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Abstract
The decline of Moore’s law and an increasing reliance on computation has led to an ex-
plosion of specialized software packages and hardware architectures. While this diversity
enables unprecedented flexibility, it also requires domain-experts to learn how to customize
programs to efficiently leverage the latest platform-specific API’s and data structures, in-
stead of working on their intended problem. For example, a researcher hoping to use
machine learning on climate code must write a corresponding derivative simulation, un-
derstand and implement linear algebra routines, and performance engineer their simulation
to run on multiple cores and nodes. Rather than forcing each user to bear this burden, I
propose building high-level abstractions within general-purpose compilers that enable fast,
portable, and composable programs to be automatically generated.

This thesis will demonstrate this approach through several real-world and composable
compilers that I built for a variety of domains including parallelism, automatic differenti-
ation, scheduling, portability, program search, and tensor arithmetic. These domains are
critical to both scientific computing and machine learning. Individually, integration of do-
main knowledge into each of these compilers enable (often asymptotic) performance and
usability benefits. Operating on a common compiler representation, however, enables these
benefits to compound and provide greater performance than any domain-specific optimiza-
tion in isolation.

This research in this thesis contains joint work with Charles E. Leiserson, Tao B.
Schardl, Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal, Zachary
DeVito, Zachary, Sven Verdoolaege, Andrew Adams, Albert Cohen, Qijing (Jenny) Huang,
Ameer Haj-Ali, John Xiang, Ion Stoica, Krste Asanovic, John Wawrzynek, Valentin Chu-
ravy, Lorenzo Chelini, Ruizhe Zhao, Ludger Paehler, Jan Hückelheim, Sri Hari Krishna
Narayanan, Michel Schanen, Johannes Doerfert, Paul Hovland, Ivan R. Ivanov, Jens Domke,
and Toshio Endo.

Thesis Supervisor: Charles E. Leiserson
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

The end of Moore’s law and the increasing reliance on computation has led to an explosion

of complex software packages and hardware architectures in various domains. While this

diversity enables an unprecedented level of flexibility in building applications, it also re-

quires rewriting applications to efficiently support each combination of software paradigms

(e.g. differentiable, encrypted) and hardware targets. The need for performance and porta-

bility has forced domain-experts to spend their time learning about and implementing con-

cepts like GPU reductions or the TensorFlow API, rather than working on their intended

problem.

Previous solutions have been proposed and include language extensions (e.g., OpenCL [102],

OpenACC [169]), parallel programming frameworks (e.g., Kokkos [63]), and domain-

specific languages (e.g., Spiral [314], Halide [319]). All of these approaches still require

legacy applications to be ported, and sometimes entirely rewritten, due to differences in the

language, or the underlying programming model.

I propose creating high-level abstractions and transformations once within a com-

mon multi-purpose compiler that can take existing code and generate optimized code

for each software/hardware paradigm, rather than burdening the programmer. In

contrast to the mythical “sufficiently smart compiler”, my research focuses on explicit do-

mains where preserving information across the library, language, and compiler boundary

can be applied to real programs. This design is composable by definition and enables tool-

builders to write platform-specific code once, rather than the user writing and maintaining
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Figure 1-1: Building abstractions once within the compiler enables fast and composable
code to be automatically generated for all user programs.

multiple versions. Further, bringing these semantics together in a single tool enables the

compiler to automatically apply cross-package optimizations that would be difficult for

even expert programmers to write by hand.

I demonstrate the feasibility of this approach by building several real-world and com-

posable systems in several domains (described below). In addition to each of these compiler

abstractions being individually beneficial for performance and usability, the fact that they

co-exist in a common compiler framework means that they mutually benefit each other.

As an example, both the Tapir representation of parallel programs (Chapter 2) and the

Enzyme compiler for differentiating functions (Chapter 5) each individually provide per-

formance benefits. Operating on a common compiler representation for both parallelism

and differentiation, however, enables both seamless differentiation of parallel programs

and composition of optimizations (Chapter 8). This combined and composable set enables

greater performance of parallel differentiation than either parallel-specific optimizations,

or differentiation-specific optimizations could provide individually.

Many chapters of this thesis will share variations of a common vector normalization

example code (Figures 2-1, 4-1, 4-2, 4-3, 5-1, 9-1, 10-1, 10-2). Individually, each of these
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will demonstrate how a system will run (often asymptotically) slower due to its lack of

compiler-based domain knowledge. The fact that the same example has a significant per-

formance gap in many different domains (differentiation, parallelism, accelerators, phase

ordering, etc) indicates how critical compiler representations are – and also how tricky they

are to get right.1 Besides a stylistic choice to use a similar example throughout the thesis to

ease comprehension, there is nothing fundamental about that particular example code that

makes it benefit so extensively from a variety of domain optimizations. Instead, I argue

that this example indicates that applications in general will tend to benefit from a variety of

domain-specific optimizations.

Through the lens of compilers, this thesis will explore fundamental principles to build-

ing and efficiently executing modern scientific computing and machine learning applica-

tions. Among other topics, thesis will explore compiler representations and transformations

for:

• Parallelism: leveraging multiple processing units, on the CPU (Chapters 2, 6, 9, 8),

GPU/accelerators (Chapters 3, 9, 7), or distributed machines (Chapter 8);

• Automatic differentiation: computing the derivative of program functions (Chapters

5, 7, 8);

• Scheduling: finding the fastest versions of programs by optimizing for hardware

specifics, like caches, bandwidth, or thread count (Chapters 3, 6);

• Portability: enabling programs to run efficiently on different hardware or systems

(Chapters 3, 9);

• Program search: methods and bottlenecks for automatically finding faster versions

of programs (Chapters 4, 10, 3); and

• Tensor Arithmetic: efficiently computing fast scalar, vector, matrix, and vector oper-

ations (Chapters 3, 6, 9).

1It is for this reason that the author lovingly refers to this thesis by a secondary title “10 ways to normalize
a vector, number 7 will surprise you.”
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Chapter 2

Tapir: A compiler representation for

fork-join parallelism

2.1 Introduction

Mainstream compilers, such as GCC [366], ICC [193], and LLVM [230] provide linguis-

tic extensions for frameworks such as Cilk Plus[191] and OpenMP [21, 293] that allow

programmers to write fork-join parallel programs. Typically in such frameworks, one can

specify parallelism at a high level by denoting tasks or loops iterations that may be executed

concurrently.

Although these mainstream compilers support fork-join parallelism, they struggle to

optimize programs when they encounter such linguistic constructs. Paradoxically this can

even mean that programs you’d expect to show large parallel speedups, are slower than

the equivalant serial code. Consider, for example, the parallel cilk_for loop on lines 7–8

in Figure 2-1a, which indicates that iterations of the loop are free to execute in parallel.

In a serial version of this loop, where the cilk_for keyword is replaced by an ordinary

for keyword, each of the compilers GCC 5.3.0, ICC 16.0.3, and Cilk Plus/LLVM 3.9.0

observes that the call to mag on line 8 produces the same value in every iteration of the loop,

and they optimize the loop by computing this value only once before the loop executes. This

optimization dramatically reduces the total time to execute normalize from Θ(n2) to Θ(n).
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a b
01 __attribute__((const))
02 double mag(const double *A, int n);
03

04 void normalize(double *restrict out,
05 const double *restrict in, int n) {
06

07 cilk_for (int i = 0; i < n; ++i)
08 out[i] = in[i] / mag(in, n);
09 }

10 __attribute__((const))
11 double mag(const double *A, int n);
12

13 void normalize(double *restrict out,
14 const double *restrict in, int n) {
15 #pragma omp parallel for
16 for (int i = 0; i < n; ++i)
17 out[i] = in[i] / mag(in, n);
18 }

Figure 2-1: A function that GCC, ICC, and Cilk Plus/LLVM all fail to optimize effectively.
a A Cilk version of the code. The cilk_for loop on lines 7–8 allows each iteration of
the loop to execute in parallel. The mag function computes the norm of a vector in Θ(n)
time. The call to mag on line 8 can be safely moved outside of the loop, but none of these
three mainstream compilers perform this code motion, even though they all do so when
the cilk_for keyword is replaced with an ordinary for keyword. b The corresponding
OpenMP code.

Although this same optimization can, in principle, be performed on the actual parallel loop

in the figure, no mainstream compiler performs this code-motion optimization. The same

is true when the parallel loop is written using OpenMP, as shown in Figure 2-1b.

This failure to optimize stems from how these compilers for serial languages imple-

ment parallel linguistic constructs. The compiler for a serial language, such as C [209] or

C++ [373], can be viewed as consisting of three phases: a front end, a middle end, and a

back end. The front end parses and type-checks the input program and translates it to an

intermediate representation (IR), which represents the control flow of the program as a

more-or-less language-independent control-flow graph (CFG) [9, Sec. 8.4.3]. The middle

end consists of optimization passes that transform the IR into a more-efficient form. These

optimizations tend to be independent of the instruction-set architecture of the target com-

puter. The back end translates the optimized IR into machine code, performing low-level

machine-dependent optimizations.

GCC, ICC, and Cilk Plus/LLVM all lower the parallel constructs — transform the par-

allel constructs to a more-primitive representation — in the front end. To compile the code

in Figure 2-1a, for example, the front-end translates the parallel loop in lines 7–8 into IR

in two steps. (The OpenMP code in Figure 2-1b is handled similarly.) First, the loop body

(line 8) is lifted into a helper function. Next, the loop itself is replaced with a call to a

library function implemented by the Cilk Plus runtime system, which takes as arguments
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the loop bounds and helper function, and handles the spawning of the loop iterations for

parallel execution. Since this process occurs in the front end, it renders the parallel loop

unrecognizable to middle-end loop-optimization passes, such as code motion. In short,

these compilers treat parallel constructs as syntactic sugar for opaque runtime calls, which

confounds the many middle-end analyses and optimizations.

2.1.1 Previous approaches

This thesis aims to enable middle-end optimizations involving fork-join control flow by

embedding parallelism directly into the compiler IR, an endeavor that has historically been

challenging [243, 242]. For example, it is well documented [262] that traditional compiler

transformations for serial programs can jeopardize the correctness of parallel programs. In

general, four types of approaches have been proposed to embed parallelism in a mainstream

compiler IR.

First, the compiler can use metadata to delineate logical parallelism. LLVM’s parallel

loop metadata [82], for example, is attached to memory accesses in a loop to indicate that

they have no dependence on other iterations of the same loop. LLVM can only conclude

that a loop is parallel if all its memory accesses are labeled with this metadata. Unfortu-

nately, encoding parallel loops in this way is fragile, since a compiler transformation that

moves code into a parallel loop risks serializing the loop from LLVM’s perspective.

Second, the compiler can use intrinsic functions to demark parallel tasks. (For exam-

ples, see [428, 306, 244].) Often, either existing serial analyses and optimizations must be

shut down when code contains these intrinsics, or the intrinsics offer minimal opportunities

for compiler optimization.

Third, the compiler can use a separate IR to encode logical parallelism in the program.

The HPIR [428, 27], SPIRE [211], and INSPIRE [199] representations, for instance, model

parallel constructs using an alternative IR, such as one based on the program’s abstract syn-

tax tree [9, Sec. 2.5.1]. Such an IR can support optimizations involving parallel constructs

without requiring changes to existing middle-end optimizations. But adopting a separate

IR into a mainstream compiler has historically been criticized [245] as requiring consider-
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able effort to engineer, develop, and maintain the additional IR to the same standards as the

compiler’s existing serial IR.

a b

19 int fib(int n) {
20 if (n < 2) return n;
21 int x, y;
22 x = cilk_spawn fib(n - 1);
23 y = fib(n - 2);
24 cilk_sync;
25 return x + y;
26 }

27 int fib(int n) {
28 if (n < 2) return n;
29 int x, y;
30 #pragma omp task shared(x)
31 x = fib(n - 1);
32 #pragma omp task shared(y)
33 y = fib(n - 2);
34 #pragma omp taskwait
35 return x + y;
36 }

c d
br (n < 2), exit, if.elseentry:

parbeginif.else:

x = fib(n-1)
br join

y = fib(n-2)
br join

parend
add = x+y
br exit

join:

rv = ϕ([n,entry],[add,join])
return rvexit:

F

T

x = alloca i64
br (n < 2), exit, if.else

entry:

detach det, contif.else:

x0 = fib(n-1)
store x0, x
reattach cont

det:
y = fib(n-2)
sync
x1 = load x
add = x1 + y
br exit

cont:

rv = ϕ([n,entry],[add,cont])
return rvexit:

F

T
detach continue

reattach

Figure 2-2: Comparison between a traditional CFG with symmetric parallelism and Tapir’s
CFG with asymmetric parallelism. a The Cilk function fib computes Fibonacci numbers.
The cilk_spawn on line 22 allows the two recursive calls to fib to execute in parallel,
and the cilk_sync on line 24 waits for the spawned call to return. A serial execution of
fib executes fib(n-1) before fib(n-2). b A comparable implementation of fib us-
ing OpenMP task parallelism. c A CFG for fib that encodes parallelism symmetrically.
Rectangles denote basic blocks, which contain C-like pseudocode for fib. Edges denote
control flow between basic blocks. The parbegin and parend statements create and syn-
chronize the parallel calls to fib. The br instruction encodes either an unconditional or
a conditional branch. True and false edges from a conditional branch are labeled T and
F, respectively. The ϕ instruction, used to support a static-single-assignment (SSA) form
of the program (see Section 2.2), takes as its arguments pairs that associate a value with
each predecessor basic block of the current block. At runtime the ϕ instruction returns
the value associated with the predecessor basic block that executed immediately before the
current block. d The Tapir CFG for fib, which encodes parallelism asymmetrically. The
alloca instruction allocates shared-memory storage on the call stack for a local variable.
Section 2.2 defines the detach, reattach, and sync instructions and the detach, reattach,
and continue edge types.

Fourth, the compiler can augment its existing IR to encode logical parallelism, which

is the approach that Tapir follows. Unlike Tapir, all prior research on parallel precedence
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graphs [364, 363], parallel flow graphs [362, 153], concurrent control-flow graphs [233,

288], and parallel program graphs [338, 337] represent parallel tasks as symmetric entities

in a CFG. For the parallel fib function in Figures 2-2a and 2-2b, for example, the parallel

flow graph in Figure 2-2c illustrates how forked subcomputations might be represented

symmetrically. Some of these approaches struggle to represent common parallel constructs,

such as parallel loops [233, 211], while others exhibit problems when subjected to standard

compiler analyses and transformations for serial programs [233, 337, 153, 217, 364, 363,

331]. Existing serial-program analyses in LLVM, for example, assume that a basic block

with multiple predecessors can observe the variables of only one predecessor at runtime.

For the parallel flow graph in Figure 2-2c, however, instructions in the join block must

observe the values of x and y from both of its predecessors, as has been observed by [233].

Parallel loops exacerbate this problem by allowing a dynamic number of tasks to join at

the same basic block. Previous research [331, 6] has proposed solutions to these problems,

including additional representations of the program and augmented analyses that account

for interleavings of parallel instructions, but adopting these techniques into a mainstream

compiler seems to require extensive changes to the existing codebase.

2.1.2 The Tapir approach

This thesis introduces Tapir, a compiler IR that represents logical fork-join parallelism

asymmetrically in the program’s CFG. The asymmetry corresponds to the assumption of

serial semantics [123], which means it is always semantically correct to execute parallel

tasks in the same order as an ordinary serial execution.

Tapir adds three instructions — detach, reattach, and sync — to the IR of an ordi-

nary serial compiler to express fork-join parallel programs with serial semantics. Figure 2-

2d illustrates the Tapir CFG for the fib function. As with the symmetric parallel flow graph

in Figure 2-2c, Tapir places the logically parallel recursive calls to fib in separate basic

blocks. But these blocks do not join at a synchronization point symmetrically. Instead, one

block connects to the other, reflecting the serial execution order of the program.

The Tapir approach provides five advantages:

1. Introducing fork-join parallelism into the compiler is relatively easy.
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2. The IR is expressive and can represent fork-join control constructs from different

parallel-language extensions.

3. Tapir parallel constructs harmonize with the invariants associated with existing rep-

resentations of serial code.

4. Standard serial optimizations work on parallel code with few modifications.

5. The optimizations enabled by Tapir’s parallelism constructs are effective in practice.

I discuss each of these advantages in turn.

2.1.3 Ease of implementation

Tapir’s asymmetric representation of logically parallel tasks makes it relatively simple to in-

tegrate Tapir into an existing compiler’s intermediate representation such as LLVM IR [82].

Figure 2-3 documents the lines of code added, modified, or deleted to implement a proto-

type of Tapir in LLVM. As Figure 2-3 shows, Tapir/LLVM was implemented with about

6000 lines, compared to LLVM’s roughly 4-million-line codebase. Moreover, fewer than

2000 lines of code were needed to adapt LLVM’s existing compiler analyses and transfor-

mations to accommodate Tapir.

Compiler Component LLVM 4.0svn Tapir/LLVM

Instructions 105,995 943
⎫⎬⎭1,768Memory Behavior 21,788 445

Optimizations 152,229 380
Parallelism Lowering 0 3,782
Other 3,803,831 460

Total 4,083,843 6,010

Figure 2-3: Breakdown of the lines of code added, modified, or deleted in LLVM to imple-
ment the Tapir/LLVM prototype.

The breakdown of lines is as follows. The lines for “Instructions” add Tapir’s instruc-

tions to LLVM IR and adapt LLVM’s routines for reading and writing LLVM IR and bit-

code files. Conceptually, these changes allow LLVM to correctly compile a Tapir program

to a serial executable with no optimizations. The lines for “Memory Behavior” control how

Tapir instructions may interact with memory operations, preventing the compiler from cre-

ating any races. The lines for “Optimizations” perform any adjustments required for LLVM
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analyses and transformations to compile a Tapir program at optimization level -O3. Most

of these modifications are not necessary for creating a correct executable but are added to

allow the compiler to perform additional optimizations, such as parallel tail-recursion elim-

ination (described in Section 2.4). The lines for “Parallelism Lowering” translate Tapir

instructions into Cilk Plus runtime calls and allow the code to be race-detected with a

provably good race detector [116]. The lines for “Other” address a bug in LLVM’s imple-

mentation of setjmp and implement useful features for our development environment.

2.1.4 Expressiveness of Tapir

Tapir can express logical fork-join parallelism in parallel programs that have serial seman-

tics. For example, Figure 2-2 illustrates how Tapir can express the parallelism encoded

by the cilk_spawn and cilk_sync linguistics from Cilk++ [234] and Cilk Plus [191],

as well as the parallelism encoded by OpenMP task and taskwait clauses [21]. Sim-

ilarly, Tapir can express the parallelism encoded by OpenMP parallel sections [293] and

Habanero’s async and finish constructs [64]. Tapir can also express parallel loops, in-

cluding cilk_for loops and OpenMP parallel loops that have serial semantics (described

in Section 2.2). Other parallel constructs, such as those proposed in the C++17 parallelism

extensions, can be represented as well. However, parallel operations that cannot be ex-

pressed in terms of fork-join parallelism, such as OpenMP’s ordered clause, cannot be

represented directly using Tapir’s detach, reattach, and sync instructions.

Tapir makes minimal assumptions about the consistency [312, 49] of concurrent mem-

ory accesses. Tapir assumes that memory is shared among parallel tasks and that virtual-

register state is local to each task. Parallel instructions in Tapir can exhibit a determinacy

race1 [116] if they access the same memory location concurrently and at least one instruc-

tion writes to that location. Tapir itself does not fully define the possible outcomes of

a determinacy race, and instead defers to existing compiler mechanisms, such as LLVM’s

atomic memory-ordering constraints [82], to define whichever memory model they choose.

For any targeted runtime system, Tapir relies on a correct implementation of lowering in or-

1Determinacy races are also called general races [285] and are distinct from data races, which involve
nonatomic accesses to critical regions.
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der to implement the necessary synchronization, but Tapir is oblivious to how that runtime

system implements the synchronization.

2.1.5 Serial semantics

By grounding its model of parallelism in serial semantics, Tapir enables common compiler

optimizations for serial code to work on parallel code. Intuitively, because Tapir always

allows parallel tasks to execute in their ordinary serial execution order, the compiler can to

optimize parallel code in any manner that preserves the serial semantics of the program and

does not introduce new determinacy races. These mild constraints support common opti-

mizations on parallel code, such as sequentialization, which can be invalid under models

of parallelism without serial semantics [393].

2.1.6 Optimizations

In practice, the Tapir team has found that Tapir enables a wide variety of standard compiler

optimizations to work with parallel code. The prototype implementation of Tapir/LLVM,

for example, successfully moves the call to mag in Figure 2-1 outside of the loop, just as it

would for a serial for loop. As Section 2.4 discusses, Tapir enables other optimizations,

including common-subexpression elimination [275, Sec. 12.2], loop-invariant-code motion

[275, Sec. 13.2], and tail-recursion elimination [275, Sec. 15.1], to work on parallel code.

Tapir also enables new optimizations on parallel control flow.

2.1.7 Evaluation of Tapir/LLVM

The compiler optimizations that Tapir enables are effective in practice. We evaluated the

Tapir approach by measuring the performance of 20 Cilk application benchmarks compiled

using Tapir/LLVM. We compared the performance of these executables to those produced

by a comparable reference compiler, called Reference. Conceptually, Reference lowers

parallel linguistic constructs directly into runtime calls, as mainstream compilers do today,

but otherwise performs the same set of optimization passes as Tapir/LLVM. Section 2.6

describes our experimental setup in detail, including the design of Reference.
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Figure 2-4: Comparison of the work efficiency of 20 parallel application benchmarks com-
piled using Tapir/LLVM (X’s) and the comparable Reference compiler (O’s), described in
Section 2.6, which lowers parallelism in the compiler front end. Each point plots the work
efficiency TS /T1 of a compiled benchmark, where T1 is the work of the benchmark and Ts

is the running time of the serial elision of the benchmark. Higher values indicate better
work efficiency. The horizontal line at 1.0 plots the theoretically maximum work efficiency
TS /T1 = 1. Benchmarks are sorted by decreasing difference in work efficiency between
Tapir/LLVM- and Reference-compiled executables. Benchmarks marked with an “L” use
parallel loops, and benchmarks marked with an “S” use cilk_spawn.

Figure 2-4 presents the results of comparing Tapir/LLVM and Reference in terms of the

“work efficiency” of the compiled benchmarks. To perform this comparison, We compiled

each benchmark using each compiler and then ran the executable on a single processing

core of a multicore machine to measure its work, the 1-core running time, denoted T1. We

also used each compiler to compile, run, and measure the 1-core running time of the serial

elision [123] of each benchmark, denoted TS , in which the benchmark is converted into a

corresponding serial program by replacing all parallel linguistic constructs with their serial

equivalents. We then computed the work efficiency of each compiled benchmark, which is

the ratio TS /T1 of the running time TS of the benchmark’s serial elision divided by the work

T! of the benchmark. In theory, the maximum possible work efficiency is TS /T1 = 1, but

in practice, quirky behaviors of the compiler and multicore architecture can occasionally

produce work efficiencies greater than 1. As Figure 2-4 shows, for most benchmarks,

the executables compiled using Tapir/LLVM achieve equal or higher work efficiency than

those compiled using Reference. Moreover, for many benchmarks, and particularly those

implemented using parallel loops, Tapir/LLVM produces executables that achieve nearly
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optimal work efficiency. Section 2.6 elaborates on these experiments.

2.1.8 Contributions

This chapter makes the following research contributions:

• The design of a compiler IR that represents fork-join parallelism asymmetrically,

which enables existing serial optimizations to operate on parallel code and which

also enables parallel optimizations.

• The implementation of Tapir/LLVM in the LLVM compiler by modifying about 6000

source lines of code (0.15% of the 4-million-line LLVM codebase).

• The implementation of parallel optimizations such as unnecessary synchronization

elimination and parallel-loop scheduling.

• Experiments that demonstrate the advantage of embedding fork-join parallelism into

a compiler’s IR, as opposed to dealing with parallelism only in the compiler’s front

end.

2.1.9 Outline

The remainder of this thesis is organized as follows. Section 2.2 describes Tapir’s rep-

resentation and properties. Section 2.3 discusses how analysis passes can be adapted to

operate on Tapir programs. Section 2.4 describes various optimizations on parallel control

flow that Tapir enables. Section 2.5 describes auxiliary software we developed to exercise

and test Tapir/LLVM. Section 2.6 discusses our evaluation of the effectiveness of Tapir.

Section 2.7 discusses related work. Section 2.8 provides some concluding remarks. An

appendix describes how to set up Tapir/LLVM and how to download and run our suite of

application benchmarks.

2.2 Tapir

This chapter describes how Tapir represents logically parallel tasks asymmetrically in the

CFG of a program. I define Tapir’s three new instructions and how they interact with
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LLVM’s static single-assignment (SSA) form [9, Sec. 6.2.4]. Although I describe Tapir as

an extension to LLVM IR [82], the Tapir team sees no reason why other compilers cannot

gain similar advantages from Tapir-like instructions.

Like LLVM IR, Tapir treats a program function as a CFG G = (V, E, v0), where

• the set V of vertices represents the function’s basic blocks: sequences of LLVM

instructions, where control flow can only enter through the first instruction and leave

from the last instruction;

• the set E of edges denote control flow between (basic) blocks; and

• the designated vertex v0 ∈ V represents the entry point of the function.

2.2.1 Tapir instructions

Tapir extends LLVM IR with three instructions: detach, reattach, and sync. The detach

and reattach instructions together delineate logically parallel tasks, and the sync instruc-

tion imposes synchronization on parallel tasks. The three instructions have the following

syntax, where b, c ∈ V:

detach label b, label c

reattach label c

sync

The label keywords indicate that b and c are (labels of) basic blocks in V .

The detach and reattach instructions together delineate a parallel task as follows.

A detach instruction terminates the block a that contains it and takes a detached block

b and a continuation block c as its arguments. The detach instruction spawns the task

starting at block b, allowing that task to execute in parallel with block c. The control-

flow edge (a, b) ∈ E is a detach edge, and the edge (a, c) ∈ E is a continue edge. A

reattach instruction, meanwhile, terminates the block a′ that contains it and takes a single

continuation block c as its argument, inducing a reattach edge (a′, c) ∈ E in the CFG. The

reattach terminates the task spawned by a preceding detach instruction with the same

continuation block. Together, a detach instruction and associated reattach instructions
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demark the start and end of a parallel task and indicate that that task can execute in parallel

with their common continuation block.

For the example in Figure 2-2d, the detach in the if.else block and the reattach

in the det block share the same continuation block cont. Together, this detach and this

reattach indicate that the det block is a parallel task which can execute in parallel with

the cont block. In general, a parallel task delineated by detach and reattach can consist

of many basic blocks in a single-entry subgraph.

The detach and reattach instructions in a CFG obey several structural properties.

A reattach instruction j reattaches a detach instruction i if i and j share a common

continuation block and there is a path from the detached block of i to j. Tapir assumes that

every CFG G = (V, E, v0) obeys the following invariants on every detach instruction i and

reattach instruction j in G:

1. A reattach instruction reattaches exactly one detach instruction.

2. If j reattaches i, then every path from v0 to the block terminated by j passes through

the detach edge of i, that is, the detach edge of i dominates j.

3. Every path starting from the detached block of i must reach a block terminated by a

reattach instruction that reattaches i.

4. If j reattaches i and a path from i to j passes through the detach edge of another

detach instruction i′, then it must also pass through a reattach instruction j′ that

reattaches i′.

5. Every cycle containing a detach instruction i must pass through a reattach instruc-

tion that reattaches i.

6. The continuation block of j cannot contain any ϕ instructions [9, Sec 6.2.4].

These invariants imply that, at runtime, a detach instruction i with detached block b and

continuation block c spawns the execution of a detached sub-CFG, which is the single entry

sub-CFG starting at b induced by all blocks on paths from b to a reattach instruction that

reattaches i.

The dynamic execution of the program organizes memory as a tree of parallel contexts.

A new parallel context is created as a child of the current context when control enters a
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function or follows a detach edge. When control executes a reattach instruction or leaves

a function, the context is destroyed and the parent’s context becomes the current context.

An alloca instruction allocates shared memory in the current context.

The sync instruction synchronizes tasks spawned within its parallel context. At run-

time, a sync instruction dynamically waits for the set of sub-CFG’s detached in the same

parallel context or any of its descendant parallel contexts to reach a reattach instruction.

In the Tapir CFG illustrated in Figure 2-2d, for example, the sync instruction in the cont

block simply waits for the execution of the det block to complete. Unlike reattach in-

structions, sync instructions are not explicitly associated with detach instructions, and

they, in fact, can be executed within conditionals. A sync instruction j syncs a detach

instruction i if i and j belong to the same parallel context and the CFG detached by i cannot

be guaranteed to have completed when j executes.

2.2.2 Static single-assignment form

LLVM’s static single-assignment (SSA) form [9, Sec. 6.2.4] must be adapted for Tapir

programs. SSA form ensures that each virtual register is set at most once in a function.

LLVM IR employs the ϕ instruction [9, Sec 6.2.4] to combine definitions of a variable

from different predecessors of a basic block. In adapting SSA to Tapir, one concern is

that a ϕ instruction might allow registers defined in the detached sub-CFG to be used in

the continuation. A basic block containing a ϕ instruction must avoid inheriting register

definitions from predecessors that are connected by reattach edges. Otherwise, a register in

the detached sub-CFG might not have been computed by the time the continuation executes.

We implemented this constraint by simply forbidding reattach edges from going into

basic blocks with ϕ instructions. But what if the continuation c of a detach instruction

begins with a ϕ instruction? In this case, Tapir creates a new basic block c′ containing

only a branch instruction to c. Tapir reroutes the reattach and continuation edges originally

going to c so that they go instead to c′. All other edges going to c are left in place.

The reason this solution works is as follows. No reattach edges in the resulting CFG

go to blocks containing ϕ instructions. Because a detached sub-CFG does not dominate
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any outside block, registers in the detached CFG can only be used in ϕ instructions of

the immediate successors of the detached sub-CFG. Since the continuation is the only

immediate successor of the detached sub-CFG and it contains no ϕ instructions, no registers

from the detached sub-CFG may be accessed in the continuation.

2.2.3 Asymmetry in Tapir

The detach and reattach instructions express parallel tasks asymmetrically both syntac-

tically in the structure of the CFG and semantically in the way memory state is managed.

Both asymmetries are illustrated in Figure 2-2d.

First, the CFG detached by a detach instruction is connected by a reattach edge to the

continuation block of that instruction, even though they can execute in parallel. For exam-

ple, the reattach edge between det and cont in Figure 2-2d breaks the symmetry between

them. Reattach edges reflect the serial semantics of a Tapir program, which dictates that a

serial execution of the program executes the detached CFG to completion before starting

to execute the continuation block. In fact, the parallel task delineated by a detach and a

reattach instruction can be serialized by replacing the detach instruction with an uncon-

ditional branch to its detached block and replacing the reattach with an unconditional

branch to its continuation block. In contrast, parallel flow graphs and similar previously

explored representations join logically parallel tasks in the CFG at a synchronization point.

By supporting separate reattach and sync instructions, Tapir decouples the termination

of a parallel task from its synchronization.

Second, although memory state is shared among all parallel tasks in Tapir, a virtual

register defined in a detached sub-CFG is not accessible in its parent parallel context. For

example, the continuation block cont in Figure 2-2d cannot assume that the register value

x0 returned by fib(n-1) in block det is accessible, because the two basic blocks belong

to different parallel contexts. Thus, cont must load it again after the sync instruction.
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br (0 < n), head, exitentry:

i0 = ϕ([0,entry],[i1,inc])
detach body, inchead:

norm0 = norm(in,n)
out[i0] = in[i0] / norm0
reattach inc

body:

i1 = i0 + 1
br (i1 < n), head, exitinc:

sync
returnexit:

T

detach

continue

reattach

T

F

F

Figure 2-5: Tapir CFG for the parallel loops in Figure 2-1.

2.2.4 Parallel loops in Tapir

Figure 2-5 illustrates Tapir’s default representation of the parallel loops from Figure 2-1.

As Figure 2-5 shows, Tapir can represent a parallel loop in the CFG as an ordinary loop,

where the head block repeatedly spawns the body block, and the exit block syncs the

detached CFG’s. Section 2.4 describes how this representation of parallel loops allows

existing compiler loop optimizations to operate on Tapir parallel loops with only minor

modifications. Although this loop structure can exhibit poor parallel performance when the

loop body is small, separate optimization passes in Tapir/LLVM (see Section 2.4) trans-

form this parallel-loop representation into a divide-and-conquer form that exhibits good

performance.

2.3 Analysis passes

This chapter describes how LLVM’s analysis passes can be adapted to operate on Tapir

programs. I first discuss constraints on how Tapir programs can be safely transformed.

Implementing these contraints on LLVM optimization passes primarily involves adapting

standard compiler analyses — specifically alias analysis [9, Ch. 12], dominator analysis [9,

Ch. 9], and data-flow analysis [9, Ch. 9] — to accomodate Tapir’s instructions. I describe

how each of these analyses was minimally modified to support Tapir.
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2.3.1 Constraints on transformations

To be correct, a code transformation on a Tapir program must preserve the program’s serial

semantics, and it must not introduce any new behaviors into the program’s set of behaviors.

A program can exhibit more than one behavior if it contains a determinacy race. In general,

the result of a determinacy race can vary nondeterministically from run to run depending

on the order in which the participating instructions access the memory location. To avoid

introducing new behaviors, code transformations must not create determinacy races, al-

though they can eliminate determinacy races. Many existing serial optimizations can be

adapted to respect these properties by adapting the standard compiler analyses they rely

on. I now describe how LLVM’s alias, dominator, and data-flow analyses were adapted for

Tapir.

2.3.2 Alias analysis

LLVM uses alias analysis [9, Ch. 12] to determine whether different instructions might

reference the same locations in memory, and in particular, to restrict the reordering of

instructions that access the same memory. Tapir/LLVM modifies LLVM’s alias analysis

to prevent optimizations that move code around from introducing determinacy races. In

particular, Tapir adapts LLVM’s alias analysis to treat the instructions as if they access

memory. For example, consider an instruction k that performs a load or a store. There

are four cases to consider when moving k around either a detach instruction i or a sync

instruction j:

1. The instruction k moves from before i to after i.

2. The instruction k moves from after i to before i.

3. The instruction k moves from before j to after j.

4. The instruction k moves from after j to before j.

Neither Case 2 nor Case 3 can introduce a determinacy race, because both motions serialize

the execution of k with respect to the sub-CFG detached by i. Cases 1 and 4 might introduce

a determinacy race, however, if k loads or stores a memory location that is also accessed

by the CFG detached by i. To handle Case 1, i is treated as if it were a function call that
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accesses all memory locations accessed in the CFG detached by i. Similarly, for Case 4,

j is treated as if it were a function call that accesses all memory locations accessed by

all instructions that j might sync. A reattach instruction is treated as a compiler fence

that prevents instructions from moving across it. With these modifications, existing rules

in LLVM that restrict reordering of loads and stores properly restrict memory reordering

around Tapir’s instructions.

2.3.3 Dominator analysis

Optimization passes determine what values are available to an instruction in part by using

dominator analysis [9, Ch. 9], which deduces the dominance relation between all basic

blocks and edges in a CFG. To handle Tapir programs correctly, optimization passes must

not mistakenly cause instructions to use virtual registers that are defined in logically parallel

tasks. If instruction i dominates instruction j, than an optimization pass might assume that

the value produced by i is always available when j executes.

The asymmetry of Tapir’s representation allows LLVM’s dominator analysis to analyze

Tapir programs correctly without any changes. Ignoring the names of edges, the difference

between the CFG G = (V, E, v0) of a Tapir program and the CFG G′ = (V, E′, v0) of its

serial elision is the set E − E′ of continue edges, each of which connects a detach in-

struction to its continuation. A continue edge short-cuts a detached sub-CFG, changing the

continuation’s immediate dominator from the detached sub-CFG to the block containing

the detach instruction itself. This configuration of detach, reattach, and continue edges

looks much like an ordinary if construct in which the detached sub-CFG is conditionally

executed. As a result, dominator analysis never concludes that an instruction in a detached

sub-CFG can execute before the corresponding continuation block.

2.3.4 Data-flow analysis

A wide class of code transformations, including those that might move instructions across

a reattach edge, rely on data-flow analysis [9, Ch. 9] to examine the propagation of values

along different paths through a CFG G = (V, E, v0). Fundamental to data-flow analysis is an
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understanding of the set of possible program states at the beginning and end of each basic

block b ∈ V , denoted in(b) and out(b), respectively.

To illustrate how LLVM’s data-flow analyses were adapted to Tapir, let us examine the

particular case of forward data-flow analysis. (Backward data-flow analysis is similar.) In

an ordinary serial CFG, forward data-flow analysis evaluates in(b) as the union of out(a)

for each predecessor block a of b:

in(b) =
⋃︂

(a,b)∈E

out(a) .

To handle Tapir CFG’s, data-flow analyses must be adapted specifically to handle reat-

tach edges. Because Tapir’s asymmetric representation propagates virtual registers and

memory state differently across a reattach edge, the modifications to LLVM data analyses

consider registers and memory separately.

For variables stored in shared memory, the standard data-flow equations remain un-

changed. Thus, LLVM need not be modified to handle them for Tapir.

For register variables, however, LLVM’s data-flow analyses must be modified to ex-

clude the values in registers from an immediate predecessor a of a basic block b if the edge

(a, b) ∈ E is a reattach edge. Denote the set of reattach edges in E by ER. For a Tapir CFG,

forward data-flow analyses define in(b) for register variables as

in(b) =
⋃︂

(a,b)∈E−ER

out(a) ,

that is, they ignore predecessors across a reattach edge. With this change, Tapir/LLVM

correctly propagates register variables through the CFG, never allowing register values in

a basic block to use register values set in a logically parallel detached sub-CFG.

2.4 Optimization passes

Tapir enables LLVM’s existing optimization passes [248] to work across parallel control

flow. It also enables new optimization passes that specifically target Tapir’s fork-join
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a

37 void search(int low, int high) {
38 if (low == high) search_base(low);
39 else {
40 cilk_spawn search(low, (low+high)/2);
41 search((low+high)/2 + 1, high);
42 cilk_sync;
43 }
44 }

b

45 void search(int low, int high) {
46 if (low == high) search_base(low);
47 else {
48 int mid = (low+high)/2;
49 cilk_spawn search(low, mid);
50 search(mid + 1, high);
51 cilk_sync;
52 }
53 }

Figure 2-6: Example of common-subexpression elimination on a Cilk program.
a The function search, which uses parallel divide-and-conquer to apply the function
search_base to every integer in the closed interval [low, high]. b An optimized ver-
sion of search, where the common subexpression (low+high)/2 in lines 40 and 41 of
the original version is computed only once and stored in the variable mid in line 48 of the
optimized version.

parallel constructs. This chapter discusses four representative optimizations. Common-

subexpression elimination [275, Sec. 12.2] illustrates an optimization pass that “just works”

with the additional Tapir instructions. Loop-invariant code motion [275, Sec. 13.2], and

tail-recursion elimination [275, Sec. 15.1] were the only two out of LLVM’s roughly 80

optimization passes that required any modification to work effectively on parallel code.

Parallel-loop scheduling serves as an example of a new optimization pass.

2.4.1 Common-subexpression elimination

The common-subexpression elimination (CSE) optimization identifies redundant cal-

culations and transforms the code so that they are only computed once. For example, the

expression (low+high)/2 in Figure 2-6a is computed in both line 40 and line 41. Tapir/L-

LVM performs CSE on this code, producing code equivalent to that in Figure 2-6b. Exist-

ing mainstream compilers that support fork-join parallelism do not eliminate this common

subexpression, however, and they compute (low+high)/2 twice. Tapir/LLVM can per-

form CSE across either a continue edge, as in the example, or a detach edge. Like the vast

majority of optimization passes in Tapir/LLVM, CSE “just works” on Tapir code without

any modifications to LLVM’s CSE pass.
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2.4.2 Loop-invariant code motion

The loop-invariant code motion (LICM) optimization [275, Sec. 13.2] aims to move com-

putations out of loop bodies if they compute the same value on every iteration of the loop.

LICM is responsible, for example, for moving the call to norm in the parallel loop in Fig-

ure 2-1a outside of the loop, as described in Section 2.1. By adapting LICM to handle

parallel loops, Tapir/LLVM reduces the asymptotic serial running time of this parallel loop

from Θ(n2) to Θ(n).

Tapir/LLVM requires a minor change to LLVM’s LICM pass to handle parallel loops.

Consider the CFG illustrated in Figure 2-5, which models the parallel loops in Figure 2-1.

For the serial elision of the loop, which would have a similar graph structure except with

the continue edge missing, LLVM attempts to find candidate computations to move outside

the loop by looking for instructions in the basic blocks of the loop body that dominate the

exit block of the loop, such as the block inc in Figure 2-5. (The block labeled exit is the

exit of the function, not the loop exit.) For a parallel loop, however, this analysis fails to

identify any code to move due to the existence of the continue edge. As Figure 2-5 shows,

with the continue edge, blocks in the loop body can never dominate the exit block inc as

they could for the serial elision.

Tapir/LLVM modifies LLVM’s LICM pass to handle a parallel loop by analyzing the

serial elision of the loop, which essentially means ignoring continue edges. For simple

parallel loop structures with a single continue edge, such as that shown in Figure 2-5,

this modification is implemented by finding blocks in the loop body that dominate the

predecessors of the loop exit. The modification required changing only 25 lines of LLVM’s

LICM pass.

2.4.3 Tail-recursion elimination

Tail-recursion elimination (TRE) [275, Sec. 15.1] aims to replace a recursive call at the

end of a function with a branch to the start of the function. By eliminating these recursive

tail calls, TRE can avoid function-call overheads and reduce the stack space they consume.

This optimization can especially benefit fork-join parallel programs, as many parallel run-
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a

54 void pqsort(int* start, int* end) {
55 if (begin == end) return;
56 int* mid = partition(start, end);
57 swap(end, mid);
58 cilk_spawn pqsort(begin, mid);
59 pqsort(mid+1, end);
60 cilk_sync;
61 return;
62 }

c

63 void pqsort(int* start, int* end) {
64 pqsort_start:
65 if (begin == end) {
66 cilk_sync;
67 return;
68 }
69 int* mid = partition(start, end);
70 swap(end, mid);
71 cilk_spawn pqsort(begin, mid);
72 start = mid+1;
73 goto pqsort_start;
74 }

b

75 void pqsort(int* start, int* end) {
76 if (begin == end) return;
77 int* mid = partition(start, end);
78 swap(end, mid);
79 cilk_spawn pqsort(begin, mid);
80

81 start = mid+1;
82 // Begin inlined code
83 if (begin == end) goto join;
84 mid = partition(start, end);
85 swap(end, mid);
86 cilk_spawn pqsort(begin, mid);
87 pqsort(mid+1, end);
88 cilk_sync;
89 // End inlined code
90

91 join:
92 cilk_sync;
93 return;
94 }

Figure 2-7: Example of tail-recursion elimination on a parallel quicksort program. a The
Cilk function pqsort sorts an array of integers in the range specified by the start and end
pointers. b A version of pqsort where the recursive tail call on line 59 has been replaced
by one round of inlining. c A version of pqsort where tail-recursion elimination has
removed the recursive tail call on line 59.

time systems impose additional setup and cleanup overhead on a spawned function.

LLVM’s existing TRE pass can perform the TRE optimization on Tapir programs with

just a minor modification. Specifically, the modified TRE pass ignores sync instructions

after the tail-recursive call. Further, if TRE is applied and ignores a sync instruction, it

must then insert a sync instruction before any remaining returns. This modification to

LLVM’s TRE pass required changing only 68 lines.

To see why these sync instructions can be safely ignored, consider Figure 2-7, which

illustrates how Tapir/LLVM’s TRE pass operates on the pqsort function, a parallel version

of Hoare’s quicksort algorithm [170]. The original tail-recursive code is shown in Figure 2-

7a. Figure 2-7b illustrates the result of simply inlining the tail-recursive call. For the inlined

code, all return statements are replaced with branches to the join label. Because there

is a cilk_sync at the start of join, the cilk_sync on line 88 can be eliminated. call an

arbitrary number of times, TRE can safely ignore a cilk_sync instruction after the final
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tail-recursive call, assuming that it inserts a cilk_sync instruction before all remaining

returns.

2.4.4 Parallel-loop scheduling and lowering

As discussed above and in Section 2.2, Tapir effectively represents a parallel loop as a serial

loop over a body that is spawned every iteration. Depending on the number of iterations

of the loop and the amount of work inside each loop, however, statically scheduling loop

iterations in this way may be inefficient. For a parallel loop with a large number of itera-

tions, for instance, it is faster to schedule the iterations in a recursive divide-and-conquer

fashion, which produces more parallelism (see [258, Sec. 8.3]. For parallel loops with few

iterations, however, the additional function calls required to perform the parallel divide-

and-conquer can make the loop run slower than simply spawning off the iterations.

Tapir/LLVM implements a parallel optimization pass that schedules the iterations of a

parallel loop using recursive divide-and-conquer, but only if that loop contains sufficiently

many iterations. This pass is implemented as part of Tapir/LLVM’s 3800-line lowering

pass, which translates detach, reattach, and sync instructions into appropriate Cilk

Plus runtime calls [190]. In particular, Tapir/LLVM uses the Cilk Plus runtime calls for

cilk_for loops [190, Sec 10.7] to schedule parallel loops. Although we could have sepa-

rated parallel-loop scheduling from lowering, we chose to combine these two passes so that

we could perform fair comparisons between Tapir/LLVM and compilers that lower parallel

constructs in their front end. We plan to separate the parallel-loop-scheduling and lowering

passes in a future version of Tapir/LLVM.

2.4.5 Other optimization passes

Tapir/LLVM implements two minor parallel optimization passes: unnecessary-synchronization

elimination and puny-task elimination. Unnecessary-synchronization elimination identi-

fies and eliminates sync instructions that could not possibly sync a detached sub-CFG.

Puny-task elimination serializes detached sub-CFG’s that perform little or no work. If the

runtime overhead of creating a parallel task outweighs the work in the task, the task might
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as well be run serially. Both of these optimization passes were implemented in 52 lines of

code by augmenting LLVM’s SimplifyCFG pass.

2.5 Auxiliary software

This chapter describes auxiliary software that the Tapir team developed to exercise and

test Tapir/LLVM. Although our research focuses on the middle end of the compiler, we

implemented a front end for Cilk Plus. In addition, we developed compiler instrumentation

that allows the compiler to interface to a race detector to verify the correctness of the

Tapir/LLVM implementation.

To create the front end, the Tapir team created a modification of the Clang front end

called PClang, which translates Cilk Plus codes to Tapir. We also created a version of

Clang that can handle some OpenMP codes. PClang handles most of the fork-join control

constructs specified by the Cilk Plus programming model, and specifically, enough to run

all the benchmarks described in Section 2.6.

We augmented Tapir/LLVM in two ways to test the correctness of the implementation.

First, we modified LLVM’s internal verification pass to check that Tapir’s invariants are also

maintained. Second, we added an instrumentation pass to Tapir/LLVM to allow parallel

executables to be tested for determinacy races using a provably good determinacy race

detector. This race detector, based on the SP-bags algorithm [116], is guaranteed to find a

determinacy race if an only if one exists in the program execution. The verification pass and

race detector helped us locate and fix bugs in Tapir/LLVM, both within our code and within

the underlying LLVM codebase. Tapir/LLVM now passes all tests in LLVM’s regression

test suites and correctly compiles our own suite of parallel test programs.

The instrumentation pass has proved useful for supporting other dynamic-analysis tools

based on Tapir/LLVM. Genghis Chau of MIT adapted the Cilkprof scalability profiler [341]

to use Tapir/LLVM and this instrumentation in order to build an integrated development

environment with always-on race detection and scalability profiling facilities.
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2.6 Evaluation

To evaluate the effectiveness of the approach, the Tapir team evaluated Tapir/LLVM on 20

benchmarks. The experiments support the contention that Tapir’s approach of embedding

parallelism in the IR is superior to lowering parallelism in the compiler front end. We

could not simply run Tapir/LLVM against another compiler, such as Cilk Plus/LLVM [192],

which lowers parallelism in the front end, because Cilk Plus/LLVM and Tapir/LLVM differ

in more ways than just where they lower parallel constructs. Consequently, to perform an

apples-to-apples comparison of these two approaches, we implemented a compiler called

“Reference,” which is as close to identical to Tapir/LLVM as we could muster, except for

where lowering occurs. Figure 2-8 illustrates the compilation pipelines for Clang/LLVM,

Tapir/LLVM, and Reference.

The first pipeline, Clang/LLVM, has the traditional three-phase structure. The Clang

front-end takes serial C/C++ code and emits LLVM IR. The -O3 middle-end optimizes the

IR, and the CodeGen back-end lowers LLVM IR to machine code for a particular hardware

platform.

The second pipeline shows how Tapir/LLVM is organized. The PClang front end takes

parallel Cilk Plus code as input and emits Tapir. The middle-end now consists of three

steps: -O3 optimization, a Lower pass to lower Tapir to LLVM IR, and another pass at

-O3 optimization. The first -O3 pass performs optimizations on the Tapir representation,

the lowering pass translates all the Tapir-specific constructs to LLVM IR, and the second

-O3 pass performs optimizations on the LLVM IR. Finally, the CodeGen back end lowers

LLVM IR to machine code.

The third pipeline, called Reference, models how mainstream compilers work today,

where parallel constructs are transformed into runtime calls before any optimization can

take place. The only difference between Reference and Tapir/LLVM is that the Tapir code

emitted by the PClang front end is immediately lowered to LLVM IR before the rest of

the Tapir pipeline is invoked. (The second Lower pass in the Reference pipeline therefore

has no effect.) Although Reference lowers the parallel constructs early, two iterations of

-O3 are included to ensure that the Tapir/LLVM gains no advantage from optimizing twice.
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Figure 2-8: The compilation pipelines for Clang/LLVM, Tapir/LLVM, and Reference.
Each block represents a compiler transformation, and each oval designates the format of
the code at that point in the pipeline.

Although one might think that a second pass of -O3 would be redundant, it is not. For

example, a simple matrix-multiplication code runs 13% faster after two rounds of opti-

mization compared to just one. And although most benchmarks run faster after two -O3

passes, some actually run slower. Thus, we implemented Reference with the same passes

as Tapir/LLVM, except for the initial Lower pass in Reference. This difference only affects

parallel code. Serial code passes through both pipelines identically.
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Suite Benchmark Description

Cilk Cholesky Cholesky decomposition
FFT Fast Fourier transform

NQueens n-Queens solver
QSort Hoare quicksort

RectMul Rectangular matrix multiplication
Strassen Strassen matrix multiplication

Intel AvgFilter Averaging filter on an image
Mandel Mandelbrot set computation

PBBS CHull Convex hull
detBFS BFS, deterministic algorithm
incMIS MIS, incremental algorithm

incST Spanning tree, incremental algorithm
kdTree Performance test of a parallel k-d tree
ndBFS BFS, nondeterministic algorithm
ndMIS MIS, nondeterministic algorithm

ndST Spanning tree, nondeterministic algorithm
parallelSF Spanning-forest computation

pRange Compute ranges on a parallel suffix array
radixSort Radix sort

SpMV Sparse matrix-vector multiplication

Figure 2-9: Descriptions of the 20 benchmarks used to evaluate Tapir/LLVM. These bench-
marks were taken from the MIT Cilk benchmark suite [123], Intel Cilk Plus example pro-
grams [194], and the CMU Problem-Based Benchmark Suite [356]. “MIS” denotes the
computation of a maximal independent set of a graph. “BFS” denotes the breadth-first
search of a graph.

2.6.1 Benchmarking

To benchmark the compiler pipelines, we assembled a collection of benchmark programs

taken from the MIT Cilk benchmark suite [123], Intel Cilk code samples [194], and the

CMU Problem-Based Benchmark Suite [356]. From these collections, we selected stable

programs that tend to exhibit little performance difference when the number or order of

optimization passes is changed. Figure 2-9 describes the suite of benchmarks tested.

We compiled each program in our benchmark suite with both Tapir/LLVM and Ref-

erence, and we ran them on both 1 and 18 cores of our test machine. Additionally, we

compiled the serial elision of each benchmark with each compiler. Each running time is

the minimum of 10 runs on an Amazon AWS c4.8xlarge spot instance, which is a dual-
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socket Intel Xeon E5-2666 v3 system with a total of 60 GiB of memory. Each Xeon is a

2.9 GHz 18-core CPU with a shared 25 MiB L3-cache. Each core has a 32 KiB private L1-

data-cache and a 256 KiB private L2-cache. The system was “quiesced” to permit careful

measurements by turning off Turbo Boost, dvfs, hyperthreading, extraneous interrupts, etc.

