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Adaptively Secure Two-party Computation
from Indistinguishability Obfuscation*

Ran Canetti' Shafi Goldwasser? Oxana Poburinnaya?

Abstract

We present the first two-round, two-party general function evaluation protocol that is secure
against honest-but-curious adaptive corruption of both parties. In addition, the protocol is inco-
ercible for one of the parties, and fully leakage tolerant. It requires a global (non-programmable)
reference string and is based on one way functions and general-purpose indistinguishability
obfuscation with sub-exponential security, as well as augmented non-committing encryption.

A Byzantine version of the protocol, obtained by applying the Canetti et al. [STOC 02] com-
piler, achieves UC security with comparable efficiency parameters, but is no longer incoercible.

1 Introduction

Obtaining adaptive security, namely guaranteeing security against adversaries that decide who to
corrupt in an adaptive way depending on their view of the computation so far, has been a major
challenge in secure computation since its inception. Indeed, adaptive security provides a more
realistic modeling of adversarial behavior and party infection in modern communication networks.
Furthermore, when combined with an additional property called corruption oblivious stmulation,
adaptive security implies a strong variant of leakage tolerance [BCH12], namely resilience to side
channel attacks on the participating computational devices.

Guaranteeing adaptive security turns out to be considerably more challenging than guaranteeing
security in the static setting where the set of corrupted parties is fixed in advance. As in the static
setting, the security guarantees become stronger when the adversary is allowed to corrupt more
parties. Furthermore, while in the static case the situation where all the parties are corrupted is
trivial, in the adaptive case protecting against adversaries that can eventually corrupt all parties is
by far the hardest case. Note that withstanding corruption of all parties is crucial for guaranteeing
meaningful security of a protocol within a larger system or context. Also, the transformation from
adaptive security to leakage tolerance is most meaningful in this case (namely, leakage from all
parties). In particular:
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e The best round complexity of a fully adaptively secure protocol (namely a protocol that does
not rely on secure erasure of information and that withstands adaptive corruption of all par-

ties) is Q (d), where d is the depth of the circuit being evaluated [BGW88, CFGN96, CLOS02].
(The works of [IPS08], [GS12] obtain constant number of rounds; however they cannot sup-
port corruption of all parties.) Furthermore, this is the best known round complexity even in
the case of two party computation, even for the honest but curious setting, and even in the
common reference string model.

e No fully leakage-tolerant (hence also no non-erasing oblivious simulation adaptively secure)
general function evaluation protocol is known, with any number of rounds. Again, this holds
even for honest-but-curious corruptions and even for two party protocols. (The protocol of
[BDL14] obtains leakage tolerance in a setting with an initial, leakage free interactive set-up
state.)

Our results. We present a two-message, two party secure function evaluation protocol that
is secure against adaptive honest-but-curious corruption of all parties — thereby resolving a long
standing open problem in the theory of secure computation. Furthermore, the protocol has non-
erasing oblivious simulation, implying leakage tolerance. Security is based on subexponentially
secure indistinguishability obfuscation for all circuits and one way functions, as well as augmened
non-committing encryption as in [DN00, CLOS02].

The protocol requires a global, non-programmable reference string. Specifically, the string
contains an obfuscated program to be run by parties. We call this mild version of the reference
string model the factory model, since it is reminiscent of a setting where the obfuscated program
is generated by a “trusted factory”.

The protocol is also incoercible [CG96] for one of the parties. That is, it provides one of the
parties with a mechanism to present “convincing evidence” that explains its outgoing messages as
resulting from any arbitrary input value (that may be different than the input value actually used).
This holds even when the “coercer” expects to see the full internal state of the party. That is, we
show:

Theorem 1. Assume existence of sub-exponentially secure indistinguishability obfuscators for all
circuits and one way functions, as well as augmented non-committing encryption. Then there
erists a two-message, two party protocol, in the factory model, for evaluating any function with UC
security in the presence of adaptive, honest-but-curious corruption of both parties. Furthermore:
(a) The protocol is leakage tolerant as in [BCH12].

(b) The protocol is incoercible with respect to one of the parties.

In fact we show that the protocol satisfies a stronger variant of the [CG96] definition, that
avoids a weakness in the original definition and is also universally composable. Furthermore, new
definition may be of interest independently of the present protocol; in particular, it applies also to
multi-party protocols and general (Byzantine) corruptions.

Compiling this protocol via the [GMWS87, CLOS02] compiler, we obtain a constant-round,
adaptively secure UC protocol for Byzantine adversaries in the standard CRS model. While the
protocol remains leakage resilient, it is no longer incoercible.



The protocol and techniques. Before presenting the protocol, let us recall the definition of
adaptive security. Security requires existence of a simulator that has access only to the trusted party
for the function, and still emulates for the adversary (or, rather, the environment) an execution
with the actual protocol. Since we are in the honest but curious model, we can assume without loss
of generality that the adversary first waits to see the entire communication of the protocol to the
end, and then corrupts all parties. The simulator should first create a simulated public transcript of
the computation; then, when a party is corrupted and the simulator learns the input and the output
of that party, the simulator should present the adversary with the appropriate random choices of
the party that are consistent with the party’s input and messages sent.

Our starting point is Yao’s garbled circuit two party protocol, together with a two-message
oblivious transfer. Recall that the first message in the protocol is the first OT message from the
evaluator to the garbler. The second message, from the garbler to the evaluator, consists of the
second OT message together with the garbled circuit. The evaluator then outputs the result of the
computation. (If both parties wish to learn the output then they run another copy of the protocol
in parallel, with reverse roles; or the evaluator can send the result to the garbler, but this adds one
more round.)

When the OT is adaptively secure (as in, say, [CLOS02]) and the garbler’s message is encrypted
using non-commiting encryption, the protocol becomes adaptively secure with respect to the corrup-
tion of the evaluator. That is, the simulator can indeed create the transcript of the communication
ahead of time (this is just ciphertexts of non-committing encryption) and when the evaluator is
corrupted, provide the receiver message for the adaptively secure OT protocol. Note however that
here the simulator has to commit to the garbled circuit, without knowing the garbler’s input.

Now, simulating the corruption of the garbler gets stuck: Here the environment expects to see
the internal randomness of the garbler, including the random choices used for the generation of the
garbled circuit. This we do not know how to do efficienty. In fact, in some cases such valid opening
simply does not exist.

Our approach to get around this apparently inherent difficulty is to provide the garbler with an
obfuscated version of his program. That is, let the common reference string contain an obfuscated
version of the garbler’s program. The garbler will then run the obfuscated program on its input
and random input and send the resulting message. The hope is that this will hide the internal
randomness of the garbling, even when the environment sees the random input of the party.

However, this naive attempt does not work by itself, since the randomness for the protocol
may well be correlated with the internal randomness that’s not supposed to be leaked. We address
this issue by applying a pseudorandom function to the random and real inputs, and using the
result as randomness to the protocol. In addition, to make the simulation go through with only
indistinguishability obfuscation we follow the lead of Sahai and Waters [SW14] and use puncturable
PRFs and an “explain” algorithm that allows the simulator to generate randomness that “explains”
any given outgoing message.

As simple as the protocol is, the proof of security is rather delicate. One subtle point that
deserves highlighting is the treatment of adaptivity in the choice of inputs. We first prove security in
a model where the inputs are “selective”: the environment determines the inputs to the computation
before it sees the reference string (namely the obfuscated programs). This is a rather weak security
model. We then extend the analysis to the setting where the environment chooses the inputs
adaptively. Here is where we use the sub-exponential security of the indistingushability obfuscator:
the analysis here requires as many hybrids as the number of potential inputs to the computation.



This number can be exponential. We note, however, that since the parameters of the obfuscation
can be chosen to be larger than the size of the inputs to the computation, this requires only
sub-exponential security of the iO in use.

Finally we remark that the trust requirements from the reference string are relatively mild.
First, it is non-programmable, in the sense that the simulator need not know any secret information
related to the string. This means that the same instance of the reference string (namely, the same
obfuscated program) can be used by multiple protocols and instances thereof without compromising
security [CDPWO07]. Second, static security holds even if the secrets associated with the reference
string, namely the secrets of the obfuscation and the secret keys, are exposed.

Concurrent work. Concurrently to and independently from this work, two other works develop
fully adaptively secure protocols using indistinguishability obfuscation. Both of these works appear
in these proceedings [GP14, DKR14]. We give account of these works. Like ours, both works
describe protocols for evaluating general functions, not only adaptively well formed ones as in
[CLOS02]. Furthermore, all works obtain resilience against adaptive corruption for all parties.
Finally, all works use the CRS model, where the CRS contains indistinguishability-obfuscated
programs.

