
Local Computation Algorithms for
Graphs of Non-constant Degrees

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation Levi, Reut, Ronitt Rubinfeld, and Anak Yodpinyanee. "Local
Computation Algorithms for Graphs of Non-Constant Degrees."
Algorithmica 77 4 (2017): 971-94.

As Published 10.1007/S00453-016-0126-Y

Publisher Springer Nature

Version Original manuscript

Citable link https://hdl.handle.net/1721.1/134527

Terms of Use Creative Commons Attribution-Noncommercial-Share Alike

Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/134527
http://creativecommons.org/licenses/by-nc-sa/4.0/

ar
X

iv
:1

50
2.

04
02

2v
1

 [
cs

.D
S]

 1
3

Fe
b

20
15

Local Computation Algorithms for Graphs of Non-Constant

Degrees

Reut Levi ∗ Ronitt Rubinfeld † Anak Yodpinyanee ‡

Abstract

In the model of local computation algorithms (LCAs), we aim to compute the queried part of
the output by examining only a small (sublinear) portion of the input. Many recently developed
LCAs on graph problems achieve time and space complexities with very low dependence on
n, the number of vertices. Nonetheless, these complexities are generally at least exponential
in d, the upper bound on the degree of the input graph. Instead, we consider the case where
parameter d can be moderately dependent on n, and aim for complexities with subexponential
dependence on d, while maintaining polylogarithmic dependence on n. We present:

• a randomized LCA for computing maximal independent sets whose time and space com-
plexities are quasi-polynomial in d and polylogarithmic in n;

• for constant ǫ > 0, a randomized LCA that provides a (1− ǫ)-approximation to maximum
matching whose time and space complexities are polynomial in d and polylogarithmic in
n.

∗Ècole Normale Supèrieure and Universitè Paris Diderot, France. E-mail: reuti.levi@gmail.com. Research
supported by NSF grants CCF-1217423 and CCF-1065125, and ISF grants 246/08 and 1536/14.

†CSAIL, MIT, Cambridge MA 02139 and the Blavatnik School of Computer Science, Tel Aviv University. E-mail:
ronitt@csail.mit.edu. Research supported by NSF grants CCF-1217423, CCF-1065125, CCF-1420692, and ISF
grant 1536/14.

‡CSAIL, MIT, Cambridge MA 02139. E-mail: anak@csail.mit.edu. Research supported by NSF grants CCF-
1217423, CCF-1065125, CCF-1420692, and the DPST scholarship, Royal Thai Government.

http://arxiv.org/abs/1502.04022v1

1 Introduction

In the face of massive data sets, classical algorithmic models, where the algorithm reads the entire
input, performs a full computation, then reports the entire output, are rendered infeasible. To
handle these data sets, the model of local computation algorithms (LCAs) has been proposed.
As defined in [RTVX11], these algorithms compute the queried part of the output by examining
only a small (sublinear) portion of the input. Let us consider the problem of finding a maximal
independent set (MIS) as an example. The algorithm A is given access to the input graph G, then
it is asked a question: “is vertex v in the MIS?” The algorithm then explores only a small portion
of G, and answers “yes” or “no.” The set of vertices {v : A answers “yes” on v} must indeed
form a valid MIS of G. LCAs have been constructed for many problems, including MIS, maximal
matching, approximate maximum matching, vertex coloring, and hypergraph coloring ([RTVX11,
ARVX12, MRVX12, MV13, EMR14a, RV14]). In our paper, we study MIS and approximate
maximum matching; these are fundamental graph problems, well-studied in many frameworks, and
moreover, tools and results for these problems have proven to be useful as building blocks for more
sophisticated and specialized problems in the field.

The LCA framework is motivated by the circumstances where we focus on computing a small,
specified portion of the output. This key characteristic of LCAs generalizes many other models from
various contexts. For instance, LCAs may take the form of local filters and reconstructors [CS06,
ACCL08, Bra08, KPS08, SS10, JR13, CGR13, LRR14]. Important applications include locally
decodable codes (e.g., [STV99]), local decompression [MSZ05, DLRR13], and locally computable
decisions for online algorithms and mechanism design [MRVX12, HMV14]. There are a number
of works on related models of local computation (e.g., [ACL06, BBC+12, ST13, OZ14]) as well as
lower bounds for the LCA framework and other models (e.g., [GS14]).

Many recently developed LCAs on graph problems achieve time and space complexities with
very low dependence on n, the number of vertices. Nonetheless, these complexities are at least
exponential in d, the upper bound on the degree of the input graph. While these papers often
consider d to be a constant, the large dependence on d may forbid practical uses of these algorithms.
In this work we consider the case where the parameter d can be moderately dependent on n, and
provide LCAs for complexities that have quasi-polynomial and even polynomial dependence on d,
while maintaining polylogarithmic dependence on n. As noted in [MRVX12], whether there exist
LCAs with polynomial dependence on d for these problems is an interesting open question. Our
paper answers this question for the approximate maximum matching problem in the affirmative,
and aims at providing techniques useful towards resolving other problems.

1.1 Related Work

Many useful techniques for designing LCAs originate from algorithms for approximating the solution
size in sublinear time. For example, if we wish to approximate the size of the minimum vertex cover
(VC), we may sample a number of vertices and check whether each of them belongs to the minimum
VC or not. The main difference, however, is that an LCA must be able to compute the answer to
every query, while an approximation algorithm is not required to produce a consistent answer for
every sample, and may use other properties of the problem to infer its answer. This paper makes
use of a number of common techniques from these approximation algorithms.

In our work we build on the Parnas-Ron reduction, proposed in their paper on approximating

1

the size of a minimum VC [PR07]. This reduction turns a k-round distributed algorithm into an
LCA by examining all vertices at distance up to k from the queried vertex, then simulating the
computation done by the distributed algorithm, invoking dO(k) queries to the input graph in total.
Using this technique, they obtain a 2-approximation for the size of a minimum VC (with ǫn additive
error) with query complexity dO(log(d/ǫ)), and a c-approximation for c > 2 using dO(log d/ǫ3) queries.
Marko and Ron later improve this result to a (2+ δ)-approximation with query complexity dO(log d)

[MR09]. Distributed algorithms for the MIS problem require more rounds, and consequently, a
similar reduction only yields an LCA with query and time complexities dO(d log d) log n in [RTVX11].

Another powerful technique for bounding the query and time complexities is the query tree
method from the Nguyen-Onak algorithm [NO08]. This method aims to convert global algorithms
that operate on the entire input into local algorithms that adaptively make queries when a new
piece of information is needed. To illustrate this approach, let us consider the MIS problem as
an example. Recall the sequential greedy algorithm where we maintain an initially empty set I,
then iterate through the vertex set in some order, adding each vertex to I if it does not have a
neighbor in I. Each vertex v will be in the resulting MIS if and only if none of v’s neighbors
that precede v in our order is already in the MIS. From this observation, we may create a local
simulation of this algorithm as follows: to determine whether v is in the MIS, we make recursive
queries to the preceding neighbors of v and check whether any of them is in the MIS. As we only
query preceding neighbors, the structure of our recursive queries form a query tree. Nguyen and
Onak apply this approach on a random order of vertices so that the size of the query tree, which
determines the time and query complexities, can be probabilistically bounded. This method is used
in [ARVX12, MRVX12, MV13, HMV14, RV14], giving query complexities with polylogarithmic
dependence on n for various problems. Unfortunately, the expected query tree size is exponential
in d, which is considered constant in these papers. For certain problems, a slight modification of
the Nguyen-Onak algorithm reduces the expected query tree size to O(d̄) [YYI12, ORRR12].This
gives algorithms with poly(d̄) query complexity for approximating the sizes of maximum matching
and minimum VC with multiplicative and additive errors. We build on these results in order to
obtain LCAs whose query and time complexities are polynomial in d.

Recently, a new method for bounding the query tree sizes using graph orientation is given in
[EMR14a] based on graph coloring, which improves upon LCAs for several graph problems. They
reduce the query complexity of their algorithm for the MIS problem to dO(d2 log d) log∗ n, giving the
lowest dependence on n currently known, as well as a new direction for developing deterministic
LCAs. This approach can also be extended back to improve distributed algorithms for certain cases
[EMR14b].