2.6.2 Overall performance

The results of our tests are given in Figure 2-10. For the first pair of rows, Reference and

Tapir/LLVM produce essentially identical executables when compiling the serial elision of

a benchmark. Differences in running times in these rows are due to system noise. The

second pair of rows shows that Tapir/LLVM produces executables with better work than

Reference on 15 of the benchmarks. Of the remaining 5 benchmarks, 4 demonstrate less

than a 1% difference between their work relative to Tapir/LLVM or Reference. The fourth

pair of rows elaborates on the results in the second pair to show that Tapir/LLVM produces

executables with nearly optimal work efficiency (within 1%) on 12 of the benchmarks,

whereas Reference does so on only 2. The third and fifth pairs of row show that Tapir/L-

LVM generally produces executables with similar or better parallel speedups than those

produced by Reference.

The biggest slowdown created from Tapir/LLVM’s compilation occurs on Cholesky,

for which the executable produced by Tapir/LLVM has 4% more work than that produced

by Reference. In investigating this benchmark, we found that LLVM runs a handful of

optimizations on each function before the middle-end optimization and lowering passes in

either Tapir/LLVM or Reference. Although these early optimizations have little effect on

most programs, they reduce the work of the Reference-compiled Cholesky executable by

approximately 20%. Although we experimented with several ways to implement lowering

in Reference before these early optimizations, the resulting compilers consistently exhib-

ited bugs on other benchmarks in the suite. In our final design for Reference, we placed the

initial lowering pass as early as we could muster while still ensuring that Reference could

compile all benchmarks correctly.
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2.7 Related work

Various prior art explores compiler optimizations on unstructured parallel threads. For ex-

ample, some researchers have explored how to find and remove unnecessary synchroniza-

tion in Java programs [12, 330]. Joisha et al. [198] present a technique to detect instruc-

tions that are unaffected by parallel threads and can be safely optimized across unstruc-

tured parallel control flow. In contrast, our work on Tapir focuses on compiler optimiza-

tions for structured parallelism, namely fork-join parallel programs with serial semantics.

Although fork-join parallelism may be more restricted than unstructured parallel threads,

Tapir demonstrates that many of the optimizations for serial code easily extend to fork-join

parallelism. Enabling similar optimizations for unstructured parallel threads appears to be

a much harder problem.

Some previous work on compiler optimizations for fork-join parallel programs evaluate

which instructions can safely execute in parallel [6] based on concurrency mechanisms sup-

ported by a particular memory model. For example, Barik et al. [26, 27] use interprocedural

analysis to perform various optimizations affecting critical sections of X10 and Habanero-

Java programs. Rather than dealing with the complexities of general concurrency mecha-

nisms, Tapir enables compiler optimizations for an easy-to-understand situation: when the

optimization respects the serial semantics of the program and does not introduce determi-

nacy races. Compared with general concurrency mechanisms, well-structured parallelism

seems to offer a less onerous path to performance.

Khaldi et al. [212] modify LLVM IR to support OpenSHMEM parallel programs with

the aim of achieving performance in modern network interconnects that support efficient

data transfers for partitioned global address spaces (PGAS). Based on the SPIRE method-

ology [211] for representing parallel code, they augment functions, basic blocks, instruc-

tions, identifiers, and types in LLVM IR with execution, synchronization, scheduling, and

memory-layout information. In contrast, Tapir models fork-join parallelism for shared-

memory multicores, a conceptually simpler context than PGAS systems, and extends LLVM

IR minimally using only three instructions. Once again, the Tapir’s strong assumption of a

fork-join programming model with serial semantics that compiles to a flexible multicore ar-
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chitecture seems to provide both performance and simplicity, albeit at the cost of scalability

to huge cluster-based supercomputers that lack strong memory-consistency guarantees.

In contrast with much of the work referenced above, Chatarasi et al. [67] focus, as Tapir

does, on fork-join programs with serial semantics. Specifically, they examine polyhedral

optimizations on OpenMP programs with serial semantics. By combining dependency and

happens-before analyses, they manage to enable traditional polyhedral optimizers to work

on parallel loops, much as Tapir enables common middle-end compiler optimizations to

work on parallel code.

2.8 Conclusion

To conclude, I would like to leave the reader with three interesting considerations regarding

the nature of asymmetry in parallelism, the future of parallel optimizations, and extensions

of Tapir-like systems to other models of parallel programming.

Reasoning about logically parallel tasks asymmetrically based on serial semantics can

sometimes simplify the understanding of a parallel program’s behavior. When a task is

spawned to execute in parallel with another, it is natural to reason about the logically par-

allel tasks as symmetric, because their instructions can execute in any relative order. For

parallel programs with serial semantics, however, it is always valid to execute the program

on a single processor, which asymmetrically executes one parallel task to completion be-

fore starting the other. Serial semantics encourage an asymmetric representation of parallel

control flow that is similar enough to its serial elision that most common analyses and trans-

formations for serial programs work on parallel constructs with little or no modification.

In particular, serial semantics enables common optimizations on parallel code that can be

invalid under other models of parallelism [393].

One of the great benefits of Tapir is that its strategy for representing parallelism makes

it easy to write optimization passes specifically for parallel code. Section 2.4 briefly men-

tioned some parallel optimization passes we implemented, including parallel-loop schedul-

ing and unnecessary-sync elimination. In addition to helping close the performance gap

between serial and parallel versions of code, we hope that the introduction of Tapir will en-
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courage the development and implementation of many more parallel-optimization passes.

Finally, Tapir allows fork-join parallel programs to benefit from both serial and parallel

optimizations. Moving forwards, it is natural to wonder whether other models of paral-

lelism, such as pipeline parallelism [232, 284, 103] or data-graph computations [252, 251,

256, 286, 287, 355, 357], can take advantage of the Tapir approach.
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Cholesky FFT NQueens QSort RectMul Strasssen AvgFilter

TS
Ref. 2.935 10.304 3.084 4.983 10.207 10.105 1.751
Tapir 2.933 10.271 3.083 4.984 10.207 10.119 1.750

T1
Ref. 6.581 10.413 10.196 2.355 30.520 1.316 6.596
Tapir 6.461 10.415 10.196 1.730 25.774 1.187 5.673

T18
Ref. 0.648 0.609 1.106 0.708 1.847 0.124 0.517
Tapir 0.709 0.611 1.124 0.615 1.559 0.120 0.467

TS

T1

Ref. 0.757 0.980 0.991 0.743 0.845 0.710 0.801
Tapir 0.771 0.980 0.991 1.012 1.000 0.788 0.992

TS

T18

Ref. 7.690 16.760 9.137 2.472 13.957 7.540 9.518
Tapir 7.028 16.705 8.990 2.846 16.536 7.792 10.942

Mandel CHull detBFS incMIS incST kdTree ndBFS

TS
Ref. 25.779 0.938 5.670 4.993 4.190 5.473 3.950
Tapir 25.780 0.935 5.666 5.006 4.173 5.466 3.956

T1
Ref. 4.572 11.919 3.409 6.030 4.733 5.640 4.930
Tapir 4.739 11.733 3.419 5.043 4.203 5.546 3.980

T18
Ref. 0.387 0.788 0.196 0.559 0.352 0.342 0.415
Tapir 0.396 0.774 0.197 0.527 0.329 0.339 0.361

TS

T1

Ref. 0.642 0.862 0.904 0.828 0.882 0.969 0.801
Tapir 0.619 0.875 0.902 0.990 0.993 0.986 0.992

TS

T18

Ref. 7.579 13.034 15.730 8.932 11.855 15.982 9.518
Tapir 7.407 13.270 15.650 9.474 12.684 16.124 10.942

ndBFS ndMIS ndST parallelSF pRange radixSort SpMV

TS
Ref. 3.950 9.210 4.069 5.136 2.564 3.775 1.780
Tapir 3.956 9.253 4.053 5.136 2.559 3.775 1.783

T1
Ref. 4.930 10.760 4.286 5.646 3.438 3.795 1.836
Tapir 3.980 9.246 4.063 5.183 3.083 3.800 1.786

T18
Ref. 0.415 0.774 1.925 0.414 0.348 0.284 0.118
Tapir 0.361 0.701 1.692 0.392 0.330 0.285 0.112

TS

T1

Ref. 0.801 0.856 0.946 0.910 0.744 0.995 0.969
Tapir 0.992 0.996 0.998 0.991 0.830 0.993 0.997

TS

T18

Ref. 9.518 11.899 2.105 12.406 7.353 13.292 15.085
Tapir 10.942 13.138 2.395 13.102 7.755 13.246 15.893

Figure 2-10: Comparison between executables compiled using Reference and using
Tapir/LLVM. Each column refers to a different parallel benchmark described in Figure 2-
9. Rows labeled “Ref.” describe executables compiled using Reference, and rows labeled
“Tapir” describe executables compiled using Tapir/LLVM. Each measured running time is
the minimum over 10 executions, measured in seconds. The pair of rows labeled TS gives
the running time of the executable compiled from the serial elision of each benchmark.
The pair of rows labeled T1 gives the work of each benchmark. The pair of rows labeled
T18 gives the 18-core running time of each benchmark. The pair of rows labeled TS /T1

gives the work efficiency of each compiled benchmark, derived from the first and second
pairs of rows. The pair of rows labeled TS /T18 gives the parallel speedup of each compiled
executable on 18 cores, derived from the first and third pairs of rows.
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Chapter 3

Tensor Comprehensions

3.1 Introduction

Deep neural networks trained with back-propagation learning [231] are a method of choice

to solve complex problems with sufficient data. Popular graph computation engines [380,

80, 73, 2, 297] offer high-level abstractions for optimizing and executing deep neural net-

works expressed as graphs of tensor operations. These frameworks make transparent use

of heterogeneous computing systems, leveraging highly-optimized routines for individual

operators. While these operators are sufficient for many applications, they fall short in a

number of instances. Developing a novel type of layer or network architecture incurs high

engineering cost or performance penalty. Even if a new layer may be expressed in terms of

existing library primitives, performance is often far from peak for two reasons: missed op-

timizations across operators, and no tuning for its specific size, shape and data flow [395].

Our work aims at addressing this productivity gap.

In parallel to the software problem, a hardware race has begun, fueled by the needs

for energy-efficient computing. With Google’s TPU [201] and Microsoft’s Brainwave

project [261] on the bleeding edge, many large tech companies are pursuing their own hard-

ware. At Google I/O 2018, Turing-award recipient John Hennessy called for fully rethink-

ing our hardware, compilers and language support for domain-specific properties [168],
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citing orders of magnitude speedup opportunities and power constraints caused by the ad-

vent of dark silicon [109].

With the increasing problem complexity and hardware limitations, growing the size

of manually optimized libraries will not scale to future demands. To address these chal-

lenges, we present a novel domain-specific flow capable of generating highly-optimized

kernels for tensor expressions. It leverages optimizations across operators and takes into

account the size and shape of data. The polyhedral framework of compilation emerged

as a natural candidate to design a versatile optimization flow satisfying the needs of the

domain and target hardware. It has demonstrated strong results in domain-specific opti-

mization [277, 32, 22, 107], expert-driven meta-programming [136, 71, 24], embedding

of third-party library code [221], and automatic generation of efficient code for heteroge-

neous targets [28, 260, 310, 402, 22, 430]. We attempt to take the best of both worlds,

defining a domain-specific language rich enough to capture full sub-graphs of modern

Machine Learning (ML) models, while enabling aggressive compilation competitive to

native libraries. In doing so, we may temporarily sacrifice some of the performance of

über-optimized large matrix multiplications (e.g., compared to the recent Diesel polyhedral

compiler [107]) while providing full automation and ML framework integration. Note that

there is no fundamental difficulty in combining both approaches, recognizing and linking

external library kernels when appropriate, as illustrated in subsection 3.3.7.

Our contributions are the following:

1.the Tensor Comprehensions (TC) Domain-Specific Language (DSL) with a tensor

notation close to the mathematics of deep learning, with an emphasis on improving

productivity while maintaining a direct lowering path to the intermediate representa-

tion of a parallelizing compiler for GPU acceleration;

2.an intermediate representation and Just-In-Time optimizing compiler based on the

polyhedral framework, enabling complex program transformations and levels of au-

tomation unmatched by any other compiler for the acceleration of computational

sub-graphs of neural networks;

3.coordinated optimization algorithms with integrated functional correctness, prof-
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itability modeling, domain and target specialization; we propose a layered approach,

relying on integer linear programming and other polyhedral algorithms to address the

core program optimization and synthesis challenges, while resorting to evolutionary

algorithms as a higher level of control, to select high level strategies and fine-tune

transformation parameters;

4.the transparent integration of our flow into PyTorch [297] and Caffe2 [141], providing

the fully automatic synthesis of high-performance GPU kernels from simple tensor

algebra.

The TC flow is also portable to other ML frameworks with a few lines of code. While

our initial implementation focuses on Nvidia GPUs, the core technology applies to other

types of accelerators with shared or partitioned memory [260, 310, 402, 425]; these include

vector and SIMD accelerators, and also the generation of computational patterns suitable

for ASICs with systolic designs and efficient storage management involving non-volatile

memory technologies.

3.2 Tensor Comprehensions

Tensor Comprehensions (TC) are an algorithmic notation for computing on multi-dimensional

arrays. It borrows from the Einstein notation, a.k.a. summation convention: (1) index vari-

ables are defined implicitly and their range is inferred from what they index; (2) indices that

only appear on the right hand side of a statement are assumed to be reduction dimensions;

(3) the evaluation order of points in the iteration space does not affect the output.

A tensor comprehension function, or tensor comprehension for short, defines output

tensors from pointwise and reduction operations over input tensors. These operations are

defined declaratively as a sequence of pointwise equations or reductions, called tensor

comprehensions statements, or statements for short.

Let us consider matrix-vector product as a simple example of a tensor comprehension

with two statements:
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def mv(float(M,K) A, float(K) x)→(C) {

C(i) = 0

C(i) += A(i,k) * x(k)

}

This defines the function mv with A and x as input tensors and C as an output. The shapes of

A and X are of size (M,K) and (K), respectively. The shape of C is inferred automatically.

The statements introduce two indices ‘i’ and ‘k’. Variables not defined in the function

signature implicitly become indices. Their range is inferred based on how they are used in

indexing (see Section 3.3.1); here we will discover i ∈ [0,M), and k ∈ [0,K). Because

k only appears on the right-hand side, stores into C will reduce over k with the reduction

operator +.

Intuitively, a tensor comprehension may be thought of as the body of a loop whose

control flow is inferred from context. The equivalent C-style pseudo-code is:
tensor C({M}).zero(); // 0-filled single-dim tensor

parallel for (int i = 0; i < M; i++)

reduction for (int k = 0; k < K; k++)

C(i) += A(i,k) * x(k);

Importantly, the nesting order (i then k) is arbitrary: the semantics of a tensor com-

prehension is always invariant to loop permutation.1 TC allows in-place updates while

preserving a functional semantics that is atomic on full tensors: RHS expressions are read

in full before assigning any element on the LHS. This specification is important in case

the LHS tensor also occurs in the RHS [121]: the compiler is responsible for checking

the causality of in-place updates on element-wise dependences, currently allowing only

pointwise updates. Also, to enable in-place updates across TC functions, outputs of a TC

statement can also be used as inputs.

We provide a short-cut for an initializing reduction, where the result is initialized to the

operator’s neutral element before reduction by appending ‘!’ to the operator, e.g., ‘+=!’

instead of ‘+=’. A one-line definition of the matrix-vector product mv is given below; and

common ML kernels can be written in just a few lines, such as the sgemm function from

1Nested reductions over multiple variables are supported as long as they involve a single reduction oper-
ator, as commutation does not hold across reduction operators, e.g., min(max( f (.))) ≠ max(min( f (.))).
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BLAS:

def mv(float(M,K) A, float(K) x)→(C) {

C(i) +=! A(i,k) * x(k)

}

def sgemm(float a, float b, float(N,M) A, float(M,K) B)→(C) {

C(i,j) = b * C(i,j) # initialization

C(i,j) += a * A(i,k) * B(k,j) # accumulation

}

Expressing general tensor contractions is equally easy. A fully connected layer fol-

lowed by a rectified linear unit takes the form of a transposed matrix multiplication initial-

ized to a broadcast bias term followed by pointwise clamping (applying the builtin scalar

function fmaxf with 0):

def fcrelu(float(B,I) in, float(O,I) weight, float(O) bias)→(out) {

out(b,o) = bias(o) where b in 0:B

out(b,o) += in(b,i) * weight(o,i)

out(b,o) = fmaxf(out(b,o), 0)

}

The where annotation informs the inference algorithm of the intended index variable ranges

when they cannot be unambiguously inferred. In this case, ‘b’ indexes only ‘out‘ whose

size also needs to be inferred. Unlike tensor kernel libraries with predefined layout conven-

tions, notice that TC lets the user control data layout through the order of tensor indexing

dimensions. Here we chose to reuse the out tensor across all comprehensions, indicating

the absence of temporary storage.

Similarly, the where clause serves to indicate ranges of kh and kw in the max pooling

layer, which would otherwise be under-constrained:

def maxpool2x2(float(B,C,H,W) in)→(out) {

out(b,c,i,j) max=! in(b,c, 2 * i + kh, 2 * j + kw) where kh in 0:2, kw in 0:2

}

A 2-D convolution is also simple. Its reduction is initialized to 0 (note the use of +=!) with
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reduction dimensions kh, kw:

def conv2d(float(B,IP,H,W) in, float(OP,IP,KH,KW) weight)→(out) {

out(b,op,h,w) +=! in(b,ip, h + kh, w + kw) * weight(op,ip,kh,kw)

}

Subscript expressions can be any affine function of iterators, or subscript-of-subscript

expressions (a tensor element indexing another), and combinations thereof. The latter cap-

ture data-dependent accesses such as a gather operation:

def gather(float(N) X, int(A,B) I)→(Z) {

Z(i,j) = X(I(i,j))

}

TC algorithmic notation differs from today’s prominent frameworks where most oper-

ators are defined as black-box functions. The design of TC makes it easy to experiment

with small layer variations while preserving a concise, in-place expression. Thus, a strided

convolution is easily created as a tweak on convolution, e.g., strided by 2 along h and 3

along w is:

def sconv2d(float(N,C,H,W) I, float(F,C,KH,KW) W, float(F) B)→(O) {

O(n,f,h,w) +=! I(n,c, 2 * h + kh, 3 * w + kw) * W(f,c,kh,kw)

O(n,f,h,w) += B(f)

}

Figure 3-1 shows the grammar of the Tensor Comprehension language in EBNF nota-

tion.

3.2.1 Data Layout

TC makes data layout explicit and easy to reason about. It supports generalized tensor

transpositions (i.e., applying an n-D permutation matrix where n > 2), and data tiling can

be achieved by reshaping tensors and adjusting the index expressions. Range inference and

checking guarantees such reshaping will always be consistent throughout the statements

of a tensor comprehension. For instance, NCHW convolution operates on an explicit in-
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num ::= <decimal number literal>
id ::= <C identifier>
binop ::= '+' | '-' | '*' | '/' | '=' | '≠' | ...
exp ::= num
| ( '-' | '!' ) exp
| exp binop exp
| exp '?' exp ':' exp
| id '.' num # range of num-th dimension of id
| id '(' exp_list ')' # call or tensor access

reduction ::= '+=' | '*=' | 'min=' | 'max='
| '+=!' | '*=!' | 'min=!' | 'max=!'

range_constraint ::= id '=' exp '..' exp
| id '=' exp

stmt ::= id '(' id_list ')' ( '=' | reduction )
[ 'where' range_constraint_list ]

| id_list = id '('id_list ')' # TC function call

arg ::= type id
return ::= id # inferred return type and range

scalar_type ::= 'double' | 'float' | 'half'
| 'int' | 'byte' | 'uint32' | ...

type ::= scalar_type [ '(' id_list ')' ]

func ::= # TC function definition
'def' id '(' arg_list ')' '→' '(' return_list ')' '{'
stmt_list

'}'

id_list ::= <comma separated id list>
exp_list ::= <comma separated exp list>
arg_list ::= <comma separated arg list>
stmt_list ::= <whitespace separated stmt list>
return_list ::= <comma separated return list>
range_constraint_list ::= <non-empty comma separated

range_constraint list>

Figure 3-1: Simplified EBNF syntax for core TC. Parentheses denote inline alternatives,
brackets denote optional clauses, angle brackets contain textual descriptions used for sim-
plicity.

put, declared as float I(N,C,H,W), with the layout matching the expected row-major

semantics.

In addition, the TC compiler may transparently apply layout transformations, e.g., when

mapping tensor tiles to GPU shared memory.

3.2.2 Automatic Differentiation

While TC does not natively deal with automatic differentiation (AD), backward passes

can readily be implemented in TC as a few lines of code. Below is the backward pass of

matrix multiplication. Native automatic differentiation support for TC can be enabled by

integrating the Enzyme AD [271, 272, 273] tool into the TC pipeline. See Chapters 5, 7,

and 8 for more details.

def matmul_grad(float(M,N) A, float(N,K) B, float(M,K) d_O)→

(d_A,d_B) {

d_A(m,n) +=! d_O(m,r_k) * B(n,r_k)

d_B(n,k) +=! d_O(r_m,k) * A(r_m,n)

}
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3.3 Tensor Comprehensions Workflow

Range Inference
and Specialization LLVM

TC Halide IR Polyhedral IR (isl) CUDA Kernel Exec

Scheduling
(model-based)

Tiling
(model-free)

Mapping
(greedy) Profile

Autotuner

Figure 3-2: The JIT compilation flow lowers TC to Halide-IR, then to Polyhedral-IR, fol-
lowed by optimization, code generation and execution

The Tensor Comprehensions workflow consists of several stages, progressively low-

ering the level of abstraction (Figure 3-2). Given a TC with specialized tensor sizes and

strides,2 we lower it to a parametric Halide-IR expression, which is further lowered to a

polyhedral representation where most transformations are applied. The output of the poly-

hedral flow is CUDA code that can be further JIT-compiled with NVRTC and executed.

Complementing this flow, an autotuner and serializable compilation engine interacts with

scheduling and mapping strategies to search the optimization space.

Much of TC’s versatility and effectiveness resides in its embedding of a polyhedral

compiler as the main optimization engine. The polyhedral framework is an algebraic repre-

sentation of “sufficiently regular” program parts, covering arithmetic expressions on arrays

surrounded by static control flow [113]. It has been a cornerstone of loop optimization in

the last three decades [195, 112, 15, 29, 52, 402] and is integrated into production com-

pilers [388, 260, 149, 51]. Despite its deceiving apparent simplicity, it covers a large class

of computationally-intensive kernels. It is parametric on loop bounds and array sizes, and

captures more transformations of the control and data flow than domain-specific represen-

tations such as Halide [319] or TVM [74]. The use of the polyhedral model by TC is

derived from that of PPCG [402] and this section only provides a general overview. Our

transformation engine comprises the following, specially adapted or algorithmically novel

components:
2Our toolchain supports parametric specifications, yet we have found early specialization to be beneficial

in driving profitability decisions during polyhedral scheduling.
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1. Range inference and lowering from high-level TC abstraction to the polyhedral rep-

resentation;

2. Core affine scheduling adapted from isl which automatically optimizes for (outer)

loop parallelism and locality, tuned towards folding a complete TC function into a

single GPU kernel;

3. The schedule is further tiled to facilitate the mapping and temporal reuse on the deep

parallelism and memory hierarchy of GPUs [405];

4. Mapping to GPUs borrows from PPCG [402] with extensions to support the more

complex and imperfectly nested control structures of ML kernels;

5. Memory promotion deals with explicit data transfers to and from shared and private

memory.

This work demonstrates that the polyhedral framework is particularly well suited for deep

neural networks, featuring large and deeply nested loops with long dependence chains and

non-uniform or all-to-all patterns—arising from fully connected layers and tensor contrac-

tions, and transpositions. These features push the optimization problem into a different

heuristic space than Halide’s for image processing, and a wider space than linear algebra

alone.

3.3.1 Range Inference

TC loops are implicit and output tensor sizes are inferred from index ranges, which them-

selves may also be inferred. Our algorithm infers the largest rectangular ranges that avoid

out-of-bounds reads on inputs. A where clause allows for disambiguation if multiple such

ranges exist.

Consider the conv2d kernel on page 68. The sizes of the input tensors, in and weight,

are known from the function signature. The algorithm needs to infer the ranges of the

iterators, and the size of the output tensor out. The iterators b, op, kh, kw appear only once

on the RHS and their ranges are therefore [0, B), [0, OP), [0, KH), [0, KW) so that they index

the input tensors maximally. The iterator ip appears twice, but indexes the dimension of
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the same size, so its range is [0, IP). Had it been indexing dimensions of different sizes,

its range would have been the intersection of all size-imposed ranges. Once the ranges of

kh and kw are known, it is possible to infer those of h and w: we require h + kh ≤ H and

w + kw ≤ W, which leads to the maximal ranges of [0, H − KH) and [0, W − KW) respectively.

Finally, the size of out can be inferred given the ranges of the iterators that index it, yielding

float(B,OP,H-KW,W-KW). The user of TC is able to inspect the symbolic sizes inferred

for the output tensors using a command-line flag.

Consider now a typical stencil operation A(i) += B(i + k) * K(k): there are mul-

tiple ways to maximize the ranges of i and k. To disambiguate without annotations, range

inference proceeds in rounds. It maintains a set of index variables whose ranges are not yet

resolved. Initially, it contains all variables not in any where clause. Each step considers

argument expressions that contain a single unresolved variable and constructs a boolean

condition stating the accesses are within bounds. Using Halide [319] mechanisms, range

inference computes the maximal range that satisfies this condition given the already known

ranges of other variables. If different ranges are computed for the same variable, they are

then intersected. For the stencil above, in the first round we ignore the expression B(i + k)

because it contains multiple unresolved variables. We use K(k) to deduce a range for k. In

the second round, B(i + k) contains a single unresolved variable, and we use the already-

inferred range of k to deduce a maximal range for i.

3.3.2 Lowering to the Polyhedral Representation

The role of lowering is to bridge the impedance mismatch between the logical layout

of high level tensor operations (dimension ordering) and the data format the polyhedral

code generator expects (C-style row-major arrays). It ensures the absence of aliasing and

performs range inference for output tensors. Based on range inference, TC differs from

NumPy-style implicit “broadcast” semantics (non-trivial tensor dimensionality extension)

adopted by XLA, PyTorch and MXNet.

Our representation derives from schedule trees [404], implemented in the isl library [400],

and uses a set of node types. Each TC-statement corresponds to multiple runtime statement
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Domain

⎧⎨⎩S(i, j),
T(i, j, k)

⃓⃓⃓⃓
⃓⃓0 ≤ i < N
0 ≤ j < K
0 ≤ k < M

⎫⎬⎭
Sequence

Filter{S(i, j)}
Band{S(i, j)→ (i, j)}

Filter{T(i, j, k)}
Band{T(i, j, k)→ (i, j, k)}

(a) canonical sgemm

Domain

⎧⎨⎩S(i, j),
T(i, j, k)

⃓⃓⃓⃓
⃓⃓0 ≤ i < N
0 ≤ j < K
0 ≤ k < M

⎫⎬⎭
Band

[︃
{S(i, j)→ (i, j)}
{T(i, j, k)→ (i, j)}

Sequence
Filter{S(i, j)}
Filter{T(i, j, k)}

Band{T(i, j, k)→ (k)}

(b) fused

Domain

⎧⎨⎩S(i, j),
T(i, j, k)

⃓⃓⃓⃓
⃓⃓0 ≤ i < N
0 ≤ j < K
0 ≤ k < M

⎫⎬⎭
Band

[︃
{S(i, j)→ (32⌊i/32⌋, 32⌊ j/32⌋)}
{T(i, j, k)→ (32⌊i/32⌋, 32⌊ j/32⌋)}

Band
[︃
{S(i, j)→ (i mod 32, j mod 32)}
{T(i, j, k)→ (i mod 32, j mod 32)}

Sequence
Filter{S(i, j)}
Filter{T(i, j, k)}

Band{T(i, j, k)→ (k)}

(c) fused, tiled

Domain

⎧⎨⎩S(i, j),
T(i, j, k)

⃓⃓⃓⃓
⃓⃓0 ≤ i < N
0 ≤ j < K
0 ≤ k < M

⎫⎬⎭
Band

[︃
{S(i, j)→ (32⌊i/32⌋, 32⌊ j/32⌋)}
{T(i, j, k)→ (32⌊i/32⌋, 32⌊ j/32⌋)}

Sequence
Filter{S(i, j)}

Band{S(i, j)→ (i mod 32, j mod 32)}
Filter{T(i, j, k)}

Band{T(i, j, k)→ (k)}
Band{T(i, j, k)→ (i mod 32, j mod 32)}

(d) fused, tiled, sunk

Domain
[︃
{S(i, j) | 0 ≤ i < N ∧ 0 ≤ j < K}
{T(i, j, k) | 0 ≤ i < N ∧ 0 ≤ j < K ∧ 0 ≤ k < M}

Context{N = M = K = 512 ∧ 0 ≤ bx, by < 32 ∧ 0 ≤ tx, ty < 16}

Filter

⎡⎢⎢⎣
{S(i, j) | i − 32bx − 31 ≤ 32 × 16⌊i/32/16⌋ ≤ i − 32bx∧

j − 32by − 31 ≤ 32 × 16⌊ j/32/16⌋ ≤ j − 32by}

{T(i, j, k) | i − 32bx − 31 ≤ 32 × 16⌊i/32/16⌋ ≤ i − 32bx∧

j − 32by − 31 ≤ 32 × 16⌊ j/32/16⌋ ≤ j − 32by}

Band
[︃
{S(i, j)→ (32⌊i/32⌋, 32⌊ j/32⌋)}
{T(i, j, k)→ (32⌊i/32⌋, 32⌊ j/32⌋)}

Sequence
Filter{S(i, j)}

Filter{S(i, j) | tx = i mod 16 ∧ ty = j mod 16}
Band{S(i, j)→ (i mod 32, j mod 32)}

Filter{T(i, j, k)}
Band{T(i, j, k)→ (k)}

Filter{T(i, j, k) | tx = i mod 16 ∧ ty = j mod 16}
Band{T(i, j, k)→ (i mod 32, j mod 32)}

(e) fused, tiled, sunk, mapped

Figure 3-3: Optimization steps for sgemm

instances, one for every valuation of the index variables. The root domain node defines

the set of statement instances to be executed. Due to the nature of the TC-language, the

constraints on the index variables are always affine, resulting in an exact representation

of the set of operations. A band node defines a partial execution order through one or

multiple piecewise affine functions defined over iteration domains. The name refers to the

notion of a permutable schedule band, a tuple of one-dimensional schedule functions that

can be freely interchanged while preserving the semantics of the program. A filter node

partitions the iteration space, binding its sub-tree to a subset of the iteration domain. It can

be arranged into set or sequence nodes depending on whether or not the order of execu-

tion must be serialized. Context nodes provide additional information on the parameters,

e.g., tensor extents or GPU grid/block sizes. Finally, extension nodes introduce auxiliary
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computations that are not part of the original iteration domain, which is useful for, e.g.,

introducing data-copy statements.

A canonical schedule tree for a TC is defined by an outer sequence node, followed

by filter nodes for each TC statement. Inside each filtered branch, band nodes define an

identity schedule with as many one-dimensional schedule functions as loop iterators for the

statement. The implicit loops form a permutable band as per TC semantics.

In addition to the schedule tree, our representation includes tensor access functions,

which map the index variables to the subscripts of tensors they access. These subscripts are

not necessarily affine, in which case over-approximations are used [38]: a non-affine access

is assumed to potentially access all values along the given dimension. After the polyhedral

representation is constructed, dependence analysis can be used to ensure the absence of

out-of-bounds accesses [313].

Additional lowering steps include forward substitution of convolution expressions (stor-

age/computation trade-off), padding, mirroring and clipping. The process is analogous to

Halide’s [319].

Example Figure 3-3(a) shows the canonical schedule tree for unions of relations where

tuples of iterators are guarded with syntactic identifiers [313].3 for the sgemm TC defined

on Page 67. One recognizes a 2-D nest from the initialization statement followed by a 3-D

nest for the update statement. The schedule can be either parametric in input sizes, or have

extra context information on the tensor sizes. In cases where band nodes do not define

an injective schedule, the statement instances are scheduled following the lexicographical

order of their domain coordinates.

3.3.3 Tunable Polyhedral Scheduling

Program transformation in the polyhedral model involves defining a different schedule,

which corresponds to a different (partial or total) order of traversing the iteration domain.

The instances of all statements are scheduled completely automatically [52] using one of

several scheduling strategies with which we extended the isl scheduler [405].

3We use the named relation notation of iscc [401]. The declaration of parameters (N,M,K) → {. . . } is
omitted hereinafter for brevity.

74



The isl scheduler iteratively solves integer linear programming problems to compute

piece-wise affine functions that form new schedule band nodes. Internally, it operates on

a data dependence graph where nodes correspond to statements and edges express depen-

dences between them. It introduces the affine clustering technique that is based on com-

puting the schedule bands separately for individual strongly-connected components of the

dependence graph and then clustering these components iteratively and scheduling them

with respect to each other. Clustering not only decreases the size of the linear problems the

scheduler has to solve, but also serves as a basis for isl’s loop fusion heuristic.

We extended isl to provide finer-grained control over the scheduling process. For affine

transformations, the user can set additional scheduling options. For clustering, the user can

supply a decision function for pairwise dependence graph component combination, after

this combination was demonstrated to be valid by the scheduler. These configuration points

serve as a basis for both fixed scheduling choices made by TC and scheduling strategies. In

particular, TC tells the scheduler to produce schedules with only non-negative coefficients

and without any skewing. Clustering decisions allow TC to control the conventional mini-

mum and maximum fusion targets, and additionally, maximum fusion that preserves at least

three nested parallel loops (to be mapped to CUDA blocks and threads). With the schedul-

ing strategies one may optionally enable point band rescheduling (i.e., scheduling the inner

dimensions after tiling). In particular, two fusion strategies can be specified, one for the

global schedule and one for the point band. If these fusion strategies are different, then the

point band (along with all its descendants) is rescheduled after tiling, preserving only the

outer tile band of the original schedule. Scheduling strategies can be selected through the

autotuning process. In all cases, we enforce that a single GPU kernel is generated.

Example Observing that the C tensor in sgemm (see Page 67) is reused between two

nests, the scheduler constructs the tree in Figure 3-3(b) to leverage access locality and im-

prove performance. This tree features an outer band node with i and j loops that became

common to both statements, which corresponds to loop fusion. The sequence node ensures

that instances of S are executed before respective instances of T enabling proper initializa-

tion. The second band is only applicable to T and corresponds to the innermost (reduction)

loop k.
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Overall, the tuning process is greatly simplified compared to Halide and TVM. Rely-

ing on a heavy-duty, well-understood analytical optimization framework based on integer

linear programming, TC exposes a small, dedicated search space of high-level strategies

and block size parameters. Beyond guaranteeing the validity of the transformation, depen-

dences can be used to explore parallelization opportunities (independent instances can be

executed in parallel), to improve data access locality (dependent instances executed close

in time) or to automate vectorization [405, 52, 430, 396, 308].

3.3.4 Imperfectly Nested Loop Tiling

Let us first describe the general setting for loop tiling on schedule trees, before developing

the TC-specific specialization and extensions.

Tiling permutable bands Pluto has been very successful at decoupling the actual im-

plementation of loop tiling from the preparation of an affine schedule exposing permutable

loops amenable to tiling [52]. This design allows exploring locality and parallelization

tradeoffs without bloating the schedule representation with complex quasi-affine forms cap-

turing the precise distribution of iterations into tile and point loops. Schedule trees ease the

implementation of such a decoupled design, capturing tiling as the conversion of a per-

mutable schedule band into a chain of two bands, with the outer band containing tile loops

and the inner band containing point loops with fixed trip count. This can be seen as a

conventional strip-mine and sink transformation.

In addition to conventional loop tiling, the schedule tree representation allows tiling

imperfectly nested loops. The technique is based on the following observation: if a loop

does not carry dependences, it can be sunk below any other loop. In valid schedules,

all dependences are carried (or satisfied) by some loop, along which they feature a positive

distance. A dependence is only violated if it has a negative distance along some loop before

it is carried by another loop [208]. Parallel loops do not carry dependences by definition

and therefore do not affect dependence satisfaction or violation. Therefore, imperfectly

nested tiling may be implemented by first tiling bands in isolation and then sinking parallel

point loops in the tree. During this process, the point band is replicated in each sub-tree
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below a sequence (or set) node and its schedule is restricted to only map the relevant points

in the iteration domain. Such an extension is particularly helpful in Pluto, where bands of

permutable loops are rediscovered through a post-pass traversal of the affine schedule.

Parallelism and locality trade-offs TC applies two tiling schemes with complementary

purposes.

The first one takes place immediately after affine scheduling. It aims at exposing a

sufficient number of parallel dimensions, some of which amenable to memory coalescing,

and some better suited to block-level parallelism. It also aims at exploiting data locality

within thread blocks (through shared memory) and individual threads (through register

reuse). This tiling scheme is influenced by the strong emphasis on loop fusion in the affine

scheduling heuristic (to enforce that the generated code runs as a single GPU kernel). In

this context, conventional loop nest tiling—considering a single band at a time—appears

to be sufficient. This is the hypothesis we make in this chapter.4

The second tiling scheme takes place in the block and thread mapping algorithm, which

is the topic of the next sub-section.

Example Figure 3-3(c) shows the schedule tree for the fused and tiled sgemm. It pur-

posely has two imperfectly nested bands. Dependence analysis shows that loops i and j

are parallel. Therefore, we can tile them and sink the point loops below the band of the

reduction k loop, resulting in the schedule tree in Figure 3-3(d). Innermost nested bands

with point loops can be joined together into a single band after checking for permutability.

As indicated earlier, TC implements the fusion and tiling scheme of Figure 3-3(c) but not

the sunk, imperfect scheme of Figure 3-3(d).

3.3.5 Mapping to Blocks and Threads

A schedule tree can also be used to represent the mapping to an accelerator, in particular a

GPU with multiple blocks and threads. This operation is performed by associating certain

schedule band members, and the corresponding loops, to thread or block indices. The poly-

hedral code generator then omits the loops, if possible, and rewrites the index expressions

4The TC implementation supporting our experiments does not implement imperfect loop tiling after affine
scheduling.
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accordingly. Building on PPCG, our mapping approach is decoupled from tiling for data

locality: grid and block sizes are specified independently from tile sizes and are exposed

as tunable parameters. Due to the semantics of blocks and threads, only parallel loops

that belong to a permutable schedule band can be mapped. If point loops are mapped to

threads, the ratio between tile sizes and blocks sizes controls the number of iterations exe-

cuted by each thread. Note that tile sizes smaller than the block sizes lead to some threads

not performing any computation.

Contrary to PPCG, which may generate multiple kernels for a given input program,

our mapping approach handles imperfectly nested loops in a way that generates a single

kernel as expected by ML frameworks. We require the schedule tree to have at least an

outermost band with outer parallel dimensions. The parallel dimensions of the (single)

outermost band are mapped to GPU blocks. In each schedule tree branch, the innermost

permutable band, typically consisting of point loops, is mapped to GPU threads with the

following restrictions: the number of mapped dimensions must be equal across branches,

and on each branch, there must be exactly one band mapped to threads. The mapping is

performed bottom-up, first attempting to map the leaf bands to threads, before moving to a

parent band only if none of the children could be mapped to threads.

Thread mapping can be extended to imperfectly nested loops, following the same prin-

ciple as imperfect loop tiling. Within a given thread block, one may sink parallel point

loops so that multiple bands in a sequence (or set) may be equalized in depth and mapped

together. However, TC currently does not perform any such sinking.

Example Our mapping strategy produces the schedule tree in Figure 3-3(e). We intro-

duced a context node in the schedule tree to indicate the effective sizes of the parameters

as well as the grid and block sizes (denoted as bx, by and tx, ty, respectively, standing for the

values eventually taken by blockIdx.x, blockIdx.x and threadIdx.x, threadIdx.y).

This insertion is performed just-in-time, when the effective tensor sizes are known. Also

notice the Filter nodes referring to the bx, by, tx and ty parameters: these nodes express the

mapping to the GPU.
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3.3.6 Memory Promotion

We are interested in promoting parts of tensors into shared or private GPU memory. While

the promotion decision is taken by a heuristic and the corresponding imperative code is

generated at a later stage, schedule trees offer a convenient interface for attaching memory-

related information. Memory promotion is based on the notion of an array tile, a form of

data tiling for software-controlled local memories. It is a constant-size potentially strided

block in the array that covers all elements accessed by within a given (schedule) tile. We

build upon and extend PPCG’s support for memory promotion [402, 405] and expose the

promotion to shared and private memory as boolean options for the autotuner.

Promotion of Indirectly Accessed Arrays. Memory promotion is also applicable to

indirectly accessed arrays. These frequently occur when modeling variable length data

through embedding layers such as word embeddings in natural language processing. This is

particularly important in the case of latency-bound benchmarks where there is little compu-

tational or additional data processing work to hide global memory latency. Indirect arrays

used to be promoted in the initial TC implementation based on PPCG. When implementing

parallel reductions, working towards the first released version of TC, we realized that par-

allelizing reductions was sufficient to deliver comparable or higher speedups in our word

embedding benchmarks. For this reason, indirect array promotion was dropped from the

publicly available version of TC. We still report on the design for it remains interesting to

describe how the polyhedral TC flow may optimize non-affine data flow.

Without loss of generality, consider the access O[l+Idx[i][j]][k]. We refer to O as

the outer array and to Idx as the index array. In case of nested indirections, outer/index

pairs are processed iteratively from innermost to outermost. While the values taken by the

first index expression of the outer array are unknown statically, we can still cache them

locally as shared_O[l][i][j][k] = O[l + Idx[i][j]][k]. Because some values can

be duplicated, indirect promotion is only possible if both the outer and the index arrays

are only read, since writing to them could result in different values that cannot be trivially

merged. In general, we require the index array to have an array tile, i.e., only a fixed-sized

block of it is accessed. When computing the array tile for the outer array, we ignore the
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indirect parts of the subscript (affine parts are treated as usual). We then introduce as many

additional index expressions in the promoted outer array as are associated to the index

array. Extents of the array along these new dimensions correspond exactly to the array tile

sizes of the index array. Hence an element of the promoted array contains a copy of the

global array element that would be accessed with the given index array. Indirect subscripts

are only used when copying from global memory while all other accesses are rewritten

through code generation. In presence of multiple indirect index expressions that share sub-

expressions and have equal tile sizes along the corresponding dimensions, it is sufficient to

introduce a single index expression in the promoted array for all identical sub-expressions.

Promotion Heuristics. Directly accessed arrays are promoted to shared memory if

there exists an array tile of fixed size, if individual elements are accessed more than once

and if at least one of the accesses does not feature memory coalescing. The latter is visible

from the access relation with the schedule applied to the domain: the last access dimension

should be aligned with the schedule dimension mapped to x threads.

For indirect arrays, the coalescing requirement may be dropped because of the presence

of additional long memory dependences that these cases entail. The total amount of shared

memory being fixed, one may follow a simple greedy heuristic, refusing promotion if the

required amount of shared memory would outgrow the available resources.

3.3.7 Matching Library Calls

While TC aims at generating code for any computational kernel expressible in the DSL, if

(part of) a kernel happens to match a pattern that is heavily optimized by some library, then

it may as well be handled by that library. In particular, and as a proof of concept, TC looks

for opportunities for letting CUB handle specific forms of reductions [323]. It is currently

restricted to single-dimensional addition reductions.

A reduction is represented in TC by a binary relation between updated tensor elements

and the statement instances that perform the corresponding updates.5 Right before the

mapping to threads, each permutable band with a sufficient number of parallel members

5This description is based on commit TC commit 8cfdd5764, which is slightly ahead of the commit used
in the experiments, but is easier to explain.
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is checked for reductions. In particular, the band should have at least one non-parallel

member and the number of parallel members plus one (corresponding to the non-parallel

member) should be greater than or equal to the number of dimensions that will be mapped

to threads. If the band schedules instances of exactly one reduction statement and if the

instances of any other statement scheduled by the band can be moved before or after the

reduction instances, taking into account the active dependence at (the top of) the band, then

the remaining band (involving only reduction statement instances) will be considered for

replacement by a library call during thread mapping.

When a band marked for replacement is considered during thread mapping, full/par-

tial tile separation is applied—using the block size tuning parameter—since only the full

tiles can be handled directly by CUB. Furthermore, the condition separating full tiles from

partial tiles should be simple enough as otherwise the cost of determining when to invoke

CUB would outweigh any possible benefit obtained from the invocation. If the condition

is too complicated, the separation is discarded and the band is treated in the same way as

bands that were not marked for replacement. Otherwise, the collection of full tiles is tiled

along the parallel dimensions since a single scalar variable is used to hold the result of the

reduction mapped to CUB. Synchronization and a special marking is then inserted around

the point band of this tiling, which is later used during code generation to replace each full

tile by a call to CUB. Finally, since CUB uses some shared memory, its consumpion is

taken into account during the downstream memory promotion step.

3.3.8 Autotuning and Caching

While the polyhedral core of TC is capable of optimizing and generating code for any TC

function, it is well known that the state of the art linear optimization heuristics are not suffi-

cient to account for all performance anomalies and interactions with downstream program

transformations [430, 220]. Different kernels need different, target-specific optimization

trade-offs. We thus complement our flow by an autotuner that varies the options of the

polyhedral JIT compiler marked as tunable in the previous section. These options can be

stored and reused for similar operations/kernels (similar shapes, target architecture) since

81



autotuning may require significantly more time than compilation.

The tuning session is defined by a list of parameters to tune and their admissible val-

ues, initial values, and the search strategy. We currently implement a genetic search strat-

egy [138]. It runs for multiple steps, each one evaluating multiple candidate values. Each

candidate is assigned a fitness value inversely proportional to its runtime. The pool is

updated on each generation by cross-breeding three candidates, chosen from the pool at

random, with fitter candidates having a higher chance of being chosen, such that the each

candidate’s value is inherited from one of its parents. A subsequent mutation phase can

change the candidate’s values at random with some low probability. Much of the auto-

tuning effort resides in tile size selection, for which no linear objective functions exist in

polyhedral compilers. Genetic approaches have been used successfully to explore such

spaces, performing better than random search due to the strong coupling of optimization

decisions—including tile sizes bound by the limits of the memory hierarchy—[308, 75].

Autotuning evaluates 100s to 1000s versions for each kernel. We devise a generic

multi-threaded, multi-GPU autotuner. It maintains a queue of candidates to compile with

the polyhedral flow, and a queue of compiled kernels ready to be profiled on the GPU (see

Figure 3-4). Candidates or kernels are picked up by available worker threads and compiled

or profiled concurrently. Profiling results are accumulated in the tuning database and used

for setting up successive search steps.

Search Strategy

Tuning
Database

Compilation Jobs Profiling Jobs

CPUs GPUs

Figure 3-4: Multithreaded autotuning pipeline for kernels

Each generated version is “warmed up” by a few executions before being profiled.

Without any performance guarantees, autotuning needs to quickly prune poor candidates.

Because CUDA kernels cannot be stopped once launched, we rely on the following pruning

heuristics to decrease the autotuning time by an order of magnitude. (1) Parameter special-

ization allows the exact number of active threads and blocks to be computed beforehand.

Kernels with fewer threads than some configurable threshold (e.g., 256) are not launched.
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(2) If during the first run, a kernel is more than 100× slower than the best version so far, or

it is 5× slower after warmup, it is pruned immediately.

While autotuning time may become significant, compilation and autotuning time is

not a fundamental limit to TC’s applicability. In training scenarios, a significant amount

of time is spent on computing the same kernel repeatedly over different data during the

(stochastic) gradient descent. In inference scenarios, the network is optimized ahead of

time. As a result, although TC operates as a JIT compiler, it only marginally hits the

typical compilation/run-time trade-offs of JIT compilers. Autotuning time may become

an issue in specific training scenarios where hyper-parameters would need to be frequently

updated, but in such a case one may leverage TC’s intrinsic handling of dynamic shapes and

generate a single version of each operator or fused operators to handle all hyper-parameter

configurations.

3.4 Integration with ML Frameworks

TC is designed to optimize individual layers or small subgraphs of an ML model. Con-

sidering the entire model is not only computationally expensive, but often leads to most

transformations being hindered by a large number of data dependences. Furthermore, ML

frameworks perform work distribution and placement at the model level, treating a layer as

a unit of work; extremely large layers could interfere with the framework operation.

Unlike XLA or Glow, TC supports completely custom layers. In TC, layer fusion

is merely pasting the code that constitutes the layers into a single function, or inlining

TC functions at the AST level. Unlike Halide and TVM, the polyhedral backbone of TC

includes instance-wise dependence analysis, capturing dependences and tensor access re-

lations at the level of individual loop iterations and tensor elements. This allows TC to

fuse operations without introducing redundant computation, and to combine fusion with

enabling transformations such as shifting (for convolutions) or scaling (for pooling layers).

TC’s polyhedral representation also enables it to automatically infer sizes, and to discover

parallelism and locality-parallelism trade-offs beyond a predefined collection of map/re-

duce/scan combinators.
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Let us now describe the transparent integration into a ML framework, from a user per-

spective. Until now, such levels of integration had only been demonstrated on operator

graph compilers such as XLA [140] and Glow [329], starting from a lower level of abstrac-

tion than TC, and missing the genericity and high reusability of a polyhedral framework as

well as feedback-directed autotuning.

We opted for an “in process” implementation, streamlining the interaction with com-

putation graph engines and ML applications built on top of them, a unique feature for a

fully-automated scheduling and mapping flow. TC is integrated into any ML framework

as follows. We provide a thin API that translates the specific tensor object model to our

own, see Figure 3-5 and Figure 3-6. Operator definitions are overridden to generate TC

rather than the framework’s backend implementation, as well as provide users the ability to

write their own TC. A single TC may correspond to a DAG of operators in the ML frame-

work. The tensor comprehensions are then JIT-compiled as shown in Figure 3-2. DAG

partitioning, matching and rewriting (like, e.g., TensorRT [290]) is currently not part of the

flow, although this would make an interesting future combination, with feedback from the

compiler.

string tc = R"TC(some_tc_for_conv)TC";
auto I = makeATenTensor<CudaBackend>({N, C, H, W});
auto W = makeATenTensor<CudaBackend>({F, C, KH, KW});
ATenAutotuner<CudaBackend> tuner(tc);
auto best = tuner.tune("conv", {I, W});
auto pExecutor =

compile<CudaBackend>(tc, "conv", {I, W}, best[0]);
auto out = prepareOutputs(tc, "conv", {I, W});
auto times = profile(*pExecutor, {I, W}, outs);

Figure 3-5: Example of embedded usage in C++/ATen.

3.5 Performance Results

We evaluate our framework on 2 systems: (1) Nvidia Pascal nodes with 2 socket, 14 core

Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz, with 2 Quadro P100-12GB; and (2) Nvidia

Volta nodes with 2 socket, 20 core Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz, with 8

Tesla V100-SXM2-16GB. Both systems use CUDA 9.0 and cuDNN 7.0.
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import torch
import tensor_comprehensions as tc
tcdef = """...some_tc_for_conv..."""
T_I = torch.randn(N, C, H, W).cuda()
T_W = torch.randn(F, C, KH, KW).cuda()
# register the TC string
conv = tc.define(tcdef, name="conv")
# autotune the kernel
best = conv.autotune(T_I, T_W)
# run with best option and cache the binary
T_O = conv(T_I, T_W, options=best)

Figure 3-6: Example of embedded usage in PyTorch.

We report results for 9 TC functions ranging from a simple matrix multiplication kernel

to a full WaveNet cell [394]. The individual benchmarks are described below: Figure 3-7

and Figure 3-8 show the complete source code. The matrix multiplication and convolution

kernels were selected for their dominance of the training and inference time of the most

classical networks [19, 418]. The other kernels bring interesting computation patterns to

enable expressiveness and performance comparisons in more diverse network architectures.

These results are all based on TC commit 2e1a0dc54850 available at

https://github.com/nicolasvasilache/TensorComprehensions.

