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ABSTRACT - A new model for weak random physical S•ources is presented. The new 

model strictly genera.H~es previous models (e .. g. the antha and Vaziran.i model [26)). The 

:sources con idered output. strings .according to probability distributions in which "o single 

string is too probable. 

The new model provides a .fruitfuJ viewpoint on problems studied previously as: 

• Eztractin9 almost p·erfect bits from. sources of wook randomness: the question of possi­

bility as well a.s the question of effidency of such extraction schemes .u ,e addressed. 

• P'robabflistic Communicatfon Compluity: it is shown that m.os func: ions have lin.ea.r 

communication ,complexity in a. very strong probabilistic sense. 

• Robu~tness of BPP with respect to sources of weak randomness. {genera.Uzing a. result 

of Vazi.tarti and Vazil'ani ['29 ). 
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1.. r TRODUCTION 

The no · ion of randomness is centra] to "the theory of comput.ation.. Thus the question of 

whether and how randomness can be implemented in a. computer is .of major importance. 

Our intention i not to address the metaphysical aspe-c.t of the above question. We rather 

assume tha there a.re physical phenomenon. which appea;r to be "somewhat random a.nd 

study the consequences of such assumption. 

In reality there is a. Vcll!'iety of physical soutces the outp•ut of which appeal's to be 

unpredictable: in some sense (e.g. noise diodes, Geiger counters etc.). However, these 

sources do not seem to be perfect (i.e . they do not output a uniform distribution). This 

phenomena is amplified when trying to convert the analogue signal to a digital one, and 

m particular when sampling he physical ,source very frequently. 

The ma.m con '1'ibution of this pa.per is in presenting a. general model for sour.ces of weak 

randomness. . his model not •only generalizes previou.s models, but is also• very convenient 

to manipulate and analyze. The new model provides a new view-poin on several problems 

studied previously, and ,enables u.s to obtain inter,esting new results: 

• Extracting al m os-t pe.r J e. cf. bit,s from sources of weak mndo mness: It is shown that al:mos . 

aU functions can be used for ,extracting many almost unb · ased" bits fr,om two inde--­

pendent sources of "weak randomness. An exp ici , function which performs almost as 

good is also presented. These results yield an ,extraction scheme which is efficient both 

in terms of output entropy and computational complexity. 

• Probabilistic Communication Complezity: It is shown that most Boolean functions have 

linear communication ,complexity in a. very strong p•robabilistic sense. This resolves an 

open problem of ·ao [31]. 

• Robustne66 of BPP with respect to sources of weak randomness. It is shown that a.n~ 

probabilis ic polynomial-time algorithm ,can be modified s,o tha it works with bits 

supplied by a sz'.ngle source of weak randomness. 
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1.1 Previous Models 

Previous works on extracting unbiased bits from non-perfect sources ha: e implidtly or 

explicitly proposed models of \veal randomness". on eum.;uu1,s classic a.lgodthm [17] 

deals with sequences of bit.s generated by independent tosses of a. single coin with ·fixed 

bias. This model is totally memoryless. Blum (5] models physi.cal sources as finite state 

markov chains (with unknown transition probab·nties). In this model,, one can describe a 

dependency of the next bit (output by he source) on he previous c bits (for .any fixed c). 

Santha and Vaziran.i l26 have further N!l~edl the restr.ktions ,on the physical source. 

Their model,, hereafter referred to as the SV-model is · he start point for our investigations. 

In the SY-model each bit in the output sequence is ea:sUght]y random in the sense that 

it is O with probability at least 6 and 1 with probability at least 5, where 6 < 1/2 is a 

constant. This a] ows to model a proba.bili.sf.c dependency of the next bit (output by the 

source) on aU previous bits. However no bit of the output may be totally determined 

by the previous hits . It follows that in the SV model ,every hit seg_uen e is output wi h 

some positive probability. This restriction could be violated by some "random physical 

sources which are constrained in a. way that prevents certain. bit sequences. 

1..2 The ew Model 

We introduce a.nd study a general model for physical sources,, her,eaiter refened to as the 

model o1 Probability-Bounded sources (PRB-sourcts}. Loosely speaking, the pr,obability 

that a PRE-source will ou put a particular stri"ng is bounded a.hove by some parameter. 

This a.llows the source to be very imperfed.1 still it may not ooncentra.te its probability 

mass on too, few s rings. 

The PRB-model is formalized using two constants l (length parameter) and b (proba­

bility bound). A physic.al source· S is a de ice which outputs an infinite sequence of bits. 

We say hat Sis a. (l,,b)-source if fore.very p,.refix a of the output sequence, and every l-bit 

string {i the conditional probability that the next l bits ontput by S equal /3 ~s at most 

2 - b (i.e. Pr(Pla:) < 2- &).. 

The PRB-model is a. strict generalization of the V-model. To see the indu:sion note 

that any V-source with parameter 8 is a. (1, log2 (1-c5') - 1 )-source. To see that the inclusion 

is proper consider the (2, 1)-souxce which ou puts 1 wi h proba.bility 1 / 2 and 10 with 

probability 1/ 2. Clearly~ this source 's uot a V--sou:rce. Thus, all posi·tive results (with 

respect to he PRB~model) presen ed in this paper - apply also to the SV-model. 
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1.S Extracting Unbfa -ed Bit , From Sources of W,eak Randomness 

Algorithms for ex racting unbiased bits from non .. perfec· sources depend on the underlying 

sou:rce model. Von Neumann s algorithm {17] for generatlng a. sequence of unbiased bits 

by using a coin with fixed bias is a well➔known dassic; 

1) Toss the bias.e,d coin t ice. Denote he outcome by (J'f E {HH HT,TH TT}. 

2) If a= 7 hen go o step (1) . (no hing is output.) 

3) If UT = HT output Oj If a1" = TH outpu 1 • Goto s ep (1) . 

. Elias [' 0] improved upon von euma.nn algorithm showing how to nearly achiev,e the 

entropy of the one coin source. He also considered special type of visible finite Markov 

cha.ms. His .algorithm produces perfect bits from such sources. 

Blum [5] has consi.dered ,extracting {perfe-.ct) unb·ased bits from general finite Markov 

chains with unknown structure and transition prohabHities. He gave a]gorithms which 

work in linear expected ime. Using Eiias,s techniques [1'0], the extracted bits reach the 

,entropy of the source in the Jimi . 

It seems hat as far as ex :rac ing perfect unbiased bi.ts, Blum schemes are optimal. 

However as pointed out by antha. and Vazira.ni [26], or prac icaJ purposes ,one may 

lower "t.h,e standards and se tle for "almost,, unbiased bits. Having this go.al in mind, they 

further relaxed the Iestrktious on the physical sou:rce and introduced ,he SV-model (see 

sec 1.1). antha and Va.z.ira.ni showed that a single ~source cannot be used to extrac 

almost unbiased bits, while suffidently many independent V-sources can be used for this 

purpose. Vazirani [28] showed ha.t by applying inner~prod:uc mod 2 to strings of length 

Cs - log2 E-1 output by two independen V-sou .. r-ces a. b1t with bias < ½ + e- is produced. 

ummarizing he .results in [26] and [28), we conclude that he -model pr,es.en.ts 

a sufficient condition for the extraction of almost unbias·ed bits from two indepe:nden 

physical sou:rces . We subs ,antiaily relax this condltion. 

In this paper we show that almost aU functions can be used to extract many indep,endent 

unbiased bits from the outpu o.f any two independent (l, 6)-sou.rces. 'I'o be more specific 

let m = (b - 3 - log l)/3 > 0, and consider extract·,on func ions from l + l bits tom Mts .. 

The m extracted bits are almost unbfosed and independent in the sense tha each m-bi 

string appears with probability at least (l - 2~) • 2- m and at most (1 + 2!.} · 2-m. his is 

achieved by a 1- 2-26 fraction of a.11 functions from 2l-hit strings tom-bits rings. o ice 
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tha-t the number ,of bits we extract from the two sour,ces is within a. eon .tant factor (~ ½) 
of the information heor,etic bound a feature no ach.ieved in revious works [26, 28]. 

We also prove that, for all b1 + b2 > l + 2 + 21og2 ~ 
1 , all functions corresponding ·to 

21-by-i Hadamard matrices can be used to extract a. single bit with bias :::; £ from any 

two independent PRE-sources which are (l bi.) and (l, b2) distributed respectively. 

A new resul contained in his paper, resolves a problem eft open in the preliminary 

version of his work [8}: ,an extraction scheme. wh.i,ch is efficient both in terms of information 

rate and computation oomplerity. The core of he new method is , he discrete logarithm 

function, and its analysis is based on the method of trigonometric sums. 

1.4 Probabilis ic Communication Complexity 

Vazirani poin , ed ou that "good bit-extra.cti,on func:ti.ons have high communication com­

plexity [28). - e establish fur her- co-nnectio,ns between the two :notio s. We show t:hat 

functions which ,can be used for extracting an almost unbia.s,ed bit from wo probability­

bounded sourc-es have linear communication complexity ·n a very strong sen.s,e. It fol­

lows that almost aU functions and in pa.r kular an functions. corresponding to Hadamard. 

matrices, have lineu communication complexity. This resolves: Yao'1s open p, oblem (31] 

regarding the probabiHstic communication complexity o.f random functions and of · he set 

intersection function. (Related lower bounds. on the communication comp,J,exity ,of random 

functions were presented independently by Alon, Frank and Rodi [4] and by OrHtsky a._nd 

El-Gama1 [191

]. Our linear (n(n)) lower bound on the inner product modulo, 2 function 

improves over Vazira.ni's O(n/ log n) bound presented in (28)..) 

Another contribution in the field of oommunica ion complexity is the presentation ,of 

defini ions and results fox he case that the inputs a;oo ta.ken from probability-bounded 

distributions (i.e. distributions in which no, string is too likely). This contributi,on is in the 

:spirit of Vazirani's suggestion to analyze the oommunication complexity with re.spec to 

inputs chosen by a V-model (2- ]. However, we feel that probability-bounded distributions 

are more natura in the context of communication complexity.. W,e consider randomized 

proto,cols where the objec i e is to guess the value of the function with average success 

probability ,exceeding ½ + 5', Bo h the average leng, h of a. run and he a; e:rage success 

p:roba,bility a.re aken with respect to the "best" (for the protocol) probability-bound.ed 

distribution. We show that even wi , h respect o such. protocols and distr·.butions the 
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a-verage communication complexity of aJmos all functions is linear in the probabiHty bound 

b (where no input appear w"th probability greater than 2-&). 

1.5 On the Robustness of BPP 

The class R [1] and its symmetric version BPP [12) consist of problems which can be 

sol~ed with high probability in polynomial time-. The probab·Uty is taken over the tosses 

of an unbiased coin. Umesh Vazirani :raised ·'he question whether BPP problems can be 

effidentiy solved if a (single) V-sou.rce is roducing the coin tosses. Recently, Vazirani a.nd 

azirani. ha: e answered this ques ion affirmatively [29]. In. this paper, we generalize their 

result by showing hat BPP problems can be ,efficien ly solved if a (single) PRE-source is 

producing he coin tooses. The underlying principles of om proof originate from Vazirani 

and Va.z.irani [291
], but ou:r proof is significantly simpler. 

The main idea o.f the proof is hat while a single PRB~so,urce is use]ess for producing a 

si'ngle unbiased bit, it can nevertheless be used for producing po,]ynomia ly many bits, most 

of which a.re u:nb·ased. Our key observa.tio.n is that a.ny function which extracts almost 

unbiased bits from any two independent PRB-so•\l!l"Ces can be used for this purpose. 

1 .. 6 Organization 

In Section 2, we pres,ent o,ur basic definitions and. rsesults concerning the ex rac ion of 

unbias,ed bits from sources ,of weak randomness. These results a:re he basis for the r,est of 

he paper. ubsection 2.1 consis s of definit ions. In subs,ection 2.2 we p:resen impossibility 

results. In subsection 2.3 we introduce he notion of flat distributions and demonstrate 

i , s importance. In subsection 2.4 we show that aimos all functions ext.tac unbiased. bits 

from any wo independent PRE-sources, and in subsection 2.5 e show tha.t functions 

corresponding to Hadamard matrkes also perform we ' . 

Each of the next three .sec ions is based o,n Section 2 on: y, and can be read indepedently 

of he others. In Section 3,, we further study he problem of extracting unbiased bits 

from prob.ability-bounded sources. In subsection 3 ... . we .an.a.]yze extraction schemes with 

resp,ect to ¥0 efficiency mea:sur,es: rate and oomputation complexity. In subsection 3..2 

we present .and analyze the ~discrete logarithm extra.ction sch.eme. In subsectfon 3 .. 3 we 
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consider ex raction from slightly dependence sou.rces In. subsection 3.4 e consider various 

extensions of our model and results . 

In. Section 4 1 ,i. e. p esent resul·ts concerning probabilistic ,co,mmunication complexity. In 

subsection 4. we present old ans new definitions of probabHis.tic communication comp .ex­

ity. In subsection 4.2 we pro e linear lower bounds on the communication complexity of 

unc ions,. and in subsection 4.3 we present. almost matching upp,er bounds. In subsec i,on 

4.4 we suggest and investigate a. robust notion of communica ion compie-xity. 

In. Section 5 we deal with the robustness of BPP with respect to probabilicy-bounded 

sources. Conclusions and open prob]ems .. appear in Section 16. 



