given by Assumption 3,

v h is the infimum of the value functions over all admissible policies.

Note that policy iteration requires the solution of a linear system (4.12). Further-

more, Theorem 7 states that since T is a contraction mapping that a FP iteration

can also be used to solve this system. This property leads to a modification of the

policy iteration algorithm called optimistic policy iteration [13]. Optimistic policy

iteration substitutes nfp steps of FP iterations for solving (4.12) to create a more

computationally efficient algorithm. The assumptions necessary for convergence of

optimistic PI are the same as those for PI and VI, and we refer the reader to the

work of Bertsekas [13] for more details. In Section 4.3.3, we will describe a low-rank

version of optimistic PI that uses the FT decomposition.

Multi-level algorithms

Multigrid [19, 120] techniques have been successful at obtaining solutions to many

problems by exploiting multiscale structure of the problem. For example, they are

able to effectively leverage solutions of linear systems at coarse discretization levels

for solving finely discretized systems.

We describe how to apply these ideas within DP for two purposes: the initialization

of fine-grid solutions with coarse-grid solutions and for the solution of the linear

system (4.12) within policy iteration. Since our experiments indicate that fine-grid

problems typically require more iterations to converge, initialization with a coarse-

grid solution offers the opportunity for dramatic speedups. Furthermore, since we

expect the solution to converge to the continuous solution as the grid is refined, we

expect the number of iterations required for convergence to decrease as the grid is

refined.
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The simplest multi-level algorithm is the one-way discretization algorithm that

sequentially refines coarse-grid solutions of (4.8) by searching for solutions on a grid

starting from an initial guess obtained from the solution of a coarser problem. This

procedure was analyzed in detail for shortest path or MDP style problems by Chow

and Tsitsiklis in [28]. The pseudocode for this algorithm provided in Algorithm 8. In

Algorithm 8, a set of K discretization levels {hl, h2,... , hj such that for j > i we

have hj > hi, are specified. Furthermore, the operator I2h interpolates the solution

of the hk+1 grid onto the hk grid. Then a sequence of problems, starting with the

coarsest, are solved until the fine-grid solution is obtained.

Algorithm 8 One-way multigrid [28]

Require: Set of discretization levels {hi, h2 ,..., h}; Initial cost function vh,
1: VhK - Solve (4.8) starting from v 4o
2: for k=r-1...l do
3: U -hk [hk vhk+1

V 0  hk+1

4: vhk - Solve (4.8) starting from vhk
V 0

5: end for

Multigrid techniques can also be used for solving the linear system (4.7) within

the context of policy iteration. Recall that for a fixed policy P, this system can be

equivalently written using a linear operator rh defined according to

lh (wI)(z) Wh - P Z h (z, zIP (z)) wh(zf), Vz (E X .

Z'Egh

Therefore, for a fixed policy p the corresponding value function satisfies

1 (wh) = gh. (4.13)

Typically, we do not expect to satisfy this equation exactly, rather we will have an

approximation iJih that yields a non-zero residual

rtt e , a h eifre (4.14)

In addition to the residual, we can define the difference between the approximation
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and the true minimum as Awh - wh - j. Since, Ah is a linear operator, we can

replace iih in (4.14) to obtain

rh -g -h(wh - Awh)

= gh - ll(wh) + I7J(AWh)

= ,H(Awh)

Thus, if solve for Awh, then we can update jjh to obtain the solution

h h h
w =/.Xwh+W~h

In order for multigrid to be a successful strategy, we typically assume that the residual

rh is "smooth," and therefore we can potentially solve for /wh on a coarser grid. The

coarse grid residual is

2h n2h(W2h)

where we now choose the residual to be the restriction, denoted by operator I12, of

the fine-grid residual

2hr2 _ I 2 hrh.

Combining these two equations we obtain an equation for Aw 2 h

ij2h(,W2h) = 12hrh (4.15)

Note that the relationship between the linear operators T2 and f2h displayed by (4.7)

and (4.13) lead to an equivalent equation for the error given by

Aw 2h = T2h ,AW2h. r2h), (4.16)

where we specifically denote that the stage cost is replaced by r2h. Since T2h is a

contraction mapping we can use the FP iteration (4.9) to solve this equation.
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After solving the system (4.15) above we can obtain the correction at the fine grid

2h h +h AW2h (4.17)

In order, to obtain smooth out the high frequency components of the residual rh one

must perform "smoothing" iteration instead of the typical iteration Th. These iter-

ations are typically Gauss-Seidel relaxations or weighted Jacobi iterations. Suppose

that we start with ik, then using the weighted Jacobi iteration we obtain an update

?7+1 through the following two equations

wFjjh + (1 -h

for w > 1. To shorten notation, we will denote these equations by the operator T h

such that

We have chosen to use the weighted Jacobi iteration since it can be performed by

treating the linear operator T h as a black-box FP iteration, i.e., the algorithm takes

as input a value function and outputs another value function. Thus, we can still wrap

the low-rank approximation scheme around this operator. A relaxed Gauss-Seidel

relaxation would require sequentially updating elements of 10, and then using these

updated elements for other element updates. For more details on the reasons for these

smoothing iterations within multigrid, we refer to [19,81,1201.

Combining all of these notions we can design many multigrid methods. We will

demonstrate a low-rank version of two-level V-grid in Algorithm 11 in the next section.

4.3 Low-rank dynamic programming algorithms

In this section, we describe how to leverage the compressed continuous computation

framework described in Chapters 2 and 3 to solve the dynamic programming equations
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arising from SOC. Specifically, we describe how to represent value functions in FT

format and how to perform FT-based versions of VI, PI, and multigrid.

4.3.1 FT representation of value functions

The MCA method is used to approximate a continuous-space stochastic control prob-

lem with a discrete state Markov decision process. In this framework, the continuous

value functions w are approximated by their discrete counterparts wh. To leverage

low-rank decompositions, we focus our attention on situations where the discrete

value functions represent the cost of discrete MDPs defined using a tensor-product

discretization of the state space. Therefore, w h can be interpreted as a d-way array.

In order to combat the curse of dimensionality associated with storing and computing

wh we propose to use continuous tensor decompositions.

Let X = k x .2 x ... x Xd denote a tensor-product state space. The space

of the ith state variable is defined as Xi = [ai, bi], for aj, bi c R that have the

property ai < bi. A tensor-product discretization Xh of X involves discretizing each

dimension into n nodes to form Xji C Xi where

= {4, z,.. . z }, where z(') E Xi for all k.

A discretized value function w h can therefore be viewed as a vector with n d elements.

Practically, the MCA method guarantees that the solution to the discrete MDP

approximates the solution to the SOC, i.e., vh v V, for small enough discretizations.

This approximation, however, is ill-defined since v his a multidimensional array and

v is a multivariate function. Furthermore, a continuous control law requires the

ability to determine the optimal control for a system when it is in a state that is

not included in the discretization. Therefore, it is necessary to use the discrete value

function wh E gh to develop a value function that is a mapping from the continuous

space X to the reals.

To this end, we slightly abuse notation and interpret wh as both a value function

of the discrete MDP and as an approximation to value function of the continuous
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system. Furthermore, when generating this continuous space approximation, we are

restricted to evaluations located only within the tensor-product discretization. In this

sense, we can think of wh both as an array w h Xh -+ R in the sense that it has

elements

and simultaneously as a function wh : X -+ R where

It is infeasible to store the value function on a grid with nd elements due to the

curse of dimensionality. We employ the FT decomposition to develop a low-rank

representation of the value function.

Recall that the FT representation of a function f is given by (3.4) and defined

by the set of FT cores {Tj} for i = 1, . . . , d. Each of these cores is a matrix-valued

function Ti : Xi -+ Rri- xri that can be visualized as an two-dimensional array of

scalar-valued univariate functions:

77,c (Xi)

Using this matrix-valued function representation for the cores, the evaluation of a

function in the FT format can be expressed as f(x1, ... , Xd) = T1(x1) ... Td(Xd).

Since we effectively can only compute wh through evaluations at uniformly dis-

cretized tensor-product grids, we employ a nodal representation of each scalar-valued

univariate function
n

fJ (xi) = a ,#2, (xi), (4.18)
f=1

where a (,) , are the coefficients of the expansion, and the basis functions :i
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i are hat functions:

0 if Xi < z,)1 or xi > z

1 if Xi = zM

, i+1
Of, h(Xi) M____ ~

Z(i) Z (i) if(i) X

i+1if We < X. < W~H

Note that these basis functions yield a linear element interpolation 2 of the function

when evaluating it for a state not contained within Xh.

We denote the FT cores of the value functions for discretization level h as Tft.

Finally, evaluating wh anywhere within X requires evaluating a sequence of matrix-

vector products

wh (h, x2,...,xd)= (1l)F2(x2)...-Fa'zx), for all xi E X.

4.3.2 FT-based value iteration

In prior work [56], we introduced a version of VI where each update (4.10) was per-

formed using a low-rank tensor interpolation scheme that selectively chose to update

only a small fraction of all the states. Here, we follow a similar strategy, except we

use the continuous space approximation algorithm described in Algorithm 4, and de-

noted by ft-rankadapt, to accommodate our continuous space approximation. By

seeking a low-rank representation of the value function, we are able to avoid visiting

every state in 3 h and achieve significant computational savings. The pseudocode

for low-rank VI is provided by Algorithm 9. In this algorithm, v' denotes the value

function approximation during the kth iteration.

The update step 4 treats the VI update as a black box function into which one

feeds a state and obtains an updated cost. After k steps of FT-based VI we can

2 If we would have chosen a piecewise constant reconstruction, then for all intents and purposes
the FT would be equivalent to the TT. Indeed we have previously performed such an approximation
for the value function [56].
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Algorithm 9 FT-based Value Iteration (FTVI) (Modified from [56])

Require: Termination criterion 6m.; f t -rankadapt cross approximation and round-
ing tolerances e = (6 cross, eround); Initial cost function in FT format v'; Conver-
gence tolerance Jma

Ensure: Residual 6 = 1vh - Vh11 2 < max

1: ma + 1.
2: k = 0
3: while 6 > 6max do
4: Vk+1 = ft-rankadapt (T ) k )
5: k +- k + 1
6: J= |v h- vkh 1 2

7: end while

obtain a policy as the minimizer of Th(vh)(z), for any state z E X.

4.3.3 FT-based policy iteration

As part of PI, for each [k, one needs to solve (4.12) for the corresponding value

function wk. Recall that this system has an equivalent number of unknowns as states

in Xh, so the number of unknowns scales exponentially with dimension for tensor-

product discretizations. To efficiently solve this system in high dimensions, we seek

low-rank solutions. A wide variety of low-rank linear system solvers have recently

been developed that can potentially be leveraged for this task [37,97].

We focus on optimistic policy iteration, where we utilize the contractive property

of T h to solve (4.12) approximately using nfp FP iterations. We leverage the low-rank

nature of each intermediate value wh by interpolating a new value function for each of

these iterations in the same manner that we did for VI. Notice that this iteration (4.9)

is much less expensive than the value iteration (4.10) because it does not involve any

minimization.

The pseudocode for the FT-based optimistic policy iteration is provided in Algo-

rithm 10. Note that in Line 4, we represent a policy pk implicitly through a value

function. We make this choice, instead of developing a low-rank representation of Pk,

because the policies are generally not low-rank, in our experience! Indeed, disconti-

nuities can arise due to regions of uncontrollability, and these discontinuities increase
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Algorithm 10 FT-based Optimistic Policy Iteration (FTPI)

Require: Termination criterion Jmx; f t -rankadapt cross approximation and round-
ing tolerances E = (6 cross, Eround); Initial value function in FT format wo; Number
of FP sub-iterations iterations nfp

1: =6m + 1.
2: k = 1
3: while 6 > 6max do

4: pU = ImplicitPolicy arg min [T (wgi)]

5: Wh = h
Wk Wk-1

6: for f = 1 to nfp do
7: = f t-rankadapt (Th (w), )
8: end for
9: J= ||wh - w 112

10: k- k + 1
11: end while

the rank of the policy. Instead, to evaluate an implicit policy Pk at a location z, one

is required to solve the optimization problem (4.11) using the fixed value function

w_ 1 . However, one can store the policy evaluated at nodes visited by the cross ap-

proximation algorithm to avoid recomputing them during each iteration of the loop

shown in Line 6. Since, the number of nodes visited during the approximation stage

should be relatively low, this does not pose an excessive algorithmic burden.

4.3.4 FT-based prolongation and interpolation operators

We now show how to perform interpolation and prolongation in FT format for use

within the multi-level methods described in Section 4.2.3. Recall that the first ingre-

dient of multigrid is a prolongation operator I h which takes functions defined on the

grid Xh into a coarser grid 2h . The second ingredient is an interpolation operator

I2h which interpolates functions defined on X2h onto the functions defined on Xh.

Many of the common operators used for 1 h and I2h can take advantage of the low

rank structure of any functions on which they are operating. In particular, perform-

ing these operations on function in low-rank format often simply requires performing

their one-dimensional variants onto each univariate scalar-valued function of its FT

core.
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The prolongation operator that we use picks out values common to both X( and

2h according to

(I2hwh _ 2h (z), Vz - X2h

Practically, this operator requires a constant number of computational operations,

only access to memory. Furthermore, the coefficients of fal'l 2 (recall (4.18)) are

reused to form the coefficients of A 1',a.

Suppose that fine grid is Z() {Ij, ,...I, z$} and the coarse grid %2 _

{zi) }l=1 ...,n/2 consists of half the nodes (|2h = n/2). Then the univariate func-

tions making up the cores of w 2h are

n/2
i 2h) h) 2h

t=1
n/2

= a -1 (ikh) 02h (Xi)

where #2h are the functions defined on the coarser grid. In the second line we have

used every other coefficient from the finer grid as the coefficient of the corresponding

coarse grid function

The interpolation operator arises from the interpolation that the FT performs,

and in our case, the use of hat functions leads to a linear interpolation scheme.

This means that if the scalar-valued univariate functions making up the cores of

w2h are represented in a nodal basis obtained at the tensor product grid X2h _

EX2h ... X 2h, then we obtain a nodal basis with twice the resolution defined on

Xh - Xh x ... x Xdh through interpolation of each core. This operation requires

interpolating of each of the univariate functions making up the cores of w 2h onto the

3One could also chose more regular nodal basis functions as well, e.g., splines. For other basis
functions there may be more natural prolongation and interpolation operators than we present here.
We have chosen hat functions in this paper because they are proved to be well behaved in the face
of discontinuities or extreme nonlinearities often encountered in the solution of the HJB equation.
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fine grid. Thus, wh becomes an FT with cores consisting of the univariate functions

n n
fG h)() a >j i h) hs~x~ = YI f(i2h)(ziMcf hxi

t=1 f=1

where we note that in the second equation we use evaluations of the coarser basis

functions to obtain the coefficients of the new basis functions. In summary, both

operators can be applied to each FT core of the value function separately. Both of

these operations, therefore, scale linearly with dimension.