While all of these LCAs have complexities with exponential dependence on d for the problems
studied in this paper, there has been no significant lower bound. To the best of our knowledge,
the only lower bound is of Ω(d̄), which can be derived from the lower bound for approximation
algorithms for the minimum VC problem, given by Parnas and Ron [PR07].

1.2 Our Contribution and Approaches

This paper addresses the maximal independent set problem and the approximate maximum match-
ing problem. The comparison between our results and other approaches is given in table 1. Our
paper provides the first LCAs whose complexities are both quasi-polynomial and polynomial in
d and polylogarithmic in n for these problems, respectively. More concretely, when d is non-

2

Problem Citation Type Time Space

MIS

[RTVX11] randomized 2O(d log2 d) log n O(n)

[ARVX12] randomized 2O(d log2 d) log3 n 2O(d log2 d) log2 n

[EMR14a] deterministic 2O(d2 log2 d) log∗ n† none

[RV14] randomized
2O(d) log2 n 2O(d) log n log log n

2O(d) log n log log n 2O(d) log2 n

this paper randomized 2O(log3 d) log3 n 2O(log3 d) log2 n

Approximate
Maximum
Matching

[MV13] randomized O(log4 n)‡ O(log3 n)‡

[EMR14a] deterministic 2poly(d)poly(log∗ n)† none

this paper randomized poly{d, log n} poly{d, log n}
Table 1: The summary of complexities of various LCAs. For the approximate maximum matching problem,
ǫ is assumed to be constant. † indicates query complexity, when time complexity is not explicitly given in
the paper. ‡ indicates hidden dependence on d, which is at least 2O(d) but not explicitly known.

constant, previously known LCAs have complexities with polylogarithmic dependence on n only
when d = O(log log n). Our LCAs maintain this dependence even when d = exp(Θ((log log n)1/3))
for the MIS problem and d = poly(log n) for the approximate maximum matching problem.

1.2.1 Maximal Independent Set

We provide an LCA for computing a MIS whose time and query complexities are quasi-polynomial
in d. We construct a two-phase LCA similar to that of [RTVX11], which is based on Beck’s
algorithmic approach to Lovász local lemma [Bec91]. In the first phase, we find a large partial
solution that breaks the original graph into small connected components. The LCA for the first
phase is obtained by applying the Parnas-Ron reduction on distributed algorithms. The distributed
algorithm for the first phase of the MIS problem in [RTVX11] requires O(d log d) rounds to make
such guarantee. Ours are designed based on recent ideas from [BEPS12] so that O(poly(log d))
rounds suffice. As a result, after applying the Parnas-Ron reduction, the query complexity on the
first phase is still subexponential in d. Then, in the second phase, we explore each component and
solve our problems deterministically; the complexities of this phase are bounded by the component
sizes. By employing a technique from [ARVX12], we reduce the amount of space required by our
LCA so that it has roughly the same asymptotic bound as its time and query complexities. It is
worth mentioning that our LCA for the MIS problem may be extended to handle other problems
with reductions to MIS, such as maximal matching or (d + 1)-coloring, while maintaining similar
asymptotic complexities.

1.2.2 Approximate Maximum Matching

We provide an LCA for computing a (1−ǫ)-approximate maximum matching whose time and query
complexities are polynomial in d. Our algorithm locally simulates the global algorithm based on
Hopcroft and Karp’s lemma [HK73]. This global algorithm begins with an empty matching, then
for Θ(1/ǫ) iterations, augments the maintained matching with a maximal set of vertex-disjoint
augmenting paths of increasing lengths. Yoshida et al. show that this global algorithm has an

3

efficient local simulation in expectation on the queries and the random tapes [YYI12]. We derive
from their analysis that, on most random tapes, this simulation induces small query trees on most
vertices. From this observation, we construct an efficient two-phase LCA as follows. In the first
phase, we repeatedly check random tapes until we find a good tape such that the query trees for
most vertices are small. This test can be performed by approximating the number of vertices whose
query trees are significantly larger than the expected size through random sampling. In the second
phase, we simulate the aforementioned algorithm using the acquired random tape. On queries for
which the query trees are significantly large, we stop the computation and report that those edges
do not belong to the matching. Our good tape from the first phase limits the number of such edges,
allowing us to acquire the desired approximation with high probability.

2 Preliminaries

2.1 Graphs

The input graph G = (V,E) is a simple undirected graph with |V | = n vertices and a bound on
the degree d, which is allowed to be dependent on n. Both parameters n and d are known to the
algorithm. Let d̄ denote the average degree of the graph. Each vertex v ∈ V is represented as a
unique positive ID from [n] = {1, . . . , n}. For v ∈ V , let degG(v) denote the degree of v, ΓG(v)
denote the set of neighbors of v, and Γ+

G(v) = ΓG(V)∪{v}. For U ⊆ V , define Γ+
G(U) = ∪u∈UΓ

+
G(u).

The subscript G may be omitted when it is clear from the context.

We assume that the input graph G is given through an adjacency list oracle OG which answers
neighbor queries: given a vertex v ∈ V and an index i ∈ [d], the ith neighbor of v is returned if
i ≤ deg(v); otherwise, ⊥ is returned. For simplicity, we will also allow a degree query which returns
deg(v) when v is given; this can be simulated via a binary-search on O(log d) neighbor queries.

An independent set I is a set of vertices such that no two vertices in I are adjacent. An
independent set I is a maximal independent set if no other vertex can be added to I without
violating this condition.

A matching M is a set of edges such that no two distinct edges in M share a common endpoint.
A matching is a maximal matching if no other edge can be added to M out violating this condition.
Let V (M) denote the set of matched vertices, and |M | denote the size of the matching, defined to
be the number of edges in M . A maximum matching is a matching of maximum size.

2.2 Local Computation Algorithms

We adopt the definition of local computation algorithms from [RTVX11], in the context of graph
computation problems given an access to the adjacency list oracle OG.

Definition 1 A local computation algorithm A for a computation problem is a (randomized) al-
gorithm with the following properties. A is given access to the adjacency list oracle OG for the
input graph G, a tape of random bits, and local read-write computation memory. When given an
input (query) x, A must compute an answer for x. This answer must only depend on x, G, and
the random bits. The answers given by A to all possible queries must be consistent; namely, all
answers must constitute some valid solution to the computation problem.

4

The complexities of an LCA A can be measured in various different aspects, as follows.

• The query complexity is the maximum number of queries that A makes to OG in order to
compute an answer (to the computation problem) for any single query.

• The time complexity is the maximum amount of time that A requires to compute an answer
to any single query. We assume that each query to OG takes a constant amount of time.

• The space complexity is total size of the random tape and the local computation memory
used by A over all queries.

• The success probability is the probability that A consistently answers all queries.

In this paper, we refer to the time and query complexities rather exchangeably: while the time
complexity may be much larger than the query complexity in certain cases, for all LCAs considered
here, the time complexities are only roughly a factor of O(log n) larger than the query complexities.
The space complexity of our LCAs are dominated by the size of the random tape, so we often refer to
the space complexity as seed length instead. As for the success probability, we consider randomized
LCAs that succeed with high probability ; that is, the success probability can be amplified to reach
1− n−c for any positive constant c without asymptotically increasing other complexities.

2.3 Parnas-Ron Reduction

Some of our algorithms apply the reduction from distributed algorithms to LCAs proposed by
Parnas and Ron [PR07]. This reduction was originally created as a subroutine for approximation
algorithms. Suppose that when a distributed algorithm A is executed on a graph G with degree
bounded by d, each processor (vertex) v is able to compute some function f within k communication
rounds under the LOCAL model.1 Then this function f must only depend on the subgraph of G
induced by vertices at distance at most k from v. We can then create an LCA A′ that computes f
by simulating A. Namely, A′ first queries the oracle to learn the structure of this subgraph, then
makes the same decision on this subgraph as A would have done. In total, this reduction requires
dO(k) queries to OG.

