
Rethinking database high availability with RDMA networks

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

As Published 10.14778/3342263.3342639

Publisher VLDB Endowment

Version Final published version

Citable link https://hdl.handle.net/1721.1/132283

Terms of Use Creative Commons Attribution-NonCommercial-NoDerivs License

Detailed Terms http://creativecommons.org/licenses/by-nc-nd/4.0/

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/132283
http://creativecommons.org/licenses/by-nc-nd/4.0/

Rethinking Database High Availability with RDMA Networks

Erfan Zamanian1, Xiangyao Yu2, Michael Stonebraker2, Tim Kraska2

1 Brown University 2 Massachusetts Institute of Technology

erfanz@cs.brown.edu, {yxy, stonebraker, kraska}@csail.mit.edu

ABSTRACT
Highly available database systems rely on data replication to tol-
erate machine failures. Both classes of existing replication algo-
rithms, active-passive and active-active, were designed in a time
when network was the dominant performance bottleneck. In essence,
these techniques aim to minimize network communication between
replicas at the cost of incurring more processing redundancy; a
trade-off that suitably fitted the conventional wisdom of distributed
database design. However, the emergence of next-generation net-
works with high throughput and low latency calls for revisiting
these assumptions.

In this paper, we first make the case that in modern RDMA-
enabled networks, the bottleneck has shifted to CPUs, and there-
fore the existing network-optimized replication techniques are no
longer optimal. We present Active-Memory Replication, a new high
availability scheme that efficiently leverages RDMA to completely
eliminate the processing redundancy in replication. Using Active-
Memory, all replicas dedicate their processing power to executing
new transactions, as opposed to performing redundant computa-
tion. Active-Memory maintains high availability and correctness
in the presence of failures through an efficient RDMA-based undo-
logging scheme. Our evaluation against active-passive and active-
active schemes shows that Active-Memory is up to a factor of 2
faster than the second-best protocol on RDMA-based networks.

PVLDB Reference Format:
Erfan Zamanian, Xiangyao Yu, Michael Stonebraker, Tim Kraska. Rethink-
ing Database High Availability with RDMA Networks. PVLDB, 12(11):
1637-1650, 2019.
DOI: https://doi.org/10.14778/3342263.3342639

1. INTRODUCTION
A key requirement of essentially any transactional database sys-

tem is high availability. A single machine failure should neither
render the database service unavailable nor should it cause any data
loss. High availability is typically achieved through distributed data
replication, where each database record resides in a primary replica
as well as one or multiple backup replicas. Updates to the primary

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 11
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3342263.3342639

copy propagate to all the backup copies synchronously such that
any failed primary server can be replaced by a backup server.

The conventional wisdom of distributed system design is that
the network is a severe performance bottleneck. Messaging over
a conventional 10-Gigabit Ethernet within the same data center,
for example, delivers 2–3 orders of magnitude higher latency and
lower bandwidth compared to accessing the local main memory of
a server [3]. Two dominant high availability approaches, active-
passive and active-active, both adopt the optimization goal of min-
imizing network overhead.

With the rise of the next-generation networks, however, conven-
tional high availability protocol designs are not appropriate any-
more, especially in a setting of Local Area Network (LAN). The
latest remote direct memory access (RDMA) based networks, for
example, achieve a bandwidth similar to that of main memory,
while having only a factor of 10× higher latency. Our investigation
of both active-passive and active-active schemes demonstrates that
with a modern RDMA network, the performance bottleneck has
shifted from the network to CPU’s computation overhead. There-
fore, the conventional network-optimized schemes are not the best
fit anymore. This calls for a new protocol design to fully unleash
the potential of RDMA networks.

To this end, we propose Active-Memory Replication, a new high
availability protocol designed specifically for the next-generation
RDMA networks in the LAN setting. The optimization goal in
Active-Memory is to minimize the CPU overhead of performing
data replication rather than minimizing network traffic. The core
idea of Active-Memory is to use the one-sided feature of RDMA
to directly update the records on remote backup servers without
involving the remote CPUs. One key challenge in such design is
to achieve fault tolerance when the CPUs on backup servers do not
participate in the replication protocol. To address this problem, we
designed a novel undo-logging based replication protocol where
all the logic is performed unilaterally by the primary server. Each
transaction goes through two serial phases: (1) undo logging and
in-place updates and (2) log space reclamation, where each update
is performed by a separate RDMA write. We have proved that the
protocol has correct behavior under different failure scenarios.

We compared Active-Memory with both active-passive (i.e., log-
shipping [26, 17]) and active-active (i.e., H-Store/VoltDB [16, 35]
and Calvin [37]) schemes on various workloads and system config-
urations. Evaluation shows that Active-Memory is up to a factor of
2× faster than the second-best baseline protocol that we evaluated
over RDMA-based networks.

Specifically, the paper makes the following contributions:
• We revisit the conventional high availability protocols on the

next-generation networks and demonstrate that optimizing
for network is no longer the most appropriate design goal.

1637

• We propose Active-Memory, a new replication protocol for
RDMA-enabled high bandwidth networks, which is equipped
with a novel undo-log based fault tolerance protocol that is
both correct and fast.
• We perform extensive evaluation of Active-Memory over con-

ventional protocols and show it can perform 2× faster than
the second-best protocol that we evaluated.

The rest of the paper is organized as follows: Section 2 de-
scribes the background of the conventional high availability proto-
cols. Section 3 analyzes why conventional wisdom is no longer ap-
propriate for modern RDMA-based networks. Section 4 describes
the Active-Memory replication protocol in detail, and Section 5
demonstrates that the protocol is fault tolerant. In Section 6, we
present the results of our performance evaluation. Section 7 re-
views the related work and Section 8 concludes the paper.

2. HIGH AVAILABILITY IN DBMSS
Database systems experience failures for different reasons: hard-

ware failures, network communication failures, software bugs, hu-
man errors, among others. Highly available database systems en-
sure that even in the face of such failures, the system remains oper-
ational with close to zero downtime.

High availability is typically achieved through replication: every
record of the database gets replicated to one or more machines. To
survive k machine failures, the system must make sure that for each
transaction, its effects are replicated on at least k+1 machines. This
is known as the k-safety rule. For example, for k = 1, each record
is stored on two different machines, so that a failure of either of
them does not disrupt the continuous operation of the system.

According to the widely-cited taxonomy of Gray el al. [10], repli-
cation protocols can be either eager or lazy (which pertains to when
the updates are propagated to the replicas), and be either primary
copy or update anywhere (which concerns where data-modifying
transactions must be issued). Lazy replication is often used in data
stores where strong consistency is not crucial, and the possibility of
data loss can be accepted in exchange for possibly better through-
put, such as in Amazon Dynamo [7] and Facebook Cassandra [20].
However, it has been acknowledged that abandoning consistency
by lazy replication introduces complexity, overheads, and costs that
offset its benefits for many applications [24].

In this paper, we target eager, or strongly consistent replication
in shared-nothing architectures, which are suitable for databases
which aim to offer high availability without compromising consis-
tency and correctness. These databases make sure that all of the
updates of a transaction reach the backup replicas before the trans-
action is considered committed [10]. Strong consistency makes it
easy to handle machine failures, since all of the copies of a record
are identical at all times. A failover can be as simple as inform-
ing every surviving server about the new change in the cluster and
allowing them to reach an agreement on the current configuration.
Reconfiguration of the cluster can be done by a cluster configura-
tion manager such as Zookeeper [12].

Strongly consistent replication is implemented in databases us-
ing various schemes, which can be broadly categorized into two
groups, namely active-passive and active-active, with each having
their own many variations and flavours. Here, we abstract away
from their subtleties and provide a simple and general overview of
how each one delivers strongly consistent replication, and discuss
their associated costs and limitations.

P1

B1

P2

B2

Replay
logs

Exec	T1 Commit Exec	T2	(A)

Exec	T2	(B)

Replay
logs

Replay
logs

Commit

Commit

Figure 1: Active-passive replication using log shipping.

2.1 Active-Passive Replication
Active-passive replication is one of the most commonly used

replication techniques. Each database partition consists of one ac-
tive copy (known as the primary replica) which handles transac-
tions and makes changes to the data, and one or more backup repli-
cas, which keep their copies in sync with the primary replica. When
a machine p fails, the system maintains its high availability by pro-
moting one of p’s backup nodes as the new primary and fails over
to that node. There are many different implementations of active-
passive replication both in academic projects [9, 15, 18, 39] and in
commercial databases [4] (such as Postgres Replication [17], Or-
acle TimesTen [19], and Microsoft SQL Server Always On [26]).
Active-passive schemes are often implemented through log ship-
ping where the primary executes the transaction, then ships its log
to all its backup replicas. The backup replicas replay the log so that
the new changes are reflected in their copy.

Figure 1 illustrates how log shipping is used in an active-passive
replication scheme. Here, we assume that the database is split into
two partitions (P1 and P2), with each partition having a backup
copy (B1 is backup for P1, and B2 is backup for P2). In practice,
P1 and B2 may be co-located on the same machine, while P2
and B1 may reside on a second machine. T1 (colored in blue)
is a single-partition transaction which touches data only on P1.
Therefore, P1 executes this transaction, and before committing, it
sends the change log to all its backup. Upon receiving all the acks,
P1 can commit. Transactions that span multiple partitions, such
as T2 (colored in orange), follow the same replication protocol,
except that an agreement protocol such as 2PC is also needed to
ensure consistency.