2 .. EXTRACTING UNBIASED BITS - PART I 

In this sec ion we present our bask defi.nitio•ns and results concerning the extraction of un­

biased bits from. sources of weak randomness. These results will be the basis for our more 

advanced study of the efficiency of extraction schemes, as well as our results concerning 

communication complexity and the robustness of BPP. In subsection 2.l, we define proba­

bility bounded sour,ces (distributions) and robust extradion schemes. In subsectio1n 2.2, we 

present impassibility resul s which wi 1 be ater used to demonstrate the optimality of our 

positive results. In. subs:ec:tion 2.3 we introduce the notion •Of fl.at distributions and demon­

strate i s importan.ce. In subsection 2.4 we use a. counting argument to prov,e the existence 

of good extraction schemes. In subsection 2.5, we show hat functions corresponding to 

Hadamard mat-rices constitute good extraction schemes. 

2 .1 D efinitions 

The fir-st two defin.i ions are used to cha.racter[zes the PRB-sources. 

Definition 1: Let l be a posi ive integer, and b > 0 a. real number. Let X be a. random 

variab.le assuming, values in {O 1}1• Vve say that X ·s (l b)-di.str£buted if for every a E 

{O, l}l, he probahHity tha · X = a is, < 2-6 .. 

.De:fini.tion 2~ Le X1 1 X2 1 •. • • ,Xt be as•equence ofrando•rn variables each assuming values 

in {0.1.l}l. The random variable Xt is (l,b) -d.istributed given X ... ,,Xt-l if for every 

a E {O, }(t-l)•l and ,8 E {O l}! Pr (Xt = .BIX1 · · · Xt-1 = a) < 2-&. 

An (l b)-source is an lnJinite sequence of random variables X 1 , X 2 , Xa .. . each assuming 

values in {O; l}l such that for ,e,rery t, the random variable Xt is (l, b) distributed. gi en 

the values of he variables X 1 through Xt- i•t Unless otherwise stated all distributions 

are conditioned on the entire pas . 

The next definitions will be u ed in eva]ua;ting he qual'ty of the extracted b its. 

D ,efinition 3; Let Z be a random vaTiable assuming values in {O l}m. Z is said o be 

~-robust if for every a E {O l}m 

t This defini ion is somewha. less :restrictive from the one sketched in the introduction. 
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Definition 4: Let Xi, X2 •... X 8 be s • dependent ra:ndom variables ,each assuming 

values in {0 1}1. A function f; {O 1}"·' - {01 l}m is said to bes-robust on X 1 X2t••· X., 

if he random variable .Z d!f f(X1, X2, ... , X 8 ) is ~-robust. 

A function/: {01 l}"·l i---+ {o l}m is said to, be E:-robust with respect to properties Pi, P 2 ... t 

Ps if/ is e-robust on every s independent ra.ndom va.rhibles X I Xz,. .. X 8 , satisfying Pi, 

P2, ... , P3 respectively:. 

2.2 Irnposs.·bility Results 

It is of no, urprise 'th.at one probability-bounded source canno be used to generate unbiased 

bi ts, sface pro ba.bility-bounded s,ou.rces include SY-sources. for which an im.possi bmty resu. t 

was shown [26). Yet, a stronger nnpossibi]ity result ho]ds for our model. 

Theorem l: - et k > 1 be an integer, and / : {01 1}'!!:•l i--..+· {O 1} be a Boole.an function. 

hen there exis s a. q E {O 1} and a sequence of k random vari.ables X X 2 , • • .• , X1c each 

(l, l - !}-distributed given he previous ones, such hat /(X1X2 •· • • Xk) i.s identically u. 

Proof: The proof is by indu.ction on k. The base case k = 1 is easy. Without loss 

of genera ity f attains the value 0 on a.t least ha.If he inputs. Setting X 1 ~s probabHity 

distribution o be uniform on these inputs and O otherwise, /(X1) is identka.Uy 0. By the 

induction hypo hesis, for every o: E {0,l}i, there is a. q E {O; 1} such that the function 

/0i(X2, ... X11:) = /(0'. X2 ... X1i:) can be made identica.Uy o. Wi hou loss of generality, 

for at least half he ,is, / 0 can be made identically 1. et ing X1~s probability distribution 

to be uniform on these o:'s and O elsewhere the Theorem follows. D 

While a single source cannot be us,ed a:t a.H there is a lower bound on the robustness 

of functions applied to the output of two probabiHty-bounded sources. We start with a 

combinatorial Lemma 

Lemma 2: Let M be a. L-by-N Boo ean matrix. Then there exist a o E {01 1} and a 

L/16-by- / 2 submatrix of M co aining at least ½ • f6 ( 1;" + /if) or-entries. 

Proof: \Vithout loss, of generality at least half the rows ,co,ntaln at leas half 1 's. We 

restrict oursel es to these L / 2 rows. Fix any such ro ~, pick N /2 columns a ra.ndom and 

let P denote he probability that a east T = ½ (N /2 + '1fi?2) of the conesponding entries 

are 1 's. Clearly1, P is minimized when ,each of these rows oontains exactly N /2 •ones. In 

that case P is the ta"1 of a hypergeometrk distr·but·on, and by Uhlmann (see [15, ch. 6 
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sec. 5 p . 151]) is bounded below by the corresponding tail ,of the binomial distribution. 

That is 

This last ,expression can be approximated by the normal distribution and in particular is 

bounded below by 1- ffi.( ) > 1-0.8413 > I/8. By standard proba.biUs ic arguments, thls 

implies ha.t there is a choice of N /2 columns a:nd (1/8) • L/2 = L/ 6 rows which have the 

desired proportion of Ps. □ 

Theorem 3: Le b ·:5 l l, and / : {O, 1}2l 1----+ {O, 1} he an arbitrary Boolean functio,n. 

Then. there exist au E {01 1} and two independent random variables X and Y such that 

Xis (l, l-4)-distribu~d and Y is (l b)-distributed and Pr(f(X, Y) = u) > ½ (1 + 2-b/2
). 

P r oof: View / as a. 21~hy-21 Boolean matrix., with he (i,i)-th entry specifying f(i,j). 

Let L = 2' and = 2H . Applyin . Lemma 2 'to a.n arbitrary L-by- submatri.x 8 1 there 

exist a o and a 21- 4 by~2b submatrix S' of S with a. fra-etion ½ (1 + 2-b/2 ) of u-entries. 

Making X fla on the rows of S1 and Y flat on i. s columns we get he desired result. D 

The above argument was based on estimating the probability that the number of ones 

in randomly selected columns is at east one standard deviation a vay fr.om the mean. 

One can. ,consider the probability that this number is severa] standard deviations away 

from the mean. This yields a bigger bias but fewer rows and thus a more concent ated 

X. Tb.us for every constant LI' and sufficiently large b, there exist o E {0, 1} such that 

.Pt(J(X, Y) = o) > ½ { + 2-(0 11)/Z) .. 

When b is very small the situation is even worse. 

Theorem 4 : Let b· < log2 (l - log2 l)-1, a.n.d f : {O pz i-+ {O I} be an a.rbi rary Boolean 

fu:ndio,n . Then there ex.is a u E {O, l} and two jndependent random {l,b)-distributed 

variables X and Y su.ch hat Pr(f(X, Y) = ,er) = 1. 

Proof! Consider (arbitrarily) the first r def 21'1+1 cohunns in the 2tby-2' matrix of./. This 

defines a 2tby-r s.ubmatrix. There is a r-bit string which occurs. in at ]east 2' /2r rows 

of the subma rix. Pick hese rows. Let a E {01 1} be a bit which occurs t > r/2 imes 

in each of these rows. Picking the t columns containing o we get a 21-r-by~t submatrix 

with identical entries a. A£, 21
-r > 2° and t > 2b, his submatrix co,uesponds to a pair of 

(l b)-distribu ed va.ri.asbl~. D 
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Z.3 Fla Distribu, ions 

In this subsection we introduce the notion of ft.at distributions. The importance of _his. 

notion steams from the two fact. i:rst, as we will shortly show, the worse behaviour of 

extraction functions occurs on flat distributions. Second as demonstrated through he 

paper, flat distribu ions are very easy to deal with. 

Defin"tion 5~ Let X be a. random var"ble assuming values in {O }1 and SC {O, 1}1• We 

say tha Xis equi-proba-ble on S if for every a, (J E S, 

Pr(X = a) = Pr(X = ,B) • 

We say that Xis fiat on S if Xis equ.i-probabJ.e on S and for .0; ff. S 1 Pr(X = a:) = 0. We 

s.ay that Xis (l b)-ftat il' Xis (l,b):-distributed and there exist some S such thai.t Xis fl.a:t 

on .S. 

For simplicity, we assume throughou h"s section ha 2b, 2b1 and 2b2: a.re integers. ]at 

distributions are interesting because the c'worst ca.s,e behaviour" of a function occUis o.n 

them. - a.mely, 

Lemma 5: For every function /· {O, 1}2l 1-+ {o~ l}m and ,every o: E {o, l}m 

s.up {Pr (f (X Y) =a)}= max {Pr (f(X, Y) - a)} 
X, Y are independent X Y are ind.ependen 

X is (l b1)-dist.rihuted X is (l, bi)-flat 

Y is (I, b2)- istributed Y is fl 62)-6.a.t 

and 

_ inf {Pr (l(X Y) = o:)} = min {Pr (f(X Y) = a)} 
X 1 Y a.re independent X, Y are independen 

X is (l b1)-distributed X is (l b·r)-flat 

Y is; (l, b2)-distributed Y ls (l b2)-fta.t 

P •oof: Denote P'i = Pr(X = i) and qi = Pr(Y = j). Le fa(i i) = 1 if f(i i) = a and 0 

otherwise. Then 
- d~ . ) Pa(X Y) =: Pr (f(X-Y) = a .. 

= 1:Pr(X = i Y = i) · fo:(i,j) 

= L,P·Lqif a(i j) · 
i,i 
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The ]a.st equality foUows from the independene•e of X and Y. PGi(X1 Y) is a func, ion of 

the variables Pi · q;, and it attain a. g!oba] maximum in the range O ·~Pi< 2-"1 , 0 < q; < 
2~&1 , .L, Pi= Lj q1 = 1. We look for a characterization of this global maximum. Fixin;g 

the probabmty distrlbution of X (te fixing the p,'s), P'a(X, Y) is a. lin.ea.r program in the 

q;'s; subject o the co,nstraints O < ·'l; < 2-b11 L;' q; = 1.. Applying [inear programming 

techniques [21 ch. 21, one ca.n verify that every basic feasible solutions has, exactly 2611 

non-zero va.ria.b]es g'j, each equal 2-b::i. Thus we h,a.ve s,hown tha.t for evezy fixed X the 

distributi.ons which ma.ximize/ minimiz:e the value P 01 (X,Y),. ·over aJ1 possible ,choices of 

(l .t b)-dist.1ibutions·., are fila.t dis ributions. The same obviously ho els for fixed Y. Now let 

Xo,, Yo be the pair of (l, bi)-distribution and. (l, 62)-distribution. w.her,e P01 (X Y) attains its 

maximum. Then both Xo and Yo must he flat. ote that the •characterization holds for 

any function f. □ 

We demo.nstra.te the utmty of Lemma. 5 by using it to argue that the foUowing Boolean 

function / : {0,, 1}2 x {O, 1}2 ~ {O, 1} (tabulated 'below) is ½,-robust with respect to all 

pairs of mdepedent (2~ 1)-dlstributed. vars.ables .. 

X\Y 001 01 10 11 
00 0 ,0 1 l 
01 I 1 0 0 1 
10 0 1 0 1 
11 1 0 l 0 

Using Lemma. 5, it suffices to consid.er ·the behaviour of ·the function ,on aU pairs of inde­

pedent (2, 1)-fl.a.t varia.b1 es. There arse 62 = 36 possibilities .altogether. each ,corresponding 

to a. 2-by-2 submatrix of this table. It is read.Uy verified th.at no such submatrix con.tarn 

a.U l's (or all O's) Thus, for every pair of independent (2 ~) -distributed variables, .X and 

Y we have ¼ < Pr(f (X, Y) = 1) < ¾· 

2.4 A Counting Argument 

In th is su bs,ection we show th.a.t two independent pro ba.b~li ty-bounded. sources can. be used 

to get a[most unbiased bits. In fact we show that almost all functions ,can be used f:o.r this 

purpose. To, th.is en:d, we use the chara.cteriza.t.ion of the diimiibuti.ons on which the "w'ont 
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case behaviouin of any function occurs (i.e . . emma. 5) and .apply a. counting a1gumen to 

estimate he fraction of functions which are good wi h respect to a , 1 fia distributions. 

]t is he]pfu to note that th.ere is a natural correspondance between fla distributions 

and the set of strings on which hey are concen.trated. This suggests the fol owing no ation: 

Let Z be an arbitrary fixed (l b)-flat variable. We wri e z E Sz if Pr{Z = z) - 2-0
• 

In the :nex lemma we consider ~o fixed and independent flat va.riables; and bound 

below he fraction of functions which are e; .. robust for these two specific variables. 

Lemma 6: Le X and Y be two independent ,distdbu.tiions such that X is (l, b1 )-Rat and 

Y is (l, b2)-fla:t and O < e; < 1/2, The fraction of func ions ./ : {O, 1}2l {O , l}m, which 

Y 
. 'l2,l>t+i.:1- ... -:1 

are e-robust on X and , JS at leas 1- 2m-e . 

Proof: '?-le say that a :function f ! {0, }2' ~ {0 1}= is e -bad on the st:ring a (a E {01, }m) 
if 

l{(x, y) E Sx ~&~:b~ f (x, Y) = a} I <I, [(l _ e) . 2 m,; (l _ e:) .. 2-m] . 