One example of the use of these operations is within the two-level V-grid algo-

rithm provided by Algorithm 11. In this algorithm, an approximate solution for each

equation is obtained by fi fixed point iterations at grid level hi. An extension to other

grid cycles and multiple levels of grids is straightforward and can be performed with

all of the same operations.

Algorithm 11 Two-level FT-based V-grid for solving Equation (4.7)

Require: Discretization levels {hi, h2} such that h, < h2 ; Number of fixed point
iterations at each level {i, f2}; Initial value function i00; policy p; ft-rankadapt
cross approximation and rounding tolerances E = (6 cross, (round)

1: k = 0
2: while not converged do
3: for f = 1, ... ., 1do

4: Wf <- f t-rankadapt (Tj(w),)
5: end for
6: rh = f t-rankadapt(T( ), ) -- h

7: Awh2 = 0
8: for = 1, ... ,2 do
9: A +2+- f t -rankadapt (Th2 (AW2 Ih2rh), E) # See (4.16)

10: end for
11: k hi k1 -+ Ihi Ah2
12: k <- k + 1
13: end while

4.4 Analysis

In this section, we address the convergence properties and computational complex-

ity of the FT-based algorithms. First, we show the convergence and accuracy of
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approximate FP iteration methods. Second, we discuss the algorithms' complexity.

To show convergence of our FT-based low-rank dynamic programming algorithms,

we need to characterize the effect of a small approximation error at each FP itera-

tion associated with value iteration and optimistic policy iteration. Furthermore, to

prove their computational benefits, we show polynomial growth in complexity of these

algorithms with state space dimension when the FT-ranks of the approximation to

associated value functions grows polynomially with dimension.

The algorithms discussed in the previous section all rely on performing cross ap-

proximation of a function with a relative accuracy tolerance e. Recall that in practice

we can not guarantee that cross approximation will converge to an approximation

that has a relative error e. We can, however, give conditions under which an e level

approximation within VI/PI still allows convergence

In this section we describe the convergence and accuracy of the FT-based VI

and PI. In Section 4.4.1, we show convergence of the algorithms when a guaranteed

approximation error c is made at each iteration. In Section 4.4.2, we show that this

situation is satisfied by the cross approximation based algorithms when the value

functions of interest have finite rank. In Section 4.4.3 we compute the computational

cost of approximate VI in FT format.

4.4.1 Convergence of approximate fixed-point iterations

We start by showing that a small relative error made during each step of the relevant

FP iterations results in a bounded overall approximation error.

We begin recalling the contraction mapping FP theorem.

Theorem 9 (Contraction mapping FP theorem, Proposition B.1 by Bertsekas [13]).

Let 9. be a complete vector space and 4 be a closed subset. Then if f : 4 $ is a

contraction mapping with modulus -y E (0,1), there exists a unique w c . such that

w = f (w).

Furthermore, the sequence defined by wo E Q and the iteration Wk - f (Wk1) con-
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verges to w for any w E R according to

|WkW - W1 7k|jwo -w||, k=1,2,...

Theorem 9 can be used, for example, to prove the convergence of VI when the

operator Th is a contraction mapping. Our FT-based algorithms are based on ap-

proximations to contraction mappings. Therefore, it is important to understand when

they converge and the accuracy which they attain. The cases of FT-based VI and

FT-based FP iterations for solving (4.7) are addressed by Lemma 3 below.

Lemma 3 (Convergence of approximate FP iterations). Let Mh be a closed subset of

a complete vector space. Let f : Mh -> Mh be a contractive mapping with modulus

e (0, 1) and fixed point wh. Let f: h Mh be an approximate mapping such that

lf (w') - f (w')I| < el f (w')11, Vw' E Mh (4.19)

for e > 0. Then, the sequence defined by wo h E and the iteration w' = h_(w_ 1 )

for k = 1, 2,... s.atisfies

11Wh _W 1 - (I + -) hl+ (Y YkI* hl

k - (Y + )W

Proof. The proof is a standard contraction argument. We are grateful to Ezra Tal for

pointing out the following argument. We begin by bounding the difference between

the kth iterate and the fixed point wh:

||i- w%| - by - f~w_ 1 ) + f (wn_ 1 ) - whH

|jWh - f (w_1 ) + f f(Wh 1 ) - whH

e _ f (w h_)I| + y||iYi_ - wh h

ellf (WI_1 ) - wh1 + eflWhH + _YIw 1i - whl

< (7yE + 'y) flWki h ~wj
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where the second inequality comes from the triangle inequality, the third comes

from (4.19) and contraction, the fourth inequality arises again from the triangle in-

equality, the final inequality arises from contraction.

Using recursion results in

1 wh h < (_YE -+ _ [('7E + _Y) [('Yf + Y) . + EjWhjj1 + 1Ejwhjjl + EflWhjj

k-1

= 1HWh_ (_YE + _)] + (_YE + ||)k jph _ WhH.

Using the property of a sum of a geometric series yields our desired result

Notice that, as expected, when c = 0 and k -+ oc this result yields that the iterates

Wk converge to the fixed point wh. Second, the condition 'yE +Y < 1 is required to

avoid divergence. It effectively states that if the contraction modulus is small enough,

a larger approximation error may be incurred. On the other hand, if the contraction

modulus is large, then the approximation error must be small. In other words, this

requirement can be thought as a condition for which the approximation can remain

a contraction mapping; larger errors can be tolerated when the original contraction

mapping has a small modulus, and vice-versa.

This result can be used within our MDP problems when Th and T are contraction

mappings. In that situation, this result yields convergence for both the approximate

VI algorithm and for solving the system (4.7) using a FP iteration, when the approx-

imation errors can be guaranteed. The circumstances under which such guarantees

can be made are covered in Section 4.4.2.

We can obtain an alternative bound, one that does not require any conditions on

E, if we assume that each iterate of an approximate FP iteration is bounded. The

following result is an alternative to the previous theorem. It is more flexible with

respect to the size of error E as long as each iterate is bounded.
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Lemma 4 (Convergence of approximate FP iterations with boundedness assump-

tion). Let Mh be a closed subset of a complete vector space. Let f : Mh _-+ ' be a

contractive mapping with modulus y E (0,1) and fixed point wh. Let f : gh - M' be

an approximate mapping such that

lf(w') - f (w') e< f (w')II, Vw' G C , (4.20)

for c > 0. Let wk .. Define a sequence the sequence {wk} according to the

iteration w! = f(w_ 1 ) for k = 1,2,.... Assume that ||w < p1 < oc so that

||f (wh)| p < oC. Then {wh} satisfies

1 -
|w -_f['k(Wv)| K ep, Vk, (4.21)

so that,

lim |w -_ whH ' (4.22)
k-+oc k - _Y

where f[k] denotes k applications of the mapping f.

Proof. The strategy for this proof again relies on standard contraction and triangle

inequality arguments. Furthermore, it follows closely the proof of Proposition 2.3.2

(Error Bounds for Approximate VI) work by Bertsekas [13]. In that work, the propo-

sition provides error bounds for approximate VI when an absolute error (rather than

a relative error) is made during each approximate FP iteration. The assumption of

boundedness that we use here will allow us to use the same argument as the one made

by Bertsekas.

Note that (4.20) implies

||w - f(w_)H = hf(wi) - f (wi) eIIf (w_1 ) 1. (4.23)

Recall f[k] (w') denotes k applications of the operator f, i.e.,

f [k] (WI) = f [k-1] (f (w')) = f [k- 2 ] (f (f (W'))) = ... = f (f (f . f (W'))))
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Then using the triangle inquality, contraction, and (4.23), we have

-jh frkI(wh~)I < jj~ _ f(Wh 1)11 +i 1f(Wh~) _ f[21(w h-- .O [k ] 0 - k k-1 k-1 [ k-2)1

+ jf[k-1(Wh) _ f[kI(Wh)H

< 1 11f (Wh) 11 + _y~lf (W~h + ... + _yk-lE1f (W) 11k- k-2) 1k- 0

The boundedness assumption yields

and the sum of a geometric series yields

1 - E
|Wk - -Yk(W

Taking the limit k -+ oc and using Theorem 9, where limk_+oo f[k](wh) = wh, yields (4.22).

El

Note that (4.21) shows the difference between iterates of exact FP iteration and

approximate FP iteration, and indicates that this difference can not grow larger than

ep. Furthermore, this result does not require any assumption on the relative error c.

4.4.2 Convergence of FT-based fixed-point iterations

For the above theorems to be applicable to the case of low-rank approximation using

the f t-rankadapt algorithm, we need to be able to explicitly bound the error commit-

ted during each iteration of FT-based VI and each subiteration within optimistic PI.

Recall that cross approximation has no known convergence results for functions whose

separated forms are approximately low-rank as in the case of Section 3.2.2. However,

for the case of finite-rank unfoldings in Section 3.2.1, the FT approximation can be

guaranteed using the f t-rankadapt algorithm.

This guarantee stems from the proof of the existence of the CUR/skeleton de-

composition for vector-valued functions provided in Section 2.3.1. In that proof, one
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requires an upper bound for the rank and a routine to find linearly independent

fibers to obtain an exact reconstruction. Therefore, we only consider the convergence

of functions with finite FT rank to strictly adhere to the theorems of the previous

section. This assumption is formalized below.

Assumption 4 (Bounded ranks of FT-based FP iteration). Let Rh be a closed subset

of a complete vector space. Let f : qh + Rh be a contractive mapping with modulus

e (0, 1) and fixed point wh. The sequence defined by the initial condition w Eh

and the iteration wh = ft-rankadapt (wf (Wh_,) , E) has the property that the functions

{f(wh)} have finite FT rank. In other words, each of the unfoldings of f(wh) have

rank bounded by some r < o0,

rank [f(w )(xxi)] < r < o,

for l = 1,... d - 1.

Since under Assumption 4 we are approximating a function with finite FT-ranks

at each step of the fixed point iteration, we further assume that the ft-rankadapt

algorithm converges. These assumptions lead to the satisfaction of the conditions

required by Lemmas 3 and 4. The following result is immediate.

Theorem 10 (Convergence of the FT-based value iteration algorithm). Let Mh be a

closed subset of a complete vector space. Let the operator T h of (4.8) be a contraction

mapping with modulus -y and fixed point vh. Define a sequence of functions according

the an initial function v 0 C qh and the iteration vh = f t-rankadapt (Th (vh_1 ) , E).

Assume Assumption 4. Furthermore, assume that wk| < p1 <00 so that ||f (w ||

p < o. Then, FT-based VI converges according to

lim|v - vh I< .
k-+oo 1 - Y

In reality, we cannot guarantee these conditions. However, our numerical ex-

periments indicate that these algorithms remain effective in situations when these

theorems do not exactly hold.
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4.4.3 Complexity of FT-based DP algorithms

We can also estimate the computational cost for each FP iteration based on the

computational cost of the ft-rankadapt algorithm. Suppose that each dimension is

discretized into n nodes, then a single interpolation of black box function having all FT

ranks equal to r requires O(nr2 ) evaluations of the black box function and O(nr3 )

operations during the rounding (Algorithm 3) step of the rank estimation scheme.

When the SOC is discretized using upwind differencing described in Section 4.2.2, we

can make the following statement about the complexity of one step of an approximate

FP iteration.

Proposition 17 (Complexity of the evaluation of (4.6)). Let the evaluation of stage

cost gh, drift B, and diffusion D require nop operations. Let the discretization X'

of the MCA method arise from a tensor product of n-node discretizations of each

dimension of the state space. Let the resulting transition probabilities ph(z, z'| ii) be

computed according to the upwind scheme described in Section 4.2.2. Furthermore,

let the value function wh have ranks r = [ror1,... , rd] where ro = rd = 1 and rk = r

for k = 1 ... d - 1. Then, evaluating

gh(z, j) + -y ph(z, z'|)wh(z')

for a fixed z c Xl and fL E V{ requires O(nop + d 2nr2) operations.

Proof. In the specified upwind discretization scheme, there exist 2d neighbors to which

the transition probabilities are nonzero. Furthermore, in Section 4.2.2, we showed that

computing all of these transition probabilities requires O(np + d) operations. The

evaluation of the cost of each neighbor, h (z'), requires ((dnr 2 ) evaluations. Since

this evaluation is required for 2d neighbors, a conservative estimate for this total cost

is O(d 2 nr2 ). Thus, the result is obtained by observing that the cost is dominated by

the computation of the transition probabilities and the evaluation of value function

at the neighboring grid points

Using Proposition 17 and assuming that for each z the minimization over control
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u requires , evaluations of (4.6), the following result is immediate.

Theorem 11 (Computational complexity of the FT-based value iteration algorithm).

Let R' be a closed subset of a complete vector space. Let the operator Th of (4.8)

be a contraction mapping with modulus -y and fixed point vh. Let the evaluation of

stage cost gh, drift B, and diffusion D corresponding to T h require no, operations.

Let the discretization Xh of the MCA method arise from a tensor product of n-node

discretizations of each dimension of the state space.

Define a sequence of functions according the an initial function v 0 E gh and

the iteration vh = ft-rankadapt (Th (vh 1 ) ,E). Assume that for each z E Xh, the

minimization over control ii G V requires , evaluations of (4.6). Then, each iteration

of FT-based VI involves cross approximation and rounding and requires

0 (dnrr (nop + d2nr2 ) + dnr')

operations.

Note that this computational cost is polynomial with dimension, and therefore,

this algorithm mitigates the curse of dimensionality as long as the rank r of the

problem does not grow exponentially with dimension.

4.5 Numerical examples

Next, we demonstrate the low-rank approaches discussed in this chapter on several

representative stochastic optimal control problems. The simulation results in this

section are obtained using one core of a 32 GB Intel i7-5930K CPU clocked at 3.50GHz

with a 64-bit Ubuntu 14.04 LTS operating system. We also used the Compressed

continuous computation (C3) toolbox [54], that is a BSD licensed package available

through GitHub. The low-rank dynamic programming algorithms are provided in a

stochastic optimal control addition to this software that is released separately, also

on GitHub [55].
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4.5.1 Linear-Quadratic- Gaussian with bounded controls

In this section, we investigate the effect of boundary conditions and control bounds

on a prototypical control problem. The system has a bounded state space, linear

dynamics and quadratic cost. However, combined with a bounded control space,

analytic solutions difficult to obtain. The dynamics are

dx1 = x 2 dt + udwi(t)

dx 2 = u(t)dt + a2dw2 (t),

and they represent a physical system with position x1 and velocity x 2 with 0 =

(-2, 2)2. The control input to this system is the acceleration u, and we consider

different lower and upper bounds on the control space V{ = [Ulb, Uub]. The diffusions

affecting each equation are constant with space and time. We consider a discounted-

cost infinite-horizon problem, with discount e--A. The stage cost is

g (XU) = X2 + X2 + U2, (4.24)

and, when imposing absorbing boundary conditions, the terminal cost is

O(x) = 100, X E 96 (4.25)

We first solve the problem for various parameter values to gain insight to the

problem. Next, we discuss numerical results summarizing the convergence of the

algorithm.