Dachman-Soled, Katz and Rao [DKR14] describe a general mechanism to transfrom programs
into deniable ones, and use this mechanism to construct a four-round, multiparty, adaptively se-
cure protocol against honest-but-curious corruptions. They then compile their protocol using the
[CLOS02] compiler to handle Byzantine corruptions. Their analysis assumes only indistinguishabil-
ity obfuscator and one way functions that are secure against polysize adversaries. Garg and Poly-
chroniadou [GP14] directly describe a multi-party, two round, adaptively secure protocol against
Byzantine corruptions. Similarly to this work, their analysis assumes sub-exponentially secure in-
distinguishability obfuscation and one way functions. Both protocols need a programmable (i.e.,
non-global) CRS, and neither protocol is incoercible.

Organization. Section 2 sketches the models of computation and recalls the main results of this
work. Section 3 provides an overview of the construction. Section 4 provides a detailed presentation
and analysis of the main protocol.

2 The models of computation

We consider the standard UC model of computation (as in [Can01]) with adaptive, honest-but-
curious party corruptions. The parties and the environment have access to a global, public common
reference string functionality. That is, the functionality first draws the reference string from a
predefined distribution; next, all parties, including the adversary and the environment, obtain that
string.

In our protocol the reference string is a description of programs run by parties; these programs
are obfuscated and contain secret keys which shouldn’t be known to the parties. We refer to such
a global reference string model as “the factory model”, since it is intended to represent a situation
where all parties obtain the program from a trusted “factory”.

Leakage tolerance. @ We will show that our protocol is leakage-tolerant. The leakage tolerance
model we consider is the one in [BCH12|, which is aimed as capturing protocols that are tolerant



to arbitrary amount of leakage, and where the security loss grows gradually with the amount of
leakage. More specifically, in that model a protocol m computes a function f in a leakage tolerant
way if no adversarial environment can tell whether it is interacting with the parties running ,
while obtaining some ¢-bit leakage function of the individual internal states of the participants, or
alternatively with a simulator and an ideal process for evaluating f, in which the simulator obtains
some arbitrary ¢-bit function of each of the inputs of the parties.

It is shown there that if a protocol is shown to be adaptively secure with a special type of sim-
ulator, called corruption oblivious simulator (defined below), then the protocol is leakage tolerant.

A simulator is corruption oblivious if the information it gathers upon corruption of a party,
namely the secret input (and potentially also the secret output) of that party, is used only to
generate a simulated view of the local state of that party. This information is not used anywhere
else in the simulation. Formally, the simulator creates a special subroutine for simulating the
internal state of that party. The newly learned input of the corrupted party does not leave the
confines of this subroutine. It is shown in [BCH12] that if a protocol is adaptively secure with a
corruption oblivious simulator then it is also leakage tolerant.

Incoercibility. Incoercibility aims to protect the protocol participants from external author-
itative (or otherwise coercive) entities that try to entice a party to reveal its state voluntarily.
The idea is to provide parties with a “faking” algorithm that takes any desired fake value of the
secret input, and exhibits “fake randomness” that is consistent with both the newly decided fake
value and all the past messages sent by the party so far. Incoercible computation was defined in
[CGI6], where a generic construction from any deniable encryption scheme [CDNO97, SW14] is
given. However, the construction there has a large number of rounds and works only when strictly
less than half of the parties are either coerced or corrupted.

We revisit the definition of coercion-free computation, providing a new definition that is sig-
nificantly stronger than the one in [CG96]. Specifically, the security guarantees provided by the
new definition are preserved under universal composition. The definition also overcomes another
weakness in the [CG96], as explained below. The definition here fleshes out ideas from [Can01, P.
59].

Informally, the definition captures incoercibility by asking that the protocol in question emulates
an ideal functionality that employs the following “ideally incoercible” corruption process. Whenever
the ideal functionality is asked by the ideal-model adversary to provide the internal information of
some participant P in the protocol, the ideal functionality first asks the environment (representing
the entity that invoked party P to participate in the protocol) whether to reveal the real input
that P contributed to the computation, or alternatively whether to report some fake input. If the
environment instructs to reveal the real input, then the functionality returns the real input of P to
the adversary. If the environment provides a fake value x, then the functionality returns = to the
adversary. Crucially, the adversary does not learn whether the value provided was fake or real.?
We say that a functionality with such behavior is incoercible.

*We remark that the definition in [CG96] reveals to the ideal-model adversary whether the value provided by
the functionality is real or fake. This renders that definition weak. For instance, consider a protocol with a faking
algorithm that outputs the empty string as “fake randomness”. While this protocol should clearly not be considered
as “incoercible” it could be accepted by a simulation based definition — as long as the simulator knows which parties
are coerced and which ones are corrupted, since there is no problem for the simualtor to output an empty string upon
coercion request.



Now, consider a protocol 7 that realizes such an ideal functionality J, and consider a party P
that runs m. Now, upon receiving a corruption message from the adversary, m must instruct P to
first ask the environment (which, again, represents the entity that invoked party P to participate
in the protocol) whether to report the real internal state or to provide a fake one. If the response
is to reveal the real input, then we require that P reveals its true internal state. If the response is
to fake input value x, then P runs a special procedure Fake, which should be specified as part of a
protocol description, and reveals the output of Fake instead of its true internal state.

We say that 7 is incoercible if it UC-emulates an incoercible ideal functionality F. Such def-
inition captures our intuitive notion of incoercibility: Indeed, F provides “ideal incoercibility” in
the sense that there the ideal adversary learns nothing about whether a party revealed the real
or the fake input - beyond what is revealed by the legitimate outputs of the corrupted parties.
Thus, the same must hold also with respect to the real adversary that interacts with 7 - or else
the environment could tell the difference between the two interactions. Note however that this
argument hinges on two facts: (a) in the real world the corrupted party must reveal its real input
upon corruption, when instructed so by the environment, and (b) that the ideal adversary is not
being told whether the input value it received upon corruption is real or fake.

Now let us give a more formal definition. First, we slightly change the model and define a notion
of corruption compliant protocols, similar in spirit to the notion of compliant protocols in the plain
UC. Intuitively, a protocol is corruption compliant if it reveals its true internal state when asked
by the adversary. We only consider corruption-compliant protocols in our framework. Below we
give a more precise definition.

Corruption-compliant protocols. A protocol is corruption-compliant if it consists of two
processes, a body and a shell. When a message is written to an input, subroutine output, or
communication tape of a party, it is first processed by the shell, which may decide to forward it to
the body, possibly modified. Similarly, any message the body decides to send is first processed by
the shell. The body doesn’t see the internal state of the shell.

In addition, the shell should behave in a certain way upon receiving a “corrupt P” message.
Namely, it notifies the calling entity Cp of the party about the corruption, and expects to receive
further instructions from Cp. Cp can reply either with “corrupt” or with “fake to &*” message
(where Z* is a set of fake inputs and outputs). In the first case the shell should send the whole
internal state I of P to the adversary. In case it was told to fake to &*, it runs Fake(I, Z, £*) on its
internal state, true and fake inputs to obtain fake internal state I*, and reports I* to the adversary.

The second requirement describes what the shell should do upon receiving a notification of
corruption from its subprocess. If the shell previously received a “corrupt” message from Cp , then
it sends “corrupt” to its subprocess as well. If the message which the shell received from Cp was
“fake to Z*”, then the shell sends to its subprocess “fake to §*”, where * = Inputs(#*, I*), and
Inputs is a function which determines an input of a subprocess, given an input and randomness of
the main party.

Note that if p and 7 are both corruption-compliant, then so is p”.

Incoercible functionalities. We consider ideal functionalities & where each input to F is
associated with two party identities: the first, P, represents the identity of the protocol participant
that holds this input, and the second, Cp, is the identity of the “calling party”, namely the party
that provided the input value(s) to P, and will obtain the output value(s) from the computation.



Such an ideal functionality F is incoercible if it behaves as follows upon receiving a corrupt P
message from the adversary. F first outputs to Cp a corrupted value. Next, if Cp responds with
do not fake then F returns to the adversary all the inputs received from Cp and all the output
passed to Cp in this interaction so far. If Cp responds with fake to &* then F interprets £* as a
list of inputs and outputs and hands this list to the adversary instead of the real one.

