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Toward an Energy Efficient Language and
Compiler for (Partially) Reversible Algorithms

Nirvan Tyagi⋆, Jayson Lynch⋆, and Erik D. Demaine⋆

MIT CSAIL

Abstract. We introduce a new programming language for expressing
reversibility, Energy-Efficient Language (Eel), geared toward algorithm
design and implementation. Eel is the first language to take advantage of
a partially reversible computation model, where programs can be com-
posed of both reversible and irreversible operations. In this model, irre-
versible operations cost energy for every bit of information created or
destroyed. To handle programs of varying degrees of reversibility, Eel
supports a log stack to automatically trade energy costs for space costs,
and introduces many powerful control logic operators including protected
conditional, general conditional, protected loops, and general loops. In
this paper, we present the design and compiler for the three language
levels of Eel along with an interpreter to simulate and annotate incurred
energy costs of a program.

1 Introduction

Continued progress in technology has created a world where we are increas-
ingly dependent on computers and computing power. Computer use is greatly
increasing and thus becoming a significant energy expenditure for the world. It is
estimated that computing consumes more than 3% of the global electricity con-
sumption [16], growing at a steady rate. Improved energy efficiency of computers
translates to savings in money and environmental toll. Additionally, improved
energy efficiency would lead to increased longevity of batteries or use of a smaller
battery for the same lifespan. This applies most directly to portable devices such
as laptops, mobile phones, and watches where battery size and life are of the ut-
most importance. Finally, improved energy efficiency would lead to faster CPUs.
The main bottleneck in increasing clock speeds are cooling constraints. With de-
creased energy consumption, we can expect to be able to increase CPU speed by
roughly the same factor with the same cooling. Given these many motivations,
continued improvement of the energy efficiency of computation is an important
research field.

Fundamental limits to efficiency. If computer energy efficiency continues
to progress at a similar rate, we will expect to hit a fundamental limit based in
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physics and information theory known as Landauer’s limit [8] within the next
15-60 years. Landauer gives a lower limit for the energy cost of losing one bit of
information of kT ln 2 units of energy where k is Boltzmann’s constant and T is
temperature: at room temperature T = 20◦C, approximately 2.8 ·10−21 joules or
7.8 ·1028 kilowatt hours. Our current computation systems depend on computing
models that require the erasure of information (boolean circuits, random access
machines).

Reversible computation model. Reversible computation, where the in-
puts can be recovered from the outputs and no bits of information are lost, is
the common approach studied in order to improve computing efficiency beyond
Landauer’s limit. In this paper, we consider a variant of the traditional reversible
computation model we call partially reversible computation [6], allowing for both
reversible and irreversible operations. Traditional models of computation include
two main constraints in the asymptotic analysis of algorithms, time and space.
However, with the introduction of partially reversible computation, a new natu-
ral metric emerges, which we call energy. In this model, from Landauer’s princi-
ple, reversible computation is free, but creating or destroying bits of information
costs energy. The energy cost of an operation is equal to each bit of information
created or destroyed and comes from the change in information entropy from
inputs to outputs.

Energy-efficient language (Eel). We break down the results into two
main parts. First, we present a new reversible programming language, Eel. Eel
is composed of three language levels with the high-level based on Python and
the low-level based on PISA [20,19]. Eel is the first programming language to
take advantage of partially reversible computation. Past research on reversible
programming languages has focused on computation which is performed fully
reversibly. Eel allows operations to erase bits and incur energy cost. Eel also
allows users to indicate operations for reversal and will automatically store the
proper information in a log stack (separate from the stack). In addition, we
introduce a number of high level control logic operators of varying degrees of
reversibility. With the partial reversibility model, Eel brings the time, space,
and energy tradeoffs to the forefront.

Second, we present a compiler and interpreter in Java for Eel. We describe
the compilation techniques used between the Eel language levels to handle the
high level control logic. We also describe the interpreter technique to simulate
and annotate the energy costs of program execution. Since general purpose fully-
reversible computers are still years away from development, an interpreter that
simulates energy costs is valuable for algorithm development and implementa-
tion.