Parameter studies

We present computational experiments that assess when low-rank cost functions arise

and what factors affect ranks. Our first computational experiment studies the effects

of the control boundary conditions on a problem with absorbing boundaries. This

computational experiment is performed over several different Ulb, Uub combinations
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Figure 4-3: Cost functions and ranks of the solution to the LQG problem for vary-
ing control bounds [Uab, Uub]. Diffusion magnitudes are a- = U2 = 1, and absorbing

boundary conditions are used. The FT ranks found through the cross approximation
algorithm with rounding tolerance cround = 10-7 were either 7 or 8. The x-axis of

each plot denotes x1 and the y-axis denotes x 2 -

and the resulting optimal value functions are shown in Figure 4-3. We utilized FT-

based policy iteration. The Markov chain approximation is used with a discretization

of 60 points in each dimension.

Several phenomena are evident in Figure 4-3. When the range of the valid controls

is wide, the value function is able to achieve smaller values, i.e., the blue region

(indicating small costs) is larger with a wider control range. This characteristic is

expected since the region from which the state can avoid the boundary is larger when

more control can be exercised. However, the alignment of the value function, along
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the diagonal stretching from the upper left to the upper right, is the same for all of

the test cases. Only the magnitude of the value function changes, and therefore the

ranks of the value functions are all either rank 7 or 8. Changing the bounds of the

control space does not greatly affect the ranks of this problem.

Next, we consider the effect of the diffusion magnitude on the optimal value func-

tion and its rank. The results of this experiment are shown in Figure 4-4, and we see

that the diffusion is influential for determining the rank of the problem. One striking

pattern seen in Figure 4-4 is that as the diffusion decreases, the blue region grows in

size. The blue region indicates low cost, and it intuitively represents the area from

which a system can avoid the boundary. In other words, the system is more control-

lable when there is less noise. When the noise is very large, for example in the upper

left panel, there is a large chance that the Brownian motion pushes the state into the

boundary. This effect causes the terminal cost to propagate further into the interior

of the domain.

As Uo decreases and a, is large, there is less noise affecting the acceleration of the

state, and the system remains controllable for a wide range of velocities. However,

since the diffusion magnitude is large in the equation for velocity, the value function

is only small when the position is close to the origin. In the area close to the origin

there is less of a chance for the state to be randomly pushed into the absorbing region.

Finally, when both diffusions are small, the system is controllable from a far greater

range of states, as indicated by the lower right panel.

The ranks of the value functions follow the same pattern as controllability. The

ranks are small for large diffusions and high for small diffusions. When the features

of the function are aligned with the coordinate axes, the ranks remain low. As the

function becomes more complex, due to small diffusions, the boundaries between guar-

anteed absorption and nonabsorption begin to have more complex shapes, resulting

in increased ranks.

Next, we investigate the value functions associated with reflecting boundary con-

ditions. The results of this experiment are shown in Figure 4-5. The results indicate

that neither that value functions nor their ranks are much affected by the bounds of
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Figure 4-4: Cost functions and ranks of the solution to the LQG problem for different
9-1, -2 . We fix Ulb = -3, Uub = 3, and use absorbing boundary conditions. The
FT ranks found through the cross approximation algorithm with rounding tolerance
Cround = 10-7 are indicated by the caption for each frame. The x-axis of each plot
denotes x1 and the y-axis denotes x 2 . The color scale is different in each plot to
highlight each function's shape.

153

2
0,1 10 1 0.1

I



Ulb 10 4 1/2

-10

-4

20 21 22 23 24 25

Figure 4-5: Reflecting boundary conditions with cost functions and ranks for different

[Ulb, Uub], and the diffusion is set to a, = O-2= 1. The FT ranks found through the
cross approximation algorithm with rounding tolerance Eround = 10- were 3 for all
cases.

154



the control space. Interestingly, all of the value functions are rank 3, and all of the

value functions appear to be quadratic. For a classical LQR problem the solution is

quadratic, and therefore its rank is also 3. Thus, in some sense, reflecting boundary

conditions more accurately represent a the classical LQG problem with unbounded

state.

Next, we consider the effect of the diffusion magnitude on the optimal value func-

tion and its rank in the context of reflecting boundary conditions. The results of this

experiment are shown in Figure 4-6, where it is evident that diffusion magnitude is

again influential for determining the rank of this problem. The shapes and ranks of

these value functions are similar to those in the case of absorbing boundary condi-

tions. They follow the same pattern of increasing rank as the diffusion magnitude

decreases.

Convergence

Next, we show values of the norm of the value function, the difference between iter-

ates, and the fraction of states visited during each iteration throughout both the VI

and PI algorithms. We begin with FT-based VI, whose pseudocode is provided by

Algorithm 9. In Algorithm 9 we use an FT tolerances of 6 cross = Cround = 10-. In

Figure 4-7 we compare the convergence and the computational cost for solving the

stochastic optimal control problem for varying discretization of the MCA method.

Discretization sizes of n = 25, n = 50, and n = 100 nodes in each dimension are

compared (note this corresponds to 252 = 625,502 = 2500, and 1002 = 10000 total

discretized states).

The results demonstrate that approximately the same value function norm is ob-

tained regardless of discretization. However, convergence is much faster for coarse

discretizations, and suggests the the one-way multigrid algorithm may be useful.

Furthermore, we see the low-rank nature of the problem emerge because the fraction

of discretized states evaluated during cross approximation for each iteration decreases

with increasing grid resolution. For reference, exact VI would have the fraction of

state space evaluated be 1 for each iteration. Thus, even in this two-dimensional
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Figure 4-6: Cost functions and ranks of the solution to the LQG problem for different
O-1, -2 . We fix Ulb = -3, Uub = 3, and use reflecting boundary conditions. The
FT ranks found through the cross approximation algorithm with rounding tolerance
Cround = 10-7 are indicated by the caption for each frame. The x-axis of each plot
denotes x1 and the y-axis denotes x 2 . The color scale is different in each plot to
highlight each function's shape.
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Figure 4-7: FT-based value iteration diagnostic plots for the linear quadratic problem
with reflecting boundaries, u(t) E [-1, 1], and ou = U2 = 1. The left panel shows that
for all discretization levels the value function norm converges to approximately the
same value. The middle panel shows the relative difference between value functions
of sequential iterations. The right panel shows that the fraction of states evaluated
within cross approximation decreases with increasing discretization resolution.

example, the low-rank algorithm achieves computational speedup between two to five

times for each iteration over standard VI.

Next, we repeat this experiment for FT-based PI using Algorithm 10. In Algo-

rithm 10 we use 10 sub-iterations to solve for the value function for every policy and

FT tolerances of 6cross = round = 10- 7 . Figure 4-8 shows the results for the value

function associated with each control update; thus, the sub-iteration cost functions

are not plotted. Note that, as expected, far fewer iterations are required for con-

vergence. The results are qualitatively similar to the VI case; however, convergence

occurs with approximately an order of magnitude fewer control updates.

4.5.2 Car dynamics

Next, we consider three and four state car dynamics. For all of the examples in this

section, Algorithm 10 uses nfp = 10, and cross approximation and rounding tolerances

are set to 10-5.
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Figure 4-8: FT-based policy iteration diagnostic plots for the linear quadratic problem
with reflecting boundaries, u(t) E [-1, 1], and -1 = -2 = 1. The left panel shows
that for all discretization levels the value function norm converges to same value.
The middle panel shows the relative difference between value functions of sequential
iterations. The right panel shows that the fraction of states evaluated decreases with
increasing discretization.

Dubin's car

The first car we consider is the standard three-state Dubin's car with stochasticity

added

dx = cos(0)dt + dw1(t)

dy = sin(9)dt + dw 2 (t)

dO = u(t)dt + 10- 2dw 3 (t)

for states x E (-4, 4), y E (-4, 4), and 0 E [-7r, 7r]. The control space consists of

three options 0/ = {-1, 0, 1}. B6undary conditions are absorbing for the position

dimensions (x, y) and periodic for the angle 9. An absorbing region is specified at the

origin with a width of 0.5, and the terminal costs are

for (x, y) E [-0.25, 0.25]2

for xI > 2 or Iy > 2

A minimum time problem is posed, i.e., the stage costs are set to

g(x,u) = 1.
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Figure 4-9: Trajectories of the Dubin's car for three initial conditions. Panels show
the car when it arrives in the absorbing region.

The solution is obtained using one-way multigrid as discussed in Section 4.2.3. One

hundred steps of FT-based PI are used and the state space is discretized into n = 25

nodes for each state. Then the result is interpolated onto a grid that is obtained by

discretizing each dimension into n = 50 nodes, and the problem is solved with fifty

steps of FT-based PI. This multigrid procedure is repeated for n = 100 and n = 200.

A simulation of the resulting feedback controller for several initial conditions is shown

in Figure 4-9.

Convergence diagnostic plots are shown in Figure 4-10. These plots demonstrate

one of the advantages of the FT framework; since the value function is represented

as function rather than an array, we can compare the norms of functions represented

with different discretizations. In fact, the upper left panel of Figure 4-10 demonstrates

that the norm continuously decreases when the discretization is refined.

Furthermore, these results suggest that the solution to this problem, with a round-

ing tolerance Cround = 10-5, indeed has FT rank 12. This suggestion is supported by

the fact that once the grid is refined enough, the fraction of states evaluated de-

creases, but the maximum rank levels off at 12. In some sense, we have found a

characterization of some intrinsic complexity of the problem. Note that, the total

number of states changes throughout the iterations depending on the discretization

level, i.e., when n = 25 the total number of states is 253 = 15625, when n = 50 the

total number is 503 = 12500, and the lower left panel shows the fraction of states

with the corresponding discretization level.
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Figure 4-10: One-way multigrid for solving the Dubin's car control problem.

Understeered car

Next, we increase the state and control dimensions. We model an understeered car

with control inputs that correspond to steering angle and acceleration. The states

(x, y, 0, v) are now the x-position, the y-position, orientation angle, and velocity re-

spectively. The control for steering angle is u1 (t) E [-15 ' , 15 ] and for acceleration

is u2(t) E [-1, 1]. The dynamics are given by

dx = v cos(9)dt + dw1(t)

dy = v sin(9)dt + dw 2 (t)

d9- 1 V tan(u1(t))dt + 10- 2dw3 (t)1 + (v/ve) L

dv = au2 (t)dt + 10- 2 dw4 (t)
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Figure 4-11: Trajectories of the understeered car for three initial conditions. Panels
show the car when it arrives in the absorbing region.

where v, = 8m/s is the characteristic speed, L = 0.2m is the length of the car, and

a = 2. The boundary conditions are absorbing for the the positions x and y, periodic

for 9, and reflecting for v. The space for the positions and orientations are identical

to that of the Dubin's car. The velocity is restricted to forward with v E [3, 5]. The

stage cost is altered to push the car to the center

g(x, y,0,v) = 1+ x 2 + y 2.

The terminal cost is the same as for the Dubin's car with an absorbing region at

the origin of the x, y plane. Note that the dynamics of this example are not affine

with respect to control. Therefore, this example does not fit into many standard

frameworks that solve a corresponding linear HJB equation [67,127]. The trajectories

for various starting locations are shown in Figure 4-11.

Figure 4-12 shows the convergence diagnostic plots. Due to computational con-

siderations, we fixed a maximum FT adaptation rank to 20. Therefore, instead of

plotting the maximum rank (like we did for the Dubin's car), we plot the average FT

rank in the lower right panel. The average rank varies more for coarse discretizations

than for fine discretizations, but when n = 100 the average rank becomes clearly

smaller and more consistent.

For this four dimensional state space, a discretization of 100 nodes in each dimen-

sion would require storage that is on the order of 0(8 x 1004) = 0(0.8 x 109) bytes
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Figure 4-12: One-way multigrid for solving the understeered car control problem.
Maximum rank FT rank is restricted to 20.

(suppose we are storing floating point values), or 800 MB. The compressed format

leads to a storage requirement that is a little more than two orders of magnitude less,

as indicated by the lower left panel. In fact, on the desktop that generated these

results, storing the final value function requires almost exactly 1MB. These savings

can be tremendously beneficial in constrained computing environments. For exam-

ple, these controllers can potentially be used on embedded systems that have serious

memory constraints.

4.5.3 Perching glider dynamics

We now solve a seven state, one control, problem with dynamics modeling an un-

powered glider attempting to perch on a horizontal string [32,89,104]. The glider is

described by flat-plate model in a two dimensional plane involving seven state vari-

ables (x, y, 9, 4, v2, vy, 9) specifying its x-position, y-position, angle of attack, elevator
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angle, horizontal speed, vertical speed, and the rate of change of the angle of attack

respectively. The input control is the rate of change of the elevator angle u = <5. A

successful perch is defined by a horizontal velocity between 0 and 2 m/s, a vertical

velocity between -1 and -3 m/s, and the x and y positions of the glider within a 5cm

radius of the perch. Under these conditions, the experimental aircraft in [32] can

attach to the string. For a diagram of this glider refer to either [104] or [89].

The dynamics of the glider are given by

xW = [xlcoy -lws], x = [ + lu6so,5- l9co]

Xe = [X - 1cO - le, co+O, y - isO - leso+,]

ie = [d + leso + le(6 + u)se+0, p - 16cO - le(O + u)cO+]

aw = 0 - tan-1 (,, 4w), a = 0 + -tan-1(yei e)

fw = PSw kw1 2 sin(aw ), fe = PSe15e| 2 sin(ae)

dx = vxdt + 10-9 dw1 (t)

dy = vYdt + 10-9 dw 2 (t)

dO = Odt + 10-9 dw3 (t)

dO = udt + 10-9 dw 4 (t)
1

dvx = - (-fwso - feso+) dt + 10-9 dw5 (t)

1
dvy = - (fwco + feco++ - mg) dt + 10- 9 dw6 (t)

M

d6 = - (-fwlw - fe(1C 4 + le) dt + 10- 9 dw7 (t)

where p is the density of air, m is the mass of the glider, I is the moment of inertia

of the glider, S, and Se are the surface areas of the wing and tail control surfaces,

1 is the length from the center of gravity to the elevator, l is the half chord of the

wing, le is the half chord of the elevator, cy denotes cos(y), and s. denotes sin(y).