Wide adoption of active-passive replication is due to its simplic-
ity and generality. However, two factors work against it. First,
the log message contains each data record that the transaction has
updated and is therefore may be big in size [33]. This becomes
a serious bottleneck for conventional networks due to their lim-
ited bandwidth. Second, the communication between primaries and
replicas not only imposes long delays to the critical path of transac-
tions, but perhaps more importantly, it consumes processing power
of machines for replaying logs and exchanging messages.

2.2 Active-Active Replication
The second group of eager replication techniques is update ev-

erywhere, or active-active protocols [10]. These systems allow any
replica to accept a transaction and then broadcast the changes to
all the other replicas. Synchronizing updates between replicas re-
quire much more coordination than active-passive, due to possible
conflicts between each replica’s transactions with the others. Main
modern active-active databases solve this issue by removing co-
ordination and replacing that with determinism of execution order
among replicas [16, 34, 35, 37].

Deterministic active-active replication seeks to reduce the net-
work communication needed to ship logs and coordinating with
other replicas in an active-passive scheme. Specifically, the trans-
actions are grouped into batches where each batch is executed by

1638

P1

B1

P2

B2

Exec	T1

Commit

Exec	T2	(A)

Exec	T2	(B)

Commit

Commit

Exec	T1

Commit

Exec	T2	(B)

Exec	T2	(A)

Commit

Commit

Figure 2: Active-active replication in H-store/VoltDB

all replicas of the database in the same deterministic order, such
that all the replicas end up with identical states once the batch is
executed. Replicas in an active-active database only coordinate to
determine the batches, but do not coordinate during the execution
of transactions, which significantly reduces the network traffic be-
tween replicas. Two prominent examples of databases which use
active-active replication are H-store [16] (and its commercial suc-
cessor VoltDB [35]) and Calvin [37].

H-Store’s replication protocol is illustrated in Figure 2. In H-
Store, all transactions have to be registered in advance as stored
procedures. The system is optimized to execute each transaction
from the beginning to completion with minimum overhead. In H-
Store, transactions do not get record locks, and instead only lock
the partition they need. Transactions are executed in each parti-
tion sequentially, without getting pre-empted by other concurrent
transactions. For a single-partition transaction such as T1, the pri-
mary replicates the ID of the invoked stored procedure along with
its parameters to all its backup replicas. All replicas, including the
primary, start executing the transaction code in parallel. Unlike in
log shipping, here the replicas do not need to coordinate, as they ex-
ecute the same sequence of transactions and make deterministic de-
cisions (commit or abort) for each transaction. For multi-partition
transactions, one of the primaries acts as the transaction coordina-
tor and sends the stored procedure and its parameters to the other
participating partitions. At each partition, an exclusive lock is ac-
quired, so that no other transaction is allowed to be executed on that
partition. Each partition sends the stored procedure to all its backup
replicas so they run the same transaction and build their write-set.
Finally, the coordinator initiates a 2PC to ensure that all the other
primaries are able to commit. H-Store performs extremely well if
the workload consists of mostly single-partition transactions. How-
ever, its performance quickly degrades in the presence of multi-
partition transactions, since all participating partitions are blocked
for the entire duration of such transactions.

Calvin [37] is another active-active system that takes a differ-
ent approach than H-Store to enforce determinism in execution and
replication (Figure 3). All transactions first arrive at the sequencer
which orders all the incoming transactions in one single serial his-
tory. The inputs of the transactions are logged and replicated to all
the replicas. Then, a single lock manager thread in each partition
scans the serial history generated by the sequencer and acquires all
the locks for each transaction, if possible. If the lock is already
held, the transaction has to be queued for that lock. Therefore,
Calvin requires that the read-set and write-set of transactions are
known upfront, so that the lock manager would know what locks
to get before even executing the transaction (This assumption may
be too strict for a large category of workloads, where the set of
records that a transaction is read or modified is known throughout
executing the transaction). Those transactions which all their locks
are acquired by the lock manager are then executed by the worker

Sequencer

P1

B1

P2

Sequencing

B2

T1 T2 …

Exec	T1	(A)

Exec	T1	(A)

Exec	T2	(B)

Exec	T2	(B)

Exec	T2	(A)

Exec	T2	(A)Commit

Commit

Commit

Commit

Commit

Commit

Figure 3: Active-active replication in Calvin

threads in each replica without any coordination between replicas.
For multi-partition transactions, the participating partitions com-
municate their results to each other in a push-based manner (instead
of pull-based, which is common in the other execution schemes).

Compared to Calvin with its sequencing overhead, H-store has
a much lower overhead for single-partitioned transactions. Calvin,
on the other hand, benefits from its global sequencing for multi-
partition transactions.

3. THE CASE FOR REPLICATION WITH
RDMA NETWORKS

With the fast advancement of network technologies, conventional
log-shipping and active-active schemes are no longer the best fits.
In this section, we revisit the design trade-offs that conventional
schemes made and demonstrate why the next-generation networks
call for a new design of high availability protocol in Section 3.1.
We then provide some background on RDMA in Section 3.2.

3.1 Bottleneck Analysis
The replication schemes described in the previous section were

designed in a time that network communication was the obvious
bottleneck in a distributed main-memory data store by a large mar-
gin. Reducing the need for accessing the network was therefore a
common principle in designing efficient algorithms. Both classes
of techniques approach this design principle by exchanging high
network demand with more processing redundancy, each to a dif-
ferent degree. This idea is illustrated in Figure 4a. In log ship-
ping, the logs have to be replayed at each replica, which may not
be much cheaper than redoing the transaction itself for some work-
loads. Active-active techniques reduce the need for network com-
munication even further and thus improve performance when the
network is the bottleneck but impose even more redundancy for
computation.

In these networks, communication during replication is consid-
ered expensive mainly due to three factors. (1) Limited bandwidth
of these networks would be easily saturated and become the bottle-
neck. (2) The message processing overhead by the operating sys-
tem proved to be substantial [3], especially in the context of many
OLTP workloads which contain simple transactions that read and
modify only a few records. (3) High latency of network communi-
cation increases the transaction latency, contributing to contention
and therefore impacts throughput.

With the emergence of the next-generation of RDMA-enabled
networks, such as InfiniBand, these assumptions need to be re-
evaluated. (1) Network bandwidth has increased significantly, and
its increase rate does not seem to be slowing down [13]. For exam-
ple, a Mellanox ConnectX-4 EDR card offers 100× bandwidth of a
typical 1Gb/sec Ethernet found in many public cluster offerings (in-
cluding our own private cluster). (2) The RDMA feature open new

1639

Processing	redundancy

Network	
demand

A/A	rep

A/P	rep

Th
ro
ug
hp

ut

(a) Conventional TCP/IP
networks

Processing	redundancy

Network	
demand

A/A	rep

A/P	rep

RDMA	rep?

Throughput

(b) Modern high bandwidth
RDMA-enabled networks

Figure 4: The blue arrows indicate the throughput is increased
by reducing which axis (i.e. reducing the network communication
in conventional networks, and reducing processing redundancy in
RDMA-enabled networks).

possibilities to design algorithms that eschew not only the message
processing overhead of existing methods, but also the actual pro-
cessing redundancy attached to replication (i.e. replaying logs in
the log shipping scheme or executing transactions multiple times
in deterministic schemes). (3) RDMA can achieve much lower la-
tency compared to Ethernet networks, owing to its zero copy trans-
fer and CPU bypass features. While the latency of RDMA is still
an order of magnitude higher than main memory latency, it can be
significantly masked by efficiently leveraging parallelism and con-
currency in software [15].

Consequently, the modern RDMA-enabled networks have been
shifting the bottleneck in the direction of CPU rather than the net-
work, as depicted in Figure 4b; creating an identical memory copy
can be done with very little CPU overhead. In this new environ-
ment, the old replication techniques are not optimal anymore, as
their inherent processing redundancy underutilizes the processing
power of the cluster, without efficiently leveraging modern net-
works. This calls for a new replication protocol which is designed
specifically for the new generation of networks.

Note that in a shared-nothing environment, where nodes do not
share memory or storage, nodes either have to replicate their new
states to the replicas after performing one or a batch of transactions
(resulting in relatively higher bandwidth requirement, as in the case
with log shipping and Active-Memory) or they must enforce the
same transaction schedule at all replicas (resulting in higher pro-
cessing redundancy). This explains that shaded area in Figure 4 is
very unlikely to achieve in a shared-nothing system.

3.2 Background for RDMA
The RDMA feature allows a machine to directly access the main

memory of another machine without the involvement of the operat-
ing systems of either side, enabling zero-copy data transfer. RDMA
recent popularity in the database community is mostly due to the
fact that the network technologies which support RDMA have be-
come cost competitive with Ethernet [3]. InfiniBand, RoCE, and
iWarp are currently the main implementations of RDMA networks.
Bypassing the OS and entirely offloading the networking protocol
onto the network cards allow RDMA to have high throughput, low
latency and low CPU utilizations. For example, the latest Mellanox
ConnectX-6 RNICs can deliver 200Gb per second data transfer,
have latency of below 1µs, and are able to handle up to 200 million
messages per second.

The RDMA interface provides two operations types: one-sided
(Read, Write, and atomic operations) and two-sided (Send and Re-
ceive). One-sided operations bypass the remote CPU and provide

user-level memory access interface, where the remote memory is
directly read from or written to. Two-sided operations, on the other
hand, provide a message-passing interface for two user-level pro-
cesses to exchange RPC messages. Unlike one-sided operations,
two-sided communication involves the CPUs of both sides.