Incoercible protocols. We now give a definition of incoercible protocols:

Definition 1. A protocol 7 is incoercible if it is corruption-compliant and it UC-emulates an
incoercible ideal functionality F.

We also provide a definition of incoercible distributed function evaluation. Let f : ({0,1}*)" —
({0,1}*)™ be an n-party function, and let F be the incoercible ideal functionality that computes f,
say with respect to some fixed set of party identities Pi, ..., P,. That is, upon receiving inputs from
the calling parties of P, ..., P,, F; evaluates f on these inputs and provides the caller of each P;
with its corresponding output value f(z1,...,xy);. Party corruptions are handled in an incoercible
way as described above.

Definition 2. Protocol w realizes an n-party function f : ({0,1}*)" — ({0,1}*)" if it UC-emulates
Fr. In addition, if Fy is an incoercible ideal functionality and m is corruption-compliant, we say
that m incoercibly realizes f.

Note that the above definition of incoercibility did not specify whether the corruptions are
honest-but-curious or Byzantine. Indeed, this definition is meaningful in both cases.

It follows from the universal composition theorem [Can01] that incoercible protocols can be
composed together:

Theorem 2. Let w be an incoercible protocol realizing F given access to G, and p be an incoercible
protocol realizing G. Then p™'9 incoercibly realizes F.

This theorem directly follows from composition theorem of [Can01], after noticing that compo-
sition of corruption-compliant protocols is corruption-compliant as well.

Concurrent work. In a concurrent and independent work of Alwen, Ostrovsky, Zhou and Zikas
[AOZZ15] another UC definition of incoercibility is presented. Their framework is called IUC and
is built on top of the UC framework (IUC security implies basic UC security). However, unlike
us they change the framework (in particular, they introduce a notion of a deception strategy, and
the definition of IUC-secure protocol has two additional quantifiers over real and ideal deception
strategies.)

They also give a composition theorem for IUC security, which says that two composed TUC-
secure protocols result in a IUC-secure protocol.

Although our definition is syntactically different from their, the crux of both definitions is the
same: the protocol is incoercible if in the ideal world the simulator can convincely simulate an
internal state of the party without knowing whether it is simulating an internal state for real input
or for fake input; this means that the real-world adversary cannot distinguish between real and
fake inputs as well.

The rigorous comparison of the two definitions is yet to be determined.



3 Protocol overview

Let’s first recall how the original Yao protocol looks like. Let’s say parties Py and P; have inputs zg
and z; and they want to evaluate y = C(zg, x1) for some circuit C. Py generates a garbled circuit:
that is, for every wire of C' Py creates two random labels [y, 1, and a garbled circuit consists of
4 encryptions of output label under input labels as keys, and the result table, which lists 0 and 1
labels for output gates.

Py sends to P, the garbled circuit together with the labels corresponding to Py’s input. Then
for every Py’s input bit Py and P; run OT protocol, after which P; learns the keys corresponding
to his input. At this point P has all information he needs to evaluate the circuit: it has all input
labels, and it keeps evaluating the circuit gate by gate, until finally it learns output labels. Then
it uses result table to learn the output.

As shown in [LP09], the original Yao protocol is statically secure, given augmented non-
committing encryption [DN00, CLOS02]. In particular, when P; is corrupted, Simulator learns
1 and y and shows a fake garbled circuit which always evaluates to y and is indistignuishable from
the real garbled circuit. (It cannot show the real garbled circuit since it doesn’t know x.) Also the
simulator shows labels corresponding to FPy’s and P;’s inputs. Here it is crucial that an adversary
sees only one label per each input bit and therefore cannot distinguish between a fake circuit and
a real one.

The same simulation works in adaptive case with erasures: Py should erase its internal state
before sending the second message. However, in the adaptive case without erasures this simulation
fails: an adversary could corrupt Py after corrupting P, and learning a fake garbled circuit. For
every Pp’s input bit, a simulator has to show both labels since these labels were Py’s input in OT
protocol. Now the adversary sees one label for each one of Fy’s input bits and both labels for P;’s
input bit. This allows the adversary to detect that the garbled circuit is not valid.

Indeed, consider a circuit that consists of just one AND gate. The simulator corrupts P; and
learns its input 21 = 0 and y = 0. At this point the simulator still doesn’t know Ppy’s input, but it
has to show the garbled circuit, therefore it shows fake circuit where all four ciphertexts encrypt the
same key [y, and it shows the result table where [y is decrypted to 0. Now the simulator corrupts
Py and learns g = 1. It has to show keys corresponding to both z; = 0 and x; = 1. This means
that the adversary knows the keys for zg = 1, ;1 = 0 and ;1 = 1 and can evaluate the circuit
on inputs (1,1) and (1,0). Since the circuit is just an AND gate, the result should be different.
However, since our garbled circuit contained the same key in all four encryptions, an adversary
trying to evaluate the circuit will get 0 in both cases and will detect cheating.

The problem is that an adversary learns too much at the moment of corruption: learning both
keys for Py’s input allows him to evaluate the circuit on many inputs and to check that the circuit
is a fake. To avoid this problem, we change the protocol such that Py himself doesn’t know the keys
for P;’s input. In order to achieve this, we “glue together” the garbled circuit generation, the input
labels generation and the OT into one program P which outputs the next message function for the
Yao protocol. This program will be obfuscated by the factory. Now, Py will run this program on
his input and local randomness and send its output to P;.

Naively one may hope that, since the program is obfuscated, Py himself doesn’t know more than
just inputs he used and output it sent to P; (in particular, it doesn’t know the keys for P;’s input).
However, this is not enough: it might be the case that the input itself reveals the keys (say, if the
keys are just set to be some substring of the random input). To deal with this problem, we don’t
use the random input directy in the protocol. Instead, we first apply a pseudorandom function to



the input and random input, and then use the output of the pseudorandom function as the random
input to the protocol.

The next set of challenges deals with making the above plan to work with an obfuscation
mechanism that only guarantees indistinguishability obfuscation. Here we follow the lead of Sahai
and Waters [SW14] and use similar constructs and techniques as there. Specifically, we use the
technique of embedding “hidden triggers” in the random input to the program P. If the program
recognizes a hidden trigger then it just outputs the value encrypted in that trigger. Else, the
program used the randomness as in the Yao protocol. We publish P together with a “faking”
algorithm Explain that allows anyone to generate hidden triggers of one’s choice. This addition has
a twofold effect: For one it provides for incoercibility for the garbler. In addition it also simplifies
the proof of security.

Throughout, and following [SW14], we employ constrained, or puncturable pseudorandom func-
tions [GGM86, BGI13, BW13], which enables applying indistinguishability obfuscation to pseudo-
random function in a meaningful way.

We describe and analyze the scheme in a simple setting where the parties have secure commu-
nication channels, and with only honest but curious corruptions. Once we have such a protocol, we
can implement secure channels using non-committing encryption. We can also deal with Byzantine
corruptions by forcing semi-honest behavior.

We also assume without loss of generality that only the evaluator learns the output. If both
parties need to obtain outputs from the computation then they can run the same protocol twice,
on the same inputs but with reverse roles. (Alternatively, at the cost of adding a message to the
protocol, the evaluator can send the function value to the garbler.)

Implementing secure channels. As we will see later, only the second message in our protocol
should be sent over a secure channel. This means that P; can send EKy¢cg in the first message,
and the protocol still remains two-round after implementing secure channels.

Corruption obliviousness and leakage resilience. The naive protocol, described above, does not
naturally lend to corruption-oblivious simulation. Indeed, to simulate the corruption of the garbler,
the simulator needs to come up with a second message, namely a garbled circuit, that outputs the
correct output of the computation. This needs to be done without knowing the input or output
of the evaluator, and only using the input of the garbler. Furthermore, when the evaluator is
corrupted, the simulator needs to come up with the same garbled circuit, without knowing the
input of the garbler. This is not known to be possible in general. We get around this issue by
making a simple modification to the protocol: Instead of evaluating f(xg,x1), the parties will use
the above protocol to evaluate f'(xo, (21,2)) = f(z0,21) ® 2. The evaluator, P;, will choose z at
random, and after obtaining the output value y, it will set its output to be y @ z.

With this modification in place, the simulator can set the output of the garbled circuit to be a
random value fixed in advance and then deal with the corruption of the parties in an oblivious way.

Incoercibility. We provide incoercibility for the garbler. This is done in a straighforward way:
Since the explain procedure is public, a coerced garbler can demonstrate random input that explains
any input value of its choice, in the same way as in [SW14].