Let Pa,E. denote the fraction ,of functions which are e-bad on the s. ring a:. To study Pa,« 

we consider the probability spaice of the functions in / : {O, 1} 21 
i---+ {O l}m taken wi h 

uniform distTibu ion. For ea.ch i E Sx and J E Sy ~ ]et he random variables fi,:i be defined 

as fol1ows; 

I!- · --{l )1 J -
0 otherwi e 

Then 

Recal the Chernoff Bound [25 ch. VII sec. 4, Th. 2]: Let !i"i, , 2 , •• . ~'t be independent 

random vaxia.bles with Pr(~i = 1) = p and Pr(~i = 0) = 1 - p 1, where p < 1/ 2. Then for 

all O < 6 ~ p( ·, - p) we have 
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w·tching o base 2 and sum.ming ov,er aU possible o:'s, the probability hat a. functi-on 

/ : {0t } '>l f----+ {Di 1}m is £-bad on some o: E {O, l}m is at most 

The Lemma. fol]o NS. 

L Pc,.,~< zm-e:Q2bi +i~-~- :1 • 

0:e{o,l}m 

We are now ready to pro e tha almost aU func· i.ons work. 

D 

Theorem 7: Let < m _<:: b be an integer and O < £ ::; 1/2. Let F be he set of functions 

{/ : {O 1}21 
i-+ {O l}m}, 

1) Let G 1, .~ C F the set of functions which axe £-robust for any two indep en den, ( l, b )­

distribu ed random variables. If m + 2 log2 e:-1 < b - 2 - lo,g 2 (2l + 1) then 

2) Let Hh,~ CF the set of functions which are e--robust for any two independent raadom 

variables, which are (l b1)-di tributed and (l b2) dis,tributed respectively- where 61 + 
b2 > 2'b. If m + 2 Iog2 e- 1 ~ 2b - l - 5 then 

Proof: We st,a;r with (I) and then. sketch the necessary mod·fica.tions for the proof of (2). 

By Lemma 51 f E Gi,t6 if and only if it is e-robust for ,ev,ery two independent (l,b) -fiat 

random variabJ.es. By Lemma 6 he fraction of functions in. F which. fail on a. partic1tlar 

pah of indepen den ( l i b )-flat v aria.b les is dou b le-exponentiaJ!y vanishing ( < 2m-,.~ 226
- ... - :i). 

iden ly, he frac ion of func ions which could faH on .some pab: of independent (l, b)-ila. 

variables is a. most the number of p.airs of (l b)-fla.t variables times the above frac ion .. 

Let N 0 denote the number of (1. b)-fla varia.ble-a. Clearly 

Thus,, 
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ince m + 2 log2 e:- 1 ~ 6 - 2 - ]og2 (2l + 1), we get 2l - e·22b-m-2 < -1 and (1) follows. 

Fore ery fixed b1 and b2 , the f'ra.ction of functions in F which fail on a. particular pair 

o.f ·ndependen variables which a.re {l 61 )-fl.at and (l b2 )-flat resp., is < 2m-e-~ 21,
1 +":z_,.,._,. 

We multiply t •is fraction by ( 221
) 

2 
= 22l-ti which is an obvious uppe:r bound on the 

number of posslb e pairs of fiat variables. Wege 

'ince m + 2 log2 €-:i: < 26 - l - 5, we get 2z+i + m - e222b-m-2 < -21
1, and (2) follows. D 

There is a rade-off b-etween m, the number of extracted bits, and E" 1 the robustn,ess .of 

these bi s. ome cases of special interest are Hsted b,e]m : 

1) etting m = b 4 -log2 (2l + 1) and e = 1/2, we convert tw,o independ,ent (l, b)-soutCes 

to a single (m, m - 1)-sou.rce. Intuitively,, his conver ion is ery efficient in erms of 

:rate: even if the entropy of the input sources is b units per each block, we extract a 

block of ~ b bits with entropy ~ b. 

2) Setting m = (b - 2 - log2 (2l + 1)) /3 and e == 2- m we see that most functions can be 

used to extraict many high quality bits per ea.ch bock of the two independent (l, b)­

sou:rces. 

3) Setting m = 1 and £: = 2- (&-3 -logil(1:r l) )/2 we see that an but a 2-2& fraction of 

the Boolean functions we e-:robust with respect to two independent (l b)-sources. This 

bi~ is almost optimal: Theorem 3 states that no· Boolean function can be· 2-(b-O(l})/2-

r,obust, with r,espect to such sources Theorem 4 asse · s hat "nothing can be extracted 

if b < 1og2(l - log2 l) - 1. 

4) et-ting m = 1 and e = 2-(2&- G-l)/2 ~ we see that all but a 2-21 fraction of the Boolean 

functions are e-robust fol' any pair of (l, b1 ) (l 62) sources satisfying b1 b2 = ·zb. 

2'.5 Hada.ma:rd Mat:rice 

In the subsec ,io,n 2.3 we sho ed that the bias of a. Boolean function/: {O 1}21 
i-+ {0,1} 

with r,espect to ~vo independent (l b)..sources, ,ca;n be estimated by consideirin.g fla..t distri­

butions ,only.. iewing / as a 2l~by-2z ±1 matrix, · his corresponds o taking all 26-by..:2b 

su.bmatrices off (not necess.a:rily consecutive) .1 and ,estimating the maximum subma:t ix 
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elemen.t:s sum. While in the previous sec ion e showed that most functions have small 

su bma.trix s um1 this sec ion deals wi h a specific class of functions: whose mat ices ar,e 

Hadamard matrices .. 

A Hadamard matriz is a ± 1 ma r:ix in which ,ev,ery two distinct rows (co]umns) are 

or thogonal (see [13 ch. 14] and [ •6 ch. 2, sec. 3]) . Hadamard matrices are a subject of 

rkh Hteratu:re. n pa.rtkulal' it is welI known th,at s:ubma.tric,es of any Hadamard matrix 

are "hara.need . In order to, make he paper :self co,n ained, we present a, proof of this fact, 

following · rdos and Spencer [11 p . 8 ]. 

Lemma 8 (J.H. Lindsey): Let. H = ( hi,i) be a t-by-t Hada.ma.rd matrix. Then the sum 

of elemen s ln every r-by-s submatrb:: of H 1.s 2st ost Js • t • t. 

Proof: ince or hogonaJ.ity is preserved under any row and column permu ation it suf~ 

fices to consider 1~;=1 Lj~l hi,;j I the sum of elements in the leftmost/ uppermost r x s 

submatrix. L,et h..1 denote the i-th row of H, and 

T hen by Cauchy- chwartz inequality 

r a th,-~ LLhi,i -
i=l i=l i=l 

r 

< Lhi ··ll~L 
i=-1 2, 

T 

Lhi . .../i . 
•=1 ~ 

-, 

Since he hi are orthogonal 

I' 

Lhi 
i=l 

and he boun on lz:;=l Ei=l hi,i ' follows . D 

Theorem 9: Le M be an 21-by-2z Hadamard. matrix corresponding to the Boo)ean func­

tion f (i.e. J(i j) ~ l + ~i-i) . uppose b1 + b2 = l 2+2]og2 ,e;-l wheres< 1. Then 
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the function/ is ,e:~robU_st with respec to any pair of independent random variables X Y 

which are (l o2)-dis. ributed and (l b2)-distributed, respec ively. 

Pr,oof: By Lemma. 5, it suffices to sho that every 2"1 -by-2b2 su.bma.trix has relatively 

smaU elements' sum. Substituting in Lemma 8 r:;;: 2"1 , s = 2°:1 and t = 21 the suhmatrix 

□ 

Subsequently Noga Alon proved a more general statement (without using Lemma 5) [3]. 

Rem.ark -: 

1) The case where b2 = l - I will be useful in Section 9. We get that any Hadamard 

matrix is 2-(b-3 )/2-robust with respect to any pair of independent random vaxia.bles 

which are (l, l - 1)-distributed and (l, b)-distributed respec i e y. 

2) Inner-product modu]o 2 corresponds to a. special form of Hadamard matrices known 

.as Sylvester matrices. This provides an alternative proof for Vaziran.Ps Theorem [2 ] 

for the case 6 > 1- ,JI/2 ~ 0.293 (bu:t .· o for smaller~ s). 

For inner-prod.uct modulo 2, Theorem 9 cannot be significantly imp,roved {with respect o 

probability bounded sources). 

Proposition. 10: Let 61 + b2 < l - 4 2 Iog2 s-1 , where ~ < I. Then the inner-product 

modulo 2 function is OT e-robust on some pan- of independ,ent, (l, b1} distributed and 

(l, b2)-distributed variables. 

Proo.f: First, consider the case where b1 + b2 < l. P"cking X o 'be flat on strings of 

the form ol-&, {O, 1}01 a.nd Y to be fiat on {O, · }°'2 0Z-b~ the inner produc of X and Y is 

iden icaUy 0. For the case bi + b2 > l 1 repeating exaictly the same construction does not 

y"eld the desired bias. However, we ca;n modify it using Theorem 2 . Let A d_ef b1 + b2 -l .. 

Consider t.he following family of (l b1)-d.istributed variables X. Ea.ch variable X E X 

is the concatenation of three independent variables X1, X2,, Xs,, where X1 is uniformly 

distributed over {O, l}bi -.c..-4 , X 2 is (~ + 8, !:J.. + 4)-distributed1. and X 3 has l - b1 - 4 bits 

which a.re identicaliy O. Simita.-dy: Y = Y 1Y2Y3 E Y satisfies Y1 is ide tica.lly 01=
0: - 4 Y2 

is (A+ 81 6. , 4)-distributed, and Y3 is uniformly distributed over {O, 1p:i-6.-4_ - or every 

pair XE X and YE Y, the inner-product of X and Y equals the inner-p:roduct of X2 and 

Y2 . Since both X 2 and Y2 cou d be ,any (6' + 8, 5 4)-distributed variables, by Theor,em 3 

their inner-produc · may have bias > ½ (1 + 2-(6+4 )/2) = ½ (l 2(l- ,bi -~~ - )1 2). Thus, for 

e < 2Cl-bL -b:i-4.)/2), the function is not t~robust. □ 
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The last proposi ion demonstrates an inherent limitation of the iinner-p,J\oduct function 

with respect to (l b)-distributions when b < l/2. This lhnitation need not be shared by 

all Hadamard matric,es. In fact, a simple construction known as the Paley Graph, ls 

conjectured in the combinatorial folklore to have a stronger imbalance (small submat-rix 

sum) property. 

Let p· be a. prime, and ( *) be the Legendre symbol of the residue i mod. p. The m.a;triix 

M with Mid = (i;i) is "almost.1~ Hadamard [16, p .. 47) as for any O $a< b ~ p- 1 

Thus 1 with minor modifications, Theorem 9 applies alsio to the matrix M . 

Conjectur e· For any constan O < µ, < l there exists a constant 1.5µ < ,c.µ. < 2µ, such 

that every pµ.-by-p~ submatrix of M has elements' sum at most p01• ., for large enough p . 

Remark: B. Theorem 3, the constant cµ. must satisfy cµ > 1.5µ. 

Corollary 11.: Let /(i,j} = ½ ·· ( 1 + e;i)). Under the Paiey Graph conjecture, the 

function f is p~,.-2fi~robust with Iespect to ,any pair of independent (10th p, µ · lo:fb p)­

di:stributed random variables. 
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3. EXTRACTING UNBIA ED BITS - PART II 

In this .section we further invest.igate the problem of -extracting unbiased bits from 

probabUity bounded sources. In subsection 3.1 we introduce two efficiency me.a:.sures: Ia e 

and computation complexity and consider extradion schemes, arising from our results, 

with resp,ect to these measu es. In subsection. 3.2 we present and analyze the discre e 

logarithm extraction scheme (th is result did not appear in the preiim.in.ary version of his 

pa.per [81). In :subsection 3.3 e consider extraction from slightly dependence sources. In 

subsection 3.4 we further extend the p obabiUty~bounded model: we consider sources with 

lower bound on entropy soUl'ces with varying block length and proba.binty bound. 

3.1. Efficiency Con iderati:ons 

Before going any further Let us discus the significance of the results presented in . ection 

2. A first moral is that it is possible to• generate a sequence of almost unbiased and 

independen bis from the output of two lndep-endent pr-oba.biaty-bounded sources. Once 

the question of possibility is re.sol . ed1, we are inter,ested in the efficiency of he extraction 

schemes. We consider hvo measu.res - rate and computaifonal complexity~ both with 

respect to he desir,ed robustness:. 

3.1.1. Efficiency M asu:res 

In Sec ion 2 we have considered functions which operate on corresponding l-bit biock..s 

-of two (l., b)-sources. More general y, we now consider determmist·c .a]goritb.ms (families 

-of functions) which may use several blocks from each (t b)-source a't a ime. In order o 

decrease he bias t(n) as n increases 1 the number of Mocks used by he. a]go.rithm dep,ends 

on the secUl'ity parameter n. Of special i terest is the cas·e wher-e e-1 (n) g:rows faster than 

any poly omial In this case the extrac ed bits are as g:ood as perfect bits for al] poly(n) 

purposes'' . 

In the foHowing defi.ntion of an ex ,raction scheme c(n) de otes the rohusteness of the 

scheme, s(n) denotes the number of bits ta.ken from each sourcet e(n) denotes the numb,er 

of extracted bits; and c denotes the number of (l b)-sources used. 