The parameters of the model are chosen to be the same as those in [104].

163



0.2

0

-0.2 -

-0.4 -I

-3 -2 -1 0
x

Figure 4-13: Trajectories of the perching glider for three initial conditions given
by: (-3,7 ,0,0, ,0,0) (blue), (-Z,0,0,0,5,0,0) (red), and (-, -, 0,0,5.8,0,0)
(brown). Target region is shown by shaded region that is centered at (0, 0)

The stage cost is specified as

g(x, y,7, ,v, v, ) = 20x 2 +50y 2 + #2 + 11V2 + v2 + 62.

Absorbing boundary conditions are used, and an absorbing region is defined to en-

courage a successful perch. Let this region be defined for x E [-0.05, 0.05], y E
[-0.05,0.05], vx E [-0.25,0.25], and v. E [-2.25, 2.25]. The terminal cost for both of

these regions is

S 00 
if perched

600x 2 + 400y2 + .12 + .#2 + v2 + (vy + 1.5)2 + O (6 + 0.52) otherwise.

Several trajectories of the controlled system are shown in Figure 4-13. These

trajectories are generated with several initial conditions. Notice that they all follow

the same pattern of diving, then climbing before dropping into the perch. This

behavior is similar to that observed in experiment [32,89,104].

Figure 4-14 shows the convergence diagnostic plots for the one-way multigrid

algorithm used for solving this problem. Notice that we used discretization levels of

n = 20,40,80 and 160 nodes for each dimension. Thus the number of discretized

states at the finest discretization is 1607 ~ 2.6 x 1015. Furthermore, we limited the
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perching glider. Maximum rank FT rank

rank to a maximum of 10, and the panel in lower right panel shows that the average

ranks are below this maximum threshold.

The final ranks of the value function translate into savings of approximately four

orders of magnitude per iteration when n = 20 and a corresponding savings of ten or-

ders of magnitude per iteration when n = 160. However, in this example it seems that

the rank truncation is indeed affecting the convergence of the problem. A noisy and

volatile decay of the value function norm is seen in the upper left panel. Furthermore,

the difference between iterates, in the upper right panel, indicates a relative error of

approximation 10-2 which is above our FT rounding threshold of 10-. Nonetheless,

the resulting controller seems to be successful at achieving the desired behavior.
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4.5.4 Quadcopter dynamics

Finally, we consider the problem of maneuvering a quadcopter through a small target

region. This system has six states and three controls. The states (x, y, z, v, vYI, vz) are

the x-position in meters x E [-3.5, 3.5], y-position in meters y E [-3.5, 3.5], z-position

in meters z E [-2, 2], x-velocity in meters per second vx E [-5, 5], y-velocity in meters

per second v. E [-5, 5], and z-velocity in meters per second vz E [-5, 5]. The controls

are the thrust (offset by gravity) ul E [-1.5,1.5], the roll angle u 2 G [-0.4,0.4], and

the pitch angle U3 E [-0.4,0.4]. The dynamics are given by

dx = vxdt + 10-ldw1 (t)

dy = vydt + 10-1 dw 2 (t)

dz = vzdt + 10-1 dw 3 (t)

dvX U 1 - mg cos(u 2) sin(u3 )dt + 1.2dw4 (t)
mg

dvy = - sin(u2 )dt + 1.2dw5 (t))

dvz = (cos(u2 ) cos(u3 ) mg+ g) dt + 1.2dw6 (t ),

and reflecting boundary conditions are used for every state. These dynamics are

adapted from [22].

A target region is specified as a cube centered at the origin, and a successful

maneuver is one which enters the cube with a forward velocity of one meter per

second with less than 0.15m/s speed in the y and z directions. The terminal cost is

assigned to be zero for this region, i.e.,

/(XY , Z, x, VyV z) = 0, for (X, Y, Z, VX, Vy, Vz) E [-0.2, 0.2] 3 x [0.5,1.5] x [-0.2,0.2]2.

The stage cost is set to

g (x, y, z, v, vY, iz, Ul, U2, u3) = 60 + 8x2 + 6y2 + 8z2 + 2u 2+ uj + 6u2.
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For computational considerations, the maximum FT-rank is restricted to 10. The-

oretically, underestimating the ranks can potentially cause significant approximation

errors, however, in this case we are still able to achieve a well performing controller.

Investigating the effect of rank underestimation is an important area of future work.

Trajectories of the optimal controller for various initial conditions are shown in

Figures 4-15 and 4-16. In Figure 4-15, the position and velocities each approach

their respective absorbing conditions for each simulation. In the first simulation, the

quadcopter quickly accelerates and decelerates into the goal region. The final positions

do not lie exactly within the absorption region. This absorption region is, in a way,

unstable since it requires the quadcopter enter with a forward velocity. The forward

velocity requirement virtually guarantees that the quadcopter must eventually exit

the absorption region. The second simulation starts with positive y and z velocities.

The third simulation starts with a negative y velocity and the quadcopter far away

from the origin.

Note that the controls are all fairly smooth except when the quadcopter state is

near or in the absorption region. At this point, the roll angle (and pitch angle in

the first and third simulations) oscillates rapidly around zero. This appears to be

due to the flatness of the objective function. Since the quadcopter is so close to the

absorption region the control inputs can change rapidly to ensure it stays there.

Figure 4-17 shows the convergence diagnostics. We used a one-way multigrid

strategy with n = 20, n = 60, and n = 120 discretization nodes. The difference

between iterates shown in the upper right panel is between 0(1) and 0(10). In fact,

this means that the relative difference is approximately 0(10-4), which matches well

with our FT rounding tolerance Cround. Thus, we can have some confidence that our

rank underestimation scheme may not have incurred too great an error. The lower

left panel indicates computational savings between 3 and 7 orders of magnitude per

iteration. To make the size of this reduction more explicit, consider that storing

the value function for n = 120 would require storing 106 = 2 x 1012 floating point

numbers (approximately 24 TB of data). However, in compressed format the final

value function is stored in 778 KB.
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Chapter 5

Low-rank algorithms for Gaussian

filtering

The low-rank stochastic optimal control solution formulation in Chapter 4 relies on

constructing optimal policies that are a function of the system state. However, in

practice, autonomous systems typically do not have exact knowledge of the full system

state. Instead, they observe the world through indirect and/or noisy measurements.

In this chapter, we describe a probabilistic inference framework that convert these

indirect and noisy observations into probability distributions that represent knowledge

about the state of the system.

This data assimilation task is vitally important in many fields beyond autonomy.

Tasks ranging from weather prediction [126] and ocean monitoring [24, 48, 84] to

reentry vehicle tracking [33] all have in common the fact that they are systems that are

difficult to observe in their entirety. Still, scientists and engineers are often required

to both estimate or infer the system state and to use their inferences for predicting

future events. This task is possibly most familiar in the context of weather prediction,

where state uncertainty is often represented through an ensemble of plausible system

states, and future prediction is made by propagating these ensemble members through

models to assess the probability of certain weather events occurring in the future.

The particular task, whereby one incorporates observations of a dynamical system

and uses these observations to both develop a probabilistic description of the system

171



state and to make future predictions is called filtering. In this chapter, we consider

filtering algorithms for a system that evolves in continuous time and is observed at

discrete time intervals. This generic system describes many practical problems of

interest.

The filtering problem is computationally challenging for multiple reasons. Most

importantly, it requires performing Bayesian inference repeatedly and, for some ap-

plications, in real time. Secondly, it requires propagating a probability distribution

through a dynamical system. Both of these tasks are enormously challenging problems

in their own right. Our contribution in this chapter is applying the low-rank functional

decompositions described in Chapter 3 to an integration-based Gaussian framework

for filtering. In this framework, equations are developed for the propagation of the

mean and covariance of the distribution. These equations involve computing several

multivariate integrals, and we perform this high-dimensional integration using the

function-train.

5.1 Filtering problem

We now describe the continuous time state dynamics and the discrete time observation

model, discuss existing literature for solving this problem, and detail the integration-

based Gaussian filtering framework that we extend using low-rank techniques.

5.1.1 Continuous time state evolution

We consider a data assimilation problem in which that state x(t) E X C Rd evolves

in continuous time according to a stochastic differential equation, and observations

y E c CRdy occur at discrete time intervals tk E 59 c [0, oc). The evolution of this

joint system is given by

dx = B(t, x)dt + D(t, x)dw(t), (5.1)

Yk = H(tkx(tk)) +qk, Tik - (0,V ), (5.2)
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where w(t) E iRw denotes Brownian motion, the drift B : x -+ IRd denotes the

evolution of the system according to some "known" or baseline dynamics, the diffusion

D : ? x X -+ Rdxd accounts for model error or uncertainty in the state evolution,

the observation operator H : 7 x X - R maps the system state to observations,

and TIk E Rdy is Gaussian observation noise with zero mean and covariance V. Note

that as opposed to Chapter 4, the dynamics are not dependent on an external input.

As discussed in Chapter 3, x(t) is a stochastic process endowed with a probability

distribution. The objective of filtering is determining this probability distribution for

the current time and future times given all the observations obtained prior to that

current time. To be more specific, denote by yt the collection of observations obtained

prior to time t, i.e., yt has the following elements

yt[k] = Yk, Vk such that tk < t. (5.3)

Then, filtering concerns characterizing the function p(t, x(t) yt), where, for a fixed t,

p(t, x(t) yt)) is a probability density function for the distribution of x(t).

The density p(t, x(t) yt) is implicitly defined through the a sequence of solutions

to a Fokker-Planck partial differential equation

a d a [
-p(t, XIytk1) = - a B [] (t, X)p(t, XIytk+1)] +

d d 2  d1 (2 ixixj D~i, f] (t, X)Dlj, f] (t, X)P(t, XIytk+1) (.4
i=1 j=1 - =1.

for t E (tk, tk+1], and an application of Bayes rule

p(tk+1, X(tk 1) IYtk+ 2 ) - p(ytk+1 tk+1, x(tk+1) ytk+1)P(tk+1, x(tk+1)lytk+1)
f p(ytk+l tk+1, x(tk+1), Ytk+1)p(tk+1, x(tk+1) Ytk+1 )dx'

where the relationship Ytk+2 = [Ytk+1, Ytk+1] , allows us to pose the likelihood,

P(Ytk+1 Itk+1, x, Ytk+1), for just Ytk+1 instead of for the entire history of observations.

These two equations are commonly called the forecast and analysis, respectively.

They reflect the fact that (5.4) is responsible for propagating the uncertainty over
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time, and (5.5) is responsible for analyzing data as it becomes available.

We can provide an explicit equation for the likelihood given both our assumption

about Gaussian noise in (5.2) and the fact that (5.2) implies that the distribution on

yk is conditionally independent of any previous yi for i < k given the current state

X(tk). This explicit representation is

p(ytk1 Itk+1, x(tk+1), Ytk+1) = P(ytk tk+, x(tk+1))

oc exp -- H(t,x(tk+1))|v) , (5.6)

where the covariance weighted norm I I v is defined as

||zflV = (V-1 z, z) 2, z E R .

We now detail some literature that tackles the solution to the filtering problem.

5.1.2 Existing algorithmic frameworks

In general, closed form solutions do not exist for these equations except for specific

cases. The simplest such case occurs when the state and observation dynamics are

linear and the prior beliefs on the state and the observation errors are Gaussian. In

this case all distributions involved are Gaussian and the associated implementation is

the celebrated Kalman (discrete time) or Kalman-Bucy (continuous times) filter [72,

73]. The Benes filter [9] is another analytic filter for problems where the nonlinear drift

term satisfies a specific structure, which in one dimension is &f /&x+f 2 = ax 2 +bx+c.

Instead, numerical methods must be used to approximate the optimal solutions.

Many of these numerical methods can be adapted from those that solve a related prob-

lem where the observations are also obtained in continuous time. In the discrete-time

observation case, these methods default to solving the Fokker-Planck and Bayesian

inference problems separately. One such method [81] is based upon the MCA method

discussed in Chapter 3. Other methods that are based on the time discretization of

Kushner's [77, 78] or Zakai's equation [128], describing the evolution of the normal-
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ized and unnormalized distributions, respectively, are provided in [11, 30, 68]. Yet

another method which seeks spectral solutions using Wiener chaos expansions can be

found in [86]. While a great deal of other solution methods have been proposed, ones

that allow scaling to large dimensions are still unavailable.

The numerical methods described above have fallen out of favor since they quickly

encounter the curse of dimensionality. For this reason, the field has turned to devel-

oping particle or ensemble based algorithms that represent probability distributions

with a collection of particles and Bayesian inference is performed with importance

sampling. These algorithms are called particle filters (PF) [27,41,49, 100,124]. Parti-

cles are easy to propagate through dynamics and to update with Bayes rule. However,

the most general form of the PF suffers from particle degeneracy problems over long

time frames, and it requires many particles to accurately capturing the probability

distribution. For some problems the number of required particles scale exponentially

with the number of dimensions and with the inverse variance of the observation log

likelihood [110]. These types of problems can potentially be avoided in some situations

where good proposals can be made [109].

As opposed to fully Bayesian filters, there exist a class of Gaussian filters which

enforce all forecast and analysis distributions to be Gaussian. The earliest of these

is based on linearization of nonlinear dynamics and is called the extended Kalman

filter (EKF). Another family of Gaussian based filters is called the ensemble Kalman

filter (EnKF) [21,43] where similarly to the particle filter, particles are maintained.

However, they differ from the PF because Gaussian distributions are assumed dur-

ing the analysis steps, though some efforts to include some non-Gaussianity have

recently been made proposed [83]. The EnKF is mainly used for high dimensional

problems where maintaining many particles can be prohibitively expensive; fewer par-

ticles are needed when Gaussian assumptions are made. To truly scale the EnKF to

higher dimensions more structure, such as tapering, must be added to the covariance

matrix [46]. Hybrids between the EnKF and PF have also been created [45], they

specify a parameter governing the spectrum between a full EnKF and a full PF that

is automatically tuned in the filtering procedure.
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Finally, a third family of Gaussian filters are quadrature/integration filters that

includes the unscented Kalman filter (UKF) [71] the Gauss-Hermite (GH) Kalman

filter [69], the cubature Kalman filter [1], and others [125]. These filters attempt to

exactly calculate the means and covariances of the forecast and analysis steps of the

Kalman filter through quadrature. The major difficulties with these filters is stability

for high-order quadrature rules and scaling with dimension. For example, Wu [125]

showed that only the GH filter has good stability properties as the dimension grows;

however, it is also one of the only integration-based filters that encounters the curse

of dimensionality. Many of the other integration-based Gaussian filters have better

scaling properties but lose their stability in higher dimensions [125].