2.4 Construction of Random Bits and Orderings

While our LCAs rely on random bits and orderings, we do not require all bits or orderings to be
truly random: LCAs tolerate some dependence or bias, as they only access a small portion of such
random instance in each query. We now provide some definitions and theorems we will use to
construct our LCAs.

2.4.1 Random Bits

We will use the following construction to generate k-wise independent random bits from the seed
(truly random bits) given on the random tape.

Theorem 1 ([ABI86]) For 1 ≤ k ≤ m, there is a construction of k-wise independent random bits
x1, . . . , xm with seed length O(k logm). Furthermore, for 1 ≤ i ≤ m, each xi can be computed in
space O(k logm).

1In the LOCAL model, we optimize the number of communication rounds without limiting message size; in each
round, each vertex may send an arbitrarily large message to each of its neighbors.

5

Note here that each random bit generated from this construction is either 0 or 1 with equal prob-
ability. Nonetheless, for any positive integer q, we may generate a random bit that is 1 with
probability exactly 1/q using O(log q) such truly random bits.

2.4.2 Random Orderings

For n ≥ 1, let Sn denote the set of all permutations on [n]. Some of our LCAs make use of random
permutations of the vertex set. Generating such uniformly random permutations requires Ω(n log n)
truly random bits. Nonetheless, we apply the method from [ARVX12] to construct good random
permutations for our LCAs.

We generate our permutations by assigning a random value r(v) to each element v, and rank
our elements according to these values. More formally, an ordering of [n] is an injective function
r : [n] → R where R is some totally ordered set. Let v1, . . . , vn be the elements of [n] arranged
according to their values mapped by r; that is, r(v1) < · · · < r(vn). We call the permutation
π = (v1, . . . , vn) of [n] corresponding to this ordering the projection of r onto Sn. We may refer to
r(v) as the rank of v. In our construction, the size of the range of R is polynomial in n.

A random ordering D of [n] is a distribution over a family of orderings on [n]. For any integer
2 ≤ k ≤ n, we say that a random ordering D is k-wise independent if for any subset S ⊆ [n] of size
k, the restriction of the projection onto Sn of D over S is uniform over all the k! possible orderings
among the k elements in S. A random ordering D′ is ǫ-almost k-wise independent if there exists
some k-wise independent random ordering D such that the statistical distance between D and D′

is at most ǫ.

We shall use the following construction from Alon et al. [ARVX12].

Theorem 2 ([ARVX12]) Let n ≥ 2 be an integer and let 2 ≤ k ≤ n. Then there is a construction
of (1/n2)-almost k-wise independent random ordering over [n] whose seed length is O(k log2 n).

3 Maximal Independent Set

3.1 Overview

Our algorithm consists of two phases. The first phase of our algorithm computes a large MIS, using
a variation of Luby’s randomized distributed algorithm [Lub86]. We begin with an initially empty
independent set I, then repeatedly add more vertices to I. In each round, each vertex v tries to
put itself into I with some probability. It succeeds if none of its neighbors also tries to do the same
in that round; in this case, v is added to I, and Γ+(v) is removed from the graph.

By repeating this process with carefully chosen probabilities, we show that once the first phase
terminates, the remaining graph contains no connected component of size larger than d4 log n with
high probability. This phase is converted into an LCA via the Parnas-Ron reduction. Lastly, in
the second phase, we locally compute an MIS of the remaining graph by simply exploring the
component containing the queried vertex.

6

3.2 Distributed Algorithm - Phase 1

The goal of the first phase is to find an independent set I such that removing Γ+(I) breaks G into
components of small sizes. We design our variation of Luby’s algorithm based on Beck’s algorithmic
approach to Lovász local lemma [Bec91]; this approach has been widely applied in many contexts
(e.g., [Alo91, Kel93, RTVX11, BEPS12]). We design our algorithm based on the degree reduction
idea from [BEPS12].2 Our algorithm turns out to be very similar to the Weak-MIS algorithm
from a recent paper by Chung et al. [CPS14]. We state their version, given in Algorithm 1, so that
we may cite some of their results.

Let us say that a vertex v is active if v /∈ Γ+(I); otherwise v is inactive. As similarly observed
in [Pel00], applying a round of Luby’s algorithm with selection probability 1/(d + 1) on a graph
with maximum degree at most d makes each vertex of degree at least d/2 inactive with constant
probability. To apply this observation, in each iteration, we first construct a graph G′ of active
vertices. Next, we apply Luby’s algorithm so that each vertex of degree at least d/2 becomes
inactive with constant probability. We then remove the remaining high-degree vertices from G′

(even if they may still be active). As the maximum degree of G is halved, we repeat this similar
process for ⌈log d⌉ stages until G′ becomes edgeless, where every vertex can be added to I. Since
each vertex becomes high-degree with respect to the maximum degree of G′ at some stage, each
iteration gives every vertex a constant probability to become inactive.

Algorithm 1 Chung et al.’s Weak-MIS algorithm

1: procedure Weak-MIS(G, d)
2: I ← ∅ ⊲ begin with an empty independent set I
3: for iteration i = 1, . . . , c1 log d do ⊲ c1 is a sufficiently large constant
4: G′ ← G[V \ Γ+(I)] ⊲ subgraph of G induced by active vertices
5: for stage j = 1, . . . , ⌈log d⌉ do
6: Vj ← {v ∈ V (G′) : degG′(v) ≥ d/2j} ⊲ vertices with degree ≥ half of current max.
7: each v ∈ V (G′) selects itself with probability pj = 1/(d

2j−1 + 1) ⊲ Luby’s algorithm

8: if v is the only vertex in Γ+
G′(v) that selects itself then

9: add v to I and remove Γ+
G′(v) from G′

10: remove Vj from G′ ⊲ remove high-degree vertices

11: add V (G′) to I ⊲ add lated vertices in G′ to I

12: return I

Chung et al. use Weak-MIS to construct an independent set such that the probability that
each vertex remains active is only 1/poly(d) [CPS14]. We cite the following useful lemma that
captures the key idea explained earlier. The proof of this lemma is included in Appendix A.

Lemma 1 ([CPS14]) In Algorithm 1, if v ∈ Vj , then v remains active after stage j with probability
at most p for some constant p < 1.

Observe that for v to remain active until the end of an iteration, it must be removed in step 10
due to its high degree. (If v were removed in line 9 or line 11, then v would have become inactive

2Applying a similar reduction on the unmodified version gives an LCA with complexities 2O(log3 d+log d log log n).

7

since either v or one of its neighbors is added to I.) Therefore, v must belong to one of the sets
Vj . So, each vertex may remain active throughout the iteration with probability at most p. After
Ω(log d) iterations, the probability that each vertex remains active is only 1/poly(d), as desired.

Now we follow the analysis inspired by that of [BEPS12] to prove the guarantee on the maximum
size of the remaining active components. Consider a set S ⊆ V such that distG(u, v) ≥ 5 for every
distinct u, v ∈ S. We say that S is active if every v ∈ S is active. As a generalization of the claim
above, we show the following lemma.

Lemma 2 Let S ⊆ V be such that distG(u, v) ≥ 5 for every distinct u, v ∈ S, then S remains
active until Weak-MIS terminates with probability at most d−Ω(|S|).

Proof: First let us consider an individual stage. Suppose that S is active at the beginning of
this stage. By Lemma 1, each vertex v ∈ S ∩ Vj remains active after this stage with probability
at most p. Notice that for each round of Luby’s algorithm, whether v remains active or not only
depends on the random choices of vertices within distance 2 from v. Since the vertices in S are at
distance at least 5 away from one another, the events for all vertices in S are independent. Thus,
the probability that S remains active after this stage is at most p|S∩Vj|.

Now we consider an individual iteration. Suppose that S is active at the beginning of this
iteration. By applying an inductive argument on each stage, the probability that S remains active

at the end of this iteration is at most p
∑⌈log d⌉

j=1 |S∩Vj |. Recall that for S to remain active after this

iteration, every v ∈ S must belong to some set Vj . So,
∑⌈log d⌉

j=1 |S ∩ Vj| = |S|. Thus, S remains
active with probability exp(−Ω(|S|)).

Lastly, we apply the inductive argument on each iteration to obtain the desired bound.