Handling Byzantine corruptions. Here we use the generic transformation of [CLOS02] (based on
[GMW8T7]) that transforms a protocol that is secure against adaptive honest but curious corruptions
into a protocol that is secure against adaptive Byzantine corruptions.



4 Detailed description and analysis

Preliminaries. In our construction we use the following primitives. The reader is referred to
the papers cited for detailed definitions.

1. Indistinguishability obfuscation i©O for polynomial-size circuits, as defined, constructed and
used in [BGIT01, GR14, GGH"13, SW14].

2. Augmented non-committing encryption scheme Enc ([DN00, CLOS02]). We denote its gen-
eration, oblivious generation and inverting algorithms as Enc.Gen, Enc.oGen and Enc.Inv.

3. Puncturable PRFs which are additionally extracting or injective [BGI13, BW13, SW14].

4. The garbled circuit generation algorithm Gen together with an algorithm SimGen for gen-
erating fake garbled circuit from [LP09]. These programs use a special encryption scheme
which they call a public key encryption with elusive efficiently verifiable range.

Deterministic single-party-output functionalities. First, we recall that it suffices to be
able to compute deterministic functionalities: indeed, there exists a standard reduction of any
randomized functionality to a deterministic one, given by fget((x0,70), (z1,71)) = frand(zo, z1;70 ®
r1). Second, it is enough to compute functionalities where only one party gets the output (and the
other party gets nothing): parties can run in parallel two instances of the protocol with the same
input, where in the first execution only the first party generates output and in the second execution
only the second party generates output.

In our protocol Py is the garbler and Pj; is the evaluator for the Yao protocol. The natu-
ral thing to do would be to create a garbled circuit for the functionality they want to compute
(—; f(z0,71)). However, in this case the simulation is not corruption-oblivious.®> We therefore
slightly modify a protocol: Pj first generates random z, and Py generates a garbled circuit for the
function f'(xg, (21,2)) = f(zo,z1) ® 2. As we'll see, this will suffice for making the simulation
corruption-oblivious.

Oblivious transfer. We use the following one out of two OT protocol, based on [EGL85]:
assume Py has ko, k1 and P has a bit b; we want P to learn k. First, P; generates keys (E K, DKp)
and EKj_j without corresponding decryption key (this encryption scheme, in addition to normal
key generation, should have oblivious key generation algorithm which outputs encryption keys
without corresponding decryption keys, in such a way that this encryption keys are indistinguishable
from normal encryption keys. For this we use augmented non-committing encryption). P; sends
EKy,EK; to Py. Py sends back encryptions ¢ = Enc(EKy; ko) and ¢; = Enc(EK;; k). Since
Py has DKy, he can decrypt ky = Dec(DKy; ). However, since there is no DKj_; generated |,
the second value kj_j; remains unknown to Pj. Following [CLOS02|, we make the OT adaptively
secure by using non-committing encryption for the encryption scheme.
With this implementation of OT, the Yao protocol consists of the following two messages:

3Indeed, for the simulation to be corruption-oblivious, the subroutine for generating P;’s internal state should be
able to create a fake garbled circuit without knowing xz¢. At the same time, the subroutine for creating Py internal
state should be able to create (the same) fake garbled circuit without knowing the output y. It is not clear how to
do that for the above “natural” garbling method.

10



1. First, P; generates two sets of encryption keys PKy, PK; and one set of decryption keys
SK,, (such that for every input bit 2% P; only knows DK;l) P, sends PKy, PK7 to Py.

2. Py generates a garbled circuit GC and sends to P; GC, keys for Fy’s input bits, and keys
for all possible P;’s input bits encrypted under PKy, PK; (we will call this a Yao message).
P; decrypts the keys corresponding to its input, and, since it has GC and all input labels, it
evaluates the circuit gate by gate.

Protocol description. We have parties Py, P; with inputs xg, x1 respectively. The protocol
for allowing P to learn the value f(zg, z1) for some function f is described in Figure 1. The referece
string consists of programs P and Explain, described in Figures 2 and 3. The circuit C' that prorgam
P evaluates will be the circuit that computes the function f'(xo, (21, 2)) = f(zo,21)® 2. (The value
z will be chosen by P; at random as part of the protocol.)

The protocol consists of two rounds. In round one, P; (the evaluator) chooses randomness s and
z and sets 2} = (21, 2) to be its new input. It samples secret and public keys for oblivious transfer
using s (public keys which do not correspond to P;’s input are sampled obliviously). P; sends all
public keys to Py. In the second round P, chooses its randomness r and runs a program P on its
input xg, randomness r and a set of public keys from P;. The program P internally generates new
randomness u and runs the underlying subroutine Gen to generate a Yao message, which becomes
the program output. Py sends this message to P;. P; gets the labels for xg, decrypts the labels for
x1 and evaluates the circuit, obtaining f(zg,z1) ® z. Then P; xor’s the result with z and gets the
output f(xo,z1).

The program Explain is not used in the protocol directly. However, it is used in the case when
parties want to deny their inputs, as well as in the proof.

The Protocol:

1. P; chooses random z and sets z} < (z1,z). Then it chooses random s and generates
PKy,SKy < EncGen(s[0]) and PK; , < Enc.oGen(s[l]). It sets a* < PKo, PK;
and sends o to Fy.

2. Py chooses random 7*, runs * < P(z9,a™;r*) and sends 5*

3. P; evaluates the garbled circuit taken from [*, using the labels and output table from £*,
and outputs the result xor’ed with z.

Figure 1: Protocol description

‘We show:

Theorem 3. Let:

e SEnc be CPA-secure symmetric key encryption scheme with an elusive efficiently verifiable

range ([LP09])
e Enc be an augmented non-committing encryption scheme

o £ ={E),} be an extracting puncturable PRF family
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Program P

inputs: Fy’s input x, P;’s 1-round message «, randomness r = r[1|r[2]
P(z,a57) :

1. check if r has encoded value inside:

(a) M' <« Fy(r[2]) @ r[1]; if I, (M") # r[2] then goto 2;
(b) parse M as 5,2’ o/, p/. If (2/, ') # (z, ) then goto 2;
(¢) output g’

2. else run Gen:

(a) u < Eg,(z,a,r)
(b) output Gen(x, ;)

Program Gen.

Constants: circuit C with m wires and s output wires; let’s assume that first 2n wires are input
wires and last s wires are output wires

Input: Py’s input zo; Pi’s two sets of public keys PK, PK;

randomness u = ujuUau3Uyg

Gen(zg, PK;u):

1. Create labels for wires: (k9,ki),..., (K%, kL) < wy
2. Create encryptions of labels:

(a) Partition ug into uai, ..., uzm, and each ug; into ug, . . ., ugu
(b) Partition wug into wugy, ..., usm, and each us; into us, ..., usu
(c) For every gate t in C create 4 encryptions:

e if £ is an AND gate:

GCy[0,0] + SEnck?(SEnck]o(k‘l S U2 ); Ustl)
1] SEnck? (SEnck;( U2 ); Ust2)
,0] — SEnckg(SEnck?(kl S U23); Usts)
1] « SEang(SEanjl(k'l U4 ); UL

e if £ is an OR gate:

GCy[0,0] « SEnck?(SEnckjo(k‘l ;U2 ); Ustl)

1]« SEncyo (SEnck}( S U22); Ust2)
,0] — SEnck.}(SEnck?( S U23); Usts)
1] « SEnckg (SEnck;(k:l U4 ); Usts)

(d) shuffle GC}[0,0], GCy[1,0], GC4[0, 1], GCy[1, 1]

3. Create encryptions of labels for P;’s input:

(a) Partition (% into U401y - - - 5 U40On, U411, 12 , Uqln
(b) Foralli=1,...,n ¢ « EncPKé(ngri;umi), ek« EncPK{(k}LH; U414)
4. output:

(a) GC;0,0],GC;[0,1], GC;[1,0], GC;[1,1] for i = 1..m (garbled circuit)




Program Explain

inputs: message m which should be encoded; randomness p
P(m;p):

1. M < m,prg(p)
2. r[2] « I, (M), r[l] < Fyp(r[2)) & M

3. output r = r[1]r[2]

Figure 3: Program Explain.

I = {1y, } be an injective puncturable PRF' family

F = {F}} be a puncturable PRF family
e PRG be an input-doubling PRG

e iO be indistinguishability obfuscator

then the protocol is adaptively secure with oblivious simulation in the factory model in the presence
of semi-honest adversaries given secure channels.