2 Previous Work

The study of reversible computation to circumvent Landauer’s limit has been
a broad area of research for a number of years, ranging from development of
reversible hardware, analysis of reversible algorithmic theory, to development of
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reversible programming languages and computer architecture. The origins of the
field can be traced back to Lecerf [10] and to Bennett [3]. Early theory results
show that any algorithm can be made reversible with either quadratic space
overhead [4] or with exponential time overhead [9,5]. However, it is unknown
whether or not any given algorithm can be converted to a reversible version
maintaining the same time and space constraints. Some models introduce an
algorithmic complexity based on information erased during a computation[11,6]
laying a foundation for partially reversible computing.

Past research on reversible programming languages has focused on fully re-
versible programming languages and architectures. The first high-level reversible
programming languages developed were Janus [12,21] and R[7]. We understand
that there are a set of properties that must be held by all reversible languages
[22], and that these properties are satisfied in Janus. Fully reversible computer
architectures have been built. Pendulum [20,19], the first reversible architecture
built, was introduced along with a reversible low-level instruction set, PISA,
which is used as a basic reversible instruction set in many future works. An
improved reversible architecture[2] compatible with PISA introduces a novel
technique for handling branches, previously handled with traces, using space to
keep track of program counter jumps. Most recently, this architecture has been
further improved with the development of Bob [18] using a slightly modified ver-
sion of PISA known as BobISA, providing more efficient branch handling and
address calculation. The Eel low level language uses an instruction set based on
PISA expanded to support irreversible operations.

There exist both a reversible self-interpreter for Janus [23] and a partial eval-
uator for Janus [14,13]. There also exist general techniques for compilation be-
tween reversible languages [1] and compilation of regular programs to reversible
programs [15].

Although Eel is still in its early stages of development, it is designed to pro-
vide a unique perspective to reversible programming and, specifically, algorithm
development. Where Janus is a powerful and mature language for fully reversible
programming, the partial reversibility of Eel opens up a whole new set of op-
tions for developers. Eel brings forward the tradeoff for irreversible logic between
energy cost and space cost in the log stack. Eel introduces new high level con-
trol logic operators that represent different options on the energy-space tradeoff
spectrum. Additionally, Eel allows for partial reversals of the program for each
code block, a useful feature to have for algorithm development. While this is also
possible in Janus, it requires a nesting of function calls and uncalls. Overall, the
aim of Eel is to provide a reversible language geared toward algorithm design
and implementation in a partially reversible model.

3 Language Design

In this section we discuss some of the design decisions that went into the lan-
guage. There is an overview of what operations are exposed in each of the three
languages written. We also discuss how reversing computation is notated.
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3.1 Logging and Unrolling

Eel supports partially reversible programs consisting both of logic blocks that will
be reversed and logic blocks that will only be executed in the forward direction.
In the high level, to denote a section of code to be reversed, it is placed inside of
a Log statement to form a log block. The high level is organized into code blocks
of varying levels of nesting. An Unroll statement indicates the reverse execution
of pending log blocks within the block. All log blocks within a code block must
be unrolled before exiting to the previous nesting level. This unroll method can
be generalized to allow for a more complex unrolling order. See future works
section for further discussion.

Some operations in a log block, such as assignments and branching, are not
easily reversible. Eel handles these operations by automatically logging informa-
tion (storing trace information) about the operation using auxilary space when
executed in the forward direction. Upon reversal, the logged information is used
to reverse the operation and is then zeroed out. The notion of using auxiliary
space, or a “history” stack (we call log stack), to make irreversible computation
reversible has been used in the past for irreversible operations such as memory
overwrites and switch branching [24,17]. We extend this idea to support higher
level control logic operators and see how different assumptions on control logic
conditions change what information needs to be logged. A basic example of how
the log stack is used for an irreversible assignment operation is in Figure 3.1.
The assignment operation is irreversible since the information previously stored
at the memory location is overwritten. To make the assignment operation re-
versible, the previous value is stored in and retrieved from the log stack using
LPUSH and LPOP operations. These operations increment and decrement the log
pointer and maintain the memory location at the top of the log stack to be zero.