Now we are ready to apply Beck’s approach to prove the upper bound on the maximum size of
the remaining active components ([Bec91], see also [RTVX11]).

Theorem 3 Weak-MIS(G, d) computes an independent set I of an input graph G within O(log2 d)
communication rounds, such that the subgraph of G induced by active vertices contains no connected
component of size larger than d4 log n with probability at least 1− 1/poly(n).

Proof: We provide a proof sketch of this approach. Let T be a tree embedded on the distance-5
graph, defined as (V, {(u, v) : distG(u, v) = 5}), such that distG(u, v) ≥ 5 for every distinct u, v ∈
V (T). By Lemma 2, the probability that its vertex set S remains active is d−Ω(s), where s = |S|.
It can be shown combinatorially that there are at most n(4d5)s distinct trees of size s embedded
on the distance-5 graph (for more details, see the proof of Lemma 4.6 in [RTVX11]). Therefore,
the expected number of such trees whose vertex sets remain active is at most n(4d5)s · d−Ω(s). For
s = log n, this quantity is bounded above by 1/poly(n). By Markov’s inequality, all such sets S are
inactive with probability at least 1− 1/poly(n).

Observe that any connected subgraph of G of size at least d4 log n must contain some set S
satisfying the aforementioned condition. Thus, the probability that any such large set remains
active after Weak-MIS terminates is also bounded above by 1/poly(n).

3.3 Constructing the LCA - Phase 1

We now provide the Parnas-Ron reduction of Weak-MIS in Algorithm 1 into an LCA. Let us start
with a single stage, given as procedure LC-MIS-Stage in Algorithm 2. The given parameters are

8

the graph G′ (via oracle access), the degree bound d, the queried vertex v, the iteration number i
and the stage number j. Given a vertex v, this procedure returns one of the three states of v at
the end of iteration i, stage j:

• YES if v ∈ I (so it is removed from G′)
• NO if v /∈ I and it is removed from G′

• ⊥ otherwise, indicating that v is still in G′

Algorithm 2 LCA of Phase 1 for a single stage of Weak-MIS

1: procedure LC-MIS-Stage(OG′
, d, v, i, j)

2: if j = 0 then return ⊥ ⊲ every vertex is initially in G′

3: if LC-MIS-Stage(OG′
, d, v, i, j − 1) 6= ⊥ then

4: return LC-MIS-Stage(OG′
, d, v, i, j − 1) ⊲ v is already removed from G′

5: for each u within distance 2 from v on G′ do ⊲ check the status of every vertex near v
6: if LC-MIS-Stage(OG′

, d, u, i, j − 1) = ⊥ then
7: status(u)← removed
8: else
9: if B(u, i, j) = 1 then status(u)← selected ⊲ B(u, i, j) = 1 means u chooses itself

10: else status(u)← not selected

11: if status(v) = selected AND ∀u ∈ ΓG′(v): status(u) 6= selected then
12: return YES ⊲ v is added to I
13: if status(v) = not selected then
14: if ∃u ∈ ΓG′(v): status(u) = selected AND ∀w ∈ ΓG′(u): status(w) 6= selected then
15: return NO ⊲ a neighbor u of v is added to I, so v is removed

16: if |{u ∈ ΓG′(v) : status(u) 6= removed}| ≥ d/2j then
17: return NO ⊲ v is removed due to its high degree

18: return ⊥ ⊲ v remains in G′

For simplicity, we assume that the local algorithm has access to random bits in the form of a
publicly accessible function B : V × [c1 log d]× [⌈log d⌉]→ {0, 1} such that B(v, i, j) returns 1 with
the selection probability pj (from Algorithm 1, line 7) and returns 0 otherwise. This function can
be replaced by a constant number of memory accesses to the random tape, and we will explore
how to reduce the required amount of random bits in Section 3.5. Note also that we are explicitly
giving the oracle OG′

as a parameter rather than the actual graph G′. This is because we will
eventually simulate oracles for other graphs, but we never concretely create such graphs during
the entire computation. Observe that each call to LC-MIS-Stage on stage j invokes up to O(d2)
calls on stage j − 1. Simulating all stages by invoking this function with j = ⌈log d⌉ translates to
dO(log d) queries to the the base level j = 0.

Next we give the LCA LC-MIS-Iteration for computing a single iteration in Algorithm 3.
The parameters are similar to that of LC-MIS-Stage, but the return values are slightly different:

• YES if v ∈ I (so it is inactive)
• NO if v ∈ Γ+

G(I) (so it is inactive)
• ⊥ otherwise, indicating that v is still active

In case v is still active by the end of iteration i − 1, we must simulate iteration i using LC-MIS-

Stage. We must return YES if v ∈ I (line 7 of Algorithm 3); which may occur in two cases. It

9

can be added to I in some stage, making LC-MIS-Stage returns YES (corresponding to line 9 of
Algorithm 1). It may also remain in G′ through all iterations, making LC-MIS-Stage return ⊥;
v is then added to I because it is isolated in G′ (line 11 of Algorithm 1).

Algorithm 3 LCA of Phase 1 for a single iteration of Weak-MIS

1: procedure LC-MIS-Iteration(OG, d, v, i)
2: if i = 0 then return ⊥ ⊲ I is initially empty
3: if LC-MIS-Iteration(OG, d, v, i − 1) 6= ⊥ then
4: return LC-MIS-Iteration(OG, d, v, i − 1) ⊲ v is already inactive

5: OG′
← oracle for the subgraph induced by {u : LC-MIS-Iteration(OG, d, u, i − 1) = ⊥}

6: if LC-MIS-Stage(OG′
, d, v, i, ⌈log d⌉) 6= NO then

7: return YES ⊲ v is added to I in some stage (YES) or at the end (⊥)
8: else if ∃u ∈ ΓG(v): LC-MIS-Stage(OG′

, d, u, i, ⌈log d⌉) 6= NO then
9: return NO ⊲ a neighbor of u of v is added to I

10: return ⊥ ⊲ v is still active

To implement this LCA, we must simulate an adjacency list oracle for G′ using the given
oracle for G, which can be done as follows. For a query on vertex v, we call LC-MIS-

Iteration(OG, d, u, i − 1) on all vertices u at distance at most 2 away from v. This allows us
to determine whether each neighbor of v is still active at the beginning of iteration i, as well as
providing degree queries. We then modify the ordering of the remaining neighbors (by preserving
the original ordering, for example) to consistently answer neighbor queries. That is, OG′

can be
simulated through at most O(d2) function calls of the form LC-MIS-Iteration(OG, d, u, i − 1).

Using this subroutine, the LCA LC-MIS-Phase1 for Weak-MIS can be written compactly as
given in Algorithm 4. Via a similar inductive argument, we can show that each call to LC-MIS-

Phase1 translates to dO(log2 d) = 2O(log3 d) calls to the original oracle OG. The running time for the
LCA is clearly given by the same bound. The memory usage is given by the amount of random bits
of B, which is O(n log2 d). We summarize the behavior of this LCA through the following lemma.

Lemma 3 LC-MIS-Phase1 is a local computation algorithm that computes the distributed
Weak-MIS algorithm with time complexity 2O(log3 d) and space complexity O(n log2 d).

Algorithm 4 LCA of Phase 1 (Weak-MIS)

1: procedure LC-MIS-Phase1(OG, d, v)
2: return LC-MIS-Iteration(OG, d, v, c1 log d)

3.4 Constructing the LCA - Phase 2 and the Full LCA

Let G′′ be graph G induced by active vertices after Weak-MIS terminates. By Theorem 3, with
high probability, G′′ contains no component of size exceeding d4 log n. Therefore, to determine
whether an active vertex v is in the MIS, we first apply a breadth-first search until all vertices
in C(v), the component containing v, are reached. Then we compute an MIS deterministically

10

Algorithm 5 LCA of Phase 2

1: procedure LC-Phase2(OG′′
, d, v)

2: breadth-first search for d4 log n steps on G′′ to find Cv

3: if |Cv| > d4 log n then report ERROR ⊲ only occurs with probability 1/poly(n)
4: deterministically compute an MIS ICv of Cv

5: if v ∈ ICv then return YES
6: else return NO

and consistently (by choosing the lexicographically first MIS, for instance). This procedure is
summarized as LC-Phase2 in Algorithm 5.