The integration formulation of Gaussian filtering makes it particularly attractive

for the application of high-dimensional integration schemes. For this reason, we will

explore the application of the FT in this context for retaining the good stability prop-

erties of Gaussian filtering without incurring exponential growth in computational

expense.

5.1.3 Integration based Gaussian filtering equations

We now describe the equations for integration-based Gaussian filtering. In Section 5.2,

we demonstrate how to take advantage of existing low-rank structure to solve these

equations in a computationally efficient manner. For simplicity, we consider the case

where the diffusion is only a function of time and not state, i.e., 'D : 9 - R"'-.

Gaussian based filtering is an exact filter when the following assumptions hold.

Assumption 5 (Gaussian filtering). Let filtering be performed for times 0 <t < T.

Let M : [0, T] - R d represent the mean and C : [0, t] 4 Rdxd represent the covariance

of the filtered process x(t). Gaussian filtering assumes that the initial distribution

x(0) ~ A(M(0), C(0)),

176



the forecast distributions for k = 0,1,...

X(t)jyte,, ~ X(M(t), (t)), tCE(tkitk+1),

and the analyzed distributions

X(tk+1)|Ytk+ 2 ~A(M(tk+l),C(tk+1)),

are all Gaussian.

Under Assumption 5, one can derive the following equations for the propagation

of the mean and covariance [106].1 Assume that no observations are obtained during

the time interval (tk, tk+1], then the forecast equations for the evolution of the mean

and covariance are ordinary differential equations (ODEs)

dM= B (t, X)PG (X; M (t), C(t)) dx, (5.7)
dt
dC = D(t)D(t)T + Cov [x, B(t, x)] + Cov [B(t, x), x], (5.8)dt

where pG(x; M(t), C(t)) denotes the probability density of a Gaussian random variable

with mean M(t) and C(t), i.e.,

pG(X; M(t), C(t)) oC exp (- |x - M(t)||c(t))

and

Cov [x, B(t, x)] = B(t, x) - dM) (x - M(t)) pG (X; M(t), C(t))dx.

Denote mk+ and Ck+1 as the values of the mean and covariance following the

'Recall that for simplicity we are assuming, in this section, that the diffusion is not a function of
the state, i.e., D: 9 j Rdxd,.
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above integrating, i.e.,

' k+1 dMmk+1 = jtk+1 dM dt

Ck+1 = dt.

The analysis stage then requires updating these means and covariance using a

newly obtained observation Yk+1 at time tk+1. This update results in the following

equations for the mean and covariance of the filtered distribution

M(tk+1) = mk+1 + CoV [x, H (tk+1, X)] (CoV [H (tk+1, x) , H (tk+1, X)] + V)~ 1 (Ytk+1 - 1k+1)

(5.9)

C(tk+1) = Ck+1

- CoV [x, H (tk+1, x)] (CoV [H (tk+1, x) , H (tk+1, X)] + V)-1 Cov [H (tk+1, X) , X

(5.10)

where

Ak+1 = H (t, x)PG(X; mk+1, Ck+l)dx

Cov [x, H (tk+1, X)] = (x -- mk+1) (H(tk+1, X) - /k+1) PG(X; mk+1, Ck+l)dx

CoV [H (tk+1, x) , H (tk+1, X)] =

J (H(tk+l iX) - k+1) (H(tk+1, X) - k+1) PG(X; mk+1, Ck+l)dx

The key point about these equations is that the computations required are integrals

with respect to a Gaussian density. Thus, we will use our FT framework to perform

these integrals by approximating the drift and observation operators in FT format.

Secondly, Assumption 5 is typically not valid in practice, and therefore these equa-

tions become approximations for the solution of the filtering problem. Intuitively, the

approximations incur less error as the distributions "become more Gaussian." This

implies that in the cases where the data is frequent and informative or when the mod-

els are close to linear these equations may describe the filtered distribution accurately.
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Furthermore, we note that while these assumptions may not yield an accurate ap-

proximation of the distribution, they often have good tracking performance. Indeed,

much of the filtering literature only even measures the quality of data assimilation

algorithms through tracking performance.

5.2 Low-rank filtering algorithms

In this section, we describe how to apply low-rank integration algorithms for the

evaluation of the integrals in Section 5.1.3. In order to use low-rank tensor-based

algorithms for integration, the integration must be performed with respect to a tensor-

product measure. However, the relevant equations, as presented, were all integrals

with respect to a correlated density pG(x; m, C) for some mean m and non-diagonal

covariance C. To this end, a variable transformation x -4 v must be performed

before integration. The new random variable v = (v 1,... , vd) E Rd has a standard

multivariate normal distribution, i.e., v ~ .A(O, I). In the case of correlated Gaussians,

the mapping between these variables is linear and given by

x = m + C 1/ 2V.

Using this mapping, we define a new drift term B(t, v) as

B(t, v) = B(t, M(t) +C(t)112

so that the right hand side of (5.7) becomes

dM B(t, x)pG(x; M(t), C(t))dx
dt

= J (t, v)pG(v; 0, I)dv. (5.11)

Thus, the first step involved with evaluating the right-hand-side of this ODE, in the

context of time time integration schemes, is transforming the equation to one with

independent variables. Similar mappings can be used for the integrals required for
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the propagation of the covariance in (5.8) and for those involved in the Bayes update

steps (5.9) and (5.10).

Next, an integration scheme is devised for B(t, v). We consider two schemes, the

first is low-rank tensor product quadrature and the second is FT integration.

5.2.1 Low-rank tensor product quadrature

Since, the integrals of interest are with respect to a Gaussian measure, low-rank

tensor-product quadrature requires specifying a Gaussian-Hermite quadrature rule

for each dimension. Suppose that dimension i uses ni quadrature points and weights

{(vi, w ) ... (vzi4, w'i)}. Next, suppose that every output of B(t, v) is discretized onto

the tensor product grid defined by a tensorization of the Gaussian quadrature rules.

Let B(k) E Rl1X -Xd denote the kth output of the drift evaluated on the grid at a

fixed t, i.e.,

B'k) [i,...d i] = E[k](t, {v", . . vdd

Then the approximation of the integral for the k-th output is

fli nd

/k [i W,1d T] [k] (t, v)PG (V7 0, 1) dv .. .i id~k[~,. id]W1 i. Wd

Clearly, such a computation scales exponentially with dimension. Thus, one first

decomposes B(k) into its TT format, and then performs d tensor-vector contractions

with ((dnr 2) operations [95]. Since d such operations are required, one for each

dimension, the total cost for one evaluation of the equations for the evolution of the

mean is O(d2 nr2 ). The dominating cost is computing the TT decomposition of B[k]

for each k = 1, . .., d, and it requires a total of O(d2nr') operations.

This strategy can be employed for computing integrals for Cov(B, x), Cov(H, x),

and Cov(H, H). However, determining a good number of quadrature nodes is still a

challenging problem. The continuous tensor-train of Chapter 3 alleviates this problem

through fiber level adaptation.
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5.2.2 FT-based integration filter

Generally, the use of the function-train within this integration task is straightforward.

One first generates an FT approximation of the integrand, then one integrates the

approximation according to integration scheme described in Section 3.6.1. As with

the low-rank tensor product integration just described, integrating vector-valued or

matrix-valued functions requires approximating each of the outputs separately.

The major difference between the integration for Gaussian filtering and the nu-

merous integration examples described in Chapter 3 is that the integration we are

considering here is respect to a Gaussian measure. To this end, we need the FT

cores to consist of scalar-valued functions that can be integrated with respect to

the Gaussian measure so that we can use the standard integration algorithm from

Section 3.6.1. Therefore, the specific implementation of the continuous framework

we use represents each univariate function in an expansion of Hermite polynomials

{He1 , He 2 ,.. .} where

] Hei(s) Hey (s) e 2s
2 ds = 6 j

Thus, when we build an FT representation of some function f(v), the k-th core will

consist of the scalar-valued functions

P

fk'(v) = aj,, He, (v), for i = 1, ... , , j 1, ... , rk, and ajt E R,
t=1

such that

f,' (vk) 1 e--fk2 dvk = .

In summary, every time we encounter an integral during the forecasting or analysis

steps of the integration based Gaussian filter we perform three steps:

1. Map the dependent integration variables to a set of independent variables

2. Build an FT approximation of the integrand using Hermite polynomials expan-

sions for univariate functions
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3. Integrate the FT approximation using the scheme in Section 3.6.1

This scheme has an advantage over the tensor product quadrature scheme due to its

automated adaptation of each fiber.

Note that the theorems and matrix-factorizations presented in Chapters 2 and 3

apply to functions defined on the unit interval with a uniform measure. Here, we

are considering functions defined on the entire real line with a Gaussian measure.

Two practical changes must be made within the rank-adaptive cross approximation

algorithm of Section 3.3.2 to account for these differences. First, whenever an inner

product is performed, for example within a QR decomposition, the inner product is

weighted according to the Gaussian measure. Second, maximization of a univariate

function, for example within an LU or maxvol computation, is replaced by maximiza-

tion of the function multiplied by the density.

5.3 Numerical examples

We now present three examples of low-rank integration-based Gaussian filtering. In

the first example, we will use a tensorized Gauss-Hermite quadrature rule as described

in Section 5.2.1, and in the second two examples we will use the FT-based integration

scheme described in Section 5.2.2.

The first example is a model for a re-entry vehicle [106]. The state space is five

dimensional and the dynamics are nonlinear

dx1 = x 3(t)dt

dx 2 = x 4(t)dt

dX 3 - d(t)x 3(t)dt + g(t)x1(t)dt + oidw3 (t)

dx 4 = d(t)x4 (t)dt + g(t)x 2 (t)dt + -2 dw4 (t)

dx5 =UAWdw(t),
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where

v(t) = x3(t) + x4(t)

b(t) = bo exp(x 5 (t))

d(t) = b(t) exp (ro -r(t) v(t)
HO

Gmo
g(t) =- .ingM r3(t)

where G is the Gravitational constant and mo is the mass such that Gmo= 3.986 x 10 5 ,

ro = 6374 is the radius, and finally bo = -0.59783 and Ho = 13.406 are constants

required for the computation of the drag d(t). The diffusion magnitudes are -1 =

-2 = 2.4064 x 10-4 and 0-3 = 10-6. The observations are two dimensional and the

observation operator is also nonlinear

rk - (x1(tk) - rO) + (x2(tk))2 + 7i, 7i ~ (0, 1)

Ok= tan- 1  X2(tk ) - r2, 172 ~Ar(0, 1)
\x1(tky) - ro

The dynamics are integrated for 100 seconds and observations are obtained every

3 seconds. Time integration was performed with the DOPRI5 integrator in the SciPy

package [70] for Python. The purpose of this experiment is to show that the TT-

based low-rank tensor-quadrature integration provides virtually equivalent results to

full tensor quadrature integration. Furthermore, for the Gauss-Hermite filter (GHF)

the scaling with the number of quadrature nodes should be polynomial whereas for

the TT-based low-rank quadrature the scaling should be linear. Both effects are seen

in Figure 5-1.

For the rest of the examples we perform integration with the FT based integration

scheme. Our second example is the chaotic Lorenz 1963 three dimensional dynamics
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Figure 5-1: Comparison of computational time and variance obtained between fully
tensorized Gauss-Hermite filter (GHF) and the low-rank tensor-train GHF (TTGHF).

with a radar-type nonlinear observation.

dxi = ri(-xi + x1 ) + udwi(t)

dx 2 = r2x 1 - x1x 3 + Udw 2 (t)

dx 3 = -r 3x 3 + X1X2 + adw3(t)

yA = - -21 -|- zi+ X 3 + a k a ~ r(0,1)

with r1 = 10, r2 = 28, r3 = , a = 101, RKF45 adaptive time-integration is used.

Observations are obtained with a time step of At = 0.5s, i.e., observation times are

tk = 1OAt. The dynamics are at most rank 3 due to quadratic terms resulting from a

transformation of x to v (the rank of a quadratic is at most d/2). Figure 5-2 shows the

results of the filtering. The lower right panel shows the observations obtained using

the black dots and the trajectory of a hypothetical continuous observation operator

using the dashed line. First, we see that there is an initial "burn-in" time for the state

to reach its attractor. During this burn-in we see rapid increases in the uncertainty

since the dynamics quickly push the state towards the attractor. Next, note that

the mean tracks the true system state for the entire duration. Furthermore, the true

system state is within the uncertainty bounds at all times.
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Figure 5-2: Filtering of the Lorenz 63 system. Uncertainty is represented with the
shaded region and the mean estimate is represented by the dashed line in all but the
bottom right panel. The true system trajectory is given by the solid black line. The
bottom right panel shows the realized data (black dots) and a hypothetical observation
trajectory (dashed line).

The final example is a 20 dimensional chaotic Lorenz 1996 system given by

dxi = (Xi+ 1 - Xi- 2 )xi-1 - xi + F + dwi(t), for i = 1 .... ,20

O= Xd

X-1 Xd-1

Xd+1 = X1

Yk= X2j1-(tk)-+-(k, k ~ (0,1), forj =1,...10
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Figure 5-3: Traces of the mean (dashed line), two times standard deviation (shaded
region), observations (black-dots) and system trajectory (solid line) for specific system
states for the Lorenz96 chaotic system.

We use F = 8 to stay within the chaotic regime and fix the diffusion to o- = 0.25.

Integration is performed with an adaptive RKF45 scheme. Observations of every

other variable are taken everything At = 0.1 seconds. The resulting traces for a

subset of the state variables is provided in Figure 5-3. Figure 5-3 shows that the

mean tracks the true system state for both the observed and unobserved variables,

but the uncertainty is noticeably smaller for the observed variables. Furthermore, the

tracking and uncertainty are noticeably worse when t < 2 for many of the variables.

This characteristic is due to the fact that no burn-in was used before filtering is

started. Furthermore, this fact is actually a testament to the stability of the FT

approximation scheme for the Gaussian filtering since the state does not diverge, and
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good tracking as well as a good description of uncertainty is eventually obtained.
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Chapter 6

Conclusion

6.1 Summary

A framework for computation with multivariate functions was introduced and applied

to stochastic optimal control and to data assimilation. The new set of tools can be

used to encode adaptive, efficient, and accurate numerical algorithms for computation

with functions. The research primarily builds upon two areas: tensor decompositions

and function approximation. Tensor decompositions mitigate the curse of dimen-

sionality by discovering low-rank structure, and function approximation is used to

accurately compute with functions.