The choice of parameters. Since we use different types of PRFs (in particular, extracting
PRFs and injective PRFs) in the construction, we must ensure that the lengths of all values fit the
requirements for these PRFs. Indeed, as shown in [SW14], there exist:

e injective puncturable PRFs which map n(\) bits to m(A) bits where injectivity holds with
probability 1 — 27 (over the choice of a key), as long as m(\) > 2n(A) 4 e());

e extracting puncturable PRFs which map n(\) bits to m(A) bits for distribution X with min-
entropy k(\) with statistical distance between (k, Fy(X)) and (k, U,,) at most 27, as long
as n(A) > k(X)) > m(\) + 2e(A) + 2.

Let’s recall how we use these PRFs in the computation. Let’s denote the lengths of a Yao
message  and randomness used to create it w as |B| and |u|; also we denote the length of M
(the hidden value prepared by a simulator and encoded inside randomness) as |M|. All these
lengths are polynomial in security parameter as well as a circuit size and inputs length. We have to
choose randomness length to guarantee that both injective and extracting PRFs exist. Recall that
randomness r (denoted as er in simulated case) consists of two parts r[1] and r[2]. Note that the
way er[l], the first part of randomness, is generated (er[l] < Fy(ers) @ M) implies that its length
is exactly | M]|.

1. Iy, should be an injective PRF with negligible failure. It takes as input M and outputs er[2].
Thus, it should be the case that |er[2]| > 2|M| + A.

2. Ej, should be an extracting PRF with negligible distance. It takes as input (zo, PK,r[1]r[2])
and outputs u. We are going to use extracting property when r = r[1]r[2] is chosen at random,
and min-entropy of input is at least |r| = |r[1]| + |r[2]|. Thus, it should be the case that
2ol + |[PK| + [r[1]| + [r[2]] = [r[1]| + |r[2]] = [u] +2X + 2.
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Once a security parameter and a circuit are fixed, all values above are also fixed except |r[2]|.
Note that by choosing |r[2]| large enough (but still polynomial in the security parameter), we can
satisfy both inequalities.

Proof. The outline of the proof is the following. First, we give a description of our simulator. Then
we prove that no environment can distinguish between a real execution and a simulation. We do
this in two steps. In step one we deal with the case of non-adaptively chosen inputs; that is, the
environment first chooses parties’ inputs and only then sees a CRS. In order to show indistinguisha-
bility in non-adaptive case, we consider an intermidiate middle hybrid where all protocol messages
are generated as in a real execution, but the randomness is explained. In two lemmas we prove
that this middle hybrid is indistinguishable from both real execution and simulation. In step two
we consider the case of adaptive inputs choice, thus proving the theorem statement.

Simplifying assumptions. In our honest-but-curious setting we can assume that corruptions
happen after the protocol execution and that both parties are corrupted. Since our simulator, as
we see later, is corruption-oblivious (information learned in one party corruption is not used in the
other party corruption), we don’t need to think about different order of corrupting parties. Also
we assume secure channels, therefore our simulator has to show the protocol transcript only after
one of the parties is corrupted.

In our proofs of lemmas instead of having an interactive game with the adversary we just run
an experiment and show to the adversary the resulting distribution, asking it to guess which hybrid
it sees. Indeed, by itself the security definition is interactive: an environment first sees a CRS and
then outputs inputs; after this, it sees protocol messages. Then it can send corruption requests
and get back parties’ internal states. Given this information, the adversary chooses which hybrid
it sees. However, in the case of non-adaptively chosen inputs, we can use a non-interactive security
definition: the inputs are fixed in advance, therefore we can send a CRS later with other values the
adversary should see. Next, we assumed that all parties are corrupted, and therefore the adversary
doesn’t need to send corruption requests; the simulator will send it all parties’ internal states itself.
Therefore, instead of playing an interactive game with the adversary, in our security definitions the
simulator generates all protocol information ( protocol messages, parties’ internal states) and sends
it to the adversary, who should distinguish between hybrids.

Description of the simulator.  Our simulator is described in Figure 4. It gets a CRS, generates
randomness needed (spip to create P;’s keys for encryption scheme, sgc to create a fake garbled
circuit, and s,, a random value which is the result of z @ y in a real execution), and sets its state
to be s = (CRS, spxE,5GC, Sy)-

Since we assume secure channels, the simulator doesn’t need to show a transcript before corrup-
tions. Upon corruption of a party P, the simulator calls its subroutine Simp,(CRS, spkE, scc, Sy)
to simulate P;’s internal state. Each subroutine has to show randomness used by a party and the
communication it sees. Simp, first generates secret and public keys for P, and sets o™ to be P;’s
public keys (note that since all three programs (Sim, Simp, and Simp,) use the same state to
generate values, they get the same result - public keys and garbled circuit). Then it generates a
fake garbled circuit and encryptions for OT g* < SimGen(sy, a*; sqc). The next step depends on
the party. A simulator for Py computes explained randomness er* < Explain((8*; zo, PK; p*) for
randomly chosen p* and shows er* (internal state) and a* (communication). A simulator for P
sets its randomness z to be consistent with the garbled circuit output and the protocol output (that
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is, z = y @ s,) and then, using an invertion algorithm, creates randomness es*, which produces
obliviously sampled keys PK;_,,. The simulator shows es* and z as P;’s internal state and g* as
the communication seen.

Note that to simulate a party during corruption, the simulator doesn’t use internal information
of the other party; only this party’s input/output is used, together with randomness s which acts
as a state of the simulator. Therefore this simulator is corruption oblivious.

Step one - non-adaptive inputs case. In the following two lemmas, we prove that real and
simulated experiments are indistinguishable. To achieve this we consider a middle hybrid where
all protocol messages are generated honestly like in a real execution, but the randomness shown to
the adversary is obtained using Explain algorithm. In the first lemma we show that this middle
hybrid is indistinguishable from the simulation; indistinguishability between the middle hybrid and
a real execution is shown in lemma 2. In both proofs we first give an overview of hybrids, and then
present a detailed description with reductions.

Our notation. To denote the first and the second part of randomness, we write r[1] and r[2].
By PK we denote a set of public keys for each possible input bit of P;’s input; PKy and PK;
mean sets of public keys for input bits 0 and input bits 1. By PK,, we mean the set of public
keys corresponding to P;’s input, that is, PK,;, = (PK;%, .. .,PK;??). By PK;_; we mean the
opposite set of public keys.

We mark the values obtained in the experiment with a star to distinguish these values from
variables in programs. We denote the first round message (P;’s public keys) as a* and the second
round message (a garbled circuit, an output table, labels for Py’s input, encrypted labels for all
possible P;’s inputs) as §*.

Lemma 1. The results of the following two experiments are indistinguishable:
Experiment Simulation:
1. choose randomness spx g, SCRS, SGC, Sy. Set z =y @ sy. Set z} « (x1,2)

2. generate a CRS: prf keys kg, k1, k, internal keys for Gen, and choose randomness for obfusca-
tion xp, gLy using scrs. Create obfuscated programs P <— O(Py, &,k Gen; xp), Explain
O(Explaing, k; T gapl)-

3. sample Py’s keys PKy, PK;, SKy,SK; <+ PKE.Gen(spxEg).
Set a* + PKy, PK,

4. run B* <~ SimGen(sy, o*; sgc)
5. choose p* at random
6. er* < Explain(f*;xo, a*; p*), es* «+ Enc.Inv(spxp,x))

An adversary sees protocol transcript (a*, 8*), internal states er* and (es*, z), programs (P, Explain).
and
Experiment Middle:

1. choose randomness spxE, SCRrS, SGC, Sy.- Choose random z. Set zy «— (21,2)
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The

3.
4.

simulation:

. Obtain the public programs C RS = P, Explain

. Choose randomness for simulation (spkp,sac,Sy).- Set the state to be s

(CRS, spkE, sGCs Sy)
upon corruption of Py: output Simp,(s)

upon corruption of Pj: output Simp, (s)

Simp,(CRS, spkE, scc, Sy)

1.

2.

3.

4.

d.

learn zg

generate PKy, SKy, PK1,SK; + Enc.Gen(spkg); set o < PKy, PK;
set B* « SimGen(sy, PK; scc)
choose random p* and set er* < Explain(B*;zo, PK; p*)

output (er*, a*)

Simp, (CRS, spiE, sac, sy)

1.