The algorithm only reports ERROR when the component size exceeds the bound from Theorem
3. Clearly, a call to LC-Phase2 makes at most poly(d) log n queries to OG′′

in total. The lexi-
cographically first maximal independent set of Cv can be computed via a simple greedy algorithm
with O(d · |Cv|) time complexity. Overall, both time and query complexities are poly{d, log n}.

Combining both phases, we obtain the LCA LC-MIS for computing an MIS as given in Algo-
rithm 6. We now prove the following theorem.

Algorithm 6 LCA for computing a maximal independent set

1: procedure LC-MIS(OG, d, v)
2: if LC-MIS-Phase1(OG, d, v) 6= ⊥ then
3: return LC-MIS-Phase1(OG, d, v) ⊲ v is already inactive

4: OG′′
← oracle for the subgraph induced by {u : LC-MIS-Phase1(OG, d, u) = ⊥}

5: return LC-MIS-Phase2(OG′′
, d, v)

Theorem 4 There exists a randomized local computation algorithm that computes a maximal in-
dependent set of G with time complexity 2O(log3 d) log n and space complexity O(n log2 d).

Proof: To obtain the time complexity, recall from Lemma 3 that each call to LC-Phase1 can be
answered within 2O(log3 d) time using 2O(log3 d) queries to OG. Thus the adjacency list oracle OG′′

can be simulated with the same complexities. The LCA for Phase 2 makes poly(d) log n queries

to OG′′
, resulting in 2O(log3 d) log n total computation time and queries. The required amount of

space is dominated by the random bits used in Phase 1. The algorithm only fails when it finds
a component of size larger than d4 log n, which may only occur with probability 1/poly(n) as
guaranteed by Theorem 3.

3.5 Reducing Space Usage

In this section, we directly apply the approach from [ARVX12] to reduce the amount of random
bits used by our LCA, thus proving the following theorem.

Theorem 5 There exists a randomized local computation algorithm that computes a maximal in-
dependent set of G with ra seed of length 2O(log3 d) log2 n and time complexity 2O(log3 d) log3 n.

11

Proof: Observe that the MIS algorithm in Theorem 4 constructed throughout this section does
not require fully independent random bits in function B. Our algorithm can answer a query for any
vertex v by exploring up to q = 2O(log3 d) log n vertices in total. So, random bits used by vertices
not explored by a query do not affect our answer. One bit is used by each vertex in each round
of Phase 1, and thus we only create b = O(log2 d) random bits for each vertex. Therefore, out of
O(n log2 d) bits from function B, only q · b bits are relevant for each query.

To generate random bits for function B, we will apply Theorem 2.4.2. As we may require bits
of function B to be 1 with probability as low as 1/(d + 1), we will need up to ⌈log d⌉ bits from
this construction to obtain one bit for function B. So in our case, we have k = ⌈log d⌉ · q · b =

2O(log3 d) log n and m = ⌈log d⌉·O(n log2 d) = O(n log3 d). Thus the amount of space can be reduced

to O(k logm) = 2O(log3 d) log n · log(n log3 d) = 2O(log3 d) log2 n. Similarly, the required amount of

time for computing each random bit becomes 2O(log3 d) log2 n.

3.6 Other Remarks

The proposed LCA for the maximal independent set problem can be used as a building block for
other problems. For example, a (d+1)-coloring can be computed by finding a maximal independent
set of G×Kd+1 where Kd+1 is a clique of size d+1, resulting in an LCA within the same asymptotic
complexities (see also [Lin92]).

We may apply our MIS algorithm to the line graph L(G) in order to compute a maximal
matching on G within the same asymptotic complexities as Theorem 5. Nonetheless, Barenboim
et al. provide a distributed routine for computing a large matching that yields a similar bound as
Theorem 3 that requires only O(log d) rounds [BEPS12]. We apply the Parnas-Ron reduction on
their algorithm as similarly done in Section 3 to obtain the following theorem, where the dependence
on d is reduced from 2O(log3 d) to 2O(log2 d). Additional details for this result can be found in
Appendix B.

Theorem 6 There exists a randomized local computation algorithm that computes a maximal
matching of G with seed of length 2O(log2 d) log2 n and time complexity 2O(log2 d) log3 n.

4 Approximate Maximum Matching

4.1 Overview

In this section, we aim to construct an LCA that provides a (1 − ǫ)-approximation to maximum
matching. To do so, we first address the simpler problem of computing a (1− ǫ)-approximation to
MIS. We present this LCA because it allows us to explain our LCA for the approximate maximum
matching problem in a much clearer manner, as they share both their main principles and the two-
phase structure. Moreover, this LCA is useful as a subroutine for other problems. For example, an
approximation to MIS of the line graph L(G) readily yields a (1/2− ǫ)-approximation to maximum
matching of G.

12

4.2 LCA for Computing an Approximate Maximal Independent Set

We now describe an LCA that provides a (1 − ǫ)-approximation to MIS. More specifically, with
high probability, the set of vertices Ĩ that our LCA answers YES must be a subset of some maximal
independent set I satisfying |Ĩ| ≥ (1 − ǫ)|I|. Our algorithm is based on a local simulation of the
classical greedy algorithm for computing an MIS. This greedy algorithm iterates over the vertex
set according to some arbitrary order and adds a vertex to the constructed independent set if and
only if none of its neighbors has been added previously.

Algorithm 7 summarizes the local simulation of the greedy algorithm as suggested by Nguyen
and Onak and further analyzed by Yoshida et al. [NO08, YYI12]. In addition to the adjacency
list oracle OG and the queried vertex v, LS-MIS also receives as an input a permutation π on the
vertices. The set of vertices v such that LS-MIS(OG, π, v) returns YES is the lexicographically first
MIS according to π, which is also the MIS outputted by the greedy algorithm when the vertices
are iterated in this order.

Algorithm 7 Local simulation of the greedy MIS algorithm

1: procedure LS-MIS(OG, π, v)
2: query OG for all neighbors of v
3: let v1, . . . , vk be the neighbors of v sorted according to π
4: for i = 1, . . . , k do
5: if vi precedes v in π then
6: compute LS-MIS(OG, π, vi)
7: if LS-MIS(OG, π, vi) = YES then return NO

8: return YES

We now give an overview of the construction of our LCA. From the analysis of Yoshida et al. we
obtain that in expectation over the queries and the random permutations, the query complexity
of Algorithm 7 is polynomial in d, the degree bound [YYI12]. More formally, let RG

π (v) denote
the number of (recursive) calls to LS-MIS during the evaluation of LS-MIS(OG, π, v). This result
from Yoshida et al. can be succinctly stated as follows.

Theorem 7 ([YYI12]) For any graph G = (V,E) with n vertices and m edges,

Eπ∈Sn,v∈V [R
G
π (v)] ≤ 1 +

m

n
.

However, the query complexity of an LCA is determined by the maximum number of queries
invoked in order to answer any single query, so this expected bound does not readily imply an
efficient LCA. We may alter Algorithm 7 so that it computes an independent set that is relatively
large but not necessarily maximal as follows. If a query on a vertex v recursively invokes too many
other queries, then the simulation is terminated and the algorithm immediately returns NO, i.e.,
that v does not belong to our independent set. We show that Theorem 7 implies that for at least a
constant fraction of the orderings, this modification yields a good approximation ratio. Nonetheless,
an LCA must succeed with high probability rather than only a constant probability. We resolve
this issue by repeatedly sampling permutations until we obtain a sufficiently good one.

While generating a truly random permutation π requires Ω(n) random bits, we show that we
may generate sufficiently good permutations by projecting random orderings from a distribution of

13

small entropy onto Sn. Using the construction from Alon et al. as stated in Theorem 2, it follows
that a small seed whose size is polylogarithmic in n suffices for our algorithm. From these outlined
ideas, we are now ready to prove the following result.

Theorem 8 There exists a randomized (1−ǫ)-approximation local computation algorithm for max-
imal independent set with random seed of length O((d2/ǫ2) log2 n log log n) and query complexity
O((d4/ǫ2) log2 n log log n).