Eel automatically handles logging information for supported control logic
operators and irreversible operations, but for more advanced functions additional
information may need to be stored. Eel high level provides the LogPush command
to push an item onto the log stack. LogPush can be used to make user-defined
functions supported reversibly.

3.2 Language Levels

Eel is designed with three different levels exposing different levels of complex-
ity. The high level language provides a Python-like syntax and common control
operators for algorithm development. This is meant to seem familiar and to
hide some of the difficulties of working in a partially reversible environment.
The intermediate level is stripped down to a simpler set of commands and at-
tempts to resemble working in transdichotomious RAM models of computation.
By necessity it also exposes some fairly mechanical parts of execution such as
the program and log stacks. It reduces the control logic to a series of jumps.
This tries to compromise between readability, clear resource calculations, and
expressive power. The low level gives a basic instruction set one might imagine
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‘High Level’

Log:

x += 1

Unroll

‘Low Level’

ADD(x,1)

SUB(x,1) // Unroll starts

‘High Level’

Log:

x = 1

Unroll

‘Low Level’

LPUSH(x)

ADD(x,1)

SUB(x,1) // Unroll starts

LPOP (x)

Fig. 1. Basic example of using log stack and not using log stack for reversal. LPUSH
and LPOP perform the appropriate operation to the log stack and zero out the previous
location.

for a semi-reversible computer based off of PISA. Here we have a small number
of basic operations where the time, space, and energy costs of each line are clear.

High Level. The high level handles the partial reversibility of Eel with the
Log and Unroll keywords. Placing operations inside of a Log block indicates to
the compiler that these operations will be reversed. If there is an irreversible
operation or control logic operator in a Log block, specific information is stored
(logged) in the log stack. During an unroll, this information is used to properly
reverse the operation and zeroed out.

Variables are not strongly typed and do not have explicit declaration. In-
stead variables are created the first time they are used. There are interesting
questions concerning performance and ease-of-use with respect to typing in re-
versible programming languages; however, we have not yet been able to explore
this substantially.

Basic control logic operators, such as conditionals and loops, are supported at
the high level. However, different keywords are used to describe operators of dif-
ferent reversibility. For example, a protected conditional is completely reversible
and does not require any space in the log, but requires assumptions on the usage
of the condition variables. A general conditional, with no such assumptions, is
not inherently reversible and requires a single bit of information to be stored
in the log for reversibility. Table 1 summarizes the operators available at the
high level and the space required in the log stack to be made reversible. The
reversibility of these high level control logic operators is studied in more detail
in a companion paper [6]. In an attempt to simplify the control logic, we note
that the current protected operators in the high level provide less expressiveness
than other languages such as Janus. However, the intermediate language is fully
expressive, and future iterations of the high level can include more complex op-
erators built from the intermediate level. Figure 3.2 shows the grammar of the
high level.

Basic control logic operators, such as conditionals and loops, are supported at
the high level. However, different keywords are used to describe operators of dif-
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ferent reversibility. For example, a protected conditional is completely reversible
and does not require any space in the log, but requires assumptions on the usage
of the condition variables. A general conditional, with no such assumptions, is
not inherently reversible and requires a single bit of information to be stored
in the log for reversibility. Table 1 summarizes the operators available at the
high level and the space required in the log stack to be made reversible. The
reversibility of these high level control logic operators is studied in more detail
in a companion paper [6]. In an attempt to simplify the control logic, we note
that the current protected operators in the high level provide less expressiveness
than other languages such as Janus. However, the intermediate language is fully
expressive, and future iterations of the high level can include more complex op-
erators built from the intermediate level. Figure 3.2 shows the grammar of the
high level.