Two processes communicate to each other through queue pairs,
which have different modes. In Reliable Connected (RC) queue
pairs, packets are delivered in order and without any loss. These
two properties are the key to our replication and fault-tolerance pro-
tocol, as we will see in Sections 4 and 5.

4. Active-Memory:
RDMA-BASED REPLICATION

In this section, we start with an overview of Active-Memory
Replication, our RDMA-based high availability solution, and then
present the replication algorithm in detail.

4.1 Concurrency Control and Replication As-
sumptions

We present Active-Memory in the context of a partitioned and
distributed shared-nothing database. Similar to many other data
stores (such as FaRM [9], RAMCloud [30, 31], and FaSST [15]),
we assume striped master partitions. Each data record has one pri-
mary copy on the master node and multiple replica copies on each
of the backup nodes. Each node in the cluster is the master for a
fraction of data records and the backup for some other records. A
transaction accesses only the primary copy of a record. The backup
copies are therefore only accessed and/or modified during the repli-
cation protocol. This is necessary to avoid having transactions read-
ing uncommitted data on the backups.

While Active-Memory is orthogonal to the employed consis-
tency protocol, in this paper we focus on two-phase locking (2PL)
with a NO WAIT policy [2]. However, we do require that every
data structure change is made atomic within the boundaries of a
transaction. Without this requirement, a direct memory copy with
RDMA could replicate uncommitted changes. Our implementation
guarantees this requirement using exclusive latches on the shared
data structures (e.g., buckets in a hash-table). However, many alter-
native designs exist. Finally, we assume that each node is equipped
with Non-Volatile Memory (NVM) similar to other recent high-
performance OLTP systems [8, 15, 41].

4.2 Overview
Active-Memory adopts a primary-backup replication scheme that

is specifically designed for RDMA-enabled networks. Instead of
shipping logs to the backup nodes, the coordinator directly writes
each of the transaction’s changes to the main memory of the backup
nodes using the one-sided write operations that RDMA supports.
Therefore, the CPUs at the backup nodes are no longer involved in
the data replication logic and therefore can be spent on processing
new transactions. Specifically, for each transaction, the replication
protocol involves two serial phases: (1) UNDO log transfer and
in-place updates and (2) log space reclamation.

Overall, Active-Memory has the following salient features.
Strong Consistency: Following our discussion in Section 2,

Active-Memory provides strong consistency replication. The data
in the backup nodes always reflects the changes up to the last com-
mitted transaction and do not lag behind. Fresh backups enable fast
and straight-forward fail-over.

Zero Processing Redundancy: In contrast to log shipping and
active-active schemes, Active-Memory entirely eliminates the pro-
cessing redundancy in the replication protocol. The transaction

1640

Coord.	
ID

Log	
ID

Changes	
Cnt

Is	
Last

Is
Committed

Log	ID	
(check)

Change
1 …

Memory	
Offset Payload

Undo	Log	
Buffer

Change
n

Len bytes

Fixed	undo	entry	size

Len

Head	(uncommitted
entries	start	here)

Tail	(next	log	will
be	placed	here)

Host	
ID

Change
2

Figure 5: The structure of the log buffer and the log entries. Each node has a private log buffer on every other node.

Log
Entry

Change
1

Change
2

Change
n

…

RDMA Writes to the database records (in-place)RDMA Writes to
the undo log buffer

Figure 6: The linked list of RDMA messages sent to an active node

logic is executed only once. The backup nodes neither execute the
transaction code nor replay the logs. Their CPU time is used to
process new transactions.

Zero Overhead of Message Handling: By fully relying on one-
sided RDMA operations, Active-Memory is able to remove much
of the overhead caused by sending and receiving RPC messages, in-
cluding the TCP/IP overhead, and message dispatching mechanism
inside each database node.

Simple and Fast Fault-Tolerance: No matter how well a repli-
cation protocol works in the normal execution mode, recovery from
failures must be reliable and consistent, and preferably fast. As we
will see in Section 5, our protocol takes advantage of RDMA to
provide an intuitive and fast mechanism for fault-tolerance.

The reduction of CPU time in Active-Memory comes at the cost
of increased network traffic. As we will demonstrate in Section 6,
however, this is not a problem with the new-generation RDMA
networks due to their high bandwidth. By efficiently leveraging
RDMA, Active-Memory can significantly outperform both log ship-
ping and active-active schemes.

4.3 Design Challenges
Although the key idea behind Active-Memory is simple, what

makes the design challenging is supporting fault tolerance and non-
blocking fast recovery. For correctness, the coordinator must make
sure that either all its changes are replicated on all the backup
nodes, or none of them has been replicated. Different from a con-
ventional log-shipping protocol where the primary and backups co-
ordinate to achieve this goal, the backup nodes in Active-Memory
do not actively participate in the replication protocol. Therefore,
the coordinator has to unilaterally guarantee fault tolerance proper-
ties, which makes it more challenging.

To achieve this goal, Active-Memory relies on an undo logging
mechanism, rather than traditional redo logging. The coordinator
writes undo log entries to a backup node before directly updating
any memory state on that node. Section 4.4 describes how undo
logging occurs in Active-Memory in more details.

Another challenge in Active-Memory is non-blocking recovery,
which requires the system to quickly recover to a consistent state
when one or multiple coordinators or backup nodes fail. Active-
Memory ensure that there is always enough information available
to at least one of the surviving nodes so that it is able to recover the
correct state of the modified data records and the ongoing transac-
tions. Section 4.5 describes more details on this topic.

4.4 Undo Log Buffers
As stated before, Active-Memory uses an RDMA-based undo

logging mechanism to ensure failure atomicity. Each server node
has a pre-allocated RDMA buffer hosted on every other machine,
which contains a certain number of fixed-size log entries, and im-
plements a circular buffer primitive, as shown in Figure 5. Each
log buffer can only be modified by a single remote server node.
Thereby, there is no concurrent updates to a log buffer. This sig-
nificantly simplifies the replication algorithm of Active-Memory
(Section 4.5) and its fault-tolerance mechanism (Section 5).

Each node maintains the list of its available undo log entries on
every other server machine. That is, a server knows what the head
and tail pointers are for each of its remote log buffers. A log entry
is placed in a remote buffer by issuing an RDMA Write operation.
Implementing a circular buffer primitive means that the log entries
which are not needed anymore can be re-used. In other words, the
log buffer merely needs to have as many entries as the number of
open (i.e. live, uncommitted) transactions initiated by each node at
a time (for example in our system, this number is at most 20).

The layout of a log entry is illustrated on the right side of Fig-
ure 5. Each entry stores the pre-update contents of the attributes of
the records modified by the transaction. For example, a transaction
that modifies two attributes of three records will contain 6 changed
attributes (ChangesCnt = 6), and for each of them, the entry will
contain its HostID, the attribute’s memory offset in that host, its
size in bytes (Len), and its old content in Payload. Storing the
values of changed attributes as opposed to the entire record content
minimizes the required log size, and therefore minimizes the num-
ber of log entries to be sent per transaction. Each entry stores a
locally unique identifier LogID. If a log exceeds the entry’s fixed
size, a follow-up log entry is sent with the same LogID. An entry
with IsLast set to false signifies that a follow-up entry should
be expected. The coordinator sets the same log ID at the end of
each entry as well (LogID Check). A log entry is considered cor-
rect and usable only if LogID and LogID Check have the same
value, otherwise it is considered corrupt. This is because at the re-
ceiver side, most NICs guarantee that RDMA Writes are performed
in increasing address order [8] (i.e. writing of LogID Check does
not happen before writing of LogID). Therefore, this mechanism
makes each log entry self-verifying. Finally, IsCommitted indi-
cates the commit status of a transaction.

For some workloads, it may be possible that some few transac-
tions have such large write-sets that they would not fit in the undo
log buffer. Such an uncommon case can be supported by relying on
the RPC-based log shipping; the coordinator sends an RPC mes-
sage to each replica, with all its log entries concatenated to each
other. The replicas apply the updates and send back acks to the
coordinator. In general, the system must make sure that such cases
remain rare for a given workload, and if not, it should increase the
size the log buffers to better accommodate the write set of most
transactions.

1641

Coord.

P1

write-set

B1

Performed by the remote NIC

P2

Execution
phase Step 1:

Log & update in-place
Step 2:

Commit logs

B2

Replication phase

Figure 7: Active-Memory replication: Step 1 is replicating the
undo logs and in-place updates to the backups (Section 4.5.2). Step
2 is marking the log entries as committed (Section 4.5.2).

4.5 Replication Algorithm
We now describe Active-Memory replication protocol. The co-

ordinator initiates this protocol once it has built its read-set and
write-set, which we refer to as the execution phase. Active-Memory
assumes that for each transaction, its coordinator maintains a local
write-set (WS), which contains a list of unique record keys and their
new values which the transaction intends to write. At the end of its
execution, the transaction is ready to commit and apply the updates
in WS to the database. This is when the coordinator initiates the
replication protocol which consists of two steps (Figure 7).

4.5.1 Step 1: Undo Log and In-place Update
The goal of the first step is to 1) replicate the undo logs, and 2) di-

rectly modify the records in the write-set in-place. These two sub-
steps must be performed for all the involved partitions in the trans-
action and their replicas, henceforth referred to as active nodes.
The algorithm must make sure that for each active node, in-place
data update does not happen without undo logging.