Proof: Our algorithm builds on Algorithm 7 and consists of two phases as follows. The input of
the algorithm is a random seed (tape) s and a queried vertex v ∈ V . In the first phase, using s
and graph queries, we find a good permutation π = πG(s) over the vertex set. Note that this good
permutation π is dependent only on s and G, and therefore must be the identical for any query.
Then in the second phase, we decide whether v belongs to our independent set using the altered
local simulation that limits the number of invoked queries.

Formally, we say that π ∈ Sn is good if Prv∈V
[

RG
π (v) > ℓ

]

≤ γ where γ = ǫ/d, ℓ = 6t/ǫ and
t = m/n + 1. Let δ denote the error probability. We claim that, given access to Dℓ, an ℓ-wise
independent ordering constructed from s, Algorithm 8 computes a good permutation π with the
desired success probability. This algorithm checks each constructed permutation πi whether it is
good by approximating the fraction pπi

of vertices whose induced query trees have size exceeding ℓ.
The set S of sampled vertices is sufficiently large that we obtain a good approximation p̃πi

of pπi
,

and note that checking whether RG
πi
(v) > ℓ can be accomplished by simply simulating Algorithm 7

until ℓ recursive calls are invoked.

Algorithm 8 Phase 1 of the LCA for the approximate MIS algorithm (finding a good ordering)

1: procedure LC-AMIS-Phase1(OG, s)
2: let S be a multi-set of Θ(log(1/δ) log log(1/δ)/γ2) vertices chosen uniformly at random
3: for i = 1, . . . ,Θ(log(1/δ)) do
4: let πi be the projection of an ordering independently drawn from Dℓ

5: let p̃πi
denote the fraction of vertices v ∈ S for which RG

πi
(v) > ℓ

6: if p̃πi
< 3γ/4 then

7: return π = πi
8: report ERROR

Now we show that with probability at least 1 − δ, Algorithm 8 finds a good π. Let Hπ,v be
the indicator variable such that Hπ,v = 1 when RG

π (v) > ℓ, and Hπ,v = 0 otherwise. By Markov’s
inequality and Theorem 7 it holds that

Prπ∈Sn,v∈V [R
G
π (v) > ℓ] ≤ γ/6 .

That is,
Ev∈V [Eπ∈Sn [Hπ,v]] ≤ γ/6 . (1)

Next we aim to justify that we may obtain our random permutations by projecting orderings
from Dℓ instead of drawing directly from Sn. More specifically, we claim that for a fixed v, Hπ,v is
identically distributed regardless of whether π is drawn uniformly from Sn or obtained by projecting
an ordering r drawn from Dℓ. To establish this claim, consider the evaluation of Hπ,v by a decision

14

tree TG,v, where each inner vertex of TG,v represents a query to the rank r(u) identified with the
queried vertex u ∈ V . In order to evaluate Hπ,v we proceed down the tree TG,v according to π
until we reach a leaf. After at most ℓ queries to π, the value of the indicator Hπ,v is determined.
Therefore, the depth of TG,v is at most ℓ, and each leaf is associated with either 0 or 1. In other
words, each leaf is identified with a sequence of at most ℓ vertices and their corresponding ranks.

Let s1 and s2 be a pair of leaves such that: (1) s1 and s2 are identified with the same sequence
of vertices, v1, . . . , vk; and (2) the ranks of v1, . . . , vk in s1 and s2 induce the same permutation on
v1, . . . , vk. Clearly the values corresponding to leaves s1 and s2 are identical. Therefore, our claim
follows from the definition of ℓ-wise independent ordering. Thus, from equation (1), we obtain

Ev∈V [Er∈Dℓ
[Hπ,v]] ≤ γ/6 . (2)

Next, we say that π ∈ Sn is very good if Prv∈V
[

RG
π (v) > ℓ

]

≤ γ/2. By Markov’s inequality and
Equation (2), an ordering r drawn from Dℓ induces a very good permutation with probability at
least 2/3. Therefore an ordering r drawn according to a distribution that is (1/n2)-almost ℓ-wise
independent random ordering over [n] induces a very good permutation with probability at least
2/3 − 1/n2. So by generating Θ(log(1/δ)) permutations πi’s from such random ordering, with
probability greater than 1− δ/2, at least one of them must be very good.

Let E1 denote the event that none of the selected πi’s is very good, so E1 occurs with probability
smaller than δ/2. Let E2 denote the event that there exists a selected πi such that |pπi

−p̃πi
| > γn/4.

By Chernoff’s bound and the union bound, E2 occurs with probability at most δ/2. Given that E2

does not occur and that p̃πi
≤ 3γ/4, it follows that πi is good; i.e., pπi

≤ γ. Therefore, given that
both E1 and E2 do not occur, Algorithm 8 indeed finds a good ordering. By the union bound, we
obtain a good ordering π with probability at least 1− δ, as desired.

Theorem 2 implies that a random seed of length O((d̄/ǫ) log2 n) suffices in order to obtain a
(1/n2)-almost ℓ-wise independent random ordering over [n]. Since Algorithm 8 draws O(log(1/δ))
such random orderings, overall a seed of length O((d̄/ǫ) log(1/δ) log2 n) suffices. Additionally, we
need O((d2/ǫ2) log(1/δ) log log(1/δ) log n) more random bits to determine the set S of sampled
vertices for evaluating p̃π. For Algorithm 8 to succeed with high probability, it suffices to substitute
δ = 1/poly(n), which yields the seed length claimed in the theorem statement.

Finally, we now turn to describe the second phase of the algorithm. Let Iπ denote the maximal
independent set greedily created by π ∈ Sn, as defined by Algorithm 7. Consider the following
LCA Lπ for a good permutation π. On query v, Lπ simulates the execution of LS-MIS(OG, π, v)
until it performs up to ℓ recursive calls to LS-MIS. If LS-MIS(OG, π, v) terminates within ℓ steps,
Lπ returns the answer given by LS-MIS(OG, π, v). Otherwise it simply returns NO.

Let I ′π = Iπ ∩ V ′
π where V ′

π = {v : RG
π (v) ≤ ℓ}, and notice that Lπ answers YES precisely on

I ′. Since π is good, we have that V ′
π ≥ (1 − γ)n and so |I ′π| ≥ |Iπ| − γn. Since for any maximal

independent set I it holds that |I| ≥ n/d, we obtain |I ′π| ≥ (1− ǫ)|Iπ|. In other words, Lπ computes
a (1− ǫ)-approximate MIS, as required.

4.3 LCA for Computing an Approximate Maximum Matching

Now we turn to describe an LCA that provides a (1 − ǫ)-approximation to maximum matching.
Our LCA locally simulates the global algorithm based on the following theorem by Hopcroft and
Karp:

15

Lemma 4 [HK73] Let M and M∗ be a matching and a maximum matching in G. If the shortest
augmenting path with respect to M has length 2i− 1, then |M | ≤ (1− 1/i)|M∗|.

This global algorithm is used in the many contexts, including distributed computing and ap-
proximation (e.g., [LPSP08, NO08, YYI12]). This algorithm can be summarized as follows. Let
M0 be an empty matching, and let k = ⌈1/ǫ⌉. We repeat the following process for each i = 1, . . . , k.
Let Pi denote the set of augmenting paths of length 2i − 1 with respect to Mi−1. We compute a
maximal set Ai of vertex-disjoint augmenting paths, then augment these paths to Mi−1 to obtain
Mi; that is, we set Mi = Mi−1∆Ai where ∆ denotes the symmetric difference between two sets.
As a result, Mk will be a (1− ǫ)-approximate maximum matching.

The local simulation of this algorithm uses the formulaMi = Mi−1∆Ai to determine whether the
queried edge e is in Mk in a recursive fashion. To determine Ai, consider the following observation.
Let Hi = (Pi, Ei) be the graph whose vertex set corresponds to the augmenting paths, and (u, v) ∈
Ei if and only if the augmenting paths u and v share some vertex. Ai is a maximal set of vertex-
disjoint augmenting paths; that is, Ai is an MIS of Hi. In order to compute locally whether a path
is in Ai or not, Yoshida et al. apply Algorithm 7 on Hi. They show that in expectation over the
queries and the random permutations of paths in P1, . . . , Pk, the query complexity is polynomial
in d. More formally, let ~π = (π1, . . . , πk) where πi is a permutation of vertices (augmenting paths)
in Pi, and let QG

~π,k(v) denote the query complexity of this local simulation. Yoshida et al. prove
the following theorem.

