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Abstract

In this thesis, we present methods in representation learning for time series in two
areas: metric learning and risk stratification. We focus on metric learning due to
the importance of computing distances between examples in learning algorithms and
present Jiffy, a simple and scalable distance metric learning method for multivariate
time series. Our approach is to reframe the task as a representation learning problem
— rather than design an elaborate distance function, we use a CNN to learn an
embedding such that the Euclidean distance is effective. Experiments on a diverse set
of multivariate time series datasets show that our approach consistently outperforms
existing methods. We then focus on risk stratification because of its clinical importance
in identifying patients at high risk for an adverse outcome. We use segments of a
patient’s ECG signal to predict that patient’s risk of cardiovascular death within
90 days. In contrast to other work, we work directly with the raw ECG signal to
learn a representation with predictive power. Our method produces a risk metric for
cardiovascular death with state-of-the-art performance when compared to methods
that rely on expert-designed representations.
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Chapter 1

Introduction

The demonstrated success of machine learning models across disciplines is heavily

dependent on data representation. A great deal of work has gone into feature-

engineering, where data representation is hand-optimized for a given task [56]. This

is time-consuming, dependent on expert knowledge, and often, sub-optimal [7]. By

instead learning a representation, we identify the most relevant features for a given task

in the absence of expert knowledge. The success of representation learning methods

over hand-crafted features has been demonstrated across several areas including

computer vision [45], natural language processing [72], and audio analysis [52].

We use principles of representation learning to contribute to two areas of research:

metric learning for multivariate time series and multiple instance learning for risk

stratification. We motivate each area below and deliver:

1. A distance metric learning method for multivariate time series that achieves

state-of-the-art performance on the nearest neighbor classification task across

six domains.

2. A multiple instance learning method that outperforms existing approaches in

identifying patients at high risk for cardiovascular death within 90 days of

hospital admission.
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1.1 Metric Learning for Time Series

In the first section of the thesis, we explore the application of representation learning

to metric learning for multivariate time series. Metric learning aims to learn a distance

function between examples. Multiple machine learning tasks rest on the notion of

distance between examples. In many domains, Euclidean distance is an effective way

to measure similarity. Sequential data, however, elude a straightforward definition

of similarity because of the necessity of alignment between examples. Time series

similarity is also dependent on the task at hand, further complicating the matter.

Numerous methods have been developed to address measuring distance between

time series. Current work falls into one of two broad categories: hand-designed

approaches and metric learning methods. We approach the problem from a repre-

sentation learning perspective and show that measuring similarity using Euclidean

distance in a learned, embedded space outperforms existing methods. Ultimately, we

present Jiffy, a simple, scalable, task-dependent distance metric for multivarate time

series. Experiments demonstrate the strength of the method across six domains on

the nearest-neighbor classification task.

1.2 Multiple Instance Learning for Risk Stratifica-

tion

In the second section of this thesis, we demonstrate the success of representation

learning in the context of patient risk stratification. We aim to identify patients

at high risk for cardiovascular death (CVD) within 90 days of hospital admission.

Existing approaches to this task rely on expert-designed representations of a patient’s

ECG signal to estimate this risk. In contrast to existing metrics, we operate on the

raw ECG signal to learn a representation with predictive power. We accomplish this

by reframing the problem as a multiple instance learning task.

Multiple instance learning (MIL) is a form of weakly supervised learning in which

labels for collections of examples are provided, but labels for examples are not. In our
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work, we treat each patient as a collection of adjacent beat pairs (ABPs). Although

we know whether or not a patient has died within 90 days, we do not know what each

ABP represents. In other words, we have no intuition as to which ABPs are indicative

of CVD risk and which are not. We present the resulting representation-based method

and demonstrate its success compared to existing ECG-based risk metrics.
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Chapter 2

Metric Learning for Multivariate

Time Series

Measuring distances between examples is a fundamental component of many classi-

fication, clustering, segmentation and anomaly detection algorithms for time series

[57, 63, 6, 22]. Because the distance measure used can have a significant effect on the

quality of the results, there has been a great deal of work developing effective time

series distance measures [29, 39, 3, 6, 25]. Historically, most of these measures have

been hand-crafted. However, recent work has shown that a learning approach can

often perform better than traditional techniques [26, 48, 16].

We introduce a metric learning model for multivariate time series. Specifically, by

learning to embed time series in Euclidean space, we obtain a metric that is both highly

effective and simple to implement using modern machine learning libraries. Unlike

many other deep metric learning approaches for time series, we use a convolutional,

rather than a recurrent, neural network, to construct the embedding. This choice,

in combination with aggressive maxpooling and downsampling, results in a compact,

accurate network.

Using a convolutional neural network for metric learning per se is not a novel idea

[53, 65]; however, time series present a set of challenges not seen in other domains,

and how best to embed them is far from obvious. In particular, time series suffer from:

1. A lack of labeled data. Unlike text or images, time series cannot typically be
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annotated post-hoc by humans. This has given rise to efforts at unsupervised

labeling [9], and is evidenced by the small size of most labeled time series datasets.

Of the 85 datasets in the UCR archive [17], for example, the largest dataset

has fewer than 17000 examples, and many have only a few hundred. Weakly

annotated datasets, where each signal carries a label but its components do not,

are more common. We discuss methods for this modality of time series data in

the next chapter.

2. A lack of large corpora. In addition to the difficulty of obtaining labels, most

researchers have no means of gathering even unlabeled time series at the same

scale as images, videos, or text. Even the largest time series corpora, such as

those on Physiobank [30], are tiny compared to the virtually limitless text, image,

and video data available on the web.

3. Extraneous data. There is no guarantee that the beginning and end of a time

series correspond to the beginning and end of any meaningful phenomenon. I.e.,

examples of the class or pattern of interest may take place in only a small interval

within a much longer time series. The rest of the time series may be noise or

transient phenomena between meaningful events [58, 33].

4. Need for high speed. One consequence of the presence of extraneous data is

that many time series algorithms compute distances using every window of data

within a time series [50, 9, 58]. A time series of length 𝑇 has 𝑂(𝑇 ) windows of

a given length, so it is essential that the operations done at each window be

efficient.

As a result of these challenges, an effective time series distance metric must exhibit

the following properties:

• Efficiency: Distance measurement must be fast, in terms of both training time and

inference time.