Listing 1 shows the algorithm for this step. In summary, the
coordinator scans its write-set and forms a linked list of RDMA
operations for each active node. The first message of this linked
list is the undo log RDMA Write operation, and the rest are the
RDMA Writes for in-place attribute updates for records hosted on
that partition, as shown in Figure 6. Because of the in-order mes-
sage delivery guarantee of reliable connected queue pairs, the log
message is received by the destination NIC before the in-place up-
date messages. Such a guaranteed delivery order is crucial in our
fault tolerance protocol, as we shall see later in Section 5.

As shown in Listing 1, the coordinator performs this process for
each active node p in the transaction. It first retrieves and updates
the tail pointer of the log buffer hosted on node p. Then, it initial-
izes a log entry which is to be replicated later on p and its repli-
cas (the IsCommitted field is set to false, indicating that the
transaction has not yet committed). It retrieves the records in the
write-set which are hosted on p (line 6), and adds their changed
attributes to the log entry (lines 8 to 13). It then initializes a list of
RDMA messages by adding the undo log entry (lines 16 to 18) and
the data updates (lines 20 and 25). The resulting list is similar to
Figure 6. This linked list is then issued to p and all its replicas (lines
27 to 30). Posting a linked list of RDMA operations in one call, as
opposed to issuing them separately, allows the low-level driver to
perform optimizations that result in less CPU usage on the sender
side, and therefore improves performance [23, 1].

For the sake of brevity, here we assumed that all changed at-
tributes can fit into one log message. Multi-entry log messages are
handled in the same manner with one difference. IsLast in all
the log entries except for the last one will be set to false.

1 for (p in active_nodes) {
// update the tail pointer

3 tail = undoBuffers[p].tail++;
log = init_log_entry();

5 // add the changes to the log msg
recs = get_records_in_ws_in_partition(p);

7 i = 0;
for (r in recs) {

9 for (attr in r.changedAttrs) {
log.changes[i] = init_change(attr);

11 i++;
}

13 }
// prepare RDMA msgs

15 msgs = linkedList();
ml = prep_log_RDMA(log);

17 // add the log entry as the *first* msg
msgs.append(ml);

19 // add all updates to the msgs list
for (r in recs) {

21 for (attr in r.changedAttrs) {
md = prep_data_RDMA(attr);

23 msgs.append(md);
}

25 }
// send RDMA msg list to p and its replicas

27 issue_RDMA(p, msgs);
for (rep in replicas[p]) {

29 issue_RDMA(rep, msgs);
}

31 }

Listing 1: Step 1 of the replication protocol, i.e. undo logging and
in-place data modification.

Once the log and change messages are sent, the transaction has
to wait until their acks are received. These acks are indicators that
the transaction log and its updates are replicated on all active nodes,
so the coordinator proceeds to the second step.

4.5.2 Step 2: Commit the Log Entries
The goal of this step is to ensure that the commit decision will

survive f−1 failures in a replica set of size f before reporting to the
user (the k-safety property). To accomplish that, the coordinator
first sets IsCommitted attribute of the log entry at each active
node to true using an RDMA Write, as shown in Figure 7. Once
the coordinator NIC finishes sending these RDMA Write messages,
it locally increments the head pointer of the corresponding undo
log buffer for each involved node, indicating that this entry can
be re-used by future transactions. It also logs to its local NVM,
releases its locks (if the transaction is multi-partition, informing
every participant to release their locks) and returns to the user.

In summary, Active-Memory takes advantage of the in-order mes-
sage delivery of reliable connected queue pairs in RDMA. Using
this connection type, it is guaranteed that messages are delivered
to the receiver’s NIC in the same order that they are transmitted by
the sender (even though that they may be applied to the receiver’s
main memory out of order [11], but this does not pose a problem
for our protocol, as will be discussed in Section 5). The algorithm
leverages this fact by issuing the undo log RDMA message before
the in-place updates. This guarantees that even if the coordinator
fails in the middle of the replication protocol, the in-place update
RDMA messages will not take effect on the receiver without the
undo log entry being present.

5. FAULT TOLERANCE
In this section, we discuss how our protocol guarantees fault tol-

erance in various failure scenarios without sacrificing either cor-
rectness or high availability. For the ease of explanation, we first
describe our recovery mechanism for single-partition transactions,

1642

Table 1: Different scenarios for the coordinator failure. Each row describes a scenario and how transaction state and records are recovered.

Time of
Coordinator Failure

Coordinator
Status

Transaction
Status in TP

Transaction
Recovery

Data
Recovery

Case
ID

Before step 1 Uncommitted No log Abort Data is untouched. 1

During step 1 Uncommitted
No log Abort Data is untouched. 2a
Corrupt log Abort Data is untouched. 2b

Logged Abort
Data may be untouched,
corrupt, or updated.
Recover from log.

2c

After step 1 (received all
acks) and before step 2 Uncommitted Logged Abort Data is updated.

Recover from log 3

During step 2 Uncommitted Logged Abort Data is updated.
Recover from log. 4a

Commit-ready
Requires consensus:
If all agree, commit.
Otherwise, abort.

Data is updated.
If the consensus is abort,
recover from log.
Otherwise, do nothing.

4b

After step 2 (received all acks) Uncommitted Commit-ready Since all are committed,
the consensus will be commit. Data is up-to-date. 5a

Committed Commit-ready Since all are committed,
the consensus will be commit. Data is up-to-date. 5b

and later extend it to multi-partition transactions. For single par-
tition transactions, the coordinator is the primary replica for all
records that the transaction accesses. We explain the failure of
primary replicas and backup replicas separately. In the event of
a machine failure, each surviving node S performs the procedure
in Section 5.1 for transactions that S is a primary of (and there-
fore is the coordinator), and the procedure in Section 5.2 for the
transactions that S is among the backups.

5.1 Recovery from Backup Failures
Handling failures of backup machines is fairly straightforward,

since the backups do not perform any replication processing and
the replication state is maintained by the coordinator, which is S. In
our protocol, a coordinator returns the result to the client only when
it has successfully replicated the updates on all its backups. There-
fore, any backup failure which happens before S has successfully
completed step 2 of the replication process (i.e. commit and release
its log entries) will prevent S from returning to the client. Instead,
it has to wait for the cluster manager to broadcast the new configu-
ration, upon receiving which, S will know either it can commit or
it needs to replicate on more machines. Note that the coordinator
never rolls back a transaction for which it is already in the middle
or at the end of step 2.

5.2 Recovery from Primary Failures
Recovery of transactions whose coordinator has failed is more

challenging. The undo log messages are the footprints of the coor-
dinator on the backups. Using these logs, the backups are able to
decide to either rebuild and commit or discard and abort the trans-
action in order to maintain the system’s transactional consistency.
More specifically, after a machine P is suspected of failure, S will
perform the following procedure.

1. S closes its RDMA queue pair to P , so that even if P returns
from failure and issues new RDMA operations, it will not be suc-
cessful once S starts the recovery protocol.

2. S checks the P -owned log buffer on S’s local memory, and
records all the transactions in the buffer, committed or uncommit-
ted, to which we refer as TP .

3. For each transaction t in TP , S checks the data records pointed
by the Change entries in t’s undo logs.

4. S constructs a status message and broadcasts it to all surviving
nodes. This status message contains P ’s and S’s ID and also con-
tains two entries per each transaction t in TP : (t’s id, t’s status),
where the first one is the unique ID of the transaction, and the sec-
ond one is the current status of the transaction on S. t’s status can
be one of the following 4 cases (the 4th one will be described later):
i) Corrupt log: for at least one of the log entries of t, LogID check
does not match LogID (i.e. self-verifying check fails), or the log
does not end with an entry with IsLast=true (i.e. not all logs
have been received). In this case, the data records must be un-
touched, since the undo logs are delivered before updates.
ii) Logged: the log entries are correct, but the value of CommitBit
is 0. In this case, the data may be untouched (i.e., the update mes-
sages are not received), corrupt (i.e., the update messages are par-
tially received), or fully updated (i.e., the update message are fully
received).
iii) Commit-ready: the value of CommitBit is 1. In this case,
the undo logs must all be received and the data records are fully
updated.

5. S broadcasts its status message to all surviving nodes, and re-
ceives their statue messages in return, which may have some over-
lap with TP , but also may contain new transactions. These trans-
actions have left no footprint on S, so S adds them to TP and set
their statuses to the fourth state: No log.

6. Upon receiving all the status messages, S commits a transac-
tion in TP if all involved nodes of that transaction are in Commit-
ready status. Otherwise, S aborts the transaction, reverts its modi-
fied data using the corresponding undo log, and frees the P -owned
log buffer on its local memory.

Once all backup nodes recovered the state and commit (or abort)
the ongoing transactions, they inform the cluster manager to elect
a new primary and the cluster continues regular processing.

1643

Proof of Correctness — We now provide some intuition on how
the recovery protocol ensures correctness. Table 1 summarizes the
different failure scenarios that may befall the coordinator. We will
refer to each scenario by its case ID which is in the rightmost col-
umn. The coordinator may fail before or during either of the two
steps of the replication protocol presented in Section 4 (cases 1-4),
or it may fail after completing the second step (case 5). In all these
5 cases, the recovery protocol guarantees correctness by satisfying
these properties:

(1) Unanimous agreement: All involved nodes must reach the
same agreement about the transaction outcome. This is achieved
by steps 5 and 6 of the recovery protocol in Section 5.2. If there is
at least one surviving node that has not gone through step 2 of the
replication protocol, all nodes will unanimously abort the transac-
tion. Otherwise, all nodes will reach the same decision.