The application of this low-rank computational framework to stochastic optimal

control has provided us with an opportunity to solve higher dimensional problems

than previously possible. For example, we are able to extend the effectiveness of

value and policy iteration to higher dimensional systems. We envision that since

stochastic optimal control is such a general and widespread problem formulation,

that these tools can positively affect many domains.

The application of the framework to integration-based Gaussian filtering has also

pushed the limits of a methodology that is often discounted for high dimensional

problems. Indeed, while the requirement of accurate integration-based methods for

propagating the mean and covariance of a distribution through a nonlinear dynamical

system was once viewed as a hinderance to high dimensional computation, we have
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shown that integration algorithms that leverage low-rank structure can prove effective.

Thus, this research has provided an avenue for further work that exploits the stability

of integration based Gaussian filtering within higher dimensional applications.

Now, to restate our contributions, those at a high level include

1. Development of a framework for continuous computation with multivariate func-

tions by leveraging low-rank tensor decompositions,

2. Application of a low-rank framework for the solution of dynamic programming

equations arising in stochastic optimal control, and

3. Application of continuous computation to integration-based Gaussian filtering.

Contributions to continuous computation include

1. Development of maximum-volume based CUR/skeleton decompositions of vector-

valued functions,

2. Extension of continuous matrix factorizations to the case of QR and LU factor-

ization of matrix-valued functions, and

3. Continuous versions of cross approximation, rounding, and alternating least

squares for the function-train.

Contributions to stochastic optimal control and data assimilation include

1. Utilization of the function-train decomposition within value and policy iteration

for solving Bellman's equation,

2. Utilization of the function-train decomposition for multi-level schemes by en-

abling evaluations of optimal value functions and policies in continuous domains,

and

3. Utilization of the function-train for multivariate integration within integration-

based Gaussian filtering.
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6.2 Future work

While this research has formulated and shown the advantages of the continuous com-

putational framework, there are many ways in which this work can be extended.

Linear solvers are one of the pillars of linear algebra, and we would like to develop

corresponding continuous linear solvers that deal with continuous linear operators.

The primary motivation of solving linear systems is to be able to solve partial differ-

ential equations encountered within uncertainty quantification and optimal control.

Indeed, many low-rank solvers have complemented the recent development of tensor-

decompositions [37, 38, 97,116]. Furthermore, continuous algorithms have also been

developed for solving certain PDEs for univariate and bivariate systems [93]. Bridg-

ing these methods has the potential to allow adaptive and efficient solutions to high

dimensional PDEs.

Another direction of interest, particularly for machine learning/data science ap-

plications, is the development of low-rank data fitting algorithms. Strides have been

made to accomplish this task, for example see [401 for data fitting with the canonical

decomposition, using alternating least squares techniques. It would be interesting

and beneficial to tackle these problems with the continuous alternating least squares

algorithm that incorporates rank adaptivity discussed in Chapter 3. "Big data" prob-

lems also pose an interesting data fitting application since tensor methods may also

be used to first compress the data before creating data fitting models.

There are many directions to take low-rank computation within control as well.

Linear temporal logic and differential games are both areas that borrow heavily from

the stochastic optimal control formulation and can be can be reframed in terms of

dynamic programming equations. It will be useful to exploit low-rank structure in

these situations to enable the solution of higher dimensional problems.

Finally, it would be interesting to utilize low-rank continuous algorithms within

the context of challenging Bayesian inverse problems. For example, one can inter-

pret Bayes rule as a simple multiplication of two functions, the prior and the likeli-

hood. Both of these functions can potentially contain low rank structure that can be
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discovered with the framework and algorithms that we have developed. The result-

ing deterministic algorithms can potentially be highly advantageous over the current

state-of-the-art sampling methods.
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Appendix A

Additional lemmas and proofs

A.1 Proof of Theorem 2

Proof. Let us denote E -- F - C[F*,k] -R, such that E : X -+ R'. Let a

[(ii, zi), ... (ii, ze)] and y = [yi, ... , ye] denote the fibers used to construct F*,k. Now,

we seek to bound the absolute value of E for each x E X. Consider any (f+ 1) x (f +1)

sub-matrix of F formed by augmenting F* k by one row and column of values defined

by X>k E X>k and (i, Xzk) E {1,...,rI} X X<k such that

F*,k b
F =,

where each choice of X>k maps to a vector b according to b[j] = F[ij](zj, X>k) for

j = I... . Relatedly, each choice of (i, Xk) maps to a vector c according to c[j] =

F[i](xzk, yj). The values for a analogously correspond to a selection of (i, X<k, X>k).

Now define -y = a-cT [F*'k]-lb and note that y corresponds to the value of E obtained

by the combination (i, X<k, X>k) chosen to augment F*,k. Also, -y = 0 iff F is singular

due to the following property of the determinant,

det ) = det(F*,') det(a - cT [ f*k]-lb) (A.1)

(LCT a )
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for any vectors b, c and scalar a as long as F*k is invertible. If -y = 0, then the value

of E to which it refers is zero.

Now we consider the case where -y / 0 and that F is non-singular. Using prop-

erty (A.1), we see

ldet(F)=I det(P*')I

Furthermore, recall that we can write the inverse of a matrix using the matrix of

cofactors C
1

F-1 CT (A.2)
det(F)

The maximal volume property of P*,k now implies that I|CTIIc = Idet(F*,k)1. To-

gether with (A.2) this implies

1
|F-1|Ic = I det(F*,k)I = LY- I. (A.3)

1 det (F) I

From here, we seek to obtain an upper bound for Lyi because this corresponds to

the maximum value of E corresponding choices of (i, X<k, X>k). Therefore, we would

like to obtain a lower bound for I IF-I1c. We can obtain this bound by starting with

the Frobenius norm on F to obtain a bound using its singular values

e+1
F-1 2 -(F) -F1 11 (f + 1)2,

and since a-21 (F) < E+1 o- 2(F) we have c-2 (F) |IF-11|2 (f + 1)2. Finally, we

obtain

1
IF IF1c> e+(F)(f + 1)

Now using (A.3) we have Ly i5 a e+1(F)(f + 1). From Lemma 5 in Appendix A.2 we

can relate the singular values of the matrix F to the singular values of F to obtain

the inequality

oe+1 (F) Mp 2(y + 1)2,F-+1(F),
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for 6 > 1/2. This inequality provides us with the final result.

A.2 Eigenvalues of a discretized kernel

Recall that we seek to bound the smallest singular value o-m(F) of a sub-matrix

F E Rmxm of a vector-valued function by the corresponding singular values of the

continuous vector-valued function om(F). The sub-matrix F can be viewed as a

discretized version of F. We use this result in the proof of Theorem 2 where m = +1

and f is the rank of the CUR decomposition of interest.

This bound arises from the result in [901 where one considers a compact linear

integral operator K with kernel k(s, t) defined as

(Kf)(s) j k(s, t)f(t)dt, s E Q (A.4)

In particular one can define a discretization of k using f values [si,.. . , sf] such that

K[i, j] = k(si, sj). Then one can bound the eigenvalues of K by the corresponding

eigenvalues of K. The result is summarized in the lemma below.

Lemma 5 (Interlacing eigenvalues of discretized operator [90]). Let K : L2 (Q) -+

L 2 (Q) be a symmetric, positive definite, compact linear integral operator with contin-

uous kernel k(s, t) that has eigendecomposition (from Mercer's theorem)

00

k(s, t) = 1 Ap (s) p(t),
p= 1

where { AP} 1 are eigenvalues and the eigenfunctions {'T(t)}} 1 form an orthonormal

basis for L 2 (Q). Furthermore, assume that the eigenfunctions are uniformly bounded:

I',(s)| 1 p for all p and s. Let K e Re*e denote a discretized version of k. Then it

holds that

Ap(K) 5 IQp2((26)p 2EAp(k), p < f, for any E > 1/2 (A.5)

where ( is the Riemann zeta function, (2e) = E 2.
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If F is the discretization of a continuous but non-symmetric kernel F, and the

singular functions of the corresponding integral operator are uniformly bounded, then

an analogous result for the singular values of F can be shown to hold.

A.3 Proof of Theorem 3

The proof of Theorem 3 is the continuous analogue of the corresponding theorem by

Oseledets [95].

Proof. We start with unfolding function f1. Since its rank is ri, the function can be

decomposed as

f1 (Xi, X>1) = Ui(Xi)Vi(x>I), (A.6)

where U1 = [u <,. .. , I U()] is a vector-valued function with orthogonal columns and

V1 = [vf 1,.., v$1)] is a vector-valued function with orthonormal columns. This type

of decomposition can arise from the functional SVD (2.4) in which the singular values

have been absorbed into U1 .

Using these orthogonality conditions we can define each of) as

of3(>11)S f'(s X>1),W')(s)) (A. 7)
U 1)(s), U1)() =

If we consider the unfoldings of each right singular function

[(t))] = VP)({x 2 , ... Xk }, {Xk1, ... ,

for k = 2,. .. , d - 1, then we we can show that both rank [(Vo1))k] rk for k =

2,... , d - 1 and that (V 1 )k is also at most rank k according to the extended SVD

definition (2.5).

We start by noting that unfolding k (or separated form fk of f) can be decomposed

into

fk (X<k, X>k) = F(X<k)G(x>k), (A.8)
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where F and G are both vector-valued functions consisting of rk functions. Now we

plug these results into the definition of the k-th unfolding of v 1)

(v = V) - ({X 2 , ... Xk, {Xk+1, ... , Xd})

= (fP(s, z,10), (s))

= KF(s, X2, . .. , Xk)G(x>k), W (S)

KF(s, X2, .... , Xk), w (s)) G(xyk)

= H(x 2, ... Xk)G(Xyk), (A.9)

where Hi(x2 ,... , Xk) = (F(s, x 2 ,... , Xk), wi(s)) is also a vector-valued function con-

sisting of rk functions such that

Hi [j](X2, . ,z) = F[j] (sX2, . k . . 0 z ) (s)) j = I. ... rk. (A. 10)

We have shown that unfolding k of v1 is a rank rk function, i.e.

rank [(v(1))k] 5 rk (A.11)

Furthermore, we can see that if we create a matrix-valued function whose rows are

Hi, ' = [H1, H2 ,... H.1] then the quasimatrix V has an extended SVD, also of rank

Tk,

V1(X() x = (2,... , Xk)G(x>k) (A.12)

Now we can proceed recursively and use the extended SVD of a quasimatrix to sep-

arate X2 from the other dimensions X>2 in V

[V(X>1)]k=2 = V1(x 2, X>2 ) = U2 (x 2 )V2 (X> 2 ), (A.13)

where U 2 is a r1 x r2 matrix-valued function with orthogonal columns and V2 is a

quasimatrix consisting r2 orthonormal functions. From here we see that T1 = U1 ,

T2 = U2, and we can proceed with V2 as we did on V to obtain the rest of the cores.
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F-

A.4 Proof of Theorem 4

The proof is a continuous analogue of that provided by Oseledets [98].

Proof. The case d = 2 follows from the definition of the functional SVD. Now we

consider the case d > 2, the first unfolding can be decomposed into

f1 (xi, X) = Ui(xi)Vi(x>i) + e1(xi, x>1 )

where U1 : X- - R" consist of the first r left singular functions of f1 , and V : X> 1 -

R'i consists of the first r right-singular functions of f1. Further note that due to the

properties of the SVD we have that u) = Ui[i] satisfy (u 1) (s), e1(s, x>1)) 0 for

i 1 ... r1 .

V1 is a multivariate vector-valued function, and as such, also potentially has a

low-rank extended SVD. Suppose that we generate a rank r2 approximation f1' of

V1. Then if we define an approximation to f as f(xi, x>1 ) = Ui(x1)Vi(x>,), we can

bound its error according to

I (f -f)dx = (f- UV )dx

f(f-Ul( v+v)) dx

( 1f UV V q 

d )2d
f - 1)2 dx + j(U1 (1 - V1 dx

We can now repeat the process for V1 to bound the error between V and VI.

Suppose that the k = 2 unfolding of V1, V12(x 2 , X>2 ), has a rank r2 extended SVD
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U2 (x 2 )V2 (x>2 ) such that

1V2 (2,>) - U2 (X2)V2 (X>2)| 11 E2-X)X2 (A. 14)

where U2 : X 2 -+ Rr Xr2 and V2 : X> 2 -+ Rr2. We will shortly show that this fact

follows from the approximate low-rank nature of the unfolding functions f k. For now,

assume that V2 has the corresponding property that we can approximate it with a

rank r3 expansion V2 to obtain an explicit expansion for V1 as

1(X>1) =2 2(X2)2 (X>2), (A. 15)

Using (A.15) for V1 we obtain

V - V1i, V - VI= V1 - U2V2 V - U2V2)

= V - U2(2 + V2 - V2), V1 - U2(2 + V2 -V2))

< E2 V2 - 2, V2 - 2)

Now, if we assume that V can be approximated with a rank re+1 function Uj+1Ve+1,

and therefore V+1 can be approximated by a rank rt+2 function Ve+i, the above

argument can proceed recursively to obtain

d-1

V1 - ,1, V1 -, 1 te,

t=2

which yields the desired result.

It remains to show that the rank re+1 extended SVDs of V have errors smaller

than e +1, and therefore the errors resulting from using finite rank approximations V

are correspondingly bounded bounded. We show these facts using similar arguments

to those in Theorem 3 (see (A.9)). We begin by showing that the k = 2,... , d - 1

unfoldings of V are also of extended SVD rank rk within 6k. Recall that in (A.7) we
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represented each scalar-valued function making up V as

VM X,)=(ls >1), 1 0) (s)) (A.16)

and then we used the unfoldings of f to prove that the unfoldings of 0) are at most

rk. Similarly, if we now consider that the unfoldings of f can be represented as

fk(Xk, X>k) = F(Xzk)G(X>k) + e k (A.17)

such that the first term is a rank rk expansion and | ek Ek then for each unfolding

k = 2, ... , d we have

(V 0 )k -P di({X2, . .. Xk} {)f k+l, ... ., X})

=~~~ (fs,1)),(s)()
(F(s, x2 ,..., Xk)G(X>k) + ek(s, X2,..., Xk), w ()

(F(s, x2 ,..., Xk), w (s)) G(xk) -+- (ek(s, x 2 , ... , Xk), w)(s))

=Hi(X2,.... Xk )G(X>k) - 6k,

where Hi(x2 ,. - , Xk) = (F(s, x2 , .. . , Xk), wi(s)) is also a vector-valued function con-

sisting of rk functions and 18kI I Ek since the contraction of ek with respect to an

orthonormal function 0 (s) cannot increase in norm.