• Simplicity: As evidenced by the continued dominance of the Dynamic Time Warping

(DTW) distance [62] in the presence of more accurate but more complicated rivals,

a distance measure must be simple to understand and implement.

15



• Accuracy: Given a labeled dataset, the metric should yield a smaller distance

between similarly labeled time series. This behavior should hold even for small

training sets.

Our primary contribution is a time series metric learning method, Jiffy, that

exhibits all of these properties: it is fast at both training and inference time, simple

to understand and implement, and consistently outperforms existing methods across

a variety of datasets.

We introduce the problem statement and the requisite definitions in Section 2.

We summarize existing state-of-the-art approaches (both neural and non-neural) in

Section 3 and go on to detail our own approach in Section 4. We then present our

results in Section 5. The paper concludes with implications of our work and avenues

for further research.

2.1 Problem Definition

We first define relevant terms, frame the problem, and state our assumptions.

Definition 2.1.1. Time Series A 𝐷-variable time series 𝑋 of length 𝑇 is a sequence

of real-valued vectors x1, . . . ,x𝑇 ,x𝑖 ∈ R𝐷. If 𝐷 = 1, we call 𝑋 “univariate”, and if

𝐷 > 1, we call 𝑋 “multivariate.” We denote the space of possible 𝐷-variable time

series as 𝒯 𝐷.

Definition 2.1.2. Distance Metric A distance metric is a distance function 𝑑 :

𝒮 ×𝒮 → R over a set of objects 𝒮 such that, for any 𝑥, 𝑦 ∈ 𝒮, the following properties

hold:

• Symmetry: 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥)

• Non-negativity: 𝑑(𝑥, 𝑦) ≥ 0

• Triangle Inequality: 𝑑(𝑥, 𝑧) + 𝑑(𝑦, 𝑧) ≥ 𝑑(𝑥, 𝑧)

• Identity of Indiscernibles: 𝑥 = 𝑦 ⇔ 𝑑(𝑥, 𝑦) = 0
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Our approach to learning a metric is to first learn an embedding into a fixed-size

vector space, and then use the Euclidean distance on the embedded vectors to measure

similarity. Formally, we learn a function 𝑓 : 𝒯 𝐷 → R𝑁 and compute the distance

between time series 𝑋, 𝑌 ∈ 𝒯 𝐷 as:

𝑑(𝑋, 𝑌 ) , ‖𝑓(𝑋) − 𝑓(𝑌 )‖2 (2.1)

The choice of Euclidean distance in the embedded space is arbitrary - we choose

Euclidean distance for its prevalence across literature.

2.1.1 Assumptions

Jiffy depends on two assumptions about the time series being embedded. First, we

assume that the time series we deal with represent a single class - in other words, the

majority of each input time series is representative of its class. This means that we do

not consider multi-label tasks or tasks wherein only a small subsequence within each

time series is associated with a particular label, while the rest is noise or phenomena

for which we have no class label. This assumption is implicitly made by most existing

work [35] and is satisfied whenever one has recordings of individual phenomena, such

as gestures, heartbeats, or actions.

The second assumption is that the time series dataset is not too small, in terms of

either number of time series or their lengths. Specifically, we do not consider datasets

in which the longest time series is of length 𝑇 < 40 or the number of examples per class

is less than 25. The former number is the smallest number such that our embedding

will not be longer than the input in the univariate case, while the latter is the smallest

number found in any of our experimental datasets (and therefore the smallest on

which we can claim reasonable performance).

For datasets too small to satisfy these constraints, we recommend using a traditional

distance measure, such as Dynamic Time Warping, that does not rely on a learning

phase.
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2.2 Related Work

2.2.1 Hand-Crafted Distance Measures

Historically, most work on distance measures between time series has consisted of

hand-crafted algorithms designed to reflect prior knowledge about the nature of time

series. By far the most prevalent is the Dynamic Time Warping (DTW) distance [62].

This is obtained by first aligning two time series using dynamic programming, and

then computing the Euclidean distance between them. DTW requires time quadratic

in the time series’ length in the worst case, but is effectively linear time when used for

similarity search; this is thanks to numerous lower bounds that allow early abandoning

of the computation in almost all cases [57].

Other handcrafted measures include the Uniform Scaling Distance [36], the Scaled

Warped Matching Distance [28], the Complexity-Invariant Distance [4], the Shotgun

Distance [63], and many variants of DTW, such as weighted DTW [29], DTW-A [68],

and global alignment kernels [21]. However, nearly all of these measures are defined

only for univariate time series, and generalizing them to multivariate time series is

not trivial [68].

2.2.2 Hand-Crafted Representations

In addition to hand-crafted functions of raw time series, there are numerous hand-

crafted representations of time series. Perhaps the most common are Symbolic

Aggregate Approximation (SAX) [46] and its derivatives [13, 66]. These are discretiza-

tion techniques that low-pass filter, downsample, and quantize the time series so that

they can be treated as strings. Slightly less lossy are Adaptive Piecewise Constant

Approximation [38], Piecewise Aggregate Approximation [37], and related methods,

which approximate time series as sequences of low-order polynomials.

The most effective of these representations tend to be extremely complicated; the

current state-of-the-art [64], for example, entails windowing, Fourier transformation,

quantization, bigram extraction, and ANOVA F-tests, among other steps. Moreover,
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it is not obvious how to generalize them to multivariate time series.

2.2.3 Metric Learning for Time Series

A promising alternative to hand-crafted representations and distance functions for

time series is metric learning. This can take the form of either learning a distance

function directly or learning a representation that can be used with an existing distance

function.

Among the most well-known methods in the former category is that of [61], which

uses an iterative search to learn data-dependent constraints on DTW alignments.

More recently, [48] use a learned Mahalanobis distance to improve the accuracy of

DTW. Both of these approaches yield only a pseudometric, which does not obey the

triangle inequality. To come closer to a true metric, [16] combined a large-margin

classification objective with a sampling step (even at test time) to create a DTW-like

distance that obeys the triangle inequality with high probability as the sample size

increases.

In the second category are various works that learn to embed time series into

Euclidean space. [54] use recurrent neural networks in a Siamese architecture [12] to

learn an embedding; they optimize the embeddings to have positive inner products for

time series of the same class but negative inner products for those of different classes.