(2) Consistency for aborted transactions: For an aborted trans-
action, the data in all involved nodes must be reverted to its prior
consistent state, in the presence of any failure. In-order RDMA
message delivery of reliable connected channels guarantees that for
any surviving active node, if there is any data modification (com-
plete or corrupt), there must be a complete log present at that node.
Combined with the first property (unanimous agreement), this en-
sures that the recovery protocol always brings the database back to
the last consistent state.

(3) Consistency for committed transactions: A transaction whose
coordinator has failed can commit only in cases 4b (if all nodes
agree), 5a, and 5b. What all these three cases have in common is
that all active nodes have gone through step 2 of the replication
protocol (even if the coordinator failed before receiving acks) and
their logs are in Commit-ready status. Therefore, the data records
on all the active nodes must be already successfully updated, as it
is done in step 1 of the replication protocol.

(4) Consistency in responses to the client: The new elected co-
ordinator will not report a different outcome to the client than what
the original failed coordinator might have already reported. This
property is guaranteed by the following reasoning: First, the coor-
dinator commits the transaction only if it has completed step 2 on
all active nodes. Second, in the event of the coordinator failure, the
surviving nodes will reach a commit consensus only if the failed
coordinator has completed step 2 on all active nodes. As a result,
the transaction outcome is always preserved; If the coordinator as-
sumed the transaction as committed, the consensus will be commit.
Otherwise, it will be abort (cases 5a and 5b in Table 1).

5.3 Recovery of Multi-Partition Transactions
A multi-partition transaction accesses data from multiple pri-

maries, with one partition acting as the coordinator. During the
replication phase, the coordinator is in charge of both constructing
the log entry for each accessed data partition, and in-place updating
the data records in all nodes involved in the transaction — both the
primary and backup nodes. A multi-partition transaction commits
only after all the nodes have acknowledged the coordinator.

The recovery process of a multi-partition transaction is largely
the same as a single-partition transaction. If the failed node is not
the coordinator of an active transaction, the coordinator decides
whether to replicate on more machines after the cluster reconfigu-
ration, which is the same as in Section 5.1. If the the failed node is
the coordinator, all the other machines locally construct and broad-
cast transaction status messages in the same way described in Sec-
tion 5.2, with the only difference being that the commit decision is
made if nodes from all involved partitions (rather than one parti-
tion) are in Commit-ready status.

6. EVALUATION
In this section, we evaluate Active-Memory and compare it to the

three replication schemes that we introduced previously. In partic-
ular, we aim to explore the following two main questions:

1. How does the new-generations network change the design
trade-off of high availability protocols?

2. how well does Active-Memory scale under different loads
compared to the other active-passive and active-active repli-
cation protocols?

6.1 Experiment Settings

6.1.1 Setup
Our cluster consists of 8 machines connected to a single Infini-

Band EDR 4X switch using a Mellanox ConnectX-4 card. Each
machine is equipped with 256GB RAM and two Intel Xeon E5-
2660 v2 processors, each with 10 cores. All processes were mapped
to cores on only one socket which resides in the same NUMA re-
gion as the NIC. The machines run Ubuntu 14.04 Server Edition as
their OS and Mellanox OFED 3.4-1 driver for the network.

6.1.2 Workload
For the experiments, we use YCSB (Yahoo Cloud Serving Bench-

mark [5]) which models the workload for large-scale online stores.
It contains a single table, with each record containing a primary key
and 10 string columns of size 100 bytes each. For all experiments,
the YCSB table is hash partitioned by the primary key, where each
physical machine contains 5 million records (∼ 5 GB). Each YCSB
transaction in our experiments consists of 10 operations. Unless
otherwise stated, the set of records for each transaction are selected
uniformly either from the entire database (for the distributed trans-
actions) or from the local partition (for the single-node). Also, for
most experiments, each operation in a transaction reads a record
and modifies it. Also, the replication factor is set to 3 (i.e. 2-safety)
for all experiments unless otherwise stated. We will inspect each of
these settings in more detail.

6.1.3 Implementation
To achieve a fair comparison between the replication schemes,

we implemented all of them in a unified platform.
The system consists of a number of server machines and one

client machine. The database is partitioned horizontally into multi-
ple partitions. Each machine is the primary for at least one partition
and the backup for several other partitions, i.e. the striped master
model. Furthermore, each machine contains the same number of
primary and backup partitions.

Within each machine, there are multiple worker threads working
on the same partitions, except for H-Store (in which each single
thread owns one partition and has exclusive access to it). To extract
maximum concurrency, each thread uses multiple co-routines, so
that when one transaction is waiting for a network operation, the
currently running co-routine yields to the next one, who will then
work on a different transaction. This way, threads do not waste their
time stalling on a network operation, and are always doing useful
work. We found that using 5 co-routines per thread is sufficient to
extract maximum concurrency in our implementation.

The implementations for all the replication protocols share the
same storage layer and access methods. Besides, the RPC sub-
system is implemented using RDMA Send and Receive. There-
fore, all replication schemes use the same high-bandwidth RDMA-
enabled network, and do not have the TCP/IP messaging overhead.

We now briefly describe our implementation for each of the repli-
cation protocols that we will compare in the following sub-sections.

1644

 0

 500

 1000

 1500

 2000

 2500

 3000

 1 2 3 4 5 6 7

T
h

ro
u

g
h

p
u

t
(k

 t
x
n

s
/s

e
c
)

Machines

Calvin
Log Shipping

H-Store
Active-Memory

Figure 8: Scalability – The throughput of different replication
protocols on different cluster sizes. All transactions are single-
partition, with each reading and modifying 10 records.

Active-Memory uses two-phase locking for concurrency control,
and 2PC for multi-partitioned transactions. During transaction ex-
ecution, remote records are accessed by issuing an RPC request to
the record’s primary partition. Once the transaction has success-
fully built its read-/write-set, the replication protocol described in
Section 4 is performed using one-sided RDMA write operations.
Log shipping shares everything with Active-Memory, except its
replication protocol which is based on sending log messages via
RPC and replaying those logs at the receiver side. The transaction
coordinator returns the result to the client only when it has received
acks from all backup replicas. For distributed transactions, the co-
ordinator sends the log message to all the backup replicas of the
participating nodes.
H-Store replicates the transaction statement to all the replicas. For
single-node transactions, each replica executes the transaction to
completion without needing to acquire any locks, and returns the
outcome to the coordinator. For distributed transactions, the coor-
dinator locks all the participating nodes and engages them using
2PC. While one transaction is executing, no other transaction can
be run in any of these partitions.
Calvin uses a partitioned and distributed sequencer, where each
client sends its transactions to one of the them. At the beginning of
every epoch, each sequencer replicates its transaction inputs on its
replicas, and then sends it to all the schedulers on all the machines
in its replica. The lock scheduler thread on each machine then scans
all the sequenced transactions, and attempt to get all the locks for
each transaction. Transactions that have acquired all of their locks
are then processed by the worker threads. As stated earlier, any
communication between two nodes is done via two-sided RDMA
Send and Receive.

6.2 Single-Partition Transactions
We begin by examining the throughput of different replication

schemes as the number of servers increases. The result is shown in
Figure 8. In this experiment, all transactions are single-partition,
and the replication factor is 3 (i.e. 2-safety). However, since in our
platform the replicas are forced to be placed on different machines,
replication factor of 3 is not possible when the number of machines
is 1 or 2. For these two configurations, the replication is 0-safety
(i.e. no replication) and 1-safety, respectively.

When the cluster size is 1, all schemes perform similarly since
there is no replication involved, except for H-store, which achieves
a higher throughput. This is because H-store eliminates locking
overhead due to its serial transaction execution. With 2 machines
(therefore 1-safety replication), the throughput of all schemes ex-
cept Active-Memory drops, which is due to the overhead of repli-

 0

 20

 40

 60

 80

 100

LS AM LS AM LS AM LS AM LS AM LS AM

C
P
U

 T
im
e
B
re
ak
do
w
n
(%
)

% of Write Transactions

Execute
Build msgs

Send msgs
Recv msgs

Replay logs
Misc

100%80%60%40%20%0%

 0

 20

 40

 60

 80

 100

LS AM LS AM LS AM LS AM LS AM LS AM

C
P
U

 T
im
e
B
re
ak
do
w
n
(%
)

% of Write Transactions

Execute
Build msgs

Send msgs
Recv msgs

Replay logs
Misc

100%80%60%40%20%0%

Figure 9: CPU time breakdown for log shipping and Active-
Memory with varying percentage of write transactions. Cluster size
is 5 with 2-safety. Total system utilization in all cases is 100%.

Table 2: The median latency per transaction.

H-Store Calvin Log shipping Active-Memory

85µs 1253µs 142µs 121µs

cation in these protocols. In Calvin and H-Store, the same transac-
tion has to be executed redundantly by all the replicas. For single-
partition transactions, replaying the updates for 10 records in log
shipping is not so much different than re-executing the transaction
which is why its performance is very close to that of Calvin.