Definition ,6: Let e: be .a function from integers to the interv:a.1 (0 1) and .s, e be func­

tions from integers to m egers. Let c l be integers and b (0 < b < .I) be a. rea. An 
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(e(•) s(•), e(•), l, b, c)-eztraction scheme ls a family of fu c ions {/ n} such that for ,every n 

the fo iowing h.olds: 

1} For ,every ai, a2 •... , Ctc E {O l}a(n) f n ( 0:1, 0.:2, .•• ac) E {O, l}e{n) .. 

2) The function /,.. : {0 1 1}c·5 (n) 1-i> {O, l}e(n) is .s(n)-robust with respect to, any ,c inde­

pendent v:ada.bies X 1 X2 -.... ,Xe, where each of the X/s is the firs .s(n) bits output by 

some ( l, b )-source. 

The efficiency of an algorithmic scheme should be evaluated with respect to the re­

sources it uses. In the setting of randomness extrac ion schemes he resources to be con­

sidered are the input randomness and the deterministic computa. io,n requir,ed to effect 

the extraction. We .measure the efficiency with respect to the randomness resource by the 

ratio of the entropy ent ering the extraction scheme and the entropy Iea.ving it. 

Denni tion 7: The rate of an ( c ( ·), .s ( ·) . e ( •), l, b,t c) ,extract" on scheme is define-d as 

r·(n) def e(n) · Ho 
c - .s(n) · Hr ' 

where Ho is. he entropy of ea.ch ,output bit (Ho ~ 1- E:2 (n)) a.nd H1 = b/l is a lower 

bound on the average entropy of each input bit. If there exist a., constant r > 0 such tha 

for every n, r(n) > r then we say that •he extraction scheme has constant rate. 

For every n, the r,ate r(n) is the :ratio of the input and output entropies · o, fn- - he 

entro,py of the inpu is taken by the worse possible· one smce the extra.c ion scheme cannot 

adapt t o better sources without an. explicit guaran ee. 

Definition 8: The computational complext·ty of an extraction scheme, {/ ,J, is defined as 

the complexity of a family of circuits {Cn.} such that for every n, On implements fn• 

3.1..2 E fficient Extraction chemes 

We now present several extraiction schemes, which follow imm,ediateiy from the results 

presented in ection 2, and analyze their perfbrmanoe with :re.sped to he above •effi­

ciency measures. Following is a simple bu importan obs,ervation used in developing hese 

schemes,! or every integer q > 1 , an (l, b)-source is also a {q • l 1.q • b)-source. 

A Rate Efficient Scheme which is net tomputationally efficient 
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One consequence of Theorem 7 is that for every l and b and e ery desir,ed bias €( •) . 

there is .a. non-uniform circuit amity { Cn.} which extrac s bits a.t constant rate from any 

t,;vo independent (t b)-sources:. This is obtained by letting s(n) = tl log2 e-1 (n) 1 e(n) = 
og2 e--1 (n), a.nd using Theorem 7 with respect to two (.s(n), l · .s(n))-sou11ces. Sinc,e the 

entropy per input block may be b the rate is ~ !- The size of On is 5'- ei/o (n) • log2 e-- 1(n) .. 

Computationally Ejfident Sch.eme.s which do not ha.tie constant rate 

By Theo,rem 9 or every l and b > l /2 and every desired biiu £(•) ta.king the bi­

nary inner-product of l • (b - ½)- 1 log2 e-1 (n) bits from two independent (l, b)*sources, 

a. single E(n)- obust bit is extracted. WhiJe this yieids an efficient a.[gorith:m its rate is 

1/G (loge 1(n)). 

Under the number theoretic conjecture of subsection 2.5, efficien algorithms e:xis for 

any t and b. For every desired bias E:(•), let p > e-C(l/ll)(n) be a prime (where O(e) == O(e)), 

Ta.king l.og2p bits from each of the two independent (l, b)-source.s, a.nd computing the 

Legendre symbol of their integer differ-ence mo,dulo p, we g.et an e{n)-ro,bust bit. The 

extracted hit can b,e computed by an a.Igorlthm running in time polyn.om.ia] in lo1h e-1 (n) 

(and t/b,). 

A direct oons,equence of Theorem 7 is that for ,every l and o > 5 + log2 l here exist a 

ta.bJ,e of size 221 which transforms t,.vo independent (l, b)-souroes into one (m, m - 2-m). 

so,urce, w ,ere m = (b - 3 - log2 l)i/3. In other words we can transform two independent 

but v-ery weak sources into one source which is ,quite good (although it is far from being 

"a most perfec "). · or ev,ery bias: e(n) using the inner~product function on the output of 

the v·rt.ual (m m - 2.-m)-s,ource and a hlrd "ndependent (l b}-sou.rce, e get the desired 

bias. We con.dude that for every 0 < b < l and £(•), there is a fast algorithm (running 

in time 0( og2 ~- 1 {n) ) hat on inpu n. and access to three independent (l,b)-sources, 

genera es ,e(n)-:robust bits. 

The prob .em of finding an extraction scheme which combines both :rate and computa­

tional efficiency was left op,en in our pr,eliminary rep,ort [8] .. Thls was true ev,en for the 

SV-model. In the following subsec ion we present a so ution to that prob em. 
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3 .. 2 An, E t action Scheme Efflcien in .Both Measures 

In this subsec ion we present an ext.ractton scheme: based on k th power residues modulo 

a prime, which is efficient both in terms of information :rate and oomputa.tion complexity. 

This scheme is a. generalization of the Paley gr.a.ph coast.ruction; and was develo•ped through 

conversations with La.szl6 Baba.i. We begin this subsection by presenting he scheme. We 

then use results of Ajtay Babai HanjaJ Komlos, Pudlak, Rod[, Szeme.redi and Turan [2] 

to show ha.t the scheme has high robustness. To guarantee hlgh information rate our 

scheme uses largie values •of k, and is relat,ed to computing (partial) discrete logarithms in 

z,,. We in estiga e the conditions under wMch the :sch,eme is efficiently computable and 

show that primes satisfying these ,conditions can be precomputed in ex-pee • ed. polynomia. 

time given access to two probability-bounded sonrces. 

Defin.itio•n; Let p be a prime, g a, pdmttive elemen of z.,, and k > 1 an integer dividing 

p-1. We define /k : Zp x Zp {O, 1, ... 1,k -1} by /k(x;y) = (log9 (x- y)) mod k. 

Oommen , : 

) Fo•r o: E {O ,. .. , k - 1} let R~ = {ga+tk : O < i <: (p· - 1)/ k}. Then '1,;(z y) = a iff 

x: - y = z for some z E Roi. 

2) By restrkting the function to a subse •of Zp fk can be vi,ewed as a function from 

{ 0, 1} 1 x { 0, 1} z o { 0 1 p •• 1, .k - 1}, for l = l lofh p J . 

3) The range off r.: is {O, , . . . k-1}. Takmg. m = log 2 k J, he range of h: can. be viewed 

as {O }m U {..l} (in case of .L, the function is undefined). This causes a most a. factor 

2- loss in entropy. 

To evaluate the robustness of h: 1• we'd like to have upper and lower hounds on 

Pr (f (X Y) = a) for all pairs of independent (l bi)-distributed, (l 1,b2)-cUstributed SQurces 

X Y. By ]em.ma 5, it suffices to, consider flat distribu ions. Therefore we're interested 

in bounds on the number of solu ions x - y = z for z: E A y E B z 1E Ro , where 

A)B c Zp are arbitrary sub ets of size 2bi,2°::r, respectively. Let v(A B,a) denote this 

number.. CJearly, v(A B, o:) = .v(g-a A, g-o: B 0), and thus it suffices to consider Ro, he 

set of k-th residues modulo p. 

Le w E G be a primitive p- h root of unity. Let ~11:(i) = Lz:eRowiz:, and ~k -

max::i.sf:Sp- l lcpk(j') I· A r,esult of [2 r,ela.tes v(A B a) to the size of A B via <li;.. 
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Lemma 12 [2] : Let A~ B C Zp be two arbitrary subsets, and a an integer, 0 < a: < 
(p - 1)/k. Then 

The following bound on ~k was giv,en by Laszl6 Ra.bai (priv:ate communication). 

Lemma .13: ik < ..fii· 
Proof: The pr,oof uses methods of tdgonometric sums over finite fields (see 127]). We start 

by presenting some definitions and notations. ~4.n .a.dditi"Ve ,cha.rader of Zp is a mapping 

t/J : Zp C (C denotes the complex numbers) satisfying T/J(a + b) = '$(a) • tt,(b); the u_nit 

charader satisfies 1/,•0 ( · ) = O. A multiplicative character of z,, is a. mapping x : Z'P 1---½ a~ 
satisfying x(a · b) = x(a) - x(b)i the unit character satisfies xo{·) == 1 (x(O) dt1£ 0 unless 

X = xo) - A Gaussian sum S(x1 v,) is defined as L:eZp x(x)¢(x). It is well known (27, p. 

47 th.m. 3A] that for x # xo ?jJ ~ ¢0 ]S(x, ¢)1 = ../P, while S(xo ~) = O. 

Let ( E C be a prim.i ive k-th .root of unity. For O ~ t < k - l, define Xt : z; ~ 0 by 

xt(x) = elog"' ::: then Xt is a multiplicative charade1r and 

x E Ro => Iogg x = ki =I> Xt ( :t) = 1 (1) 

0 f= :z: ¢ Ro =;,, log!l' x = ki + a for some 1 < a < k - 1 
k-l A:-1 

⇒ L Xt(:,;) = L (ea)t;;;; 0 (2) 
t=O i;:,,0 

k-1 

~ = 0 => LXt(:t) = l 
t=O 

For 1 < j < p - 1, define t/;j : Zp i-+ C by \b;'(z) = wiz then 1Pi is an additive chara.de,r 

# ¢0. · sing (1) (2)t and (3) we get 

k-1 k- 1 

L S(x, V'j) = L L Xt(x)?f,;(x) 
t=O t=O ::cEZ,, 

k-l k - 1 k-1. 

= L wj~ L X·t(x) + L wJ·::c L x~(x) + ~ Xi{O) 
~ER11 lil=0 O:;;ih:IRo 1=0 i:=0 

= k L wi::: + 
:ce~ 
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Using the equali ies for· Gaussian :sums, the la.st equali -:y implies that fo ,every I < j < p-1 

A:-1 

L S(xt ¢1) 

< ¼ (1 + ~JS(x,,t/1;)1) 

1 
- Jc(l+O+(k-l)Jp) 

< ./P □ 

Reformufa.ting these bounds in terms of sources and robustn,ess, we g•e 

Theorem 14: Let p(n),k(n) l(n) - l log2 p(n)J ;,ik(n) be as ahove, and s(n) > 01
• 'Suppose 

b1 (n) + bz(n) > l(n) + l + 2 og2 e: 1(n) + 2 log 2 k(n) . Then. fk(n) ; Zp(n) x Zp(n) 1---+ 

{O, 1, . . . , k(n) - 1} is f;(n)-robust for any paiJ ,of independent, (l(n) -b·1 (n))-distribute.d, 

{l(n), b2(n))-distributed sources. 

Proof· It suffices to ,c:o:nside:r flat sour,ces X Y. Le A C Zp(ii) he the se where Pr(X = 
a) = 1/2&1(n) (similarly for B, Y,b2(n)). Then IAI = 2 bi(n) IB! = 2&-2 (n) and for every 

a: E {o. . . . k(n) - 1} we have 

Combm.ing Lemmas : 2 and 13, we have 

1 ( k(n) 1- k(n) k(n) 

uhstituti g p(n) < 2l(n), b1 (n) + b2(n) ~ l(n) + 1 + 2 log f:- 1 (n) Z log2 k(n) the claim 

fol ows. D 

·we now establish some rela ions between the various quantities above. We denote by n 

he security parameter .and paramet ize by i the the blo,ck length he probability bounds, 

the prime p1, the divisor of,p- 1, k~ and the bia.s guarantee e (that is, they will be denoted 

by l(n) b (n), b2(n) p(n) k(n) and e(n) respectively). Typically e(n) = n'!ilii1 where 

k(n) > O is either a c,onsta.n (the case of a p,oiynomia.l bias) ,or a function tending to oo 

with n ~ · co (the case of a subpolynomial bias}. 
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The information :rate of he scheme is ~ irfgli:t{J). Therefore~ in order o guarantee a 

constant :ra.:te> k(n) must be> p(n)d for some constant d, 0 < d < 1. We will typical]y 

use 3/16 < d < 1/4. Assuming b1 (n) + b2 (n) > .75l(n) (an .assumption we'll later 

justify) and substituting log2 e; - 1 (n) = g(n) log2 n,. log2 k{n) == d •• l(n) ·n the equ.ality of 