A similar approach that does not require class labels is that of [2]. This method

trains a Siamese, single-layer CNN to embed time series in a space such that the

pairwise Euclidean distances approximate the pairwise DTW distances. [43] optimize

a similar objective, but does so by sampling the pairwise distances and using matrix

factorization to directly construct feature representations for the training set (i.e.,

with no model that could be applied to a separate test set).

These methods seek to solve much the same problem as Jiffy, but as we show

experimentally, produce metrics of lower quality.
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2.3 Method

We learn a metric by learning to embed time series into a vector space and comparing

the resulting vectors with the Euclidean distance. Our embedding function is takes the

form of a convolutional neural network, shown in Figure 2-1. The architecture rests

on three basic layers: a convolutional layer, maxpooling layer, and a fully connected

layer.

The convolutional layer is included to learn the appropriate subsequences from

the input. The network employs one-dimensional filters convolved over all time steps,

in contrast to the traditional two-dimensional filters used with images. We opt for

one-dimensional filters because time series data is characterized by infrequent sampling.

Convolving over each of the variables at a given timestep has little intuitive meaning

in developing an embedding when each step measurement has no coherent connection

to time. For discussion regarding the mathematical connection between a learned

convolutional filter and traditional subsequence-based analysis of time series, we direct

the reader to [20].

The maxpooling layer allows the network to be resilient to translational noise in the

input time series. Unlike most existing neural network architectures, the windows over

which we max pool are defined as percentages of the input length, not as constants.

By aggressively pooling, we are able to heavily downsample and denoise the input

signal. The output of the pooling layer is fed into the final fully connected layer.

We downsample heavily after the filters are applied such that each time series

is reduced to a fixed size. We do so primarily for efficiency—further discussion on

parameter choice for Jiffy may be found in Section 2.5.

We then train the network by appending a softmax layer and using cross-entropy

loss with the ADAM [40] optimizer. We experimented with more traditional metric

learning loss functions, rather than a classification objective, but found that they

made little or no difference while adding to the complexity of the training procedure;

specific loss functions tested include several variations of Siamese networks [12, 54]

and the triplet loss [34].
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2.3.1 Complexity analysis

Let 𝑇 be the length of the 𝐷-variable time series being embedded, let 𝐹 be the number

of length 𝐾 filters used in the convolutional layer, and Let 𝐿 be the size of the final

embedding.

The time to apply the convolution and ReLU operations is Θ(𝑇𝐷𝐹𝐾). Following

the convolutional layer, the maxpooling and downsampling require Θ(𝑇2𝐷𝐹 ) time if

implemented naively, but Θ(𝑇𝐷𝐹 ) if an intelligent sliding max function is used, such

as that of [44]. Finally, the fully connected layer, which constitutes the embedding,

requires Θ(𝑇𝐷𝐹𝐿) time.

The total time to generate the embedding is therefore Θ(𝑇𝐷𝐹 (𝐾 + 𝐿)). Given

the embeddings, computing the distance between two time series requires Θ(𝐿) time.

Note that 𝑇 no longer appears in the latter expression thanks to the max pooling.

With 𝐹 = 16, 𝐾 = 5, 𝐿 = 40, this computation is dominated by the fully connected

layer. Consequently, when 𝐿 ≪ 𝑇 and embeddings can be generated ahead of time,

which enables a significant speedup compared to operating on the original data. Such

a situation would arise, e.g., when performing a similarity search between a new

query and a fixed or slow-changing database [10]. When both embeddings must be

computed on-the-fly, our method is likely to be slower than DTW and other traditional

approaches.

2.4 Experiments

Before describing our experiments, we first note that, to ensure easy reproduction and

extension of our work, all of our code is freely available.1 All of the datasets used are

public, and we provide code to clean and operate on them.
1http://smarturl.it/jiffy
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Figure 2-1: Architecture of the proposed model. A single convolutional
layer extracts local features from the input, which a strided maxpool layer
reduces to a fixed-size vector. A fully connected layer with ReLU activa-
tion carries out further, nonlinear dimensionality reduction to yield the
embedding. A softmax layer is added at training time.

2.4.1 Experimental Setup

We evaluate Jiffy-produced embeddings through the task of 1-nearest-neighbor classi-

fication, which assesses the extent to which time series sharing the same label tend to

be nearby in the embedded space. We choose this task because it is the most widely

used benchmark for time series distance and similarity measures [25, 3].

To enable direct comparison to existing methods, we benchmark Jiffy using datasets

employed by [48]. These datasets are taken from various domains and exhibit high

variability in the numbers of classes, examples, and variables. We briefly describe each

dataset below, and summarize statistics about each in Table 2.1.

Table 2.1: Summary of Multivariate Time Series Datasets.

Dataset # Variables # Classes Length # Time Series
Libras 2 15 45 360
AUSLAN 22 25 47-95 675
CharacterTrajectories 3 20 109-205 2858
ArabicDigits 13 10 4 - 93 8800
ECG 2 2 39 - 152 200
Wafer 6 2 104 - 198 1194
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• ECG: Electrical recordings of normal and abnormal heartbeats, as measured by

two electrodes on the patients’ chests.

• Wafer: Sensor data collected during the manufacture of semiconductor microelec-

tronics, where the time series are labeled as normal or abnormal.

• AUSLAN: Hand and finger positions during the performance of various signs in

Australian Sign Language, measured via instrumented gloves.

• Trajectories: Recordings of pen (x,y) position and force application as different

English characters are written with a pen.

• Libras: Hand and arm positions during the performance of various signs in Brazilian

Sign Language, extracted from videos.

• ArabicDigits: Audio signals produced by utterances of Arabic digits, represented

by Mel-Frequency Cepstral Coefficients.

2.4.2 Comparison Approaches

We compare to recent approaches to time series metric learning, as well as popular

means of generalizing DTW to the multivariate case: we restrict our evaluation to

approaches with published results on the tested datasets, source code provided by the

authors, or sufficient simplicity that we could confidently reimplement them.

1. MDDTW [48] - MDDTW compares time series using a combination of DTW

and the Mahalanobis distance. It learns the precision matrix for the latter using

a triplet loss.

2. Siamese RNN [54] - The Siamese RNN feeds each time series through a

recurrent neural network and uses the hidden unit activations as the embedding.

It trains by feeding pairs of time series through two copies of the network and

computing errors based on their inner products in the embedded space.