The throughput of Active-Memory, in contrast, increases and
further goes up with 3 machines. The reason is that replication in
Active-Memory does not involve the CPU of the backup nodes at
all. So, by increasing the cluster size, the processing power to han-
dle new transactions proportionally increases. The asynchronous
nature of RDMA operations means that the primary replica can is-
sue the RDMA operations for a transaction, proceed to the next
transaction, then come back later to pick up completions for the
former transaction and commit it.

This experiment shows that even for a workload with single node
transactions, which is the sweet spot of H-Store, its replication
overhead dominates the benefit of its efficient single node transac-
tion execution. Calvin not only has this overhead, but also has the
cost of sequencing transactions and scheduling their locks, thereby
achieving a lower throughput than H-Store. In general, Active-
Memory can achieve 1.5x to 2x higher throughput compared to the
other three protocols as the cluster scales out.

The average latency in the four replication protocols for a clus-
ter size of 5 with 2-safety is reported in Table 2. Even though that
Active-Memory involves two network roundtrips, it has lower la-
tency compared to log shipping, which involves only one network
roundtrip. This is because Active-Memory bypasses the RPC sub-
system and also does not involve replaying logs at the replicas.
Calvin has an order of magnitude higher latency due to the batching
nature of its sequencing step. H-Store has the lowest latency among
the others, owing to its simple command replication protocol.

To understand where the performance gain in Active-Memory
comes from, Figure 9 illustrates the breakdown of CPU time for
log shipping (LS) and Active-Memory (AM). Here, we fixed the
number of machines to 5 with 2-safety, and varied the percent-
age of write transactions from zero (i.e. only read-only transac-
tions) to 100% (the same workload in Figure 8). When there is no
write transaction, both schemes perform similarly since no repli-
cation is involved, with 80% of the CPU time spent on perform-
ing transaction logic, and 20% on other tasks (including receiving

1645

 0

 500

 1000

 1500

 2000

 2500

 0 0.2 0.4 0.6 0.8 1

T
h

ro
u

g
h

p
u

t
(k

 t
x
n

s
/s

e
c
)

% Multi-Partition Transactions

Calvin
Log Shipping

H-Store
Active-Memory

Figure 10: Multi-partition transactions – Eight records are read
and modified locally, and two records are read and modified re-
motely. Cluster size is 5 with 2-safety.

client requests, copying each request to the corresponding worker’s
buffer, orchestrating the RPC messages sent to and received from
the other servers, and polling acknowledgements). As the ratio of
write transactions increases, however, receiving the log messages
(in yellow) by the replicas and replaying them (in blue) incur sig-
nificant overhead for log shipping; a cost that is non-existing in
Active-Memory. Even though that relative to log shipping, Active-
Memory spends more time on initializing the RDMA messages (in
red) and sending them (in orange), all in all much less CPU time is
left for performing the transaction logic in log shipping.

6.3 Multi-Partition Transactions
We next compare the impact of multi-partition transactions on

the throughput of different replication protocols. The cluster size
is set to 5, and the replication factor is 2-safety. While each single-
partition transaction chooses all of its 10 records from the same
partition, a multi-partition transaction selects 2 out of 10 of its
records randomly from different partitions other than the rest of
the 8 records (we experimented with different numbers of remote
records per transaction, and observed similar results. Therefore
their plots are omitted due to space constraints).

Figure 10 show the measured throughput of the four protocols
with varying percentage of multi-partition transactions. H-Store
performs better than log shipping and Calvin when there is no dis-
tributed transaction. However, with only 20% distributed transac-
tions, the performance of H-Store drops to half of Calvin. This is
because in H-Store, all participating nodes and their replicas are
blocked for the entire duration of the transaction, which in this case
takes one network roundtrip. The performance of all the other three
replication protocols also drop with more multi-partition transac-
tions. While the relative throughput of Active-Memory to that of
log shipping remains the same with different percentage of dis-
tributed transactions, the relative throughput of Calvin to Active-
Memory reaches from 1

2
for single-partition transactions to 1

3
for

100% distributed transactions.

6.4 Network Bandwidth
Our next experiment analyzes the impact of network bandwidth

on throughput. We throttled the bandwidth by running background
network data transfer jobs and made sure that during the course of
the experiment, they consumed the requested portion of bandwidth.

Figure 11 shows the throughput of different protocols on 5 servers
with 2-safety replication for single-partition transactions. When
the available bandwidth is less than 10Gb/sec, the active-active
schemes perform much better than the other two protocols. By en-
forcing a deterministic order of executing transactions at all repli-

 0

 500

 1000

 1500

 2000

 0.1 1 10 100

T
h

ro
u

g
h

p
u

t
(k

 t
x
n

s
/s

e
c
)

Bandwidth (Gb/sec)

Calvin
Log Shipping

H-Store
Active-Memory

Figure 11: Network Bandwidth – The measured throughput of
the replication schemes on 5 servers, with replication factor set to
2-safety, and 10 read-modify records per transaction.

Table 3: The network traffic per transaction in each replication
protocol in our unified platform.

Single-partition
Transactions

Multi-partition
Transactions

H-Store ∼ 0.3KB ∼ 1.5KB
Calvin ∼ 0.5KB ∼ 0.6KB
Log shipping ∼ 2.5KB ∼ 3.7KB
Active-Memory ∼ 4.5KB ∼ 6KB

cas, these techniques can effectively minimize the network com-
munication, which is key in delivering good performance in a net-
work with very limited bandwidth. In such low bandwidth net-
works, Active-Memory is outperformed by log shipping as well
by a factor of 2. To inspect this result in more depth, we also
measured the network traffic per transaction in each of these repli-
cation schemes (Table 3). For a single-partition transaction, both
H-Store and Calvin require relatively very little network traffic.
Active-Memory, on the other hand, requires 15×, 9× and 1.8×
more traffic than H-Store, Calvin and log shipping respectively.
This explains the reason for this lower throughput compared to
the other schemes when the network is slow: Active-Memory be-
comes network-bound when the bandwidth is limited. However, as
the bandwidth exceeds 10Gb/sec, Active-Memory starts to outper-
form the other protocols. Increasing the available bandwidth does
not result in any increase in the throughput of the other schemes,
which is due to the important fact that these schemes are CPU-
bound, thereby not exploiting high bandwidth of the modern net-
works. We performed the same experiment for the workload with
multi-partition transactions (which we used for the experiment in
Section 6.3), and observed similar results, except that H-Store was
massively outperformed by Calvin, even when the bandwidth was
limited. The measured network footprint for each multi-partition
transaction is shown in the last column of Table 3. The plot for the
distributed transactions is omitted due to space constraints.

In short, this experiment reveals that in the conventional Eth-
ernet networks where the bandwidth was scarce, adding process-
ing redundancy to avoid the network communication would be ex-
tremely beneficial. However, in the modern networks with their
abundant bandwidth, the bottleneck has shifted in the direction of
CPU; the replication protocols that do not leverage CPU-efficient
RDMA operations and high bandwidth of these networks are not
optimal anymore to provide LAN-based replication.

6.5 Replication Factor
The previous three experiments fixed the replication factor to

2-safety. In this experiment, we examine the effect of different

1646

 0

 1000

 2000

 3000

 4000

 5000

no-rep 1-safety 2-safety 3-safety 4-safety

T
h

ro
u

g
h

p
u

t
(k

 t
x
n

s
/s

e
c
)

Replica-set Size

Calvin
Log Shipping

H-store
Active-Memory

Figure 12: Replication Factor – Impact of replication factor.

 0

 200

 400

 600

 800

 1000

 1200

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T
h
ro

u
g
h
p
u
t
(k

 t
x
n
s
/s

e
c
)

Skew Factor (Theta)

Calvin
Log Shipping

H-Store
Active-Memory

Figure 13: Contention – The throughput on 5 machines with vary-
ing skew factor. Records are chosen according to a Zipfian distri-
bution from the entire cluster with different contention levels.

replication factors on throughput. Here, all transactions are single-
partition, each reading and modifying 10 records.

The results in Figure 12 show the throughput of the four proto-
cols as we varied the replication factor. With no replication (i.e. 0-
safety), H-Store achieves the highest throughput, which is in agree-
ment with the results of the scalability experiment. Active-Memory
and log shipping exhibit the same performance as they use the same
2PL-based execution. The sequencing and scheduling overhead of
Calvin accounts for its lower throughput.

Increasing the replication factor entails more redundant process-
ing for H-Store and Calvin. For example, the throughput of H-
Store for 1-safety replication is almost half of its throughput for
no-replication, since each transaction is now executed twice. The
same applies to Calvin. In addition, since the transaction modifies
all 10 records that it reads, log replay in log shipping incurs al-
most the same cost as redoing the transaction. As the replication
factor increases, the gap between Active-Memory and the other
schemes widens since higher replication factors translate to more
redundancy for them. On the other hand, a higher replication factor
only increases the number of RDMA write operations that Active-
Memory needs to send to its replicas, which does not impact the
throughput proportionally, since modern NICs can handle up to
tens or hundreds of million RDMA operations per second without
putting much overhead to the CPU.