2.

learn =1,y

generate PKy, SKy, PK1,SK;j < Enc.Gen(spxg)

. set B* + SimGen(sy, PK;sqc)
. set 24— sy, By, )+ (x1,2)
. set es* < Enc.Inv(s,z})

. output (es*, z; 5*)

Figure 4: Simulation
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2. generate a CRS: prf keys kg, k1, k, Gen internal keys and choose randomness for obfuscation
xp,Lpgpl Using scrs. Create obfuscated programs P < O(Py, k, k; Gen;xp), Explain
O(Explaing, i; TEzpl)-

3. sample Fy’s keys PKZII,Slel — PKE.GQTL(SPKE[O]),

m < PKE.oGen(spkg[l]). Set a* + PKy, PK;

4. choose random r*

5. run * < P(xq, o*;r")

6. choose p* at random

7. er* « Explain(B*; xg, *; p*)
An adversary sees protocol transcript (a*, 5*), internal states er* and (spx g, z), programs (P, Explain).
Proof. We show indistinguishability using several hybrids as described below:

1. HO = Simulation

2. H1: like a simulation, but OT public keys PK;_,, (which do not correspond to P;’s input)
are sampled obliviously

3. H2: like H1, but 8* is chosen as a result of Gen(zo; a*;u*) for some random u*; previously £*
was the result of SimGen. Based on indistinguishability between a fake and a real garbled
circuit.

4. H3: Like H2, but u* is chosen as Ej (zo,a*,7*) for random r*; previously it was chosen at
random. Based on extracting property of Ej,

5. H4 = Middle: Like H3, but g* < P(zo,a™;r*) (which means that now first check 1 is
performed on randomness r* before generating the output). Based on the fact that r* is
random and for a random value this check passes with negligible probability.

Hi1.
1. choose randomness Spx g, SCRS, SGC, Sy. Set z =y @ sy. Set z} + (x1,2)

2. generate a CRS: prf keys kg, k1, k, Gen internal keys and choose randomness for obfuscation
Tp,Tpgp using scrs. Create obfuscated programs P <« O(Py, i, .k; Gen; x), Explain <«
O(Explaing, k; T Eapl)-

3. sample Po’S keys PKma,Slel — PKE.GGH(SPKE[O]),
]3[(17111 — PKEoGen(SPKE[l]) Set o PK(),PKl

4. run B* < SimGen(sy, o*; sgc)
5. choose p* at random

6. er* < Explain(B*;zo, a*; p*)
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An adversary sees protocol transcript (a*, 8*), internal states er* and (spx g, z), programs (P, Exzplain).
In this hybrid we generate public keys for OT which do not correspond to P;’ input obliv-
iously and show to the adversary the real randomness spxp which was used to generate these
keys. Indistinguishability holds because of the property of augmented non-committing encryption:
no adversary can distinguish between a real randomness used for oblivious key generation and a
randomness obtained as a result of inverting algorithm.
H2.

1. choose randomness spxE, SCRrS, SGC, Sy Choose random z. Set ) + (21, 2)

2. generate a CRS: prf keys kg, k1, k, Gen internal keys and choose randomness for obfuscation
Tp,Tpgpl using scrs. Create obfuscated programs P < O(Py, k, k; Gen;zp), Explain <
O(Explaing, k; T Eapl)-

3. sample Po’S keys PKQC&,SK% — PKE.GCH(SPKE[O]),
]3[(17111 — PKEoGen(SPKE[l]) Set a* PK(],PKl

4. choose random u*

5. run B* < Gen(xg, a™;u*)

6. choose p* at random

7. er* < Explain(B*; xg, a™; p*)

An adversary sees protocol transcript (o*, %), internal states er* and (spx g, 2), programs (P, Explain).
In this hybrid we changed the way 5* is generated. Previously it contained a fake garbled circuit
which always evaluates to s,, now it contains a real garbled circuit. Indistinguishability is based
on indistinguishability between a fake garbled circuit and a real one, as shown in [LP09].
H3.

1. choose randomness spx g, SCRrs,SGc, Sy- Choose random z. Set 2} + (x1, 2)

2. generate a CRS: prf keys kg, k1, k, Gen internal keys and choose randomness for obfuscation
xp,Lpypl using scrs. Create obfuscated programs P < O(Py, k, k; Gen;xp), Explain
O(Explaing, k; T Eepl)-

3. sample Iy’s keys PK,r, SK,1 < PKE.Gen(spkgl0]),
PK, 4 <+ PKE.oGen(spig[l]). Set a* + PKo, PK

4. choose random r*. Set u* < Ej, (o, a*, 1)
5. run f* < Gen(xzg, a™;u*)
6. choose p* at random

7. er* < Explain(B*; xo, a™; p*)
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An adversary sees protocol transcript (a*, 8*), internal states er* and (spx g, z), programs (P, Exzplain).

In this hybrid we choose u* as u* < Ej,(zo,a*,7*), instead of choosing it at random. Indis-
tinguishability holds because of extracting property of Ej . Indeed, since min-entropy of the PRF
input is at least |r*|, then by our choice of parameters the output of this PRF is indistinguishable
from random. We can reduce these hybrids to an extracting prf game as follows: given kg and
random w or w = Ey, (zo,a*,r*) for random r*, we choose other keys and obfuscate programs,
and then compute other variables using ©* = w. Depending on whether w is random or not, we
are either in H2 or in H3.

H4 (Middle).

1. choose randomness spxE, SCRrS, SGC, Sy Choose random z. Set ) + (x1,2)

2. generate a CRS: prf keys kg, k1, k, Gen internal keys and choose randomness for obfuscation
xp,Tpgpl using scrs. Create obfuscated programs P < O(Py, k, k; Gen;zp), Explain
O(Explaing, k; T Eepl)-

3. sample Po’S keys PKm’l’SKx’l — PKE.G@H(SPKE[O]),
PKy_y PKE.oGen(spkg[l]). Set o* «+ PKy, PK;

4. choose random 7*.

5. run B* < P(xzg,a™;r")

6. choose p* at random

7. er* < Explain(B*; xg, a™; p*)

An adversary sees protocol transcript (a*, %), internal states er* and (spx g, 2), programs (P, Explain).
In this hybrid we generate £* as a result of a program P. In other words, before computing u*
we perform check 1 in P. Since for randomly chosen r* this check passes with negligible probability,
hybrids are statistically close to each other.
Thus lemma 1 is proved.

Lemma 2. No PPT adversary can distinguish between the following two distributions:

Experiment Middle:
1. choose randomness spxE, SCRrS, Sy. Choose random z. Set x) + (21,2)

2. generate a CRS: prf keys kg, k1, k, Gen internal keys and choose randomness for obfuscation
xp,TEzp Using scrs. Create obfuscated programs P < O(Py, k, k; Gen;xp), Explain
O(Explaing, k; T Eapl)-

3. sample Py’s keys PK,1,SK, < PKE.Gen(spkg(0]),
PK1_$11 — PKE.OGen(SpKE[l]). Set o* + PKy, PK;

4. choose random r*

5. run B* < P(xg, a™;r*)
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6.
7.

choose p* at random

er* < Explain(B*; xg, a*; p*)

An adversary sees (o, 8*, er*, spxg, z), programs (P, Explain).

Experiment Real:

1.

2.

4.

d.

choose randomness spk g, Scrs, Sy. Choose random z. Set o) + (21, 2)

generate a CRS: prf keys kg, k1, k, Gen internal keys and choose randomness for obfuscation
xp,Lpypl using scrs. Create obfuscated programs P < O(Py, k, k; Gen;xp), Explain
O(Explaing, k; T Eepl)-

. sample Py’s keys PK,r, SK, < PKE.Gen(spkg|0]),

PKl—m’l < PKFE.oGen(spigl[l]). Set a* < PKy, PK;
choose random r*

run 3* < P(xg,a™;r*)

An adversary sees (a*, 8*,r*, spk g, z), programs (P, Explain).

Proof. The lemma states that the view of an adversary in the real execution is indistinguishable
from its view in the experiment when instead of real randomness, explained randomness is shown
(which we called a middle experiment). To prove the lemma statement, we consider a sequence of
hybrids Real = Hg ~ L~ Hg ~ HG1 ~L~ H& = Middle. For b = 0,1 we will show that Hé’ is
indistinguishable from Hg . After this, we show that H{ and H} are indistinguishable as well. This
proves that a middle hybrid and a real execution are indistinguishable.

Hybrids overview:

1.

In H1° we skip check 1 in the program P and directly compute u* < B, (xo,a*;1%), B
Gen(zg, a*;u*). Since r* is random, the check passes with negligible probability.