Running the autotuner for 25 generations of 100 candidates, the (parallel) autotuning

process takes up to 1h on the longest running kernels, and 6h in total.6

The relative performance of kernels automatically generated with TC compared to

Caffe2 is shown in Figure 3-9 and Figure 3-10.7 Caffe2 provides a very strong baseline

by wrapping tuned implementations, which originate from either hand-tuned libraries or

other high-performance code generators.8 We chose to compare against Caffe2 rather than

against other optimization flows due to expressivity and automation limitations: XLA or

Glow do not support custom layers, and Halide or TVM lack range inference and auto-

matic parallelism discovery, which significantly complicates the expression of new layers

such as KRU and WaveNet. The common set of comparable layers would be limited to

6Classical strategies exist to accelerate autotuning, such as predictive modeling and search space pruning
[4], but this was not the focus of this chapter.

7We compile Caffe2 and PyTorch from source (commit 6223bfdb1d32) and integrate it in the TC testing
flow for proper benchmarking.

8A recent unification effort [349] made Caffe2 the backend for PyTorch 1.0.
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def tmm(float(M,K) A, float(N,K) B)→(C) { C(m,n) +=! A(m,r_k) * B(n,r_k) }
def tbmm(float(B,N,M) X, float(B,K,M) Y)→(Z) { Z(b,n,k) +=! X(b,n,r_m) * Y(b,k,r_m) }

def 1LUT(float(E1,D) LUT1, int(B,L1) I1)→(O1) { O1(i,j) +=! LUT1(I1(i,r_k),j) }
def 2LUT(float(E1,D) LUT1, int(B,L1) I1, float(E1,D) LUT1, int(B,L1) I1)→(O1, O2) {
O1(i,j) +=! LUT1(I1(i,r_k),j)
O2(i,j) +=! LUT2(I2(i,r_k),j)

}

def MLP3(float(B,M) I, float(O,N) W2, float(O) B2, float(P,O) W3, float(P) B3, float(Q,P) W4,
float(Q) B4)→(O1,O2,O3,O4) {
O2(b,o) = B2(o)
O2(b,o) += O1(b,r_n) * W2(o,r_n)
O2(b,o) = fmaxf(O2(b,o), 0)
O3(b,p) = B3(p)
O3(b,p) += O2(b,r_o) * W3(p,r_o)
O3(b,p) = fmaxf(O3(b,p), 0)
O4(b,q) = B4(q)
O4(b,q) += O3(b,r_p) * W4(q,r_p)
O4(b,q) = fmaxf(O4(b,q), 0)

}

def kronecker3(float(D0,N0) W0, float(D1,N1) W1, float(D2,N2) W2, float(M,N0,N1,N2) X)→(Y,XW1,XW2) {
XW2(m,n0,n1,d2) +=! X(m,n0,n1,r_n2) * W2(d2,r_n2)
XW1(m,n0,d1,d2) +=! XW2(m,n0,r_n1,d2) * W1(d1,r_n1)
Y(m,d0,d1,d2) +=! XW1(m,r_n0,d1,d2) * W0(d0,r_n0)

}

def group_convolution(float(N,G,C,H,W) I, float(G,F,C,KH,KW) W1, float(M) B)→(O) {
O(n,g,o,h,w) = O(n,g,o,h,w) + B(m)
O(n,g,o,h,w) += I(n,g,r_i, h + r_kh, w + r_kw) * W1(g,o,r_i,r_kh,r_kw)

}

def moments2_2d_1D(float(N,K) I)→(mean,var) {
# var = E(x̂ 2) - mean̂ 2
mean(n) +=! I(n,r_k)
var(n) +=! I(n,r_k) * I(n,r_k)
mean(n) = mean(n) / K
var(n) = var(n) / K - mean(n) * mean(n)

}

def group_normalization(float(N,G,D,H,W) I, float(G,D) gamma, float(G,D) beta, float(N,G) mean, float(N,G) var)→
(O,mean,var) {
O(n,g,d,h,w) = gamma(g,d) * (I(n,g,d,h,w) - mean(n,g)) * rsqrt(var(n,g) - mean(n,g) * mean(n,g) + 1e-5) + beta(g,d)

}

def group_normalization_single_kernel(float(N,G,D,H,W) I, float(G,D) gamma, float(G,D) beta)→(O,mean,var) {
mean(n,g) +=! I(n,g,r_d,r_h,r_w)
var(n,g) +=! I(n,g,r_d,r_h,r_w) * I(n,g,r_d,r_h,r_w)
O(n,g,d,h,w) = gamma(g,d) * (I(n,g,d,h,w) - mean(n,g) / (D * H * W)) * rsqrt(var(n,g)/(D * H * W)

- mean(n,g)/(D * H * W) * mean(n,g)/(D * H * W) + 1e-5) + beta(g,d)
}

Figure 3-7: TC Benchmarks used in the experiments. Evaluated sizes are available in
Table 3.1.

matrix multiplications and convolutions, while one of the main contributions of TC is to

enable exploration of new unconventional layers before super-optimized implementations

are available.
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def wavenet1(float(B, RESIDUAL_C, RECEPTIVE_FIELD) Data,
float(DILATION_C, RESIDUAL_C, 2) FilterWeight, float(DILATION_C) FilterBias,
float(DILATION_C, RESIDUAL_C, 2) GateWeight, float(DILATION_C) GateBias,
float(RESIDUAL_C, DILATION_C) ResWeight, float(RESIDUAL_C) ResBias,
float(SKIP_C, DILATION_C) SkipWeight, float(SKIP_C) SkipBias,
float(DILATION_FACTOR) Dilation)→(FilterOut, GateOut, NonLin, Res, Skip) {

FilterOut(b, dilation_c, rf) = FilterBias(dilation_c)
where b in 0:B, dilation_c in 0:DILATION_C, rf in 0:RECEPTIVE_FIELD

FilterOut(b, dilation_c, rf) += Data(b, r_residual_c, rf) * FilterWeight(dilation_c, r_residual_c, 1)
+ ((rf - DILATION_FACTOR ≥ 0)
? Data(b, r_residual_c, rf - DILATION_FACTOR) * FilterWeight(dilation_c, r_residual_c, 0) : float(0))

where rf in 0:RECEPTIVE_FIELD

GateOut(b, dilation_c, rf) = GateBias(dilation_c)
where b in 0:B, dilation_c in 0:DILATION_C, rf in 0:RECEPTIVE_FIELD

GateOut(b, dilation_c, rf) += Data(b, r_residual_c, rf) * GateWeight(dilation_c, r_residual_c, 1)
+ ((rf - DILATION_FACTOR ≥ 0)

? Data(b, r_residual_c, rf - DILATION_FACTOR) * GateWeight(dilation_c, r_residual_c, 0) : float(0))
where rf in 0:RECEPTIVE_FIELD

NonLin(b, dilation_c, rf) = tanh(FilterOut(b, dilation_c, rf)) where rf in 0:RECEPTIVE_FIELD
NonLin(b, dilation_c, rf) *= 1 / (1 + exp(-GateOut(b, dilation_c, rf))) where rf in 0:RECEPTIVE_FIELD

Res(b, residual_c, rf) = Data(b, residual_c, rf) + ResBias(residual_c)
Res(b, residual_c, rf) += NonLin(b, r_dilation_c, rf) * ResWeight(residual_c, r_dilation_c)

Skip(b, skip, rf) +=! NonLin(b, r_dilation_c, rf) * SkipWeight(skip, r_dilation_c) where rf in 0:RECEPTIVE_FIELD
Skip(b, skip, rf) = Skip(b, skip, rf) + SkipBias(skip) where rf in 0:RECEPTIVE_FIELD

}

Figure 3-8: Source of one full WaveNet cell.
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Figure 3-9: Speedup of TC-generated kernels over Caffe2 hand-tuned kernels on Quadro
P100-12GB

In addition, Figure 3-11 brings together the performance of TC-compiled kernels on

both GPU systems, normalized to Caffe2 on P100. This consolidated graph conveys 3
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Figure 3-10: Speedup of TC-generated kernels over Caffe2 hand-tuned kernels on Tesla
V100-SXM2-16GB
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Figure 3-11: Relative performance: baseline is Caffe2 performance on a P100 GPU

classes of information in a common context: (1) speedup of Caffe2 V100 over Caffe2 P100

to illustrate the out-of-the-box benefits (or lack thereof) of a faster GPU; (2) speedup of

TC over Caffe2 on P100 (main comparison); and (3) speedup of TC V100 over Caffe2

P100. The last choice may seem surprising, but presented in the context of the other two,

allows for relative comparisons: the height of the Caffe2 V100 and TC V100 captures the

raw speedups of TC on V100. We aim at compactly illustrating that TC provides a path to

88



performance portability, improving on state of the art frameworks and library primitives.

Table 3.1 provides absolute runtime running TC and Caffe2; all values are reported in

µs.

Pascal Volta
1LUT p0 p50 p90 p0 p50 p90

B = 128,D = 64, E1 = 107, L1 = 50 TC 13 14 14 15 16 17
Caffe2 85 91 95 56 58 63

2LUT p0 p50 p90 p0 p50 p90

B = 128,D = 64, E1, E2 = 107, L1, L2 = 50 TC 52 54 57 35 35 37
Caffe2 132 136 144 115 117 124

MLP1 p0 p50 p90 p0 p50 p90

B = 128,M = 2000,N = 128 TC 68 69 71 57 58 59
Caffe2 87 89 91 116 118 123

MLP3 p0 p50 p90 p0 p50 p90

B = 128,N = 128,O = 64, P = 32,Q = 2 TC 18 19 19 20 20 21
Caffe2 157 159 169 144 146 164

tbmm p0 p50 p90 p0 p50 p90

B = 500,K = 26,M = 72,N = 26 TC 52 53 54 42 43 43
Caffe2 94 102 103 76 77 78

Group Convolution p0 p50 p90 p0 p50 p90
C, F = 4,G,N = 32,H = 56,KH,KW = 3, TC 696 701 704 435 440 443
W = 56 Caffe2 1590 1609 1621 879 888 896
C, F = 8,G,N = 32,H = 28,KH,KW = 3, TC 574 576 578 269 270 272
W = 28 Caffe2 640 653 692 613 650 660
C, F = 16,G,N = 32,H = 14,KH,KW = 3, TC 265 272 276 274 284 287
W = 14 Caffe2 440 474 510 377 383 397
C, F = 32,G,N = 32,H = 7,KH,KW = 3, TC 463 481 491 259 260 264
W = 7 Caffe2 456 461 469 367 388 394
Group Normalization p0 p50 p90 p0 p50 p90

C = 512,G = 32,H = 12,N = 4,W = 12 TC 22 23 24 32 33 35
Caffe2 37 38 40 33 34 35

C = 512,G = 32,H = 48,N = 32,W = 48 TC 1285 1290 1294 593 597 601
Caffe2 1814 1819 1823 865 869 871

tmm p0 p50 p90 p0 p50 p90

K = 32,M = 128,N = 256 TC 15 15 15 15 16 17
Caffe2 18 19 20 31 31 32

K = 1024,M = 128,N = 1024 TC 318 334 344 181 189 192
Caffe2 55 58 64 89 90 91

K = 4096,M = 128,N = 16384 TC 17168 17209 17270 7937 8004 8096
Caffe2 2254 2388 2590 1360 1378 1419

Table 3.1: Absolute run time in µs

TMM: Transposed Matrix-Multiplication On matrix multiplications of shapes and

sizes relevant to deep learning workloads (i.e., small 128× 32× 256, medium 128× 1024×

1024 and large 128 × 4096 × 16384), TC does not perform competitively, except in the

low-latency small case. This is due to: (1) the lack of a target-specific register blocking

optimization, making kernels bound by shared memory bandwidth which is an order of
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magnitude slower than register bandwidth; (2) the lack of target-specific, basic-block level

optimizations including careful register allocation and instruction scheduling. Matrix mul-

tiplication is the most tuned computation kernel in history: the missing optimizations are

all well known, and may be found in use cases and open source implementations such

like CUTLASS [210]. Alternatively, polyhedral compilation has been shown to match or

outperform cuBLAS, provided sufficient target- and operator-specific information has been

captured in the optimization heuristic and code generator [107]. While our scientific focus

was on covering a wide range of layers with TC, a production release would need to embed

such operator-specific strategies as well. One strategy would be to follow the classification

and heuristic steering of Kong et al. [220]. Also, TC does not replace all layers: it only acts

as a custom operation in a graph; one may use TC concurrently with numerical libraries as

well as custom implementations provided through TVM.

Group Convolution Group convolution is expressible with 2 lines of TC. We report

comparisons for sizes relevant to the ResNext model [418]. Despite not using either reg-

ister optimizations, Fourier or Winograd domain convolutions, TC produces faster kernels

than the cuDNN ones, with running times between 250µs and 750µs. To check how TC

fares w.r.t. recent advances in optimizing group convolutions, we performed an additional

comparison with the PyTorch nightly package py36_cuda9.0.176_cudnn7.1.2_1 with

torch.backends.cudnn.benchmark=True. TC speedups range from −2% to 8×. We

also observe PyTorch performance on V100 to be worse than on P100 while TC achieves

performance portability.

Group Normalization Group Normalization was recently proposed as a way to over-

come limitations of Batch Normalization at smaller batch sizes and increase parallelism

[417]. In TC, group normalization is a 5-line function. TC performance is roughly 30%

better than the hand-tuned Caffe2 implementation. Whereas Caffe2 uses 4 handwritten

CUDA kernels, we chose to write the TC version as two separately compiled TC func-

tions for better reuse and overall performance. We also experimented with writing a single

fused TC but performance degraded. This is mostly due to kernels requiring substantially

different grid configurations, which makes their fusion unprofitable. A larger, graph-level

compiler that decides on TC function granularity, informed by the TC mapper and the
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autotuner is necessary to automate this decision process, but is left for future work.

Production Model The kernels 1LUT, 2LUT, MLP1 and MLP3 are the backbone of a low-

latency production model used at scale in a large company and correspond to (1) reductions

over a large lookup table embedding (10M rows); (2) fused reduction over 2 large lookup

table embeddings (10M rows); (3) small size Multi-Layer Perceptron (fully-connected,

bias, ReLU); and (4) very small size, 3 consecutive Multi-Layer Perceptrons. Despite LUT

sizes, this model is essentially latency-bound. Existing libraries are often not tuned for

low-latency regimes and tend to perform poorly.

On these examples, the need for reuse and instruction-level parallelism is dwarfed by

the need to quickly load data from the memory into registers. TC is able to adapt to the

problem size, leveraging reduction parallelism to hide memory latency. This results in large

speedups over Caffe2 with cuBLAS 9.0.

Transposed Batch MatMul This kernel is meant as a case study to characterize per-

formance benefits and losses in the current flow, compared with reference libraries. For the

sizes relevant to Factorization Machines [322], (500×26×72×26), Nvidia Profiler reports

the TC autotuned kernel taking 56µs on the Nvidia Quadro P6000 GPU (Pascal) while both

Pytorch and Caffe2 resort to the specialized cuBLAS function maxwell_sgemm_128x64_nn

that takes 87µs. Beyond architecture mismatch indicated in the function name, a detailed

performance comparison demonstrates that TC executes 500 blocks of 26 × 13 = 338

threads, compared to 500 blocks of 128 threads for cuBLAS, reaching 81.8% occupancy

instead of 23.6%. Additionally, the cuBLAS kernel shows a large number of predicated-off

instructions due to the block size not matching the problem size. Occupancy is limited by

the number of registers in both cases (11264 vs. 15360), but the TC version can be dis-

tributed over 5 blocks instead of 4.9 TC promotes all tensors to shared memory, saturating

its bandwidth, whereas arithmetic instructions are the performance limiter for cuBLAS.

Given the large occupancy metric, performance can be further increased by promoting one

tensor to registers instead, trading off lower occupancy for reduced pressure on memory

bandwidth.

9Mapping to blocks of 32 × 13 threads to obtain full warps results in 60µs execution time and only 4
blocks due to the higher number of registers per block.
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Kronecker Recurrent Units These have been recently proposed as a solution to dras-

tically reduce model sizes by replacing the weights matrix of a linear layer by a Kronecker

product of much smaller matrices [200]. In TC, a Kronecker product of 3 matrices is easily

written as shown in the kronecker3 function in Figure 3-7. The following table shows the

running time in µs—or out of memory (OOM)—of a large matrix multiplication in Caffe2

and the equivalent Kronecker product of 3 matrices. Note that the performance difference

mostly comes form a using a different algorithm. While no specialized GPU library prim-

itives exist for Kronecker recurrent units, TC’s automatic flow enabled rapid exploration

and reaching unprecedented levels of performance, as shown in Table 3.2. Clearly, this

benchmark deserves a deeper discussion of the space of possible TC derivations, including

memory/computation/parallelism trade-offs falling outside the scope of this chapter. The

kronecker3 function is one such possible implementations that performed well for the

three selected matrix shapes; it avoids redundant computation at the expense of storage

(two tensors for intermediate computations).

WaveNet WaveNet [394] is a popular model that enables generation of realistic sound-

ing voices as highlighted at Google I/O 2018. We encoded a full WaveNet cell using a

single TC function and compared our generated kernel with a WaveNet layer from Py-

Torch. This experiment uses a batch size of 1, residual and dilation channels of 32, and

256 skip channels. With TC, we observe performance improvements up to 4× on Volta, as

shown on Table 3.2.

Algorithmic exploration Pascal Volta
of Kronecker Recurrent Units p0 p50 p90 p0 p50 p90

TC Kronecker 272 280 285 200 206 212
256 × 163 × 323 Caffe2 MatMul 7714 8158 8216 4946 5065 5466

TC Kronecker 1334 1349 1365 998 1004 1011
256 × 163 × 643 Caffe2 MatMul 64499 64765 65659 38280 39307 39327

TC Kronecker 4408 4447 4472 4794 4815 5106
256 × 163 × 64 × 1282 Caffe2 MatMul OOM OOM OOM OOM OOM OOM
WaveNet Cell p0 p50 p90 p0 p50 p90
receptive field = 4K, dilation = 1 TC 457 466 477 253 255 257
receptive field = 4K, dilation = 1 PyTorch 549 576 790 563 571 594
receptive field = 4K, dilation = 32 TC 353 365 375 138 139 140
receptive field = 4K, dilation = 32 PyTorch 551 574 630 562 569 585

Table 3.2: Algorithmic exploration of Kronecker Recurrent Units and optimization of a
WaveNet cell
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3.6 Related Work

Despite decades of progress in optimizing and parallelizing compilation, programmers of

computationally intensive applications complain about the poor performance of optimizing

compilers, often missing the machine peak by orders of magnitude. Among the reasons

for this state of the affairs, one may cite the complexity and dynamic behavior of modern

processors, domain knowledge required to prove optimizations’ validity or profitability

being unavailable to the compiler, program transformations whose profitability is difficult

to assess, and the intrinsic difficulty of composing complex transformations, particularly in

the case of computationally intensive loop nests [136, 24].

Several contributions have successfully addressed this issue, not by improving a general-

purpose compiler, but through the design of application-specific program generators, a.k.a.

active libraries [399]. Such generators often rely on feedback-directed optimization to se-

lect the best generation schema [358], as popularized by ATLAS [414] for dense matrix

operations (and more recently BTO [36]) and FFTW [122] for the fast Fourier transform.

Most of these generators use transformations previously proposed for traditional compilers,

which fail to apply them for the aforementioned reasons. The SPIRAL project [314] made a

quantum leap over these active libraries, operating on a domain-specific language (DSL) of

digital signal processing formulas. Compilers for DSLs typically rely on domain-specific

constructs to capture the intrinsic parallelism and locality of the application. Using such

an approach, DSL compilers such as Halide [319] for image processing show impressive

results. Its inputs are images defined on an infinite range while TC sets a fixed size for

each dimension using range inference. This is better suited to ML applications, dominated

by fixed size tensors with higher temporal locality than 2D-images; it is also less verbose

in the case of reductions and does not carry the syntactic burden of anticipating the dec-

laration of stage names and free variables (Halide needs this as a C++ embedded DSL).

OoLaLa [253] takes a similar approach for linear algebra, and TACO [214] and Simit [215]

use a similar notation as TC but generate sparse matrix code for numerical solvers.

Following this trend in the context of deep neural networks, we not only design yet

another DSL and compiler but propose a more generic code generation and optimization
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framework bringing together decades of research in loop nest optimization and paralleliza-

tion for high-performance computing. We also design the domain language to cover a

variety of existing and emerging machine learning models. Our framework automates a

combination of affine transformations involving hierarchical tiling, mapping, shifting, fu-

sion, distribution, interchange, on either parametric or fully instantiated problems, that are

not accessible to Halide [319, 276], Latte [389] or XLA’s [140] representations of tensor

operations.

The polyhedral framework is a powerful abstraction for the analysis and transforma-

tion of loop nests, and a number of tools and libraries have been developed to realize its

benefits [112, 52, 402, 50, 430], including production compilers such as GCC (Graphite)

and LLVM (Polly). Polyhedral techniques have also been tailored for domain-specific pur-

poses. State of the art examples include the PolyMage [277] DSL for image processing

pipelines and the PENCIL approach to the construction of parallelizing and compilers for

DSLs [22, 32]. PolyMage is a clear illustration of the benefits of operating at a high level

of abstraction, closer to the mathematics of the domain of interest: while GCC/Graphite

and LLVM/Polly struggle to recover affine control and flow from low-level code, Poly-

Mage natively captures patterns amenable to domain-specific optimization, such as stencil-

specific overlapped tiling with or without recomputation, and cache-conscious fusion and

tiling heuristics; it also offers a more productive programming experience for end users.

Interestingly, some techniques derived from PolyMage crossed out of polyhedral represen-

tations into Halide’s automatic scheduler [276]. Back to deep learning frameworks, TVM

extends Halide with recurrent (parallel scan) operators, support for ML accelerators, and

tight integration with ML frameworks [74]. It also provides autotuning capabilities [75]

and shares several engineering goals of TC, such as transparent ML framework integra-

tion. Much like PolyMage, TC implements optimizations well suited to the long distance,

non-uniform reuse patterns of deep learning models; these heuristics are not available in

general-purpose compilers such as LLVM/Polly, Pluto or PPCG, or semi-automatic frame-

works such as Halide and TVM.

None of the aforementioned frameworks offer the complete transparency of TC’s end-

to-end compilation flow. TVM involves some level of manual intervention and/or feedback-
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directed optimization even for producing the most baseline GPU implementation, and it

guarantees functional correctness for a subset of the scheduling primitives and tensor oper-

ations: e.g., convolutions can only be fused at the expense of introducing redundant compu-

tations, or involving lower level transformations that cannot be verified at compilation time.

In addition, the balance between analytical objective functions (profitability heuristics) and

feedback-directed autotuning is completely different: Halide and TVM auto-schedulers

expose all scheduling decisions to the autotuner and infer most performance-related infor-

mation from execution profiles, while TC’s polyhedral flow reduces the autotuning space

to a narrow set of optimization options and tile sizes.

TC also shares several motivations with Latte [389] and PlaidML [303], including a

high level domain-specific language and an end-to-end flow. TC provides elementwise

access that is just as expressive when implementing custom layers, but unlike Latte it is

more concise thanks to type and shape inference, safer regarding static bound checking

and graph connectivity, and more flexible by decoupling indexing from representation and

layout choices. In addition, our framework implements more complex scheduling and map-

ping transformations than both Latte and PlaidML, some of which are essential to GPU tar-

gets with partitioned memory architectures. Unlike Latte, it is also designed as a JIT com-

pilation library for seamless integration with deep learning frameworks. Unlike PlaidML,

it is not limited to high level patterns and rewrite rules, but captures complex affine trans-

formations resulting from analytical modeling and autotuning. As a consequence, the TC

compilation process takes generally more time than PlaidML, a price to pay for the ability

to implement a wider range of optimizations.

Like TC, XLA [140] provides automatic shape and size inference, it may operate “in

process” as a JIT compilation library, and it integrates into a production deep learning

framework (TensorFlow, Caffe2 [141]). XLA shares many motivations with Latte, with a

focus on integration and completeness of functionality rather than on the complexity of the

optimizations and mapping strategies. Glow [329] is a recent domain-specific, retargetable

compiler for PyTorch/Caffe2. It shares many of the motivations and capabilities of XLA,

while emphasizing retargetability (CPUs as well GPUs and ML accelerators from multiple

vendors) and the ability to differentiate, optimize, lower operations and sub-graphs of op-
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erations within its own hierarchy of intermediate representations. It can leverage blackbox

numerical libraries as well as generate custom vector processing kernels relying on LLVM.

Our compiler design and algorithmic contributions would naturally fit XLA, Latte or Glow,

except for the following: TC remains independent from a specific computation graph while

preserving tight integration with production frameworks; we did not use an embedded DSL

approach—keeping C++ as an interface for implementing optimization strategies only—

isolating the user from complexity and debugging hurdles of embedded DSLs, and we

leverage polyhedral techniques to factor-out most of the optimization heavy-lifting, while

XLA, Latte and Glow resort to operation-specific emitters/lowering, optimization schemas

and heuristics.

Recently, R-Stream·TF [311] was presented as a proof-of-concept adaptation of the R-

Stream polyhedral compiler to the automatic optimization of TensorFlow operators. Simi-

larly to our approach, the generated code is wrapped as a custom operator of TensorFlow.

The tool takes a computation graph as input and partitions it into sub-graphs amenable to

tensor fusion, contraction and layout optimization. R-Stream·TF also leverages the broad-

cast semantics of TensorFlow to maximize the operator’s polymorphism w.r.t. input tensor

dimension and shapes. This makes R-Stream·TF very aggressive in terms of static memory

management and kernel partitioning. We made the more pragmatic choice of leaving most

of these decisions to the level of tensor algebra, allowing a domain-specific optimizer or ML

expert to rewrite declarative comprehensions into capacity- and layout-optimized ones. On

the other hand, TC is more ambitious in its domain-specialization of affine scheduling and

mapping, aiming for the generation of a single accelerated kernel, with heuristics adapted

to the high dimensional, non-uniform, long distance reuse patterns of neural networks. The

lack of algorithmic detail in the R-Stream·TF paper prevents us from comparing those affine

transformation heuristics.

3.7 Conclusion

We presented and evaluated the first fully automatic, end-to-end flow, mapping a high-

level mathematical language to high-performance accelerated GPU kernels. TC resembles
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the mathematical notation of a deep neural network and makes it easy to reason about,

communicate, and to manually alter the computation and storage/computation trade-offs.

Our flow leverages decades of progress in polyhedral compilation to implement the heavy-

duty program transformations, analytical modeling of profitable optimizations, and code

synthesis. It also implements domain-specific optimizations, code generation, autotuning

with a compilation cache, and lightweight integration within Caffe2 and PyTorch. This

unique combination differs from alternative proposals relying mainly on autotuning such

as TVM [75], or pattern-based transformations such as PlaidML [303].

TC is capable of quickly synthesizing solid accelerated implementations that effectively

lift bottlenecks in large training runs. In practice, such bottlenecks slow down ML research

significantly, requiring substantial engineering efforts to be mobilized. Our contribution

addresses this productivity gap; it brings more expressive power and control in the hands

of domain experts, relieving ML frameworks’ dependence on highly tuned vendor libraries,

without compromising performance. TC automates boilerplate optimization that has been

replicated over the numerous deep learning frameworks, and builds on a generic polyhe-

dral intermediate representation and libraries shared with other domains (image process-

ing, linear algebra) and general-purpose compilers (LLVM/Polly). Future work includes

additional model-based domain-specific optimizations, CPU code generation, learning best

mapping configurations automatically, automatic differentiation, interaction with the graph-

level optimizer, and providing a path to emit a series of calls to a native library or hardware

acceleration blocks.
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Chapter 4

AutoPhase: Machine-Learning Assisted

Optimization Ordering

4.1 Introduction

High-Level Synthesis (HLS) automates the process of creating digital hardware circuits

from algorithms written in high-level languages. Modern HLS tools [419, 187, 61] use

the same front-end as the traditional software compilers. They rely on traditional software

compiler techniques to optimize the input program’s intermediate representation (IR) and

produce circuits in the form of RTL code. Thus, the quality of compiler front-end opti-

mizations directly impacts the performance of HLS-generated circuit.

Program optimization is a notoriously difficult task. A program must be just in "the

right form" for a compiler to recognize the optimization opportunities. This is a task a

programmer might be able to perform easily, but is often difficult for a compiler. Despite

a decade of research on developing sophisticated optimization algorithms, there is still a

performance gap between the HLS generated code and the hand-optimized one produced

by experts.

In this chapter, we build off the LLVM compiler [230]. However, our techniques, can

be broadly applicable to any compiler that uses a series of optimization passes. In this

case, the optimization of an HLS program consists of applying a sequence of analysis and
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optimization phases, where each phase in this sequence consumes the output of the previous

phase, and generates a modified version of the program for the next phase. Unfortunately,

these phases are not commutative which makes the order in which these phases are applied

critical to the performance of the output.

Consider the program in Figure 4-1, which normalizes a vector. Without any optimiza-

tions, the norm function will take Θ(n2) to normalize a vector. However, a smart compiler

will implement the loop invariant code motion (LICM) [275] optimization, which allows

it to move the call to mag above the loop, resulting in the code on the left column in Fig-

ure 4-2. This optimization brings the runtime down to Θ(n)—a big speedup improvement.

Another optimization the compiler could perform is (function) inlining [275]. With in-

lining, a call to a function is simply replaced with the body of the function, reducing the

overhead of the function call. Applying inlining to the code will result in the code in the

right column of Figure 4-2.

__attribute__((const))
double mag(int n, const double *A) {

double sum = 0;
for(int i=0; i<n; i++){

sum += A[i] * A[i];
}
return sqrt(sum);

}
void norm(int n, double *restrict out,

const double *restrict in) {
for(int i=0; i<n; i++) {

out[i] = in[i] / mag(n, in);
}

}

Figure 4-1: A simple program to normalize a vector.

Now, consider applying these optimization passes in the opposite order: first inlining

then LICM. After inlining, we get the code on the left of Figure 4-3. Once again we get

a modest speedup, having eliminated n function calls, though our runtime is still Θ(n2). If

the compiler afterwards attempted to apply LICM, we would find the code on the right of

Figure 4-3. LICM was able to successfully move the allocation of sum outside the loop.

However, it was unable to move the instruction setting sum=0 outside the loop, as doing so

would mean that all iterations excluding the first one would end up with a garbage value
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void norm(int n, double *restrict out,
const double *restrict in) {

double precompute = mag(n, in);

for(int i=0; i<n; i++) {
out[i] = in[i] / precompute;

}
}

void norm(int n, double *restrict out,
const double *restrict in) {

double precompute, sum = 0;
for(int i=0; i<n; i++){

sum += A[i] * A[i];
}
precompute = sqrt(sum);
for(int i=0; i<n; i++) {

out[i] = in[i] / precompute;
}

}

Figure 4-2: Progressively applying LICM (left) then inlining (right) to the code in Figure 4-
1.

void norm(int n, double *restrict out,
const double *restrict in) {

for(int i=0; i<n; i++) {
double sum = 0;
for(int j=0; j<n; j++){

sum += A[j] * A[j];
}
out[i] = in[i] / sqrt(sum);

}
}

void norm(int n, double *restrict out,
const double *restrict in) {

double sum;
for(int i=0; i<n; i++) {

sum = 0;
for(int j=0; j<n; j++){

sum += A[j] * A[j];
}
out[i] = in[i] / sqrt(sum);

}
}

Figure 4-3: Progressively applying inlining (left) then LICM (right) to the code in Figure 4-
1.

for sum. Thus, the internal loop will not be moved out.

As this simple example illustrates, the order in which the optimization phases are ap-

plied can be the difference between the program running in Θ(n2) versus Θ(n). It is thus

crucial to determine the optimal phase ordering to maximize the circuit speeds. Unfor-

tunately, not only is this a difficult task, but the optimal phase ordering may vary from

program to program. Furthermore, it turns out that finding the optimal sequence of opti-

mization phases is an NP-hard problem, and exhaustively evaluating all possible sequences

is infeasible in practice. In this work, for example, the search space extends to more than

2247 phase orderings.

The goal of this chapter is to provide a mechanism for automatically determining good

phase orderings for HLS programs to optimize for the circuit speed. To this end, we aim

to leverage recent advancements in deep reinforcement learning (RL) [378, 157] to ad-

dress the phase ordering problem. With RL, a software agent continuously interacts with
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the environment by taking actions. Each action can change the state of the environment

and generate a "reward". The goal of RL is to learn a policy—that is, a mapping between

the observed states of the environment and a set of actions—to maximize the cumulative

reward. An RL algorithm that uses a deep neural network to approximate the policy is re-

ferred to as a deep RL algorithm. In our case, the observation from the environment could

be the program and/or the optimization passes applied so far. The action is the optimization

pass to apply next, and the reward is the improvement in the circuit performance after ap-

plying this pass. The particular framing of the problem as an RL problem has a significant

impact on the solution’s effectiveness. Significant challenges exist in understanding how to

formulate the phase ordering optimization problem in an RL framework.

In this chapter, we consider three approaches to represent the environment’s state. The

first approach is to directly use salient features from the program. The second approach

is to derive the features from the sequence of optimizations we applied while ignoring the

program’s features. The third approach combines the first two approaches. We evaluate

these approaches by implementing a framework that takes a group of programs as input

and quickly finds a phase ordering that competes with state-of-the-art solutions. Our main

contributions are:

• Leveraging deep RL to address the phase-ordering problem.

• An importance analysis on the features using random forests to significantly reduce

the state and action spaces.

• AutoPhase: a framework that integrates the current HLS compiler infrastructure

with the deep RL algorithms.

• A demonstration that AutoPhase gets a 28% improvement over -O3 for nine real

benchmarks. Unlike all state-of-the-art approaches, deep RL demonstrates the po-

tential to generalize to thousands of different programs after training on a hundred

programs.
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4.2 Background

4.2.1 Compiler Phase-ordering

Compilers execute optimization passes to transform programs into more efficient forms to

run on various hardware targets. For ease, roups of optimizations are often packaged into

“optimization levels” , such as -O0 (no optimization), -O1 (some optimization) -O2 (more

optimization), and -O3 (most optimization). While these optimization levels offer a simple

set of choices for developers, they are handpicked by the compiler-designers and often most

benefit certain groups of benchmark programs. The compiler community has attempted to

address the issue by selecting a particular set of compiler optimizations on a per-program

or per-target basis for software [387, 13, 294, 17].

Since the search space of phase-ordering is too large for an exhaustive search, many

heuristics have been proposed to explore the space by using machine learning. Huang et

al. tried to address this challenge for HLS applications by using modified greedy algo-

rithms [176, 177]. It achieved 16% improvement vs -O3 on the CHstone benchmarks [161],

which we used in this chapter. In [5] both independent and Markov models were applied to

automatically target an optimized search space for iterative methods to improve the search

results. In [368], genetic algorithms were used to tune heuristic priority functions for three

compiler optimization passes. Milepost GCC [126] used machine learning to determine

the set of passes to apply to a given program, based on a static analysis of its features.

It achieved an 11% execution time improvement over -O3, for the ARC reconfigurable

processor on the MiBench program suite1. In [225] the challenge was formulated as a

Markov process and supervised learning was used to predict the next optimization, based

on the current program state. OpenTuner [17] autotunes a program using an AUC-Bandit-

meta-technique-directed ensemble selection of algorithms. Its current mechanism for se-

lecting the compiler optimization passes does not consider the order or support repeated

optimizations. Wang et al. [412], provided a survey for using machine learning in compiler

optimization where they also described that using program features might be helpful. Neu-

roVectorizer [156, 155] used deep RL for automatically tuning compiler pragmas such as

vectorization and interleaving factors. NeuroVectorizer achieves 97% of the oracle perfor-
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mance (brute-force search) on a wide range of benchmarks.

4.2.2 Reinforcement Learning Algorithms

Reinforcement learning (RL) is a machine learning approach in which an agent continually

interacts with the environment [203]. In particular, the agent observes the state of the

environment, and based on this observation takes an action. The goal of the RL agent

is then to compute a policy–a mapping between the environment states and actions–that

maximizes a long term reward.

RL can be viewed as a stochastic optimization solution for solving Markov Decision

Processes (MDPs) [35], when the MDP is not known. An MDP is defined by a tuple

with four elements: S , A, P(s, a), r(s, a) where S is the set of states of the environment, A

describes the set of actions or transitions between states, s′∼P(s, a) describes the probability

distribution of next states given the current state and action and r(s, a) : S × A → R is the

reward of taking action a in state s. Given an MDP, the goal of the agent is to gain the

largest possible aggregate reward. The objective of an RL algorithm associated with an

MDP is to find a decision policy π∗(a|s) : s→ A that achieves this goal for that MDP:

π∗ = arg max
π

Eτ∼π(τ)

[︄∑︂
t

r(st, at)

]︄
= arg max

π

T∑︂
t=1

E(st ,at)∼π(st ,at) [r(st, at)] . (4.1)

Deep RL leverages a neural network to learn the policy (and sometimes the reward

function). Policy Gradient (PG) [379], for example, updates the policy directly by differ-

entiating the aggregate reward E in Equation 4.1:

∇θJ =
1
N

N∑︂
i=1

[︄
(
∑︂

t

∇θlogπθ(ai,t|si,t))(
∑︂

t

r(si,t, ai,t))

]︄
(4.2)

and updating the network parameters (weights) in the direction of the gradient:

θ ← θ + α∇θJ, (4.3)

Note that PG is an on-policy method in that it uses decisions made directly by the current
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policy to compute the new policy.

Over the past couple of years, a plethora of new deep RL techniques have been pro-

posed [265, 328]. In this chapter, we mainly focus on Proximal Policy Optimization

(PPO) [350], Asynchronous Advantage Actor-critic (A3C) [265].

PPO is a variant of PG that enables multiple epochs of minibatch updates to improve the

sample complexity. Vanilla PG performs one gradient update per data sample while PPO

uses a novel surrogate objective function to enable multiple epochs of minibatch updates. It

alternates between sampling data through interaction with the environment and optimizing

the surrogate objective function using stochastic gradient ascent. It performs updates that

maximizes the reward function while ensuring the deviation from the previous policy is

small by using a surrogate objective function. The loss function of PPO is defined as:

LCLIP(θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1 − ε, 1 + ε)Ât)] (4.4)

where rt(θ) is defined as a probability ratio πθ(at |st)
πθold (at |st)

so r(θold) = 1. This term penalizes

policy update that move rt(θ) from r(θold). Ât denotes the estimated advantage that approx-

imates how good at is compared to the average. The second term in the min function acts

as a disincentive for moving rt outside of [1 − ε, 1 + ε] where ε is a hyperparameter.

A3C uses an actor (usually a neural network) that interacts with the critic, which is

another network that evaluates the action by computing the value function. The critic tells

the actor how good its action was and how it should adjust. The update performed by the

algorithm can be seen as ∇θlogπθ(ai,t|si,t)Ât.

4.2.3 Evolutionary Algorithms

Evolutionary algorithms are another technique that can be used to search for the best com-

piler pass ordering. It contains a family of population-based meta-heuristic optimization

algorithms inspired by natural selection. The main idea of these algorithms is to sample a

population of solutions and use the good ones to direct the distribution of future genera-

tions. Two commonly used Evolutionary Algorithms are Genetic Algorithms (GA) [139]

and Evolution Strategies (ES) [81].
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GA generally requires a genetic representation of the search space where the solutions

are coded as integer vectors. The algorithm starts with a pool of candidates, then iteratively

evolves the pool to include solutions with higher fitness by the three following strategies:

selection, crossover, and mutation. Selection keeps a subset of solutions with the highest

fitness values. These selected solutions act as parents for the next generation. Crossover

merges pairs from the parent solutions to produce new offsprings. Mutation perturbs the

offspring solutions with a low probability. The process repeats until a solution that reaches

the goal fitness is found or after a certain number of generations.

ES works similarly to GA. However, the solutions are coded as real numbers in ES. In

addition, ES is self-adapting. The hyperparameters, such as the step size or the mutation

probability, are different for different solutions. They are encoded in each solution, so good

settings get to the next generation with good solutions. Recent work [334] has used ES

to update policy weights for RL and showed it is a good alternative for gradient-based

methods.

4.3 AutoPhase Framework for Automatic Phase Ordering

We leverage an existing open-source HLS framework called LegUp [61] that compiles a

C program into a hardware RTL design. In [176], an approach is devised to quickly de-

termine the number of hardware execution cycles without requiring time-consuming logic

simulation. We develop our RL simulator environment based on the existing harness pro-

vided by LegUp and validate our final results by going through the time-consuming logic

simulation. AutoPhase takes a program (or multiple programs) and intelligently explores

the space of possible passes to figure out an optimal pass sequence to apply. Table 4.1 lists

all the passes used in AutoPhase. The workflow of AutoPhase is illustrated in Figure 4-4.

4.3.1 HLS Compiler

AutoPhase takes a set of programs as input and compiles them to a hardware-independent

intermediate representation (IR) using the Clang front-end of the LLVM compiler. Opti-

mization and analysis passes act as transformations on the IR, taking a program as input
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Figure 4-4: The block diagram of AutoPhase. The input programs are compiled to an
LLVM IR using Clang/LLVM. The feature extractor and clock-cycle profiler are used to
generate the input features (state) and the runtime improvement (reward), respectively from
the IR. The input features and runtime improvement are fed to the deep RL agent as in input
data to train on. The RL agent predicts the next best optimization passes to apply. After
convergence, the HLS compiler is used to compile the LLVM IR to hardware RTL.

and emitting a new IR as output. The HLS tool LegUp is invoked after the compiler opti-

mization as a back-end pass, which transforms LLVM IR into hardware modules.

4.3.2 Clock-cycle Profiler

Once the hardware RTL is generated, one could run a hardware simulation to gather the

cycle count results of the synthesized circuit. This process is quite time-consuming, hin-

dering RL and all other optimization approaches. Therefore, we approximate cycle count

using the profiler in LegUp [176], which leverages the software traces and runs 20× faster

than hardware simulation. In LegUp, the frequency of the generated circuits is set as a

compiler constraint that directs the HLS scheduling algorithm. In other words, HLS tool

will always try to generate hardware that can run at a certain frequency. In our experiment

setting, without loss of generality, we set the target frequency of all generated hardware to

200MHz. We experimented with lower frequencies too; the improvements were similar but

the cycle counts the different algorithms achieved were better as more logic could be fitted

in a single cycle.
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4.3.3 IR Feature Extractor

Wang et al. [412] proposed to convert a program into an observation by extracting all the

features from the program. Similarly, in addition to the LegUp backend tools, we devel-

oped analysis passes to extract 56 static features from the program, such as the number of

basic blocks, branches, and instructions of various types. We use these features as partially

observable states for the RL learning and hope the neural network can capture the correla-

tion of certain combinations of these features and certain optimizations. Table 4.2 lists all

the features used.

4.3.4 Random Program Generator

As a data-driven approach, RL generalizes better if we train the agent on more programs.

However, there are a limited number of open-source HLS examples online. Therefore, we

expand our training set by automatically generating synthetic HLS benchmarks. We first

generate standard C programs using CSmith [420], a random C program generator, which

is originally designed to generate test cases for finding compiler bugs. Then, we develop

scripts to filter out programs that take more than five minutes to run on CPU or fail the HLS

compilation.

4.3.5 Overall Flow of AutoPhase

We integrate the compilation utilities into a simulation environment in Python with APIs

similar to an OpenAI gym [55]. The overall flow works as follows:

1.The input program is compiled into LLVM IR using the Clang/LLVM.

2.The IR Feature Extractor is run to extract salient program features.

3.LegUp compiles the LLVM IR into hardware RTL.

4.The Clock-cycle Profiler estimates a clock-cycle count for the generated circuit.

5.The RL agent takes the program features or the histogram of previously applied

passes and the improvement in clock-cycle count as input data to train on.

6.The RL agent predicts the next best optimization passes to apply.
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Table 4.1: LLVM Transform Passes.

0 1 2 3 4 5 6 7
-correlated-propagation -scalarrepl -lowerinvoke -strip -strip-nondebug -sccp -globalopt -gvn

8 9 10 11 12 13 14
-jump-threading -globaldce -loop-unswitch -scalarrepl-ssa -loop-reduce -break-crit-edges -loop-deletion

15 16 17 18 19 20 21 22
-reassociate -lcssa -codegenprepare -memcpyopt -functionattrs -loop-idiom -lowerswitch -constmerge

23 24 25 26 27 28 29 30 31
-loop-rotate -partial-inliner -inline -early-cse -indvars -adce -loop-simplify -instcombine -simplifycfg
32 33 34 35 36 37 38 39 40 41

-dse -loop-unroll -lower-expect -tailcallelim -licm -sink -mem2reg -prune-eh -functionattrs -ipsccp
42 43 44 45

-deadargelim -sroa -loweratomic -terminate

Table 4.2: Program Features.

0 Number of BB where total args for phi nodes >5 28 Number of And insts
1 Number of BB where total args for phi nodes is [1,5] 29 Number of BB’s with instructions between [15,500]
2 Number of BB’s with 1 predecessor 30 Number of BB’s with less than 15 instructions
3 Number of BB’s with 1 predecessor and 1 successor 31 Number of BitCast insts
4 Number of BB’s with 1 predecessor and 2 successors 32 Number of Br insts
5 Number of BB’s with 1 successor 33 Number of Call insts
6 Number of BB’s with 2 predecessors 34 Number of GetElementPtr insts
7 Number of BB’s with 2 predecessors and 1 successor 35 Number of ICmp insts
8 Number of BB’s with 2 predecessors and successors 36 Number of LShr insts
9 Number of BB’s with 2 successors 37 Number of Load insts
10 Number of BB’s with >2 predecessors 38 Number of Mul insts
11 Number of BB’s with Phi node # in range (0,3] 39 Number of Or insts
12 Number of BB’s with more than 3 Phi nodes 40 Number of PHI insts
13 Number of BB’s with no Phi nodes 41 Number of Ret insts
14 Number of Phi-nodes at beginning of BB 42 Number of SExt insts
15 Number of branches 43 Number of Select insts
16 Number of calls that return an int 44 Number of Shl insts
17 Number of critical edges 45 Number of Store insts
18 Number of edges 46 Number of Sub insts
19 Number of occurrences of 32-bit integer constants 47 Number of Trunc insts
20 Number of occurrences of 64-bit integer constants 48 Number of Xor insts
21 Number of occurrences of constant 0 49 Number of ZExt insts
22 Number of occurrences of constant 1 50 Number of basic blocks
23 Number of unconditional branches 51 Number of instructions (of all types)
24 Number of Binary operations with a constant operand 52 Number of memory instructions
25 Number of AShr insts 53 Number of non-external functions
26 Number of Add insts 54 Total arguments to Phi nodes
27 Number of Alloca insts 55 Number of Unary operations

7.New LLVM IR is generated after the new optimization sequence is applied.

8.The machine learning algorithm iterates through steps (2)–(7) until convergence.

Note that AutoPhase uses the LLVM compiler and the passes used are listed in Table 4.2.

However, adding support for any compiler or optimization passes in AutoPhase is very easy

and straightforward. The action and state definitions must be specified again.
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4.4 Correlation of Passes and Program Features

Similar to the case with many deep learning approaches, explainability is one of the major

challenges we face when applying deep RL to the phase-ordering challenge. To analyze

and understand the correlation of passes and program features, we use random forests [54]

to learn the importance of different features. Random forest is an ensemble of multiple

decision trees. The prediction made by each tree could be explained by tracing the deci-

sions made at each node and calculating the importance of different features on making the

decisions at each node. This helps us to identify the effective features and passes to use and

show whether our algorithms learn informative patterns on data.

For each pass, we build two random forests to predict whether applying it would im-

prove the circuit performance. The first forest takes the program features as inputs while

the second takes a histogram of previously applied passes. To gather the training data for

the forests, we run PPO with high exploration parameter on 100 randomly generated pro-

grams to generate feature–action–reward tuples. The algorithm assigns higher importance

to the input features that affect the final prediction more.

4.4.1 Importance of Program Features

The heat map in Figure 4-5 shows the importance of different features on whether a pass

should be applied. The higher the value is, the more important the feature is (the sum

of the values in each row is one). The random forest is trained with 150,000 samples

generated from the random programs. The index mapping of features and passes can be

found in Tables 4.1 and 4.2. For example, the yellow pixel corresponding to feature index

17 and pass index 23 reflects that number-of-critical-edges affects the decision on whether

to apply -loop-rotate greatly. A critical edge in control flow graph is an edge that is neither

the only edge leaving its source block, nor the only edge entering its destination block. The

critical edges can be commonly seen in a loop as a back edge so the number of critical

edges might roughly represent the number of loops in a program. The transform pass -

loop-rotate detects a loop and transforms a while loop to a do-while loop to eliminate one

branch instruction in the loop body. Applying the pass results in better circuit performance
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Figure 4-5: Heat map illustrating the importance of feature and pass indices.

as it reduces the total number of FSM states in a loop.

Other expected behaviors are also observed in this figure. For instance, the correlation

between number of branches and the transform passes -loop-simplify, -tailcallelism (which

transforms calls of the current function i.e., self recursion, followed by a return instruction

with a branch to the entry of the function, creating a loop), -lowerswitch (which rewrites

switch instructions with a sequence of branches). Other interesting behaviors are also cap-

tured. For example, in the correlation between binary operations with a constant operand

and -functionattrs, which marks different operands of a function as read-only (constant).

Some correlations are harder to explain, for example, number of BitCast instructions and

-instcombine, which combines instructions into fewer simpler instructions. This is actu-

ally a result of -instcombine reducing the loads and stores that call bitcast instructions for

casting pointer types. Another example is number of memory instructions and -sink, where

-sink basically moves memory instructions into successor blocks and delays the execu-

tion of memory until needed. Intuitively, whether to apply -sink should be dependent on

whether there is any memory instruction in the program. Our last example to show is num-

ber of occurrences of constant 0 and -deadargelim, where -deadargelim helped eliminate

dead/unused constant zero arguments.

Overall, we observe that all the passes are correlated to some features and are able to

affect the final circuit performance. We also observe that multiple features are not effective

at directing decisions and training with them could increase the variance that would result
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Figure 4-6: Heat map illustrating the importance of indices of previously applied passes
and the new pass to apply.

in lower prediction accuracy of our results. For example, the total number of instructions

did not give a direct indication of whether applying a pass would be helpful or not. This is

because sometimes more instructions could improve the performance (for example, due to

loop unrolling) and eliminating unnecessary code could also improve the performance. In

addition, the importance of features varies among different benchmarks depending on the

tasks they perform.

4.4.2 Importance of Previously Applied Passes

Figure 4-6 illustrates the impact of previously applied passes on the new pass to apply. The

higher the value is, the more important having the old pass is. From this figure, we learn

that for the programs we trained on passes -scalarrepl, -gvn, -scalarrepl-ssa, -loop-reduce,

-loop-deletion, -reassociate, -loop-rotate, -partial-inliner, -early-cse, -adce, -instcombine,

-simplifycfg, -dse, -loop-unroll, -mem2reg, and -sroa, are more impactful on the perfor-

mance compared to the rest of the passes regardless of their order in the trajectory. Point

(23,23) has the highest importance in which implies that pass -loop-rotate is very helpful

and should be included if not applied before. By examining thousands of the programs,

we find that -loop-rotate indeed reduces the cycle count significantly. Interestingly, apply-

ing this pass twice is not harmful if the passes were given consecutively. However, giving

this pass twice with some other passes between them is sometimes very harmful. Another
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interesting behavior our heat map captured is the fact that applying pass 33 (-loop-unroll)

after (not necessarily consecutive) pass 23 (-loop-rotate) was much more useful compared

to applying these two passes in the opposite order.

4.5 Problem Formulation

4.5.1 The RL Environment Definition

Assume the optimal number of passes to apply is N and there are K transform passes to

select from in total, our search space S for the phase-ordering problem is [0,KN). Given M

program features and the history of already applied passes, the goal of deep RL is to learn

the next best optimization pass a to apply that minimizes the long term cycle count of the

generated hardware circuit. Note that the optimization state s is partially observable in this

case as the M program features cannot fully capture all the properties of a program.

Action Space – we define our action space A as {a ∈ Z : a ∈ [0,K)} where K is the

total number of transform passes.

Observation Space – two types of input features were considered in our evaluation: 1O

program features of ∈ Z
M listed in Table 4.2 and 2O action history which is a histogram

of previously applied passes oa ∈ Z
K . After each RL step where the pass i is applied,

we call the feature extractor in our environment to return new of , and update the action

histogram element oai to oai + 1.