〈program〉 ::= 〈b〉 block

〈b〉 ::= 〈s〉* statement sequence

〈s〉 ::= x ⊗= 〈e〉 | x = 〈e〉 assignment
| ‘PIf’( 〈e〉 ): 〈b〉 (‘Else’: 〈b〉)? protected conditional
| ‘If’( 〈e〉 ): 〈b〉 (‘Else’: 〈b〉)? general conditional
| ‘PFor’( 〈s〉, 〈e〉, 〈s〉 ): 〈b〉 protected for loop
| ‘For’( 〈s〉, 〈e〉, 〈s〉 ): 〈b〉 general for loop
| ‘While’( 〈e〉 ): 〈b〉 general while loop
| ‘Def’ q(x, . . . , x): 〈b〉 function definition
| q(x, . . . , x) function call
| ‘Log’: 〈b〉 log block
| ‘Unroll’ unroll

〈e〉 ::= c | x | 〈e〉 ⊙ 〈e〉 expression

〈⊗〉 ::= + | − | ∗ operators

〈⊙〉 ::= ⊗ | / | ≤ | ≥ | 6= | ==

Fig. 2. Eel high level grammar, where x ∈ Vars, q ∈ FxnIds, c ∈ IntConsts

Intermediate Level. The Eel intermediate language breaks down the high
level control logic into jumps and labels. Jumps and labels are separated into
two categories: protected jumps and general jumps. Protected jumps (PGoto,
PGotoIf, PGotoIfN) are fully reversible and require no additional space in log
stack. A protected conditional jump takes in a forward condition and a back-
ward condition. It uses the assumption that the forward condition will always
evaluate the same in the forward direction as the backwards condition in the
reverse direction. General jumps (Goto, GotoIf, GotoIfN) do not require this
assumption and log a bit in order to reverse. Both protected jumps and gen-
eral jumps must be paired with a corresponding destination protected label or
general label. Jumps and labels have a 1 : 1 correspondence.
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Table 1. Summary of high level control keywords and the amount of space in the log
stack required to make reversible if appearing in a log block.

Control Operator Keyword Log (bits) Sec.

Protected Conditional PIf(cond) 0 5.2

General Conditional If(cond) 1 5.2

Protected For loop PFor(init,cond,incr) 0 5.3

General For loop For(init,cond,incr) ⌈lg l⌉ 5.3

General While loop While(cond) ⌈lg l⌉ 5.3

Function call Def fxnName(args) 0 5.4

Log Block Log 3.1

Unroll Unroll 3.1

One strength of the intermediate language lies in the flexibility and variety
of the jump operations. Common control logic operators of the high level can be
broken down to a simple combination of protected and general jumps. This also
allows new operators for the high level to be easily defined in the intermediate
language without needing to touch the low level assembly-like code. Figure 3.2
shows the grammar of the intermediate language.

〈program〉 ::= 〈b〉 block

〈b〉 ::= 〈s〉* statement sequence

〈s〉 ::= x ⊗= 〈e〉 | x = 〈e〉 assignment
| ‘PGoto’( l ) protected jump
| ‘PGotoIf’( 〈e〉, 〈e〉, l )
| ‘PGotoIfN’( 〈e〉, 〈e〉, l )
| ‘PLabel’( l )
| ‘Goto’( l ) general jump
| ‘PGotoIf’( 〈e〉, l )
| ‘PGotoIfN’( 〈e〉, l )
| ‘Label’( l )
| ‘Def’ q(x, . . . , x) function definition
| ‘Call’ q(x, . . . , x) function call
| ‘Log’: 〈b〉 log block
| ‘Unroll’ unroll
| ‘LogPush’(x) log stack modification

〈e〉 ::= c | x | 〈e〉 ⊙ 〈e〉 expression

〈⊗〉 ::= + | − | ∗ operators

〈⊙〉 ::= ⊗ | / | ≤ | ≥ | 6= | ==

Fig. 3. Eel intermediate level grammar, where x ∈ Vars, l ∈ LabelIds, q ∈ FxnIds, c ∈
IntConsts

Low Level. The low level language consists of basic assembly-level instruc-
tions that are assumed to be built into a reversible machine. Since Eel is designed
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for a partial reversibility model, a number of irreversible operations are also sup-
ported. Table 2 lists the operations available at the low level. Jump operations
are completely reversible and require every Goto instruction to be paired with
the corresponding Comefrom instruction (GOTOIFN with CMFRMIFN). The come-
from statement is necessary in instructing the machine on bookkeeping of the
program counter during jumps.