3. Siamese CNN The Siamese CNN is similar to the Siamese RNN, but uses

convolutional, rather than recurrent, neural networks. This approach has proven

successful across several computer vision tasks [12, 70].

23



4. DTW-I, DTW-D - As pointed out by [68], there are two straightforward ways

to generalize DTW to multivariate time series. The first is to treat the time

series as 𝐷 independent sequences of scalars (DTW-I). In this case, one computes

the DTW distance for each sequence separately, then sums the results. The

second option is to treat the time series as one sequence of vectors (DTW-D). In

this case, one runs DTW a single time, with elementwise distances equal to the

squared Euclidean distances between the 𝐷-dimensional elements.

5. Zero Padding - One means of obtaining a fixed-size vector representation of

a multivariate time series is to zero-pad such that all time series are the same

length, and then treat the “flattened” representation as a vector.

6. Upsampling - Like Zero Padding, but upsamples to the length of the longest

time series rather than appending zeros. This approach is known to be effective

for univariate time series [60].

2.4.3 Evaluation

As shown in Table 2.2, we match or exceed the performance of all comparison methods

on each of the six datasets. Although it is not possible to claim statistical significance

in the absence of more datasets (see [23]), the average rank of our method compared

to others is higher than its closest competitors at 1.16. The closest second, DTW-I,

has an average rank of 3.33 over these six datasets.

Not only does Jiffy attain higher classification accuracies than competing methods,

but the method also remains consistent in its performance across datasets. This

can most easily be seen through the standard deviation in classification accuracies

across datasets for each method. Jiffy’s standard deviation in accuracy (0.026) is

approximately a third of DTWI’s (0.071). The closest method in terms of variance is

MDDTW with a standard deviation of 0.042 , but MDDTW exhibits a much lower

rank than our method. This consistency suggests that Jiffy generalizes well across

domains, and would likely remain effective on other datasets not tested here.
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Table 2.2: 1NN Classification Accuracy. The proposed method equals or
exceeds the accuracies of all others on every dataset.

Dataset Jiffy MDDTW DTW-D DTW-I Siamese
CNN

Siamese
RNN

Zero
Pad Upsample

ArabicDigits 0.974 0.969 0.963 0.974 0.851 0.375 0.967 0.898
AUSLAN 1.000 0.959 0.900 1.000 1.000 1.000 1.000 1.000
ECG 0.925 0.865 0.825 0.810 0.756 0.659 0.820 0.820
Libras 1.000 0.908 0.905 0.979 0.280 0.320 0.534 0.534
Trajectories 0.979 0.961 0.956 0.972 0.933 0.816 0.936 0.948
Wafer 0.992 0.988 0.984 0.861 0.968 0.954 0.945 0.936
Mean Rank 1.67 3.67 4.67 3.33 6.0 6.5 4.17 4.5

2.5 Method Parameter Effects

A natural question when considering the performance of a neural network is whether, or

to what extent, the hyperparameters must be modified to achieve good performance on

a new dataset. In this section, we explore the robustness of our approach with respect

to the values of the two key parameters: embedding size and pooling percentage. We

do this by learning metrics for a variety of parameter values for ten data sets from the

UCR Time Series Archive [17], and evaluating how classification accuracy varies.

2.5.1 Embedding Size

Figure 2-2.left shows that even a few dozen neurons are sufficient to achieve peak

accuracy. As a result, an embedding layer of 40 neurons is sufficient and leads to an

architecture that is compact enough to train on a personal laptop.

2.5.2 Pooling percentage

The typical assumption in machine learning literature is that max pooling windows in

convolutional architectures should be small to limit information loss. In contrast, time

series algorithms often max pool globally across each example (e.g. [32]). Contrary to

the implicit assumptions of both, we find that the level of pooling that results in the

highest classification often falls in the 10-25% range, as shown by Figure 2-2.right
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Figure 2-2: Effect of fully connected layer size and degree of max pooling
on model accuracy using held-out datasets. Even small fully connected
layers and large amounts of max pooling—up to half of the length of the
time series in some cases—have little or no effect on accuracy. For ease
of visualization, each dataset’s accuracies are scaled such that the largest
value is 1.0.
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Chapter 3

Multiple Instance Learning for Risk

Stratification

Supervise machine learning models rely on the availability of labeled data. Multiple

instance learning (MIL) research relaxes this assumption by assuming that labels for

collections of examples are available, but labels for each example are not. This is

applicable in a number of scenarios, including drug discovery [24], image analysis [18],

and document classification [73].

In this chapter, we introduce the multiple instance learning paradigm to risk

stratification. Risk stratification models aim to identify patients at high risk for

a given outcome so that doctors may intervene, with the attempt of avoiding that

outcome. Machine learning has led to improved risk stratification models for a number

of outcomes, including stroke [67], cancer [41] and treatment resistance [55]. To the

best of our knowledge, this is the first application of multiple instance learning to risk

stratification.

We treat each patient as a labeled collection of unlabeled medical attributes. The

patient labels correspond to adverse outcomes and the unlabeled medical attributes

correspond to potential risk indicators. This maps cleanly to the MIL framework

in how we are able to differentiate patients based on outcome, but have no further

intuition as to what medical factors contribute to this difference. In this chapter, we

focus on predicting cardiovascular death (CVD) within 90 days of hospital admission
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from a patient’s ECG signal.

Existing CVD risk metrics rest on the underlying hypothesis that a patient’s

electrocardiogram (ECG) signal is crucial to identify patients at high risk for a cardiac-

related adverse outcome. In particular, literature suggests that the relationship

between adjacent beats can indicate risk for cardiovascular complications [14]. CVD

risk metrics including morphological variability (MV)[69] and morphological variability

in beat-space (MVB) [47], use this principle and choose to transform the ECG signal

in domain-specific ways.

In contrast to these existing approaches, we learn a transformation of the signal

using a compact neural network. We treat each patient as a collection of adjacent

beat pairs (ABPs) and aim learn the relationship between adjacent beats.

This is challenging because we do not have access labels at the ABP level, but

rather at the patient level. Different classes at the patient level do not necessarily

correspond to clear class differences between constituent ABPs. In other words, it is

unlikely that every ABP, or even most, in a high risk patient is distinguishable from

every ABP in a low risk patient. Instead, differing proportions of latent classes of

ABPs may be more clear differentiators of a high risk patient from a low risk one.