6.6 Impact of Contention
The goal of this experiment is to measure the impact of data skew

on the throughput of different replication schemes. In YCSB, the
skew is controlled using the Zipfian constant theta. When theta is
0, the records are uniformly selected from the entire cluster, and
when it is 0.9, the accesses are highly skewed, resulting in a small
set of contended records. Since each transactions touch 10 records,

 0

 1000

 2000

 3000

 4000

 5000

 0 2 4 6 8 10

T
h

ro
u

g
h

p
u

t
(k

 t
x
n

s
/s

e
c
)

Writes (out of 10 operations)

Calvin
Log Shipping

H-Store
Active-Memory

Figure 14: Read-Write Ratio – the throughput of different proto-
cols on 5 machines with single-partition transaction, with varying
number of write operations per transaction.

choosing a record randomly from the entire cluster makes all trans-
actions multi-partition.

Figure 13 shows the measured throughput with different skew
factors. For the values of theta up to 0.4, the performances of all
the protocols remain unaffected. As we saw before in Section 6.3,
H-Store performs poorly when the workload is dominated with dis-
tributed transactions, while Active-Memory maintains its relative
better performance compared to the other replication schemes. As
contention reaches 0.8, both Active-Memory and log shipping en-
counter high abort rates due to lock conflicts, and therefore their
performances degrade significantly. The throughput of Calvin drops
as well since the locks for each transaction have to be held during
the network communication with the other servers. However, due
to its deterministic lock scheduling and the fact that a transaction’s
working set is known prior to execution, Calvin can tolerate high
contention better than all the other schemes. In particular, at high
contention, the performance pf Calvin is up to 70% better than the
second-best scheme, which is Active-Memory.

Note that Active-Memory is a replication protocol, and does not
specify how concurrency should be managed. Currently, our imple-
mentation is based on 2PL for executing transactions. Moreover, in
our protocol, a transaction is executed immediately upon arriving
in the system with no sophisticated scheduling. By implementing
Active-Memory on top of a different execution scheme than sim-
ple 2PL, which possibly employs a more sophisticated transaction
re-ordering (such as [42] or [28]), one can expect that it will cir-
cumvent such cases and become more resilient to high data skew.

6.7 Read-Write Ratio
To analyze the effect of transactions with different read-write ra-

tio on throughput, we varied the number of updates in transactions
(out of 10 operations). Figure 14 shows the result for this exper-
iment. H-Store has the highest throughput for read-only transac-
tions (i.e. no write operations), as such a transaction is executed
only in one node without the need to be replicated. Calvin, on
the other hand, has the overhead of sequencing transactions and
scheduling locks, even though that we applied the optimization that
read-only transactions are only executed in the first replica, and not
in the others. Log shipping and Active-Memory perform similarly
for read-only transactions due to their identical execution scheme
when there is no replication involved.

However, as transactions start to have more write operations, the
log would contain more records and thus more work for the repli-
cas. Also, even with 1 write operation, the optimizations to H-Store
and Calvin is no longer possible, which explains their drop. With
4 write operations, log shipping delivers the same performance as

1647

the deterministic approach of H-store, and with 10 writes, the same
performance as Calvin. The throughput of both deterministic pro-
tocols, on the other hand, do not degrade significantly with more
writes, as all operations are still handled locally without much extra
redundancy compared to fewer writes. For Active-Memory, more
writes in transactions indicate more undo log entries to replicate
and more in-place updates to send, which explains the decrease
in its throughput. However, it retains its better performance com-
pared to the other schemes for all numbers of write count, and the
more write there is, the wider the gap between Active-Memory’s
primary-backup replication and log shipping.

7. RELATED WORK
In this section, we discuss related works on high availability in

conventional networks as well as RDMA-based OLTP systems.

7.1 Replication in Conventional Networks
In shared-nothing databases, the primary copy eager replication,

also known as active-passive, is implemented through log shipping,
and has been the most widely used technique to provide fault tol-
erance and high availability in strongly consistent databases [40]
(such as Oracle TimesTen [19] and Microsoft SQL Server Always
On [26]). In conventional networks, the coordination between repli-
cas in log shipping, however, incurs significant cost, motivating
much research effort in this area. Qin et al., identified two prob-
lems with using log shipping in high performance DBMSs [33].
First, logs can be so large in size that the network bandwidth be-
comes the bottleneck. second, sequentially replaying the log at the
backups can make them constantly fall behind the primary replica.
Eris [22] is a recent transactional system that proposes a network
co-design which moves the task of ordering transactions from the
replication protocol to the datacenter network, and eliminates the
coordination overhead for a specific class of transactions, namely
independent transactions (the same class that H-Store [16] and Gra-
nola [6] also optimize for). RAMCloud [30, 31] is a distributed
key-value store that keeps all the data in the collective DRAM of
the cluster, and only supports single-key operations. RAMCloud
also takes a primary-backup approach to replication. However, un-
like our work, RAMCloud does not assume non-volatile memory,
and only keeps one copy of each object in memory. Instead, the
durability is guaranteed by storing the changes to remote disks us-
ing a distributed log. Therefore, a failure of a node may suspend
the operation of the system for the records on that node until the
data is recovered from the backup disks.

RemusDB is another active-passive system that proposes to push
replication functionality outside of the databases to the virtualiza-
tion layer itself [25]. In general, even though that many of the
optimizations for removing coordination between replicas in the
aforementioned research projects indeed improve the performance
in specific cases or environments, but the main problem, which is
overhead of replaying logs, still persists.

For deterministic active-active replication, two well-known ex-
amples, namely H-Store [16] and Calvin [37], were studied in de-
tail in Section 2.2. In short, they both rely on a deterministic ex-
ecution and replication paradigm to ascertain that all replicas go
through the same serial history of transactions. This way, replicas
never diverge from each other without having to coordinate during
execution. H-Store is mainly optimized for single-partition transac-
tions, as it also eschews record locking due to its single-thread-per-
partition serial execution. On the other hand, Calvin is more effi-
cient for multi-partition transactions or workloads with high data
contention, as it employs a novel distributed sequencer and de-
terministic locking scheme. Calvin requires that the read-set and

write-set of transactions are known apriori, while H-Store requires
to know all the transactions upfront.

As we already saw in Section 2, both active-passive and active-
active introduce computation overhead, each in a different way.
Active-passive involves exchanging multiple rounds of messages,
and replaying the logs. Active-active results in processing the same
transaction redundantly multiple times. Active-Memory uses RDMA
Write to forgo both of these overheads.

7.2 RDMA-based OLTP Systems and
Replication

RDMA, combined with the emerging NVM technologies as the
main permanent storage, have been changing the landscape of dis-
tributed data store designs, especially in the area of distributed
transaction processing. In addition to proposals to use RDMA for
state machine replication through Paxos [38, 32], an array of key-
value stores (e.g. [27, 14, 21]) and full transactional databases
(e.g. [9, 41, 42, 15, 29]) have been proposed, each with a dif-
ferent way to leverage RDMA for executing transactions. Among
these systems, some provide high availability using different vari-
ants of RDMA and implement active-passive replication [9, 36, 43,
15]. For example, FaRM [9] implements log shipping using one-
sided RDMA Write operations to transfer logs to the non-volatile
memory of the backups. To reduce transaction latency and enable
group-replication, the coordinator in the FaRM protocol considers
a transaction replicated once the RDMA Writes are sent to backups.
Tailwind [36] is an RDMA-based log replication protocol built on
top of RAMCloud, that proposes a mechanism to detect incomplete
RDMA operations if a failure happens to the primary while it is
replicating its log. In any case, no matter how the logs are shipped
(using one-sided or two-sided RDMA), they have to be processed
by the backups synchronously or asynchronously to provide high
availability, which as we have already discussed in previous sec-
tions, imposes processing overhead on backups. Active-Memory is
the first fault-tolerant replication scheme that fully leverages RDMA
Write to consistently modify the state of the backup nodes in a fail-
ure atomic way.

8. CONCLUSIONS
In this paper, we presented Active-Memory, an RDMA-based

mechanism to provide high availability using strongly consistent
primary-backup replication. First, we identified that existing active-
passive and active-active replication protocols were optimized for
reducing network traffic at the cost of increased computation over-
head. While such a design decision makes sense for conventional
networks, it is no longer the best design choice for new-generation
networks that offers orders of magnitude higher bandwidth and
lower latency. Therefore, the main objective of Active-Memory
is to minimize the CPU processing overhead by relying on the
new features and properties of RDMA-enabled networks. Active-
Memory achieves this goal by 1) using a novel RDMA-compatible
undo logging mechanism, and 2) updating data records in the repli-
cas directly using one-sided RDMA write operations. Evaluation
shows that Active-Memory can achieve 2× performance improve-
ment compared to the second-best protocol that we evaluated.

9. ACKNOWLEDGEMENT
This research is funded in part by the NSF CAREER Award IIS-

1453171, Air Force YIP AWARD FA9550-15-1-0144, and sup-
ported by Google, Intel, and Microsoft as part of the MIT Data
Systems and AI Lab (DSAIL).

1648

10. REFERENCES
[1] D. Barak. Tips and tricks to optimize your rdma code.

https://www.rdmamojo.com/2013/06/08/
tips-and-tricks-to-optimize-your-rdma-code/, 2013.
[Accessed: 2019-01-11].

[2] P. A. Bernstein and N. Goodman. Concurrency control in
distributed database systems. ACM Computing Surveys
(CSUR), 13(2):185–221, 1981.

[3] C. Binnig, A. Crotty, A. Galakatos, T. Kraska, and
E. Zamanian. The end of slow networks: it’s time for a
redesign. PVLDB, 9(7):528–539, 2016.

[4] E. Cecchet, G. Candea, and A. Ailamaki. Middleware-based
database replication: the gaps between theory and practice.
In Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, pages 739–752. ACM,
2008.