Reward – the cycle count of the generated circuit is reported by the clock-cycle profiler

at each RL iteration. Our reward is defined as R = cprev−ccur, where cprev and ccur represent

the previous and the current cycle count of the generated circuit respectively. It is possible

to define a different reward for different objectives. For example, the reward could be

defined as the negative of the area and thus the RL agent will optimize for the area. It is

also possible to co-optimize multiple objectives (e.g., area, execution time, power, etc.) by

defining a combination of different objectives.
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4.5.2 Applying Multiple Passes per Action

An alternative to the action formulation above is to evaluate a complete sequence of passes

with length N instead of a single action a at each RL iteration. Upon the start of training a

new episode, the RL agent resets all pass indices p ∈ ZN to the index value K
2 . For pass pi at

index i, the next action to take is either to change to a new pass or not. By allowing positive

and negative index update for each p, we reduced the total steps required to traverse all

possible pass indices. The sub-action space ai for each pass is thus defined as [−1, 0, 1].

The total action space A is defined as [−1, 0, 1]N . At each step, the RL agent predicts the

updates [a1, a2, ..., aN] to N passes, and the current optimization sequence [p1, p2, ..., pN] is

updated to [p1 + a1, p2 + a2, ..., pN + aN].

4.5.3 Normalization Techniques

In order for the trained RL agent to work on new programs, we need to properly normal-

ize the program features and rewards so they represent a meaningful state among different

programs. In this work, we experiment with two techniques: 1O taking the logarithm of

program features or rewards and, 2O normalizing to a parameter from the original input

program that roughly depicts the problem size. For technique 1O, note that taking the loga-

rithm of the program features not only reduces their magnitude, it also correlates them in a

different manner in the neural network. Since, w1 log(o f1) + w2 log(o f2) = log(ow1
f1 ow2

f2 ), the

neural network is learning to correlate the products of features instead of a linear combina-

tion of them. For technique 2O, we normalize the program features to the total number of

instructions in the input program (of_norm =
of

o f51
), which is feature #51 in Table 4.2.

4.6 Evaluation

To run our deep RL algorithms we use RLlib [239], an open-source library for reinforce-

ment learning that offers both high scalability and a unified API for a variety of applications.

RLlib is built on top of Ray [269], a high-performance distributed execution framework

targeted at large-scale machine learning and reinforcement learning applications. We ran
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Table 4.3: The observation and action spaces used in the different deep RL algorithms.

RL-PPO1 RL-PPO2 RL-PPO3 RL-A3C RL-ES
Deep RL Algorithm PPO PPO PPO A3C ES
Observation Space Program Features Action History Action History + Program Features Program Features Program Features

Action Space Single-Action Single-Action Multiple-Action Single-Action Single-Action

the framework on a four-core Intel i7-4765T CPUwith a Tesla K20c GPUfor training and

inference.

We set our frequency constraint in HLS to 200MHz and use the number of clock cycles

reported by the HLS profiler as the circuit performance metric. In [176], results showed a

one-to-one correspondence between the clock cycle count and the actual hardware execu-

tion time under certain frequency constraint. Therefore, better clock cycle count will lead

to better hardware performance.

4.6.1 Performance

To evaluate the effectiveness of various algorithms for tackling the phase-ordering prob-

lem, we run them on nine real HLS benchmarks and compare the results based on the final

HLS circuit performance and the sample efficiency against state-of-the-art approaches for

overcoming the phase ordering, which include random search, Greedy Algorithms [176],

OpenTuner [17], and Genetic Algorithms [119]. These benchmarks are adapted from CH-

Stone [161] and LegUp examples. They are: adpcm, aes, blowfish, dhrystone, gsm, matmul,

mpeg2, qsort, and sha. For this evaluation, the input features/rewards were not normalized,

the pass length was set to 45, and each algorithm was run on a per-program basis. Table 4.3

lists the action and observation spaces used in all the deep RL algorithms.

The bar chart in Figure 4-7 shows the percentage improvement of the circuit perfor-

mance compared to -O3 results on the nine real benchmarks from CHStone. The dots on

the blue line in Figure 4-7 show the total number of samples for each program, which is

the number of times the algorithm calls the simulator to gather the cycle count. -O0 and

-O3 are the default compiler optimization levels. RL-PPO1 is a PPO explorer where we

set all the rewards to 0 to test if the rewards are meaningful. RL-PPO2 is the PPO agent

that learns the next pass based on a histogram of applied passes. RL-A3C is the A3C agent
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that learns based on the program features. Greedy performs the greedy algorithm, which

always inserts the pass that achieves the highest speedup at the best position (out of all

possible positions it can be inserted to) in the current sequence. RL-PPO3 uses a PPO

agent and the program features but with the action space described in Section 4.5.2. ex-

plained in Section 4.5.2. OpenTuner runs an ensemble of six algorithms, which includes

two families of algorithms: particle swarm optimization [207] and GA, each with three dif-

ferent crossover settings. RL-ES is similar to A3C agent that learns based on the program

features, but updates the policy network using the evolution strategy instead of backprop-

agation. Genetic-DEAP [119] is a genetic algorithm implementation. random randomly

generates a sequence of 45 passes at once instead of sampling them one-by-one.

From Greedy, we see that always adding the pass in the current sequence that achieves

the highest reward leads to sub-optimal circuit performance. RL-PPO2 achieves higher per-

formance than RL-PPO1, which shows that the deep RL captures useful information during

training. Using the histogram of applied passes results in better sample efficiency, but us-

ing the program features with more samples results in a slightly higher speedup. RL-PPO2,

for example, at the minor cost of 4% lower speedup, achieves 50× more sample efficiency

than OpenTuner. Using ES to update the policy is supposed to be more sample efficient

for problems with sparse rewards like ours, however, our experiments did not benefit from

that. Furthermore, RL-PPO3 with multiple action updates achieves a higher speedup than

the other deep RL algorithms with a single action. One reason for that is the ability of

RL-PPO3 to explore more passes per compilation as it applies multiple passes simultane-

ously in between every compilation. On the other hand, the other deep RL algorithms apply

a single pass at a time.

4.6.2 Generalization

With deep RL, the search should benefit from prior knowledge learned from other differ-

ent programs. This knowledge should be transferable from one program to another. For

example, as discussed in section 4.4 applying pass -loop-rotate is always beneficial, and -

loop-unroll should be applied after -loop-rotate. Note that the black-box search algorithms,
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Figure 4-7: Circuit Speedup and Sample Size Comparison.

such as OpenTuner, GA, and greedy algorithms, cannot generalize. For these algorithms,

rerunning a new search with many compilations is necessary for every new program, as

they do not learn any patterns from the programs to direct the search and can be viewed as

a smart random search.

To evaluate how generalizable deep RL could be with different programs and whether

any prior knowledge could be useful, we train on 100 randomly-generated programs using

PPO. Random programs are used for transfer learning due to lack of sufficient benchmarks

and because it is the worst-case scenario, i.e., they are very different from the programs

that we use for inference. The improvement can be higher if we train on programs that are

similar to the ones we inference on. We train a network with 256 × 256 fully connected

layers and use the histogram of previously applied passes concatenated to the program

features as the observation and passes as actions.

As described in Section 4.5.3, we experiment with two normalization techniques for the

program features: 1O taking the logarithm of all the program features and 2O normalizing

the program features to the total number of instructions in the program. In each pass se-

quence, the intermediate reward was defined as the logarithm of the improvement in cycle

count after applying each pass. The logarithm was chosen so that the RL agent will not

give much larger weights to big rewards from programs with longer execution time. Three

approaches were evaluated: filtered-norm1 uses the filtered (based on the analysis in

Section 4.4 where we only keep the important features and passes) program features and

passes from Section with normalization technique 1O, original-norm2 uses all the pro-
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Figure 4-8: Episode reward mean as a function of step for the original approach where we
use all the program features and passes and for the filtered approach where we filter the
passes and features (with different normalization techniques). Higher values indicate faster
circuit speed.

gram features and passes with normalization technique 2O, and filtered-norm2 uses the

filtered program features and passes from Section 4.4 with normalization technique 2O. Fil-

tering the features and passes might not be ideal, especially when different programs have

different feature characteristics and impactful passes. However, reducing the number of

features and passes helps to reduce variance among all programs and significantly narrow

the search space.

Figure 4-8 shows the episode reward mean as a function of the step for the three ap-

proaches. We observe that filtered-norm2 and filtered-norm1 converge much faster

and achieve a higher episode reward mean than original-norm2, which uses all the fea-

tures and passes. At roughly 8,000 steps the filtered-norm2 and filter-norm1 already

achieve a very high episode reward mean, with minor improvements in later steps. Fur-

thermore, the episode reward mean of the filtered approaches is still higher than that of

original-norm2 even when we allowed it to train for 20 times more steps (i.e., 160,000

steps). This indicates that filtering the features and passes significantly improved the learn-

ing process. All three approaches learned to always apply pass -loop-rotate, and -loop-
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unroll after -loop-rotate. Another useful pass that the three approaches learned to apply

is -loop-simplify, which performs several transformations to transform natural loops into a

simpler form that enables subsequent analyses and transformations.

We now compare the generalization results of filtered-norm2 and filtered-norm1

with the other black-box algorithms. We use 100 randomly-generated programs as the

training set and nine real benchmarks from CHStone as the testing set for the deep RL-

based methods. With the state-of-the-art black-box algorithms, we first search for the best

pass sequences that achieved the lowest aggregated hardware cycle counts for the 100 ran-

dom programs and then directly apply them to the nine test set programs. In Figure 4-9, the

bar chart shows the percentage improvement of the circuit performance compared to -O3

on the nine real benchmarks, the dots on the blue line show the total number of samples

each inference takes for one new program.

This evaluation shows that the deep RL-based inference achieves higher speedup than

the predetermined sequences produced by the state-of-the-art black-box algorithms for new

programs. The predetermined sequences that are overfitted to the random programs can

cause poor performance in unseen programs (e.g., -24% for Genetic-DEAP). Besides, nor-

malization technique 2O works better compared to normalization technique 1O for deep RL

generalization (4% vs 3% speedup). This indicates that normalizing the different instruc-

tions to the total number of instructions i.e., the distribution of the different instructions

in Technique 2O represents more universal characteristics across different programs, while

taking the log in Technique 1O only suppresses the value ranges of different program fea-

tures. Furthermore, when we use other 12,874 randomly generated programs as the testing

set with filtered-norm2, the speedup is 6% compared to -O3.

4.7 Conclusions

In this chapter, we propose an approach based on deep RL to improve the performance of

HLS designs by optimizing the order in which the compiler applies optimization phases.

We use random forests to analyze the relationship between program features and optimiza-

tion passes. We then leverage this relationship to reduce the search space by identifying
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Figure 4-9: Circuit Speedup and Sample Size Comparison for deep RL Generalization.

the most likely optimization phases to improve the performance, given the program fea-

tures. Our RL based approach achieves 28% better performance than compiling with the

-O3 flag after training for a few minutes, and a 24% improvement after training for less

than a minute. Furthermore, we show that unlike prior work, our solution shows potential

to generalize to a variety of programs. While in this chapter we have applied deep RL to

HLS, we believe that the same approach can be successfully applied to software compila-

tion and optimization. Going forward, we envision using deep RL techniques to optimize

a wide range of programs and systems.
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Chapter 5

Enzyme: Compiler-based Automatic

Differentiation

5.1 Introduction

Machine learning (ML) frameworks such as PyTorch [297] and TensorFlow [2] have be-

come widespread as the primary workhorses of the modern ML community. Computing

gradients necessary for algorithms such as backpropagation [166], Bayesian inference, un-

certainty quantification [410], and probabilistic programming [87] requires all of the code

being differentiated to be written in these frameworks. This is problematic for applying

ML to new domains as existing tools like physics simulators [117, 56, 90, 91, 174], game

engines, and climate models [369] are not written in the domain specific languages (DSL’s)

of ML frameworks. The rewriting required has been identified as the quintessential chal-

lenge of applying ML to scientific computing [25]. As stated by Rackauckas [317] “this is

[the key challenge of scientific ML] because, if there is just one part of your loss function

that isn’t AD-compatible, then the whole network won’t train.”

To remedy this issue, the trend has been to either create new DSL’s [174, 90, 237]

that make the rewriting process easier or to add differentiation as a first-class construct in

programming languages [255, 53, 413, 185]. This results in efficient gradients, but still re-

quires rewriting in either the DSL or the differentiable programming language. Developers
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may want to use code foreign to a ML framework to either re-use existing tools or write

loss functions in a language with an easier abstraction for their use case. While there exist

reverse-mode automatic differentiation (AD) frameworks for various languages, using them

automatically on foreign code for an ML framework is difficult as they still require rewrit-

ing and have limited support for cross-language AD and libraries[413, 171, 163, 184]. The

two primary approaches to computing gradients are as follows.

Operator-overloading computes derivatives by providing differentiable versions of ex-

isting language constructs. Examples include Adept [171]/ADOL-C [145], C++ libraries

providing differentiable types; and JAX [53]/Autograd [255], Python libraries providing

derivatives of NumPy-style functions. These approaches, however, require rewriting pro-

grams to use differentiable operators in place of standard language utilities. This prevents

differentiation of many libraries and code in other languages.

Source-rewriting [147] analyzes the source code of programs and emits source code

defining the gradient. Examples of tools include Tapenade [163, 295] for C and Fortran;

ADIC [281] for C and C++; and Zygote [184, 186, 185] for Julia. Users must provide all

code being differentiated to the tool ahead-of-time and must write programs in a specific

subset of the language. This makes source-rewriting hard to use with header-only libraries

and impossible to use with precompiled libraries.

Both operator-overloading and source-rewriting AD systems differentiate programs be-

fore optimization. Performing AD on unoptimized programs, however, may result in com-

plicated gradients that cannot be simplified by future optimization. As an example, the

gradient of norm in Figure 5-1 runs in O(N) if optimization is run before AD and O(N2) if

optimization is run after AD.

Traditional AD systems have not operated on optimized intermediate representation

(IR) as doing so requires either re-implementing all of the optimizations or working at

a low-level after which optimization has already been performed. Conventional wisdom

says that producing efficient gradients for low-level IR is difficult as it lacks high-level

information many tools rely upon: “AD is more effective in high-level compiled languages

(e.g. Julia, Swift, Rust, Nim) than traditional ones such as C/C++, Fortran and LLVM IR

[...]” – Innes [184]. This chapter challenges that wisdom by creating an efficient AD tool
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float mag(const float* x);// Compute magnitude in O(N)
void norm(float* out, float* in) {

// LICM optimization can move outside the loop
// float res = mag(in);
for(int i=0; i<N; i++) {

out[i] = in[i]/mag(in);
}

}

// LICM, then AD, O(N)
void ∇norm(float* out, float* d_out,

float* in, float* d_in) {
float res = mag(in);
for (int i=0; i<N; i++) {

out[i] = in[i]/res;
}
float d_res = 0;
for (int i=N-1; i>=0; i--) {

d_res += -in[i]*in[i]/res*d_out[i];
d_in[i] += d_out[i]/res;

}
∇mag(in, d_in, d_res);

}

// AD, then LICM O(N^2)
void ∇norm(float* out, float* d_out,

float* in, float* d_in) {
float res = mag(in);
for (int i=0; i<N; i++) {

out[i] = in[i]/res;
}
for (int i=N-1; i>=0; i--) {

float d_res = -in[i]*in[i]/res \
* d_out[i];

d_in[i] += d_out[i]/res;
∇mag(in, d_in, d_res);

}
}

Figure 5-1: Top: An O(N2) function norm which normalizes a vector. Running loop-
invariant-code-motion (LICM) [275, Sec. 13.2] moves the O(N) call to mag outside the
loop, reducing norm’s runtime to O(N). Left: An O(N) ∇norm resulting from running
LICM before AD. Both mag and its adjoint ∇mag are outside the loop. Right: An O(N2)
∇norm resulting from running LICM after AD. ∇mag remains inside the loop as it uses a
value computed inside the loop, making LICM illegal.
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for LLVM [230], a low-level IR and set of optimizations used by many compilers.

This chapter presents Enzyme, an efficient cross-platform compiler plugin for automatic

differentiation that operates on LLVM IR [230] and makes the following contributions:

• Enzyme, a compiler plugin for LLVM that can synthesize fast gradients of statically

analyzable LLVM IR, including IR generated by compiler frontends for C, C++,

Fortran, Rust, Swift, etc.

• PyTorch-Enzyme/TensorFlow-Enzyme, a foreign-function interface that allows ma-

chine learning researchers to use foreign code written in LLVM-compiled languages

in PyTorch and TensorFlow.

• Enzyme.jl, a Julia package that uses Enzyme to synthesize gradients of code written

in a dynamic high-level language using only low-level information.

• Multisource AD and static library support by leveraging link-time optimization (LTO) [230,

197].

• A study demonstrating that running AD after optimization results in significant per-

formance gains on a standard machine learning benchmark suite [361] and achieves

state-of-the-art performance.

Related work Clad is a plugin to the Clang compiler that implements forward mode

automatic differentiation on a subset of C/C++ with reverse mode in development [398].

Chen et al. [72] present an end-to-end differentiable model for protein structure prediction.

DiffTaichi [174] implements a differentiable DSL for physics and robotics simulation. de

Avila Belbute-Peres et al. [90] also provide a differentiable physics framework. Halide is

a differentiable DSL for image processing [237]. Swift implements first class automatic

differentiation [413]. Elliot [108] present a compiler plugin to provide differentiable pro-

gramming in Haskell. Enzyme differs from the related work by running on generic low-

level IR and post-optimization. This gives Enzyme several performance and compatibility

benefits that don’t exist in current systems.

5.2 Design

Enzyme is composed of three stages: type analysis determines the underlying types of
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void f(void* dst, void* src) { memcpy(dst, src, 8); }

// Gradient memcpy for double inputs
void ∇f(double* dst, double* ddst,

double* src, double* dsrc) {
// Forward pass
memcpy(dst, src, 8);
// Reverse pass
dsrc[0] += ddst[0];
ddst[0] = 0;

}

// Gradient memcpy for float inputs
void ∇f(float* dst, float* ddst,

float* src, float* dsrc) {
// Forward pass
memcpy(dst, src, 8);
// Reverse pass
dsrc[0] += ddst[0];
ddst[0] = 0;
dsrc[1] += ddst[1];
ddst[1] = 0;

}

Figure 5-2: Top: Call to memcpy for an unknown 8-byte object. Left: Gradient for a memcpy
of 8 bytes of double data. Right: Gradient for a memcpy of 8 bytes of float data.

values, activity analysis determines what instructions and values can impact the gradient

calculation, and synthesis creates the necessary functions to compute the gradient. A core

design goal of Enzyme is to operate upon optimized IR. As seen in Figure 5-1 this can result

in significant benefits such as simpler and more optimized gradients, though it requires

working on a low-level representation. Gradients synthesized by Enzyme contain two parts:

a forward pass that mirrors the original code and a reverse pass that computes the gradient

by inverting the instructions in the forward pass. Inverted instructions in the reverse pass

are known as adjoints. For all differentiable instructions in LLVM, Enzyme defines an

adjoint to describe how gradients propagate through each instruction.

Type Analysis One challenge of performing AD on LLVM IR (and even C/C++) is

that LLVM types do not necessarily represent the type of the underlying data. For example,

the memcpy function copies data between generic pointers without types (void*). Creating

a correct gradient for memcpy, however, requires knowing the type of the memory being

copied. As shown in Figure 5-2, copying 8 bytes of double data requires performing one

double (8-byte) addition in the reverse pass, whereas copying 8 bytes of float data requires

two float (4-byte) additions. These operations are incompatible, resulting in an incorrect

gradient if the wrong one is used.

Since Enzyme works on a low-level representation, Enzyme must use a new interpro-

cedural fixed-point analysis rather than relying on types prescribed by the language. Every
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value in a function is given a type tree that describes the known type at any given byte offset

in the value. If the type at a particular offset is a pointer type, we have a new type tree that

represents the types inside that offset. An example type tree is shown in Figure 5-3.

Type analysis initializes the type trees of all values to empty and uses type-based alias

analysis (TBAA) metadata to initialize the type trees of loads, stores, and memcpy opera-

tions. TBAA allows us to make assumptions about the underlying type because of strict

aliasing [93, 82]. For every kind of instruction, Enzyme implements a type propagation

rule that specifies how types flow through the instruction. As an example, if the result of a

load is known to be type T, then the pointer loaded must be a pointer to T at offset 0. Type

analysis then runs all of the type propagation rules until a fixed point is reached. This is an

application of abstract interpretation [85].

struct MyType {
double var;
int* var2;

};
MyType* x;

0:Pointer
x

0:Double

MyType

8:Pointer 0:Integer

Figure 5-3: An example TypeTree used by Type Analysis. The variable x (declared on the
left) is a pointer type, which points to a struct MyType, which contains a double at byte 0,
and then a pointer at byte 8. That nested pointer points to an integer.

Sometimes Type Analysis cannot deduce all the necessary information statically (e.g.

if bithacks to modify a floating-point). Rather than produce incorrect code, Enzyme will

emit a compile-time error if it is unable to perform an analysis needed by AD. This enables

programmers to provide this information to the compiler in the form of additional attributes,

a custom derivative, or other means.

Activity Analysis Activity analysis determines what instructions could impact the gra-

dient computation and is common in automatic differentiation systems to avoid performing

unnecessary adjoints [353, 43]. Enzyme also uses activity analysis to avoid taking gradients

of “undifferentiable” instructions such as the cpuid instruction. An instruction is active if

and only if it can propagate a differential value to its return or another memory location.

For example, a function that counts the length of a an active input array would not be active.

In our implementation of activity analysis, we leverage LLVM’s alias analysis [9, Ch. 12]
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double sum(double* x) {
double total = 0;
for(int i=0; i<10; i++)

total += read() * x[i];
return total;

}

void ∇sum(double* x,
double* d_x) {

double* readCache = malloc(10*8);
for(int i=0; i<10; i++)

readCache[i] = read();
// reverse
for(int i=10-1; i>=0; i--)

d_x[i] += readCache[i];
}
free(readCache);

}

double g(double* x) { return *x * *x; }
void f(double* x) { *x = g(x); }

{/*return val*/double,/*cache*/double}
augmented_g(double* x) {

return {x[0]*x[0], x[0]};
}

void rev_g(double* x, double* d_x,
double d_ret, double cache) {

d_x[0] += 2 * cache * d_ret;
}

void ∇f(double* x, double* d_x) {
{call, cache} = augmented_g(x);
*x = call;
double d_ret = *d_x;
*d_x = 0;
rev_g(x, d_x, d_ret, cache);

}

Figure 5-4: Left: Caching the result of read for the reverse pass. Right: Creating an
augmented forward pass for a function to ensure requisite values are cached for the reverse.

and type analysis to help prove that instructions are inactive. As an example, any read-only

function that returns an integer must be inactive since it cannot propagate differential values

through the return or any memory location. This is true because the differential value of

any integer value must be zero and while the instruction can read active memory it cannot

propagate it anywhere.

Shadow Memory Shadow memory is common in AD systems as a way to store gra-

dients of values. Consider the gradient of sum in the left of Figure 5-4. The gradient

function ∇sum takes in both x as an argument as well as the shadow d_x, where it will

store the result. Enzyme’s scheme is designed to be amenable to optimizations in LLVM

while maintaining sufficient flexibility to represent arbitrary programs. For every active

value in the forward pass, Enzyme creates and zeros a shadow version of that value. Sim-

ilarly, any data structures (including function arguments) need to be duplicated. For any

data structures computed inside the function being differentiated, Enzyme will create a

shadow data structure automatically. This involves duplicating any memory instructions

such as malloc, new, and stores of pointers, with equivalent shadow memory operations.
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Finally, Enzyme delays all deallocations until the memory is not needed by the gradient

calculation. Shadow memory is used to compute the adjoint of instructions like load in

the reverse pass, which propagates the gradient of the load to the shadow of the pointer

operand. Given shadow versions of all arguments and active globals, the shadow version

of any value can be computed by duplicating the instruction that created the original value,

replacing operands with their shadow. For calls to functions, we return the shadow pointer

along with the original pointer.

Synthesis Given the results of type and activity analysis, Enzyme can now perform

synthesis, the creation of the gradient function. Enzyme initializes all the shadow values

as described above. For every basic block BB in the original program, Enzyme creates a

corresponding reverse block reverse_BB. Enzyme then emits the adjoint of all instructions

from BB into reverse_BB in reverse order. Enzyme then branches to the reverse of BB’s

predecessor, returning if BB was the entry block. Finally, Enzyme replaces any return

instruction in the forward pass with a branch to its reverse block. An example of this

procedure is shown in Figure 5-5.

Cache Computing adjoints of certain instructions requires values computed in the for-

ward pass. By default, Enzyme will attempt to recompute these in the reverse pass. How-

ever, it may be impossible or less efficient to recompute certain instructions. The question

of whether and how to cache is known as the well-studied “checkpointing” problem in the

literature [146, 224]. Checkpointing in Enzyme adds additional complexity with the inclu-

sion of potentially-aliasing memory, a cost model for LLVM instructions (many of which

are cost-free), and the impact of checkpointing on future optimization.

Consider the calls to read on the left of Figure 5-4, which cannot be recomputed.

Enzyme provides a cache (often referred to as a tape in other AD systems) that provides

forward-pass values to the reverse pass. In this example, Enzyme allocates memory (in this

case an array of 10 doubles) to store the values needed by the reverse pass. If Enzyme can

statically bound the number of values needing to be cached (e.g. a loop of fixed size), it

will perform a single allocation to cache that instruction. If not, Enzyme will dynamically

reallocate memory. For function calls, Enzyme may need to augment a call in the forward

pass as shown in the right of Figure 5-4 to save values needed to compute the adjoint of the
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define double @relu3(double %x)
entry:

; Shadow values for reverse
; alloca %d_x = 0.0
; alloca %d_call = 0.0
; alloca %d_result = 0.0
br (%x > 0), if.true, if.end

if.true:
%call = @pow(%x, 3)
br cond.end

if.end:
%res = phi[%call, %if.true],

[0, %entry]↪→

ret %res
;

reverse_if.end:
; adjoint of return
store %d_res = 1.0
; adjoint of %res phi node
%d_call += if %x > 0, (load %d_res), else 0
store %d_res = 0.0
br %cmp, %reverse_if.true, %reverse_entry

reverse_if.true:
; adjoint of %call
%df = 3 * @pow(%x, 2)
%d_x += %df * (load %d_call)
store %d_call = 0.0
br %reverse_entry

reverse_entry:
%0 = load %d_x
ret %0

Figure 5-5: Example gradient synthesis for relu(pow(x,3)). The left hand side shows the
LLVM IR for the original computation. In the comments on the left we show the shadow
allocations of active variables that would be added to the forward pass. The right hand side
shows the reverse pass that Enzyme would generate. The full synthesized gradient function
would combine these (with shadow allocations added), replacing the return in if.end with
a branch to reverse_if.end.

call.

To maximize performance, it is often desirable to reduce the number of values cached

and Enzyme contains optimizations to reduce the number of values that need caching. En-

zyme greatly benefits from LLVM’s alias analysis and function attributes by proving that

it is legal to recompute certain instructions. Enzyme also runs a differential-use analysis to

determine which values are not necessary for computing the gradient and avoids caching

them. This analysis is sometimes referred to as “to be recorded analysis” in other sys-

tems [164]. Additionally, if Enzyme already cached an equivalent value (e.g. a load to

the same location which couldn’t have since been written to), Enzyme simply reuses the

existing cache for that value. Finally, if a cached value A is only used to recompute a single

value B in the reverse pass, Enzyme will choose to cache the value B instead of the value

A, minimizing the amount of work in the reverse pass.

Function Calls It is desirable to compute both the forward and reverse pass in the

same function. This allows for optimization between the forward and reverse pass, and
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can reduce memory usage. Enzyme detects whether it is legal to move the forward pass

instructions of a function into the adjoint computation. If so, the forward pass call is erased

and the combined function is used as the adjoint.

An indirect function call is a call to an anonymous function pointer which is not known

at compile time. Like all other active pointers in a function, there exists a shadow version

of the function pointer being called. Whenever a function pointer is used outside of a static

call, we create a new global variable containing a pair of functions, namely the augmented

forward and reverse pass. This global is then used as the shadow pointer for the original

function. Thus, whenever Enzyme needs to perform an adjoint of an active indirect func-

tion call, it extracts the augmented forward and gradient functions from the shadow of the

indirect callee, then uses those functions in the adjoint. Like the rest of shadow memory,

this is handled automatically by Enzyme for all objects created inside functions being dif-

ferentiated. If you want Enzyme to differentiate a function with a virtual C++ class as an

argument, however, you need to pass in a modified virtual method table in the shadow that

conforms with Enzyme’s calling convention.

Limitations Enzyme needs access to the IR for any function being differentiated to

create adjoints. This prevents Enzyme from differentiating functions loaded or created at

runtime like a shared library or self-modifying code. Enzyme also must be able to deduce

the types of active memory operations and phi nodes. Practically, this means enabling

TBAA for your language and limiting yourself to programs with statically-analyzable types

(no unions of differing types nor copies of undefined memory). Enzyme presently does not

implement adjoints of exception-handling instructions so exceptions should be disabled

(e.g. with -fno-exceptions for a C++ compiler).

5.3 Usage

Enzyme is designed to simplify both importing foreign code into machine-learning work-

flows and providing native AD for LLVM-based languages. Enzyme is implemented as

an LLVM compiler plug-in, allowing it to be easily used in existing tools without need to

build and maintain custom forks of LLVM, PyTorch, or TensorFlow.
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__attribute__((
enzyme("augment", augment_f),
enzyme("gradient", gradient_f)

))
double f(double in);
double func(double* x, double* y) {

return f(*x) + f(*y);
}

double dfunc(double* x, double *d_x,
double* y) {

__enzyme_autodiff(func,
// The variable x is active
enzyme_dup, x, d_x,
// The variable y is constant
enzyme_const, y);

}

Figure 5-6: Left: Specifying a custom forward and reverse pass for f. Right: Creating a
gradient for func with x as an active variable and y as a constant.

Static Languages Using gradients inside LLVM-based languages simply requires

calling an external __enzyme_autodiff function as shown on the right in Figure 5-6.

For added control, users may specify whether a variable is active by including either an

Enzyme-specific variable or metadata as part of the function call. Enzyme requires the

IR for all functions it may need to differentiate to be available when the pass is run. For

single-source programs, all the IR is simply available. Codebases with multiple source files

or those using external libraries require an additional step. Enzyme makes use of Link-Time

Optimization (LTO) [197, 230], a compiler technique for whole-program optimization that

preserves IR from all source files until link time where a final set of interprocedural op-

timizations may run. To use Enzyme on multi-source codebases, a user enables LTO and

runs Enzyme on the merged IR for all the sources. Static libraries are handled by com-

piling them with the -fembed-bitcode command that ensures that bitcode is included in

the library as well. This allows Enzyme to perform AD on a program linking against a

static library, by extracting the bitcode in the static library and then running Enzyme on the

original program with the IR of the static library.

Programmers can use custom forward and backward passes in Enzyme by specifying

them as metadata on the function to be differentiated, even if the definition of that function

is not available during AD. In a separate Clang C/C++ frontend extension, we allow users

to specify this directly with function attributes as on the left in Figure 5-6. Internally, one

can also specify the type propagation, activity analysis, and adjoint rules for custom foreign

functions. To minimize the amount of work for users, we provide these rules for common

functions in the C/C++ standard and math libraries.
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function f(x)
sum = zero(x)
for i = 1:10^7

sum += x^i / i
end
return sum

end

Tool Runtime (s)
Enzyme.jl 0.810
Zygote.jl 24.638
AutoGrad.jl 609.256

using Zygote, Enzyme

Zygote.@adjoint f(x),
Enzyme.pullback(f, x)

Zygote.gradient(f, 0.5)

Figure 5-7: Left: A simple scalar function computing a Taylor expansion. Center: The
runtime of the gradient as computed by Enzyme.jl and two common Julia AD frameworks.
Right: How Enzyme can be embedded in existing AD frameworks to use Enzyme’s effi-
cient implementation of scalars.

Dynamic Languages Dynamic languages such as Julia require more consideration.

Julia uses LLVM to perform native code generation for functions as a Just-In-Time com-

piler. The IR for all code needed by Enzyme is not immediately available since Julia’s

execution engine uses caching aggressively. We use the infrastructure developed for Julia’s

GPU code generator [40, 39] to collect all the function definitions reachable by the function

to be differentiated. Julia implements its own version of common math functions like sin

with custom implementations that are not amenable to type analysis, or resolves them to in-

direct function calls through opaque pointers into libm. Enzyme.jl uses Enzyme-specific

LLVM metadata to mark these functions as behaving “sin-like”. The Enzyme plugin is

loaded and the Enzyme pass directly executed over the collected IR.

Zygote [184, 186, 185] is a popular automatic-differentiation framework for Julia used

in probabilistic programming [128] and scientific machine learning [318]. Zygote performs

source-to-source AD on high-level Julia code with optimizations for matrix programs. As

shown in Figure 5-7, however, it can perform poorly on scalar programs. By embedding

Enzyme inside Zygote as shown in the right of Figure 5-7, Julia is able to perform AD with

both high-level knowledge and low-level optimizations. By utilizing embedded bitcode,

Enzyme.jl provides the ability to take derivatives of foreign functions.

ML Frameworks Having demonstrated the ability to synthesize gradients of func-

tions in a variety of languages compiled by LLVM, we will demonstrate how to leverage

this ability to embed foreign code into a machine learning framework. After specifying the

desired gradient by calling __enzyme_autodiff as shown in Figure 5-8, users can follow
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// Input tensor + size, and output tensor
void f(float* inp, size_t n, float* out);
void diffef(float* inp, float* d_inp, size_t n, float* d_out) {

// enzyme_dupnoneed specifies not recomputing the output
__enzyme_autodiff(f, enzyme_dup, inp, d_inp,

n,
enzyme_dupnoneed, (float*)0, d_out);

}

import torch
from torch_enzyme import enzyme
# Create some initial tensor
inp = ...
# Apply foreign function to tensor
out = enzyme("test.c", "f").apply(inp)
# Derive gradient
out.backward()
print(inp.grad)

import tensorflow as tf
from tf_enzyme import enzyme

inp = tf.Variable(...)
# Use external C code as a TF op
out = enzyme(inp, filename="test.c",

function="f")
# Results is a TF tensor
out = tf.sigmoid(out)

Figure 5-8: Top: Sample glue code for using Enzyme to produce a custom operator for
an ML framework. Left & Right: Sample code of using Enzyme to provide gradients of
foreign code in PyTorch and TensorFlow, respectively.

the tutorials for creating a custom operator in PyTorch [84] or TensorFlow [83] and com-

piling the custom operator with Enzyme as described above. To simplify this workflow for

machine learning researchers, we also created a simple package for PyTorch and Tensor-

Flow in Figure 5-8 that exposes this functionality in Python without needing to compile a

custom operator.

5.4 Evaluation

We evaluate the Enzyme approach by measuring the run time of seven benchmarks: the

three reverse-mode automatic differentiation benchmarks from Microsoft’s machine learning-

focused ADBench suite [361], and four additional tests that are technically interesting or

represent potential uses of Enzyme in practice. The ADBench suite includes bundle analy-

sis (BA), a long short term memory model (LSTM), and a gaussian mixture model (GMM).

We also differentiate two integrators (Euler, RK4) from the Odeint header-only ODE solver

library [8]; a simple Fast Fourier Transform (FFT); and a finite difference discretized sim-
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ClangEnzyme -O2* Enzyme -O2

ClangRef Enzyme -O2* -O2 CodeGen

CodeGen

Figure 5-9: The pipelines Enzyme and Ref, which run optimizations before and after AD,
respectively. The goal of running optimizations prior to AD is to reduce work and sim-
plify the code. The first round of optimizations (-O2*) disables scheduling passes such as
vectorization or unrolling that make heuristic decisions based on the current code size and
machine attributes. Scheduling optimizations are included in the second round of optimiza-
tions (-O2) when the entire code (including gradient) is available.
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Figure 5-10: Relative speedup of different AD systems on the benchmark suite, higher
is better. A red X is used to denote a system not being compatible with the benchmark
(Tapenade only supports C and not C++ programs). For each benchmark, we take the
geometric mean of the run time for all test cases, normalizing to the victor. A value of 1.0
denotes the fastest AD system tested for that benchmark, whereas a value of 0.5 denotes
that an AD system produced a gradient which took twice as long.

ulation of the 2-dimensional Brusselator system (Bruss) [114, 423].

The two integrators test indirect function calls, complicated C++ headers, and foreign

ODE solvers. The FFT test demonstrates AD of recursive functions. The Brusselator test

demonstrates the utility in adjoint sensitivity analysis for ordinary differential equations,

a widely applicable method with applications to PDE-constrained optimization [42, 236],

control theory [302], and scientific machine learning like neural ODEs [318, 72].

We ran our experiments on a “quiesced” AWS c4.8xlarge instance with hyperthreading

and Turbo Boost disabled. For all benchmarks, we took the geometric mean across all

inputs. We ran all 92 inputs from ADBench, removing the 21 inputs where Adept exhausted

system memory or a tool ran in under 0.01 seconds. For the integrator and FFT tests, we

ran a total of 36 different inputs, with the number iterations or the input size increasing
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Enzyme Ref Tapenade Adept
LSTM 2.408 4.727 4.033 7.722

BA 0.256 0.450 0.408 1.380
GMM 0.076 0.480 0.125 1.677
Euler 0.165 29.453 N/A 6.954
RK4 3.936 25.015 N/A 6.632
FFT 0.122 0.122 0.139 2.632

Bruss 0.180 0.184 0.513 3.546

Table 5.1: Geometric mean runtime of benchmark suite in seconds. Tapenade compiles
only C and not C++. N/A denotes a system incompatible with the benchmark (Tapenade
only supports C and not C++ programs).

exponentially. For Bruss, we ran a total of 10 trials.

To evaluate the effectiveness of AD on optimized IR, we construct two pipelines shown

in Figure 5-9. The Enzyme pipeline consists of running optimizations before Enzyme AD,

followed by a second round of optimizations. The Reference (Ref) pipeline is identical to

the Enzyme pipeline, except that AD is performed before the first round of optimization.

This allows us to effectively evaluate the importance of optimization on AD without con-

sidering additional confounding factors (such as differing tape implementations) between

Enzyme and existing source AD systems. Taking the geometric mean across all bench-

marks and inputs, Enzyme outperforms Ref by a factor of 4.2.

We also compare against the two fastest C/C++ AD tools evaluated in ADBench, Tape-

nade and Adept1. These results are presented in Figure 5-10. Enzyme demonstrates state-

of-the-art performance in all benchmarks. Enzyme’s advantage in the BA, LSTM, Euler,

and RK4 tests appears to stem from running optimizations before AD. Enzyme uses a dif-

ferent tape structure than Tapenade (using a recursive set of allocations rather than a stack),

which explains their differences on the GMM and Bruss benchmarks. Enzyme does not

need to store as much on its tape as Adept (such as not needing to store which statements

were executed), explaining Enzyme’s superior performance on FFT and Bruss.

1For ADBench benchmarks, Tapenade and Adept had their ADBench implementations were evaluated
directly. Tapenade and Adept versions of benchmarks outside ADBench were generated via Tapenade’s web
interface or replacing programs with Adepts differentiable types, using Vector and Matrix extensions where
relevant. All benchmarks are available on Github.
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5.5 Conclusion

Enzyme demonstrates the feasibility of performing efficient AD on low-level programs,

opening up the door for language-independent AD and AD after optimization. This trans-

forms the existing workflow machine learning researchers use to bring ML to foreign code.

Instead of rewriting foreign code for machine learning, they can automatically synthesize

fast gradients! This allows researchers to apply ML to a vast array of new use cases without

the substantial effort of a rewrite or new DSL.

Building Enzyme as part of the LLVM compiler creates many avenues for future re-

search. Exploring new AD-specific optimizations in LLVM may yield additional per-

formance benefits. One could use LLVM’s existing GPU or parallel code generators on

programs generated by Enzyme [152, 154]. Enzyme could be extended to differentiate

GPU and CPU-parallel programs by using existing representations for these programs in

LLVM [326, 172, 343, 95]. Enzyme could also be extended to support forward-mode AD,

mixed-mode AD [324], and the checkpointing problem beyond a simple heuristic. Fine-

tuning the location of Enzyme in LLVM’s optimization pass pipeline remains an open ques-

tion. Enzyme opens up opportunities for cross-language AD. There are also opportunities

to use Enzyme to port various physics engines and other codebases to ML frameworks.
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Chapter 6

Polygeist: Improving Polyhedral

Scheduling Via High-Level Structure

And Low-Level Optimization

6.1 Introduction

Improving the efficiency of computation has always been one of the prime goals of com-

puting. Program performance can be improved significantly by reaping the benefits of par-

allelism, temporal and spatial locality, and other performance sources. Relevant program

transformations are particularly tedious and challenging when targeting modern multicore

CPUs and GPUs with deep memory hierarchies and parallelism, and are often performed

automatically by optimizing compilers.

The polyhedral model enables precise analyses and a relatively easy specification of

transformations (loop restructuring, automatic parallelization, etc.) that take advantage of

hardware performance sources. As a result, there is growing evidence that the polyhe-

dral model is one of the best frameworks for efficient transformation of compute-intensive

programs [397, 99, 277], and for programming accelerator architectures [407, 406, 100].

Consequently, the compiler community has focused on building tools that identify and opti-

mize parts of the program that can be represented within the polyhedral model (commonly
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Clang Frontend Pre-Opt Stmt Split

PolyhedralPost-OptBackendLLVM

Clang AST MLIR SCF MLIR Affine

MLIR ParallelLLVM IR

C or C++

Binary

Stage 3Stage 4

Stage 1 Stage 2

OpenSCoP

Figure 6-1: Polygeist flow consists of 4 stages. The frontend traverses Clang AST to emit
MLIR SCF dialect (Section 6.3.1), which is raised to the Affine dialect and pre-optimized
(Section 6.3.2). The IR is then processed by a polyhedral scheduler (Sections 6.3.3,6.3.4)
before post-optimization and parallelization (Section 6.3.5). Finally, it is translated to
LLVM IR for further optimization and binary generation by LLVM.

referred to as static-control parts, or SCoP’s). Such tools tend to fall into two categories.

Compiler-based tools like Polly [149] and Graphite [307] detect and transform SCoPs

in compiler intermediate representations (IRs). While this offers seamless integration with

rest of the compiler, the lack of high-level structure and information hinders the tools’

ability to perform analyses and transformations. This structure needs to be recovered from

optimized IR, often imperfectly or at a significant cost [150]. Moreover, common compiler

optimizations such as LICM may interfere with the process [223]. Finally, low-level IRs

often lack constructs for, e.g., parallelism or reductions, produced by the transformation,

which makes the flow more complex.

Source-to-source compilers such as Pluto [52], PoCC [304] and ppcg [406] operate

directly on C or C++ code. While this can effectively leverage the high-level information

from source code, the effectiveness of such tools is often reduced by the lack of enabling

optimizations such as those converting hazardous memory loads into single-assignment

virtual registers. Furthermore, the transformation results must be expressed in C, which is

known to be complex [29, 151] and is also missing constructs for, e.g., reduction loops or

register values not backed by memory storage.

This chapter proposes and evaluates the benefits of a polyhedral compilation flow,

Polygeist (Figure 6-1), that can leverage both the high-level structure available in source

code and the fine-grained control of compiler optimization provided by low-level IRs. It

builds on the recent MLIR compiler infrastructure that allows the interplay of multiple
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abstraction levels within the same representation, during the same transformations [229].

Intermixable MLIR abstractions, or dialects, include high-level constructs such as loops,

parallel and reduction patterns; low-level representations fully covering LLVM IR [230];

and a polyhedral-inspired representation featuring loops and memory accesses annotated

with affine expressions. Moreover, by combining the best of source-level and IR-level tools

in an end-to-end polyhedral flow, Polygeist preserves high-level information and leverages

them to perform new or improved optimizations, such as statement splitting and loop-

carried value detection, on a lower-level abstraction as well as to influence downstream

optimizations.

We make the following contributions:

• a C and C++ frontend for MLIR that preserves high-level loop structure from the

original source code;

• an end-to-end flow with raising to and lowering from the polyhedral model, lever-

aging our abstraction to perform more optimizations than both source- and IR-level

tools, including reduction parallelization;

• an exploration of new transformation opportunities created by Polygeist, in particu-

lar, statement splitting;

• and an end-to-end comparison between Polygeist and state-of-the-art source- and

IR-based tools (Pluto [52] and Polly [151]) along with optimization case studies.

6.2 The MLIR Framework

6.2.1 Overview

MLIR is an optimizing compiler infrastructure inspired by LLVM [230] with a focus on ex-

tensibility and modularity [229]. Its main novelty is the IR supporting a fully extensible set

of instructions (called operations) and types. Practically, MLIR combines SSA with nested

regions, allowing one to express as first-class operations the concepts ranging from ma-

chine instructions such as floating-point addition to structured control flow such as loops,
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%result = "dialect.operation"(%operand, %operand)
{attribute = #dialect<"value">} ({

// Inside a nested region.
^basic_block(%block_argument: !dialect.type):

"another.operation"() : () -> ()
}) : (!dialect.type) -> !dialect.result_type

Figure 6-2: Generic MLIR syntax for an operation with two operands, one result, one
attribute and a single-block region.

from hardware circuitry [78] to large machine learning graphs. Operations define runtime

semantics of a program and process immutable values. Compile-time information about

values is expressed in types, and information about operations is expressed in attributes.

Operations can have attached regions, which in turn contain (basic) blocks of further oper-

ations. The generic syntax, accepted by all operations, illustrates the structure of MLIR in

Figure 6-2. Additionally, MLIR supports user-defined custom syntax.

Attributes, operations and types are organized in dialects, which can be thought of as

modular libraries. MLIR provides a handful of dialects that define common operations

such as modules, functions, loops, memory or arithmetic instructions, and ubiquitous types

such as integers and floats. We discuss the dialects relevant to Polygeist in the following

sections.

6.2.2 Affine and MemRef Dialects

The Affine dialect [264] aims at representing SCoP’s with explicit polyhedral-friendly loop

and conditional constructs. The core of its representation is the following classification of

value categories:

• Symbols—integer values that are known to be loop-invariant but unknown at compile-

time, also referred to as program parameters in polyhedral literature, typically array

dimensions or function arguments. In MLIR, symbols are values defined in the top-

level region of an operation with “affine scope” semantics, e.g., functions; or array

dimensions, constants, and affine map (see below) application results regardless of

their definition point.

• Dimensions—are an extension of symbols that also accepts induction variables of
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affine loops.

• Non-affine—any other values.

Symbols and dimensions have index type, which is a platform-specific integer that fits a

pointer (intptr_t in C).

MLIR provides two attributes relevant for the Affine dialect:

• Affine maps are multi-dimensional (quasi-)linear functions that map a list of di-

mension and symbol arguments to a list of results. For example, (d0, d1, d2, s0) →

(d0 + d1, s0 · d2) is a two-dimensional quasi-affine map, which can be expressed in

MLIR as affine_map<(d0,d1,d2)[s0] -> (d0+d1, s0*d2)>. Dimensions and

symbols are separated to allow quasi-linear expressions: symbols are treated as con-

stants, which can therefore be multiplied with dimensions, whereas a product of two

dimensions is invalid.

• Integer sets are collections of integer tuples constrained by conjunctions of (quasi-

)linear expressions. For example, a “triangular” set {(d0, d1) : 0 ≤ d0 < s0 ∧ 0 ≤

d1 ≤ d0} is represented as affine_set<(d0,d1)[s0]: (d0 >= 0, s0-d0-1 >=

0, d1 >= 0, d0-d1 >= 0)>.

The Affine dialect makes use of the concepts above to define a set of operations. An

affine.for is a “for” loop with loop-invariant lower and upper bounds expressed as affine

maps with a constant step. An affine.parallel is a “multifor” loop nest, iterations of

which may be executed concurrently. Both kinds of loops support reductions via loop-

carried values as well as max(min) expression lower(upper) bounds. An affine.if is a

conditional construct, with an optional else region, and a condition defined as inclusion

of the given values into an integer set. Finally, affine.load and affine.store express

memory accesses where the address computation is expressed as an affine map.

Figure 6-3 illustrates the Affine dialect for a polynomial multiplication, C[i+j] +=

A[i] * B[j]. This simple example highlights the fact that MLIR supports, and encour-

ages, IRs from different dialects to be used together.

A core MLIR type—memref, which stands for memory reference—and the corre-

sponding memref dialect are also featured in Figure 6-3. The memref type describes a
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%c0 = constant 0 : index
%0 = memref.dim %A, %c0 : memref<?xf32>
%1 = memref.dim %B, %c0 : memref<?xf32>
affine.for %i = 0 to affine_map<()[s0] -> (s0)>()[%0] {

affine.for %j = 0 to affine_map<()[s0] -> (s0)>()[%1] {
%2 = affine.load %A[%i] : memref<?xf32>
%3 = affine.load %B[%j] : memref<?xf32>
%4 = mulf %2, %3 : f32
%5 = affine.load %C[%i + %j] : memref<?xf32>
%6 = addf %4, %5 : f32
affine.store %6, %C[%i + %j] : memref<?xf32>

}
}

Figure 6-3: Polynomial multiplication in MLIR using Affine and Standard dialects.

structured multi-index pointer into memory, e.g., memref<?xf32> denotes a 1-d array of

floating-point elements; and the memref dialect provides memory and type manipulation

operations, e.g., memref.dim retrieves the dimensionality of a memref object. memref does

not allow internal aliasing, i.e., different indices always point to different addresses. This

effectively defines away the delinearization problem that hinders the application of poly-

hedral techniques at the LLVM IR level [150]. Throughout this paper, we only consider

memrefs with the default layout that corresponds to contiguous row-major storage compat-

ible with C ABI. In practice, memrefs support arbitrary layouts expressible as affine maps,

but these are not necessary in Polygeist context.

6.2.3 Other Relevant Core Dialects

MLIR provides several dozen dialects. Out of those, only a handful are relevant for our

discussion:

• The Structured Control Flow (scf) dialect defines the control flow operations such

as loops and conditionals that are not constrained by affine categorization rules. For

example, the scf.for loop accepts any integer value as loop bounds, which are not

necessarily affine expressions.

• The Standard (std) dialect contains common operations such as integer and float

arithmetic, which is used as a common lowering point from higher-level dialects
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before fanning out into multiple target dialects and can be seen as a generalization of

LLVM IR [230].

• The LLVM dialect directly maps from LLVM IR instructions and types to MLIR,

primarily to simplify the translation between them.

• The OpenMP dialect provides a dialect- and platform-agnostic representation of

OpenMP directives such as “parallel” and “workshare loop”, which can be used to

transform OpenMP constructs or emit LLVM IR that interacts with the OpenMP run-

time.

• The Math dialect groups together mathematical operations on integer and floating

type beyond simple arithmetic, e.g., math.pow or math.sqrt.

6.3 An (Affine) MLIR Compilation Pipeline

The Polygeist pipeline consists of 4 components (Figure 6-1):

1. a frontend that allows entering MLIR at the SCF loops level from C or C++ code

(Section 6.3.1);

2. a preprocessing step within MLIR that raises to the Affine dialect (Section 6.3.2);

3. a polyhedral scheduler of the Affine parts of the program via a round-trip to and from

OpenSCoP (Section 6.3.3) and running Pluto transformations, controlled by the new

statement splitting heuristic (Section 6.3.4);

4. a backend that runs postprocessing MLIR optimizations (section 6.3.5) and final low-

ering to an executable.

6.3.1 Frontend

Polygeist relies on the Clang AST to emit MLIR IRs. It thus avoids reimplementing pars-

ing and language-level semantic analysis and handles modern C and C++ features. As is

typical for compiler frontends, Polygeist creates a recursive symbol table data structure to
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C type LLVM IR type MLIR type

int i32 (on machine X) i32 (on machine X)
intNN_t iNN iNN
uintNN_t iNN uiNN
float float f32
double double f64
ty * ty * memref<?xty>
ty & ty * memref<1xty>
ty ** ty ** memref<memref<?xty>>
ty[N][M] [N x [M x ty]]* memref<NxMxty>

Figure 6-4: Type correspondence between C, LLVM IR and MLIR types.

look up the correct variable for a given scope. Polygeist lazily registers all global variables

and functions found in the AST to its symbol table before generating any code. Polygeist

then traverses the call graph from a given entry function (main by default), creating and

defining MLIR functions as necessary.

Control Flow & High Level Information

In contrast to traditional compiler pipelines, targeting a branch-based IR, Polygeist lever-

ages the high-level MLIR operations such as scf.while (a looping construct) and scf.if

(a conditional construct) within the SCF dialect to preserve the control flow structure of the

source code. C-level continue and break constructs are handled by introducing signal

variables and checking them before each operation that follows original constructs. Fur-

thermore, within a #pragma scop, Polygeist assumes that the program is affine and uses

an affine.for to represent loops directly.