the last heorem, we see that l(n) > 
3
~~~,d log2 n is a. necessary condition for the scheme 

o p1oduce .s(n) = n-h(n.)_robus bits. The case of equality in the last equation im.pUes 

e-1 (n) < k(n) < c;- 2 (n) (for 3/ 16 < d < 1/4) an expression which relates the size of 

k( n) t-0 the robustness of bits produced by / k{n). 

The computation complexity of the scheme equals the (deterministic) complexity of 

finding d"screte ]oga.rithms moduJo k{n) in the field Zp(n).· We fost assume that p(n), k(n) 

acnd g a primitive element of Zp(n) are given and a.naJyz·e the run time of the scheme 

We then turn to the complexity of the preprocessing stage, in which p(n)t k(n) and g are 

produced. 

Given p(n), k(n) and g, a primiti e element of Zp(n), then by essentially t1ying all 

possible candidates we can compute Iogg(·) mod k(n) m time O (k(n) log3 (p(n))) (see 

[18]). Thus if the bias e-(n) is required to be just polynomial inn (s(n) = n - 0 ( 11), then by 

empl,oying our scheme with brute-force discrete logarithm subroutine, the computa.tiona.l 

complexity is polynomial inn.. 

In order to generate subpolynomially biased. bits. (s(n.) = n .-h(n), with h(n.) --i- oo), 

we need more efficient ways of compu ing discrete logarithms (modulo k{n)) in Zp(n)• 

There are know:n algorithms with complexity 2°(v'lo,gp(n)loglogp(n)), a.nd this run-time 

would snit our needs, but unfortunately these algorit hms are. .randomized, so we cannot 

use them to ( detenni.nis tic a.Uy) eval ua. te hr. ( n) . Ins ead we look for p ( n Y,s i h .smooth 

k(n) and use an algorithm due t o Pohlig and Hellman [23) whlch is su:fficiently fa.st in 

such. circumstances. 

A natura] number z is called y""smooth if aU its piime facto.rs a.Ie < y. Suppose p(n) 

is a prime in the range nJ'logfog"' < p(n) < n2v'leg logn so th.at k(n) (k(n) I p(n) - 1) is 

n-smooth. Given a primitive element g of .Z11 (n), the Pohlig and Hellman algorithm. [23] 

finds 1og9 (·) mod k(n) in O(n log3 n) deterministic time. 

Given l(n) every pair of (l b1)-distributed (l b2)-d.istributed sources can. be viewed as 

(l(n),l(n) - bi/l) (l(n), l(n) • b2/ l) sources ~espectively. Using Hnke primes as above, we 

have 
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Theorem 15: Suppose p( n) fa a prime in the range n \!log log Q, < p(n) < n?Jlog log n, so 

that k(n) I p(n) - 1, p(n)3116 < k(n) < p(n.}114 , and k(n) is n-smooth. Let g E Z~(n.) be 

a given pri:mitiv,e element. Furlhermore1 let l, b1.,b2 satisfy b1 + b2 > 1.15 l. Then for ~y 

pair of independent (l, b1 )-distribu ed and (l, b2)-distributed sources he. function f k,(n) : 

Zp(n) x Zp(n) 1-+ {0,.1, .... , k(n) - l} produces l/n:Jloglog "-robust bits, with information 

ra.te 3 /32 < r < 1/8 and compu , ational complexity 0( n log3 n ). 

'Ne now urn to the preprocessing stage, starting with the question ,of finding appr(fr 

pria.te primes. Let W{:l:, y) denote the number of natural numbers no exceeding x which 

are y-smooth. Ca.n:fi.eld., Erdos and Pomerance proved the fo1lowing heorem concerning 

i'(x, y)~ 

Theorem. 16 [7 ]: For y > log2 y,, i!(:t, y) = zu.-~+o(u) ~ where u = log x/ logy. 

In particular, for large enough x, qr(:i:: y) > xu.-2
(L . Choosing h(n) = 2Jfoglogn, 

y = n, a.nd x = -nh(n), we have u = log x/ logy = h(n). Substituting these quantities in the 

last theorem, we conclude that for large enough n, the probability that a randomly chosen 

z < nh(n} will be n-smooth is bounded below by h(n)-2A(n.) = 1/ (2,/logJog nr'yloglogn. > 

]og-1
/

3 ,n,. Obviously, the 5ame lower bound holds for the probabi1ity tha a random z has 

an n-smoot,h divisor d s·uch that 2.s/t5 < d < z 114 • However, for our purposes it is not 

enough for z to have such divisor , but z + 1 must be a. prime as welt Carl Po.merance 

(private communication) has provided us with a.n estimat,e of the probabnity of this event. 

·Theorem 17: For a randomly chosen nJlogfogn < z < n 2\l'log logn, 

Pr (z has an n--smooth divisor in the range { z.3116, z-114] and. z + l is prime )· > . 
1
2 • 

log- n 

By choosing ran.dam integers in he above ra.n~e, an appmp:riate prime p(n) with a large n­

smooth divisor k{n) and a generator for Zp can be found in expeded polynomial time given 

access to an unbiased independent coin. This is done as foHows. First t we choose p( n) at 

random, factor p(n) - 1 and look for a. sufficiently large n-smooth divisor k n . For factoring 

( ) .D. ' 1 "thm 19·] th t . t d t· 20( logp(n)loglogn ·( h. h p n , we u-se . IX.on s a gon . . · a runs m ex;pec e · 1me · · · w 1c.. 

is polynomial inn). Next, we verify that p(n) is a prime using Pratts .algorithm [24] {again 

using Dixon's algorithm as a factoring subroutine and trying to find primitive elements 

by choosing elements at random) . In case p(n) is indeed a. prime Prates .a]go,rithm yields 
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a a primitive element of Zp(n)• We now subs'titute the unbiased independent coin used in 

the preprocessmg, by bits extracted from two probability-bounded sou:rces, using .any of 

the compu ationaUy ,efficient (but not necessarjly rate efficient) schemes of subsection 3. L 

Finally, in. order to satisfy b1 + b2 ~ I . 75 l, we start with four independent (lo, bo)­

distributed sources (where the ratio between the constants b0 and lo can be arbitrarily 

small). Using the techniques of subsection 3 .1, ev-ery pair of these sources is converted 

into a. s ingle (l,0.9l)-distributed source {where .f = 2loe log2 i; ). Thls conversion is rate 

efficient, and its complexity does not depend on e(n). 

3.3 Slightly Dependent Sources 

In the previous section~ we showed. how to extract urib ia:sed bits from the ontpu t of two 

independent probability-bounded sources. A natu:ra] question is whether the independence 

requirement can be relaxed~ and if so - to what extent. We suggest the following definition 

and investigate its ramifications. 

Definition: 9: Let 6 > 0. We say ha two variab]es X and Y are 6-depe.nde.nt ift for every 

a, {3 E {0, 1}1 wi h Pr(X = o:) · Pr(Y = P) =I- 0 the foilowing holds 

(l + o) _ 1 < Pr(X = a and Y = .8) < (l + 6') • 
- .Pr( X = ~) · Pr(Y = (J) -

Thusi 0-dependence identifies with independence. Also, notice th.at th.is is a more refined 

measure of dependency than correlation. A different definition of slightly dependent SY­

sources was presented in [ 28] and d.oes not seem to extend to PllB-ioUI'Cea. The following 

Lemma ca.n be. easily verified. 

Lemma 18: Suppose that f is e-robust for any two independent variables satisfying 

properties P1 and P2 :respectively. Then f is (6 ( + 6)s:)-robust for any two 5~dependent 

variables sa isfymg properties P 1 and P2 respectively. 

App]ica.tions to extracting unbi.a.sed hits from slightly dependent functions foUow imme­

diately, by combjning Lemm.a. 18 with Theorems 7 or 9 . Lemma 18 may seem weak at 

first glance. It only .gua.r a.ntees that, for small 6 the added b1as introduced by the 6-

dependency does not exceed 6. However t this result is almost op,timal ! We wm show that 

6-dependency may causes an added 0(6) biM, 



-28-

Theorem 19: Let O < 6 < 30 and f: {O 1}2l 1----t (0, 1} be an arbitrary Boolean function. 

Then a.t least one of the following two sta.tem.ents hold: 

1) There exist au E {0, 1} and a. pair of 6-dependent (l 1 .Z-2)-,distributed variables X and 

Y such that Pr(f (X, Y) = o) > ½ · {1 + -;4 ). 

2) There exist a u e {O 1} a.nd a. palr of 'independent (l, l - 7 - log2 s-1)-dist:rib-uted 

variables X and Y such that Pr (f (X, Y) = a) < j. 

Proof; \iVithout loss of generality, we assume that l{(i,j) E {0,.1}2l ; / (i j) = l} I > 
½ • 22z. The function / is represented as a bipartite gnLph G(V, E) i where 'V = A U B 

(A = {a1 : i E {O }l} and B = {b; : j E {O l}l}) is the bipartition and the edge set 

E C A x B satisfies 

The idea. of he pzoof' i:s to show the existence of a large regular subgraph w.ith relatively 

high degree. If we succeed.., the va.ria.hies a.re defined. to be fl.at on the vertex sets of 

the subg--raph, and the dependency allowance ts used to make the edges of the subgraph 

'heavy" . Th us, the probability mass is eoncentr a. ted more on entries on which. he fun.c tion 

has valu,e 1 and the function is bias towards as required in sta.temen (1) of the Theorem. 

We actu.ally give an .a,)gorithm for finding a la.rge regular subgraph. The algorithm is carried 

out in stages. where at each stage a new perfect matching is found . It will be shown that 

if the algorithm faHs then statement (2) of the Theorem. holds. 

In the following we wiU assu:me that statement (2) of the Theorem is false and will 

show th at statement ( ) follows. 

Findfog a large regular sub graph 

Let n = 2' 1, m > n/4 k = m/32. We present an algorithmic p:roof that the grap,h 

G(V,E) con.ta.ins a "-regula.:r subgraph with m vertices on ea.ch side. The argument pro­

ceeds in two phases. First we 6.nd a subgraph G' of Gt which has m > n/4 vertices on 

each side avera.ge degree> (½ - 1~8 ) • m, and minimum degree> m/8. ext we find a 

spanning k-regular subgraph of the latter. 

The subgraph G' is found. by applying the following procedure. 

1. procedure 1: FI n LARGE SUBGRAPH G' 
A vertex a EA in a bipartite graph G((A, B) E) is called bad 

"f its degree is < ¼ · IBI. 
2. 1 PUT ~ G(V, E) 
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Step 1- Omitting bad vertices from both .sides 
G'~G 
Whjle both sides of G1(V\ E 1

) contain bad ertices do begin 

end; 

Le L (resp R) be the set of bad vertices in the left (resp. right) side of G' . 
.B +--- .min{ILI IRI}· 
0 mi t /3 vetices of L and (3 vertices of R from G'. 
The resulting graph is ref:ered to as G'. 

Step 2 - Omitting bad vertices from the remaining side 
Let L (resp. R) be the set of bad vertices m. the left (resp. right) side of G'. 

[By the above~ either Lor R is empty. Wlog let R = 0.) 
Omit all remaining bad vertices (i.e. L) from the graph. 
Om.it~ f:rom the right side of the remaining gra.phJ ILi vertices of m.in.im.rum. degree. 
re urn G1

• 

Tboughou the execution of Step (1) of the above procedure, we only omit vertices 

with degree not exceeding ha1f the cUl'rent aver.age degree. Thus, a.t he en,d of Step (2) 

average degree in the remaining graph is no less than ha.1f the number of vertices in one 

sid!e of the graph. 

Let 2t denote the number of vetices omitted in tep ( ' ). Then the number of edges 

deleted in ep ( 1) is a.t mast 
n 

t • 
4 

+ t • (n - t) . 

(We charge egdes with a bad Ieftpoint to vertices omitted from the left side of the graph! 

while charging al other omitted. edges to the vertkes omitted from the right.) Using the 

abov,e upper boun.d on !E- E'J, we get 

2 

~ < !El = IE - E' j + IE1I < t · : + t • (n - t) + (n - t) 2 

which yields t < i · n. 

ow we da.im tha.t in tep (2) L could not be too, b~g. If ILi > ;2 • r, where t is 

the number of vertkes in the :right side of G1 after Step (1) we reach contradiction by 

constructing two independent (l, l - - log2 5- 1)~sou.re:es. (The sour,ces w.e. constrnc:t a:rie 

ila.t on L and the right side of G' respectively, and applying the function to their output 

yields a bias of ¼•) It is easy to see that after Step (2) the number of vertices on each 

side of · he graph, denoted m, is> (1 - 8/32),n/3 > n / 4. Also the minimum degree in the 

remaining graph is> 1- 6 • r / 32 > m/ 8, and the. average degree is> ( ½ - 3{ 4 ) • m. 

The second phase of our const ruct.ion consist of finding a spanning k-regular graph of 

Go= G'. This is done by applying he foUowing procedu:re .. 
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1. procedure 2: FIND SPAN ING k-AEGULAR SUBGRAPH 

2. INPUT - Go((Ao, Bo), Eo) 
3. R ,._ 0 
4. For i = 1 to k do begin 