. In H2%, instead of computing p* < prg(p*) (and then evaluating er* using this 5*), we choose

p* at random. Indistinguishability is based on security of a PRG.

. In H3" we show punctured programs P : 1 and Ezplain : 1 instead of original ones. We

prove that new programs have the same functionality and rely the indistinguishability on the
security of i0.

. In H4" we choose u* at random instead of Ej, (x§, a*;r*). Based on punctured PRF Ej,.

. In H5" we choose er*[2] at random instead of Iy, (8*;xo,a*; p*). Based on punctured PRF

Iy,

I

. In H6® we choose er*[1] at random instead of Fj,(er*[2]) @ (B%; zo, a*; p*). Based on punctured

PRF F.

HOb

1.

choose randomness spk g, Scrs, Sy. Choose random z. Set z) + (21,2)
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6.
7.

. generate a CRS: prf keys kg, k1, k, Gen internal keys and choose randomness for obfuscation

xp,Lpgpl Using scrs. Create obfuscated programs P < O(Py, k, k; Gen;xp), Explain
O(Explaing, i; TEzpl)-

. sample Py’s keys PK,r, SK, < PKE.Gen(spkg|0]),

PKl—ac’l — PKE.OGen(SPKE[l]). Set o + PKy, PK;

. choose random r*

. run % < P(xg, a*;1%)

choose p* at random

er* < Explain(B*; xg, a*; p*)

If b =0, an adversary sees (a*, 8%, 7%, spk g, z), programs (P, Exzplain).
If b = 1, an adversary sees (a*, 8%, er*, spip, z), programs (P, Explain).
H1b

1.

2.

6.
7.

choose randomness spk g, Scrs, Sy. Choose random z. Set x) + (21, 2)

generate a CRS: prf keys kg, k1, k, Gen internal keys and choose randomness for obfuscation
xp,Tpgpl using scrs. Create obfuscated programs P < O(Py, k, k; Gen;xp), Explain
O(Explaing, k; T Eepl)-

. sample Fy’s keys PK ., SK,: < PKE.Gen(spkg[0]),

PK, 4 < PKE.oGen(spkg[l]). Set a* + PKo, PK

P K,k
. choose random 7*, u* < E} . (zo, a*;r*),

. B* < Gen(xg, a™;u").

choose p* at random

er* < Explain(B*; xg, o*; p*)

If b = 0, an adversary sees (a*, 8%, 7%, spk g, z), programs (P, Explain).
If b =1, an adversary sees (o, 5%, er*, spx g, z), programs (P, Explain).

In this hybrid we omit check 1 in the program P while computing 8*. Since for randomly chosen
r* the check passes with negligible probability, hybrids are statistically close.

H?2P

1.

2.

choose randomness spk g, Scrs, Sy. Choose random z. Set :U’l — (z1,2)

generate a CRS: prf keys kg, k1, k, Gen internal keys and choose randomness for obfuscation
xp,Tpgpl Using scrs. Create obfuscated programs P < O(Py, k, k; Gen;zp), Explain
O(Explaing, k; T Eepl)-

. sample Py’s keys PK ., SK,: < PKE.Gen(spkg[0]),

PK, 4 < PKE.oGen(spig[l]). Set a* + PKo, PK

* * *, ok
. choose random 7*, u* + Ej (xo, o*; "),
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8.

9.

. B < Gen(zg, a™;u").

. choose p* at random

set M* « B*;xg,a™; p*
er*[2] < I, (M*)

er*[1] < Fy(er*[2]) & M*

If b =0, an adversary sees (a*, 5%, 7%, spk g, z), programs (P, Exzplain).
If b = 1, an adversary sees («*, 8%, er*, spip, z), programs (P, Explain).
In this hybrid we use randomly chosen p* instead of the result of applying a PRG to p* while
generating er*. Indistinguishability of hybrids immediately follows from the security of a PRG.
H3b

1.

2.

8.
9.

choose randomness spk g, Scrs, Sy. Choose random z. Set :c’l — (21,2)

generate a CRS: prf keys kg, k1, k, Gen internal keys and choose randomness for obfuscation
Tp,TEzpl USing scrs. Create obfuscated programs P < O(Py, k, k; Gen;xp), Explain
O(Explaing, k; T Eapl)-

. sample Py’s keys PK,r, SK, < PKE.Gen(spkgl0]),

PKl—m’l — PKEoGen(SPKE[l]) Set o PK(),PKl

. choose random 7*, u* < Ej . (zo, a*;r*),
. B* « Gen(zp, a™;u").

. choose p* at random

set M* < B*;xzg,a™; p*
er*[2] < I, (M*)

er*[1] < Fy(er*[2]) @ M*

If b = 0, an adversary sees (a*, 5%, 7%, spk g, z), programs (P : 1, Explain : 1).
If b =1, an adversary sees (a*, 5%, er*, spixp, z), programs (P : 1, Explain : 1).

In this hybrid we show punctured programs P : 1 (Fig. 6) and Explain : 1 (Fig. 7) instead
of their normal versions. We rely the indistinguishability on iO security: modified programs have
the same functionality as original ones, as proven in [SW14] in their proof for deniable encryption
scheme (with a natural modification of the input from their input m,r to our input (xq, PK,7)).
However, for the sake of self-containment we briefly sketch it here:

Program P:

1.

we add a line “if (z,a,r) = (zg,a™,r*) or (z,a,7) = (x0,*, er*) then output f*”, this is
exactly what the original program outputs on these inputs.
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D.

6.

. add “f r[2] = r*[2] or r[2] = er*[2] then goto 2”. If r[2] = r*[2], then the check in step one

will not pass since a random r*[2] with high probability is outside the image of Ij,, so we
can go to step 2. If r[2] = er*[2], then either the check doesn’t pass and we can go to step 2,
or, if it passes, then the encoded message M’ = M* (due to injectivity of Ij, ), and therefore
r[1] = er*[1], (z/,a’) = (xg, *), which would be detected in the first added line in P:1.

. now Fy, is never called on 7*[2] or er*[2], therefore we can safely puncture at these points.

. add “if M’ = M* then goto 2”. If M’ = M™* and the check passes, then r[2] = er*[2],

r[1] = er*[1], and this would be detected in the first line in P:1.
now I, will not be called on M*, and we can puncture at this point.

we can puncture Fy, ((zo a* ), (zo,a*,er*)}» Silice these inputs are treated in the first line of P:1.

Program Explain:

1.

we puncture k; at M*, since p* (which is a part of M*) is generated at random (instead of
prg(p*)) and with high probability is outside the image of a PRG; therefore no input results
in M = M* in Explain.

we puncture k at both points 7*[2] and er*[2]. Since r*[2] is randomly chosen, with high
probability it is outside the image of a PRF Ij,, therefore no input for Explain results in
r[2] = r*[2] and therefore F} is never called on r*[2]. Furthermore, as we said no input
for Explain results in M = M*, and due to I, injectivity no input for Explain results in
er*[2] = Iy, (M*), which means that Fj, is not called on er*[2] as well.

H4b

1.

2.

choose randomness spk g, Scrs, sy. Choose random z. Set x) + (21, 2)

generate a CRS: prf keys kg, k1, k, Gen internal keys and choose randomness for obfuscation
Tp, Lpyp Using scrs. Create obfuscated programs P : 1 <= O(P : 1y, i, x; Gen; xp), Explain :
1 < O(Explain : 11, k; TEapl)-

. sample Py’s keys PK 1, SK,: < PKE.Gen(spkg[0]),

PK, 4 < PKE.oGen(spkg[l]). Set a* + PKo, PK\

. choose random u*, r*
. B < Gen(zg, a™;u").

. choose p* at random

set M* « B*;xg,a™; p*

o er®[2] < Iy, (M™)

. er*[1] < Fy(er*[2]) & M*
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If b = 0, an adversary sees (a*, 5%, 7%, spk g, z), programs (P : 1, Exzplain : 1).
If b = 1, an adversary sees (a*, 5%, er*, spip, z), programs (P : 1, Explain : 1).

In this hybrid we choose u* at random instead of choosing it as E, (v, aj_;,7"). Security fol-
lows from pseudorandomness of a puncturable PRF. Indeed, given a punctured key kg{(zx, of_,,7*)}
and w, which is random or Ej, (zx, aj_j,7"), we choose other keys ourselves and create programs.
Then we evaluate variables in the experiment setting u* = w and showing the resulting destribution
to the adversary. If w was random, then the adversary sees H?, otherwise Hg .