Types & Polygeist ABI

While emitting operations, Polygeist must decide how to represent C or C++ types within

MLIR. For primitive types such as int or float, Polygeist emits an MLIR variant of that

type with the same width as would be used within LLVM/Clang. This allows Polygeist

to keep the same Application Binary Interface (ABI) as code compiled by a normal C

or C++ compiler when calling a function with only primitive types. On the other hand,

for pointer, reference and array types, Polygeist uses memref type (Figure 6-4). This al-

lows Polygeist to preserve more of the structure available within the original program (e.g.,
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multi-dimensional arrays) and enables interaction with MLIR’s high-level memory opera-

tions.

This represents a breaking change to the C ABI for any functions with pointer ar-

guments. Polygeist addresses this by providing an attribute for function arguments and

allocations to use a C-compatible pointer type rather than memref, applied by default

to external functions such as strcmp and scanf. When calling a pointer-ABI function

with a memref-ABI argument, Polygeist generates wrapper code that recovers the C ABI-

compatible pointer from memref and ensures the correct result. Figure 6-5 shows an exam-

ple demonstrating how the Polygeist and C ABI may interact for a small program.

When allocating and deallocating memory, this difference in ABI becomes significant.

This is because allocating several bytes of an array with malloc then casting to a memref

will not result in legal code (as memref itself may not be implemented with a raw pointer).

Thus, Polygeist identifies calls to allocation and deallocation functions and replaces them

with legal equivalents for memref.

Functions and global variables are emitted using the same name used by the C or C++

ABI. This ensures that all external values are loaded correctly, and multi-versioned func-

tions (such as those generated by C++ templates or overloading) have distinct names and

definitions.

Instruction Generation

For most instructions, Polygeist directly emits an MLIR operation corresponding to the

equivalent C operation (addi for integer add, call for function call, etc.). For some special

instructions such as a call to pow, Polygeist chooses to emit a specific MLIR operation in

the Math dialect, instead of a call to an external function (defined in libm). This permits

such instructions to be better analyzed and optimized within MLIR.

Operations that involve memory or pointer arithmetic require additional handling. MLIR

does not have a generic pointer arithmetic instruction; instead, it requires that load and

store operations contain all of the indices being looked up. This presents issues for opera-

tions that perform pointer arithmetic. To remedy this, we use a temporary subindex oper-

ation for memref’s that curry the index. A subsequent optimization pass within Polygeist,
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forwards the indices in a subindex to any load or store which uses them.

Local Variables

Local variables are handled by allocating a memref on stack at the top of a function. This

permits the desired semantics of C or C++ to be implemented with relative ease. However,

as many local variables and arguments contain memref types, this immediately results in

a memref of a memref—a hindrance for most MLIR optimizations as it is illegal outside

of Polygeist. As a remedy, we implement a heavyweight memory-to-register (mem2reg)

transformation pass that eliminates unnecessary loads, stores, and allocations within MLIR

constructs. Empirically this eliminates all memrefs of memref in the Polybench suite.

6.3.2 Raising to Affine

The translation from C or C++ to MLIR directly preserves high-level information about

loop structure and n-D arrays, but does not generate other Affine operations. Polygeist

subsequently raises memory, conditional, and looping operations into their Affine dialect

counterparts if it can prove them to be legal affine operations. If the corresponding fron-

tend code was enclosed within #pragma scop, Polygeist assumes it is legal to raise all

operations within that region. Any operations which are not proven or assumed to be affine

remain untouched. We perform simplifications on affine maps to remove loops with zero or

one iteration and drop branches of a conditional with a condition known at compile time.

Memory operations and loop bounds

To convert an operation, Polygeist replaces its bound and subscript operands with iden-

tity affine maps (affine_map<() [s0]->(s0)>[%bound]). It then folds the operations

computing the map operands, e.g., addi, muli, into the map itself. Values that are tran-

sitively derived from loop induction variables become map dimensions and other values

become symbols. For example, affine_map< ()[s0]->(s0)>[%bound] with %bound =

addi %N, %i, where %i is an induction variable, is folded into affine_map<(d0)[s0]

->(s0 + d0)>(%i)[%N]. The process terminates when no operations can be folded or
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when Affine value categorization rules are satisfied.

Conditionals

Conditional operations are emitted by the frontend for two input code patterns: if con-

ditions and ternary expressions. The condition is transformed by introducing an integer

set and by folding the operands into it similarly to the affine maps, with in addition and

operations separating set constraints and not operations inverting them (affine.if only

accepts ≥ 0 and = 0 constraints). Polygeist processes nested conditionals with C-style

short-circuit semantics, in which the subsequent conditions are checked within the body of

the preceding conditionals, by hoisting conditions outside the outermost conditional when

legal and replacing them with a boolean operation or a select. This is always legal within

#pragma scop.

Conditionals emitted for ternary expressions often involve memory loads in their re-

gions, which prevent hoisting due to side effects. We reuse our mem2reg pass to replace

those to equivalent earlier loads when possible to enable hoisting. Empirically, this is suffi-

cient to process all ternary expressions in the Polybench/C suite [309]. Otherwise, ternary

expressions would need to be packed into a single statement by the downstream polyhedral

pass.

6.3.3 Connecting MLIR to Polyhedral Tools

Regions of the input program expressed using MLIR Affine dialect are amenable to the

polyhedral model. Existing tools, however, cannot directly consume MLIR. We chose to

implement a bi-directional conversion to and from OpenScop [30], an exchange format

readily consumable by numerous polyhedral tools, including Pluto [52], and further con-

vertible to isl [400] representation. This allows Polygeist to seamlessly connect with tools

created in polyhedral compilation research without having to amend those tools to support

MLIR.

Most polyhedral tools are designed to operate on C or Fortran inputs build around

statements, which do not have a direct equivalent in MLIR. Therefore, we design a mecha-
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void setArray(int N, double val, double* array) {
...

}
int main(int argc, char** argv) {

...
cmp = strcmp(str1, str2)
...
double array[10];
set_array(10, array)

}
⇓

func @setArray(%N: i32, %val: f64, %array: memref<?xf64>) {
%0 = index_cast %N : i32 to index
affine.for %i = 0 to %0 {

affine.store %val, %array[%i] : memref<?xf64>
}
return

}

func @main(%argc: i32,
%argv: !llvm.ptr<ptr<i8>>) -> i32 {

...
%cmp = llvm.call @strcmp(%str1, %str2) :

(!llvm.ptr<i8>, !llvm.ptr<i8>) -> !llvm.i32
...
%array = memref.alloca() : memref<10xf64>
%arraycst = memref.cast %array : memref<10xf64> to

memref<?xf64>
call @setArray(%N, %val, %arraycst) :

(i32, f64, memref<?xf64>) -> ()
}

Figure 6-5: Example demonstrating Polygeist ABI. For functions expected to be compiled
with Polygeist such as setArray, pointer arguments are replaced with memref’s. For func-
tions that require external calling conventions (such as main/strcmp), we fall back to using
llvm.ptr and generating conversion code where appropriate.
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nism to create statement-like structure from chains of MLIR operations. We further demon-

strate that this gives Polygeist an ability to favorably affect the behavior of the polyhedral

scheduler by controlling statement granularity (Section 6.3.4).

Simple Statement Formation

Observing that C statements amenable to the polyhedral model are (mostly) variable assign-

ments, we can derive a mechanism to identify statements from chains of MLIR operations.

A store into memory is the last operation of the statement. The backward slice of this

operation, i.e., the operations transitively computing its operands, belong to the statement.

The slice extension stops at operations producing a value categorized as affine dimension

or symbol, directly usable in affine expressions. Such values are loop induction variables

or loop-invariant constants.

Some operations may end up in multiple statements if the value is used more than once.

However, we need the mapping between operations and statements to be bidirectional in

order to emit MLIR after the scheduler has restructured the program without considering

SSA value visibility rules. If an operation with multiple uses is side effect free, Polygeist

simply duplicates it. For operations whose duplication is illegal, Polygeist stores their

results in stack-allocated memref’s and replaces all further uses with memory loads. Fig-

ure 6-6 illustrates the transformation for value %0 used in operation %20. This creates a new

statement.

Region-Spanning Dependencies

In some cases, a statement may consist of MLIR operations across different (nested) loops,

e.g., a load from memory into an SSA register happens in an outer loop while it is used

in inner loops. The location of such a statement in the loop hierarchy is unclear. More

importantly, it cannot be communicated to the polyhedral scheduler. Polygeist resolves

this by storing the value in a stack-allocated memref in the defining region and loading

it back in the user regions. Figure 6-6 illustrates this transformation for value %0 used in

operation %10. Similarly to the basic case, this creates a new statement in the outer loop

that can be scheduled independently.
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affine.for %i = ... {
%0 = affine.load %A[%i]
affine.store %other, %A[%i] // motion-barrier
affine.for %j = ... {

%1 = affine.load %B[%j]
%10 = mulf %0, %1 : f64 // use-1
store %10, %res[%i, %j]

%20 = addf %0, %0 : f64 // use-2
}

⇓

%tmp = memref.alloca() : memref<1xf64>
affine.for %i = ... {

%0 = affine.load %A[%i]
affine.store %0, %tmp[0] // store to scratchpad
affine.store %other, %A[%i] // motion-barrier
affine.for %j = ... {

%1 = affine.load %B[%j]
%2 = affine.load %tmp[0] // load back for use-1
%10 = mulf %2, %1 : f64 // use-1 (%2 instead of %0)
affine.store %10, %res[%i, %j]

}
%19 = affine.load %tmp[0] // load back for use-2
%20 = addf %19, %19 : f64 // use-2 (%19 instead of %0)
// ...

}

Figure 6-6: Polygeist breaks region-spanning use-def chains and handles multi-use values
by introducing scratchpad storage when operation duplication is illegal. In absence of
motion-barrier statement, the %0 load would be duplicated and sunk. Pseudo-MLIR
with types and braces omitted for brevity.

This approach can be seen as a reg2mem conversion, the inverse of mem2reg performed

in the frontend. It only applies to a subset of values, and may be undone after polyhe-

dral scheduling has completed. Furthermore, to decrease the number of dependencies and

memory footprint, Polygeist performs a simple value analysis and avoids creating stack-

allocated buffers if the same value is already available in another memory location and can

be read from there.

SCoP Formation

To define a SCoP, we outline individual statements into functions so that they can be rep-

resented as opaque calls with known memory footprints, similarly to Pencil [22]. This

process also makes the inter-statement SSA dependencies clear. These dependencies exist
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func @S1(%A: memref<?xf64>, %tmp: memref<1xf64>, %i: index) {
%0 = affine.load %A[%i]
affine.store %0, %tmp[0] // store to scratchpad

}

func @S2(%A: memref<?xf64>, %other: f64, %i: index) {
affine.store %other, %A[%i]

}

func @S3(%B: memref<?x?xf64>, %tmp: memref<1xf64>,
%res: memref<?x?xf64>, %i: index, %j: index) {

%1 = affine.load %B[%j]
%2 = affine.load %tmp[0] // load back for use-1
%10 = mulf %2, %1 : f64 // use-1
affine.store %10, %res[%i, %j]

}

func @S4(%tmp: memref<1xf64>, ...) {
%19 = affine.load %tmp[0] // load back for use-2
%20 = addf %19, %19 : f64 // use-2
// ...

}

%tmp = memref.alloca() : memref<1xf64>
affine.for %i = ... {

call @S1(%A, %tmp, %i)
call @S2(%A, %other, %i)
affine.for %j = ... {

call @S3(%B, %tmp, %res, %i, %j)
}
call @S4(%tmp)

}

Figure 6-7: Outlining makes polyhedral “statements” visible in code from Fig. 6-6.
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between calls that use the same SSA value since all use-def chains (except for induction

variables that are processed separately) have been encapsulated into statements. We lift

all local stack allocations and place them at the entry block of the surrounding function in

order to keep them visible after loop restructuring. Figure 6-7 demonstrates the resulting

IR.

The remaining components of the polyhedral representation are derived as follows: the

domain of the statement is defined to be the iteration space of its enclosing loops, con-

strained by their respective lower and upper bounds, and intersected with any “if” condi-

tions. This process leverages the fact that MLIR expresses bounds and conditions directly

as affine constructs. The access relations for each statement are obtained as unions of affine

maps of the affine.load (read) and affine.store (must-write) operations, with RHS

of the relation annotated by an “array” that corresponds to the SSA value of the accessed

memref. Initial schedules are assigned using the (2d + 1) formalism, with odd dimensions

representing the lexical order of loops in the input program and even dimensions being

equal to loop induction variables. Affine constructs in OpenScop are represented as lists

of linear equality (= 0) or inequality (≥ 0) coefficients, which matches exactly the internal

representation in MLIR, making the conversion straightforward.

Code Generation Back to MLIR

The Pluto scheduler produces new schedules in OpenScop as a result. Generating loop

structure back from affine schedules is a solved, albeit daunting, problem [29, 151]. Polygeist

relies on CLooG [29] to generate an initial loop-level AST, which it then converts to Affine

dialect loops and conditionals. There is no need to simplify affine expressions at code gen-

eration since MLIR accepts them directly and can simplify them at a later stage. Statements

are introduced as function calls with rewritten operands and then inlined.

6.3.4 Controlling Statement Granularity

Recall that Polygeist reconstructs “statements” from sequences of primitive operations

(Section 6.3.3). We initially designed an approach that recovers the statement structure
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for(i=0; i<NI; i++)
for(j=0; j<NJ; j++)

for(k=0; k<NK; k++)
S: A[i][j]+=f(B[k][i],C[k][j]);

⇓

for(i=0; i<NI; i++)
for(j=0; j<NJ; j++)

double M[NK];
for(k=0; k<NK; k++)

S: M[k]=f(B[k][i],C[k][j]);
T: A[i][j] += M[k];

⇒

double M[NK];
for(k=0; k<NK; k++)

for(i=0; i<NI; i++)
for(j=0; j<NJ; j++)

S: M[k]=f(B[k][i],C[k][j]);
T: A[i][j] += M[k];

Figure 6-8: Splitting a nested reduction statement (top) into a fully parallel compute state-
ment and a trivial reduction statement (bottom left) makes Pluto generate different sched-
ules (bottom right). Further scratchpad array expansion may enable loop fission and give
scheduler even more liberty.

similar to that in the C input, but this is not a requirement. Instead, statements can be

formed from any subsets of MLIR operations as long as they can be organized into loops

and sorted topologically (i.e., there are no use-def loops between statements). To expose

the dependencies between such statements to the affine scheduler, we reuse the idea of go-

ing through scratchpad memory: each statement writes the values required by other state-

ments to dedicated memory locations, and the following statements read from those. The

scratchpads are subject to partial array expansion [110] to minimize their effect on the

affine scheduler as single-element scratchpad arrays create artificial scalar dependencies.

This change in statement granularity gives the affine scheduler unprecedented flexibility

allowing it to chose different schedules for different parts of the same C statement.

Consider, for example, the statement S in Figure 6-8(top) surrounded by three loops

iterating over i, j and k. Such contraction patterns are common in computational pro-

grams (this particular example can be found in the correlation benchmark with B≡C, see

Section 6.5.5). The loop order that best exploits the locality is (k, i, j), which results in

temporal locality for reads from B (the value is reused in all iterations of the now-innermost

j loop) and in spatial locality for reads from C (consecutive values are read by consecutive

iterations, increasing the likelihood of L1 cache hits). Yet, Pluto never proposes such an

order because of a reduction dependency along the k dimension due to repeated read/write

access to A[i][j] as Pluto tends to pick loops with fewer dependencies as outermost.
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While the dependency itself is inevitable, it can be moved into a separate statement T in

Figure 6-8(bottom left). This approach provides scheduler with more freedom of choice for

the first statement at a lesser memory cost than expanding the entire A array. It also factors

out the reduction into a “canonical” statement that is easier to process for the downstream

passes, e.g., vectorization.

Implementing this transformation at the C level would require manipulating C AST and

reasoning about C (or even C++) semantics. This is typically out of reach for source-to-

source polyhedral optimizers such as Pluto that treat statements as black boxes. While it

is possible to implement this transformation at the LLVM IR level, e.g., in Polly, where

statements are also reconstructed and injection of temporary allocations is easy, the heuris-

tic driving the transformation is based on the loop structure and multi-dimensional access

patterns which are difficult to recover at such a low level [150].

The space of potential splittings is huge—each MLIR operation can potentially become

a statement. Therefore, we devise a heuristic to address the contraction cases similar to

Figure 6-8. Reduction statement splitting applies to statements:

• surrounded by at least 3 loops;

• with LHS≠RHS, and using all loops but the innermost;

• with two or more different access patterns on the RHS.

This covers statements that could have locality improved by a different loop order and with

low risk of undesired fission. This heuristic merely serves as an illustration of the kind of

new transformations Polygeist can enable.

6.3.5 Post-Transformations and Backend

Polygeist allows one to operate on both quasi-syntactic and SSA level, enabling analyses

and optimizations that are extremely difficult, if not impossible, to perform at either level

in isolation. In addition to statement splitting, we propose two techniques that demonstrate

the potential of Polygeist.
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Transforming Loops with Carried Values (Reductions)

Polygeist leverages MLIR’s first-class support for loop-carried values to detect, express

and transform reduction-like loops. This support does not require source code annotations,

unlike source-level tools [321] that use annotations to enable detection, nor complex mod-

ifications for parallel code emission, unlike Polly [98], which suffers from LLVM missing

first-class parallel constructs. We do not modify the polyhedral scheduler either, relying on

post-processing for reduction parallelization, including outermost parallel reduction loops.

The overall approach follows the definition proposed in [202] with adaptations to MLIR’s

region-based IR, and is illustrated in Figure 6-9. Polygeist identifies memory locations

modified on each iteration, i.e. load/store pairs with loop-invariant subscripts and no in-

terleaving aliasing stores, by scanning the single-block body of the loop. These are trans-

formed into loop-carried values or secondary induction variables, with the load/store pair

lifted out of the loop and repurposed for reading the initial and storing the final value. Loop-

carried values may be updated by a chain of side effect-free operations in the loop body.

If this chain is known to be associative and commutative, the loop is a reduction. Loop-

carried values are detected even in absence of reduction-compatible operations. Loops

with such values contribute to mem2reg, decreasing memory footprint, but are not subject

to parallelization.

Late Parallelization

Rather than relying on the dependence distance information obtained by the affine sched-

uler, Polygeist performs a separate polyhedral analysis to detect loop parallelism in the

generated code. The analysis itself is a classical polyhedral dependence analysis [111, 106]

implemented on top of MLIR region structure. Performing it after SSA-based optimiza-

tions, in particular mem2reg and reduction detection, allows parallelizing more loops. In

particular, reduction loops and loops with variables whose value is only relevant within

a single iteration similar to live-range reordering [403] but without expensive additional

polyhedral analyses (live-range of an SSA value defined in a loop never extends beyond

the loop).
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affine.for %i = ... {
// Reduction into r1[0]
%1 = affine.load %r1[0]
%5 = addi %1, %2
affine.store %5, %r1[0]
// Loop-dependent load
%10 = affine.load %r2[%i]
%15 = addi %10, %2
// Inteleaving store
%20 = affine.load %r2[0]
affine.store %21, %r2[0]
%25 = addi %20, %2
// May have side effects
%30 = affine.load %r3[0]
call @f(%30, %2)

}

⇒

%init = affine.load %r1[0]
%red = affine.for %i = ... iter_args(%arg = %init) {

// Reduction accumulation
%5 = addi %arg, %2
// Loop-dependent load
%10 = affine.load %r2[%i]
%15 = addi %10, %2
// Inteleaving store
%20 = affine.load %r2[0]
affine.store %21, %r2[0]
%25 = addi %20, %2
// May have side effects
%30 = affine.load %r3[0]
call @f(%30, %2)
// Yield accumulated
affine.yield %5

}
affine.store %red, %r1[0]

Figure 6-9: Polygeist detects memory locations accessed in all loop iterations, e.g. reduc-
tion accumulators such as %r1[0] and transforms them to loop-carried values (secondary
induction variables), except when computed with side-effects, interleaved stores or by non-
associative/commutative operations.

6.4 Evaluation

Our evaluation has two goals. 1) We want to demonstrate that the code produced by

Polygeist without additional optimization does not have any inexplicable performance dif-

ferences than a state-of-the-art compiler like Clang. 2) We explore how Polygeist’s internal

representation can support a mix of affine and SSA-based transformation in the same com-

pilation flow, and evaluate the potential benefits compared to existing source and compiler-

based polyhedral tools.

6.4.1 Experimental Setup

We ran our experiments on an AWS c5.metal instance with hyper-threading and Turbo

Boost disabled. The system is Ubuntu 20.04 running on an Intel Xeon Platinum 8275CL

CPU at 3.0 GHz with 1.5, 48, 71.5 MB L1, L2, L3 cache, respectively, and 256 GB RAM.

We ran all 30 benchmarks from PolyBench [309], using the “EXTRALARGE” dataset.

Pluto is unable to extract SCoP from the adi benchmark. We ran a total of 5 trials for each

benchmark, taking the execution time reported by PolyBench; the median result is taken
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unless stated otherwise. Every measurement or result reported in the following sections

refers to double-precision data. All experiments were run on cores 1-8, which ensured

that all threads were on the same socket and did not potentially conflict with processes

scheduled on core 0.

In all cases, we use two-stage compilation: (i) using clang at -O3 excluding unrolling

and vectorization; or Polygeist to emit LLVM IR from C; (ii) using clang at -O3 to emit the

final binary. As several optimizations are not idempotent, a second round of optimization

can potentially significantly boost (and rarely, hinder) performance. This is why we chose

to only perform vectorization and unrolling at the last optimization stage. Since Polygeist

applies some optimizations at the MLIR level (e.g., mem2reg), we compare against the

two-stage compilation pipeline as a more fair baseline (Clang). We also evaluate a single-

stage compilation to assess the effect of the two-stage flow (ClangSing).

6.4.2 Baseline Performance

Polygeist must generate code with runtime as close as possible to that of existing compi-

lation flows to establish a solid baseline. In other words, Polygeist should not introduce

overhead nor speedup unless explicitly instructed otherwise, to allow for measuring the

effects of additional optimizations. We evaluate this by comparing the runtime of programs

produced by Polygeist with those produced by Clang at the same commit (Apr 2021)1.

Figure 6-10 summarizes the results with the following flows:

• Clang: A compilation of the program using Clang, when running two stages of opti-

mization;

• ClangSing: A compilation of the program using Clang, when running one stage of

optimization;

•MLIR-Clang: A compilation flow using the Polygeist frontend and preprocessing

optimizations within MLIR, but not running polyhedral scheduling nor postprocess-

ing.

1LLVM commit 20d5c42e0ef5d252b434bcb610b04f1cb79fe771.
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Figure 6-10: Mean and 95% confidence intervals (log scale) of program run time across 5
runs of Polybench in Clang, ClangSing and MLIR-Clang configurations, lower is better.
The run times of code produced by Polygeist without optimization is comparable to that of
Clang. No significant variation is observed between single and double optimization. Short-
running jacobi-1d shows high intra-group variation.

6.4.3 Compilation Flows

We compare Polygeist with a source-level and an IR-level optimizer (Pluto and Polly) in

the following configurations:

• Pluto: Pluto compiler auto-transformation [52] using polycc2 with -noparallel

and -tile flags;

• PlutoPar: Same as above but with -parallel flag;

• Polly: Polly [149] LLVM passes with affine scheduling and tiling, and no pattern-

based optimizations [127];

• PollyPar: Same as above with auto-parallelization;

• Polygeist: Our flow with Pluto and extra transforms;

• Polygeistpar: Same as above but with -parallel Pluto schedule, Polygeist paral-

lelization and reductions.

Running between source and LLVM IR levels, we expect Polygeist to benefit from both

worlds, thus getting code that is on par or better than competitors. When using Pluto, both

standalone and within Polygeist, we disable the emission of vectorization hints and loop

unrolling to make sure both transformations are fully controlled by the LLVM optimizer,

which also runs in Polly flows. We run Polly in the latest stage of Clang compilation, using

2Pluto commit dae26e77b94b2624a540c08ec7128f20cd7b7985
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Figure 6-11: Median speedup over Clang for sequential configurations (log scale), higher
is better. Polygeist outperforms (2.53× geomean speedup) both Pluto (2.34×) and Polly
(1.41×) on average. Pluto can’t process adi, which is therefore excluded from summary
statistics.
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Figure 6-12: Median speedup over Clang for parallel configurations (log scale), higher
is better. Polygeist outperforms (9.47× geomean speedup) both Pluto (7.54×) and Polly
(3.26×) on average. Pluto can’t process adi, which is therefore excluded from summary
statistics.

-mllvm -polly and additional flags to enable affine scheduling, tiling and parallelization

as required. Polly is taken at the same LLVM commit as Clang. We disable pattern-based

optimizations [127] that are not available elsewhere. Figures 6-11 and 6-12 summarize the

results for sequential and parallel flows, respectively.

6.5 Performance Analysis

6.5.1 Benchmarking

The transformation of reduction loops, in particular parallelization, may result in a different

order of partial result accumulation. This is not allowed under IEEE 754 semantics, but is

supported by compilers with -ffast-math option.

We found that Polybench allocation function hinders Clang/LLVM alias analysis, neg-
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atively affecting performance in, e.g., adi. Therefore, we modified all benchmarks to use

malloc that is known to produce non-aliasing pointers.

6.5.2 Baseline Comparison

We did not observe a significant difference between the runtimes of Clang and ClangSing

configurations, with a geometric mean of 0.43% symmetric difference3 across benchmarks.

Therefore, we only consider Clang as baseline throughout the remainder of this paper. We

did not observe a significant difference between the runtimes of Clang and MLIR-Clang

configurations either, with a geometric mean of 0.24% symmetric difference.

We found a variation in runtimes of short-running benchmarks, in particular jacobi-1d.

This can be attributed to the interaction with the data initialization and benchmarking

code, and with other OS processes. Excluding the benchmarks running in under 0.05s

(jacobi-1d, gesummv, atax, bicg) from the analysis, we obtain 0.32% and 0.17% ge-

omean symmetric differences respectively for the two comparisons above. These results

suggest that our flow has no unexplained (dis)advantages over the baseline.

6.5.3 Performance Differences in Sequential Code

Overall, Polygeist leads to larger speedups, with 2.53× geometric mean, than both Pluto

(2.34×) and Polly (1.41×), although improvements are not systematic. Some difference

between Polygeist and Polly is due to the employed polyhedral schedulers, e.g., in lu and

mvt. Polygeist produces code faster tha both Pluto and Polly in 2mm, 3mm and others thanks

to statement splitting, see Section 6.5.5.

Given identical statements and schedules, codegen-level optimization accounts for other

performance difference. seidel-2d is the clearest example: Pluto executes 2.7·1011 more

integer instructions than Polygeist. Assuming these to be index/address computations, a

mix of add (throughput 1/2 or 1/4) and imul/shl (thoughput 1), we can expect a ≈ 59s

difference at 3GHz, consistent with experimental observations. Polygeist optimizes away

a part of those in its post-optimization phase and emits homogeneous address computa-

3Symmetric difference is computed as 2 · |a − b|/(a + b).
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tion from memref with proper machine size type, enabling more aggressive bound analysis

and simplification in the downstream compiler. Conversely, jacobi-2d has poorer perfor-

mance because Polygeist gives up on simplifying CLooG code, with up to 75 statement

copies in 40 branches, for compiler performance reasons, as opposed to Clang that takes up

to 5s to process it but results in better vectorization. Further work is necessary to address

this issue by emitting vector instructions directly from Polygeist.

6.5.4 Performance Differences In Parallel Code

Similarly to sequential code, some performance differences are due to different schedulers.

For example, in cholesky and lu, both Pluto and Polygeist outperform Polly, and the

remaining gap can be attributed to codegen-level differences. Conversely, in gemver and

mvt Polly has a benefit over both Pluto and Polygeist. On ludcmp and syr(2)k, SSA-level

optimizations let Polygeist produce code which is faster than Pluto and at least as fast as

Polly. These results demonstrate that Polygeist indeed leverages the benefits of both the

affine and SSA-based optimizations.

Polygeist is the only flow that obtains speedup on deriche (6.9×) and symm (7.7×).

Examining the output code, we observe that only Polygeist manages to parallelize these

two benchmarks. Considering the input code in Figure 6-13, one can observe that the

i loop reuses the ym1 variable, which is interpreted as parallelism-preventing loop-carried

dependency by polyhedral schedulers. Polygeist performs its own parallelism analysis after

promoting ym1 to an SSA register (carried by the j loop) whose use-def range does not

prevent parallelization.

Similarly, the Polygeist parallelizer identifies two benchmarks with parallel reduction

loops that are not contained in other parallel loops: gramschmidt and durbin. gramschmidt

benefits from a 56× speedup with Polygeist, compared to 34× with Polly and 54× with

Pluto. durbin sees a 6× slowdown since the new parallel loop has relatively few iterations

and is nested inside a sequential loop, leading to synchronization costs that outweigh the

parallelism benefit. Section 6.5.6 explores the durbin benchmark in more detail. Poly-

bench is a collection of codes (mostly) known to be parallel and, as such, has little need for
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for (i=0; i<_PB_W; i++) {
ym1 = SCALAR_VAL(0.0);
// ...
for (j=0; j<_PB_H; j++) {

ym1 = y1[i][j];
/*...*/

}
}

%z = constant 0.0 : f64
affine.parallel %i = ... {

affine.for %j = ... iter_args(%ym1=%z) -> f64 {
%0=affine.load %y1[%i,%j]
// ...
affine.yield %0

}
}

Figure 6-13: Excerpt from the deriche benchmark. The outer loop reuses ym1 which
makes it appear non-parallel to affine schedulers (left). Polygeist detects parallelism thanks
to its mem2reg optimization, reduction-like loop-carried %ym1 value detection and late par-
allelization (right).

reduction parallelization on CPU where one degree of parallelism is sufficient. When tar-

geting inherently target architectures as GPUs, however, exploiting reduction parallelism

could be vital for achieving peak performance [228, 321].

6.5.5 Case Study: Statement Splitting

We identified 5 benchmarks where the statement splitting heuristic applied: 2mm, 3mm,

correlation, covariance and trmm. To assess the effect of the transformation, we

executed these benchmarks with statement splitting disabled, suffixed with -nosplit in

Figure 6-14. In sequential versions, 2mm is 4.1% slower (3.13s vs 3.26s), but the other

benchmarks see speedups of 25%, 50%, 51% and 27%, respectively. For parallel versions,

the speedups are of 36%, 20%, 44%, 40% and −9% respectively.

Examination of polyhedral scheduler outputs demonstrates that it indeed produced the

desired schedules. For example, in the correlation benchmark which had the statement

A[i][j] += B[k][i]*B[k][j] Polygeist was able to find the (k, i, j) loop order after

splitting. Using hardware performance counters on sequential code we confirm that the

overall cache miss ratio has indeed decreased by 75%, 50%, 20%, 27%, and −26%, respec-

tively. However, the memory traffic estimated by the number of bus cycles has increased

by 9% for 2mm, and decreased by 18%, 32%, 32%, and 21% for the other benchmarks.

This metric strongly correlates with the observed performance difference in the same run

(r=0.99, p = 3 ·10−11). This behavior is likely due to the scheduler producing a different

fusion structure, e.g., not fusing outermost loops in 2mm, which also affects locality. Sim-
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Figure 6-14: Mean and 95% confidence intervals of run time across 5 runs of Polybench
where statement splitting is applicable (Section 6.3.4), lower is better. It results in faster run
time (geomean 1.28× sequential, 1.39× parallel speedup) except for sequential 2mm (−4%)
and parallel trmm (−9%).

ilar results can be observed for parallel code. Further research is necessary to exploit the

statement splitting opportunities, created by Polygeist, and interplay with fusion.

6.5.6 Case Study: Reduction Parallelization in durbin

In this benchmark, Polygeist uses its reduction optimization to create a parallel loop that

other tools cannot. For the relatively small input run by default, N = 4000 iterations

inside another sequential loop with N iterations, the overall performance decreases. We

hypothesize that the cost of creating parallel threads and synchronizing them outweighs the

benefit of the additional parallelism and test our hypothesis by increasing N. Considering

the results in Figure 6-15, one observes that Polygeist starts yielding speedups (> 1) for

N ≥ 16000 whereas Polly only does so at N ≥ 224000, and to a much lesser extent: 6.62×

vs 1.01×. Without reduction parallelization, Polygeist follows the same trajectory as Polly.

Pluto fails to parallelize any innermost loop and shows no speedup. This evidences in favor

of our hypothesis and highlights the importance of being able to parallelize reductions.
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Figure 6-15: Reduction parallelization allows PolygeistPar to produce larger speedups and
at smaller sizes than PollyPar and PolygeistPar without reduction support. PlutoPar fails
to parallelize leading to no speedup.

6.6 Related Work

MLIR Frontends

Since the adoption of MLIR under the LLVM umbrella, several frontends have been

created for generating MLIR from domain-specific languages. Teckyl [99] connects the

productivity-oriented Tensor Comprehensions [397] notation to MLIR’s Linalg dialect.

Flang—the LLVM’s Fortran frontend—models Fortran-specific constructs using the FIR

dialect [351]. COMET, a domain-specific compiler for chemistry, introduces an MLIR-

targeting domain-specific frontend from a tensor-based language [280]. NPComp aims at

providing the necessary infrastructure to compile numerical Python and PyTorch programs

taking advantage of the MLIR infrastructure [289]. PET-to-MLIR converts a subset of poly-

hedral C code to MLIR’s Affine dialect by parsing pet’s internal representation. In addition

to currently not handling specific constructs (ifs, symbolic bounds, and external function

calls), parsing pet’s representation limits the frontend’s usability as it cannot interface with

non-polyhedral code such as initialization, verification, or printing routines [219]. In con-

trast, Polygeist generates MLIR from non-polyhedral code (though not necessarily in the

Affine dialect). CIRCT is a new project under the LLVM umbrella that aims to apply MLIR

development methodology to the electronic design automation industry [78]. Stripe uses
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MLIR Affine dialect as a substrate for loop transformations in machine learning models,

including tiling and vectorization, and accepts a custom DSL as input [426].

Combining “Classical” and Polyhedral Flows

Few papers have focused on combining “classical”, mostly AST-level, and polyhedral

transformations. PolyAST pioneered the approach by combining an affine scheduler with

AST-level heuristics for fusion and tiling [354], although similar results were demonstrated

with only polyhedral transformations [430]. An analogous approach was experimented

in CUDA-CHiLL [427]. Arguably, many automated polyhedral flows perform loop fu-

sion and/or tiling as a separate step that can be assimilated to classical transformations.

Pluto [52] uses several “syntactic” postprocessing passes to exploit spatial locality and par-

allelism in stencils [430]. Several tools have been proposed to drive polyhedral loop trans-

formations with scripts using classical loop transformations such as fusion and permutation

as operations, including URUK [136], CHiLL [71] and Clay [24]. Polygeist differs from

all of these because it preserves the results of such transformations in its IR along with

polyhedral constructs and enables interaction between different levels of abstraction.

Additional (Post-)Polyhedral Transformations

Support for handling reduction loops was proposed in Polly [98], but the code gen-

eration is not implemented. At the syntactic level, reduction support was added to PET

via manual annotation with Pencil directives [321]. R-Stream reportedly uses a variant of

statement splitting to affect scheduler’s behavior and optimize memory consumption [260].

PolySIMD uses variable renaming around PPCG polyhedral flow to improve vectoriza-

tion [66]. Polygeist automates these leveraging both SSA and polyhedral information.

Integration of Polyhedral Optimizers into Compilers

Polyhedral optimization passes are available in production (GCC [307], LLVM [149],

IBM XL [51]) and research (R-Stream [260], ROSE [316]) compilers. In most cases, the

polyhedral abstraction must be extracted from a lower-level representation before being

transformed and lowered in a dedicated code generation step [29, 151]. This extraction

process is not guaranteed and may fail to recover high-level information available at the

source level [150]. Furthermore, common compiler optimizations such as LICM are known

to interfere with it [223]. Polygeist maintains a sufficient amount of high-level information,

164



in particular loop and n-D array structure, to circumvent these problems by design.

Source-to-source polyhedral compilers such as Pluto [52] and ppcg [406] operate on a C

or C++ level. They lack interaction with other compiler optimizations and a global vision

of the code, which prevents, e.g., constant propagation and inlining that could improve

the results of polyhedral optimization. Being positioned between the AST and LLVM IR

levels, Polygeist enables the interaction between higher- and lower-level abstractions that

is otherwise reduced to compiler pragmas, i.e. mere optimization hints. Furthermore,

Polygeist can rely on MLIR’s progressive raising [69] to target abstractions higher level

than C code with less effort than polyhedral frameworks [70].

6.7 Discussion

6.7.1 Limitations

Frontend While Polygeist could technically accept any valid C or C++ thanks to building

off Clang, it has the following limitations. Only structs with values of the same type or

are used within specific functions (such as FILE within fprintf) are supported due to the

lack of a struct-type in high-level MLIR dialects. All functions that allocate memory must

be compiled with Polygeist and not a C++ compiler to ensure that a memref is emitted

rather than a pointer.

Optimizer The limitations of the optimizer are inherited from those of the tools in-

volved. In particular, the MLIR affine value categorization results in all-or-nothing model-

ing, degrading any loop to non-affine if it contains even one non-affine access or a negative

step. Running Polygeist’s backend on code not generated by Polygeist’s frontend, which

reverses loops with negative steps, is limited to loops with positive indices. Finally, MLIR

does not yet provide extensive support for non-convex sets (typically expressed as unions).

Work is ongoing within MLIR to address such issues.

Experiments While our experiments clearly demonstrate the benefits of the techniques

implemented in Polygeist— statement splitting and late (reduction) parallelization — non-

negligible effects are due to scheduler difference: Pluto in Polygeist and isl in Polly. The
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version of Polly using Pluto4 is not compatible with modern LLVM necessary to leverage

MLIR. Connecting isl scheduler to Polygeist may have yielded results closer to Polly,

but still not comparable more directly because of the interplay between SCoP detection,

statement formation and affine scheduling.

6.7.2 Opportunities and Future Work

Connecting MLIR to existing polyhedral flows opens numerous avenues for compiler op-

timization research, connecting polyhedral and conventional SSA-based compiler transfor-

mations. This gives polyhedral schedulers access to important analyses such as aliasing and

useful information such as precise data layout and target machine description. Arguably,

this information is already leveraged by Polly, but the representational mismatch between

LLVM IR and affine loops makes it difficult to exploit them efficiently. MLIR exposes

similar information at a sufficiently high level to make it usable in affine transformations.

By mixing abstractions in a single module, MLIR provides finer-grain control over the

entire transformation process. An extension of Polygeist can, e.g., ensure loop vectoriza-

tion by directly emitting vector instructions instead of relying on pragmas, which are often

merely a recommendation for the compiler. The flow can also control lower-level mech-

anisms like prefetching or emit specialized hardware instructions. Conversely, polyhedral

analyses can guarantee downstream passes that, e.g., address computation never produces

out-of-bounds accesses and other information.

Future work is necessary on controlling statement granularity made possible by Polygeist.

Beyond affecting affine schedules, this technique enables easy rematerialization and local

transposition buffers, crucial on GPUs [376], as well as software pipelining; all without

having to produce C source which is known to be complex [420]. On the other hand, this

may have an effect on the compilation time as the number of statements is an important

factor in the complexity bound of the dependence analysis and scheduling algorithms.

4http://pluto-compiler.sourceforge.net/#libpluto
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6.7.3 Alternatives

Instead of allowing polyhedral tools to parse and generate MLIR, one could emit C (or

C++) code from MLIR5 and use C-based polyhedral tools on the C source, but this ap-

proach decreases the expressiveness of the flow. Some MLIR constructs, such as parallel

reduction loops, can be directly expressed in the polyhedral model, whereas they would

require a non-trivial and non-guaranteed raising step in C. Some other constructs, such as

prevectorized affine memory operations, cannot be expressed in C at all. Polygeist enables

transparent handling of such constructs in MLIR-to-MLIR flows, but we leave the details

of such handling for future work.

The Polygeist flow can be similarly connected to other polyhedral formats, in particular

isl. We choose OpenScop for this work because it is supported by a wider variety of tools.

isl uses schedule trees [404] to represent the initial and transformed program schedule.

Schedule trees are sufficiently close to the nested-operation IR model making the conver-

sion straightforward: “for” loops correspond to band nodes (one loop per band dimension),

“if” conditionals correspond to filter nodes, function-level constants can be included into

the context node. The tree structure remains the same as that of MLIR regions. The inverse

conversion can be obtained using isl’s AST generation facility [151].

6.8 Conclusion

We present Polygeist, a compilation workflow for importing existing C or C++ code into

MLIR and allows polyhedral tools, such as Pluto, to optimize MLIR programs. This en-

ables MLIR to benefit from decades of research in polyhedral compilation. We demonstrate

that the code generated by Polygeist has comparable performance with Clang, enabling

unbiased comparisons between transformations built for MLIR and existing polyhedral

frameworks. Finally, we demonstrate the optimization opportunities enabled by Polygeist

considering two complementary transformations: statement splitting and reduction paral-

lelization. In both cases, Polygeist achieves better performance than state-of-the-art poly-

hedral compiler and source-to-source optimizer.

5https://github.com/marbre/mlir-emitc
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Chapter 7

Fast Automatic Differentiation of GPU

Kernels via Compiler Optimization

7.1 Introduction

Automatic differentiation (AD) provides an accurate way of computing derivatives of math-

ematical functions that are implemented in computer programs. Gradients (or adjoints), a

special case of derivatives for functions with one output and many inputs, have applica-

tions in optimization [104], uncertainty quantification [130], inverse design, stability anal-

ysis,and machine learning [254]. Reverse-mode AD has been the tool of choice to compute

these gradients for large applications with many input parameters.

As the research community has been continuously pushing the boundary of the size of

problems they want to solve, large-scale applications have had to leverage the latest in high-

performance computing including distributed computation, parallelism, and accelerators.

For many machine learning and scientific computing applications, this means relying on

kernels that are highly optimized for graphics processing units (GPUs).

While considerable effort has been expended to compute gradients of MPI and OpenMP

programs (see Sec 7.2 for related work), no AD tool has been presented to date that can

compute gradients of CUDA or ROCm (AMD) kernels. The cause rests with both the

GPU’s parallelism and its complex performance characteristics. The biggest issue for both
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void init(double* ar, int N, double val) {
parallel_for(int i=0; i<N ; i++)

// Concurrent reads of val
ar[i] = val;

}

double ∇init(double* ar, double* d_ar, int N, double val) {
double d_val = 0.0;
parallel_for(int i=0; i<N ; i++)

ar[i] = val;
parallel_for(int i=0; i<N ; i++) {

// Concurrent writes to d_val
d_val += d_ar[i]; E race E
d_ar[i] = 0.0;

}
return d_val;

}

Figure 7-1: A parallel initialize function (top) with a naive reverse mode AD gradient func-
tion (bottom) that does not take the parallelism into account. Consequently, the concurrent
read of the variable val causes a race in the reverse-mode gradient computation.

performance and correctness is due to the implied computational flow reversal of reverse-

mode AD; every read becomes a write in the adjoint computation and vice versa. Consider

the program at the top of Figure 7-1. It contains a simple parallel for loop that reads from

the same variable val in all threads and sets each index of the output array ar to that

value. Since all threads read the same value, there is a concurrent read access on val,

which does not impact the final result. Computing the gradient function of this program

(i.e. the derivative of the input val), one must accumulate all of the partial derivatives of

val generated by uses in the outputs. Such an action unfortunately leads to a write race on

the gradient d_val, which may be updated by multiple threads at the same time. Special

care must be taken to avoid undefined behavior and ensure the correctness of the gradient

computation while preserving as much of its parallelism as possible.

GPUs often have relatively small amounts of memory per thread. Moreover, the mem-

ory of GPUs commonly has complex performance characteristics, with global memory

being slow but large, shared memory being fast but small, and the use of certain types of

memory preventing the simultaneous use of large thread counts. Potential remedies involve
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either sacrificing generality, by rewriting HPC applications in a differentiable domain-

specific language (DSL), or resorting to approaches such as numerical differentiation.

To leverage the potential performance benefits of reverse-mode AD without sacrificing

generality, one requires a tool that is capable of both handling the complex performance

characteristics of GPU architectures and generating code that maintains the correctness

of the gradient without sacrificing the inherent parallelism of the original program. Un-

like many other tools, Enzyme1 [271] performs AD alongside the traditional optimiza-

tion pipeline by performing differentiation within the LLVM compiler [230]. Thus, we

can leverage existing code transformation infrastructure to build the requisite analyses and

transformations for maintaining the correctness and performance of the corresponding gra-

dient kernel. Furthermore, LLVM provides frontends for most commonly used languages

including C/C++, Fortran, Julia, Rust, Swift, and TensorFlow and backends for different

hardware architectures including CPU, NVIDIA GPUs [326, 172, 415], and AMD GPUs,

allowing us to build reverse-mode AD for multiple languages and architectures.

Overall, this chapter makes the following contributions:

• An algorithm for correctly generating gradients of GPU kernels and a corresponding

proof sketch of correctness

• An extension to the Enzyme AD engine for LLVM that can generate gradients for

GPU kernels written in either CUDA (NVIDIA) or ROCm (AMD)

• A collection of optimization passes for Enzyme/LLVM that allow generated GPU

gradients to run efficiently on modern hardware

• A study demonstrating, for the first time, the feasibility of reverse-mode automatic

differentiation of GPU kernels through the use of GPU and AD-specific optimizations

(caching and recomputation).

1https://enzyme.mit.edu
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7.2 Related Work

AD tools that differentiate programs at runtime are often relatively straightforward to de-

velop using, for example, operator overloading in C++ [145, 249, 409, 34, 171, 332].

Unfortunately, in reverse mode, they generally produce a large tape to store operations and

intermediate values for subsequent reverse differentiation, which causes challenges with

their memory footprint in real-world applications.

A more efficient, but more challenging type of AD uses a compile-time transformation

to translate the source code for a given function evaluation into the derivative function eval-

uation. Several such tools have been developed for Fortran and C including ADIFOR [45],

Tapenade [163], TAF [132], OpenAD [392], ADIC [47], and ADIC2 [281]. Unlike these

tools, Enzyme is based on the LLVM compiler instead of an AD-specific framework and

emits gradient programs in LLVM IR instead of the original source language. This ap-

proach allows Enzyme to benefit from the language support, optimizations, and maturity

of the LLVM platform.

For differentiating codes running in distributed-memory environments, libraries such as

the Adjoinable MPI library have been developed that reverse the nonblocking communi-

cation patterns in the original code [391, 62]. Other studies have presented reverse-mode

AD for OpenMP codes [44, 59, 58, 118, 180, 183] or hybrid OpenMP/MPI codes [133].

Some studies [133, 44] have identified that reverse-mode AD creates potential write races

on multicore CPU programs and suggest atomic updates or privatization as solutions.

Derivatives can be computed on GPUs for programs written in certain domain-specific

languages (DSLs) such as PyTorch [297], Halide [319], TensorFlow [1], or JAX [53]. The

AD approach used in these languages uses the structure of, and high-level knowledge about,

programs that can be written in those DSLs and does not easily generalize to arbitrary

programs written in a general-purpose language such as C or CUDA. Previous works have

discussed AD or symbolic differentiation for programs that call CUDA kernels [142, 144].

Such works, however, do not present differentiation of the kernels themselves or else use

the forward mode of AD [48, 324].
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7.3 Automatic Differentiation

This section provides a brief summary of automatic differentiation concepts that are rele-

vant to this work. For a more thorough introduction, we refer to [147, 282, 271].

AD takes as its input a computer program P that implements a mathematical function

and produces a new program that computes the derivative, or gradient, of that function.

AD tools are able to produce such a derivative by examining the individual instructions

of P (such as add or mul) and generating the corresponding partial derivatives of the in-

structions. By applying the chain rule of calculus, they then compute the derivative of

the entire program by accumulating the partial derivatives all instructions of P. Any or-

der of accumulating these derivatives is correct, but the order affects the efficiency, ease of

implementation, and memory usage. Two particular strategies have become popular.

Forward or tangent mode combines the derivatives of instructions in the order in which

the original instructions are evaluated, resulting in the propagation of derivatives from an

instruction’s input(s) to its output. Consider the instruction v = f (w, u). The derivative of

its output, v̇, can be evaluated by computing

v̇ =
∂ f
∂w

ẇ +
∂ f
∂u

u̇.

For the overall program, the derivative of all outputs z0, . . . , zm with respect to one of its

inputs x can thus be computed by setting ẋ = 1 at the start of the program, and reading

the final value of the differential or shadow ż0 . . . żm at the end of the program. Computing

the derivative with respect to multiple inputs requires a forward mode evaluation for every

input. This is also true for numeric differentiation or finite differences, where a separate

evaluation with a small perturbation for each input variable is required. Numeric differen-

tiation has the added disadvantage of being less accurate, and requiring the choice of a step

size.

Reverse or adjoint mode combines the derivative of instructions in a reverse pass,

which computes the derivative or adjoint of the instructions in the reverse order of the

original program, and propagates them from an instruction’s outputs to its inputs. Consid-

ering the same instruction v = f (w, u), the derivative of inputs w̄, ū can be evaluated by
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computing2

w̄+ =
∂ f
∂w

v̄; ū+ =
∂ f
∂u

v̄; v̄ = 0.

The derivative of output z with respect to any input x can then be computed by setting z̄ = 1

prior to evaluating all the partial derivatives, then reading the final value of the shadow in-

put x̄. This allows a single evaluation of reverse mode to compute the gradient (derivative

of output with respect to all inputs) in a single evaluation. Evaluating the derivative with re-

spect to multiple outputs, however, requires an evaluation per output. In practice, programs

with a large number of inputs, but few outputs (e.g. a loss function) dominate both scien-

tific and machine learning use cases. Since reverse mode can compute derivatives in this

case asymptotically faster than other methods, our work focuses entirely on reverse-mode

AD.

Despite its attractiveness for practical applications, reverse mode AD is not without

challenges, two of which are particularly relevant for this work. First, for a nonlinear in-

struction (such as x2), one requires the original input to compute the derivative (in this

case 2x). While this is true for both forward and reverse modes, it is a challenge during the

reverse pass. To provide the necessary inputs, the AD tool must evaluate all original instruc-

tions in an augmented forward pass and cache the required intermediate values (potentially

causing a large memory footprint), or store only selected intermediate variables from which

others can be recomputed (trading some memory for additional computation). Our work

addresses analysis strategies to reduce the amount of storage needed, but does not address

recomputation strategies, which are an active research subject on their own [146, 411, 18]

and are beyond the scope of this work. Second, since the derivative evaluation occurs in a

different order than the original program, parallelization strategies that are correct for the

original program may not be correct for the derivative program, and special care needs to

be taken to avoid data races. This and other challenges are addressed in Section 7.4.

2In reverse mode, the derivative adds to the shadow value w̄ rather than setting it directly. This ensure the
derivatives from all uses of w are taken into account. The total derivative of w is finalized when all partial
derivatives have been accumulated. This is guaranteed to occur before the reverse of the instruction that
defines w as all users of w must occur after w in the original program and thus all adjoints that update w
must occur prior the reverse of w’s defining instruction. Since we are adding to the shadow, we must also
initialize the shadow to zero. This is primarily done in the forward pass when creating the primal variable. To
accommodate variables which are redefined (e.g. when in a loop), the shadow is again zero initialized after
its value is propagated to the shadow inputs.
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Memory load Memory store
%res = load %ptr store %ptr = %val

Reverse memory load Reverse memory store
%tmp = load %d_res
store %d_res = 0
atomic %d_ptr += %tmp

%tmp = load %d_ptr
store %d_ptr = 0
load/store %d_val += %tmp

Figure 7-2: Rules for memory operations. Shadow registers d_res and d_val are thread-
local since they shadow thread-local registers. There is no risk of racing on thread-local
data and no special handling required. Both ptr and shadow d_ptr might be raced on and
require atomics in the adjoint of the load. If ptr (and consequently d_ptr) is proven to
be thread-local or have constant memory, the atomic update can be replaced with a serial
update or reduction, respectively.

The reverse mode of automatic differentiation is closely related to the backpropaga-

tion algorithm for neural networks, and both have been implemented in DSLs such as

PyTorch [297], TensorFlow [2], and others [174, 348, 218, 90]. These DSLs do not differ-

entiate compute kernels directly, but expose high-level operations such as matrix multiply,

and provide existing superoptimized GPU kernels for both the original function and its

derivative. This approach is very effective for programs that can be written within these

DSLs. For existing HPC applications or those that do not easily map to a DSL, this is

unfortunately not an option. For this reason, there continues to be a need for AD tools such

as Enzyme that can differentiate programs written in general purpose languages.