Now we have shown that V can be approximated by a rank r expansion up to an

accuracy of Ek, and recall that we denoted this expansion for k 2 as U2 (x 2 )V2 (X>2 )

in (A.14). We can recursively apply this argument to V2, V3, ...

I Vl(Xf+1, X>e+1) - U+1 (Xf+1)V+1(X>t+1)I Ek, f = 1,... , d - 1,

to obtain the required error bounds. In the end, the functions U1 , U2 , U3,... ,Ua-,

and Vd will make up the cores of the FT with the specified error.
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A.5 Proof of Theorem 5

The following proposition will be used in the proof.

Proposition 18. Let A E Rnxi, B E Rjmxl, and C E RX'm. Then

ATCB = Tr (ABTCT)

Proof. Let D = ABTCT, D E Rnx".

n

Tr (D) = D[i

n m

i=1 j=1

ATCB

A[i, 1]B[j, 1] (C T) [j, i]
i=1 j=1

D

The proof strategy is based on the calculus of variations.

Proof. Let 7 : 32 - R, x"m and consider the first variation of J defined as

6J(V, W) = lim J(= + Jh) - J(Z) - dJ(W + Ell)IE=o
E+o 6 dE
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(A.19)

A[i, 1]B[j, 1]C[i, j]



Denote g(x1, y2, Y3) = g1(Y1)g2 (y2)93(Y3), then we have

dc

d
= --de 21x%

W) (i=0

(L(Y
x 3

- g (1,

d '4 ('

c2

2

26J1x/ x3

(Y

1) (V(Y2) + 67 1(Y2)) R(Y3)

Y2, Y3 ) )2dyldY2dY3 60

1 2)W(Y2)Z(Y 3) )
2 dyjdY2dY3 +

(L(1y4(Y 2)(Y 3) )
2 dyjdY2dY3 +

9(Y1, Y2, Y3 )2 dydy2dY3 +

C(Y2)W(Y2)R(Y3)1(ylV7L(Y 2)Z(Y 3)dyidY2dY 3 -

(y2)W(Y 2 )1(y 3)9(Y1, Y2, Y3)dyidy2dy3 -

Y (Yl)W(y2 )R(Y 3)9(Yl, Y2, Y3)dyldy2dY3

[2cJ (1(Yl)7(Y 2 )7Z(y3 ) ) 2 dyidY 2 dy3 -

2J C(Yl)W(Y2)R(Y3)C(Yl)(Y2 )Z(Y 3)dy1dy2dY3 -

2 (y1)-((y 2 )JZ(y3 )9(Y 1 , Y2) Y3)dYidY2dY3
x x - c=0

2CJ (Yl)W(Y 2)Z(Y 3)L2(yl)li(Y 2)IZ(Y 3)-
g1( X ( 2 ) 3 X /2  3

IC(1)W(2)R3)9q(Y1, Y2, Y3)dy1dY2 dY3] , (A.20)

where the second equality uses the definition of J, the third equality comes from

expanding the square, the fourth equality comes from taking the derivative, and the

last equality comes from setting E = 0.

Now, using the fact that C(yj)W(y 2 )R(Y 3 ) = ZT(Y 3 ) 7 iT( 2 )Ijjly1) and the or-

thonormality condition of R we can simplify the first term of integrand in the last

202



equation

12(yi)W(y2)R(Y3)12(yI)1( 2)Z(Y 3)dyidy2dy3 =

2(y1 )W(y2) R(y3 )zT(y3)tT(y 2)(yi)dyidy 2dy3
10,X2X93x xCY)(27(Y 

Y Y

L(y1)W(y 2)T(y 2)LT(yl)dyidy2

Tr (L(y1)T 2 (y1)W(y2)WT(y2)) dyidy 2

J= 'X 2

i 1 X -

Tr (?i(y2)WT(y2)) dy2 , (A.21)

where Proposition 18 applied to matrix-valued functions is to obtain the third equal-

ity. Combining (A.21) with (A.20), the first variation becomes

5J(W, W) = 2 Tr (-H(y2) WT(y2 )) dy2
J3~2

IC (y1) W (y2 )R(y3)g(y 1 , Y2, y3)dyi dy 2dy3
- X 2X 3

A necessary condition for an extremum is 6J(W*, W) = 0. To verify this condition
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we substitute (3.17) into (A.21)

Tr (H(Y 2 ) [w*](Y 2)) dy2

JTr (HY2) (

= Tr N(Y2)

fJ3('2 (J-'
=JTr H(Y2)

= Tr ((Y2)

= Tr (W

L LL x~x

- 1 J 9~?2 X Y

(Y2) I3"

T(yj)91(y1)dy1 g2(Y2 )

J3' IT(Y1) g(Y)92(Y2)g3(Y3)RT (Y3)dyidY3)

L T(y1)g(y1, Y2, Y3)R7T(Y)dydY)

JS LT(yi)RT (Y 3)9(Y1 Y2, Y3)dydY3)

33(y3)C(y1)g(yi, Y2, Y 3)dyidy 3 ) dy2

dy2

dY2

Tr (7(Y2)R(Y3)(y1)) g(y1, Y2, y3)dyidy 3 dy 2

(y1)7(Y2)R(Y3)9(Y1, Y2, y3)dyidy 2 dy3

where the last equality is obtained using another application of Proposition 18 to

matrix-valued functions. Using this result in (A.22) shows that the condition

6J(W*, W) = 0

is satisfied.

204

S93 ()T(Y 3 )dY 3]) ) dy2

) dy 2

El



Bibliography

[1] I. Arasaratnam and S. Haykin. Cubature Kalman filters. IEEE Transactions
on Automatic Control, 54(6):1254-1269, June 2009.

[2] R. Archibald, A. Gelb, R. Saxena, and D. Xiu. Discontinuity detection in
multivariate space for stochastic simulations. Journal of Computational Physics,
228(7):2676-2689, April 2009.

[3] R. Archibald, A. Gelb, and J. Yoon. Polynomial fitting for edge detection in
irregularly sampled signals and images. SIAM Journal on Numerical Analysis,
43(1):259-279, January 2005.

[4] Z. Battles and L. N. Trefethen. An extension of MATLAB to continuous func-
tions and operators. SIAM Journal on Scientific Computing, 25(5):1743-1770,
January 2004.

[5] K. Batygin and M. E. Brown. Evidence for a distant giant planet in the solar
system. The Astronomical Journal, 151(2):22, January 2016.

[6] M. Bebendorf. Approximation of boundary element matrices. Numerische
Mathematik, 86(4):565-589, October 2000.

[7] M. Bebendorf. Adaptive cross approximation of multivariate functions. Con-
structive Approximation, 34(2):149-179, January 2010.

[8] R. E. Bellman. Adaptive Control Processes: A Guided Tour. Princeton univer-
sity press, 1961.

[9] V. E. Benes. Exact finite-dimensional filters for certain diffusions with nonlinear
drift. Stochastics, 5(1-2):65-92, June 1981.

[10] T. Bengtsson, P. Bickel, and B. Li. Curse-of-dimensionality revisited: Collapse
of the particle filter in very large scale systems. In D. Nolan and T. Speed,
editors, Probability and Statistics: Essays in Honor of David A. Freedman,
volume 2 of Collections, pages 316-334. Institute of Mathematical Statistics,
Beachwood, Ohio, USA, 2008.

[11] A. Bensoussan, R. Glowinski, and A. Rascanu. Approximation of the Zakai
equation by the splitting up method. SIAM Journal on Control and Optimiza-
tion, 28(6):1420-1431, November 1990.

205



[12] D. P. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific
Belmont, 2007.

[13] D. P. Bertsekas. Abstract dynamic programming. Athena Scientific, Belmont,
MA, 2013.

[14] D. P. Bertsekas and J. N. Tsitsiklis. An analysis of stochastic shortest path
problems. Mathematics of Operations Research, 16(3):580-595, August 1991.

[15] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming, volume 3 of
Optimization and Neural Computation Series. Athena Scientific, 1996.

[161 G. Beylkin and M. J. Mohlenkamp. Numerical operator calculus in higher

dimensions. Proceedings of the National Academy of Sciences, 99(16):10246-
10251, July 2002.

[17] D. Bigoni, A. P. Engsig-Karup, and Y. M. Marzouk. Spectral Tensor-Train
decomposition. SIAM Journal on Scientific Computing, 38(4):A2405-A2439,
January 2016.

[18] C. Boutsidis and D. P. Woodruff. Optimal CUR matrix decompositions. In

Proceedings of the 46th Annual ACM Symposium on Theory of Computing -
STOC '14. Association for Computing Machinery (ACM), 2014.

[19] W. L. Briggs, S. F. McCormick, et al. A Multigrid Tutorial. SIAM, 2000.

[20] E. Brunskill, L. Kaelbling, T. Lozano-Perez, and N. Roy. Continuous-State
POMDPs with Hybrid Dynamics. International Symposium on Artificial Intel-
ligence & Mathematics ISAIM, 2008.

[21] G. Burgers, P. J. van Leeuwen, and G. Evensen. Analysis scheme in the ensemble
Kalman filter. Monthly Weather Review, 126(6):1719-1724, June 1998.

[22] L. R. G. Carrillo, A. E. D. L6pez, R. Lozano, and C. P6gard. Quad Rotorcraft
Control: Vision-based Hovering and Navigation. Springer Science & Business
Media, 2012.

[23] J. D. Carroll and J.-J. Chang. Analysis of individual differences in multidimen-
sional scaling via an n-way generalization of "Eckart-Young" decomposition.
Psychometrika, 35(3):283-319, September 1970.

[24] J. A. Carton and B. S. Giese. A reanalysis of ocean climate using Simple Ocean
Data Assimilation (soda). Monthly Weather Review, 136(8):2999-3017, 2008.

[25] A. R. Cassandra. A survey of POMDP applications. Working Notes of AAAI
1998 Fall Symposium on Planning with Partially Observable Markov Decision
Processes, pages 17-24, 1998.

206



[26] M. Chevreuil, R. Lebrun, A. Nouy, and P. Rai. A least-squares method for
sparse low rank approximation of multivariate functions. SIAM/ASA Journal
on Uncertainty Quantification, 3(1):897-921, 2015.

[27] A. Chorin, M. Morzfeld, and X. Tu. Implicit particle filters for data assim-
ilation. Communications in Applied Mathematics and Computational Science
CAMCoS, 5(2):221-240, November 2010.

[28] C.-S. Chow and J. Tsitsiklis. An optimal one-way multigrid algorithm for
discrete-time stochastic control. IEEE Transactions on Automatic Control,
36(8):898-914, 1991.

[29] A. Cichocki. Tensor networks for big data analytics and large-scale optimization
problems. arXiv preprint arXiv:1407.3124, July 2014.

[30] J. M. C. Clark. The design of robust approximations to the stochastic differ-
ential equations of nonlinear filtering. Communication Systems and Random
Process Theory, 25:721-734, 1978.

[31] P. R. Conrad, Y. M. Marzouk, N. S. Pillai, and A. Smith. Accelerating asymp-
totically exact MCMC for computationally intensive models via local approxi-
mations. Journal of the American Statistical Association, pages 00-00, October
2015.

[32] R. Cory and R. Tedrake. Experiments in fixed-wing UAV perching. In AIAA
Guidance, Navigation and Control Conference and Exhibit, pages 1-12. AIAA
Reston, VA, American Institute of Aeronautics and Astronautics (AIAA), Au-
gust 2008.

[33] P. J. Costa. Adaptive model architecture and extended Kalman-Bucy filters.
IEEE Transactions on Aerospace and Electronic Systems, 30(2):525-533, 1994.

[34] F. Daum and J. Huang. Curse of dimensionality and particle filters. In 2003
IEEE Aerospace Conference Proceedings, volume 4, pages 1979-1993. Institute
of Electrical & Electronics Engineers (IEEE), March 2003.

[35] D. Day and L. Romero. Roots of polynomials expressed in terms of orthogonal
polynomials. SIAM Journal on Numerical Analysis, 43(5):1969-1987, January
2005.

[36] V. De Silva and L. Lim. Tensor rank and the ill-posedness of the best low-rank
approximation problem. SIAM Journal on Matrix Analysis and Applications,
30(3):1084-1127, January 2008.

[37] S. V. Dolgov. TT-GMRES: solution to a linear system in the structured tensor
format. Russian Journal of Numerical Analysis and Mathematical Modelling,
28(2), January 2013.

207



[38] S. V. Dolgov and D. V. Savostyanov. Alternating minimal energy methods for
linear systems in higher dimensions. SIAM Journal on Scientific Computing,
36(5):A2248-A2271, January 2014.

[39] D. L. Donoho et al. High-dimensional data analysis: The curses and blessings
of dimensionality. AMS Math Challenges Lecture, pages 1-32, 2000.

[40] A. Doostan, A. Validi, and G. Iaccarino. Non-intrusive low-rank separated
approximation of high-dimensional stochastic models. Computer Methods in
Applied Mechanics and Engineering, 263:42-55, August 2013.

[41] A. Doucet, S. Godsill, and C. Andrieu. On sequential Monte Carlo sampling
methods for Bayesian filtering. Statistics and Computing, 10(3):197-208, 2000.

[42] P. Drineas, R. Kannan, and M. W. Mahoney. Fast Monte Carlo algorithms for
matrices II: Computing a low-rank approximation to a matrix. SIAM Journal
on Computing, 36(1):158-183, January 2006.

[43] G. Evensen. The ensemble Kalman filter: theoretical formulation and practical
implementation. Ocean Dynamics, 53(4):343-367, November 2003.

[441 W. H. Fleming and H. M. Soner. Controlled Markov Processes and Viscosity
Solutions. Springer New York, 2006.

[45] M. Frei and H. R. Kunsch. Bridging the ensemble Kalman and particle filters.
Biometrika, 100(4):781-800, July 2013.

[46] R. Furrer and T. Bengtsson. Estimation of high-dimensional prior and posterior
covariance matrices in Kalman filter variants. Journal of Multivariate Analysis,
98(2):227-255, Feburary 2007.

[47] A. Genz. Testing multidimensional integration routines. In Proc. of Interna-
tional Conference on Tools, Methods and Languages for Scientific and Engi-
neering Computation, pages 81-94. Elsevier North-Holland, Inc., 1984.

[48] M. Ghil and P. Malanotte-Rizzoli. Data assimilation in meteorology and
oceanography. Advances in Geophysics, 33:141-266, 1991.