The low level also introduces various “special” memory locations that are
reserved for specific uses. These are the program counter (pc), log pointer (lp),
and stack pointer (sp).

Table 2. Summary of low level operations.

Operation Description

Reversible Operations

ADD(a, b) a+ = b

SUB(a, b) a− = b

MULT(a, b) a∗ = b

NEG(a) a∗ = −1

SWAP(a, b) values a and b swap

LPUSH(x) push x to log stack

LPOP(x) pop x from log stack

PUSH(x) push x to stack

POP(x) pop x from stack

Irreversible Operations

MOVE(a, b) a = b

AND(a, b) a = a ∧ b

OR(a, b) a = a ∨ b

Jump Operations

GOTO(l) jump to l

GOTOIF(b, l) jump to l if b

GOTOIFN(b, l) jump to l if not b

CMFRM(l) comefrom l

CMFRMIF(b, l) comefrom l if b

CMFRMIFN(b, l) comefrom l if not b

4 Correct Program Conventions

An Eel program is a code block of a sequence of statements. Statements consist
of various operations and control logic which themselves can contain code blocks
nested within. We model the statement execution flow of a code block as a
series of forward blocks, log blocks, and unroll statements. Unroll statements
trigger the reverse execution of all “un-reversed” log blocks in the code block
executed prior to the statement. If there are no pending log blocks, the Unroll
statement is skipped. Every log block must be unrolled before the end of the
block (synonymous to putting an unroll statement at the end of every block).

Call the set of all forward blocks, log blocks, and unrolls in a code block, B.
Let B = R ∪ F ∪ U be the union of three distinct sets r ∈ R of log blocks,
f ∈ F of forward blocks, and u ∈ U of unrolls. Every element r has an element
in U corresponding to the unroll that triggers the reverse execution of r, notated
by ur. Note that a single u can satisfy the reverse execution of many r. The set
B has a strict universal ordering where for all bi, bj ∈ B, bi ≺ bj if bi occurs first
in the Eel program.

Every block b can be modeled as taking an input set of variables V (b), execut-
ing block code, and returning the same set of variables with potentially modified
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values. The input and output values of the variables are denoted Vin(b) and
Vout(b). We also care about the subset of these variables that were modified,
denoted by Vmod(b). For guaranteed correct reversal of log block r, we desire
that Vout(r) = Vin(ur). To receive this property, all forward blocks between r

and ur must not irreversibly modify any of the variables V (r) = V (ur).

∀r ∀f ( r ≺ f ≺ ur ) →
(

V (r) ∪ Vmod(f) = ∅
)

In addition to the variable modification among blocks, for a log block to be
correctly reversed, control logic within the block must be correct. This means
that the requirements for all protected conditionals and for loops are satisfied. In
protected conditionals, the variables in the condition cannot be modified within
the conditional. In protected for loops, the variable controlling the loop cannot
be modified within the loop.

It is possible for users to purposefully break these rules and still create a pro-
gram that compiles and executes as they wanted. However, this requires careful
variable bookkeeping and falls outside the intended use cases of the language.

5 Control Logic Operators

Eel supports conditionals, loops, and function calls in the high level. These con-
trol logic operators are handled reversibly using the log stack. Since these opera-
tors are largely broken down in the intermediate level, we start by examining the
reversibility of the jump operations. High level control operators are then built
directly from intermediate jump operations, avoiding the low level. Examples are
given using a log block followed by an unroll, but in general, the unroll statement
need not directly follow the log block. The compilation of control logic outside of
a log block is not shown here since it does not use the log stack and is compiled
standardly. We note that the incorrect use of control logic and log blocks can
result in an incorrect reversal and we examine this issue in the Correct Program
Conventions section.

5.1 Jumps

The jump operations of the intermediate level are the building blocks for all
of the high level control logic operators. The jump operations are divided into
two main classes, protected jumps (fully reversible) and general jumps (require
1 logged bit). Because of their reversibility assumptions, these two classes are
semantically different and are compiled differently.