7.4 Reverse-Mode AD for GPU Kernels

Enzyme performs reverse-mode automatic differentiation over the LLVM intermediate rep-

resentation (LLVM-IR). Since Enzyme is tightly integrated within the LLVM pipeline, it

can differentiate any programming language with an LLVM frontend and can target any ar-

chitecture that has an LLVM backend. Most importantly, this alleviates the need for DSLs

or language restrictions to apply AD to code. Prior to this work, GPU kernels could not be

differentiated in reverse mode without being rewritten in an explicitly differentiable DSL

(e.g., PyTorch). To differentiate GPU kernels, we extend Enzyme to handle shared-memory

accesses, avoid data races in the presence of concurrent reads in the primal, differentiate
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parallel control flow (e.g., sync_threads), and differentiate GPU-specific intrinsic func-

tions (e.g., the LLVM-IR representation of the CUDA thread identifier threadIdx.x).

Enzyme first performs an activity analysis [43], which deduces what instructions and

values in the function could impact the resulting gradient computation. For every active

value, Enzyme creates a corresponding shadow memory location, which is used to store

intermediate derivative values. For active function arguments, Enzyme expects the callee

of the gradient function to pass in the shadow of each argument (see Section 7.4.4). We

refer to prior work [271] for a more detailed explanation of Enzyme on serial programs.

Here, we will focus on our contribution of synthesizing gradient functions for GPU kernels

and the necessary changes and improvements to Enzyme.

7.4.1 GPU Memory-Aware Gradient Synthesis

Case 1 Case 2 Case 3
A:

store %ptr
barrier

B:
store %ptr

A:
store %ptr
barrier

B:
load %ptr

A:
load %ptr
barrier

B:
store %ptr

Gradient Case 1 Gradient Case 2 Gradient Case 3
∇B:

load %d_ptr
store %d_ptr = 0
barrier

∇A:
load %d_ptr
store %d_ptr = 0

∇B:
atomicAdd d_ptr

barrier
∇A:

load %d_ptr
store %d_ptr = 0

∇B:
load %d_ptr
store %d_ptr = 0
barrier

∇A:
atomicAdd %d_ptr

Figure 7-3: Illustrations for the case analysis of the barrier instruction adjoint definition.

The most challenging aspect of generating fast and correct gradient code from parallel

code is reasoning about memory operations, especially on the different memory types of the

GPU. Both NVIDIA and AMD GPUs have thread-local, shared (block-local), and global

memory, as well as constant memory that cannot change during the execution of a kernel.

We define rules for synthesizing correct gradients according to which kind of memory is

accessed. We define the shadow of constant memory to be global memory, to ensure that

the reverse pass is able to write the corresponding gradient to the shadow. Our approach

175



requires that the primal code is determinacy race-free. Thus, we assume the appropriate

use of atomic accesses and barriers (see Section 7.4.2).

Memory that is known to be thread-local cannot be accessed concurrently by multiple

threads and is therefore equivalent to memory in serial AD. The gradient computation can

access and update non-atomically without introducing a race.

In contrast, global and shared memory can be accessed concurrently by multiple threads

in the primal. In the gradient computation this can cause concurrent write accesses, and thus

races, if the updates are performed non-atomically (see Figure 7-1). The generic solution is

to perform all accesses and updates in the reverse pass atomically. Such an approach, how-

ever, has severe performance downsides. Instead, we translate loads and stores of global-

and shared-memory locations according to the rules displayed in Figure 7-2. That is, loca-

tions that are accessible by other threads are accessed atomically, while thread-local loca-

tions such as the thread-local shadow locations are accessed non-atomically. Further, we

identify the special case where all threads in a block load from the same memory location

in shared memory. In this case we employ an efficient block-level reduction computation

that uses synchronous warp shuffle operations instead of atomic accesses.

7.4.2 Adjoints of Barriers

In GPU programming, barriers (e.g. sync_threads in CUDA) can synchronize the execu-

tion of threads within a warp or block. This is especially important in the presence of shared

memory because it allows threads to communicate efficiently without memory races. We

define the adjoint of barrier calls to be another barrier at the corresponding location in the

reverse pass and show that this is sufficient by case analysis.

Given two consecutive code blocks A and B, separated by a barrier, that write or read

the same memory location, the barrier provides four distinct memory guarantees:

1. All stores in A must complete prior to a store in B.

2. All stores in A must complete prior to a load in B.

3. All loads in A must complete prior to a store in B.
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4. All loads in A must complete prior to a load in B.

Figure 7-3 shows minimal examples for cases 1–3; all four cases are discussed in the fol-

lowing.

Case 1: Store, Barrier, Store In the primal, the store in B will clobber the store in A, caus-

ing subsequent loads to see the value stored in B. As a result, we must ensure that the

gradient will increment only the derivative of the value stored in B and not the value

stored in A. The barrier in the reverse pass ensures that only ∇B could read a nonzero

adjoint from d_ptr, as desired.

Case 2: Store, Barrier, Load For the reverse code to be correct we require the load of

d_ptr, which is the adjoint of the primal load, to happen after all atomicAdd op-

erations, which are the results of the primal store. The barrier in the reverse pass is

sufficient to guarantee that ordering.

Case 3: Load, Barrier, Store We require that all of the stores of d_ptr, which are caused

by the primal load, complete prior to any atomicAdd, which is the adjoint of the

primal store. The barrier in the reverse pass will ensure this. Note that there cannot

be a race in ∇B because that would require a preexisting race in B, which is violating

our precondition.

Case 4: Load, Barrier, Load In the case of a barrier between two loads, the barrier oper-

ation is superfluous and can be removed with no change in semantics. Therefore, no

extra considerations are needed.

7.4.3 GPU Intrinsics and Shared-Memory Allocations

The gradient is independent of most GPU-specific built-ins and intrinsics (e.g., threadIdx.x)

since they are known to LLVM to be pure, that is, independent of memory. Furthermore,

most intrinisics are inactive and can consequently be recomputed without special handling

by Enzyme. Exceptions include barriers and special memory accesses (e.g., tensor core or

atomic memory operations). The former is described in Section 7.4.2, and the latter can be

implemented in a manner similar to traditional memory operations.
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Shared-memory allocations require explicit handling to provide adjoint locations, also

allocated in shared memory, that act as shadows. In LLVM-IR, a shared-memory allocation

is represented as a global value with an explicit address space that is effectively uninitial-

ized at kernel launch time. Therefore, in addition to the shadow allocation, we generate

initialization code that is executed at the very beginning of differentiated kernels.

7.4.4 Usage

Enzyme is available as a plugin for the LLVM “core” compiler component. When Enzyme

is loaded into compilers such as Clang, an optimization pass is enabled that acts on calls to

the __enzyme_autodiff function.3 The first argument to this function is the primal that

is differentiated, followed by the primal arguments interleaved with shadow locations for

pointers. For usage within CUDA, one calls __enzyme_autodiff from inside a device

kernel that is launched through the normal CUDA API. Figure 7-4 shows how the GPU

function inner is differentiated and how the synthesized gradient, ∇inner, looks concep-

tually4.

7.5 Optimizations

GPU architectures feature multiple kinds of memory that differ in their access latency,

visibility, and size. While registers and shared memory are much faster than global mem-

ory, they are limited resources on GPUs and are allocated for a kernel at launch time. If a

kernel requests a large number of registers or a large shared-memory allocation, the effec-

tive available parallelism (occupancy) of the kernel is lowered to fulfill the request. This

can become a bottleneck for applications since a major benefit of using GPUs is their high

throughput offered by plentiful parallelism. To achieve good performance, Enzyme must

consequently consider trade-offs between using slower global memory or increasing the

use of registers and shared memory, which may result in fewer kernel instances being run

3As Julia is JIT compiled, Enzyme.jl can explicitly call Enzyme’s ABI for creating derivatives, rather than
loading Enzyme into an existing optimization pipeline.

4Note that while we show CUDA code for readability, Enzyme acts on the lower level LLVM-IR that can
be targeted by various languages and parallel programming models.
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__device__ void __enzyme_autodiff(void*, ...);

__device__ void inner(float* a, float* x, float* y) {
y[threadIdx.x] = a[0] * x[threadIdx.x];

}

__global__ void ∇kernel(float* a, float* da,
float* x, float* dx,
float* y, float* dy) {

__enzyme_autodiff((void*)inner, a, da, x, dx, y, dy);
}

// Synthesized by Enzyme on the LLVM-IR level
// from the definition of the inner function.
__device__ void ∇inner(float* a, float* da,

float* x, float* dx,
float* y, float* dy) {

y[threadIdx.x] = a[0] * x[threadIdx.x];

float dy_tmp = dy[threadIdx.x];
dy[threadIdx.x] = 0.0f;

float dx_tmp = a[0] * dy_tmp;
atomic { dx[threadIdx.x] += dx_tmp; }

float da_tmp = x[threadIdx.x] * dy_tmp;
atomic { da[0] += da_tmp; }

}

Figure 7-4: A simple GPU function, inner, that is differentiated by Enzyme within the
CUDA kernel ∇kernel (top). A high-level representation of the synthesized gradient En-
zyme would generate is shown as ∇inner (bottom). The call to __enzyme_autodiff is
replaced by a call to the newly generated derivative function.
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(a) (b) (c)
for (int i=0; i<N; i++) {

for (int j=0; j<M; j++) {
use(array[j]);

}
}
overwrite(array);

double *cache = new double[N*M];
for (int i=0; i<N; i++) {

for (int j=0; j<M; j++) {
cache[i*M+j] = array[j];
use(array[j]);

}
}
overwrite(array);
diffe_overwrite(array);
for (int i=N-1; i>=0; i--) {

for (int j=M-1; j>=0; j--) {
diffe_use(cache[i*M+j]);

}
}
delete[] cache;

double *cache = new double[M];
memcpy(cache, array, M*sizeof(double));
for (int i=0; i<N; i++) {

for (int j=0; j<M; j++) {
use(array[j]);

}
}
overwrite(array);
diffe_overwrite(array);
for (int i=N-1; i>=0; i--) {

for (int j=M-1; j>=0; j--) {
diffe_use(cache[j]);

}
}
delete[] cache;

Figure 7-5: In (a), there is a sample program that uses values of an array in a loop nest. The
loads of the array cannot be hoisted by LICM. The array is overwritten outside of the loop
nest. Enzyme would require caching a value for every execution of the load instruction, as
shown in (b) and using Θ(NM) memory. Using the cache LICM optimization, the cache
could be hoisted outside the loop as shown in (c), requiring only Θ(M) memory.

simultaneously.

Like all reverse-mode AD tools, Enzyme may need to preserve values generated in the

forward pass for use in the reverse. If a value is available in the reverse pass, for example, if

the memory that holds it was not overwritten, Enzyme will simply use it. When a memory

location holding a value required for the reverse pass is modified, however, Enzyme must

ensure that the value is preserved, or cached, an action that inevitably requires additional

storage.

While it is generally beneficial to reduce the amount of memory used to cache values,

doing so is especially important for GPU execution. In general, the number of memory

locations that need to be cached is not known at compile time. Consequently, Enzyme has

to cache values in thread-local storage, allocated through the dynamic allocation function

malloc. In CUDA, malloc is backed by global memory and cached in the L1 cache.

Global memory is substantially slower to access than registers or shared memory, which is

why cache use can dramatically increase the kernel runtime. Moreover, excessive caching

can require more than the available GPU heap memory and prevent the program from

being run at all. Since memory size and bandwidth are the primary bottlenecks, most of

our optimizations aim to minimize global memory accesses. Our experimental results in

Section 7.6 demonstrate that significant GPU-specific and AD-specific optimizations are
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necessary to run the reverse pass in a reasonable time. Below, we briefly explain the most

important optimizations that we use for this work.

Alias Analysis Alias analysis [9, Ch. 12] is fundamental to Enzyme’s ability to deter-

mine whether an instruction can be recomputed or must be cached. Instructions that do

not access memory are trivially recomputable. For instructions that read memory, Enzyme

uses LLVM’s alias analysis pipeline to determine whether the value is overwritten before

it is required in the reverse pass. Depending on the quality of available alias information,

for example, from types and restrict qualifiers, this can reduce the number of cached values

significantly. However, if there are potentially aliasing pointers (e.g. two plain pointer ar-

guments), Enzyme is required to assume that writes to one might modify any element read

through the other. In the worst case, this uncertainty can force Enzyme to cache all read

accesses of a constant input array.

In our analysis, we found that common math functions, such as cos, are seen as being

able to write to any global memory and thus potentially overwrite most memory locations.

LLVM models libm implementations of these functions as writeonly because they can

set the global errno variable, assuming the user does not explicitly disable this potential

side effect. The situation is different for CUDA code since there is no libm available.

Instead, Clang will effectively map all available math functions onto respective CUDA

builtin functions, for example, __nv_cos. Since the LLVM analyses and optimizations are

not aware of these CUDA-specific functions, they are conservatively assumed to read and

write arbitrary memory. For the sake of Enzyme’s cache, we allow alias analysis to assume

that common math functions do not act as barriers to recomputation.

Another significant barrier to performance is the aliasing behavior of sync_threads.

In order to ensure correctness for multithreaded GPU programs, LLVM’s aliasing proper-

ties of architecture-specific barrier intrinsics assume that barrier can read and write to

most memory locations. For the same reasons as above, this assumption forces Enzyme to

unnecessarily cache values. We extend Enzyme to define a barrier instruction S as having

the aliasing behavior of all instructions that precede S until it reaches another barrier or

the start of the kernel being differentiated.

Loop-Invariant Cache Enzyme caches the results of individual instructions rather than
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(a) (b) (c)
use(x[0] + y[0]);
overwrite(x, y);

double x_cache = x[0];
double y_cache = y[0];
use(x[0] + y[0]);
overwrite(x, y);
diffe_overwrite(x, y);
diffe_use(x_cache[i] + y_cache[i]);

double sum_cache = x[0] + y[0];
use(x[0] + y[0]);
overwrite(x, y);
diffe_overwrite(x, y);
diffe_use(sum_cache);

Figure 7-6: (a) A sample program that loads two variables x and y and then perform some
computation with the result. These variables are subsequently overwritten and thus would
require caching to be available in the reverse pass. A naive cache algorithm would produce
the code in (b) in which both overwritten memory locations x and y are cached. As shown
in (c), one could instead cache the sum since neither x nor y is individually necessary to
compute the gradient.

memory ranges. This approach can be more efficient for general programs, especially if

memory access patterns are sparse. This can be problematic, however, in cases where many

instructions load from the same piece of memory that must be cached. Enzyme relies on

LLVM-based optimizations such as common sub-expression elimination (CSE) and loop-

invariant-code-motion (LICM) [275, Sec. 13.2] to remove such equivalent accesses in the

original program and subsequently prevent unnecessary caching. In several cases, however,

the LLVM optimizations may not be legal, or even beneficial for the original code, but

would otherwise result in a large amount of unnecessary caching.

For example, consider the program shown in Figure 7-5(a). The load cannot be op-

timized by LICM since it depends on the innermost iteration variable j. If the load is

required for a reverse-pass computation, Enzyme must cache every result of the load as

shown in Figure 7-5(b), resulting in an Θ(NM) cache. However, we notice that the array

is only potentially overwritten outside of the loop nest, and we could have instead chosen

to simply cache the total size of the memory used (Θ(M)) as in Figure 7-5(c). This cache

optimization detects scenarios where it is legal and profitable to cache loads from a parent

loop nest, thereby reducing the total cache.

Equivalent Load Cache Similar to how the loop-invariant cache optimization reme-

dies issues where LICM may not optimize the initial code to reduce the cache, we also

present a cache-variant of common sub-expression elimination. Consider two loops that

both load from an array. Because the loops are not fused, these loads cannot be dedupli-
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cated by common sub-expression elimination. Consequently, Enzyme would have to create

two separate caches. However, since both of these load from the same memory without a

potential write in between, we can instead cache the array once and use it during the reverse

pass in both places.

Cache Forwarding GPU programs commonly use shared memory as a cache for global

memory when it may be used by many threads. This is highly beneficial because accesses

from shared memory are much faster than loads from global memory. If that shared mem-

ory is overwritten, however, it may need to be cached for the reverse pass. The original

global memory it is derived from, however, may not have been overwritten. In this case,

instead of allocating a cache to preserve the overwritten values in shared memory, we can

simply reload the underlying memory the shared memory is acting as a cache for, prevent-

ing an unnecessary allocation of global memory for the cache. An additional though yet

unimplemented extension to this optimization is to reuse the faster shared memory as a

cache for the reverse pass rather than having to load from the slower global memory.

PHI Unwrapping In addition to load and call instructions that may not be recom-

putable, Enzyme may also have to cache PHI instructions. PHI instructions occur when

the current basic block has multiple potential predecessors. The PHI instruction forwards

a value from the actual predecessor that just branched to the current block, preventing re-

computation and requiring caching.

This optimization aims to compute an equivalent value to the PHI by determining a con-

dition C that determines the actual predecessor of the basic block. The PHI node can then

be recomputed by recomputing the condition C and selecting the corresponding value the

PHI node would have when coming from the predecessor corresponding to C. Computing

C can be done by traversing the function’s control-flow graph and attempting to identify a

chain of conditions to branch instructions that lead to the PHI node from a given predeces-

sor. This cannot always be done at compile-time but nevertheless allows Enzyme to avoid

caching many PHI instructions in unnecessary allocations.

Allocation Optimizations Enzyme performs most cache allocations on the heap, backed

by global memory. By running the heap-to-stack optimization pass, we can lower a heap

allocation into a stack allocation and subsequently open the possibility of promoting the
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stack allocation to individual registers. Additionally, Enzyme may make several separate

allocations for different instruction caches. A function call (such as a call to malloc or

free) is expensive on the GPU. We provide a further optimization that coalesces several

individual allocations into a larger allocation, thereby reducing the overhead of allocating

cache memory.

Recompute versus Cache Heuristics When Enzyme deduces that a value V is required

in the reverse pass, Enzyme explicitly caches all loads, calls, and PHI instructions necessary

to compute V. We extend Enzyme with a heuristic to instead directly cache the value being

recomputed, rather than the loads necessary to recompute it, if we predict that this will

result in a smaller amount of cached memory as shown in Figure 7-6. We also extend this

heuristic to find the minimal set of values to cache by determining a minimum branch cut

between values that must be cached and instructions that require values from the forward

pass. In general, solving for the optimal cache size is difficult to do at compile time because

many relevant parameters such as loop bounds may not be known.

Loop Bound Calculation Enzyme frequently computes the bounds of loops, for ex-

ample, to determine the size of cache space allocations or to index into the cache. Enzyme

piggybacks on top of LLVM’s existing scalar evolution analysis to attempt to statically

deduce the size of loops. This allows Enzyme to allocate the required cache memory in

advance. However, not all loops have statically known bounds. For these dynamically

sized loops, Enzyme must continuously reallocate the cache inside the loop to ensure suf-

ficient memory exists to contain the values from all iterations. When the total number of

iterations is not statically analyzable, Enzyme adds a variable to cache the count for use in

index computations.

Consequently, it is desirable for Enzyme to statically deduce the bounds of loops. How-

ever, LLVM’s analysis passes must be conservative and account for behavior like potential

integer wraparound, causing hard-to-analyze bounds on seemingly simple loops. Enzyme

extends LLVM’s scalar evolution to take advantage of a key fact: if one is indeed evaluat-

ing code in the reverse pass, none of the forward-pass loops could have been infinite loops.

When computing bounds for cache sizes, we can consequently add the extra fact that the

loop is not infinite, allowing Enzyme to statically compute bounds of additional loops.
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Register Locality In contrast to virtual instruction sets like LLVM, physical architec-

tures have a fixed set of registers available for computation. To map a computation onto a

physical instruction set such as that used by a GPU, one must perform register allocation to

map the virtual registers used by LLVM to a fixed set of physical registers. When there are

insufficient registers available to represent all virtual registers, the compiler must spill the

instruction into a stack allocation (which on NVIDIA GPUs spills to the L1 cache and sub-

sequently global memory). Therefore, it is crucial for Enzyme to maximize the locality of

virtual register uses to avoid spilling. By default, Enzyme reuses a value from the forward

pass if it dominates its potential use in the reverse pass, because it will always be available

without an explicit allocation. This scheme is problematic for the GPU, however, because

it may increase the lifetime of registers, leading to spilling and increased global memory

use.

To remedy this situation, Enzyme will choose to recompute loads from shared memory

if there is register pressure. While a load from shared memory is certainly slower than

reusing a register, it is still faster than a load from global memory in a potential spill.

Inlining Choosing to inline or call a function can have substantial performance impli-

cations. Inlining a function may be beneficial because it may allow Enzyme to combine

loads or otherwise reduce redundant cache allocations through the loop-invariant cache or

equivalent load cache optimizations. On the other hand, by calling a function rather than

inlining it, Enzyme will explicitly recompute data structures generated by the function be-

ing called in the reverse pass. This action can increase register locality and may require

fewer instructions to recompute PHI nodes since there are fewer potential predecessors.

7.6 Evaluation

We evaluate our approach on five established GPU-based HPC proxy applications:

• CUDA-based RSBench [384] and XSBench [385], two implementations of Monte

Carlo neutron transport algorithms

• An extended version of the CUDA lattice-Boltzmann method (LBM) solver from the
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Parboil benchmark suite [371], with applications in computational fluid dynamics

• CUDA-based Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics

(LULESH) code [205], a proxy application for computational fluid dynamics solvers

• A discontinuous-Galerkin (DG) volume integral5[3] kernel as used in the pure Ju-

lia [41] climate code ClimateMachine.jl6 [347] and implemented for both CUDA

and AMD GPUs

7.6.1 Setup

For each application, we time just the evaluation of the code being differentiated, excluding

time taken for device memory initialization and transfer or other calling code. For CUDA

kernels, we explicitly increase the size of the device heap to 1 GB. RSBench, XSBench,

and the CUDA.jl version of DG were evaluated on an NVIDIA 2080 Super. LBM was

evaluated on an NVIDIA V100. LULESH was evaluated on an NVIDIA RTX A6000. The

AMDGPU.jl version of DG was evaluated on an AMD Vega 64. Benchmarks were tested

with LLVM main at commit 8dab25954b0acb53731c4aa73e9a7f4f98263030, Julia 1.6,

and Enzyme at commit ec75831a8cb0. The benchmark suite is available at https://

github.com/wsmoses/Enzyme-GPU-Tests.

All benchmarks were evaluated a minimum of five times, taking the geometric mean

as the final result. For each benchmark we evaluated the original kernel and the combined

forward/reverse pass generated by Enzyme (Figure 7-7); the combined forward and reverse

pass with various optimizations described in Section 7.5 disabled (Figure 7-10); the com-

pile times of the benchmarks (Figure 7-14); and the scalability of the gradients compared

to the original code (Figures 7-11 and 7-12).

With the exception of the LBM benchmark (see below), modifying a benchmark to

enable differentiation simply required allocating and initializing shadow arrays (to store

the output gradients), and creating a kernel which calls __enzyme_autodiff on the kernel

to be differentiated, as demonstrated in Figure 7-4.

5https://github.com/lcw/Heptapus.jl
6https://github.com/CliMA/ClimateMachine.jl/
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Figure 7-7: AD overhead of the benchmark applications, as compared with a single eval-
uation of the forward pass. An overhead of N can be read as saying that collecting the
gradients of all inputs (as well as running the original code) is equivalent to running the
original code N times.

void kern(float* src, float* dst) {
streamCollide<<<...>>>(src, dst);

}

void lbm(int nTimeSteps, float* src, float* dst) {
for (unsigned int i=0; i<nTimeSteps/2; i++) {

kern(src, dst);
kern(dst, src);

}
}

Figure 7-8: Simplified version of the computation within LBM. The kern function calls a
GPU kernel that iterates the simulation one timestep forward in time, storing the result in
dst. The lbm CPU function calls the GPU kernel until all iterations have completed. The
iteration must happen outside the kernel to ensure that all threads from one timestep have
completed prior to performing another timestep.

187



(a) (b)
// CPU Code
void aug_kern(float* src, float *dsrc,

float* dst, float* ddst) {
void* tape = Allocator.allocate(...);
aug_streamCollide<<<...>>>(src, dsrc,

dst, ddst, tape);
}
void rev_kern(float* src, float *dsrc,

float* dst, float* ddst, void* tape) {
rev_streamCollide<<<...>>>(src, dsrc,

dst, ddst, tape);
Allocator.free(tape);

}
__attribute__((enzyme(aug_kern, rev_kern)))
void kern(float* src, float* dst);

void ∇lbm(int nTimeSteps, float* src, float* dsrc,
float* dst, float* ddst) {

__enzyme_autodiff(lbm, nTimeSteps, src, dsrc,
dst, ddst);

}

// GPU Code
__global__
void aug_streamCollide(float* src, float* dsrc,

float* dst, float* ddst,
void** tape) {

size_t idx = threadIdx.x + ...;
tape[idx] = __enzyme_augmentfwd(streamCollide,

src, dsrc,
dst, ddst);

}

__global__
void rev_streamCollide(float* src, float* dsrc,

float* dst, float* ddst,
void** tape) {

size_t idx = threadIdx.x + ...;
__enzyme_reverse(streamCollide, src, dsrc,

dst, ddst, tape[idx]);
}

Figure 7-9: Differentiation of the combined CPU+GPU computation in LBM. The code
in (a) represents host code, which differentiates the overall function lbm, defined in Figure
7-8. The kern function is annotated with custom forward and reverse passes aug_kern
and rev_kern. These functions allocate a tape and call the aug_streamCollide and
rev_streamCollide kernels, which are generated by Enzyme in (b).

The correctness of the generated gradients was verified by comparing with numeric

differentiation. Since our benchmarks have too many parameters to use numeric differenti-

ation effectively, only a few inputs per benchmarks were tested.

7.6.2 Benchmark Descriptions

RSBench and XSBench RSBench and XSBench are U.S. Department of Energy proxy ap-

plications that represent the core computation of Monte Carlo simulations within particle

transport algorithms such as in OpenMC [327]. The majority of the runtime of XSBench

is spent in memory operations with a semi-random access pattern. By calculating neu-

tron cross-sections with the multipole method, RSBench trades off several magnitudes of

memory in exchange for a significant amount of computation to unpack the data. Together,

RSBench and XSBench allow us to differentiate both compute-bound and memory-bound

applications, respectively.

Lattice Boltzmann Method (LBM) LBM is a particle-based fluid dynamics simula-

tion method. It works by modeling fluid density on a lattice (grid) and in each time step
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performing a streaming step (allowing fluid to flow into adjacent grid cells) and a collision

step (which models the interaction of fluids flowing into a particular cell from neighboring

cells). This so-called stream-collide sequence is responsible for the majority of the compu-

tational cost of typical LBM solvers and is implemented in the CUDA version of Parboil

LBM in a method called performStreamCollide_kernel. CPU driver code calls this

kernel in a loop to advance the simulation by several timesteps, as shown in Figure 7-8.

Unlike the other benchmarks tested, where the entire function being differentiated was

on the GPU, differentiating LBM requires the differentiation of heterogeneous programs.

Since LLVM does not yet support modules which contain both CPU and GPU code, we

perform differentiation in two steps. First, we use Enzyme to generate an augmented for-

ward and reverse pass for the GPU kernel. The forward pass is equivalent to the original

function, saving any data that is required for the reverse pass and may be overwritten. The

forward and reverse pass of the GPU kernels can then be imported into the CPU code by us-

ing Enzyme’s support for custom derivatives. The heterogeneous AD setup is demonstrated

in Figure 7-9. Note that while we demonstrate this shim layer for clarity, in practice this

can be simplified for end users through the use of advanced compiler transformations or

macros.

LULESH LULESH [205] is an unstructured explicit shock hydrodynamics solver,

which was initially introduced as a proxy application for computational fluid dynamics on

high-performance computing systems and has since been employed as a proxy application

for complex fluid dynamics codes. LULESH emulates complex hydrodynamic solvers by

splitting the computational domain into volumetric elements on an unstructured mesh. This

allows LULESH to mimic the complex data movement characteristics of unstructured data

structures. All measurements were analyzed with NVIDIA NSight Compute to discern the

individual measurements of the gradient ApplyMaterialPropertiesAndUpdateVolume ker-

nel from the general application runtime.

Discontinuous Galerkin (DG) The discontinuous-Galerkin volume integral[3] kernel

is part of a fluid dynamics simulation model. It is written in Julia, and we use CUDA.jl [40]

and AMDGPU.jl [336] in combination with Enzyme.jl [271] to synthesize and execute the

kernel and its derivative. The code features GPU-specific features, such as shared memory,
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Figure 7-10: Overhead of selectively disabling AD and GPU-specific optimizations de-
scribed in Section 7.5. OOM indicates running out of memory or an indefinite runtime.
Each dot represents the overhead of AD compared to the forward pass alone.

and is memory bound. We modified the original code to use noncoherent memory loads in

the case of CUDA.jl and constant memory loads in the case of AMDGPU.jl.

7.6.3 Results

As demonstrated by the original Enzyme work (Chapter 5) [271], embedding AD within

the compiler allows one to perform AD after optimization, which is on average 4.2× faster

than AD before optimization. Since prior tools perform AD at a source level, they must

perform AD prior to any compiler optimizations. Although there exist no tools that we can

compare against that perform reverse-mode AD on GPU kernels, we attempted to perform

a similar ablation analysis here to see what a tool not implemented within a compiler might

be able to achieve, if one were to be written. Without applying standard LLVM opti-

mizations prior to AD, RSBench and XSBench take an indefinite amount of time to run.

LULESH has an overhead of 2979.1×without preprocessing optimizations. LBM is able to

be differentiated without preprocessing optimizations for two iterations, but exhausts GPU

memory on anything larger (scaling tests use 50-600 iterations). In order to legalize Julia

code for the GPU (such as the ROCm and CUDA DG codes), it is necessary to run the

LLVM optimization pipeline, along with Julia’s custom optimization passes. We there-

fore conclude that the ability to run optimizations alongside AD is in fact a precondition of

successful reverse-mode AD of general GPU programs.

Overall, the combined forward and gradient generated by Enzyme have a reasonable
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overhead when compared with that of the forward pass (Figure 7-7). RSBench and XS-

Bench have a 3−4× overhead due to the need to cache intermediate computations from the

forward pass. Similarly, LBM must cache the current state variables every iteration leading

to an overhead of 6.3×. The kernel evaluated in LULESH does not need to cache additional

values, and as a result the 2.01× overhead is spent performing the corresponding gradient

computations. The DG benchmark has a 5.4× overhead when run on AMD, primarily from

the additional computation, whereas it has a 18× overhead on CUDA as it quickly exhausts

the amount of available registers and the CUDA assembler decides to spill a large number

of registers into global memory.

AD and GPU-Specific Optimizations To evaluate the effectiveness of the optimiza-

tions described in Section 7.5, we evaluated all benchmarks with several AD and GPU-

specific optimizations being successively disabled. Not all benchmarks benefit from the

same optimizations, and the order in which compiler optimizations are applied can dra-

matically impact performance [175]. For each benchmark, we visualize a path through the

exponentially large optimization space that attempts to enable each optimization when it

will have the largest impact on performance. The results of this analysis are shown in Figure

7-10. An end user trying to maximize their performance wouldn’t explore all optimization

combinations/paths, instead simply enabling all optimizations. As disabling optimizations

quickly blows up the runtime of the program, the ablation analysis of benchmarks was

run at a smaller test size to ensure the computation completed in a reasonable time where

necessary.

For the ROCm DG kernel, an unrolling optimization was necessary to allow Enzyme to

create the gradient without caching any additional values. Without unrolling, the GPU was

unable to allocate sufficient device memory to succeed.

For the CUDA DG kernel, simply applying the standard Julia+LLVM optimization

pipeline enabled the gradient to run, though at a 1378.3× overhead. Running an optimiza-

tion that coalesced multiple allocations into a single malloc call reduced this runtime to

116.6×. Like in the ROCm case, applying unrolling eliminates any need to cache values,

reducing the overhead to 17.8×.

For ablation analysis, we ran the LBM kernel for 150 iterations. The use of an efficient
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CPU to GPU calling convention for caching values was necessary for the gradient to run

on a problem of this size. Applying the improved recompute vs cache heuristic allowed

Enzyme to detect that it could cache a double which representing a sum, rather than the

individual of overwritten values. This analysis reduced the size of the cache from 80 bytes

per thread to 20 bytes per thread. As a result, the AD overhead was reduced from 19.87×

to 8.7×. Finally, using a LIFO allocator rather than cudaMalloc to allocate cache memory

brought the AD overhead down to 6.4×.

For ablation analysis, LULESH was run on a computational domain size of 903. Apply-

ing just LLVM optimizations prior to AD brought the LULESH gradient overhead down to

2.4× from 2979.1×. As the LULESH kernel was particularly branch heavy, enabling spec-

ulative execution of ϕ predecessors when recomputing values in the reverse pass reduced

the AD overhead down to 2.01×.

Running RSBench on a problem size of 10,200, LLVM optimizations alone resulted

in an overhead of 6374×. By applying additional inlining, this overhead was reduced to

9.5× as LLVM could optimize between functions, enabling Enzyme to eliminate redundant

values being cached, as well as use a more efficient intraprocedural caching infrastructure.

Enabling the loop invariant cache and equivalent load cache optimizations reduced the

overhead down to 4.7×.

Running XSBench on a problem size of 17,000,000 with LLVM optimizations, the

overhead was 25.9×. Allowing Enzyme to avoid caching loop bounds when it can prove

that all its instructions are inactive, drops the overhead to 16.3×. Performing PHI restructur-

ing reduces the overhead to 9.5×. Passing the mode of simulation through a C++ template

eliminates code generation of helper routines from different simulation modes and reduces

the overhead to 3.2×. This leads to fewer branches in the forward pass and allows Enzyme

to avoid analogous branches in the reverse pass.

Scalability We compare the scalability of our approach in two ways. First, we con-

sider applications where increasing the problem size increases the number of threads, while

maintaining constant work per thread. We plot the overhead as a function of problem size

for DG and LULESH, XSBench, and RSBench in Figure 7-11. DG on CUDA, LULESH,

XSBench, and RSBench maintain a constant overhead as the problem size increases. DG
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Figure 7-11: Overhead of Enzyme compared with the forward pass as the problem size and
number of threads increase, with constant work per thread.

on AMD’s overhead increases at the start but quickly asymptotes. When the problem

size is increased in the LBM benchmark, the amount of work and number of kernel calls

increase without increasing the number of threads. As demonstrated by Figure 7-12, the

overhead quickly asymptotes as the additional setup required by Enzyme gets amortized

across a larger number of iterations.

LULESH Case Study Automatic differentiation of LULESH’s compute kernels is a

prime example of the importance of running optimizations prior to reverse-mode automatic

differentiation on GPUs. While the generated gradient has a 2979.1× overhead without any

LLVM optimizations prior to AD, this is reduced to 2.4× by simply running LLVM’s stan-

dard optimization pipeline. This does not require deep changes to LULESH or manual

tuning. Using all the optimizations described in Section 7.5 resulted in a reduction of the

AD overhead to ∼ 2.01×. Because of the effectiveness of the optimizations and low over-

head, we looked at the memory access patterns in depth to understand the impact Enzyme

and its optimizations had on the memory system of the GPU.

In Figure 7-13, we analyze the memory characteristics of the ApplyMaterialProper-

tiesAndUpdateVolume kernel, using NVIDIA’s NSight-Compute analyzer. We use the

memory workload analysis as a guide to evaluate the performance of the synthesized gradi-

ent kernel and judge whether there are potentially missed optimizations, or common access

patterns within the gradient kernel. For this kernel, the profile shows that there is an ∼ 50%

increase in memory traffic when performing gradient calculations. If excessive caching or
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Figure 7-12: Overhead of Enzyme compared with the forward pass where work is increased
while maintaining a constant number of threads.

register spilling occurred, we would have seen an increase in Local memory traffic. This

performance report is typical of an efficient gradient kernel, which is reflected in the low

AD overhead of 2.01×.

Discontinuous Galerkin (DG) Case Study We evaluated the DG kernel on both AMD

and NVIDIA GPUs. The NVIDIA variant shows an overhead of 18× versus an overhead

of 5.4× for the AMD variant. Performance analysis of the NVIDIA implementation un-

veiled two bottlenecks in the gradient kernel. The first bottleneck was caused by a large

number of values reused from the forward pass. This created excessive register spilling and

correspondingly increased global memory traffic. Second, some atomic increment opera-

tions on shared memory were heavily contended. Surprisingly, the AMD implementation

performs much better. We hypothesize that AMD is faster because the AMDGPU LLVM

backend directly optimizes for the target architecture and can perform optimizations such

as target register allocation. In contrast, the NVIDIA LLVM backend targets NVIDIA’s

virtual instruction set architecture NVPTX and leaves register allocation to ptxas.

Enzyme allows the user to specify whether the gradient should be calculated with re-

spect to an argument. We used the DG kernel to verify that applying Enzyme with all

arguments set to be constant (not differentiated), would not incur any overhead.

Compile Time We compare the time spent to compile kernels with and without the

gradient generated by Enzyme. In practice, when running large simulations the compile

time is negligible compared with the runtime. Nevertheless, it is useful to verify that also
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Figure 7-13: Memory workload analysis for LULESH at size 1353 comparing the original
code (Fwd) to the gradient (AD).

compiling the derivatives does not substantially change the program’s overall compile time.

For the four C/C++ benchmarks (LBM, LULESH, RSBench, and XSBench), we measured

just the compile time of the file that contained the kernel being differentiated. This is

then compared with compiling the same source file, but also generating all the requisite

derivative information. This involves creating additional functions, running a second round

of optimizations, and running the backend code generator for the additional kernel(s). For

codes that just compile the combined forward and reverse passes (LULESH, RSBench, and

XSBench), we would expect a ∼ 3× overhead as in addition to the original kernel, there

is now a second kernel which is twice the size (containing the forward and reverse pass).

For codes in which a forward and reverse pass are requested separately, we would expect a

∼ 4× overhead to account for the additional augmented forward pass, and the split reverse

pass (which contains its own forward and reverse pass). These compile times are all within

expectation.

The two Julia codes must be analyzed separately. As Julia is a JIT, Enzyme.jl works

by running its own additional compilation within Julia’s runtime and performing foreign
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Test Forward AD Overhead
LBM 1.54 5.65 4.32×
LULESH 8.34 23.82 2.86×
RSBench 14.99 33.29 2.22×
XSBench 15.9 23.5 1.48×
Julia DG CUDA 0.50 3.41 6.82×
Julia DG AMD 1.12 2.56 2.29×

Figure 7-14: Compile time in seconds of the source file with and without derivatives.

function calls into Enzyme loaded as a dynamic library As a result, a direct comparison

is not meaningful. Nevertheless we demonstrate that the “forward” time, taken to compile

the original kernel, is comparable with the “AD” time to perform a foreign function call to

libEnzyme.so, which generates the derivative runtime function.

7.7 Conclusion

By extending Enzyme, an AD tool for LLVM, we have created the first AD tool capa-

ble of generating gradients of GPU kernels without rewriting entire applications with a

differentiable DSL. Reverse-mode differentiation of GPU kernels adds several challenges

including potential data races caused by the GPU’s parallelism and the GPU’s complex

performance characteristics. We demonstrate an algorithm for differentiating GPU-based

parallel control flow and other intrinsics that ensures the correctness of the resultant gra-

dients. To maximize performance of the generated gradients, we introduce several novel

AD and GPU-specific optimizations. Through various ablation analyses, we show how

without these optimizations reverse-mode GPU AD is intractable in practice. We demon-

strate reasonable performance and scalability on several applications relevant to the HPC

community.

There exist several avenues for future work. Many of the optimizations described in

Section 7.5, especially those involving caching, could make better use of shared memory,

when available. For example, with rare exception, Enzyme currently maintains the GPU

schedule described in the forward pass for use in the reverse. One could imagine allowing

Enzyme to reschedule a kernel in such a way that minimizes potential races and therefore

196



allows better performance. Moreover, Enzyme currently identifies constant shared-memory

indices as the only scenarios where it can perform a reduction rather than falling back to

an atomic increment. Extending Enzyme to more aggressively identify locations where it

can perform a reduction rather than atomics can result in additional performance boosts,

especially in kernels that, like the DG kernel, make heavy use of shared memory (see

Section 7.6.3). Extending Enzyme to support Forward and Mixed-Mode [40] AD may

provide potential performance boosts by allowing Enzyme to choose the differentiation

algorithm expected to perform fastest for a particular workload. Moreover, support for

parallelism demonstrated here in the context of GPUs can be extended to support both

CPU parallelism and distributed frameworks such as MPI to allow Enzyme to efficiently

differentiate a wider variety of HPC applications.
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Chapter 8

Scalable Automatic Differentiation of

Multiple Parallel Paradigms

8.1 Introduction

Derivatives are at the core of many modern applications in science and engineering, such

as machine learning [31], gradient-based optimization [135, 257], inverse problems [131],

and computer graphics [238]. Automatic differentiation (AD) is a method for the automatic

generation of derivatives of mathematical functions implemented in computer programs.

AD is able to compute derivatives accurately to machine precision, unlike finite difference

approaches.

Parallel computation, using a variety of frameworks, has become the de facto standard

for large-scale computing and machine learning applications. This commonly involves

using parallel dialects and frameworks such as the Message Passing Interface (MPI) [148]

to provide distributed parallelism, or OpenMP [65] and Julia tasks [41] for shared-memory

parallelism, as well as higher-level frameworks such as RAJA [33].

In addition to being difficult to create any derivatives of parallel programs, it is desirable

to preserve the original program’s parallelism for the accumulation of derivatives. This is

not always straightforward, particularly in the so-called reverse-mode AD or the closely

related back-propagation [59, 58, 44, 118, 180, 183], which will be briefly explained in
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Section 8.3.

This chapter demonstrates how using a common low-level compiler infrastructure to

synthesize adjoints of parallel codes enables differentiation across a wide variety of parallel

models and source languages. To this end, we extend the Enzyme automatic differentiation

framework [271], which already supports synthesizing adjoints of GPU kernels [272] to

arbitrary parallel frameworks representable as a directed acyclic graph (DAG) of depen-

dencies. To showcase the generality of our approach, we differentiate MPI (distributed

parallelism), OpenMP (multicore parallelism), Julia Tasks (multicore parallelism within

a JIT), and describe how additional frameworks can be supported by simply marking the

parallelism.

By enabling support for the underlying programming models within the compiler, we

are able to differentiate any parallel framework built on top of them such as RAJA (run-

ning atop OpenMP and MPI) and MPI.jl (Julia bindings for MPI). Moreover, we demon-

strate that differentiating low-level parallelism concepts such as shared and thread-local

memory automatically yields support for higher-level primitives such as reductions or

firstprivate variables. Finally, we showcase how jointly supporting these parallelism

models in one tool naturally enables differentiation of hybrid parallel programs, and that

deep integration of AD into the compiler enables performance optimizations usually only

available in domain-specific/functional programming languages. Overall, this chapter makes

the following contributions:

•An extension to the theory of reverse-mode differentiation of single-static-assignment

(SSA) intermediate representations to handle parallel execution of instructions, and thus

differentiation of parallel languages and constructs that lower to such a representation.

•A demonstration of how implementing this model within the Enzyme AD engine enables

end-to-end, automated reverse-mode differentiation of parallel constructs (OpenMP, MPI,

RAJA, Julia Tasks, etc) written in an LLVM-compatible language (C/C++, Julia, Fortran,

Swift, Rust, Python, etc).

•Experimental results for codes from the LULESH [205] benchmark suite written in

C++/OpenMP, C++/MPI,
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Figure 8-1: The compiler lowers the various parallel programming languages (left) into a
common representation (center). Some constructs such as Julia tasks and OpenMP work-
sharing loops may result in an almost identical representation. The automatic differentia-
tion rules in Enzyme can be written for the intermediate representation, greatly simplifying
the generation of reverse-mode derivatives (right) for the input languages and constructs,
and further enabling compiler-optimizations.

C++/MPI+OpenMP, C++/RAJA, and Julia/MPI.jl and parallel variants of the miniBUDE

mini-app [305] written in C++/OpenMP and Julia/Tasks.

8.2 Related Work

AD tools including TAF [283] and Tapenade [182] have offered differing levels of support

for OpenMP. Both tools perform source-to-source transformation, have to express the gra-

dient of OpenMP/MPI programs using valid OpenMP/MPI, and have to hence implement

rules for many different OpenMP clauses. By working on LLVM IR, we avoid having to ex-

plicitly handle e.g. firstprivate/lastprivate variables, which are expressed in LLVM IR using

standard assignment instructions at appropriate locations. Moreover, embedding within the

compiler enables Enzyme to differentiate after (parallel) optimization, including the abil-

ity to hoist parallel code out of loops and providing better aliasing information. Special

treatment of MPI reversal was implemented in adjoint MPI libraries [340], integrated into

various AD tools such as CoDiPack [332, 333], ADOL-C [409], Tapenade [163], TAF [134]

and dco [250], and used in applications such as the computational fluid dynamics (CFD)

solvers SU2 [11], OpenFOAM [383] and STAMPS [279], and the NASA Ice Sheet System

Model [227]. The published solutions for MPI require modifications to the original code,
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including the use of special MPI function signatures. Adjoint MPI library extensions are

developed separately from the AD tools used for the remaining program, and can interfere

with certain program analyses like activity analysis [374]. Instead, Enzyme covers MPI in

a transparent and seamless manner without manual intervention.

Reverse-mode differentiation of parallel read access to shared memory may result in con-

current increment access and thus require special treatment to avoid data races. Enzyme

uses atomic updates whenever the analysis can not otherwise guarantee safe access. For the

special case of stencil loops, PerforAD [181] instead provide a Python-based DSL that uses

loop transformations to avoid concurrent increments during the reverse sweep. The func-

tional programming language Futhark [345] differentiates high-level parallel routines and

the authors discuss the use of generalized histograms, while other work considers general-

ized reductions [179] for the same task. Enzyme [271, 272] previously introduced support

for race-free GPU-parallel programs (CUDA, ROCm) with support for different memory

types, and block-level synchronization, as well as relevant AD and GPU-specific optimiza-

tions. This chapter extends the work in Chapter 7 to differentiate any DAG-based parallel

framework in a single tool, and alongside novel generic parallel optimizations.

8.3 AD Background

Differentiation of programs is performed by augmenting each individual instruction with

auxiliary instructions to compute its partial derivative, and augmenting each individual vari-

able with an auxiliary variable to hold derivative values. The derivatives are accumulated

following the chain rule of calculus to obtain the derivatives of the overall program. The

order in which individual derivatives are accumulated does not change the overall result,

but does affect the run time and memory consumption.

Many tools implement AD capabilities using a variety of strategies and supporting input

languages including C [47, 163], C++ [145, 171, 332, 398], Fortran [163], Julia [325, 186],

or MATLAB [46], while machine learning frameworks such as TensorFlow[2], PyTorch

[297], JAX [53], and DEX [298] support AD natively.

Two strategies are common: The forward mode accumulates derivatives in the order of
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the original computation, and is efficient for programs with few differentiable inputs and

an arbitrary number of differentiable outputs. In contrast, the reverse or adjoint mode and

the closely related back propagation are efficient for programs with an arbitrary number of

differentiable inputs and few differentiable outputs. This is a common situation in machine

learning, engineering and science, where functions with millions of input parameters are

commonly optimized subject to a scalar loss function.

Reverse mode accumulates derivatives in the inverse order of the original computa-

tion, requiring data flow reversal and special handling for overwritten values that must

be preserved or recomputed for the derivative computation of nonlinear instructions. One

common approach is to trace the computation at run time using operator-overloading. An-

other approach is to use source-rewriting before compilation, which significantly reduces

the performance overhead of differentiation, at the cost of more complex tool development.

The Enzyme approach is closely related to source-rewriting, but has unique advantages due

to its deep integration into the LLVM compiler. We refer to [271, 272] and [147, 282] for

detailed discussions of Enzyme and AD, respectively.

8.4 Differentiation model

Enzyme uses reverse mode AD by default, and the remaining discussion will be exclusively

about this mode. We will refer to an instruction and its auxiliary derivative instruction as

primal and adjoint, and we will refer to auxiliary variables as shadow. We will identify the

shadow of the output of an instruction I with shadow(I), which represents the derivative

of I. Within Enzyme, taking the derivative of an instruction I involves four steps:

1. Load and zero shadow(I).

2. Compute the partial derivative of I w.r.t. its inputs.

3. Multiply the result of (2) with the shadow retrieved in (1).

4. Increment the shadow of I’s input with the result of (3).

Evaluating the adjoint of all instructions in reverse order ensures that when evaluating the

adjoint of I, shadow(I) contains the total derivative, or sum of all partial derivatives from
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its uses. This holds because the adjoints for all uses of I, which add the corresponding

partial derivatives to shadow(I), occur before the adjoint of I when run in reverse order

since all uses of I must occur after I when run forward.

8.4.1 Differentiating parallel tasks

Instructions within fork-join parallel programs do not have a defined order in which they

are run. Instead, instructions form a directed acyclic graph (DAG) of permissible orderings.

A node in the DAG with multiple children represents a spawn, and a node with multiple

successors represents a sync. Reverse mode AD of such a program requires reversal of that

DAG. The above differentiation model has to be extended for this situation. Since I must

still dominate all the uses of I in the original (primal) program, all adjoints of the uses

are guaranteed to have been executed prior to the adjoint of I. The adjoint of those uses,

however, may occur in parallel. When operating on a parallel program, Enzyme will per-

form an atomic addition or reduction when incrementing the shadow of an instruction that

is not thread-local. This ensures that the total derivative is available and the computation is

correct.

Differentiation of a parallel for loop and spawn/sync pair can now be shown to correctly

implement the reversal of the DAG. The sync in the primal is transformed into spawn in the

adjoint, and a spawn in the primal is transformed into a sync. A parallel for loop spawns off

several tasks in parallel that are subsequently synchronized. Differentiating a parallel for

loop results in a parallel for loop of adjoints at the corresponding location in the reversed

DAG. This is equivalent to the sync of the primal parallel for being transformed into a

spawn of all tasks constituting the loop. See Figure 8-2 for an illustration. For a thorough

example and proof of how to differentiate parallel control flow in the specific context of a

GPU-style barrier in Enzyme (as opposed to any general parallelism, described here), see

[272].

203



Forward Reverse-Mode
Derivative

Sync

Spawn

a b c

Sync

Spawn

∂a ∂b ∂c

Figure 8-2: Illustration of Correctness for Parallel AD: The control and data flow is re-
versed, hence inverting the data- and control flow. In the forward pass (left) the control
flow goes from spawn to sync. In the reverse-mode derivative (right), the locations of
spawn and sync are reversed.

8.4.2 Differentiating message passing

MPI’s model can be thought of as an implicit parallel for loop across the entire program,

with distinct address spaces, focusing on explicit data management as opposed to execution

management. MPI communication routines do not expose the implicit parallel for construct

but instead expose only explicit data management using function calls with inputs and

outputs. MPI’s nonblocking communication (e.g., MPI_Isend, MPI_Irecv, MPI_Wait)

can be treated as parallel task constructs, where MPI_Isend and MPI_Irecv dispatch a

task synchronized at the corresponding MPI_Wait.1 Differentiation of MPI in this fashion

is quite efficient and results in twice the number of MPI calls, for both the primal and

derivative values (which may be able to be fused during optimization), and at most thrice

the amount of MPI-related memory (the original buffer to send/receive, the derivative buffer

to send/receive, and potentially a temporary buffer for derivative accumulation).