We address this issue using the multiple instance learning framework. Each patient

is a collection of instances, and each ABP is an instance. In our training procedure,

we assume every ABP inherits the label of the patient it came from. Despite the

fact that certain ABPs are trained on 𝑠𝑜𝑓𝑡 𝑙𝑎𝑏𝑒𝑙𝑠, or labels that do not necessarily

correspond to their class, we achieve a higher performance on the task of predicting

90-day CVD on a held-out test set than existing methods.

In this chapter, we present a novel application of a simple MIL model to cardio-

vascular death risk stratification, evaluate its performance and explore its guarantees.

Section 3.1 formalizes our problem statement. Section 3.2 provides a brief overview

of related work and Section 3.3 details our method. Section 3.4 presents our results

applied to ECG data and Section 6 demonstrates performance in simulated settings.

Section 3.5 describes theory about method performance in adverse conditions.
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3.1 Problem Definition

In traditional supervised learning, we are given a single collection of instances {x𝑖}𝑀𝑖=1

with associated labels {𝑦𝑖}𝑀𝑖=1. In Multi-Instance Learning, these individual instances

are replaced with bags of examples {𝐵𝑖}𝑀𝑖=1. Each bag 𝐵𝑖 is a set of 𝑁𝑖 instances

{x𝑖𝑗}𝑁𝑖
𝑗=1 and is associated with a single label 𝑦𝑖. Each x𝑖𝑗 is drawn independently

conditioned on 𝑦𝑖.

A common modeling assumption is that each instance x𝑖𝑗 is associated with a latent

class label 𝑐𝑖𝑗, drawn from the set of possible bag labels 𝒴. The set of (estimated)

labels is then used to classify the bag, typically using a voting scheme.

In the binary classification case, instances of one of the two classes are termed

witnesses [15]. Without loss of generality, this is taken to be the positive class. The

previous modeling assumption then reduces to claiming that the concentration of

witnesses (the witness rate) is higher for the positive class. We will refer to the positive

bag witness rate as 𝑝1 and the negative bag witness rate as 𝑝2.

The task then is to construct two functions: 𝐹 : 𝒳 → [0, 1] and 𝐺 : R𝑁𝑖 → R+. 𝐹

returns larger values for instances that are more likely to be witnesses, and is often a

probabilistic binary classifer. 𝐺 is an aggregation function that returns a score for a

bag that is larger for bags that are more likely to belong to the positive class. Based

on both prior work [27] and our analysis below (c.f. Section 3.6), we take 𝐺 to be the

mean, 1
𝑁𝑖

∑︀𝑁𝑖

𝑗=1 𝐹 (𝑥𝑖𝑗) for bag 𝐵𝑖.

3.2 Related Work

Approaches to predicting patient risk from ECG signals fall into two major categories:

hand-crafted and learned.

3.2.1 Hand-Crafted CVD Risk Metrics

Common unlearned risk metrics include the TIMI Risk Score (TRS) [1], Deceleration

Capacity (DC) [5], Heart Rate Variability (HRV) [14], and morphological variability
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(MV) [69]. TRS is a point-based system for indicating risk based on categorical

variables [1]. Risk factors that merit a point include being older than 65 and having

taken Aspirin within the past week. A patient with a TRS score greater than 4 is

considered to be at high risk for CVD. DC is a metric based on the deceleration

and acceleration of a patient’s heart rate, operating on the theory that slower heart

rate deceleration indicates a higher risk of death. HRV measures the variability in

time between successive heartbeats. MV measures the DTW alignment cost between

adjacent beats and averages this cost over the first 24 hours of a patient’s ECG signal.

This averaged alignment cost is the patient’s risk score and is then used to stratify

patients into high risk and low risk groups. Patients landing in the upper quartile of

the MV metric are considered high risk.

3.2.2 Learned CVD Risk Metrics

Recent work in learned approaches to CVD risk stratification include morphological

variability in beat-space (MVB) [47] and an approach that combines an RNN and a

logistic regression (LR-RNN) [51]. HRV, MV, and MVB each operate on the principle

that beat-to-beat variation is indicative of cardiovascular risk. This finding is supported

in multiple studies [42] [8]. Heart Rate Variability measures the variance in heart rate

over the course of a patient’s signal and uses a logistic regression. MVB improves upon

MV by learning the optimal frequency band over which to average DTW variability.

The LR-RNN approach combines the output of an RNN on a particular segment

of the signal with a logistic regression model over seven patient features, including HRV.

Each of these approaches leverages expert information to produce features indicative

of CVD risk. MV and MVB approximate variability using the DTW alignment cost,

while LR-RNN calculates the Lagrange coefficients of a set of annotated ECG signal

segments. Our work assumes nothing about the relationship between adjacent beats

and instead learns a representation for an adjacent beat pair that discriminates high

risk patients from low risk ones.
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3.3 Method

Our method aims to distinguish bags from one another by building an instance

classifier trained on bag labels. This mirrors the single instance learning approach

proposed by Frank and Xu [27]. A recent survey comparing multiple instance learning

methods demonstrated this approach’s competitive performance under the standard

MI assumption, where 𝑝1 > 0 and 𝑝2 = 0 [15]. One can view the problem posed

here regarding relative witness rates as a generalization of this, where negative bags

typically have relatively fewer witnesses than positive bags (𝑝1 > 𝑝2).

At the crux of our method is an instance classifier to map instances to a predicted

bag label. In this approach, we are intentionally training non-witness instances on a

false label. To correct for this error, we average the bag predictions over all instances.

We aim to learn a instance-based score that separates one bag from the others. In

this scenario, this score is the likelihood of the class label. We focus on scenarios with

two bag types, but this approach extends naturally to the separation of one bag class

from many.

Assume each bag 𝐵𝑖, with binary label 𝑦𝑖 ∈ {0, 1}, consists of 𝑛 instances 𝑋 =

{𝑥𝑖1, 𝑥𝑖2, ..𝑥𝑖𝑛}. Instance 𝑥𝑖𝑗 is a 𝑗𝑡ℎ member of bag 𝐵𝑖 We train a neural network to

approximate the function mapping instance 𝑥𝑖𝑗 to bag label 𝑦𝑖. We arrive at the label

of a new bag by averaging the labels contributed by each instance within the bag.

Functionally, this means that each instance contributes equally to its bag’s label.