Jumps are paired with labels of the same class (protected or general). In
our design, we require a one-to-one pairing of jumps to labels. It is possible to
support a many-to-one matching of jumps to labels, but additional information
is required to be logged for reversal. Both classes support conditional jumps
which use the suffixes If and IfN corresponding to jumping if the condition is
non-zero or zero respectively.
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In the low level, jumps can be performed by a reversible update to the pro-
gram counter (pc). However, by allowing changes to the program counter, we can
no longer assume every line was reached from the previous line by an increment
to the pc. This creates an irreversible situation. To deal with this, every jump
instruction is paired with a comefrom instruction. The Comefrom statement is
used to properly handle the manipulation of the pc. Since the jump requires the
manipulation of the pc, one might imagine this value being swapped or copied
and manipulated. The comefrom statement performs the necessary cleaning of
that value. This is necessary within the computer but not exposed at the assem-
bly level, which is why the Comefrom simply appears to be a label or no-op.

Protected jumps. Protected jumps are fully reversible and do not use any
space in the log stack. A protected jump contains a “backward” condition which
can be evaluated in the reverse direction to indicate whether the jump was
executed in the forward direction.

Consider the protected conditional jump (PGotoIf). It takes the form:
PGotoIf(fwdcond, bwdcond, label). In the forward direction, if the forward
condition is true, jump to label. Upon reaching the label location when revers-
ing, if the backward condition is true, jump to original jump start location. This
gives the requirement that the backward condition evaluates to true if and only
if the forward condition evaluated to true for the proper code to be reversed.
With this assumption, we can evaluate the backward condition to determine if
the jump was executed in the forward direction without additional information
stored in the log stack.

General jumps. General jumps are used when the condition evaluated to
decide the execution of the jump in the forward direction is not preserved and
thus cannot be re-evaluated in the backward direction. In this case, we log a bit of
information to the log stack to represent whether or not the jump was executed.
A general jump takes the form: GotoIf(cond, label) where the jump to label
is executed if cond is true.

In the forward direction, every time a label is reached, it was the result of
either (1) increment from the line above or (2) the execution of a jump. In case
(1), a 0-bit is logged, and in case (2), a 1-bit is logged. Therefore in the reverse
direction, whenever a label is reached, the top bit of the log stack indicates
whether to reverse the jump.

5.2 Conditional statements

Eel high level distinguishes between two types of conditional statements, pro-
tected conditionals and general conditionals. In a protected conditional, the con-
dition variables are not modified within the conditional statement.

Protected conditionals are implemented reversibly using protected jumps. If
the condition variables are not modified within the conditional statement, the
condition can be reevaluated after the execution of the conditional to see if the
statement was executed. Thus, the condition can be used as both the forward
condition and backward condition of the intermediate level protected jump. Note
that this is a stronger assumption than the protected jump in the intermediate
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language which separates the forward and backward conditions. Figure 4 shows
an example of an unsatisfied protected conditional.

The implementation of general conditionals is analogous to protected condi-
tionals. Because the condition is subject to change in the conditional statement,
the value of the condition is logged upon forward execution. This logged value
is used in the backward direction to determine if the conditional statement was
executed.

‘High Level - Unsatisfied Protected Conditional ’

Log:

x = 1

PIf(x):

x -= 1

[logic block]

Unroll

Fig. 4. Example of an unsatisfied protected conditional. When reversing the condition
will be x = 0 regardless of whether the conditional statement was executed.

5.3 For and While loops

Eel high level distinguishes between two types of for loops, protected for loops
and general for loops. Protected for loops use no space in the log stack. Figure 5
shows the compilation of a protected for loop. General for loops require the
number of loop iterations l to be logged using lg l bits in the log stack.

A protected for loop takes the form: PFor(init(x), cond(x), incr(x)).
An initial value init(x), a terminating expression cond(x), and a reversible
incrementation function incr(x). A protected for loop requires (1) the incre-
mentation function incr(x) is the only modifier to x in the loop, and (2) the
termination condition cond(x) is determined only by x and no other modified
variables in the loop. With these assumptions, a protected for loop can be imple-
mented fully reversibly. The protected for loop can be undone by reversing the
incrementation function and unrolling each loop until x matches the initializa-
tion value. Protected jumps are used to implement the protected for loop with
no space in log stack.