8.4.3 Caching of intermediate results

The adjoints of instructions often require the arguments of the original value. For example,

when computing the adjoint of x2, one needs to preserve the original value of x to compute

1 Depending on MPI implementation, and parameters this may only specify that the task on the current
node has completed (e.g. the MPI_Isend) and not necessarily that the corresponding task on the partner node
has completed (e.g. the MPI_Irecv).
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void square(double* data) {
#pragma omp parallel
{

int tid = threadid();
data[tid] = data[tid] * data[tid];

}
}

void outlined(double*& data) {
int tid = threadid();
data[tid] = data[tid] * data[tid];

}
void square(double* out, int start, end end) {

__kmpc_fork(outlined, out, start, end);
}

Figure 8-3: Left: An OpenMP function which squares an element of an array on each
thread. Right: The compiler lowers this construct to a closure outlined of the body and a
call to the __kmpc_fork runtime call which runs the closure on each thread.

the adjoint 2x. If the instruction that computed x cannot be rerun and the value is not

otherwise available in the reverse pass, the value needs to be cached. Using a minimum-cut

recompute vs cache analysis [272], Enzyme determines a minimal set of values that must

be preserved in order to satisfy the dependencies of the reverse pass. Enzyme allocates

caches in one of three ways:

1. Allocate a stack variable if that variable is guaranteed to be alive for the entire dura-

tion of the differentiation

2. Allocate an array prior to the loop and store the value in a slot indexed by the loop

variable if the value is computed within a loop with known size

3. Dynamically reallocate an array within the loop if the loop does not have a known

size

8.5 Compiler-Integrated Differentiation

In contrast to existing differentiation approaches, Enzyme performs differentiation inside of

the compiler. This enables Enzyme to access and modify the program at a variety of stages

during the compilation pipeline. Deeply integrating AD within the entire compiler stack

provides Enzyme with a large amount of flexibility. For example, Enzyme can run addi-

tional optimizations both prior to and after differentiation, identify source-line information

from metadata, rewrite and modify library calls, and even run a JIT compiler. In addition to

enabling new optimization opportunities, these capabilities thereby allow Enzyme to han-

dle a wide array of parallel constructs in a robust and concise manner by writing a few core
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routines that can be generally applied to parallel methods.

Enabling support for parallelism within our extension to Enzyme requires three steps:

1. Identifying a runtime call or construct which enables parallelism. This enables En-

zyme to produce parallel-safe derivative accumulation.

2. Telling Enzyme how to call the parallel runtime call, which it will call with an auto-

matically generated derivative of the body of that construct.

3. Marking any information which is required to compute the derivative of the parallel

construct as needing to be preserved by Enzyme’s caching infrastructure.

Given all this, Enzyme empowers the user to differentiate parallel constructs without

rewriting their original code.

8.5.1 Identifying Parallel Constructs

The easiest way for Enzyme to identify a parallel construct is by identifying a correspond-

ing runtime call. Enzyme provides several utilities for recognizing function calls that match

a certain pattern. For example, when compiling with Clang (the C/C++ compiler frontend

for LLVM), Flang (the Fortran compiler for LLVM), or MLIR (a higher level intermedi-

ate representation), a program with OpenMP parallelism will call the __kmpc_fork_call

function to run a given closure on all threads (see Figure 8-3). When writing programs

with MPI for parallelism, the LLVM IR will contain calls to functions like MPI_Isend,

MPI_Irecv, and MPI_Wait which asynchronously send data to another process, receive

data from another process, and wait for a given operation to finish, respectively. Iden-

tifying the parallel constructs from Julia is somewhat more difficult because some of its

parallel runtime calls do not have a unique ABI and instead create just-in-time compiled

functions. Instead of identifying these calls from the (potentially inlined) assembly struc-

ture of the function, Enzyme can explicitly mark a source-level Julia method (such as

Base.threads_for) as matching a parallel pattern (e.g. a call to task creation). In par-

ticular, the ability to leverage the compiler to mark arbitrary functions enables Enzyme to

be invariant to the randomized names generated by Julia’s JIT. This not only permits En-

zyme to recognize the individual task creation mechanisms, but alternatively can be used to
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void ∇square(float* data, float* d_data) {
// Allocate an array to cache the values of data[i]
// from the reverse pass, so the original value can
// be used to compute the reverse pass.
float* cache = new float[numthreads()];

// Run the forward pass on every thread.
__kmpc_fork(aug_outlined, data, d_data, cache);
// Run the reverse pass on every thread.
__kmpc_fork(rev_outlined, data, d_data, cache);
// Free the cache
delete[] cache;

}

// Bodies automatically generated by Enzyme when
// informed about the closure.
void aug_outlined(float*& data, float*& d_data,

float*& cache) {
int tid = threadid();
cache[tid] = data[tid];
data[tid] = data[tid] * data[tid];

}
void rev_outlined(float*& data, float*& d_data,

float*& cache) {
int tid = threadid();
d_data[tid] *= 2 * cache[tid];

}

Figure 8-4: Left: Gradient of square (ref. Figure 8-3). This calls the OpenMP parallel
runtime call twice, once for the forward pass, and once for the reverse pass. Right: The
forward and reverse passes of the outlined OpenMP parallel body.

identify an entire parallel for-loop construct directly, instead of the underlying tasks which

implement it.

8.5.2 Differentiating Parallel Constructs

Now that Enzyme can identify a program’s parallelism, Enzyme must be taught how to

call these parallel constructs in order to fill in the derivative information. Some parallel

constructs, such as OpenMP, or Julia Tasks take a function closure. Differentiating func-

tions which call a closure requires telling Enzyme to differentiate the closure body and

potentially wrapping the auto-generated derivative of the closure to match the expected

ABI and calling convention. See Figure 8-4 for an example of Enzyme-generated deriva-

tive closures for the OpenMP program in Figure 8-3. Finally, one needs to tell Enzyme the

corresponding adjoint of the function, just like any other functions or LLVM instructions.

As an example, differentiating MPI_ISend results in a MPI_Wait and differentiating a Julia

spawn task (Base.enq_work) in a corresponding Julia task wait (Base.wait).

8.5.3 Data caching

The final step to enable differentiation is to inform Enzyme about any information which

must be preserved to compute the adjoint of a parallel construct. As an example, consider

an OpenMP worksharing loop construct (#pragma omp parallel for which divides an

iteration space of arbitrary size to be run efficiently on the available system threads. The
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int send(double* data, double* d_data, int dst) {
// The original and shadow requests.
MPI_Request req, d_req;

// The forward pass of Isend, which also stores what
// type of instruction (and its buffer) for use in a
// reverse wait.
MPI_Isend(data, MPI_REAL, dst, req);
d_req = {ISend, d_data, ... };
... // Code for corresponding Irecv
MPI_Wait(&req);

// Derivative of MPI_Wait:
// If the origin task was an Isend, perform Irecv
if (d_req.type == ISend)

MPI_Irecv(...);
... // Derivate code for corresponding Irecv
// Derivative of MPI_Isend
MPI_Wait(...)

}

Figure 8-5: An asynchronous MPI send request and its corresponding derivative. Since the
derivative of the wait must know what type of instruction it synchronized in order to spawn
of its corresponding adjoint in the reverse, the request type is stored in the shadow request
in the forward pass. A full MPI program would also need to call an analagous recv and
derivative on the destination node.

bounds of the loop must be preserved for the adjoint construct to execute a corresponding

worksharing loop across the same number of iterations. Caching data for a MPI_Wait,

however is more difficult. The derivative of a wait on task t is to spawn the corresponding

derivative task shadow(t). However, MPI has multiple types of tasks (send, receive) which

may be synchronized by the same MPI_Wait. This can be resolved through the use of

shadow variables. We can define the shadow variable of the original request to store what

task was being waited upon. Therefore when computing the adjoint of MPI_Wait in the

reverse pass, Enzyme can look inside the shadow request to identify whether it should

create an MPI_Isend or MPI_Irecv. This is demonstrated in Figure 8-5.

8.5.4 General Applicability

Existing tools to differentiate parallel programs must understand every parallel construct in

the language they are designed to differentiate. In contrast, by operating in the compiler,

we can choose to instead differentiate parallel programs with many constructs (e.g. pri-
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vate memory, reductions) after they have been lowered into simpler operations (e.g. load

and store operations). This enables Enzyme to differentiate these constructs without any

explicit support being required, as Enzyme already knows how to differentiate memory

operations. Similarly, higher level parallel languages such as RAJA, which internally im-

plement parallelism using lower level frameworks (e.g. OpenMP) do not need any explicit

support to be handled, since we can choose to differentiate after it has been lowered to

OpenMP. This flexibility extends across languages. Adding the corresponding handler for

an MPI call in Enzyme differentiates MPI code regardless of whether it was written directly

in C++, or using the MPI.jl [60] wrapper inside Julia. Of course, this does not mean that

differentiation needs to be applied at the lowest level, but that differentiating a single lower

level construct enables differentiation of several higher-level routines and languages. For

example, even though Enzyme differentiates Julia tasks, which are used to implement a

“parallel for” in Julia, we still also provide an explicit derivative for the Julia “parallel for”

for performance. In contrast, differentiating certain memory constructs (like private mem-

ory), or any code able to be optimized may be faster when differentiated at a lower-level

since reducing the work of the original code can make an outsized impact in the reverse

program [271, 272].

8.5.5 Optimization and Differentiation

Running optimizations prior to differentiation was found to provide a significant speedup

in the original Enzyme work (Chapter 5). This effect occurs for two primary reasons. First,

the additional optimizations result in simplified code which has improved analysis proper-

ties (e.g. aliasing, readonly, etc). Secondly, the additional optimizations reduce the work

done by the function being differentiated, which in turn, enables the corresponding gener-

ated derivative to perform less work in both the forward and backwards passes. The need

to optimize parallel programs has been well studied in a variety of works such as Tapir

applying optimizations for Cilk [343] and OpenMPOpt [95]. This need is accentuated in

the context of differentiation where improving aliasing properties can enable Enzyme to

avoid unnecessarily caching variables for use in the reverse pass. For example, without op-
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void fp(double* out, double in) {
#pragma omp parallel for firstprivate(in)
for (int i=0; i<N; i++) {

out[i] = in;
in = 0;

}
}

void fp(double* out, double in) {
#pragma omp parallel
{

double in_local = in;
#pragma omp for
for (int i=0; i<N; i++) {

out[i] = in_local;
in_local = 0;

}
}

}

double ∇fp(double* out, double* d_out, double in) {
double d_in = 0;
#pragma omp parallel for firstprivate(in)
for (int i = 0; i < N; i++) {

out[i] = in;
in = 0;

}
// Run the reverse pass
__omp_parallel(rev_outlined, out, d_out, in, d_in);
return d_in;

}
void rev_outlined(int tid, double*& out, double*& d_out,

double& in, double& d_in) {
double d_in_local = 0;
int lb = 0, ub = N;
__omp_for_loop(tid, &lb, &ub);
for (int i=ub-1; i>=0; i--) {

d_in_local = 0; // adjoint of in_local = 0
// adjoint of out[i] = in_local
d_in_local += d_out[i];
d_out[i] = 0;

}
// Fall back to atomic if not proven thread local.
atomic { d_in += d_in_local; }

}

Figure 8-6: Top Left: An OpenMP function that uses firstprivate memory to set the first
iteration handled by each thread to in, the remainder to 0. Bottom Left: An explicit version
of the code on the top left, with firstprivate being replaced with an equivalent thread-local
in_local. Right: C code representing the gradient generated by Enzyme.

timization an OpenMP closure function captures all of the surrounding variables by value,

and can potentially alias any memory. Moreover, applying parallel optimization after dif-

ferentiation may also help. For example, such an optimization may be able to merge the

two parallel fork calls made in Figure 8-4. We evaluate the impact of running OpenMPOpt

in the context of differentiation in Section 8.7.

8.6 Other Parallel Constructs

This section gives an overview of how supporting parallel control flow (parallel for,

task create/wait) and memory can enable support for other common parallel constructs.

8.6.1 Memory

Local vs Shared Memory

Enzyme is designed to have common caching and adjoint increment routines that can be

used to implement the adjoint of any instruction of a function call with relative ease. Intro-

210



ducing a new parallel model does not require a modification to the caching infrastructure

besides informing Enzyme about what calls are parallel.

The common adjoint increment routine begins by performing analysis to detect whether

the shadow memory location being modified is thread- (or node-) local. This analysis

builds of alias analysis to deduce if any allocation, or more specifically, offset into memory,

could be used on another thread. As an example, an allocation defined within a thread

which is not captured must be thread-local. If the memory location is thread-local, Enzyme

performs an efficient serial load, add, and store. If this cannot be proven, Enzyme will

next attempt to prove that the given memory location is the same for all threads within a

parallel for loop (for all containing parallel loops). If this is the case, Enzyme will look

in its catalog of reductions to see whether a reduction implementation for that style of

thread exists; if so, Enzyme then will use it to sum the contribution for all threads. If

none of these situations apply, Enzyme will perform an atomic add. Besides optionally

registering a new reduction, a parallel framework designer adding Enzyme support can

inform Enzyme that a given location is thread-local. It is legal to fall back and mark every

location as being shared among threads (resulting in many atomics/reductions), but doing

so may not be desirable for performance. Enzyme provides several helper methods for

marking thread-local properties. The shadow of function-local registers and allocations

can be marked as thread-local (this is the case for OpenMP, MPI, and CUDA but not for

pthreads, Julia tasks, or Cilk tasks). Enzyme supports a differentiation configuration which

assumes that the generated derivative function will itself be called in parallel and that any

derivative memory location passed as an argument may be accumulated in parallel. While

we found these options sufficient for OpenMP and MPI, additional thread-local settings

can be implemented (and thus made available to any parallel model that chooses to apply

them).

Private Memory

OpenMP and other parallel frameworks have a variety of different memory clauses. For

example, OpenMP private (and its cousins firstprivate / lastprivate) specifies that a variable

has a separate copy per thread (with first private initializing the thread-local value to the
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double min_per_thread[num_threads()];
#pragma omp parallel
{

double min_value = 0;
#pragma omp for
for(int i = 0; i < N; i++)

min_value = min(data[i], min_value);
min_per_thread[omp_get_thread_num()] = min_value;

}
double final_val = 0;
for(int i = 1; i < omp_get_num_threads(); i++)

final_val = min(final_val, min_per_thread[i]);

Figure 8-7: A manual user-written min reduction, as simplified from its use from the
CalcCourantConstraintForElems and CalcHydroConstraintForElems functions in
LULESH. While this could be rewritten to use higher-level reduction routines which can
be handled by both Enzyme and other tools, differentiating it “as-is” requires correct han-
dling of a variety of OpenMP constructs.

value outside the loop and the lastprivate specifying that after the loop completes, the final

iteration’s thread-local value should be copied to the variable outside the loop). These

constructs are already lowered to allocations and stores (as required) at the semantically

correct location. Therefore, no additional work is required to handle these.

Consider the program at the top left of Figure 8-6. Since the variable in is marked

firstprivate, a thread-local copy of in will be created, initialized to the argument, as is

made explicit on the bottom left of Figure 8-6 with in_local. When executed, the first

iteration handled by each thread will set out[i] to in, whereas all other iterations will set

out[i] to zero.

Differentiating this with Enzyme will produce the code to the right in Figure 8-6. In the

reverse pass, the reverse for loop will set the derivative of in_local to zero at the start of

an iteration (adjoint of in_local = 0), then increment the derivative of in_local by the

derivative of out[i] (adjoint of out[i] = in_local). This approach simplifies to merely

setting the derivative of in_local to the derivative of the last iteration when run in reverse,

or equivalently the first iteration when run in the original program. Since the primal code

set the first iteration of each thread equal to in, the correct adjoint is indeed the sum of the

derivatives of all the indices that were set to in. This case would be especially challenging

for any source-to-source AD transformation tool since OpenMP has no “for” construct that
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will subdivide the loop and then reverse the order of each per-thread chunk. In contrast, not

only is this possible to do on the LLVM level with Enzyme, but is automatically handled

by handling the parallel and memory primitives alone.

Reductions

Proper handling of private and shared memory allows Enzyme to handle higher-level paral-

lel constructs built on top of memory, regardless of implementation. For example, the C++

version of LULESH implements a custom reduction, shown in Figure 8-72. In contrast,

RAJA provides a custom reduction operation/template for later use. Both reduction styles

are automatically handled by Enzyme.

8.6.2 Concurrent Caching

Instructions and allocations computed within a parallel region create thread-local values or

registers. Special care must be taken to ensure that the same values created within each

thread are available and mapped to the corresponding thread in the reverse pass. Enzyme

caches such values by preallocating memory for each thread and storing each value at an

index corresponding to the current thread ID. If the same threads used for the forward-

pass are also available at the corresponding time in the reverse pass (this includes Julia

threads, the LLVM OpenMP runtime3), the corresponding reverse computation will access

the corresponding caches indexed by their thread ID. If a different number or set of threads

may be available, the parallel framework must inform Enzyme how to remap the threads.

Caches of values computed within a worksharing parallel for loop which does not spec-

ify how the loop’s iterations map to threads, however, can be stored in a location indexed

by the iteration of the for loop. This approach provides flexibility in how iterations are

distributed among threads and even permits a different mapping of threads to iterations in

the reverse pass.

2Depending on the size and parallel overhead, it may be more efficient to implement parallel min as
a divide-and-conquer. The example in Figure 8-7 is used by LULESH, and the divide-and-conquer style
version is also to be handled by Enzyme.

3This is stronger than the current OpenMP specification. However, as Enzyme exists within LLVM, this
can be assumed. If the LLVM OpenMP runtime is changed to no longer have this property, Enzyme can
check the LLVM version it was built against and select a different cache mapping.
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8.6.3 High-Level Language Constructs

Foreign Library Calls

Unlike statically compiled languages (e.g., Fortran, C++, Rust, Swift) that call into libraries

such as MPI by linking to the appropriate symbol, just-in-time compiled languages must

dynamically load the symbol at runtime for use. This requirement presents additional chal-

lenges for Enzyme because the compiler will not be able to recognize a call to MPI_Send,

since all it will see is a call to a specific integer address. We remedy this within Enzyme.jl

(Julia’s bindings for Enzyme) by performing an additional processing step on the LLVM

IR of the function to be differentiated by Enzyme. In that pass, Enzyme.jl will look for

calls to an integer address and identify the name of the function being called by looking

through Julia’s symbol table. This then allows Enzyme to identify the function being called

and generate the corresponding derivative code.4

Garbage Collection

Support for special garbage collection (GC) intrinsics must also be handled within Enzyme

in order to differentiate parallel code that uses a library such as MPI.jl. Allocation of

garbage-collected variables is straightforward and is handled by registering the garbage

collection allocation function to Enzyme’s allocation handler. Julia contains special macros

GC.preserve which specify that a given variable must be preserved within the given scope,

even if there are no uses known by Julia. This macro is necessary when making foreign

function calls, which may not appear to Julia as a use of the memory. The macro is lowered

into the function call gc_preserve_begin and gc_preserve_end runtime calls, which

takes a list of variables to be preserved.In addition to preserving the original variables as

specified, Enzyme must modify the call to also preserve the shadow of any variable being

preserved, since they may also be modified in a way not known to Julia. Enzyme will

also add a corresponding GC preservation in the reverse pass. This informs Julia’s garbage

collector to similarly preserve variables when computing the adjoint of that region. For

4This process is done for all foreign library calls and thus remedies similar issues that may occur when
calling other foreign libraries.
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example, if a memcpy had its arguments marked for preservation in the original code, the

derivative of the memcpy (containing stores and loads to the shadow) would now also have

its arguments marked for preservation. There may be instances when preservation is not

needed, but this overly conservative approach is still correct and may be further optimized

later.

8.6.4 Non-determinism

Non-determinism in parallel programs can arise from undefined behavior in the program.

As an example in a parallel program one can create a write-race where several threads

write distinct values to a single memory location at the same time. In Enzyme, like in other

serial and parallel AD tools, differentiating a program with undefined behavior may result

in a gradient calculation with undefined behavior. Take a primal function which reads from

undefined memory, this will result in a gradient function which reads from a corresponding

location of undefined shadow (derivative) memory.

A further source of non-determinism is that it is possible to have a program with an un-

defined parallel execution order that yields a deterministic result (through synchronization,

reductions, atomics, or simply distinct memory locations per thread). In the case of syn-

chronization, the reversal of the dependency DAG described in Section 8.4.1 and derivative

accumulation described in Section 8.6.1 enable correct handling deterministic, but racy

programs. In the context of a barrier or locked/atomic region in the forward pass, this will

result in a program semantically equivalent to another barrier or atomic region in the re-

verse pass. For the locked/atomic region, the now serialized parallel tasks must be executed

in the reverse order, which is performed by caching the actual execution order. For atomic

instructions this is simpler as atomic instructions within LLVM return the previous value

of memory – which is precisely what would require caching. Some simpler atomic instruc-

tions like add do neither require caching the execution order, nor an additional value.
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8.7 Evaluation

To illustrate the composability of Enzyme’s differentiation of parallel frameworks, we ap-

ply it to several distinct parallel variations of LULESH [204, 205], and miniBUDE [305].

In these results, forward denotes the time it takes to run the original program and gradient

denotes the time it takes to both run the original program and compute the derivative of all

the inputs, and overhead denotes the ratio of the gradient runtime to the forward runtime.

LULESH is a 5000-line hydrodynamics proxy application developed by Lawrence Liv-

ermore National Laboratory5. As an unstructured explicit shock hydrodynamics solver, it

emulates the behavior of complex solvers by splitting the computational domain into vol-

umetric elements on an unstructured mesh, hence mimicking the complex data movement

characteristics of unstructured data structures. We designed our evaluation to test how

effectively a single low-level implementation of parallelism within an automatic differenti-

ation tool can enable a diverse set of parallelism models. We evaluate LULESH variations

that use MPI, OpenMP, hybrid MPI+OpenMP, MPI.jl, and the RAJA portable parallel pro-

gramming framework, written in C++ and Julia. To compare our performance against the

automatic differentiation performance to the CoDiPack-differentiated LULESH of Hück et

al. [178].

Mini-BUDE is a 200-line mini-app. developed by the University of Bristol emulating

the main computational kernels of the heavily compute-bound molecular docking engine

BUDE [259]. BUDE predicts the binding energy of two molecules using molecular me-

chanics, in order to evaluate the ability of test molecules to bind with a target molecule.

Each potential pose of the molecules needs to be evaluated for its free energy, hence re-

sulting in hundreds of thousands pose-evaluations for each molecule. Our evaluation on

miniBUDE was designed to validate our automatic differentiation performance claims on

LULESH on a second, distinct application, as well as testing Enzyme’s ability to automat-

ically differentiate Julia’s shared-memory parallelism. We evaluate an OpenMP version in

C++, and a Julia-version utilizing tasks.

5https://asc.llnl.gov/codes/proxy-apps/lulesh
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Figure 8-8: Top Row: Runtime for 10 iterations of the LULESH proxy-benchmark for
the different implementations. The number of processors is increased, while the overall
problem size stays fixed. We used the following task count-block size combinations: 1:192,
8:96, 27:64, and 64:48. Middle Row: Strong scaling behavior. Bottom Row: Weak
scaling behavior. The number of processors is increased, while the per-processor problem
size stays fixed. The block size used was 48.

8.7.1 Benchmark Implementation Details

C++ The C++ code is based on the official 2.0 release of LULESH6. We modified the code

by creating a second shadow domain to store the derivative result and added an option to

switch between primal and derivative computation. The only other change made was to

pass member functions to the communication subroutines at compile time rather than as

an array. This is not required for differentiation or correctness, and member functions are

passed as an array in the RAJA version. For the OpenMP-version of miniBUDE7 we cre-

ated a shadow domain for the computational kernel and added an option to switch betweeen

6https://github.com/LLNL/LULESH
7https://github.com/UoB-HPC/miniBUDE
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Figure 8-9: Thread parallelism strong scaling on the LULESH (Top Row) and BUDE
(Bottow Row) proxy-benchmarks for the different evaluated implementations. The number
of available processors is increased, while the overall problem size stays fixed. The block
size used for LULESH was 96 and the default number of poses was used for BUDE.

primal and derivative computation.

RAJA The RAJA code is based off LULESH 2.0 from the official RAJA benchmark

repository8. We added a second domain to store derivatives and added a flag to enable

differentiation. The only changes we made were to use a standard allocator, rather than the

custom allocator in the repository, and to free memory at the end of each iteration (calling

std::vector::shrink_to_fit in addition to the std::vector::clear). The RAJA

version was seemingly identical to the vanilla C++ version with the exception of using

C++ std::vector instead of bare pointers, RAJA looping constructs instead of regular

serial or OpenMP parallel for loops, and the runtime member function passing.

Julia Since no official or unofficial version of LULESH exists in Julia, we built a new

version from scratch based on the official C++ version, and LLNL’s unverified FORTRAN

version of LULESH 1.0. We elected to port LULESH’s MPI communication to Julia

through the use of MPI.jl [60]. While the code attempts to remain faithful to the offi-

cial C++ code, some differences include the use of garbage-collected arrays and minor

changes to better match standard Julia design paradigms. The code’s correctness was ver-

ified against LULESH’s correctness checks of [205]. For the Julia-version of miniBUDE

8https://github.com/LLNL/RAJAProxies
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we created a shadow domain for the computational kernel, no-inlined the core kernel, and

added the option to switch between the primal and derivative computation for evaluation

purposes. CoDiPack CoDiPack [332] is an existing operator overloading automatic dif-

ferentiation tool for C++ with an extension to differentiate through MPI code. We use a

version of LULESH modified by the CoDiPack authors [178] which rewrites variables and

communication within the application to use CoDiPack-specific variants. We use CoDi-

Pack LULESH as a performance baseline for existing state-of-the art tools. Like Enzyme,

we use CoDiPack in reverse-mode for the tests.

Setup Experiments were run on an AWS c6i.metal instance with hyper-threading and

Turbo Boost disabled, running Ubuntu 20.04 running on a dual-socket Intel Xeon Platinum

8375C CPU at 2.9 GHz with 32 cores each and 256 GB RAM.

All C++ codes are compiled using LLVM 14, and the Julia codes use Julia version

1.7.1. C++ MPI-codes are run with OpenMPI 4.0.3, and Julia’s MPI code is run with

MPICH 4.0.1. Experiments with OpenMP were benchmarked with LLVM 14’s OpenMP

implementation. We measured the time taken to execute the forward and differentiated

versions of LULESH, and miniBUDE using different types of parallelism. For LULESH

MPI strong scaling we report runtimes from 10 consecutive iterations from one run. For

LULESH C++ and RAJA, MPI weak scaling, thread scaling, and MPI task and thread

strong scaling we report times for 100 iterations. All remaining runs of LULESH experi-

ments use 10 iterations. For the C++ and Julia versions of miniBUDE, we report times for

the default number of iterations (100 and 8 iterations respectively). We studied the paral-

lel scaling of the forward and differentiated code with increasing MPI rank and OpenMP

thread counts.

8.7.2 Gradient verification

For realistic applications it is rarely feasible to perform tests for all relevant input values,

nor is it generally feasible to compute the entire gradient or Jacobian matrix for applications

with many active inputs or outputs using both the forward and reverse mode. It is therefore

common practice to limit tests to certain inputs, and in the case of AD, to further limit tests
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Figure 8-10: Thread parallelism weak scaling on the LULESH proxy-benchmarks for the
different evaluated implementations. The number of available processors is increased,
while the problem size per processor stays fixed. We used the following thread count-
block size combinations: 1:24, 8:48, 27:72, and 64:96.
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Figure 8-11: Efficiency of LULESH when running with 1 8, and 27 MPI ranks, 2 OpenMP
threads, and a block size of 48.

to certain projections of the Jacobian matrix that can be efficiently computed with multiple

approaches for comparison.

In order to verify the gradients computed by Enzyme, we selected a projection that can

be efficiently computed using the reverse mode, while also being easy to approximate using

finite differences. Using reverse mode, this projection can be computed by initializing all

shadow variables to 1, and summing the computed shadow variables. When using finite

differences, the same projection can be computed by perturbing all input variables at once

by the same small value and summing the resulting derivatives of all output variables as

approximated by the corresponding finite difference formula (we use central differences

for the perturbations and derivative approximations). Both projections should yield the

same scalar value, up to round-off and truncation errors. We note that this is similar to the

“fast mode” gradient check [315] implemented in PyTorch.
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8.8 Results

For each of the benchmarks (LULESH, miniBUDE), and parallel frameworks (OpenMP,

MPI, OpenMP+MPI, RAJA, Julia Threads, MPI.jl) we evaluated the scalability of the orig-

inal code, Enzyme-generated derivatives, and baseline CoDiPack-generated derivatives, if

available.

LULESH requires the number of MPI ranks to be a perfect cube, MPI scaling tests

hence ran on 1, 8, 27, and 64 ranks. The strong scaling of the benchmarks is shown in

Figure 8-8 (middle row). Here, we plot the speedup (time to run on one rank divided by

time to run on N ranks) as the total amount of work is fixed while the number of ranks

is increased. We find the scaling behavior of the derivative computation to be better than

that of the primal in the C++, RAJA and CoDiPack cases. It matches the primal for the

Julia implementation. It can be observed that the speedup of all cases reduces after 27

ranks, because of non-uniform memory access (NUMA). Each socket on the AWS instance

can support 32 threads, beyond which threads must access non-local memory resulting in

increased memory latency and consequently reduced speedup.

In both strong and weak scaling experiments, all versions of MPI-based LULESH dif-

ferentiated with Enzyme (C++, Julia, RAJA), the differentiated code scales similarly to

that of the original function. For the C++ and RAJA tests the decreased weak scaling of

both the original LULESH benchmark and its derivatives can be explained by NUMA ef-

fects that occur when one needs to access data on more than one socket. We attribute the

performance difference between LULESH.jl, and other LULESH implementations to the

used MPI versions.

As the CoDiPack code is a modification of the C++ LULESH codebase with CoDiPack

primitives, we can roughly compare the run times of Enzyme on the C++ LULESH against

CoDiPack LULESH. While the CoDiPack gradient appears to scale better than Enzyme,

this is because CoDiPack has a large gradient overhead (additional instructions required

to compute the derivative of a single instruction in the reverse pass) for serial instructions

unrelated to MPI. This causes the overall gradient overhead (considering all MPI and se-

rial instructions) for CoDiPack to be quite high at 1 rank (see Figure 8-8 (top row)). The
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scaling tests perform fewer serial instructions per rank at higher node, causing the total

overhead to be composed of fewer serial instructions in proportion to an MPI call. As a

result, CoDiPack’s apparently improved scalability is an artifact of the higher serial dif-

ferentiation overhead being called proportionally fewer times, rather than scalability of its

MPI differentiation.

We also evaluated strong scaling performance of the OpenMP C++ and RAJA versions

of LULESH in Figure 8-9 (top row) (CoDiPack cannot differentiate OpenMP LULESH,

and LULESH.jl does not use threads). To evaluate the effectiveness of parallel optimiza-

tion we ran versions of the OpenMP LULESH with and without OpenMPOpt enabled. We

extended the OpenMPOpt in LLVM 14 to also handle hoisting loads out of parallel re-

gions. We again find that the scaling behavior of the derivative matches that of the original

function.

We find that LULESH OpenMP has a relatively flat gradient overhead. The overhead

drops when OpenMPOpt is enabled due largely to the fact that OpenMPOpt moves a pointer

indirection out of a loop, improving alias analysis and allowing Enzyme to avoid caching

as much data.

We evaluated the strong scaling performance of the OpenMP C++, OpenMPOpt C++,

and Julia Task versions of miniBUDE (OpenMPOpt does not apply to Julia tasks). With

regular OpenMP, the gradient overhead worsens as threads increase but does not grow

with OpenMPOpt. This is again due to parallel load hoisting moving data outside a loop,

which in this test enables Enzyme to avoid having to cache any data at all, electing instead

to recompute temporaries. There is a slight decrease in scalability for the gradient at 32

threads due to using both sockets at that point and needing to update data from both CPU’s.

Notably, the gradient continues to scale on multiple sockets after the initial performance

loss. miniBUDE.jl’s overhead is higher, but again scales well. The higher overhead is

because Julia arrays have an extra level of pointer indirection that causes alias analysis

to conclude that several values need be cached. The amount of data being cached is still

moderate due to Enzyme’s ability to rematerialize temporary allocations.

The weak scaling performance of the OpenMP C++ and RAJA versions of LULESH

can be found in Figure 8-10. We again find that scaling of the LULESH OpenMP and Open-
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MPOpt gradient matches that of the primal. The C++ OpenMPOpt displays anomalous

behavior because OpenMPOpt did not optimize for a single thread as effectively. Finally,

Figure 8-11 shows the scaling behavior of LULESH using both MPI task and OpenMP

thread parallelism.

Overall, for all types of parallelism, the differentiated code scales similarly to the for-

ward code. Since Enzyme can cache data without contention or a shared data structure,

only gradient accumulation may add contention to the program. The use of analyses which

detect what pointers and registers are thread local and thus can be accumulated serially

helps preserve the parallel scaling properties.

8.9 Conclusion

We have introduced a composable and generic LLVM-based mechanism to differentiate a

variety of parallel programming models. In addition to simplifying the ability to handle

high-level parallelism constructs, this marks the first time that an automatic differentiation

tool can handle multiple parallelism models and multiple languages with a single imple-

mentation. We showcase the potential of this approach on the proxy apps LULESH, and

miniBUDE, demonstrating Enzyme’s practical use in real-world scientific simulation codes

with nontrivial parallelization patterns. The overhead of the differentiated code is well in-

side the expected runtime of overheads of other state-of-the-art differentiation tools, is even

comparable to the overhead of sequential programs[278], and observes the same scaling be-

havior of the differentiated code when compared with the original code. At the same time

Enzyme does not require its users to utilize custom Adjoint-MPI libraries, and rewrite their

application, making its AD of parallel programs much more accessible for users.
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Chapter 9

High-Performance GPU-to-CPU

Transpilation and Optimization via

High-Level Parallel Constructs

9.1 Introduction

Despite x86 CPUs and NVidia GPUs remaining primary platforms for computation, cus-

tomized and emerging architectures play an important role in the computing landscape. A

custom version of an ARM CPU, A64FX, is even used in one of the top supercomputers

Fugaku [339] where its high-bandwidth memory is expected to compete with that of GPUs.

However, these architectures are often overlooked by efficiency-oriented frameworks and

libraries. For example, PyTorch [297] targeting Intel’s oneDNN [188] backend expect-

edly underperforms on ARM due to architecture differences and even Fujitsu’s customized

oneDNN [125] does not yield competitive performance on some kernels. Such situations

call for performance portability.

Many non-library approaches for performance portability have been proposed and in-

clude language extensions (e.g., OpenCL [102], OpenACC [169]), parallel programming

frameworks (e.g., Kokkos [63]), domain-specific languages (e.g., Spiral [314], Halide [319]

or Tensor Comprehensions [397]). All of these approaches still require legacy applications
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to ported, and sometimes entirely rewritten, due to differences in the language, or the un-

derlying programming model.

We explore an alternative approach based on a fully automated compiler that takes code

in one programming model (CUDA) and produces a binary targeting another one (CPU

threads). While GPU-to-CPU translation has been explored in the past [372, 92, 160], it

was rarely able to produce efficient code. In fact, optimizations for CPUs and even generic

compiler transforms, such as common sub-expression elimination or loop-invariant code

motion, are hindered by the lack of analyzable representations of parallel constructs inside

the compiler [274]. As representations of parallelism within a mainstream compiler have

only recently begun to be explored [344, 222, 367, 96, 94], existing transformations are

limited and tend to apply to simple CPU codes only.

We propose a compiler model for most common GPU constructs: multi-level paral-

lelism, level-wide synchronization, and level-local memory. In contrast to source and AST-

level approaches, which operate before the optimization pipeline, and existing compiler

approaches, which model synchronization as a black-box optimization barrier, we model

synchronization from memory semantics. This allows synchronization-based code to inter-

operate with existing optimizations and enables novel parallel-specific optimizations.

Our model is implemented using MLIR [229] and LLVM [230] and leverages MLIR’s

nested-module approach for GPU [154]. We extended the Polygeist [270] C/C++ fron-

tend to support CUDA and to produce MLIR which preserves high-level parallel structure.

Our prototype compiler is capable of compiling PyTorch CUDA kernels, as well as other

compute-intensive benchmarks, to any CPU architecture supported by LLVM. In addition

to transformations accounting for the differences in the execution model, we also exploit

parallelism on the CPU via OpenMP. Finally, our MocCUDA PyTorch integration allows us

to compile and execute CUDA kernels in absence of a GPU while substituting unsupported

calls.

We evaluate our compiler on Rodinia CUDA benchmarks [68] and PyTorch CUDA

kernels. When targeting a commodity CPU, our OpenMP-accelerated CUDA code yields

comparable performance with the reference OpenMP implementations from the Rodinia

suite, as well as improved scalability. When using our framework to run PyTorch on the
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CPU-only Fugaku Supercomputer, we achieve roughly twice the images processed per

second of a Resnet-50 [165] training run compared to existing PyTorch CPU backends.

Overall, this chapter makes the following contributions:

• A common high-level and platform-agnostic representation of SIMT-style parallelism

backed by a semantic definition of barrier synchronization that ensures correctness

through memory semantics, and thus transparent application of existing optimiza-

tions.

• Novel parallel-specific optimizations which can exploit our high-level parallel se-

mantics to optimize programs.

• An extension to the Polygeist C/C++ MLIR frontend capable of directly mapping

GPU and CPU parallel constructs into our high-level parallelism primitives.

• An end-to-end transpilation1 of CUDA to CPU for a subset of the Rodinia [68] bench-

mark suite and the internal CUDA kernels in PyTorch [297] necessary to run Resnet-

50 on the CPU-only Fugaku supercomputer.

9.2 Background

Mainstream compilers like Clang and GCC lack a unified high-level representation of par-

allelism. Compiling parallel constructs in frameworks like CUDA, OpenMP, or SYCL,

forces the body of a parallel region to exist within a separate (closure) function which

is invoked by a parallel runtime. Concepts such as thread index or synchronization are

then represented separately, often through opaque intrinsic calls. As the compiler histori-

cally lacked information about parallelism and effects of the involved runtimes, any parallel

construct also inadvertently acted as a barrier to optimization. While there have been at-

tempts [96, 94, 381, 274, 343, 222, 367] in recent years to improve representations for CPU

parallel constructs, accelerator programming comes with additional challenges. The unique

1We use the term transpilation to refer to taking a program in one programming model and emitting
code for another, similar to source-to-source CUDA-to-C transpilers though now on IR. This procedure also
cross-compiles the code. which refers to emitting non-native instructions.
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programming model and complex memory hierarchy have left high-level representations of

GPU parallelism within mainstream compilers under-explored.

__device__ float sum(float* data, int n) { ... }
__global__
void normalize(float *out, float* in, int n) {

int tid = blockIdx.x + blockDim.x * threadIdx.x;
// Optimization: Compute the sum once per block.
// __shared__ int val;
// if (threadIdx.x == 0) val = sum(in, n);
// __syncthreads;
float val = sum(in, n);
if (tid < n)

out[tid] = in[tid] / val;
}
void launch(int *d_out, int* d_in, int n) {

normalize<<<(n+31)/32, 32>>>(d_out, d_in, n);
}

Figure 9-1: A sample CUDA program normalize, which normalizes a vector and the CPU
function launch launching the kernel. Each GPU threads calls sum, resulting in O(N2)
work. Using shared memory (commented) reduces the work to O(N2/B) at extra resource
cost. Computing sum before the kernel reduces work to O(N).

9.2.1 GPU Compilation

Consider the CUDA program in Figure 9-1, which normalizes a vector. When compiled

using Clang, the GPU program is a separate compilation unit. This prevents any optimiza-

tion between the GPU kernel and the CPU calling code. In the case of Figure 9-1, the total

work of the program in a traditional compiler is O(N2), due to the O(N) call to sum being

performed for each thread. However, if the call to sum is performed only once prior to the

kernel call, e.g., by performing loop-invariant code motion (LICM), the work would re-

duce to O(N). A less effective variant of this optimization could reduce the work to O( N2

B )

through the use of shared memory. MLIR provides a nested-module representation for

GPU programs that supports host/device code motion [154], but parallel code motion has

not been implemented. In GPU to CPU code motion, LICM out of a parallel loop is always

legal as any former device memory is also available on the host.

227



// Kernel launch is available within the calling
// function, enabling optimizations across the
// GPU/CPU boundary.
func @launch(%h_out : memref<?xf32>,

%h_in : memref<?xf32>, %n : i64) {
// Parallel for across all blocks in a grid.
parallel.for (%gx, %gy, %gz) = (0, 0, 0)

to (grid.x, grid.y, grid.z) {
// Shared memory = stack allocation in a block.
%shared_val = memref.alloca : memref<f32>
// Parallel for across all threads in a block.
parallel.for (%tx, %ty, %tz) = (0, 0, 0)

to (blk.x, blk.y, blk.z) {
// Control-flow is directly preserved.
if %tx == 0 {

%sum = func.call @sum(%d_in, %n)
memref.store %sum, %shared_val[] : memref<f32>

}
// Syncronization via explicit operation.
polygeist.barrier(%tx, %ty, %tz)
%tid = %gx + grid.x * %tx
if %tid < %n {

%res = ...
store %res, %d_out[%tid] : memref<?xf32>

}
}

}
}

Figure 9-2: Polygeist/MLIR equivalent of launch/normalize code from Figure 9-1. The
kernel call is available directly in the host code which calls it. The parallelism is explicit
with parallel for loops across the blocks and threads. Shared memory is placed within the
block parallel for, allowing access from any thread in the same block, but not a different
block.
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9.2.2 MLIR Infrastructure

MLIR is a recent compiler infrastructure designed for reuse and extensibility [229]. Rather

than providing a predefined set of instructions and types, MLIR operates on collections

of dialects containing interoperable user-defined operations, attributes and types. Opera-

tions are a generalization of IR instructions that can be arbitrarily complex, in particular,

contain regions with more IR thus creating a nested representation. Operations define and

use values that obey single static assignment (SSA) [88]. For example, MLIR dialects

may model entire instruction sets such as NVVM (virtual IR for NVidia GPUs), other IRs

such as LLVM IR [230], control flow such as loops, parallel programming models such as

OpenMP and OpenACC, machine learning graphs, etc.

MLIR supports GPU thanks to the eponymous dialect, which defines the high-level

SIMT programming model, host/device communication, and a set of platform-specific di-

alects: NVVM (CUDA), ROCDL (ROCm) and SPIR-V. MLIR’s approach to GPU pro-

gramming benefits from a unified code representation. Since an MLIR module may contain

other modules, the “host” translation unit may embed the “device” translation unit as IR

rather than file reference or binary blob. This approach provides host/device optimization

opportunities unavailable to other compilers, in particular to move code between host and

device [154].

9.2.3 Polygeist

Polygeist is a C/ C++ frontend for MLIR based on Clang [270]. It is capable of translating

a broad range of C++ programs into a mix of MLIR dialects that preserve elements of

the high-level structure of the program. Specifically, Polygeist preserves structured control

flow (loops and conditionals) as MLIR SCF dialect operations and simplifies analyses by

preserving multi-dimensional array constructs whenever possible by relying on the MLIR’s

multi-dimensional memory reference (memref) type. Finally, Poylgeist is able to identify

parts of the program suitable for polyhedral optimization [113] and represent them using

the Affine dialect.
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__global__ f() {
codeA();
barrier();
codeB();

}

__global__ f() { // 0<=t.x< blockDim.x
A[threadIdx.x] = ...; // W A[i]: i==t.x
barrier(); // RW A[i]: i!=t.x
... = A[threadIdx.x]; // R A[i]: i==t.x

}

Figure 9-3: Left: A program containing a barrier between two arbitrary instructions.
Right: Barrier semantics can be refined memory addresses accessed by operations above/-
below it in all threads except the current one.

9.3 Approach

We extended the Polygeist compiler [270] to directly emit parallel MLIR from CUDA.

This leverages the unified CPU/GPU representation to allow the optimizer to understand

host/device execution, and to enable optimization across kernel boundary. The use of exist-

ing MLIR’s first-class parallel constructs (scf.parallel, affine.parallel) enables us

to target existing CPU and GPU backends. Finally, MLIR’s extensible operation set allows

us to define custom instructions, with relevant properties and custom optimizations.

We define the representation of a GPU kernel launch as follows (illustrated in Figure 9-

2):

• A 3D parallel for-loop over all blocks in the grid.

• A stack allocation for any shared memory, scoped to be unique per block.

• A 3D parallel for-loop over all threads in a block.

• A custom Polygeist barrier operation that provides equivalent semantics to a CUDA

synchronization.

This procedure enables us to represent any GPU program in a form that preserves the

desired semantics. It is fully understood by the compiler and is thus amenable to compiler

optimization. Moreover, by representing GPU programs with general parallelism, alloca-

tion, and synchronization constructs, we are not only able to optimize the original program,

but also retarget it for a different architecture.
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9.3.1 Barrier Semantics

A CUDA __syncthreads function guarantees that all threads in a block have finished exe-

cuting all instructions prior to the function call, before any threads executes any instruction

after the call. Traditionally, compilers represent such functions as opaque optimization

barriers that could touch all memory, and forbid any transformation involving them.

In our system, we chose to represent thread-level synchronization through a new polygeist.barrier

operation. Unlike other approaches, polygeist.barrier (hence referred to as simply

barrier) aims to only prevent transformations that would change externally visible be-

havior. Rather than disallowing any code motion across a barrier, we can successfully

achieve the desired semantics by defining barrier to have specific memory properties,

represented as a collection of memory locations (including unknown), and memory effect

type (read, write, allocate, free), as is standard within MLIR. Consider the simple program

in Figure 9-3(left). The impact of the synchronization can only be observed if codeA and

codeB access the same memory. Moreover, if both only read the same memory location,

the synchronization is also unnecessary. We can enumerate the remaining cases: (1) codeA

writes, codeB loads; (2) codeA loads, codeB writes; (3) codeA writes, codeB writes.

The barrier having the write behavior of codeA would ensure correctness of (1): the

load in codeB could not be hoisted above the barrier, as it would appear to read a different

value. Symmetrically, the barrier having the write behavior of codeB ensures the correct-

ness of (2). Thus, the union of the writing behaviors of codeA and codeB is sufficient to

prevent illegal movement of loads across the barrier.

However, this does not prevent writes from being moved. For example, codeB could be

duplicated above the barrier in (3), and it would appear to have the same final memory state

since the extraneous write before the barrier would never be read. Thus, we also define the

barrier to have the reading behavior of codeA and codeB.

This model can be extended to include memory effects of all operations in the parallel

loop which may have been executed before, or after, a given barrier. On a control flow

graph with explicit branches, this requires exploring the operations within predecessors or

successors, respectively. However, operating on MLIR’s structured control flow level, with

231



parallel %i = 0 to 10 {
%x = load data[%i]
%y = load data[2 * %i]
%a = fmul %x, %x
%b = fmul %y, %y
%c = fsub %x, y
barrier
call @use(%a, %b, %c)
...

}

%x_cache = memref<10xf32>
%y_cache = memref<10xf32>
parallel %i = 0 to 10 {

%x = load data[%i]
%y = load data[2 * %i]
store %x, %x_cache[%i]
store %y, %y_cache[%i]

}
parallel %i = 0 to 10 {

%x = load %x_cache[%i]
%y = load %y_cache[%i]
%a = fmul %x, %y
%b = fsub %y, %z
call @use(%a, %b)
...

}

Figure 9-4: Parallel loop splitting around a barrier: the code above the barrier is placed
in a separate parallel “for” loop from the code following the barrier. This transformation
eliminates the barrier, while preserving the semantics. The min-cut algorithm stores %x and
%y, which are then used to recompute %a, %b, and %c in the second loop.

explicit operations for loops and conditionals, simplifies the analysis. Furthermore, if more

than one barrier is present in the same block, it is unnecessary to look past it.

Given a sufficiently expressive side effect model, the memory semantics of the barrier

can be further expanded. While barriers enforce ordering reads/writes to the same location

from different threads, the natural execution order is sufficient within one thread. Therefore,

barriers need not capture the memory effects of operations where the address is an injective

function of the thread identifier. We implement the refinement for affine forms of access

expressions leveraging the polyhedral framework in MLIR/Polygiest. For each memory

access, we define an integer relation between a set of possible thread id values and the set

of accessed array subscripts, R : T → A. We then compose direct and inverse relations for

relevant operations to obtain a relation between thread indices accessing the same subscript,

D = R−1 ◦ R : T → T ′. Finally, we subtract the identity relation D \ I : T → T ′. If non-

empty, D ≠ ∅, different threads may access the same address and the barrier is required.

Given a non-affine access or non-static control flow, we conservatively assume an access of

the entire array dimension. In practice, this is rarely necessary on GPU code, whose loops

typically have parametric/static bounds. Aliasing guarantees must be checked when more

than one base address is involved.

Consider the code in Figure 9-3(right). Since the sets of accessed addresses do not
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parallel for %id=0 to N {
for %j = 5 to 0 {

if (%id < 2^%j)
A[%id] += A[%id + 2^%j]

barrier
}

}

for %j = 5 to 0 {
parallel for %id=0 to N {

if (%id < 2^%j)
A[%id]+=A[%id + 2^%j]

barrier
}

}

Figure 9-5: Left: A shared memory addition, which consists of a kernel call which contains
for loop with a barrier inside. Right: Same but with the barrier directly in the parallel loop
after a parallel/serial loop interchange.

overlap, Ao ∩ Ab = ∅, code motion across the barrier is allowed. In contrast, if the load

or store to A were offset by 1, the barrier would be necessary as the data loaded after the

barrier would be stored by a different thread.

9.3.2 Barrier Lowering

To enable GPU programs to run on a CPU, we must efficiently emulate the synchronization

behavior of GPU programs. Whereas the memory semantics in Section 9.3.1 enable us

to preserve the correctness of barriers during optimization, this section discusses how to

implement the barrier on a CPU.

CPU architectures have no notion of thread blocks, nor the barrier instruction which

waits on this conceptual grouping of threads. Instead, we use regular CPU threads and work

sharing to distribute the thread-block loop iterations across them. Conceptually, this differs

from the GPU execution model in which threads execute one iteration each. Work sharing

requires each thread to execute multiple iterations sequentially, making it impossible to

synchronize in the middle of iterations, but only at the end of the loop.

To address this, we developed a new barrier elimination technique for our MLIR rep-

resentation. Our approach is an extension of loop fission (see Section 9.7) combining two

transformations: parallel loop splitting and interchange.

Parallel Loop Splitting

Suppose a barrier has the kernel function (or, in our representation, parallel for loop)

as its direct parent. It can be eliminated by splitting the loop around the barrier into two
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parallel for %i=0 to N {
do {

run(%i)
barrier

} while(condition())
}

%helper = alloca memref<i1>
scf.do {

parallel for %i=0 to N {
run(%i)
barrier
%c = condition()
if %i == 0 {

store %c, %helper[]
}

}
%c = load %helper[]

} while(%c)

Figure 9-6: Parallel interchange around a while loop. As the condition() function call
must be executed on each thread to preserve correctness, a helper variable is used which
holds the value of the call on the first thread.

parallel for loops that run the code before and after the barrier, respectively. If the code

before the barrier created SSA values that were used after it, these must be either stored

or recomputed in the second parallel loop. We use the technique similar to one in [272] to

determine the minimum amount of data that needs to be stored. Specifically, we create a

graph of all SSA values. We then mark each value definition that cannot be recomputed

(e.g. loads from overwritten memory) before the barrier as source, and values used after

the barrier as sinks. We derive the minimum amount of data needing to be stored by

performing a minimum branch cut on this graph.

Parallel Loop Interchange

Not all barrier operations have a parallel for as their immediate parent, some may be nested

in other control flow operations. We created a model that specifies what instructions may

run in parallel. With the sole exception of barrier, our representation does not require any

specific ordering or concurrency to the program. Therefore it is legal (though potentially a

reduction in parallelism) to add additional barriers. We can use this property to implement

barrier lowering for control flow.

Consider a control-flow construct C containing a barrier and nested in a parallel for.

Adding barriers immediately around C will result in parallel loop splitting directly above

and below C. As a result, the operations above and below C will be separated into their own
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parallel for and C will be the sole operation in the middle loop. We can then apply one of

the following techniques to interchange C with the parallel for, thus making the barrier’s

parent a parallel for.

Consider the case of a serial for loop containing a barrier, Figure 9-5. This pattern is

common in GPU code, e.g., to implement a reduction across threads [162]. As barrier

must wait for all threads, each thread must execute the same number of barriers. There-

fore, the number of iterations of the inner loop is the same for all threads, allowing for loop

interchange.

While an if statement can be considered a loop with zero or one iteration, directly

interchanging it with the surrounding parallel for when necessary is more efficient.

Whereas for loops in MLIR have a fixed trip count, while loops support dynamic exit

conditions, like in Figure 9-6. Since correctness requires executing condition() in every

thread, a direct interchange would not be legal. However, GPU synchronization semantics

require the trip count to be the same in all threads. Therefore, one can still perform an

interchange using a helper variable to store the result of the condition.

This illustrates one of the advantages of building off of MLIR/Polygeist. By preserving

high level program structures, we can use more efficient patterns to remove barriers.

9.4 Parallel Optimization

The high-level representation of both parallelism and GPU programs provided by Polygeist/M-

LIR enables a variety of optimizations. These include general optimizations that would

apply to any parallel program as well as specific optimizations in the context of GPU to

CPU conversion.