5. Find a perfect matching Mi in G'. 
6. R +-RU Mi. 
7. Om.it Mi from G,::_1 , resulting in G"'. 
8. end; 
9. return R. 

We now show that Procedure 2 does not fail. Assume on the contrary hat in some 

iteration. i + 1 $ k a perfect m,a.tching ts not found . . ameiy G;; does not contain a. perfect 

matching. By aU s Theorem [6t sec. S.2, p. 72}, he left side of Gi (Le. Ao) ,contains a 

set •of vertices A' such that the neighbourhood. of A' (denoted B 1
) has ca.rdinaHty smaller 

than IA'I• Since the residual degree of G£ is> ~ - i~ we get 

Consider the neighbourhood of a node in Bo - B 1 (such a. node does exist smce IB'I < 
IA' I < J.Bol). This neighbourhood has cardinality > ~ - k and does not inter-sect with A'. 

We condode that 

IBo - B 1
I > IAo -- A1

I > 7 -k . 

It should be noted that there a.re no edges in Gt: between A/ and B0 - B 1• Thus, Go (or 

G for this matter) contain a t most i • min{!A'I, !Bo - B'I} edges between A' and Bo -B1
• 

This is at most one third of IA'l · IBo -- B' I (sinoe i < k = m/32 and min{IA1I !Bo - .B'I} > 
~ - k = 3m/32). Letting one source be flat on A' and the other be fiat on Bo - B 1 we 

get bias ½ a.nd reach contradiction (as th.ese sources a.re (l l - 6)-distributed). 

Using the dependency a.Uowance to bias the function 

We now use the :regular subgra..ph {(Ao Bo), R) to present a pair of 8-dependent prob­

ability bounded smll'ces, X and Y 1 which make the function bias. X wm be flat on Ao 

and Y will be fiat on Bo; that is 

Pr(X = i) def {1. I Ao I- if ai E Ao 

0 otherwise 

if b; E Bo 
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The dependency allowance is used as foliows: 

_ . def { (1 + 6) Pr( X = i) · Pr(Y = i) 
Pr(X = i, Y = J) = . . . 

(1-6/31) · Pr(X =t) •Pr(Y = J) otherwise 

The reader may verify the validity of the above. definition, by noting that 3\ • {l +o) + :; ·· 
(1 - 6/31) = 1. It foUows hat 

1 15 6 
Pr(f'(X Y) = 1) > -- · (1 + 6) + (- - -) · (1 - 5 /31) - 32 . 32 28 · 

1 S 
>-+-

2 128 

The TheoI,em follows. □ 

3 .. 4. Variations: Entropy Varying Length 

We conclude our investigation into the problem of ,extr.actmg, u.nbiased bits from weak 

sources of randomness. by wo remarks. The first remark concerns the probability bound 

b while the second. :remaFk concerns both band l. 

We. have defined probability bounded v.ariable.s as having an nppe:r bound (2-b) on the 

probabiJity for ea.ch md:vldua.1 l-bit string. A more "na.tura.11
, but less oon inient definition 

considers variab ]es with a lower bound on the ( information theo:re ic) entropy. Every {l, b,)­

vaTia ble has en ,ropy > b, but the converse does not hold. evertheless. every source which 

has non-zero entropy is in fact a proba.biUty-bounded s,ource (a qu.antative sta·tement is 

omitted). 

So far~ we ha: e considered sources where for some fix intege:r I, given the history, the 

next l bits have a particular distribution. A natural q11es.tion1 raised by Jeff La.gadas 

is what ha.ppends when the number of next bits is a. v.ariable. More precisely let !(•) 

and b(·) be functions, and consider a source S with the fonowing output distrib1dion: 

fo:r every integer n > 0 for every a E {O, 1}" and. every /J ,E {O l}l(n) the conditional 

p:roba.bi1ity that the next l(n) bits output by 8 equal /3 given hat the first n bit output 

by S a.re a does not exceed 2-o(n). We cail this a. varying probability-bounded s,ource 

(VPRB-source). Extending Theorems 7 and 4 we get an almost sharp threshold for the 

value of b(·) which allows the ex ra.ction of almost u:nbia.se,d bits from two VPRB-sou.rce.s. 

Such e.xtraction is possible whenever b(n) > 4 + Jog2 l(n), a.nd is impossible whenev,er 

b(n) < log2 (l(n) - log2 l(n)) - 1. 
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4. COMMUNICATION COMPLEXITY 

In this section. we present results concerning proba.bihstic oommunka.tion complexity. ln 

subsection 4.1 we recall the common definitions of communication complexity present new 

definition and compare them. Tu subsection .2 we prove lower boun.ds on the communka­

tion complexity of the functions considered in Section 2. In snbsedion 4.3 e demonstrate 

the tightness of our results by presenting upper bounds on the communication complexity 

of all functions. In subsection 4.4 we suggest a robust notion of communication complexity 

and extend our lower bounds to i . 

Consider two intera.ctive parties A and Bt such that A knows an input x E {O l}n and. 

B knows an input y E {O, l}n. The inputs a.re randomly and independ.en.tly chosent each 

with uniform probability dis tribu ion. Let f : { 0~ 1} n x { 0 t l}" ~ { 0, l} be a. fu.nc tion an.d 

assume that A and B wish to compute f(x y). To this end they use a. possibly randomized 

protocol P. As commonly assumed1 the messages sent at ead1 round ar1e prefix free . Th,e 

protocol is terminated by party A and the last bit B sent to A~ is their joint guess of the 

va:lue of /(xi y). A natural question is how many bits should be ex.changed among the 

party so hat their joint guess is sJgnlfi.catly better than the a-prfori guess The answer 

depends on the exa.c t defi.nitio,ru; of the notions "number ,of bits" and "success probability"' . 

4.1 Definitions 

Let x) y E {o, 1}n.. We consider the probability space defined by he coin asses of the 

parties A and B. Let l p (x.i y) be the random variable denoting the number of bits A and 

B exchange on he p aix ( x y), using the pro,tocoI P. Let L p ( x, y) denote the expected value 

of lp(x,y) and lj,(z.,y) denote the supremum of lp(:c, y). Let sp.J'(z, y) be the random 

variable. ,denoting the su.cce."Ss of P with respect to f on the pair (z, y)~ and let Spd(x y) 

denote the expec ed value of spd(x y). That is Sp,f(x y) is the prob.ability that the fast 

bit exchanged by .A and Bon inputs x and y equaJs /(:r-, y). 

The average optmtol' (denoted Ave) and the minimum and maximum operators (de­

noted Min and .Max resp.) a.re defu:ted in. the obivious manner. These operator,s are used 

in defining the various measures. For example A-ve(Lp) ~ 2- 2n Lz,yE{O,t}" Lp(x, y) is 

the average number of bits exchanged in th.e pr,otocol P'i .Maz( Lp) is the expect,e,d number 

of bits on the worst pair of inputs~ and M.ax{lp) maxz,yE{o,1} .. {lp(:i: y)} is the maximum 
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number of bits taken over al poss·.bte executions and pa.i • wo measures for success, are 

Min(Sp,J) (worst pair) and A·ve(Sp 1) (averaged o e:r al pairs) . 

Previous Definitions 

Various defini ions of randomized communicatio complexity have appeared. We 

presen some of themt (other definitions can be found in (20), [ 4] and [2 ]): 

• Yao's definition of randomized communication wrnplexity [31] (hereby denoted C,(f)) 

is thus the ·nfimum of .M.az(L,p) when take, over a.11 rand'omized protocols P satisfying 

.Min(SP,J) ~ ½ g _ 

• Yao's definition of distributed communication complexity [32] (hereby denoted D 6 (/)) 

is the infi.mum of Ave(Lp}, when ta.ken o er all deterministic protocols P a.tisfying 

.At1e(Sp.1) > ½ ' f: . 

• Orlitsky and El-Gamal (1'9] measure the atJerage communication complexity (her,eby 

denoted Ce(/)} as the infimum of .Ave(Lp) when t~en over all randomized protocols 

P satisfying .Min(Sp,1) 2:: ½ + c .. 

• Pa.turi and imon (22] define the unbounded wmmunica.tion complexity (hereby denoted 

U(f)} to be the infimum of Max(l PL when taken over aU randomized protocols P 

satisfying .Min(SP,J) > ½, 

Our Definitio'Tl$ 

We sa.y that · he protocol P has averag,e £-advant,age in guessing f if Ave{Sr1,1) > ½ e. 

In the foHow·ng defini ions we consider protoc•ols wit average e-advantage. 

• We define the average randomized communication complexity of function f ( denoted 

Af(f)) as he infimum of A-ve(Lp) when ta.keno er all randomized protocols P which 

have average e:-adva.n.tage in guessing /. 

• The worst-case randomized communitation comp..le,:;ity of I unction I ( denoted w ,!l un 
[s defined as the infimum of .Max(l p ), when taken over an randQm£.zed pro · oco s P 

which ha.ve average e-a.dvantage in g:uessing /. 

he ole of e in our notations differs from its role in [31,32 19). Here E denotes 

the a-dvan age of the protocol over 1/2 while originally it was used o denote he error 

probability. 



- 34-

• The deterministic communication complexities (Af (/) and W,P(f)) ,of the function/ 

are defined smiilarly, for deterministic protoco]s. 

Comparioon of Definitio,ns 

For aU functions f E F~, the following inequaliti,es are immediate from ·th,e definitions: 

A:(/)< Ce(/)$ G~(f) 

A:(!) $ Af (I)= DfJ(f) < W,:D(f) 

Ya-0 showed that O½ .,(/) > ½D1_2~(f) [30 32]. 

There are however functions for whlch Af{f) < C~(f) D~(f). On.e such function is 

the ordering function g defined by g{a:, y) = 1 iff x < y. Ya,o showed that for any fixed 

e: > 0) C1r(Y) = O(log n) (31]. The protocol in which A sends tlte most significant bit of :t 

has a 1/4-advanta,ge in guessing g and thus Af14 (g) = l (in fact Wf;4 (g) = ). (Paturi 

and Simon. [22] showed that U(g) = 2.) The three measures W,!(/) 1 U(/) and Ce(!) are 

not always comparable. 

4.2 Lower BoU11ds 

·,;,,ve begin this subsection by sta:ting our lower bounds, and comparing them to recent 

results of other researchers. 

Theorem 20: Let 0 < € < 1/ 2 

1) For at least a. 1 - 2- 2" fraction of the Boolean functions / E Fn 

wiR(f) > n - 7 - 3 logz c:- 1 

Af(f) > 2e · (n- 7- 3log2 ~-
1n) - . 

2) For eve.ry f E Fri representable by a Hada.ma.rd matrix, he foUowing holds. 

wttRU) > n - 3 - 3 logz e-1 

A:(f) > 2g · (n - 3 - 3log2 e-1n) - 1 . 

In particular this holds for he inner p oduct :function. 

Comparison to Other Works 
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Our :result imp ies that for almost all / E Fn, C~(n > 2£ (n - 7 - 31og2 s--1n) - l. 

This is reta ed to a recent independent result of 01T, sky and El Gamal [19], who showed 

that almost a 1 J E F" have G~(f) > 2s(n -1 - og2 n). (Actually they showed tha for 

.aU 2-n < r < /2 a.lmost a.U functions f with r • 2in l's in. their table have C £ (f) > 
2e:(n - ]og2 r - 1n)i.) 

Our bound on W6R(f) (for almost all/ E Fn) is· relate,d to a recent independent result 

of Alon, Frankl and R.odl (4) who sho,wed that al.most all J E Fn have U(f) > n.- 5. Their 

result implies Cc(/) > 2e(n - 5-). 

All three works resolve Yao s open problem [31]: What i·s Ce(/) for a random f E Fn ? 

Proof of Theorem 20 

Proposition 21: Let o < 6 5 1. Then A~(/) > (2 - o)e: • W/!;2,(f). (In particular, 

A~(!) > e • W:}2 (1).) 

Proof: Consider runs of protocol P which has an ~-advantage in guessing/ a.nd a.verage 

length a.. Truncate runs of P which exceeding f'- 10..j(2.- .6) bi.~. In thee en of a. long ron 

flip a •coin to determine the final guess. Such runs occur with probability < (2 - 6)£- and 

by guessing at random we lose a. mos (2- 6)~/2 of the .av,erage success pioba.bHity. This 

yields a protocol with ! • e:-a.dvan age 1 the runs of which are no more than E- 1a/(2 - ~) 

bits long. □ 

Proposition 22: w:-(f) = wp {/). 
Proof: For a randomized pio ocol, the average a.dvantag,e is a. sum over both the inputs 

and the coin tosses.. Ther,e must be a least one sequence of cofo tosses which does a.t least 

as welI as the average. Using his string:1 we ge a. de.terministic pro1 ocol with the same 

length and .at least the same average advantage. D 

otice tha th.e a.bo.ve argu.ment holds since we are interested in average advanta.-ge; the 

advantage on individual pairs may decrease. Using Proposition 22 we may concentrate in 

studying wp (f). 

Theorem 23: Let k n be integer-st and O < t: $ 1. ' uppose hat for every b1 + b2 > 
2n.-k-l+ log 2 s;, the Boolean function f; {O l}n x{O 1}" ~ {O, 1} is e:-robust with respect 