A general for loop is of the form: For(init(), cond(), incr()). The gen-
eral for loop keeps track of the number of loop iterations l in the forward di-
rection. It does not rely on the initialization variable being protected, only that
the loop terminates. However, if we use general jumps, a bit of information is
stored per loop and l space in the log stack is required. Instead, we maintain and
store a separate loop counter in the log stack using lg l bits. Protected jumps
are then used with the general for loop condition in the forward direction and
decrementation of the loop counter in the backward direction. Figure 6 shows
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‘Protected For Loop ’

‘High Level’

Log:

PFor (init (x), cond (x), incr (x)):

[loop logic block]

[end logic block]

Unroll

‘Intermediate Level’

Log:

init (x)

PLabel(start -label) // checks if x == init

PGotoIfEq (cond (x), cond (x), end -label) // ends if cond (x)

[loop logic block]

incr (x) // increments x

PGotoIfNeq (x != init , x != init , start -label) // loops

PLabel(end -label)

[end logic block]

Unroll

Fig. 5. The high to intermediate level compilation of a protected For loop.

the compilation of a general for loop. General while loops are handled in the
same way as general for loops. The initialization variable and incrementation
function are disregarded.

5.4 Function calls

Reversible function calls are handled in a similar manner to normal ones. The
function arguments and return pointer are pushed to the regular stack. The
arguments are passed by reference, so changes to a variable effect it outside the
scope of the function unless a local copy is made. Different from normal functions,
for every reversible function in the high level, two versions of the function are
created in the low level. One is the regular function used in the forward direction,
while the other is the unrolled version used in the backward direction to reverse.
Since the locations of these functions are known, protected jumps can be used to
enter and exit. Thus, functions require no additional space in the log stack than
what is needed for the function logic itself. Eel functions use a pointer passing
parameter model taking in and modifying parameter memory locations. Figure 7
shows the compilation of a function call.

6 Energy Simulation

Since we can’t actually run our code on a semi-reversible computer, we add addi-
tional annotation to estimate the energy cost of our programs.We find this useful
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‘General For Loop ’

‘High Level’

Log:

For(init (), cond (), incr ()):

[loop logic block]

[end logic block]

Unroll

‘Intermediate Level’

Log:

init ()

l = 0

PLabel(start -label)

PGotoIfEq (cond () , cond (), end -label) // ends loop if cond ()

[loop logic block]

incr () // incrementation function

l += 1 // increment loop counter

PGotoIfEq (l > 0, l > 0, start -label) // restarts loop

PLabel(end -label)

LPush(l) // push loop counter to log

[end logic block]

Unroll

Fig. 6. The high to intermediate level compilation of a general For loop. The total
number of loop iterations are counted and logged. Medium minus importance.

in two directions. First, comparing our results against theoretical predictions of
the energy cost and scaling of algorithms allows us to check for inefficiencies
in the compiler. Second, if our code only uses well examined transformation we
can use an implementation of an algorithm as a check against the analysis of its
time, space, and energy complexity.

The energy costs for an operation are defined by the change in entropy or
information across the inputs to the outputs. In particular, we follow the model
used in [6] where one calculates log

(

I
O

)

Where I is the size of the input space
of the function and O is the size of the output space of the function. This means
the energy cost only depends on the instructions being called, not on the values
being passed into that function. For example, this would mean an irreversible
AND of two bits would always be charged 1 unit of energy, even though an
output of 0 would tell us that both inputs had to be 0. The appropriateness of
this model either in an exact, or average case setting will depend on details of
the computer architecture.