9.4.1 Barrier Elimination &Motion

As GPU-style barriers have to be specially transformed to support CPU architectures, elim-

inating or simplifying any barriers can have dramatic effects. Moreover, even when running

GPU code on the GPU, barrier elimination is highly useful as any synchronization reduces

parallelism. Much of the infrastructure for barrier elimination/simplification comes directly
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__global__ void bpnn_layerforward(...) {
__shared__ float node[HEIGHT];
__shared__ float weights[HEIGHT][WIDTH];
if ( tx == 0 ) node[ty] = input[index_in] ;
// Unnecessary Barrier #1
__syncthreads();
// Unnecessary Store #1
weights[ty][tx] = hidden[index];
__syncthreads();

// Unnecessary Load #1
weights[ty][tx] = weights[ty][tx] * node[ty];
__syncthreads();

for ( int i = 1 ; i <= log2(HEIGHT) ; i++){
if( ty % pow(2, i) == 0 )

weights[ty][tx] += weights[ty+pow(2, i-1)][tx];
__syncthreads();

}

hidden[index] = weights[ty][tx];
// Unnecessary Barrier #2
__syncthreads();

if ( tx == 0 ) out[by * hid + ty] = weights[tx][ty];
}

Figure 9-7: An example CUDA kernel from the Rodinia backprop test that contains unnec-
essary synchronization and unnecessary use of shared memory.
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from its memory behavior defined in Section 9.3.1. Let M↑

B (M↓

B) be the union of memory

effects before (after) a barrier B until the edge of the parallel region. Let M•†

B be the subset

of M•
B with effects until the first barrier rather than region edge. Given a barrier B, if there

are no memory effects to the same location across the barrier other than a read-after-read

(RAR), i.e. M↑†

B ∩ M↓

B = ∅, B has its behavior subsumed by the previous barrier. Symmet-

rically M↑

B ∩ M↓†

B = ∅ means the barrier is subsumed by the following one. A specific case

of a removable barrier is one that has no memory effects at all.

For example, consider the code in Figure 9-7, which comes from the backprop Rodinia

benchmark [68]. The first and last __syncthreads instructions are unnecessary. This can

be proven from our memory-based barrier elimination algorithm above as follows. For the

first barrier, M↑ (going all the way to the start) contains only a write to node and a read

from input. M↓† (going to the second __syncthreads) contains a write to weights and

a read from hidden. None of these conflict if, given the calling context, the pointers are

known not to alias. Thus, it is safe to eliminate the barrier.

The same memory analysis can also be applied to perform barrier motion. One simply

needs to place a fictitious barrier at the intended location and check if the previous memory

analysis would deduce that the current barrier is unnecessary, thereby permitting barrier

motion.

9.4.2 Memory-to-register promotion across barriers

One of the goals of defining barrier’s semantics from its memory behavior is to enable

memory optimizations to operate correctly and effectively in code that contains barriers.

As described in Section 9.3.1, barriers have the memory behavior of the code above and

below them with the notable exception of an access from the current thread. This hole

is important as it enables memory-to-register promotion (mem2reg) to operate on thread-

local memory such as local variables. This optimization can replace slow memory reads

with fast registers. For example, consider again the code in Figure 9-7. Consider the load

and store to weights[ty][tx] labeled “Unnecessary Store #1” and “Unnecessary Load

#1”, and the sync in between the two. The only value that can be loaded at that point is the
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same value which was stored earlier, a register containing the value loaded from hidden.

As that same location is overwritten before anyone else could read from weights, the first

store also can be safely eliminated once the load is removed. During mem2reg, Polygeist

can derive this forwarding property, since the hole in the memory properties described in

Section 9.3.1 allows it to deduce that the barrier operation does not overwrite the store for

the current thread. As a result, traditional load and store forwarding correctly operates on

the barrier code.

9.4.3 Parallel loop-invariant code motion

The traditional loop-invariant code motion optimization aims to move an instruction I out-

side serial "for" loops, reducing the number of times I is executed. If I may access memory,

or has other side effects, in addition to checking that the operands of I are themselves loop

invariant, the compiler must check that no other code within the "for" loop conflicts with

the memory access performed by I.

On present compilers, while it is possible to apply loop-invariant code motion to serial

for loops within GPU kernels, it is not possible to apply loop-invariant code motion to

hoist instructions outside of a kernel call. This is in part due to the fact that GPU kernels

are kept in a separate module from the CPU code which calls them, as well as a lack of

understanding of parallelism (see Figure 9-1).

Counter-intuitively, with the right semantics we can apply loop-invariant code motion

to parallel for loops even if we would not be able to apply it to an equivalent serial loop.

We will rely on the fact that semantics of our program permits us to arbitrarily interleave

iterations of a parallel "for" loop as long as we maintain the orderings required by barriers.

As such, it is legal, though not necessarily fast, to run the program in lock-step. In other

words, if a parallel for loop had 10 instructions, each thread can execute instruction 1 before

any thread executed instruction 2, and so on. As a consequence, it is now legal to hoist an

instruction so long as its operands are invariant and no prior instruction in the parallel for

loop conflicts with I.
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omp.parallel {
omp.wsloop %i= 1 to 10 {

codeA(%i)
}

}
omp.parallel {

omp.wsloop %i= 1 to 10 {
codeA(%i)

}
}

omp.parallel {
omp.wsloop %i=1 to 10 {

codeA(%i)
}
omp.barrier
omp.wsloop %i=1 to 10 {

codeA(%i)
}

}

Figure 9-8: Example of OpenMP parallel region fusion. Fuse two adjacent OpenMP paral-
lel regions by inserting a barrier to allow the threads to be initialized once instead of twice.

for (i=0; i<N; i++) {
#pragma omp parallel for
for (j=0; j<10; j++) {

body(i, j);
}

}

#pragma omp parallel
for (i=0; i<N; i++) {

#pragma omp for
for (j=0; j<10; j++) {

body(i, j);
}
#pragma omp barrier

}

Figure 9-9: Example of OpenMP parallel region hoisting. This can be seen as an extension
of parallel region fusion across “regions” corresponding to each iteration of the outer loop.

9.4.4 Block Parallelism Optimizations

OpenMP is our primary target for parallel execution on the CPU. It implements parallel

"for" loops as two constructs. First, the loop is outlined into a function which is called once

per thread, representing OpenMP’s "parallel" construct. Then, within the outlined function,

the iteration space is distributed across threads, representing OpenMP’s "worksharing loop"

construct. OpenMP also has a "barrier" construct, but with semantics different than that of

a GPU barrier.

When multiple parallel loops are executed in a row, e.g., following the barrier lowering

from Section 9.3.2, the overhead of thread management can be reduced by fusing adjacent

OpenMP "parallel" constructs [95] without fusing the worksharing loops (see Figure 9-8),

thus not undoing the barrier lowering. This can be extended to moving the OpenMP parallel

region outside the surrounding “for” in Figure 9-9, initializing threads once rather than N

times. Applying these to control flow constructs enables all of the “for” loops generated by

performing parallel loop fission on a block to have their OpenMP “parallel” (but not work
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sharing loops) fused.

As GPU programs tend to be written with high parallelism in mind, the parallelism

provided by the different blocks may already saturate the number of available cores alone.

If there is no use of shared memory, the block and thread parallelism can be collapsed into

a single OpenMP parallel for, which will evenly divide the total iteration space in a single

parallel region. However, if there is shared memory, our tool will generate nested parallel

regions to represent the shared memory allocation. In this case, the additional overhead

from the nested OpenMP parallel regions may outweigh the potential added parallelism.

In addition, parallelizing the inner loops may lead to adverse memory effects such as false

sharing, further penalizing performance [430, 396]. As such, we also support an optimiza-

tion for serializing any nested OpenMP parallel regions. Performing such serialization may

leverage memory locality to improve performance.

9.5 MocCUDA: Integration into PyTorch

One of our goals is to support execution of originally GPU codes on a CPU-only super-

computer such as Fugaku [339]. We focus on PyTorch [297] that has not been ported to the

A64FX architecture and therefore uses naive fallback CPU kernels. Observing that CPUs

with high-bandwidth memory are likely to benefit from GPU-style optimization, we im-

plement MocCUDA, a mock GPU backend for PyTorch that redirects the calls to CUDA

runtime and libraries to our implementations or A64FX-specific math libraries [125]. We

collect statistics of library calls and may optionally substitute them with CPU versions

transpiled by Polygeist.

9.6 Evaluation

We demonstrate the advantages and applicability of our approach on two well-known GPU

benchmark suites: a subset of the GPU Rodinia benchmark suite [68] and a PyTorch im-

plementation of a Resnet-50 neural network. These benchmarks were chosen to 1) pro-

vide a rough performance comparison of our GPU to CPU compilation on a benchmark
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Figure 9-10: PolygeistInnerPar performs similarly to MCUDA; PolygeistInnerSer outper-
forms MCUDA. PolygeistInnerSer disables inner loop parallelization similaly to MCUDA,
whereas PolygeistInnerPar keeps both the blocks and threads parallel. Left: Average run-
time as a function of thread count (averaging over matrix sizes). Right: Average runtime
as a function of matrix size (averaging over thread counts).

suite (Rodinia) that has hand-coded CPU versions and 2) demonstrate a successful end-

to-end integration of our system into a useful and real application (PyTorch Resnet-50)

on Supercomputer Fugaku, which does not have any GPUs. Additionally, we compare

the performance of our approach to the existing MCUDA [372] tool on a CUDA matrix

multiplication.

For Rodinia, we compare our translated CUDA to CPU code against OpenMP versions

of the benchmarks, where they exist, as well as a run on a GPU. For the PyTorch Resnet-50,

we compare against the “native” and oneDNN backends.

Polygeist2 was compiled using LLVM 15 (git 00a1258). For the PyTorch Resnet-50,

we compile Pytorch v1.4.0 using NVidia’s CUDA 11.6 SDK for Arm3, LLVM 13, and

Fujitsu’s SSL2 v1.2.34 library. For the baseline PyTorch measuremets, we use Fujitsu’s

pre-installed PyTorch (v1.5.0).

We evaluate the Rodinia and matrix multiplication tests on an AWS c6i.metal instance

(dual-socket Intel Xeon Platinum 8375C CPU at 2.9 GHz with 32 cores each and 256 GB

RAM) running Ubuntu 20.04. Measurements were performed on the first socket, with hy-

perthreading and turbo boost disabled. Each number is the median of at least 5 repetitions.

2MocCUDA and Polygeist are available at https://gitlab.com/domke/MocCUDA and https://
github.com/llvm/Polygeist.

3Even though we will run PyTorch on a GPU-less system, we must compile PyTorch on a CUDA-enabled
system to ensure the correct code is emitted. We also prevented inlining of three Pytorch functions.
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Figure 9-11: Left: Relative speedup (higher is better) applying parallel optimizations, pro-
posed in Section 9.4, over our flow without optimization. Right: Speedup of transpiled
CUDA-to-OpenMP compared against native OpenMP code (when available) running with
32 threads. Asterisks denote barriers within the benchmark.

9.6.1 Comparison to MCUDA

First, we compare with the previous work in MCUDA [372]. MCUDA is an AST-level

tool which produces new CPU C/C++ as an output and uses loop fission to handle syn-

chronization. As a source-to-source tool, MCUDA only handles a fraction of the input

language, making it unable to run on Rodinia programs. Instead, we compare the runtimes

of a matrix multiplication kernel across a range of threads (1–24) and matrix sizes (128×128

– 2048×2048) in Figure 9-10. Polygeist with all optimization excluding serialization of

the inner loop (PolygeistInnerPar) produces code within 1.3% of MCUDA on average.

PolygeistInnerPar has a 1.5% slowdown on 1 thread, and 3.2% speedup on 32 threads.

This behavior is caused by OpenMP overhead in handling nested parallel constructs. In

fact, MCUDA only parallelizes the outermost loop. When Polygeist also serializes the in-

ner loops (PolygeistInnerSer), it achieves an overall 14.9% speedup over MCUDA, with a

4.5% speedup on 1 thread and 21.7% speedup on 32 threads.

9.6.2 Use case 1: Rodinia Benchmarks

We benchmarked the 14 benchmarks that are currently supported by Polygeist, and had a

nontrivial runtime.4 We verified correctness by comparing the program outputs produced

4The hybridsort, kmeans, leukocyte, mummergpu huffman and heartwall use unsupported C++ or
CUDA features within Polygeist (virtual functions and texture memory). The lavaMD and dwt2d benchmarks
use ill-formed C++with undefined behavior due to reading from uninitialized memory. The nn and gaussian
tests ran in ≤ 0.005 seconds.
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by compiling with nvcc and executed on a GPU, and compiled by our flow and executed

on a CPU. We also employed the use of CPU-based parallel and undefined behavior anal-

ysis tools, which via our tool, allowed us to successfully diagnose and repair one race bug

and several undefined memory bugs in the original CUDA code. We inserted timing mea-

surements across kernels and/or computational portions of the code that include kernels, in

some cases multiple per benchmark. Where possible, we time equivalent portions of the

OpenMP versions of the same benchmarks.

We compare the Rodinia CUDA benchmarks compiled for the CPU with the Rodinia

OpenMP verions of the benchmark in Figure 9-11(right). While there is some variation

from benchmark to benchmark, overall our approach is on par with the hand-coded ver-

sions of the benchmarks, and even nets a 58% geomean performance improvement, when

the inner serialization optimization is enabled. Without inner serialization, we still see a

geomean speedup of 34%. The speedup for myocte is largely due to fewer instruction

and data cache misses on the transcompiled code, which comes from optimizations which

specialize the (parallel) to kernel call context, as well as the CUDA version employing

fewer branches. The speedup for backprop is partially due to parallel optimizations (see

Figure 9-11(left)) and partially due to the CUDA code being implemented with a linear

array, as required by CUDA, instead of the double-pointer used in the OpenMP code. The

srad_v1 benchmark benefits from a shared memory reduction in addition to parallel op-

timizations which eliminate most barriers and shared memory. In contrast, hotspot and

pathfinder see a slowdown compared against native OpenMP code, due to duplicated

computation in order to reduce synchronization and make better use of plentiful GPU par-

allelism. The slowdown for the transpiled CUDA version of lud is due to being written

with a transposed loop ordering in contrast to the OpenMP code.

We test the scaling properties of our approach by comparing transpiled CUDA with na-

tive OpenMP kernels in Figure 9-12. Transpiled CUDA codes generally scale much better

than the native OpenMP versions. As most CUDA programs are written with thousands

of threads in mind, this indicates that our framework was able to preserve that parallelism

as the GPU-specific constructs were being rewritten for CPU-compatible equivalents. On

32 threads without inner serialization, transpiled CUDA codes had a geomean speedup of
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16.1× across all tests. As OpenMP versions of benchmarks do not exist for all tests, if we

consider only CUDA codes for which there exists an OpenMP version, we find a geomean

speedup of 14.0×, whereas OpenMP has only a speedup of 7.1×. Serializing the inner loop

slightly reduces scalability, but still results in improved scalability over OpenMP, finding

a geomean speedup of 14.9× over all tests with inner serialization enabled, and a 12.5×

speedup on codes with OpenMP versions. That is, most of the speedup is due to transpli-

ation and barrier optimization as illustrated in Fig. 9-14(right). Inner lop serialization was

observed to be beneficial in presence of multiple outer loops for which the OpenMP model

triggers barrier synchronization repeatedly after the inner loop.

We perform an ablation analysis to show how individual optimizations impact perfor-

mance. The “mincut” series in Figure 9-11(left) shows performance with the optimization

outlined in Section 9.3.2. This is only relevant for benchmarks containing barriers (marked

by an asterisk in the Figure). When applicable, mincut provides a 5.8% geomean speedup.

The “openmpopt” series in Figure 9-11(left) demonstrates the impact of OpenMP region

merging and similar optimizations and results in a 10.5% geomean speedup. The “affine”

series in Figure 9-11(left) shows the result of raising control flow to their affine variants

and enabling simple serial and parallel loop optimizations (such as loop unrolling and re-

indexing). While this produces a geomean speedup of 5.4% across the board, it results in a

2.4× speedup for the backprop layerforward test as it results in a loop containing synchro-

nization being fully unrolled and reduced to if statements.

9.6.3 Use case 2: Pytorch/Resnet50 Test

To evaluate the PyTorch Resnet-50, we execute a full node-parallel training run on one

TofuD unit of the Fugaku FX1000 supercomputer, comparing against the native PyTorch

CPU backend and the optimized oneDNN backend, as available. We replaced the functions

related to computing log-likelihood with Polygeist-transpiled functions as their CUDA ker-

nels use barriers and their CPU versions contain naive implementations, and dispatched

other calls to relevant libraries.

We ran multiple forward and back propagation passes of Resnet-50 on 224×224 Im-
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Figure 9-12: Scaling behavior behavior of CUDA Rodinia kernels, when run on the CPU
with OpenMP, and OpenMP Rodinia kernels (where available), using 32 threads. Not all
Rodinia CUDA kernels have OpenMP versions.
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Figure 9-13: ResNet50 training on Fugaku node. Left: heatmap of relative throughput in-
crease of “MocCUDA+Polygeist” over Fujitsu-tuned oneDNN, higher is better. Right:
geomean throughput across batch sizes; “MocCUDA+Expert” uses an expert-written
OpenMP kernel; “MocCUDA+Polygeist” uses the generated kernel, and PytorchCPU is
Pytorch’s native OpenMP backend.

ageNet in a data-parallel fashion. We employ Horovod’s synthetic benchmarking script

[352]. We build Horovod v0.19.5 with CUDA, LLVM, and Fujitsu’s MPI library to en-

able multi-node, distributed deep learning on top of Pytorch. We assign one MPI rank per

A64FX core memory group (CMG), emulating up to 4 GPUs per node, and scale the test

from one node (2 ranks) to 12 nodes (48 ranks) in one TofuD unit (smallest 2×3×2 torus)

while keeping the number of OpenMP threads fixed at 12 to accommodate one thread per

core. We use Pytorch v1.4.0 for our approach, while the other backends depend on Pytorch

v1.5.0.

Performance was measured in GFLOP/s by using perf, and Benchmarker [101], which

sets up the neural network and test data and executes the layer. We run with batch sizes

1–228 on 1–64 threads, averaging across epochs, and we compare the different backends

for batch sizes 1–12 where all backends ran successfully.

Peak performance for MocCUDA was achieved at batch size 168 with 42 threads at 943

GFLOP/s, which amounts to 14% of the theoretical peak of the A64FX processor [124].

MocCUDA systematically outperforms Fujitsu’s tuned oneDNN across batch sizes and

thread counts, yielding up to 4.5× throughput increase (geomean 2.7×, min 1.2×) as shown
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Figure 9-14: Left: ResNet throughput continues to scale for large batch sizes; large batches
time out with few threads. Right: inner loop serialization contributes up to 30% speedup
while most comes from barrier optimizations.

in Figure 9-13. MocCUDA with expert-written kernels is comparable to MocCUDA with

Polygeist-generated kernels. Furthermore, the throughput of MocCUDA keeps increasing

with the number of threads provided a sufficiently large batch size as shown in Fig. 9-

14(left). For batch size 24, it plateaus at 24 threads while for batch size 168, it peaks at 42

threads.

The improvement can be explained by a combination of the PyTorch CPU design and

performance characteristics of oneDNN. As Intel’s oneDNN [188] does not account for

HBM available on A64FX, it uses cache-friendly direct convolutions instead of GEMM-

based convolutions, less efficient in presence of HBM for Arm CPUs. While the cus-

tom fork of oneDNN tuned by Fujitsu [125], improves upon Intel oneDNN’s performance

(though by a geomean of 6%), it still leaves room for performance improvements.

This demonstrates that our approach is capable of automatically deriving efficient ver-

sions of deep learning kernels (and potentially other applications) from their CUDA ver-

sions, thus addressing the limitations of missing or inefficient kernels for CPUs with high-

bandwidth memory without the need for reverse or re-engineering the application.
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9.7 Related Work

9.7.1 GPU to CPU Synchronization

One of the first tools for emulating GPUs on a CPU was provided directly by NVidia for

debugging purposes and emulated each thread on the GPU with a distinct CPU thread.

While functional, the large gap in the number of available threads makes the emulation

inefficient.

MCUDA [372] (2008) performs an AST transformation of C GPU code to generate

new C CPU code that calls a thread-independent parallel for routine. MCUDA pioneered

the use of “deep fission” to handle synchronization, which splits parallel loops and other

constructs at synchronization points in order to eliminate them. This fission technique is

also applied in other tools: Ocelot [92] (2010), a binary-translation tool that parses PTX

assembly into LLVM and just-in-time compiles kernel functions; POCL [196] (2015), a

Clang/LLVM compiler pass for OpenCL; COX [160] (2021), another LLVM transforma-

tion pass for translation of CUDA that uses fission, and handles warp-level primitives; and

even this work. While the intuition behind the fission approach is similar to that used here,

we apply fission inside of a high-level compiler, rather than either source or a low-level

IR. As demonstrated in Section 9.3.1, performing fission on structured programs enables

more efficient code transformations. While applying fission at a source-level misses the op-

portunity to run optimizations before fission (like barrier elimination) and applying fission

at a low-level requires attempting to reconstruct the high-level structure, operating within

MLIR allows us to both apply optimization and preserve high-level structure. Moreover,

source-level tools tend to be quite fragile as they must re-implement parsing and seman-

tics or the target language (e.g. C++), and as a result only operate on a limited subset of

the input language, requiring re-engineering effort to replace unsupported constructs (like

pointer arithmetic).

Another approach uses continuation-passing to handle synchronization by creating state

machine of all synchronization points (e.g. “microthreading”) [370] (2010). Karrenberg

and Hack [206] (2012) propose a continuation-passing approach in LLVM that includes

an algorithm for detecting and reducing divergence in the control-flow-graph. Follow-up
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work minimizes live values to reduce memory traffic [266].

VGPU [299] (2021) is similar to NVidia’s virtual GPU, except using C++ thread and

fence. Shared memory, implemented as a single global, is expanded by the number of

blocks.

Prior work that operates at the low-level LLVM IR extends significant effort to recon-

struct high-level constructs, such as loops and kernel configurations, required for either

efficient fission or continuation passing. For example, POCL [196] runs canonicalizations

and loop transformations to rewrite the control flow graph and attempt to recognize it as

a specific form that can be handled. Prior work that operates at source/AST level (e.g.

MCUDA), beyond still needing to recognize GPU-level concepts, cannot benefit from op-

timizations that simplify the code resulting in easier control flow.

In contrast, by operating on MLIR’s mix-of-abstractions, we are able to simultaneously

preserve source-level structure and perform program transformations such as loop unrolling

or LICM that can, e.g., remove nested synchronization.

9.7.2 Parallel Portablity/IR, & OpenMP Optimizations

Several tools define new abstractions in the host language that are amenable to CPU or GPU

execution. Examples include ISPC [301], RAJA [33], Kokkos [105], or MapCG [173] (lim-

ited to map-reduce code) in C++, Loo.py [216] in Python, and KernelAbstractions.jl [77]

in Julia. These approaches provide performance portability for any new code written with

them. However, existing code must be rewritten in said framework and may not compose

with other frameworks/languages.

Several pieces of prior art discuss parallel intermediate representations, such as Tapir [344]

for representing Cilk [123] in LLVM; OpenMPIR [367] for representing OpenMP in LLVM,

PPIR [346] for pattern trees, and the MLIR OpenMP Dialect; as well as SDf3 [375] for vi-

sually representing concurrency as a control-flow graph. These works primarily focus on

the representation for their particular style of parallelism (e.g. OpenMP tasks in Open-

MPIR), which does not include GPU-style barriers, rather than on parallel transforma-

tions (such as barrier elimination) or optimizations, with the exception of consistency/race
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checks or automatic parallelization [267, 291].

The use of OpenMP parallel region expansion is known to be beneficial [95]. Clang/L-

LVM optionally supports the transformation in a weaker form [241].

9.7.3 Barriers

Several pieces of prior work explored the semantics of barrier or synchronization instruc-

tions, including in relation to GPUs. Work has been done to verify the correctness of

barriers [10]. [360] experimentally evaluates the forward progress, fairness models of var-

ious GPU vendors. [359] implements a GPU barrier that applies across work-groups, as

opposed to just within a work group. [377] add Java memory barriers to programs to en-

sure weak and sequential consistency semantics. They find that without synchronization

and delay set analysis, introducing consistency semantics has an average 26.5× slowdown,

whereas when using these analyses to insert fewer synchronizations can achieve a 10% and

26% slowdown for weak and sequential consistency, respectively.

Barrier elimination was implemented in the SUIF compiler for SPMD with shared

memory [390] and for software-distributed memory [159]. This relies on a purpose-built

communication analysis across the barrier whereas our method leverages the memory ef-

fects of the barrier itself. On the other hand, it supports synchronization minimization, such

as replacing a barrier with nearest-neighbor communication, which our flow currently does

not. Several pieces of work have proposed code generation techniques or code transfor-

mations aimed at minimizing the amount of synchronization within SPMD programs [89]

or imperfect loops [292]. These approaches are applied to a sequential program, or one

without synchronization at all, while our approach is applied parallel CUDA programs.

Synchronization minimization was explored within the polyhedral framework [240].

PolyAST supported analysis and transformation of programs with OpenMP directives [67].

While our flow may benefit from the polyhedral representation, it may operate without it

and supports a significantly larger set of input programs. Razanajato et.al. leveraged the

framework to generate different OpenMP parallelism constructs [320], which is comple-

mentary to our code generation.
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9.8 Conclusion

By extending Polygeist/MLIR, we developed an end-to-end system capable of represent-

ing, optimizing, and transpiling CPU and GPU parallel programs. A key component of

our framework is the development of a high-level barrier operation, key to representing

GPU programs, whose semantics can be fully defined by its memory behavior. Unlike

prior representations of parallel barriers, our semantics enable direct integration of barriers

within optimization. As efficacy validation, we demonstrated GPU to CPU transpilation

of a subset of the Rodinia benchmark suite on a commodity CPU and transpile Resnet-50

from the PyTorch CUDA source to run on A64FX CPU. The Rodinia benchmarks achieve

a 58% geomean speedup of the transpiled GPU code over handwritten OpenMP versions.

Similarly, we observe a ≈ 2× speedup of transpiled kernels over the native PyTorch CPU

backend.

Currently, the transpiled GPU code keeps the same schedule when run on the CPU,

except for the innermost loop serialization that improves performance. A fruitful avenue

of future work may perform advanced rescheduling the code to better take advantage of

CPU-style memory hierarchies.
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Chapter 10

“Header-time” Optimization

double mag(double *A, uint N);

void norm(double *In, double *Out) {
for (uint i = 0; i <= N; ++i)

Out[i] = In[i] / mag(In,N);
}

Figure 10-1: A file with a function definition (norm) and a function declaration (mag). As
the latter is opaque, it is illegal to move the call outside the loop, resulting in a runtime of
O(N2).

10.1 Introduction

Writing fast code is difficult. Writing code which can automatically be made fast by a

compiler can be even more difficult. The latest version of the LLVM compiler [230] has

1983 unique command line options, 166 optimization and analysis passes, and more than

100 attributes. As a result, developing optimizable code currently requires both expertise

in performance engineering, as well as in compiler optimizations.

Consider the code in Figure 10-1 which defines a function norm which normalizes a

vector by calling an O(n)-time external function mag to compute the magnitude in a loop.

This causes the program to run in O(n2). While the programmer may intend for the result

of each call to be the same, the function is declared externally preventing the compiler from
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proving that it can hoist the call outside the loop. One could add additional information to

the callsite like restrict to guarantee that the input won’t be overwritten by a write to the

output, but that isn’t sufficient since the mag function could read or even modify a global

variable. To ensure LLVM is able to successfully perform the optimization, one needs to

mark mag as being readonly and argmemonly (meaning it only touches memory passed

as arguments), two internal attributes that don’t even have representations in C++! This is

shown in Figure 10-1.

Compiling the definition of mag function will automatically derive this information for

us. Sadly, this information is only available within a single file, preventing all other files

from benefiting from its information. While theoretically one could combine all of the

code of an application together in a single file either in source (e.g. a Unity build [263]) or

object-form (e.g. link-time optimization (LTO) [197]), this significantly hinders the speed

of building applications. A large codebase, such as the Chromium web browser [76] with

more than 24 million lines of code, can take the better part of a day to compile sequentially

while a parallel compilation can reduce that by a factor of 50× to ≈20 minutes [120].

__attribute__((fn_attr("readonly"), fn_attr("argmemonly")))
double mag(double *A, uint N);

void norm(double *restrict In, double *restrict Out) {
double licm = mag(In,N);
for (uint i = 0; i <= N; ++i) {

Out[i] = In[i] / licm;
}

}

Figure 10-2: A file with an annotated declaration of mag, allowing the compiler to success-
fully hoist the call outside the loop and reduce the runtime to O(N).

In this work we propose a new approach which preserves compiler-derived information,

without limiting build parallelism. Our approach, HTO or “Header”-time optimization,

encodes the program analysis information available during compilation into automatically

generated support files that augment existing declarations in subsequent compilations. Such

additional information is especially useful as it restricts the potential effects of functions

that are declared and used but defined in a separate translation unit. As a result, calls to ex-
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ternal functions may no longer be an optimization barrier for the compiler and consequently

allow more optimizations.

10.1.1 Contributions & Overview

This chapter makes the following contributions:

• The design of HTO, a novel method to reuse available knowledge to enable inter-

translation unit analyses by providing annotations in the source code.

• An implementation of HTO in the Clang/LLVM compiler.

• An evaluation of traditional compilation, state-of-the-art LTO techniques, and HTO

to evaluate the performance and compilation time advantages of sharing information

across translation units.

10.2 Related Work

Inter-translation unit optimization, also referred to as whole-program optimization (WPO)

or cross-module optimization (CMO) in the literature is commonly performed at link time

because the entirety of the code’s symbols are available.

An early example of link time optimization (LTO) was the HP-UX compiler [20] which

effectively merged all sources into one unit, performing inter- and intra- procedural op-

timizations from there. Both GCC [365] and LLVM/Clang [230] support a similar tech-

nique, referred to as “LTO mode” in GCC and (“full”-)LTO in LLVM/Clang. This whole-

program concatenation technique provides the greatest optimization opportunity as well

as the largest cost. First, a single module with the entire source code of a large applica-

tion, together with the memory requirement of the compiler itself, can easily overwhelm

a single node. Notably, the HP-UX LTO implementation [20] avoids memory exhaustion

by paging to disk, resulting in substantial slowdowns. Second, the single module prevents

the embarrassingly parallel compilation of translation units. While intra-translation unit

parallelization is possible, it is significantly harder to do as the module itself is inherently
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a shared resource. In addition to compiler-based inter-translation unit optimizations there

are source based schemes that can be used with any compiler. For these, usually referred

to as unity-builds [263], all source code is copied, e.g., via #include, into a single source

file that is then compiled. Our annotated header approach provides a new way to per-

form inter-translation unit optimizations. In contrast to the existing techniques we avoid

any sequentialization as well as code duplication, e.g., via inter-translation unit copying

or inlining. This allows us to strike a more beneficial trade-off between compilation time

cost and execution time benefit. Furthermore, HTO does not require the source files to

be distributed in a compiler intermediate format and provides (partial) interoperability be-

tween compilers. The former is especially useful for sensitive code that cannot be shared

in non-binary form but for which we still want to allow inter-translation unit optimizations.

To reduce build time and memory usage, compiler-based schemes have introduced

function summaries. Summary-based LTO is usually less effective than full LTO as not

all inter-procedural optimizations are possible with only summary information. Summary

schemes typically consist of a parallel summary generation phase, a serial summary ag-

gregation and/or optimization phase, followed by a potentially parallel final optimization

phase. SYZYGY [268] provides summary-based LTO for HP-UX, WHOPR [137] for GCC

and thin-LTO [197] for LLVM/Clang. AMD’s Open64 compiler also performs summary-

based LTO [14]. A common goal is to reduce or eliminate the serial summary aggrega-

tion/optimization phase to better enable parallel or incremental compilation. Our approach

is centered around attributes that provide semantic information for functions, parameters

and return values. The annotated function declarations are a form of summary, though one

that is (partially) interoperable between compilers and at the same time human readable

(ref. section 10.3.2).

Inlining is usually a critical transformation during compilation. How and when to in-

line function definitions across translation unit boundaries was therefore researched exten-

sively in the past. Hall [158] uses a whole program call graph to schedule inter-procedural

optimizations and in particular examines the impact of inlining. Triantafyllis et al [386]

describe the Procedure-Boundary Elimination framework which creates a whole-program

control-flow graph with focus on individual regions to provide a more scalable approach
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for inlining.

Profile-guided optimization (PGO), also known as Feedback-Directed optimization (FDO),

is a technique that allows information from a prior program execution to better inform op-

timizations [79, 230]. PGO is related to our work (HTO) as feedback acquired via a special

compilation is utilized in subsequent compilations. In contrast to our work, PGO collects

information while running the program and HTO collects or preserves the information de-

rived by compiling the program. Performing this addition compilation and profiling runs is

often very beneficial, especially for large codebases such as Chromium [76]. LIPO [235] is

an extension to GCC that combines LTO with PGO, creating dynamic link-time summaries

construction during the profile executable run.

Doerfert, Homerding, and Finkel [97] have shown that function attributes on decla-

rations, among other things, can substantially improve performance of LLVM/Clang on

scientific proxy applications. However, their exploratory search for “valid” attributes is

costly and designed for a one-off usage where the results are manually verified. HTO pro-

vides correct attributes by construction and the approach is lightweight enough to be used

as part of continuous integration testing.

10.3 Header-Time Optimization

Information derived in the course of compilation is in the form of runtime data-structures

such as aliasing sets or dominator trees accessible to optimization passes within a compi-

lation unit. To facilitate persistent information, compilers allow annotations of their inter-

mediate format. In header-time optimization, we leverage attribute annotations attached to

function definitions in order to provide additional inter-translation unit optimization. The

key idea is to lift existing compiler-derived information back into the source code level such

that follow up compilations can benefit from the already computed results. Providing infor-

mation in the source code allows HTO to define annotations that are interoparable between

different compilers. The augmented source files can be generated separately and added for

future use to existing installations without modifying it. Moreover, HTO is compatible with

existing compiler technologies such as PGO and LTO.
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10.3.1 Attributes

In the LLVM intermediate representation (LLVM-IR) [82] there are currently 69 target in-

dependent attributes. Some attributes are introduced by the frontend, e.g., always_inline

is created for __attribute__((always_inline)) in C/C++, while others can also be

derived by analyses, e.g., readonly to indicate a function will only read memory or func-

tion parameter is only read and not written. We refer the reader to the attribute sections

in the LLVM-IR language reference [82] for an up-to-date list. Prior work [97] provides a

good description of how these attributes enable optimization, as well as their relationship

to C/C++ attributes, if any.

LLVM-IR attributes can be attached to values in different positions. (a) Functions; the

attribute property holds for the entire function body. (b) Parameters; the attribute prop-

erty holds for the value of the parameter at the function entry. (c) Function returns; the

attribute property holds for the value returned by the function. In addition, each position

has a corresponding attribute for a call site that provides the same semantics, but limited

to a single call site. In this work we utilize only the information deduced by the com-

piler for positions (a) to (c) as those are meaningful in the context of a function declara-

tion. In LLVM 11, three passes are for the most part responsible to deduce attributes: 1)

InferFunctionAttrsPass, which annotates known library functions with attributes based

on the semantics given to them by a language standard; 2) (PostOrder)FunctionAttrPass,

which infers ten LLVM-IR attributes based on the function definition and call sites; 3)

Attributor, a recent and ongoing development to replace the FunctionAttrPass pass

and other IPO passes in a composable manner which deduces 19 LLVM-IR attributes.

While the Attributor is not enabled by default in the LLVM optimization pipeline, we

enabled it for all our experiments, including the baseline.

10.3.2 Attribute Generation

To lift attributes from the compiler intermediate level we added an additional pass to the

LLVM pass pipeline (-O1, -O2, -O3, etc.) that runs at the very end, just before the LLVM-

IR level is left. For all externally visibly functions in the translation unit, this HTO pass

257



will extract the compiler-derived attributes at the attribute positions (a) to (c) described in

subsection 10.3.1. The information is either presented to the user in form or source code

remarks or used to create annotated function declarations in new support (header) files.

# ------------------- file1.c ----------------------~
_Complex double fast_cexp(_Complex double) {

file1.c:1:1: remark: derived following attributes:
fn_attr("readonly") ... [-Rannotations]
_Complex double fast_cexp(_Complex double) {

clang -Rannotations

Figure 10-3: Remark Mode: We leverage existing functionality [246] to emit optimization
remarks listing the attributes that were deduced for functions, parameters, and return values.
Remarks can be printed for human consumption, dumped to machine readable formats, or
viewed in graphical tools where remarks are displayed at the source locations.

Remark Mode

In remark mode, HTO summarized deduced attributes in compile-time remarks [246]. The

existing infrastructure allows the user to inspect the information on the command line, as

illustrated in Figure 10-3, or, alternatively, use existing tooling support, e.g., to visualize

the remarks [129]. Remark mode allows users to selectively incorporate the deduced infor-

mation manually into their program, e.g., via existing C/C++ attributes. It also provides a

novel way to gain insights into the reasoning the compiler performed. As shown in Figure

10-4, the presence as well as absence of attributes can provide a deeper understanding of

the program, the compiler capabilities, and bugs.

sum.c:1:1: remark: derived following attributes:
fn_attr("readnone") [-Rannotations]
double sum(double* array, int size);

Figure 10-4: HTO derived that the function sum is readnone, indicating that it doesn’t
read any memory. Given that sum should return the sum of all elements in an array, this is
definitely a bug as it cannot produce a correct output without reading the array.
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Header Mode

In header mode, HTO creates function declarations in the source with attributes that encode

the information deduced during the compilation. We provide two distinct use cases for

using HTO below. The annotated declarations are designed to be includable via existing

compiler flags while the header generation is triggered by the new -hto-dir command

line flag.

Single-App Header Mode In the first use case of header mode HTO, a program is

initially compiled to generate annotated headers. These headers can either be standalone

or attached to the existing ones. The augmented headers are then included in subsequent

compilations to provide low-overhead inter-translation unit information. This is similar to

the initial compilation of a program version that collects runtime profiles for profile-guided

optimizations (PGO). The key difference here is that the “profile” for HTO was recorded

during compilation of the program and not during the program run. Moreover, the initial

compilation used to generate PGO information can also be used to generate HTO headers,

and thus does not require an extra compilation. Note that subsequent compilation can

update and improve the HTO headers as discussed further in subsection 10.3.3.

Figure 10-5 illustrates the workflow for the single-app header HTO mode. The code

shown in the example is similar to Figure 10-2 but inspired by an early version of the RS-

Bench proxy application [384]. Doerfert, Homerding, and Finkel [97] exposed the call

hoisting opportunity shown here through their search of optimistic annotation opportuni-

ties. Adding a missing attribute to the program caused a ≈ 10% speedup. As a result,

the authors of the application since changed their code manually to benefit from the en-

abled optimization consistently. HTO provides developers with an automated mechanism

to discover such missing information.

Header Mode: Libraries The second use case for header mode HTO is library deploy-

ment. All non-trivial programs use one or more libraries that are built at different times,

using different compilers, and usually distributed only with binaries and a set of declara-

tions to define the API (i.e. headers). When a library is deployed, most calls into the library

will effectively act as optimization barriers. While LTO schemes can provide information
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# ------- fileN.c --------
_Complex double
fast_cexp(_Complex double)
{ ... }

# ------- file1.c --------
_Complex double
fast_cexp(_Complex double)
{ ... }

# ------------- hto/fileN.h -------------
__attribute__((arg_attr(0, "nocapture")
_Complex double
fast_cexp(_Complex double)

# ------------- hto/file1.h -------------
__attribute__((fn_attr("readonly"), ...))
_Complex double
fast_cexp(_Complex double)

clang -hto-dir=hto

# --------- fileN.c ----------
_Complex double
fast_cexp(_Complex double)
{ ... }

# --------- file2.c ----------
const _Complex double v = ...;
for (int i = 0; i < 10; ++i) {

top = fast_cexp(v) * ...;
...

}

clang -include hto/*

Figure 10-5: Header Mode: Single-App. Through the -hto-dir flag a header files for
each source file is generated. The header contains an augmented function declaration for
each externally visible function definition in the input. In subsequent compilations those
headers can be easily included to expose optimization opportunities, e.g. to allow hoisting
of readonly calls out of loops, similar to the motivation example in Figure 10-2.

when an application is linked against an “LTO-enabled” library, there are drawbacks. For

one, LTO schemes are tied to a specific compiler and not commonly distributed for these

portability reasons. Additionally, these schemes may require the library source code to be

exposed to a non-trivial degree, a potential problem for proprietary code. The HTO ap-

proach allows library writers to create annotated headers with information extracted during

the library compilation. This information can be easily restricted to a subset if need be, e.g.,

for intellectual property reasons. A key difference to HTO single-app mode is that there

is no separate compilation necessary for the application to benefit from HTO. The header

generation was performed once, during the library deployment, and users can continue to

benefit with minimal involvement and overhead. The library headers can even be prepared

to automatically include the HTO header if the compiler is capable of using the contained

information, though we have not explored this option yet.

10.3.3 Inter-Translation-Unit Data Flow Analysis

For both single-app and library uses cases of HTO, one can run more than one round of

HTO. In this way, headers created in a previous compilation are used to produce headers in

a subsequent compilation.

Attribute deduction in LLVM, like many other compiler analyses, is generally per-
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formed as a fixpoint data-flow analysis [213]. There are two ways to initialize the fixpoint

equation system, “optimistically” or “pessimistically”. In “optimistic“ mode (the default

used within a translation unit), the system has to iterate until a fixpoint is reached because

the intermediate states are not sound approximations of the program behavior. However,

the final fixpoint is, under some additional constraints, known to be reached and known to

be optimal. In “pessimistic” mode, the system can use any intermediate state to optimize

the program as it is known to be a sound approximation of the program behavior. The

resulting fixpoint may not be optimal, however.

Fixpoint data flow analysis is a common technique used in both intra- and inter-procedural

settings. With HTO, such analyses can be extended to the inter-translation unit scope. Us-

ing HTO and recompilation, existing attribute deduction becomes inter-procedural across

translation units. Eventually a fixpoint is reached in this setting as well. As with the transi-

tion from intra- to inter-procedural analysis, inter-translation unit analysis can significantly

improve the compiler’s ability to reason and optimize.
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Figure 10-6: The y-axis shows the number and kind of attributes in HTO headers for the
musl standard C library [115]. The x-axis show how recompilation using the existing HTO
generated headers and producing new augmented headers changes these numbers until a
fixpoint state is reached. Note that we exclude 1558 unwind and strictfp function at-
tributes from these graphs as they are added to all functions due to the compilation config-
uration.
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To determine the efficiency of inter-translation unit data flow analysis, we recompiled

the musl standard C library [115] in HTO header mode such that it included and produced

annotated headers until a fixpoint was reached. In Figure 10-6 the number and kind of

attributes in the HTO generated headers after each iteration is shown. Note that we did

not count two function attributes that were always present due to the compilation options

(C language with strict floating point arithmetic). While many attributes are derived in the

very first iteration (without including any HTO headers), performing additional rounds of

HTO is able increase the number of attributes found. We see that after seven compilations

a fixpoint state was reached. A selection of the attributes that were derived, together with

their number of occurrences in the first and last iteration, is given in Figure 10-7. The left

table shows that the iterations mostly increased readonly, nofree, and nocapture at-

tributes for parameters. The readonly and nocapture attributes are especially helpful for

code movement transformations that involve memory. The nofree attribute is not widely

used yet but will allow to preloading memory locations, when beneficial. As shown in the

right table, various function attributes that restrict potential memory effects (writeonly to

readnone) have been added during the fixpoint iteration. Furthermore, the compiler was

able to determine the recursion and return behavior of more functions.

10.4 Evaluation

We evaluated HTO on the multi-source portion of the LLVM test suite [247]. For all ex-

periments we ran an initial compilation to generate annotated headers. Afterwards, we

collected evaluation numbers for four distinct configurations: a reference release build (our

baseline), a release build utilizing the annotated headers (HTO), a release build with thin

inter-translation unit function summaries and selective code duplication (thin-LTO), and

full (monolithic) link-time optimization (full-LTO). We found the performance of full-LTO

to be similar to that of thin-LTO and for brevity, plot just the compile and execution time

of thin-LTO.
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attribute hto1 hto8

returned 19 19
align 28 28
nonnull 28 28
deref. 28 28
readnone 109 113
writeonly 132 146
readonly 196 290
nofree 283 438
nocapture 466 543

attribute hto1 hto8

noreturn 11 11
writeonly 32 38
readonly 42 98
inaccmemonly 53 105
argmemonly 113 159
readnone 161 179
norecurse 256 346
nofree 264 370
willreturn 285 354
nosync 300 418
nounwind* 1558 1558
strictfp* 1558 1558

Figure 10-7: The kind and number of LLVM-IR attributes [82] derived for the musl stan-
dard C library [115]. The hto1 column describes the first compilation with HTO, hence the
attributes produced without any existing HTO headers. The hto8 column shows the fixpoint
state after 7 recompilations in which prior HTO results have been used and new augmented
HTO headers have been produced. The left table shows a selection of relevant parame-
ter attributes and the right table lists selected function attributes. Note that nounwind and
strictfp are listed here for reference while it is eliminated from Figure 10-6, all functions
have that attribute by construction.

10.4.1 Setup

Each execution time and build time is the median of 10 runs on an Amazon AWS c5.metal

instance, which is a dual-socket Intel Xeon 8275CL system with a total of 192 GiB of

memory. Each Xeon is a 3.0 GHz 24-core CPU with a shared 35.75 MB L3-cache. We

selected all tests that had a runtime of above 0.5 seconds to further reduce the impact of

noise. Compilation of the tests was done serially to further reduce noise.

10.4.2 Speedup Potential

Of the programs tested in the suite, 24 tests showed a performance impact of above than

2% compared to the baseline. These tests are shown inside the box in Figure 10-8. Thirteen

tests showed significant and similar speedups for both HTO and thin-LTO. These tests are

shown within the blue oval. Eleven tests improved only with thin-LTO and not HTO.

While thin-LTO and HTO can derive similar speedups on many programs, they do so

by different means. Thin-LTO is heuristic based and the duplication of function definitions
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Figure 10-8: Speedup of HTO (y-axis) and thin-LTO (x-axis) against vanilla LLVM for
the multi-source tests in the LLVM test suite. The box encloses all tests with less than 4%
performance difference. The blue oval highlight tests that have a significant speedup for
both HTO and thin-LTO. The red oval highlights tests where LTO achieves a speedup not
found by HTO.
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Codes on the left have the greatest speedup on LTO and not HTO, whereas codes on the
right have the greatest speedup on both LTO and HTO.

is driven by inlining. LLVM is historically better at inlining and intra-procedural opti-

mization than inter-procedrual optimizations. Function body duplication and inlining both

come at a cost, potentially with regards for code-size and most certainly with regards to

duplicated optimizations. This forces thin-LTO to carefully choose whether to duplicate

a function from one translation unit into anther one. If a declaration is not duplicated, no

inter-translation unit reasoning is performed. HTO, however, provides attribute summaries

for all functions definitions in the application. This allows HTO to achieve some speedup

not found by thin-LTO if the thin-LTO heuristic decided against importing the function

definition. At the same time, thin-LTO is able to achieve speedups that HTO cannot, espe-

cially if it is related to inlining or inter-translation unit code motion. The most significant

improvements for thin-LTO in our experiments were caused by inlining an originally indi-

rect function call; this is out-of-scope for HTO with the current set of LLVM-IR attributes.

10.4.3 Speedup Cost

In Figure 10-9, we compare the build time for all programs which had a significant speedup

(e.g. those in the blue or red ovals from Figure 10-8). The programs in where HTO and

LTO both had speedup (e.g. the blue oval) are on the right and the programs where LTO
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had a speedup where HTO did not (e.g. the red oval) are on the left. For the programs

where LTO found a speedup that HTO did not find, it required a significant additional cost

in build time, presumably from various interprocedural optimization.

10.5 Conclusion

In this chapter, we present HTO, a novel method for inter-translation unit optimization

by sharing compiler-derived attributes in source annotations. HTO is able to achieve half

of the benefits of traditional summary-based thin-LTO for less than half the compile time

cost. Furthermore, HTO allows compiler-agnostic, hence portable, optimization between

libraries and applications that are compiled and distributed independently. We demonstrate

that attribute summaries can already provide sufficient information in many cases where

thin-LTO provides a benefit.

We also present several avenues of future work. Teaching the compiler to be selec-

tive about what generated headers to import may provide additional compile-time benefit.

Additional integration of HTO into the compiler can lower the dependence on C/C++ lan-

guage semantics and provide additional benefits in compile time, execution time, and ease

of integration. Providing mechanisms that combine the attribute-based approach of HTO

and inlining-based approach of traditional thin-LTO may be able to create additional bene-

fits. This could happen in one of several ways: (1) Running both HTO and LTO to create

annotated headers based of LTO builds. This is similar to the iterative HTO compilation

described in subsection 10.3.3. (2) Inclusion of small function definitions in generated

headers to allow inter-translation unit inlining with HTO. (3) Unconditional distribution

of function attributes in the thin-LTO synchronization step to gain the HTO benefit in this

compiler-specific mode.

Finally, as new attributes are added (10 of the 69 LLVM-IR attributes were added in the

past 15 months), we expect both inter-procedural analyses and HTO to improve naturally.
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Chapter 11

Concluding Thoughts

This thesis has discussed how to reduce the burden of programming by endowing a general

purpose compiler with domain-specific information and transformations. Unlike traditional

domain-specific languages or portability frameworks that require programs to be rewritten,

this enables programmers to use such tools to be used without significant work. Moreover,

by operating within a general-purpose compiler, these representations and optimizations

are composable by definition leading to combined benefits which are far greater than any

individual piece of domain-specific optimization in isolation.

In addition to its theoretical insights and benefits for each domain of interest, a key

contribution of this thesis has been the construction of open source, real-world compil-

ers that enable others to put these ideas to use. This open development not only provides

validation of the concepts within, but also provides value to the broader scientific com-

munity. The Tapir compiler (Chapter 2)1 for parallel programs has seen adoption as part

of OpenCilk [342], the Swarm hardware architecture [422], the Department of Energy’s

Katsune project [367, 226] and inspired interest in parallel compiler optimizations like

OpenMPOpt [94]. Tensor Comprehensions (Chapter 3)2 was in use by Facebook and been

part of revitalized interest in leveraging compilation for deep-learning systems in tools

like MLIR [229], Pytorch 2.0 [416], JaX [53], Glow [329], Tiramisu [23], and others. Au-

tophase (Chapter 4)3 has seen use in the HLS and traditional compiler communities and has

1https://github.com/wsmoses/Tapir-LLVM
2https://github.com/facebookresearch/TensorComprehensions
3https://github.com/ucb-bar/autophase
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been adopted by the CompilerGym [86] framework. Enzyme (Chapters 5, 7, 8)4 has been

adopted by a variety of communities for tasks ranging from exascale material science [408],

differential rendering [424], molecular dynamics [143], black hole imaging [382], finite el-

ements [16], climate modelling [167], solid mechanics [57], building design [296] and has

been accepted as an incubator project of the LLVM foundation. Polygeist (Chapters 6, 9)5

has also become an LLVM incubator project and been adopted by Xilinx/AMD [78], Impe-

rial College London [429], EPFL [300], UIUC [421] and others for HLS; Intel/CodePlay

for SYCL [189]; ETH Zurich for scheduling [37]; and several others as a C/C++ fron-

tend [335, 7]. HTO (Chapter 10)6, is being explored by the LLVM community and its use

is being explored by Google.

The importance of domain-specific program representations and optimizations will only

grow with time. This trend has been accelerating due to both the proliferation of new hard-

ware architectures and the widespread adoption of software throughout the scientific com-

munity. To serve as case studies, this thesis chose to study key domains for both scientific

computing and machine learning. The areas studied within this thesis do not exhaustively

handle every potential domain, however, and instead explored topics which are of impor-

tance to broad communities. The ongoing advancement of science means that there will

always be new domains requiring optimization, be it a niche research-group scale subdo-

main of physics to an entirely new field. In addition to creating compiler representations

for the wide-reaching domains everyone will benefit from, I believe that an important area

of future research will be extending these ideas to allow the compiler to understand the

domain information within arbitrary libraries.

4https://github.com/EnzymeAD
5https://github.com/llvm/Polygeist
6https://github.com/wsmoses/LLVM-HTO
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