[491 N. Gordon, D. Salmond, and A. Smith. Novel approach to nonlinear/non-
Gaussian Bayesian state estimation. In IEE Proceedings F (Radar and Signal
Processing), volume 140, pages 107-113. IET, Institution of Engineering and
Technology (IET), 1993.

[50] S. A. Goreinov, I. V. Oseledets, D. V. Savostyanov, E. E. Tyrtyshnikov, and
N. L. Zamarashkin. How to find a good submatrix. Matrix Methods: Theory,
Algorithms and Applications, pages 247-256, April 2010.

[51] S. A. Goreinov and E. E. Tyrtyshnikov. The maximal-volume concept in approx-
imation by low-rank matrices. Contemporary Mathematics, 280:47-51, 2001.

208



[52] S. A. Goreinov, E. E. Tyrtyshnikov, and N. L. Zamarashkin. A theory of
pseudoskeleton approximations. Linear Algebra and its Applications, 261(1):1-
21, 1997.

[53] S. A. Goreinov, N. L. Zamarashkin, and E. E. Tyrtyshnikov. Pseudo-
skeleton approximations by matrices of maximal volume. Mathematical Notes,
62(4):515-519, oct 1997.

[541 A. Gorodetsky. C3 : Compressed Continuous Computation library. https:
//github. com/goroda/Compressed-Continuous-Computation.

[55] A. Gorodetsky. Stochastic control using compressed continuous computation
(C3SC). https: //github. com/goroda/c3sc.

[56] A. Gorodetsky, S. Karaman, and Y. Marzouk. Efficient high-dimensional
stochastic optimal motion control using Tensor-Train decomposition. In
Robotics: Science and Systems XI, Rome, Italy, July 2015. Robotics: Science
and Systems Foundation.

[57] A. Gorodetsky, S. Karaman, and Y. Marzouk. Function-Train: A continuous
analogue of the Tensor-Train decomposition. arXiv preprint arXiv:1510.09088,
2015.

[58] A. Gorodetsky and Y. Marzouk. Efficient localization of discontinuities in
complex computational simulations. SIAM Journal on Scientific Computing,
36(6):A2584-A2610, January 2014.

[59] L. Grasedyck. Hierarchical singular value decomposition of tensors. SIAM
Journal on Matrix Analysis and Applications, 31(4):2029-2054, January 2010.

[60] L. Grasedyck, D. Kressner, and C. Tobler. A literature survey of low-rank tensor
approximation techniques. GAMM-Mitteilungen, 36(1):53-78, August 2013.

[61] W. Hackbusch. Tensor Spaces and Numerical Tensor Calculus. Springer-Verlag,
Berlin, 2012.

[62] W. Hackbusch and S. Kuhn. A new scheme for the tensor representation.
Journal of Fourier Analysis and Applications, 15(5):706-722, October 2009.

[63] R. A. Harshman. Foundations of the PARAFAC procedure: models and condi-
tions for an "explanatory" multimodal factor analysis. UCLA Working Papers
in Phonetics, 16:1-84, 1970.

[641 J. Hhstad. Tensor rank is NP-complete. Journal of Algorithms, 11(4):644-654,
December 1990.

[65] F. L. Hitchcock. The expression of a tensor or a polyadic as a sum of products.
Journal of Mathematics and Physics, 6(1-4):164-189, April 1927.

209



[66] F. L. Hitchcock. Multiple invariances and generalized rank of a p-way matrix
or tensor. J. Math. Phys., 7:39-79, 1927.

[67] M. B. Horowitz, A. Damle, and J. W. Burdick. Linear Hamilton Jacobi Bellman
equations in high dimensions. In 53rd IEEE Conference on Decision and Con-
trol, pages 5880-5887. Institute of Electrical & Electronics Engineers (IEEE),
December 2014.

[68] K. Ito and B. Rozovskii. Approximation of the Kushner equation for nonlinear
filtering. SIAM Journal on Control and Optimization, 38(3):893-915, January
2000.

[69] K. Ito and K. Xiong. Gaussian filters for nonlinear filtering problems. IEEE
Transactions on Automatic Control, 45(5):910-927, May 2000.

[70] E. Jones, T. Oliphant, P. Peterson, et al. Open source scientific tools for python,
2001.

[71] S. J. Julier and J. K. Uhlmann. New extension of the Kalman filter to nonlinear
systems. In I. Kadar, editor, Signal Processing, Sensor Fusion, and Target
Recognition VI. SPIE-Intl Soc Optical Eng, July 1997.

[72] R. E. Kalman. A new approach to linear filtering and prediction problems.
Journal of Basic Engineering, 82(1):35-45, March 1960.

[73] R. E. Kalman and R. S. Bucy. New results in linear filtering and prediction
theory. Journal of Basic Engineering, 83(1):95-108, March 1961.

[74] B. N. Khoromskij and I. V. Oseledets. QTT approximation of elliptic solution
operators in higher dimensions. Russian Journal of Numerical Analysis and
Mathematical Modelling, 26(3):303-322, January 2011.

[75] T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM
Review, 51(3):455-500, August 2009.

[76] J. B. Kruskal. Multiway data analyis, chapter Rank, decomposition, and unique-
ness for 3-way and N-way arrays. Amsterdam, North-Holland, 1989.

[77] H. J. Kushner. On the differential equations satisfied by conditional probablitity
densities of Markov processes, with applications. Journal of the Society for
Industrial and Applied Mathematics Series A Control, 2(1):106-119, January
1964.

[78] H. J. Kushner. Dynamical equations for optimal nonlinear filtering. Journal of
Differential Equations, 3(2):179-190, April 1967.

[79] H. J. Kushner. Probability methods for approximations in stochastic control and
for elliptic equations, volume 129 of Mathematics in science and engineering.
New York: Academic Press, 1977.

210



[80] H. J. Kushner. Numerical methods for stochastic control problems in continuous
time. SIAM Journal on Control and Optimization, 28(5):999-1048, September
1990.

[81] H. J. Kushner and P. G. Dupuis. Numerical methods for stochastic control
problems in continuous time. Springer, 2001.

[82] L. D. Lathauwer, B. D. Moor, and J. Vandewalle. A multilinear singular
value decomposition. SIAM Journal on Matrix Analysis and Applications,
21(4):1253-1278, January 2000.

[83] J. Lei and P. Bickel. A moment matching ensemble filter for nonlinear non-
Gaussian data assimilation. Monthly Weather Review, 139(12):3964-3973, De-
cember 2011.

[84] P. F. J. Lermusiaux. Estimation and study of mesoscale variability in the Strait
of Sicily. Dynamics of Atmospheres and Oceans, 29(2):255-303, 1999.

[85] M. L. Littman, A. R. Cassandra, and L. P. Kaelbling. Learning policies for
partially observable environments: Scaling up. ICML, pages 362-370, 1995.

[86] S. Lototsky, R. Mikulevicius, and B. L. Rozovskii. Nonlinear filtering revisited:
a spectral approach. SIAM Journal on Control and Optimization, 35(2):435-
461, March 1997.

[87] M. W. Mahoney and P. Drineas. CUR matrix decompositions for improved
data analysis. Proceedings of the National Academy of Sciences, 106(3):697-
702, January 2009.

[88] Y. M. Marzouk, H. N. Najm, and L. A. Rahn. Stochastic spectral methods
for efficient Bayesian solution of inverse problems. Journal of Computational
Physics, 224(2):560-586, June 2007.

[89] J. Moore and R. Tedrake. Control synthesis and verification for a perching uav
using lqr-trees. In CDC, pages 3707-3714. Citeseer, 2012.

[90] G. N. Newsam. On the asymptotic distribution of the eigenvalues of discretiza-
tions of a compact operator. In Proc. Center for Mathematical Analysis, vol-
ume 17, pages 92-105, 1988.

[91] B. Oksendal. Stochastic Differential Equations: An Introduction with Applica-
tions. Springer Verlag, 2003.

[92] S. Olver. Approxfun: Julia package for function approximation. https://
github. com/ApproxFun/ApproxFun. jl, 2014.

[931 S. Olver and A. Townsend. A practical framework for infinite-dimensional linear
algebra. In Proceedings of the 1st First Workshop for High Performance Tech-
nical Computing in Dynamic Languages, pages 57-62. Institute of Electrical &
Electronics Engineers (IEEE), November 2014.

211



[94] I. V. Oseledets. DMRG approach to fast linear algebra in the TT-format.
Computational Methods in Applied Mathematics, 11(3):382-393, 2011.

[95] I. V. Oseledets. Tensor-Train decomposition. SIAM Journal on Scientific Com-
puting, 33(5):2295-2317, January 2011.

[96] I. V. Oseledets. Constructive representation of functions in low-rank tensor
formats. Constructive Approximation, 37(1):1-18, December 2012.

[97] I. V. Oseledets and S. V. Dolgov. Solution of linear systems and matrix inversion
in the TT-format. SIAM Journal on Scientific Computing, 34(5):A2718-A2739,
January 2012.

[98] I. V. Oseledets and E. Tyrtyshnikov. TT-cross approximation for multidimen-
sional arrays. Linear Algebra and its Applications, 432(1):70-88, January 2010.

[99] C. H. Papadimitriou and J. N. Tsitsiklis. The complexity of Markov decision
processes. Mathematics of Operations Research, 12(3):441-450, August 1987.

[100] M. K. Pitt and N. Shephard. Filtering via simulation: Auxiliary particle filters.
Journal of the American Statistical Association, 94(446):590-599, June 1999.

[101] R. B. Platte and L. N. Trefethen. Chebfun: A new kind of numerical computing.
In Progress in Industrial Mathematics at ECMI 2008, pages 69-87. Springer
Science + Business Media, 2010.

[102] W. B. Powell. Approximate Dynamic Programming: Solving the Curses of
Dimensionality, volume 703. John Wiley & Sons, 2007.

[103] P. Rai. Sparse low-rank approximation of multivariate functions - applications
in uncertainty quantification. PhD thesis, Ecole Centrale Nantes, 2014.

[104] J. W. Roberts, R. Cory, and R. Tedrake. On the controllability of fixed-wing
perching. In 2009 American Control Conference, pages 2018-2023. IEEE, In-
stitute of Electrical & Electronics Engineers (IEEE), 2009.

[105] J. Rust. Using randomization to break the curse of dimensionality. Economet-
rica, 65(3):487-516, May 1997.

[106] S. Sarkka. On unscented Kalman filtering for state estimation of continuous-
time nonlinear systems. IEEE Transactions on Automatic Control, 52(9):1631-
1641, September 2007.

[107] D. V. Savostyanov. Quasioptimality of maximum-volume cross interpolation of
tensors. Linear Algebra and its Applications, 458:217-244, October 2014.

[108] E. Schmidt. Zur theorie der linearen und nicht linearen integralgleichungen
zweite abhandlung. Mathematische Annalen, 64(2):161-174, June 1907.

212



[109] C. Snyder. Particle filters, the "optimal" proposal and high-dimensional sys-

tems. In Proceedings of the ECMWF Seminar on Data Assimilation for Atmo-

sphere and Ocean, 2011.

[110] C. Snyder, T. Bengtsson, P. Bickel, and J. Anderson. Obstacles to high-
dimensional particle filtering. Monthly Weather Review, 136(12):4629-4640,
December 2008.

[1111 A. Sparkes, W. Aubrey, E. Byrne, A. Clare, M. N. Khan, M. Liakata,
M. Markham, J. Rowland, L. N. Soldatova, K. E. Whelan, M. Young, and R. D.
King. Towards robot scientists for autonomous scientific discovery. Automated

Experimentation, 2(1):1-11, 2010.

[112] G. W. Stewart. Fredholm, Hilbert, Schmidt: three fundamental papers on

integral equations. www. cs .umd. edu/~stewart/FHS.pdf, 2011.

[113] S. Surjanovic and D. Bingham. Virtual library of simulation experiments: test
functions and datasets. Retrieved September 4, 2015, from http: //www. sfu.

ca/~ssurjano.

[114] S. Thomke and T. Fujimoto. The effect of "front-loading" problem-solving on
product development performance. Journal of Product Innovation Management,
17(2):128-142, March 2000.

[115] S. Thrun. Monte Carlo POMDPs. In S. Solla, T. Leen, and K.-R. Muller,
editors, Advances in Neural Information Processing Systems, volume 12, pages

1064-1070. MIT Press, 1999.

[116] C. Tobler. Low-rank tensor methods for linear systems and eigenvalue problems.

PhD thesis, ETH Zurich, 2012.

[117] A. Townsend and L. N. Trefethen. An extension of Chebfun to two dimensions.

SIAM Journal on Scientific Computing, 35(6):C495-C518, January 2013.

[118] A. Townsend and L. N. Trefethen. Continuous analogues of matrix factoriza-

tions. Proceedings of the Royal Society A: Mathematical, Physical and Engi-

neering Sciences, 471(2173):20140585-20140585, November 2014.

[119] L. N. Trefethen. Householder triangularization of a quasimatrix. IMA Journal

of Numerical Analysis, 30(4):887-897, August 2009.

[120] U. Trottenberg, C. W. Oosterlee, and A. Schuller. Multigrid. Academic press,
2000.

[121] J. Tsitsiklis. Efficient algorithms for globally optimal trajectories. IEEE Trans-

actions on Automatic Control, 40(9):1528-1538, 1995.

[122] L. R. Tucker. Some mathematical notes on three-mode factor analysis. Psy-

chometrika, 31(3):279-311, 1966.

213



[1231 A. Uschmajew. Local convergence of the alternating least squares algorithm
for canonical tensor approximation. SIAM Journal on Matrix Analysis and
Applications, 33(2):639-652, January 2012.

[124] P. J. van Leeuwen. Particle filtering in geophysical systems. Monthly Weather
Review, 137(12):4089-4114, December 2009.

[125] Y. Wu, D. Hu, M. Wu, and X. Hu. A numerical-integration perspective on
Gaussian filters. IEEE Transactions o Signal Processing, 54(8):2910-2921, 2006.

[126] M. Xue, D. Wang, J. Gao, K. Brewster, and K. K. Droegemeier. The Advanced
Regional Prediction System (ARPS), storm-scale numerical weather prediction
and data assimilation. Meteorology and Atmospheric Physics, 82(1):139-170,
2003.

[127] I. Yang, M. Morzfeld, C. J. Tomlin, and A. J. Chorin. Path integral formulation
of stochastic optimal control with generalized costs. IFAC Proceedings Volumes,
47(3):6994-7000, 2014.

[128] M. Zakai. On the optimal filtering of diffusion processes. Zeitschrift fur
Wahrscheinlichkeitstheorie und Verwandte Gebiete, 11(3):230-243, 1969.

214