In high level programming languages, energy costs are hard to calculate since
they are masked by high level control logic and complex expressions. One of the
reasons Eel is designed to have multiple levels of compilation is to reveal these
energy costs in the lower levels. The simplest way to calculate energy costs is
in the low level language. Here the input and output spaces are small and the
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‘Function Call ’

‘High Level’

Def FXN(x):

[fxn logic block]

Log:

[logic block 1]

FXN(x)

[logic block 2]

Unroll

‘Intermediate Level’

Def FXN(x):

[fxn logic block]

Log:

[logic block 1]

Call FXN(x)

[logic block 2]

Unroll

‘Low Level’

// Def FXN(x): //FXN - start

CMFRM(mem[sp -1]) // where fxn was called from

ADD(x, mem[sp -2]) // pulls input from stack

[fxn logic block]

GOTO (mem[sp -1]) // returns to program

//FXN -end

// Def RFXN (x): //RFXN -start

CMFRM(mem[sp -1]) // where fxn was called from

ADD(x, mem[sp -2]) // pulls input from stack

[reverse fxn logic block]

GOTO (mem[sp -1]) // returns to program

//RFXN -end

[logic block 1]

PUSH (x)

PUSH (A)

GOTO (FXN -start) // jump to fxn

CMFRM(FXN -end) //A

POP(A)

POP(x)

[logic block 2]

[reverse of logic block 2] // Unroll starts

PUSH (x)

PUSH (B)

GOTO (RFXN -start) // jump to reverse fxn

CMFRM(RFXN -end) //B

POP(B)

POP(x)

[reverse of logic block 1]

Fig. 7. The full compilation of a function call. The low level shows two versions of the
function for the forward direction and the backward direction.

energy cost can be calculated on a line by line basis. Each instruction modifies
only one input and since we have a restricted instruction set, each instruction’s
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energy cost is individually evaluated. At the low level, instructions are batched
into two different energy costs, 0 and w, where w is the word size.

After calculating energy cost per line at the level, the compiler can backtrack
to the intermediate and high level language and annotate each line with the costs
incurred by the corresponding generated low/intermediate lines. The simulation
takes the same time and space requirements of running the actual program. The
annotation takes the form, (E, L), representing the energy cost and space in log
stack cost respectively. Logic in log blocks will incur no energy cost and instead
may incur log stack cost. Conversely, logic not in log blocks will not incur any
log stack cost, but may incur energy cost.

7 Conclusion and Future Work

Eel is a new reversible programming language that supports a partially reversible
model. The key contributions of this project are as follows:

1. Development of Eel (language + compiler) and description of three language
levels.

2. Introduction of the log stack as a way to make design decisions between
energy cost and space cost.

3. Introduction of new high-level control logic and compilation techniques for
protected conditional, general conditional, protected loops, and general loops.

4. Development of an interpreter for energy simulation and annotation.

Eel is intended to be a prototype for what partially-reversible languages
may look like in the future, and to serve as a platform for the development of
partially-reversible algorithms. A programming language allows us to be precise
about the computations being done and serves as a platform to help verify
theoretical results about partial reversibility. Because many usual programming
assumptions do not hold in this model, working with Eel can help build new
intuition. With the goal of algorithm development in mind, Eel has included
annotation of estimated time, space, and energy costs of programs. Through the
development of the Eel language and compiler, we have built a strong foundation
upon which future research and development of reversible algorithms can be
conducted. Once a few more important features are added, the ability to actually
run algorithms and count the resource usage of a program will give a powerful
tool for checking algorithmic results.

Several further features are necessary to achieve these goals of being a tool
for algorithmic design and a prototype language for a future computing envi-
ronment. First, the implementation of standard data structures are necessary
for many algorithms. Many of the results for efficient data structures [6] in the
partially reversible model are themselves not obvious and their implementation
would also be a good confirmation of those results. Second, we would like to
implement some of the memory management and garbage collection algorithms
which have been developed. Third, only a simple version of log and unroll was
implemented, which does not contain as much expressive power as we might
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want. Currently, the language only allows unrolling log blocks in order, but es-
pecially in data structures, we would like to be able to unroll code in dynamic
orders. This extension could be implemented with multiple log stacks, or a more
complicated data structure underlying the log and unroll system. Fourth, some of
the transformations performed by the compiler lack optimization, and thus may
make an algorithm seem less efficient than anticipated. A final practical direction
is to consider hybrid programming models which mix standard irreversible com-
putation with reversible core subroutines, for use in a future hybrid architecture
combining traditional CPUs with a reversible accelerator or co-processor.
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