[5] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears. Benchmarking cloud serving systems with ycsb. In
Proceedings of the 1st ACM symposium on Cloud computing,
pages 143–154. ACM, 2010.

[6] J. A. Cowling and B. Liskov. Granola: Low-overhead
distributed transaction coordination. In USENIX Annual
Technical Conference, volume 12, 2012.

[7] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels. Dynamo: amazon’s highly available
key-value store. In ACM SIGOPS operating systems review,
volume 41, pages 205–220. ACM, 2007.

[8] A. Dragojević, D. Narayanan, O. Hodson, and M. Castro.
Farm: fast remote memory. In Proceedings of the 11th
USENIX Conference on Networked Systems Design and
Implementation, pages 401–414. USENIX Association,
2014.

[9] A. Dragojević, D. Narayanan, E. B. Nightingale,
M. Renzelmann, A. Shamis, A. Badam, and M. Castro. No
compromises: distributed transactions with consistency,
availability, and performance. In Proceedings of the 25th
Symposium on Operating Systems Principles, pages 54–70.
ACM, 2015.

[10] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers of
replication and a solution. ACM SIGMOD Record,
25(2):173–182, 1996.

[11] X. Hu, M. Ogleari, J. Zhao, S. Li, A. Basak, and Y. Xie.
Persistence parallelism optimization: A holistic approach
from memory bus to rdma network. In Proceedings of the
51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2018.

[12] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. Zookeeper:
Wait-free coordination for internet-scale systems. In USENIX
annual technical conference, volume 8. Boston, MA, USA,
2010.

[13] InfiniBand Trade Association. Infiniband roadmap.
https://www.infinibandta.org/infiniband-roadmap/.
[Accessed: 2019-05-02].

[14] A. Kalia, M. Kaminsky, and D. G. Andersen. Using rdma
efficiently for key-value services. ACM SIGCOMM
Computer Communication Review, 44(4):295–306, 2015.

[15] A. Kalia, M. Kaminsky, and D. G. Andersen. Fasst: Fast,
scalable and simple distributed transactions with two-sided
(rdma) datagram rpcs. In OSDI, volume 16, pages 185–201,
2016.

[16] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin,

S. Zdonik, E. P. Jones, S. Madden, M. Stonebraker,
Y. Zhang, et al. H-store: a high-performance, distributed
main memory transaction processing system. PVLDB,
1(2):1496–1499, 2008.

[17] B. Kemme and G. Alonso. Database replication: a tale of
research across communities. PVLDB, 3(1-2):5–12, 2010.

[18] J. Kim, K. Salem, K. Daudjee, A. Aboulnaga, and X. Pan.
Database high availability using shadow systems. In
Proceedings of the Sixth ACM Symposium on Cloud
Computing, pages 209–221. ACM, 2015.

[19] T. Lahiri, M.-A. Neimat, and S. Folkman. Oracle timesten:
An in-memory database for enterprise applications. IEEE
Data Eng. Bull., 36(2):6–13, 2013.

[20] A. Lakshman and P. Malik. Cassandra: a decentralized
structured storage system. ACM SIGOPS Operating Systems
Review, 44(2):35–40, 2010.

[21] B. Li, Z. Ruan, W. Xiao, Y. Lu, Y. Xiong, A. Putnam,
E. Chen, and L. Zhang. Kv-direct: High-performance
in-memory key-value store with programmable nic. In
Proceedings of the 26th Symposium on Operating Systems
Principles, pages 137–152. ACM, 2017.

[22] J. Li, E. Michael, and D. R. Ports. Eris: Coordination-free
consistent transactions using in-network concurrency
control. In Proceedings of the 26th Symposium on Operating
Systems Principles, pages 104–120. ACM, 2017.

[23] P. MacArthur and R. D. Russell. A performance study to
guide rdma programming decisions. In High Performance
Computing and Communication & 2012 IEEE 9th
International Conference on Embedded Software and
Systems (HPCC-ICESS), 2012 IEEE 14th International
Conference on, pages 778–785. IEEE, 2012.

[24] H. Mahmoud, F. Nawab, A. Pucher, D. Agrawal, and
A. El Abbadi. Low-latency multi-datacenter databases using
replicated commit. PVLDB, 6(9):661–672, 2013.

[25] U. F. Minhas, S. Rajagopalan, B. Cully, A. Aboulnaga,
K. Salem, and A. Warfield. Remusdb: Transparent high
availability for database systems. The VLDB Journal,
22(1):29–45, Feb. 2013.

[26] R. Mistry and S. Misner. Introducing Microsoft SQL Server
2014. Microsoft Press, 2014.

[27] C. Mitchell, Y. Geng, and J. Li. Using one-sided {RDMA}
reads to build a fast, cpu-efficient key-value store. In
Presented as part of the 2013 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 13), pages 103–114, 2013.

[28] S. Mu, Y. Cui, Y. Zhang, W. Lloyd, and J. Li. Extracting
more concurrency from distributed transactions. In 11th
{USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 14), pages 479–494, 2014.

[29] S. Novakovic, Y. Shan, A. Kolli, M. Cui, Y. Zhang, H. Eran,
L. Liss, M. Wei, D. Tsafrir, and M. Aguilera. Storm: a fast
transactional dataplane for remote data structures. arXiv
preprint arXiv:1902.02411, 2019.

[30] D. Ongaro, S. M. Rumble, R. Stutsman, J. Ousterhout, and
M. Rosenblum. Fast crash recovery in ramcloud. In
Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles, pages 29–41. ACM, 2011.

[31] J. Ousterhout, A. Gopalan, A. Gupta, A. Kejriwal, C. Lee,
B. Montazeri, D. Ongaro, S. J. Park, H. Qin, M. Rosenblum,
et al. The ramcloud storage system. ACM Transactions on
Computer Systems (TOCS), 33(3):7, 2015.

[32] M. Poke and T. Hoefler. Dare: High-performance state
machine replication on rdma networks. In Proceedings of the

1649

https://www.rdmamojo.com/2013/06/08/tips-and-tricks-to-optimize-your-rdma-code/
https://www.rdmamojo.com/2013/06/08/tips-and-tricks-to-optimize-your-rdma-code/
https://www.infinibandta.org/infiniband-roadmap/

24th International Symposium on High-Performance Parallel
and Distributed Computing, pages 107–118. ACM, 2015.

[33] D. Qin, A. D. Brown, and A. Goel. Scalable replay-based
replication for fast databases. PVLDB, 10(13):2025–2036,
2017.

[34] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos,
N. Hachem, and P. Helland. The end of an architectural
era:(it’s time for a complete rewrite). In PVLDB, pages
1150–1160, 2007.

[35] M. Stonebraker and A. Weisberg. The voltdb main memory
dbms. IEEE Data Eng. Bull., 36(2):21–27, 2013.

[36] Y. Taleb, R. Stutsman, G. Antoniu, and T. Cortes. Tailwind:
fast and atomic rdma-based replication. In 2018 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 18), pages
851–863, 2018.

[37] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao, and
D. J. Abadi. Calvin: fast distributed transactions for
partitioned database systems. In Proceedings of the 2012
ACM SIGMOD International Conference on Management of
Data, pages 1–12. ACM, 2012.

[38] C. Wang, J. Jiang, X. Chen, N. Yi, and H. Cui. Apus: Fast

and scalable paxos on rdma. In Proceedings of the 2017
Symposium on Cloud Computing, pages 94–107. ACM,
2017.

[39] T. Wang, R. Johnson, and I. Pandis. Query fresh: Log
shipping on steroids. PVLDB, 11(4):406–419, 2017.

[40] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and
G. Alonso. Understanding replication in databases and
distributed systems. In Proceedings 20th IEEE International
Conference on Distributed Computing Systems, pages
464–474. IEEE, 2000.

[41] E. Zamanian, C. Binnig, T. Harris, and T. Kraska. The end of
a myth: Distributed transactions can scale. PVLDB,
10(6):685–696, 2017.

[42] E. Zamanian, J. Shun, C. Binnig, and T. Kraska. Chiller:
Contention-centric transaction execution and data
partitioning for fast networks. arXiv preprint
arXiv:1811.12204, 2018.

[43] Y. Zhang, J. Yang, A. Memaripour, and S. Swanson. Mojim:
A reliable and highly-available non-volatile memory system.
In ACM SIGARCH Computer Architecture News, volume 43,
pages 3–18. ACM, 2015.

1650

	Introduction
	High Availability in DBMSs
	Active-Passive Replication
	Active-Active Replication

	The Case for Replication with RDMA Networks
	Bottleneck Analysis
	Background for RDMA

	Active-Memory: RDMA-based Replication
	Concurrency Control and Replication Assumptions
	Overview
	Design Challenges
	Undo Log Buffers
	Replication Algorithm
	Step 1: Undo Log and In-place Update
	Step 2: Commit the Log Entries

	Fault Tolerance
	Recovery from Backup Failures
	Recovery from Primary Failures
	Recovery of Multi-Partition Transactions

	Evaluation
	Experiment Settings
	Setup
	Workload
	Implementation

	Single-Partition Transactions
	Multi-Partition Transactions
	Network Bandwidth
	Replication Factor
	Impact of Contention
	Read-Write Ratio

	Related Work
	Replication in Conventional Networks
	RDMA-based OLTP Systems and Replication

	Conclusions
	Acknowledgement
	References