We use a shallow neural network to learn the classifier. The network consists of

one fully connected layer with two ReLU-activated neurons and a sigmoid-activated

output. We choose two neurons to learn a compact ABP representation. Similar to

our work in the previous work, we provide the code for the method and simulated

experiments available in the interest of reproducibility.
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3.4 Experiments

In this section, we present the results of applying ourmethod to the 90-day CVD risk

stratification task. We first describe the experimental setup and evaluation metrics

and follow with a discussion of performance. We show that a formulation of the

problem under the multiple instance learning framework outperforms existing risk

metrics.

3.4.1 Experimental Setup

We use 5396 patients from the MERLIN-TIMI dataset [49]. Our goal is to predict a

patient’s risk of cardiovascular death within 90 days of admission (90-Day CVD risk).

Of the 5396 patients in this dataset, 107 patients satisfy this criteria. The incidence

rate of 90-day CVD in this population is 1.9%.

We perform the pre-processing steps of competing methods to ensure that differ-

ences in performance are a result of the method itself. This includes the removal of

baseline wander, high frequency noise, and ectopic beats using the Physionet SQI

package [31]. Each patient’s ECG signal is sampled at a rate of 128Hz. Each patient

is represented by the first 1000 adjacent beat pairs of their ECG signal.

During our training procedure, we enforce a class balance between positive and

negative bags. This is important because the witness instance class is shared between

bags. A balanced training set of bags guides the network towards most discriminate

instance features between the two. We trained on 160 patients and tested on 600. The

training set consisted of 80 90-day CVD patients and 80 non-CVD patients. The test

set was sampled randomly from the pool of 5216 patients outside of the training set

and consists of 12 90-day CVD patients and 588 non-CVD patients. This test bag

label distribution was chosen to mirror the incidence rate of CVD within 90 days of

admission.
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3.4.2 Evaluation Metrics

We evaluate our model along two metrics: the area under the Receiver Operating

Curve (AUC) and the Hazard Ratio (HR). The AUC measures how well our algorithm

ranks patients in terms of the binary label of cardiovascular death within 90 days of

hospital admission. The HR is calculated using the Cox Proportional Hazards Model

[19] and measures the dependency of an outcome over time on predictor variables.

The hazard ratio reflects relative risk of being in a high risk group versus the low risk

group and is a common measure of performance for risk stratification models [71].

3.4.3 Evaluation

Hazard Ratio We rank patients based on our risk score and calculate the HR of

a patient in the upper quartile. We choose the upper quartile in accordance with

existing literature. Looking at Figure 3-1, we see the Kaplan-Meier mortality curve

of the risk metric learned by our algorithm. If a patient’s risk score lands in the top

quartile of our risk score, the patient is approximately 17 times more likely to die

of cardiovascular death than low risk patients. This is drastically more informative

than existing metrics. A detailed comparison of the hazard ratios across different time

scales - including death within 60 days and 30 days - can be found in Table 3.1. It

is worth noting that our metric excels in predicting adverse events at a longer time

scale than competing methods, but lands in the middle of existing metrics in terms of

30-Day HR.

AUC Our method outperforms existing metrics in terms of AUC, suggesting an

improved ability to rank patients in terms of likelihood of cardiovascular death. This

suggests that our method calculates a score that has higher discriminative power

between patients who die within 90 days of hospital admission and those who don’t

than existing approaches. Figure 3-2 demonstrates the AUC values on two tasks: 1)

Averaged instance-level prediction to bag label (left) and 2) Instance prediction to bag

label (right). Recall that each instance does not necessarily correspond to its bag label.

33



Figure 3-1: Kaplan-Meier curve illustrating the mortality rates in high
risk cohort (blue) and the low risk cohort (orange) over time. Of the 12
patients who die within 90 days of hospital admission, 11 are identified by
our model as high risk.

Table 3.1: AUC and Hazard Ratio results for existing ECG risk metrics
and our model. Our model achieves a higher AUC than existing methods
and exceeds the HR values at the 60 and 90 day time-scales. Empty entries
in the table correspond to unavailable results.

Name AUC 90-Day HR 60-Day HR 30-Day HR

Our Method .81 17.38 17.37 9.55
MV .72 8.45 – 12.30
MVB .72 8.81 – –
ANN .743 4.94 4.94 5.26
TRS .67 – 3.82 3.31

Thus, it is unsurprising that the AUC at the instance level is lower than the AUC

averaged across all instances in a bag. Interestingly, however, there is a significant

amount of discriminative power in the instances themselves. The relationship between

the bag label from one instance results in an AUC of .78, while the relationship

between the true bag label and the aggregation of instance predictions is .81. Table

3.1 summarizes AUCs achieved by existing methods.
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Figure 3-2: Visualization of AUC for two tasks: 1) prediction of patient
outcome aggregated over a patient’s ABPs (left) and 2) prediction of pa-
tient outcome from a single ABP (right). We include the second plot to
demonstrate the cost of training instances on a soft label from the bag -
as expected, the AUC of prediction based on an instance is lower than the
AUC of prediction based on a set of instances.

3.5 Problem Parameter Effects

The ECG risk stratification task is a single instance of the broader problem posed

in this chapter. We include simulations for method performance under different

parameters to show two points: 1) the witness rate differences under which this

method will or won’t work and 2) broader relationships between the witness rate and

bag size.

We focus on three parameters: the witness rate in the positive bags (𝑝1), the

witness rate in the negative bags (𝑝2), and the number of samples per bag (𝑁).

3.5.1 Experimental Setup

For these simulations, instances from the witness class are drawn from a 2D Gaussian

centered on (1, 1). Non-witness instances are drawn from a 2D Gaussian centered

on (1, -1). The identity matrix parametrizes the covariance for both distributions.

Similar to the ECG setting, we train the model on 200 bags evenly split over the

positive and negative bag classes. We measure the effects of these parameters in two

ways: instance AUC (corresponding to the instance to bag label task) and bag AUC
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(corresponding to the bag prediction to bag label task).

3.5.2 Relative Witness Rates

In this simulation, we explore the relationship between witness rates in the positive

and negative bags. We measure the model’s ability to distinguish bags from one

another by its AUC - as in the ECG setting, we observe both the instance AUC and

the bag AUC. Figure 3-3 visualizes our experiments in a heat map. The darker the

square, the worse the AUC. We plot combinations of 𝑝1 and 𝑝2 such that 𝑝1 > 𝑝2.