Theorem 9 ([YYI12]) For any graph G = (V,E) with n vertices and maximum degree d,

E[QG
~π,k(v)] ≤ d6k

2
kO(k) ,

where ~π = (π1, . . . , πk) and the expectation is taken over the uniform distribution over S|P1|× . . .×
S|Pk| × |E|.

Based on this theorem, we convert the aforementioned local simulation into an LCA as similarly
done in the previous section for the approximate MIS problem. We now prove the following theorem.

Theorem 10 There is a randomized (1 − ǫ)-approximation local computation algorithm for max-
imum matching with random seed of length O(d6k

2+1kO(k) log3 n log log n) and query complexity
O(d6k

2+2kO(k) log2 n log log n) where k = Θ(1/ǫ).

Proof: We build on the local algorithm of Yoshida et al. ([YYI12]), but here we double the
number of iterations to k = ⌈2/ǫ⌉ so that Mk is a (1 − ǫ/2)-approximate maximum matching.
The proof for this theorem follows the structure of the proof of Theorem 8. Our LCA contains
two phases: the first phase finds a sequence of good permutations, then the second phase locally
simulates the approximate maximum matching algorithm using those permutations. We say that
a sequence of permutations ~π = (π1, . . . , πk) ∈ S|V1| × . . . × S|Vk| is good if Pre∈E

[

QG
~π (e) > ℓ

]

≤ γ

where γ = ǫ/(2d), ℓ = 6t/γ and t = d6k
2
kO(k).

In the first phase, rather than individually generating a permutation πk of ~π on each Pi, we create
a single permutation π over [mn,k] where mn,k =

∑k
i=1

(

n
k

)

≥
∑k

i=1 |Pi|. In terms of constructing
random orderings, this simply implies extending the domain of our orderings to cover all augmenting
paths from all k iterations. Then for each i ∈ [k], the permutation πk of paths Pi can be obtained

16

by restricting ~π to Pi (i.e., considering the relative order among paths in Pi). Since the algorithm
queries ~π on at most ℓ locations, we conclude that Theorem 9 holds for any ~π that is ℓ-wise
independent. Similarly to the proof of Theorem 10, with probability at least 1 − 1/poly(n), we
shall find a good ~π by testing Θ(log n) random orderings obtained via the construction of Alon
et al. in Theorem 2. Therefore, to this end we need at most O(ℓ log3 n + (d2/ǫ2) log2 n log log n)
random bits, as required.

Now that we obtain a good sequence of permutations ~π from the first phase, we again perform
the altered version of local algorithm that returns NO as soon as the simulation invokes too many
queries. Let M~π denote the matching obtained by the algorithm of Yoshida et al. when executed
with the permutations from ~π. Let M ′

~π = M~π ∩ E′
~π where E′

~π = {e : QG
~π (v) ≤ ℓ}. Similarly to the

proof of Theorem 8, given ~π, we obtain an LCA that answers according toM ′
~π with query complexity

ℓ. If ~π is good, we have that E′
~π ≥ (1−γ)|E| and so |M ′

~π| ≥ |M~π|−γ|E| ≥ (1−ǫ/2)|M∗|−γ|E| where
M∗ denotes a maximum matching. Since for any maximal matching M it holds that |M | ≥ |E|/(2d)
we obtain |M ′

~π| ≥ (1− ǫ)|M∗|, as required.

5 Acknowledgments

We thank Dana Ron for her valuable contribution to this paper.

References

[ABI86] Noga Alon, László Babai, and Alon Itai. A fast and simple randomized parallel algo-
rithm for the maximal independent set problem. Journal of algorithms, 7(4):567–583,
1986.

[ACCL08] Nir Ailon, Bernard Chazelle, Seshadhri Comandur, and Ding Liu. Property-preserving
data reconstruction. Algorithmica, 51(2):160–182, 2008.

[ACL06] Reid Andersen, Fan Chung, and Kevin Lang. Local graph partitioning using pagerank
vectors. In Foundations of Computer Science, 2006. FOCS’06. 47th Annual IEEE
Symposium on, pages 475–486. IEEE, 2006.

[Alo91] Noga Alon. A parallel algorithmic version of the local lemma. Random Structures &
Algorithms, 2(4):367–378, 1991.

[ARVX12] Noga Alon, Ronitt Rubinfeld, Shai Vardi, and Ning Xie. Space-efficient local compu-
tation algorithms. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 1132–1139. SIAM, 2012.

[BBC+12] Christian Borgs, Michael Brautbar, Jennifer Chayes, Sanjeev Khanna, and Brendan
Lucier. The power of local information in social networks. In Internet and Network
Economics, pages 406–419. Springer, 2012.

[Bec91] József Beck. An algorithmic approach to the Lovász local lemma. I. Random Structures
& Algorithms, 2(4):343–365, 1991.

17

[BEPS12] Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schneider. The locality
of distributed symmetry breaking. In Foundations of Computer Science (FOCS), 2012
IEEE 53rd Annual Symposium on, pages 321–330. IEEE, 2012.

[Bra08] Zvika Brakerski. Local property restoring. Unpublished manuscript, 2008.

[CGR13] Andrea Campagna, Alan Guo, and Ronitt Rubinfeld. Local reconstructors and tolerant
testers for connectivity and diameter. In Approximation, Randomization, and Combi-
natorial Optimization. Algorithms and Techniques, pages 411–424. Springer, 2013.

[CPS14] Kai-Min Chung, Seth Pettie, and Hsin-Hao Su. Distributed algorithms for the lovász
local lemma and graph coloring. Submitted to PODC, 2014.

[CS06] Bernard Chazelle and C Seshadhri. Online geometric reconstruction. In Proceedings
of the twenty-second annual symposium on Computational geometry, pages 386–394.
ACM, 2006.

[DLRR13] Akashnil Dutta, Reut Levi, Dana Ron, and Ronitt Rubinfeld. A simple online com-
petitive adaptation of lempel-ziv compression with efficient random access support. In
Data Compression Conference (DCC), 2013, pages 113–122. IEEE, 2013.

[EMR14a] Guy Even, Moti Medina, and Dana Ron. Best of two local models: Local centralized
and local distributed algorithms. arXiv preprint arXiv:1402.3796, 2014.

[EMR14b] Guy Even, Moti Medina, and Dana Ron. Distributed maximum matching in bounded
degree graphs. arXiv preprint arXiv:1407.7882, 2014.

[GS14] David Gamarnik and Madhu Sudan. Limits of local algorithms over sparse random
graphs. In Proceedings of the 5th conference on Innovations in theoretical computer
science, pages 369–376. ACM, 2014.

[HK73] John E Hopcroft and Richard M Karp. An n5/2 algorithm for maximum matchings in
bipartite graphs. SIAM Journal on computing, 2(4):225–231, 1973.

[HMV14] Avinatan Hassidim, Yishay Mansour, and Shai Vardi. Local computation mechanism
design. In Proceedings of the fifteenth ACM conference on Economics and computation,
pages 601–616. ACM, 2014.

[II86] Amos Israeli and Alon Itai. A fast and simple randomized parallel algorithm for maximal
matching. Information Processing Letters, 22(2):77–80, 1986.

[JR13] Madhav Jha and Sofya Raskhodnikova. Testing and reconstruction of lipschitz functions
with applications to data privacy. SIAM Journal on Computing, 42(2):700–731, 2013.

[Kel93] Pierre Kelsen. Fast parallel matching in expander graphs. In Proceedings of the fifth
annual ACM symposium on Parallel algorithms and architectures, pages 293–299. ACM,
1993.

[KPS08] Satyen Kale, Yuval Peres, and C Seshadhri. Noise tolerance of expanders and sublinear
expander reconstruction. In Foundations of Computer Science, 2008. FOCS’08. IEEE
49th Annual IEEE Symposium on, pages 719–728. IEEE, 2008.