H5Y

1. choose randomness spx g, SCrs, Sy. Choose random z. Set x| < (z1, 2)

2. generate a CRS: prf keys kg, k7, k, Gen internal keys and choose randomness for obfuscation
Tp, LEzp Using scrs. Create obfuscated programs P : 1 <= O(P : 1y, i, x; Gen; xp), Explain :
1 < O(Ezplain : 1k, k; TEapl)-

3. sample Py’s keys PK,1, SK, < PKE.Gen(spkg(0]),
PKl—r’l — PKE.OGEETL(SPKE[H). Set o PKo,PKl

4. choose random u*, r*

5. B* < Gen(xg, a*;u*).

6. choose p* at random

7. set M* < B*;xq,a™; p*
8. choose random er*[2]

9. er*[1] < Fy(er*[2]) & M*

If b = 0, an adversary sees (o, *, 7%, spxE, z), programs (P : 1, Explain : 1).
If b =1, an adversary sees (a*, 5%, er*, spixp, z), programs (P : 1, Explain : 1).

In this hybrid we choose er*[2] at random instead of choosing it as Iy, (M*). Security follows from
pseudorandomness of a puncturable PRF. Indeed, given a punctured key k;{M*} and w, which is
random or Ij,, (M*), we choose other keys ourselves and create programs. Then we evaluate variables
in the experiment setting er*[2] = w and showing the resulting destribution to the adversary. If w
was random, then the adversary sees H, g , otherwise H. ff .

HeP

1. choose randomness spxE, SCRrs,Sy. Choose random z. Set z) + (21,2)

2. generate a CRS: prf keys kg, k1, k, Gen internal keys and choose randomness for obfuscation
xTp,TEgpl Using scrs. Create obfuscated programs P <— O(Py, k, k; Gen;xp), Explain <
O(Explaing, k; T Eapl)-

3. sample Po’S keys PKm’l’SKz’l — PKE.G@H(SPKE[O]),
PKy 4 PKE.oGen(spkg[l]). Set o* «+ PKy, PK;

4. choose random u*,r*

5. B* < Gen(xg, a*;u*).
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6. choose p* at random
7. set M* < B*;xq,a™; p*
8. choose random er*[2]
9. choose random er*[1]

If b =0, an adversary sees (a*, 5%, 7%, spk g, 2), programs (P : 1, Explain : 1).
If b = 1, an adversary sees (a*, 5%, er*, spip, z), programs (P : 1, Explain : 1).

In this hybrid we choose er*[1] at random instead of choosing it as Fy(er*[2]) & M. Security
follows from pseudorandomness of a puncturable PRF. Indeed, given a punctured key k{er*[2]}
and w, which is random or Fj(M™*), we choose other keys ourselves and create programs. Then we
evaluate variables in the experiment setting er*[2] = w and showing the resulting destribution to
the adversary. If w was random, then the adversary sees Hg , otherwise H, é’ .

Finally we notice that distributions Hg and Hﬁ1 are the same, since both programs and the
experiment treat r* and er* in the same manner (i.e. both r* and er* are chosen at random
and are not connected to other variables in the protocol). Therefore no adversary can distinguish
between these two hybrids, and lemma statement is proved.

O

Step two - dealing with adaptive inputs. In order to deal with adaptively chosen inputs,
we guess which inputs will be chosen by the adversary. Let us denote by | the internal state of the
parties. Define the variables of the real experiment as CRS" < GenCRS, I" < U, transcript” <
m(x0,1,1); also define the variables of the ideal experiment as (transcript®, CRS®) < Sim, I <«
Sim(zg,71). Here (zg,71) + Advi(CRS) is the result of running an adversary on a given CRS.*
Then the advantage of the adaptive adversary is

Pr[Advy(CRS?, transcript®, I°, xg, z1) = 1] — Pr[Adva(CRS", transcript”, I", xg, 1) = 1] <

< Z (Pr[Adva(CRS?, transcript®, I, x5, 1) = 1] — Pr[Adva(CRS", transcript”, I", x5, 27) = 1])
5,27 €{0,1}"
< 22" . max(Pr[Advy(CRS?®, transcript®, I*, 25, 27) = 1] — Pr[Advy(CRS”, transcript”, I”, 25, 1) = 1]).
z5,T]
If i© and PRFs are subexponentially secure, then the advantage of the adversary is negligible in

the security parameter.
O

4.1 Obtaining Incoercibility

Recall that, to be incoercible, the protocol should be augmented by faking algorithms for the two
parties. The faking algorithm for a party takes as input a value ', representing a fake input value
for the party, as well as the party’s local state and the messages sent by that party so far, and
outputs a “fake random input” 7’ for the party, such that running the party’s program on input

4We can assume that both Advi, Advs are deterministic, and thus there is no need to pass the state from Adv; to
Adva, since Adva can always run Adv;.
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2’ and random input 7’ results in the messages sent by the party so far, and furthermore " “looks
random” given the rest of the view of the adversary. More precisely, the protocol together with the
faking algorithm should be simulatable as in the definition of incoercible computation presented in
Section 2.

To show incoercibility for the garbler, we demonstrate a faking algorithm: Having received
message «, sent message (3, and given the fake input value z’, simply run the Explain algorithm
with input message m = 3, 2’, @ and some fresh randomness. Then output the output of Explain.

It is straightforward to see that the same simulation actually demonstrates incoercibility for the
garbler. Indeed, the simulator exhibits the same information for coercion and corruption attacks.
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Program SimGen

Constants: circuit C with m wires and s output wires; let’s assume that first 2n wires are input
wires and last s wires are output wires

Input: the result of the computation y; P;’s two sets of public keys PKy, PK; randomness
U = Uru2u3zuU4

Gen(y, PK;u):
1. Create labels for wires: (k{,k{),..., (k% kL) < uy
2. Create encryptions of labels:
(a) Partition ug into uai, . .., ugm, and each ug into ugy, . . ., ug
(b) Partition us into ugy, ..., usm, and each ug; into use, ..., usu

(c) For every gate t in C create 4 encryptions (all 4 encryptions encrypt the same label):
GC4[0,0] < SEnco (SEncko(k‘lO; U2t1); Ust1)
GCy[0,1] ( ( ); u3i2)
GCy[1,0] + SEncy (SEncko( s U2L3); Usts)
GCy[1,1] ( ( ); usta)

)

— SEnck? SEanl k:l U ) ; U3E2

— SEanl_l SEanl kl U4 ); Uta

(d) shuffle GCt[O, 0], G’Ct[l, 0], GCt [0, 1], GCt[l, 1]

3. Create encryptions of labels for P;’s input:

(a) Partition ug into wugp1, - .., Udon, Udil, - - - Udln
C 0 0 . 1 1.
(b) Foralli=1,...,n ¢ + EncpKé(kn+i,u40i), ¢; < Encpri(ky i ua14)
4. output:

(a) GC'[O 0] GC;0,1], GC4[1,0], GC;[1, 1] for i = 1..m (garbled circuit)
(

b) (y1: kY _ S+17 L—yi kb giq)soos (s kD 1 —ys : kL) (the result table)
(c) k:‘f, ..., kY (labels for Py’s input)
(d) (Y, cl) (2, cl) (encrypted labels for P;’s input)

Figure 5: Program SimGen, used by a simulator to create a fake garbled circuit.
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Program P:1

. Kk * Q% *
constants: o, r* er*, g*, M*, xg.

inputs: protocol input x, 1-round message a, randomness r = r[1]r[2]

P(z,a;r):

1. check if r has encoded value inside:

)
) if 7[2] = 7*[2] or r[2] = er*[2] then goto 2
) M’ < Fifpe(g] ere(2y (r[2]) @ r[1];
d) if M’ = M* then goto 2;
) if T gar+y (M) # 7[2] then goto 2;
) parse M’ as B',2',d/,p'. If (2/,a’) # (x,«) then goto 2;
)

2. else run Gen:

(a) U < EkE{(xo,a*,r*),(J:o,oz*,er*)}(:B: «, T)

(b) output Gen(z, a;u)

Figure 6: Program P:1.

Program Explain:1

constants: M™* r* er*
inputs: message m which should be encoded; randomness p
P(m;p) :

L. M < m,prg(p)
2. T[Q] A Ik]{M*}(M)7 7”[1] — Fk{r*[Z],er*[Q]}<T[2]) ©M

3. output r = r[1]r[2]

Figure 7: Program Explain:1.

30