Each row represents model behavior as the negative bag witness rate is held constant

and the positive bag witness rate is increased. Intuitively, when we fix 𝑝2 and increase

𝑝1, the model achieves higher AUCs. Interestingly, the model performance in terms of

instance AUC and bag AUC is dependent on the difference between the witness rates

rather than the magnitudes of the witness rates themselves. Previous work suggests

that the application of SIL does not perform well in scenarios in which the witness

rate is low [15]. These experiments also show that an increase in bag size - from 10 to

50 - results in a drastic improvement in bag-level AUC. This demonstrates that SIL

performs well in this setting given a large enough bag size. Note that the higher rows

of each graph corresponds more closely to the model’s simulated performance under

the standard MI assumption (𝑝1 > 0, 𝑝2 = 0).

3.5.3 Bag Size

Since bag predictions are simply an aggregate of instance predictions, more instances

in each bag results in a lower variance in bag prediction, results in a higher AUC.

Our simulations demonstrate this fact and also demonstrate the model’s ability to

disentagle bags in which the witness rate differs by as little as .05. Figure 3-4 shows

the AUC response to bag size in the context of 8 witness rate differences. With a

witness rate difference of .35, we need only 10 samples per bag to achieve peak global

accuracy.
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Figure 3-3: Plots in the top row represent the Bag AUC, which represents
the model’s correctness going from a set of instances to a bag label. Plots in
the bottom row display the model’s accuracy going from a single instance
to a bag label. Each column represents experiments run with separate
setting for the number of instances in each bag. The gradient at each
square represents the AUC, where lighter squares represent a higher AUC
than darker squares.

3.6 Theory

In addition to offering good simulation and empirical results, labeling of bags based

on estimated instance labels has strong mathematical grounding. In particular, we

show that:

1. There is (for sufficiently large bags) a closed-form expression for the distribution

of predicted witnesses as a function of bag size, true number of witnesses, and

instance classifier characteristics.

2. Assuming a Normal approximation to a Beta and/or Truncated Normal distribu-

tion, there is a closed-form expression for the distribution of AUC values given

priors on the numbers of witnesses in bags from each class.

In what follows, let 𝜔 denote the positive class, and let 𝑐𝑖𝑗 denote the prediction of

the instance classifier 𝑓 . Further define 𝑞+ , 𝐸[𝑐𝑖𝑗|𝑐𝑖𝑗 = 𝜔] and 𝑞− , 𝐸[𝑐𝑖𝑗|𝑐𝑖𝑗 ̸= 𝜔].

Similarly let 𝜎+ , 𝑉 𝑎𝑟[𝑓 |𝑐𝑖𝑗 = 𝜔] and 𝜎− , 𝑉 𝑎𝑟[𝑓 |𝑐𝑖𝑗 ̸= 𝜔]. Finally 𝑠𝑖(𝐵) ,
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Figure 3-4: Plots demonstrating the relationship between instance AUC,
bag AUC, and bag size. Each plot represents a certain difference in witness
rate. As the bag size increases, there is a slight increase in instance AUC
but an exponential increase for bag AUC.

𝑁𝑖 * 𝑔(𝑓(𝐵)) be the score of a bag. Unless otherwise stated, all expectations are with

respect to the true distributions of instances and/or bags as applicable.

Lemma 3.6.1 (Gaussian Witness Count). Let 𝐵𝑖 be a bag of size 𝑁𝑖 with 𝑛𝑖 witnesses.

Then, for large 𝑁𝑖, 𝑛𝑖, 𝐸[𝑠(𝐵𝑖)] ∼ 𝒩 (𝜇𝑖, 𝜎
2
𝑖 ), where:

𝜇𝑖 , 𝑛𝑖𝑞+ + (𝑁𝑖 − 𝑛𝑖)𝑞− (3.1)

𝜎2
𝑖 , 𝑛𝑖𝜎+ + (𝑁𝑖 − 𝑛𝑖)𝜎− (3.2)

Proof. Let 𝐵𝑖
+ denote the set of witnesses in bag 𝐵𝑖 and let 𝐵𝑖

− denote its complement.

By linearity of expectation, 𝐸[𝑠(𝐵𝑖)] can be decomposed into 𝐸[
∑︀

x𝑖𝑗∈𝐵𝑖
+
𝑓(x𝑖𝑗)] +

𝐸[
∑︀

x𝑖𝑗∈𝐵𝑖
−
𝑓(x𝑖𝑗)]. Because 𝑓 is bounded and a deterministic function of i.i.d. exam-

ples, the central limit theorem implies that these two expectations are distributed

according to 𝒩 (𝑛𝑖𝑞+, 𝑛𝑖𝜎+) and 𝒩 ((𝑁𝑖−𝑛𝑖)𝑞−, (𝑁𝑖−𝑛𝑖)𝜎−). Summing these Gaussians

completes the proof.

Lemma 3.6.2 (Witness Counts with Prior). . Let 𝐵𝑖 be a bag of size 𝑁𝑖 with 𝑛𝑖

38



witnesses, with 𝑛𝑖 ∼ 𝒩 (𝜇0, 𝜎
2
0), and suppose that 𝜎+ = 𝜎−. Then, for large 𝑁𝑖, 𝑛𝑖,

𝐸[𝑠(𝐵𝑖)] ∼ 𝒩 (�̃�𝑖, �̃�
2
𝑖 ), where:

�̃�𝑖 , (𝑞+ − 𝑞−)2
(︂

1

𝜎2
0

+
𝑁𝑖

𝜁2𝑖

)︂−1

(3.3)

�̃�𝑖 , 𝑁𝑖𝑞− + �̃�𝑖

(︂
𝜇0

𝜎2
0

+ 𝑁𝑖
𝜇𝑖

𝜎2
𝑖

)︂
(3.4)

where 𝜁2𝑖 , (𝑞+ − 𝑞−)−2𝑁𝑖𝜎−

Proof. Observe that equations (3.1) and (3.2) can be rewritten as:

𝜇𝑖 = 𝑁𝑖𝑞− + 𝑛𝑖𝛿𝑞 (3.5)

𝜎2
𝑖 = 𝑁𝑖𝜎− (3.6)

where 𝛿𝑞 , 𝑞+ − 𝑞𝑖 and the second line follows from the assumption that 𝜎+ = 𝜎−.