to any pai:r of independent random variables Xt Y satisfying: ~ is (n,,b1)-disk!.buted and 

Y' is ( n,. b2) -distributed. Then 

W;'(I) > k. 

Proof: Suppose, towards a cont-rad.iction~ that Pis a deterministic protocol with average 

e-advantage in gu.esfSing f ~ such that .Maz(lj:.) < k. Consider a I possible executions o•f P 

a.n.d assume~ without loos of generaJity1 tha.t A and B exchange exactly k bits on ea.ch pair 

of inpu. s. 

For every ,-y e {0~ 1}.lc t denote by Ob) the set of (z, y) pairs on which. A a.nd B,s 

communication consists of 7. ote that by prefix freeness, the parsing of "'1 is unique. 

Let Ab) = {z : 3,y s.t .. (:!:,Y) E 0(--,)}, and B(-y) = {y : 3.z- s.t. (z y) E O(;)}. By a. 

cut-a.nd-paste argument of Yao, [a,o], 0 ( "1) = Ab) x B('-r). 

Denote by la;at("1) the, last bit exchanged in the communication 'lt a.nd let G,(-i) = 
{(x, y) E Ob) : last('l) = f(:r,, y)}. Since P has e-aidva.ntageon f, we have E,.,.E{o.i}• IGh)I > 
( ½ + e::) • 22na. Let us say that Cb) is amall if I Cb) I < £ - 22n-t-l. Sim~e there are at most 

2k r,ectangles Cb},, the number of points in .aU small rectangles is at most e -21"'-1 . Thus 

L IGb)I 2:: (i + ;1, · 22
ri • 

'l s .t. IC(1')11~•-22n-J.-1 

This implie tha t,here exist a. "I E { 0 , 1 }:A:: such that both IC b) I > .15' • 22n-k-l and 

IG(..,) I > ( ½ ,U · IO(;) I (i..e. C(i) is sufficiently large, and the protocol has· non-negligible 

adva.nta.ge on the pa.trs in it). 

Set X and Y 1/io be two independent .random variables, ia.t on A(7} and. Bb), r-& 

specUvely. Then Pr (f(X,,Y) = truth)) 2: ½ · (1 + e). Let b1 = IAb}[ and b:z· = 'B'b)I. 
Then X is (n, &1)-distributed, Y is (n, b:i)-distribu.ted, and "1 + b:, > log2 (e · 22n.-1i:- 1

) = 
2n- k - l + log2 e-. This contradicts th.e £-robustness ,of/. □ 

Theorem 20 (above) is a. oonsequence of combining Theorem. 23 (a.nd Propositiona 21 and 

22) with Theorems 1 a.nd 9 (of s.edions 4 and .5, respectively),. The arithmetic deta.ihi a.re 

as. foUows . 

l) Let O < e < 1/2. By Theorem "l (see speeiaJ case 4)t a.U 'but at mos 2:-2,. of the 

functions f ; {O, 1}2n .~ ·{O, l} a.re i-robust for a.ny pair of (n,.b1), (n, b2) sou.roes 

satisfying, 61 + 6:2 ~ n. + 6 + 2 log2 e-1 • Setting k = n - 7 - 3 log2 e--1
1 these. functions 



f satisfy the c,ondition of Theorem 23 (being £-robust fo:r sources w[th b1 b2 > 
2n - k -1 - log2 e-l')_ Thus, these functions f have Wf (f) > n - 7 - 3 log2 &-· • To 

get the bound on A: (f) we use Pr,opositions. 22 and 21: 

A:(f) ~ max {2 - 6)e • liV/!12(/) 
0<6:5} 

> (2 - 2/n)e: -W~n(/) 

> 2e · ( n - 7 - 3 log2 £"- 1n) - 1 • 

2) imilarly, by using Theorem 9 and setting k = n - 3 - 3 log2 e 1 • 

QED (Theorem 20) 

The iowe:r bound on A:-(/) for almost an f's, is near]y optimal since Orlitsky and El Gamal 

showed that most/ E Fn have Cts(f) < 2e{n + 6]og £-1n) [11 9] (recaU A:(f) < 01:(/) ). 

The lower bound Qn W ! (f) is also nearly optimal1, since we ha.ve the following upper 

bounds 

Theorem 24: 

l) For every/ E Fn. and ,ev,ery 2- f 1 < € < 1/2, Wf'(f) < n 1 - 2],og2 s-1 • 

2) For all f E Fn W;' J+u, (/) $ 2. 

Proof: For pa.rt (1) we use he following protocol. Party B sends th.e n + 9 - 2 ]og2. €-1 

most significant bits of y ta party A. This defines a 2n-by-2 • {32e)-2 strip in f's fable. By 

Lemma 2 ea.ch such strip ,con a.ins a. 2n-4;by~(32s)-2 submatrix S with ½ + 32s fraction of 

identical entries a in it. ht addi ion, party B s,ends a bit specifying whether y corresponds 

to a column in B. Party A replies by u if (x, y) is in S, and by he outcome of a coin flip 

otherwise. This way, we get an avera~e e--advanta.g,e. 

For pa.rt (2), et S be a ·2.n-4_by-2n-l submatrix con. aining a ½ + 2{n- l)/z fraction of 

identical en des c, in it (Lemma 2 guarantees he existence ,of S). Party B sends a bit 

specifying whether y conesponds to a. column in S. Par y A :replies by ,a if (x, y) is in S 

and by the 011tcome of a coin flip otherwis.e. This way we get an average a12 · 2(n-l)/2-

advantage. D 
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4:.4 Extension to (n,.m)wc:hstribut ons 

In the definitions .an.d results presented above, we have assum-ed that he inputs to the 

p:rotocol are uniformly distributed. in {O 1}"'. A natural questio,n is what happens if w,e 

a.Uow the inputs to be (n, m)~distibuted. In p.articular1 we eo,nsider protocols which have 

advantag,e wtth respect to some (n., m)-distribu:tions, and study the in:6.mu.m a.verage num­

ber of bits they excha.nged. un.der these l!Ca.dvan.tageous" distributions. We show that most 

fu.nct·,ons in F11 have •0(m) ,complexity, even in thjs wea.k measure. 

Definitio,n 10: L·et D1 and. D2 be two (n, m)-distribut'o-ns, an·d let Pi(.z) be the probabi 1ity 

t hat Di assigns to, z . . For any protocol P, a function/ E Fn.,, and a metrk MP,/ over runs 

of P, we define the average operator ,on Di x D2 

.At1eD1 ,D-:i (Mpi1) = L Pri(z) · P'r2(Y) · MP,,/'(~,,y) . 
l:,VE{0,1}" 

Similarly,, we define the maflimum operator on D1 x D2 

Mezn D (Mp 1) ·= max {Mp 1(:z ••)} , __ I I 2 , I ' (D ) { )- , t - -- 1 iY 1 :i:esupp -1 ,!ilesupp -D2 

We· say ha.t the p,rotoool P has Dix D2 -auerage e~,aduantage fo. gu isss~ng / • f .Ave D 11Dl (SP./) ~ 

½ + e-. 

• We. define th.e ave·r,age randomind commun·irotfon (n, m)-,complezity o/ Junction./ (de­

noted (n m)-A:,(f)) as ·t.h.e mfimwn of Avev11 ~ 1(Lp), when taken over an (n,m)­

distributi,ons D1, D-2 and all ·randoms~nd protocols P which have D1 x D2 aver.age e­

advantage in guessing/. 

• The worst-case randomi.nd io-m.mu:nieation (n., m)-compl,ezity of func.Uon f (denoted 

( n, m )-W! i(J}) is defined as the intimum of M az DhD:i ( I j,), when taken over a.U ( n, m )~ 

dist:ribu ions D1, D'2 and .aU randomized protocols P which have D1 x D2-a.v;era.ge c­

a.dvan a.,ge in guessin,g /. 

• The det-erministic ,commu.nicati.on (n, m)~compluities of the func·tion / .a.redefined sim­

ilarly, for deterministic pr,o,tocols .. 

The key to dealing with (n,.m)-comp,lwt·es, ·s. the faet tha.t they .&ff minimized on tta 

distdbutio,ns, (the proof is analogous to Lemma 5). Using the prooft.ech:niques of T.heorem 
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20 t'h.e problem reduce.s to the existence of large submatrkes with significant advantage 

inside the submatrix specified by he pair of flat distribu'tions. "\Ve get 

·Theorem 25: Let O < e < 1/2. 

I) For at least a 1- 2-2"' &action of the Boolean functions/ E Fn. 

(n, m)-W~R(f) > m - 7 - 3 log2 s-1 

(n m)-A~(f) > 2f: • (m - 7 - 3 loih a--1m) - 1 . 

2) For ev,ery f E Fn representa.ble by ,a Hadamard matrix, the fol1owin.g holds . 

(n, m)-WE;R(I) > 2-rn - n- 3 - 3 lo,gz e-1 

(n,m)-A:(f) > 2£ • (2m- n -3-3logze-1 m) -1. 

In particular, this holds for the inner-product function. 
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5. ON THE ROBUSTNESS OP BP'P 

The class R [1] and its symmetric version BPP [12] consist of problems which can be solved 

with high probability in polynomial time, with the use of an unbiased coin .. Recently, 

Va.zir.ani and Va:zirani i29] showed that all BPP problems can be efficiently solved ev•en if a 

single SV-source is produdng the coin tosses . In this section we generalize their resuJt by 

showing that BPP problems can be efficiently solved if a (single) PRB~sou:ree is produdng 

the coin tosses. 

The ma.in idea of the proof is that any function which is robust with respect o two 

independent PRB~:imurces1 can be used to produce polynomially many bits such. that aimos 

aU of them are unbiased Rep·eating this p1ocess m times~ we get. poly(m) strings of length 

m each. Most of these strings are almost uniformly distributed, and th:us he fraction 

of these strings which hit the witness set W C {O 1} m ra dose to the density of W. If 

W's density m ]arge enough (say > 0.8) then with probability bounded a~ay from 0 .5 

(e.g. > 0.55), the majority of the generated strings hlt W. This argument need careful 

formalization which is ,carried out below. The fin.al obsiervati.on is th.at there are explicit 

and efficiently computable functions which are appropriate for the above procedme (e.g. 

the inner product or the Paley graph functions) . 

The key techn.kal lemma. used in the proof is 

Lemma 2,6,: Let O < e: < 1 be a real and J : {O l}i x {D, 1}1 1-----t {O l} be a Boolean 

function Define h: {01 l }! 1-4 {0,1} by /i(.:i) = f(i,i) for every i,i E {O, 1}[. Suppose 

that the / is ~-robust with respect to any two, independent random variables which are 

(l, i - 1)-distribu ed and (l, b)-distributed respeeti ,ely. Then for every (l b)-distdbuted Y, 

all.. but ,Ji fraction of 'the Ii, s are 4V&-robust on Y. 

The r,eader may find it convenient to picture the tw<>al'gument Boolean function / : 

{0~ l}l x {0, l}J 1-t {O l} as a table where the (i~j)-entry corre-Sponds to /(i1 j). The 

lemma ,can 'be st.ded (informally) as follows: if o Junction tan be U$td for eztracting almost 

tmbiased Mt.s from the output of any two independent PRE-sources, then most of its «.rows" 

can be u.sed /or extracting an almost unbiased bit from a single. PRE-source. Th.e identity 

of hese "good rows depends on the specific PRE-source but fo:i:- each sourc,e. mast of the 

ro N'S wiH work. The proof is by contradiction, showing hat if the conclusion of the lemma. 

is violated then it i.s pos:s i ble to find a. pair of pro ba. biHty bounded source.s which fa]sify 
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the robustness of/. While the proof of this lemma is rather simple, i seems much harder 

to p,r,ove a. similar statement based merely on robustness with respect to V-soUttes. 

Pro,of: Let Y be an arbitrary (l,b)-dis ributed rando,mvariable. This defines a probability 

space on the strings in {O, 1}1. We'll show that the number ,of rows which are biased too 

much towards 1 is smaU (rows with high O bias are treated ident[caUy). Let B denote the 

set ,of these rows, that is 

and let k denote B' s size. 

We first show that k- < 2i- . Assume on the contrary tha k > 2i-1 . We will reach a. 

contrad"ction by defining a (l l - 1)-distributed sou:l'ce X 1 to be fiat on B . Then 

Pr (f(X1 Y) = 1) = k- 1 L Pr (h(Y) = 1) 

1 
> 2 . (1 +4./e) 

> ½ · (1 + e) . 

ow that we know k :S 2r- 1 - e define a (l l - 1)-distri.buted source X 2 t:o be fiat on 

{O, l}J - B. Applying the £-robustness off to the uniform source Xo we have 

:l L Pr (!i(Y) = 1
) = Pr (/(Xo, Y) = 1) 

iE{O,l}l 

1 < - (l e) . 
2 

In order to bo,und k f:rom above, we firs dedve an upper bound ou Pr (f(X2, Y) = ). 

Pr (f (X2 Y} = 1) = zl ~ k · L Pr (f!(Y) =.;; 1) 
i'E{0 1l}'-B 

_ E ·E{o,1}z Pr (Ii (Y) = ) - LiEB Pr (Ii (Y) = 1) 
- 2l - k 

2l · (½(l e)) - k•(½(l 4\/'£)) 
< 21 - k 
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Applying the e:-robustness off to X2 we get 

Combining the upper and lower bounds on Pr (f(X2 Y) = 1) we have½ ( + zic21~~,Ji) > 
½ (1 - e). By a. simple manipulation 1 k <½..ft· 2l foUows . □ 

Wit'h Lemma 26 at orrr disposal, we can use a single source to generate many strings, 

most of which are almost unbiased. These strings a.Ie generated one hit at a time. (i.e. 

in step t~ ,he t-th bit of all strings is generated). In he BPP applica ion, 'the generated 

strings are tested for membership in a witness set W. A careful p:roba.bllistic ana.lYsis 

shows that if W is dense enough, there iJS a fairly large probability that ,he majority o.f 

these strings wi]] hit W. 

Proposition 21": 

1) Let m be an in eger, a.nd W C {O l}m be an arbitr,ary set. Denote by p the density of 

W {i.e. p def' 1Wl/2m) and let q def 1 - p. 

2) Let l be an integer, and O < b < t Let O < e; < l/2 and f ~ {0, 1}' x {O, 1}' {01 1} be 

a Boolean function. Suppose that f lS c--robust with r,espect to any two independent 