18

[Lin92] Nathan Linial. Locality in distributed graph algorithms. SIAM Journal on Computing,
21(1):193–201, 1992.

[LPSP08] Zvi Lotker, Boaz Patt-Shamir, and Seth Pettie. Improved distributed approximate
matching. In Proceedings of the twentieth annual symposium on Parallelism in algo-
rithms and architectures, pages 129–136. ACM, 2008.

[LRR14] Reut Levi, Dana Ron, and Ronitt Rubinfeld. Local algorithms for sparse spanning
graphs. arXiv preprint arXiv:1402.3609, 2014.

[Lub86] Michael Luby. A simple parallel algorithm for the maximal independent set problem.
SIAM journal on computing, 15(4):1036–1053, 1986.

[MR09] Sharon Marko and Dana Ron. Approximating the distance to properties in bounded-
degree and general sparse graphs. ACM Transactions on Algorithms (TALG), 5(2):22,
2009.

[MRVX12] Yishay Mansour, Aviad Rubinstein, Shai Vardi, and Ning Xie. Converting online algo-
rithms to local computation algorithms. In Automata, Languages, and Programming,
pages 653–664. Springer, 2012.

[MSZ05] S Muthukrishnan, Martin Strauss, and Xian Zheng. Workload-optimal histograms on
streams. In Algorithms–ESA 2005, pages 734–745. Springer, 2005.

[MV13] Yishay Mansour and Shai Vardi. A local computation approximation scheme to max-
imum matching. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, pages 260–273. Springer, 2013.

[NO08] Huy N Nguyen and Krzysztof Onak. Constant-time approximation algorithms via lo-
cal improvements. In Foundations of Computer Science, 2008. FOCS’08. IEEE 49th
Annual IEEE Symposium on, pages 327–336. IEEE, 2008.

[ORRR12] Krzysztof Onak, Dana Ron, Michal Rosen, and Ronitt Rubinfeld. A near-optimal
sublinear-time algorithm for approximating the minimum vertex cover size. In Pro-
ceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1123–1131. SIAM, 2012.

[OZ14] Lorenzo Orecchia and Zeyuan Allen Zhu. Flow-based algorithms for local graph clus-
tering. In SODA, pages 1267–1286. SIAM, 2014.

[Pel00] David Peleg. Distributed computing: a locality-sensitive approach. siam, philadelphia.
Technical report, ISBN 0-89871-464-8, 2000.

[PR07] Michal Parnas and Dana Ron. Approximating the minimum vertex cover in sublin-
ear time and a connection to distributed algorithms. Theoretical Computer Science,
381(1):183–196, 2007.

[RTVX11] Ronitt Rubinfeld, Gil Tamir, Shai Vardi, and Ning Xie. Fast local computation algo-
rithms. arXiv preprint arXiv:1104.1377, 2011.

19

[RV14] Omer Reingold and Shai Vardi. New techniques and tighter bounds for local computa-
tion algorithms. arXiv preprint arXiv:1404.5398, 2014.

[SS10] Michael Saks and C Seshadhri. Local monotonicity reconstruction. SIAM Journal on
Computing, 39(7):2897–2926, 2010.

[ST13] Daniel A Spielman and Shang-Hua Teng. A local clustering algorithm for massive
graphs and its application to nearly linear time graph partitioning. SIAM Journal on
Computing, 42(1):1–26, 2013.

[STV99] Madhu Sudan, Luca Trevisan, and Salil Vadhan. Pseudorandom generators without
the xor lemma. In Proceedings of the thirty-first annual ACM symposium on Theory of
computing, pages 537–546. ACM, 1999.

[YYI12] Yuichi Yoshida, Masaki Yamamoto, and Hiro Ito. Improved constant-time approxima-
tion algorithms for maximum matchings and other optimization problems. SIAM J.
Comput., 41(4):1074–1093, 2012.

A Proof of Lemma 1

Lemma 1 ([CPS14]) In Algorithm 1, if v ∈ Vj , then v remains active after stage j with probability
at most p for some constant p < 1.

Proof: For each u ∈ ΓG′(v), let Eu denote the event where u is the only vertex in Γ+
G′({u, v}) that

selects itself. Since the maximum degree in G′ is at most d/2j−1, then

Pr[Eu] = pj(1− pj)
|Γ+

G′ ({u,v})| ≥ pj(1− pj)
2d/2j−1

≥
pj
e2

.

Notice that Eu is disjoint for each u ∈ ΓG′(v). Since v ∈ Vj , then degG′(v) ≥ d/2j . Thus v
becomes inactive with probability at least

∑

u∈ΓG′ (v)

Pr[Eu] ≥ degG′(v) ·
(pj
e2

)

≥
1

4e2
.

That is, the theorem holds with parameter p = 1− 1/4e2.

B Details of Theorem 6

Theorem 6 There exists a randomized local computation algorithm that computes a maximal
matching of G with seed of length 2O(log2 d) log2 n and time complexity 2O(log2 d) log3 n.

In [II86], Israeli and Itai proposed a randomized distributed algorithm which takes O(log n)
rounds to compute a maximal matching. Similarly to the MIS problem, Barenboim et al. also
create a variant of this algorithm that, within O(log d) rounds, finds a large matching that breaks
the remaining graph into small connected components [BEPS12]. Specifically, by running Algorithm
9, the remaining graph satisfies the following lemma.

20

Algorithm 9 Barenboim et al.’s variant of Israeli and Itai’s algorithm for computing a partial
matching (simplified)

1: procedure Distributed-MM-Phase1(G, d)
2: initialize matching M = ∅
3: for i = 1, . . . , c2 log d do ⊲ c2 is a sufficiently large constant
4: initialize directed graphs F1 = (V, ∅) and F2 = (V, ∅)
5: each vertex s chooses a neighbor t (if any) uniformly at random,

then add (s, t) to E(F1)
6: each vertex t with positive in-degree in F1 chooses a vertex s ∈ {s′ : (s′, t) ∈ E(F1)}

with highest ID, then add (s, t) to E(F2)
7: each node v with positive degree in F2 chooses a bit b(v) as follows:

if v has an outgoing edge but no incoming edge, b(v) = 0
if v has an ingoing edge but no outcoming edge, b(v) = 1
otherwise, chooses b(v) ∈ {0, 1} uniformly at random

8: add every edge (s, t) ∈ E(F2) such that b(s) = 0 and b(t) = 1 to M ,
and remove matched vertices from G

Lemma 5 ([BEPS12]) Distributed-MM-Phase1(G, d) computes a partial matching M of an
input graph G within O(log d) communication rounds, such that the remaining graph contains no
connected component of size larger than O(d4 log n) with probability at least 1− 1/poly(n).

The proof of this lemma also makes use of Beck’s analysis, but contains a more complicated
argument which shows that with constant probability, each vertex loses some constant fraction of
its neighbors in every round. Thus, applying such matching subroutine for O(log d) rounds suffices
to remove or isolate each vertex with probability 1 − 1/poly(d). We convert this lemma into a
two-phase LCA in a similar fashion to obtain the desired LCA.

21

	1 Introduction
	1.1 Related Work
	1.2 Our Contribution and Approaches
	1.2.1 Maximal Independent Set
	1.2.2 Approximate Maximum Matching

	2 Preliminaries
	2.1 Graphs
	2.2 Local Computation Algorithms
	2.3 Parnas-Ron Reduction
	2.4 Construction of Random Bits and Orderings
	2.4.1 Random Bits
	2.4.2 Random Orderings

	3 Maximal Independent Set
	3.1 Overview
	3.2 Distributed Algorithm - Phase 1
	3.3 Constructing the LCA - Phase 1
	3.4 Constructing the LCA - Phase 2 and the Full LCA
	3.5 Reducing Space Usage
	3.6 Other Remarks

	4 Approximate Maximum Matching
	4.1 Overview
	4.2 LCA for Computing an Approximate Maximal Independent Set
	4.3 LCA for Computing an Approximate Maximum Matching

	5 Acknowledgments
	A Proof of Lemma 1
	B Details of Theorem 6