This allows us to rewrite the resulting distribution as:

𝑁𝑖𝑞− + 𝛿𝑞𝒩 (𝑛𝑖, 𝜁
2
𝑖 ) (3.7)

We now have a conjugate prior for the mean for this distribution. Applying well-known

formulas gives the posterior variance and mean:

𝜎2 =

(︂
1

𝜎2
0

+
𝑁𝑖

𝜁2𝑖

)︂−1

(3.8)

𝜇 = �̃�2
𝑖

(︂
𝜇0

𝜎2
0

+ 𝑁𝑖
𝜇𝑖

𝜁2𝑖

)︂
(3.9)

Inverting the offset and scaling completes the proof.

Lemma 3.6.2 shows that, given a normal prior over the number of witnesses in a

bag, there is a normal posterior over the predicted number of witnesses (assuming

that 𝜎+ = 𝜎−). Of course, an exactly Normal prior may not be ideal, since it does not

account for the fact that the number of witnesses cannot be less than 0. However, it

can arise as a close approximation to other priors that would account for the limited
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support—in particular, a truncated normal prior or a Beta prior over the fraction of

instances that are witnesses.

Building on Lemma 3.6.2 allows us to show that the expected AUC also has a

closed-form expression.

Lemma 3.6.3 (Gaussian Score Differentials). Suppose that 𝑛𝑖 ∼ 𝒩 (𝜇𝜔, 𝜎
2
𝜔) when

𝑦𝑖 = 𝜔 and 𝑛𝑖 ∼ 𝒩 (𝜇�̄�, 𝜎
2
�̄�) otherwise. Let 𝐵𝑖 and 𝐵𝑘 be bags such that 𝑦𝑖 = 𝜔 and

𝑦𝑘 ̸= 𝜔. Then, using the assumptions and definitions of Lemma 3.6.2:

𝑠(𝐵𝑖) − 𝑠(𝐵𝑘) ∼ 𝒩 (𝜇Δ, 𝜎
2
Δ) (3.10)

where

𝜎2
Δ , (𝑞+ − 𝑞−)2

[︃(︂
1

𝜎2
𝜔

+
𝑁𝑖

𝜁2𝑖

)︂−1

+

(︂
1

𝜎2
�̄�

+
𝑁𝑘

𝜁2𝑘

)︂−1
]︃

(3.11)

𝜇Δ , (𝑁𝑖 −𝑁𝑘)𝑞−

[︂
+�̃�𝑖

(︂
𝜇𝜔

𝜎2
𝜔

+ 𝑁𝑖
𝜇𝑖

𝜎2
𝑖

)︂
− �̃�𝑖

(︂
𝜇𝜔

𝜎2
𝜔

+ 𝑁𝑘
𝜇𝑘

𝜎2
𝑘

)︂]︂
(3.12)

Proof. Because the posterior distributions of 𝑠(𝐵𝑖) and 𝑠(𝐵𝑘) are normal, their differ-

ence is also normal with mean equal to the difference of the means and variance equal

to the sum of the variances.

Theorem 3.6.1 (AUC expression). . Let 𝐵𝑖, 𝐵𝑘, 𝜇Δ, 𝜎2
Δ, and the distribution of 𝑛𝑖

be defined as in Lemma 3.6.3. Then the expected AUC of the classifier 𝑓 is given by

1 − ΦΔ(0), where ΦΔ(·) is the cumulative distribution function of 𝒩 (𝜇Δ, 𝜎
2
Δ).

Proof. Recall that AUC can be defined as the fraction of the possible (positive,

negative) bag pairs in which the positive bag is scored above the negative bag. In

expectation, this is equal to the probability of a positive bag being scored above a

negative bag. By Lemma 3.6.3, this difference is normally distributed, and > 0 exactly

when 𝑠(𝐵𝑖) > 𝑠(𝐵𝑘). The probability of the score being higher for the positive bag is

therefore the portion of this distribution greater than 0, which can be expressed as

1 − ΦΔ(0).
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Chapter 4

Summary and Conclusion

In this thesis, we presented the success of representation learning in two areas: metric

learning for multivariate time series and multiple instance learning for patient risk

stratification.

In the first section of this work, we presented Jiffy, a simple and efficient metric

learning approach to measuring multivariate time series similarity. We show that our

method learns a metric that leads to consistent and accurate classification across a

diverse range of multivariate time series. Jiffy’s resilience to hyperparameter choices

and consistent performance across domains provide strong evidence for its utility on a

wide range of time series datasets.

In the second section of this work, we presented the application of multiple instance

learning to an important risk stratification problem. Despite the simplicity of the

proposed model, we achieve state-of-the-art results compared to existing risk metrics.

This leads us to believe that approaching the risk stratification problem as one of

multiple instance learning can generalize to scenarios outside of 90-day cardiovascular

risk. We also perform empirical demonstrations over different class witness rates to

demonstrate this method’s ability to rank bags based on presence of a witness instance

and outline method behavior in response to different bag sizes. This exploration

also justifies the ability of the model to generalize to alternate risk scenarios. To

supplement our experiments, we provide a theoretical basis for AUC guarantees of the

model in problems with varying witness rates.
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The simplicity of this model and its success at classifying an important adverse

outcome demonstrate the potential for multiple instance learning on this class of

problems. It also implies that although patient labels may only be weakly applicable

to constituent heart beats, this level of model supervision enables learning meaningful

relationships between adjacent beats.

4.1 Future Work

Both areas discussed present interesting directions for future work. We enumerate

some opportunities for further research below.

The extension of Jiffy to multi-label classification and unsupervised learning poses

a challenging but necessary task. The availability of unlabeled time series data eclipses

the availability of its annotated counterpart. Thus, a simple network-based method

for representation learning on multivariate time series in the absence of labels is an

important line of work. There is also potential to further increase Jiffy’s speed by

replacing the fully connected layer with a structured [11] or binarized [59] matrix.

The proposed risk stratification model extends naturally to a range of adverse

outcomes. The model is not limited to operating on ECG signals - it is worth

exploring whether the multiple instance learning approach may be successful in other

modalities of medical data, including voice. On a theoretical level, strong generalization

guarantees for distinguishing bags with relative witness rates do not exist and are

worth exploring as these models are applied in the real world.
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