random variables which ar,e. (l, l -1)-disttibut:ed and (l, b)-distributed respectively. 

3) Let Y1 Y2~•· .Ym be ,a.sequence of arbitraryrandomvariables assumingva.iues in {O,l}l 

snch that for every 1 < t < m the variable Yt is (l 1 b)-•distribnted given Yi Y2, ... Yt-1• 

Let Y denote the concatenation of the Y?s. 

4) ' or every i E {0, 1}1, let h ~ {0, }' ~ {O, 1} be defined as in. Lemma U (i.e. h{i) -= 
f(i, i) for every i,.j E {O, }'). Let hi(Y) be a random nria.ble assuming values in 

{O, l}m such that hi(Y) is the conca.tenat.ion of he random variables /i(Yi), /i(Y2) ·· · t 

/,(Ym), 

Then the pl'obability that a majority of the hi(Y) ,s miss W, does not exceed 2q + 8my'i. 

That is 
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5.1 P:roof of Propo, itiou 27 

Convention: Through out the proof, the pro'bability space is the car i:sian product of Y 

(of item 3 above) with a:n (m m)-distributed random ariable Z. The random variable 

Y = Y1Y2 • · · Y m assumes values in {O; l}m•!, and Z = Z1Z 2 • • • Zm is uniformJy distributed 

in {0, l}m independently of Y. A value which Y ma.y assume wiH be denoted by a = 
o:1a2 · · • a:m, where at E {0 l}i. A value which Z ma.y assume wm be denoted by {i = 
/31/32 · · · /3m, where f3t E {01 1}. e w1U also use the notation Yf = Y1Y2 · · · ·Yt and a~= 

cqo:2 ·,,· at to deno e the prefix consisting of first t ,elements of Y and a Ie.spective[y. 

D ,efinitions: 

1) For every i E {0 1}1 0 < t < m we define a B,aolea.n func ion (1,t : {O 1 }'m x {O, l}m H 

{O, 1} as foHows: 

o henvise 

2) For every i E {O; l}r, 0 < t < m we define a. Boolean function ru,t ; {O, l}fm H {O, } 

as follows: 

if ½- 2..fi < Pr (h(YH1) = llY/ = ~) < 2 + 2...fi 

otherwise 

Explanation: etting a assume valu,es in {O,l}rm according to t'he random. variable Y 

and /3 assume values m {O, }' according to the uniform dist ibntion Z, the two functions 

above induce two, random variables ti,t(Y, Z) a.nd t1i,t(Y). 1 hese random va.r1abl,es cor .. 

respond to hybrids ,of the (l -b)-source and truely unbi2.'5ed, independent coin tosses. :lhe 

random variable (i:,t(Y, Z) equals 0 ( & .success") when an hybrid elemen generated, by 

applying the function fi to the first t blocks output by the sou:rce Y a d le ting tJ1e res 

be truely random hits the set W. The random variable 11aAY) equals 0 ( 'a good bit") 

if given the first t bocks ,of the source, the bit genera ed by .applying Ii to the (t 1)-s 

block is almost unbiased.. 

Elementary Observation.s 
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Fact l.: For every i E {O, I}', we have 

Proof: By defi.ni"tion Ci,o (Y1 Z) = 0 Hf Z E W, and IWI = p2m. 

Fact 2: 
m-l 

L L Exp (17i,t(Y)) < 2tmy'i. 
ei:E{O,1)1 t=0 

Proof: By Lemma. 26 for e:very O <:: t < m and every a E {O, l}m•! w-e. .have 

I: tl,,t(a:) < •i}..fi. 
iE{0,1} 1 

Thus fo,r every O < t < m -1, 

L 17i,t(Y) < 21..fi. 
iE{0,1}1 

□ 

The sum of m such expressions (for them values oft) is thus bo,un.de.d abov·e by 21m~1 

and so i:s the expected value. Changing the otder ,o.f summation we get the claimed bou.nd. 

□ 

The next Fact formulates the intuition tha.t, when the (t + l)~st bit produce.a in the i-th 

row is almost unbiased1 then the (t l)-th hybrid of his row has almost the same success 

probability as the t~th hybrid to hit W. 

Fact 3; For every i E {O, 1}1 and O < t < m, we have 

Proo,f; Consider a.n arbit:,:.a;y a E {O~l}im such that tJi t(a) = D. Let r = Pr (/i(Yt+1) = l lY/ = aD 

½. Then lrl < 2-.fi. Let s = Pr ( {i,t (Y. Z) = OI Yl = o:H, .so = Pr ( €,:,1;(Y, Z) = OIY/ = a:, Zt+1 = 0) 

.S1 = Pt (€t,t(Y1 .Z) = OIY/ = ,a~).Zt 1 = 1). By definitions= ½,so + ½s1 . Then 

Pr(€it+dY Z) = OIY; =a~)= (} - r) · so+(½ +r) •.s1 

= .s - r( so - s1) 

> s- 2.../i 
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Summing over all ors, Fact 3 folows. □ 

Probabirty Calculation 

The next fact is cruicial o our proof. It expresses · he (un.co,nditi.onal) success prob­

a.bHity of the (t + 1)-st hybrid of the i-th row in terms ,of the t-th hybrids of this row. 

The difference between the the (t + 1)-st and t-th hybrids is bounded by the sum of a 

small error probability (~ 2Je), introduced by runs in which the (t l)•st h"t is almost 

unbiased a.nd he p:robabiHty that the (t + 1)-st bit is biased. 

Fact 4: For ev-ery i E {O, 1P and O ~ t < m,, we have 

Proof~ By following man.ipulation; using Fact 3 (when passing from the fus.t line to the 

second line), and th.e ·:neg_uality Pr(AIB) > Pr,(A) - Pr(B) (passing f:rom the third line 

to the fourth line). 

Pr (fi,t+1(Y1 Z) = 0) > Pr (€ ·,t i(Y1 Z) = Ol1u,-t(Y) = 0) · Pr (11i t(Y) = 0) 

> (Pr (ei t(Y Z) = Ol71i,t(Y) = 0) - 2ve) · ( - Pr (rJi,t(Y) = 1)) 

> Pr (€11 t(Y, Z) - OJ11,,t(Y) = 0) ~ 2../i- Pr ('li,t(Y) = 1) 

> Pr (ti,t(Y, ZJ = 0) - 2../i - 2 ·· Pr (111 t(Y) = 1) D 

This yields an upper bound on the probabiiity that the i-th row does not hit W, when 

heing generated f.rom he blocks oft e (l b)-source ·using the function /i-

Fact 5: For every i E {O, l}z 

m-1 

Exp, (ei -(Y Z)) ~ q + 2yem + 2 L Exp (fJi,t(Y)) 
t=fJ 

Proof: By c•ombining Fa,ct 1 with repeated use of Fa.ct 4, a:nd using the fact th.at for any 

0 1 random variab]e V, Exp(V) = Pr(V = 1). □ 

Conclusion 

We now bound the probability that the majority of rm.vs produce elements which do not 

hit the set W. 
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Fact 6: 

Proof: Applying Markov inequalicy the sum .o.f the ,f,,t(Y, Z), Wj,ing Fa.ct 5 (when passing 

fr,om the firs line to the second. line) an.d Fact 2 (when passing from the second line to the 

hl.?1d line). 

, ( . ~.·· . . . . ·. . . . l-1) . Ezp (Ese{o.,1)! es~m(Y, Z)) 
Pr L., !i m(Y, Z) 2: 2 < ·· 

2
.i-1 

iE{O, l}' 

< 2-1+1 
• ( 21 • (q . 2V,m) 

~ 2q 4v'sm. 4 • .,rem 
= 2g+8yem. 

Sinc•e !i.m{Y,. Z)1 = 1 Is just a. fancy way of writing hi(Y) <;e W ,we ,get 

QED (proposition 27) 

5.2 The Transformati•OD ,of BPP Algorithms 

It will be co,nvenient to consider :randomized algorithms as ,determinis·ti,e a!godthms with 

an auxiliary random input. The performa.nce of such an algorithm (on input z) will be 

evaluated with respect to the dis:tr"bu:tion of the auxi iary random inp-ut (denoted y). The 

issue of the robustness of the ,class BPP i then stat..ed. a.s follows: can a BPP algorithm be 

converted to a polynomfol.~time algorithm. whi',ch ho.a: an. advantage bo,u.nded away from 1/ 2 

.e.ven when it-s random input is ,generated by a sin,gle probability-bounded 60urce r 
Deflnltio,n: The dus (l,,b)~BPP consists .of all decision problems D: {01.1}• ._, {O, 1} for 

which there exist polynomials. P~ ,Q and an. a]go,rithm A: {0,1}• x {0,1} t-+ {O 1} uch 

that for euery {f, b)-sour,ce Y the fo towing holds .. 

1) On each input of ength n . a.lgorithm A runs a.t most P( n) s eps, and then stops, 

outputmg a ,single bit. 
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2) Let x E {O 1pn be a.n input, and y E {O, l}P(n) be 'the auxiliary random input gener­

ated by the ( l b) ~sow:ce Y. Then 

Cle.a.r]y (l, !)~BPP is just a fancy way of writing BPP. Theorem 28 states that so is (l b)­

BPP. 

Theorem 28: or every integer l and .real O < b < l, 

(l t b)-.BPP = BPP· . 

Proof: Let D be a. decision problem in BPP and Ao be a randomized polynomial-time 

algorithm for D. Let P(n) be the number of random bits used by the .algorithm Ao 

on inputs of length n . Without loss of gene1.ality~ we may assume th,a.t for every input 

z E {O, 1}17
\ the witness set W{x) for x (i .. e. the y1s satisfying A0 (x v) = D(x)) contains 

p ~ 0.8 ,of the strings in {O l}P(n) . 

Given. t and b, let e(n) def (1'60 • P(n))-\ B(n) d~r 3 + 2 Iog2 e-1(n) 1 and L{n) def 

riB(n)/bl . By Theorem 9, every functlon eo,rresponding to a Had.am.a.rd matrix is 

e:(n)-robust with respect to any pair of independen.t ra.ndom variables X Y which are 

(L(n), L{n)-1)-distributed a:nd (L(n), B(n))-dis ributed1 respectively. Furthermore some 

of these fa:mibes -of functions) such as, the inner-produc modulo 2 or the quadratic resid­

uodty modulo a prime (the Paley Graph function) can be computed by poly(n)-time 

.a]gori hms. Le / be one of these functions. Let F be an algorithm that on inpu:ts n and 

i)j E {0~ l}L(n) outputs f(i,j). 

By Proposition 27 we can use a. single (L(n)1 B{n))-source to efficiently generate 2L(n) 

strings such that for every :z: E {Ot l}n., the majority of these strings hlt the witness set 

W(x) with probability grea er than 1-2q-8P{n)~ > 0.55 (q < 0.2). We remind the 

reader that the (l, &)-source can be used as a.n (L(n)~ B{n))-source. Consider the foUowing 

algorithm A for deciding membership in D (with a two-sided ,error bounded above by 0.45). 

l. 
2. 

3. 

Algorithm A 
l FUT.- 4 
Let n ::;;; lzt and m = P(n). 
AUXILIARY I PUT: y E {O) l}L(n)m genera. ed by an arbitrary (l, b)-source. 
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Let y - Y1Y2 · • · Ym. where each Yt E {O, l}L(~). 
4. For every i E {0., l}L(n) a.nd < j $ m., 

compute / ( i yt) by invoking F ( n , i, Yt). 
Fo-r every i E {O, l}L(n) . let Wi denote the oonca.tenat·.on f(i, Yi) · f (i Y2) · • · /(i,,ym)-

5. Fo,r ,eve.ry i E {O, l}L(n:) compute t"i d,ef A0 (x Wi), 

6. If I:ie{O}l}"("> Vi < 2 L(n)-i hen ,d' +-- 0 else d 1. 
7. OUTPUT: d. 

By the .above discussion, Pr (A(z y) = D(x)) > 0.55. The running time of A(x,y) 

is polynomia] in 2L(n) = n°C1 ) a.nd in the running ime o.f Ao(::c, •) and F(lx[ •, •), The 

Theorem follows. □ 

Remarks: 

1) Clearly the same algorithm works also for the class R. It produces one sided error 

since for x (/: D the origi al algorithm Ao nev,er errs. 

2} Proposition 27 ca:n be viewed as providing a method for using a. singl,e PRB sourc,e 

to distinguish "high density sets from the complement of "high density'i sets. That 

b; given K C {O 1}"= so that either IKI > p2k IKI < q2k ,or IKI ~ p2k, IKI < q2k 

determine which of the two cases occur, with snecess probability about 1 - 2q. 

This view point is helpful in solving the folio ing addi.tive approximation problem: or 

any f o > 0, a.nd any se S C {O,.l}m, find an additive (6,e) approximation. of the 

.S density th using a single probabiHty-bounded .so\ll'ce (when we have an oracle for 

deciding membership in S). By an additioe (6, E)~approzimation we mean that with 

pro,babmty > - E, 112 - al < {j where a. is the a.pproximaited value and e def is1/2m is, 

the true density. To ge this a.pproximat·.on, we fust transform he problem of additive 

appr,oximatio,n into 2/5 problems of the form P;; is, {! E [i • ½ j • f + S]?" where 

0 < j < (2 -26)/6 (no k-e ha ev,ery p.a.ir of consecuti ,e intervals overlaps by 8/2). By 

sampling k = O(s-2 Log(t=o)- 1 ) points in {o, 1}"\ and counting the number of times 

.S is hit every Pi is translated into a subset S; C { 0 l} mk. It is easy to s,ee that for 

at most two consecutive Ps m the above ra ge, Sj has more than (1- !::6)2.i.n points, 

while all other j s ( execpt possibly a.nother consecutive j} have fewer than e521
n. points. 

ow we us,e the ideas above o ry and hit a.U Si s by strings gener.a.ted from a sing e 

probability-bounded source. With probability > 1 - e we ge positive ans ,ers only 

for j's in a. 6 neighbourhood of e,. In case we get positive .answers for s,everal P;'s, we 

choose the median j, and estimate fl as being in he middl,e of the ith interval. 
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6. CO CLUSIO . S 

We have presented a new model of sources of weak randomness1 and distmed its ".hard 

core": the class ,of probability~bounded distributions. Probability-bounded distributions 

constitute a natural and wide class, whi.ch is co.nvenien to analyze and yields strong Iesu.]ts. 
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