
Real-Time Maneuvering Decisions

for Autonomous Air Combat

by

James S. McGrew

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Master of Science in Aeronautics and Astronautics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2008

c© Massachusetts Institute of Technology 2008. All rights reserved.

Author .
Department of Aeronautics and Astronautics

May 23, 2008

Certified by. .
Jonathan How

Professor
Thesis Supervisor

Accepted by .
David L. Darmofal

Associate Department Head
Chair, Committee on Graduate Students

2

Real-Time Maneuvering Decisions

for Autonomous Air Combat

by

James S. McGrew

Submitted to the Department of Aeronautics and Astronautics
on May 23, 2008, in partial fulfillment of the

requirements for the degree of
Master of Science in Aeronautics and Astronautics

Abstract

Unmanned Aircraft Systems (UAS) have the potential to perform many of the com-
plex and possibly dangerous missions currently flown by manned aircraft. Within
visual range air combat is an extremely difficult and dynamic aerial task which
presents many challenges for an autonomous UAS. An agile, unpredictable, and pos-
sibly human-piloted adversary, coupled with a complex and rapidly changing envi-
ronment, creates a problem that is difficult to model and solve. This thesis presents
a method for formulating and solving a function approximation dynamic program to
provide maneuvering decisions for autonomous one-on-one air combat. Value iteration
techniques are used to compute a function approximation representing the solution
to the dynamic program. The function approximation is then used as a maneuver-
ing policy for UAS autonomous air combat. The result is an algorithm capable of
learning a maneuvering policy and utilizing this policy to make air combat decisions
in real-time. Simulation results are presented which demonstrate the robustness of
the method against an opponent beginning from both offensive and defensive situa-
tions. The results also demonstrate the ability of the algorithm to learn to exploit an
opponent’s maneuvering strategy. Flight results are presented from implementation
on micro-UAS flown at MIT’s Real-time indoor Autonomous Vehicle test ENviron-
ment (RAVEN) demonstrating the practical application of the proposed solution in
real-time flight with actual aircraft.

Thesis Supervisor: Jonathan How
Title: Professor

3

4

Acknowledgments

I would like to thank my advisor, Professor Jonathan How, for his support and guid-

ance throughout this project. I am extremely grateful to have had the opportunity

to pursue an area of research that I am most interested in. Thanks to my friend,

Larry Bush, for his invaluable assistance with the project. The Boeing Company was

generous enough to allow my use of their Vehicle Swarm Technology Lab in Seattle,

WA for flight testing; I am thankful for this opportunity as it was very extremely

beneficial to the project. I also would like to thank Professor Mark Drela for his

assistance with airplane design, as well as Professor Missy Cummings for her helpful

guidance. I appreciate the help of my colleagues, Dr. Mario Valenti, Brett Bethke,

Dan Dale, Spencer Ahrens, Frank Fan, Buddy Michini, Brandon Luders, Ray He and

Luc Brunet. It was a pleasure to work in the Aerospace Controls Laboratory with

such talented individuals. I appreciate the assistance and hard work of Eli Cohen,

Jason Wallace and Brittany Baker. Their help as UROPs allowed me to accomplish

much more on this project than I could have alone. I gratefully acknowledge the

American Society for Engineering Education for funding my education through the

National Defense Science and Engineering Graduate Fellowship. AFOSR also sup-

ported this research in part with DURIP grant FA9550-07-1-0321. And, finally, I

would like to thank my wife, Eden, for her patience and support during the past

years as I put in the long days and nights required to complete this work.

5

6

Contents

1 Introduction 17

1.1 Literature Review . 18

1.1.1 Objectives . 20

1.2 Overview of MIT RAVEN Research Platform 20

1.3 Approach . 23

2 Scoring Function Development 25

2.1 Baseline Scoring Function . 26

2.2 Combat Simulation using the Baseline Scoring Function 29

2.3 Simulation Results using Baseline Scoring Function 35

2.4 Expert-modified Scoring Function . 37

2.4.1 Simulation Comparison . 43

3 Combat Implementation Using Heuristic Value Function 45

3.1 Fixed Wing Aircraft Development . 45

3.2 Flight Control and Trajectory Following 49

3.2.1 Flight Controller . 49

3.2.2 Trajectory Follower . 52

3.3 Air Combat Flight Testing . 53

3.4 Chapter Summary . 61

4 Neuro-Dynamic Programming Method 63

4.1 Example Problem and Nomenclature 63

4.1.1 Approximate Dynamic Programming Example 68

4.2 States . 71

4.3 Goal (reward) . 74

4.4 Avoid Risk (Negative Rewards) . 77

4.5 Control Inputs and Vehicle Dynamics 79

7

4.6 Feature Development . 80

4.7 Air Combat: Putting It All Together 86

4.7.1 Learning a Policy . 86

4.7.2 On-line Policy Extraction . 88

5 Combat Implementation Using Function Approximation 91

5.1 Combat Simulation . 92

5.2 Parameter Calibration . 94

5.3 Simulation Results . 99

5.4 Flight Testing . 104

6 Conclusions 109

6.1 Review of Thesis Objectives . 109

6.2 Extensions of this Research . 111

A Complete Policy Comparison Simulation Results 113

References 129

8

List of Figures

1-1 Vehicles under autonomous control in MIT’s RAVEN 21

1-2 Operator station and vehicle control computers 22

1-3 MIT’s Real-time indoor Autonomous Vehicle test ENvironment (RAVEN) 22

2-1 Aircraft relative geometry . 27

2-2 Defined position of advantage behind adversary. 32

2-3 Graphical depiction of blue control sequence search. 33

2-4 Starting geometry for simulation runs. 35

2-5 Results from combat simulation using various red policies. 36

2-6 A poor decision made when using the baseline scoring function. . . . 38

2-7 The expert-modified scoring function makes a better maneuvering de-

cision. 38

2-8 Visualizations of the baseline scoring function. 40

2-9 Visualizations of the expert-modified scoring function. 41

2-10 Results from combat simulation using 4 s look-ahead. 43

3-1 3-View drawing of Micro-UAS design used in flight testing. 48

3-2 Micro-UAS designed for Real-time indoor Autonomous Vehicle test

Environment (RAVEN). 48

3-3 Controllers used for reference signal tracking on the micro-UAs. . . . 51

3-4 Plot of altitude controller performance while tracking a reference alti-

tude of 1.7 m. 53

3-5 Flight path of micro-UA in left hand circular orbit. 54

3-6 Micro-UAs engaged in Basic Fighter Maneuvering (BFM) during flight

test. 57

3-7 Basic Fighter Maneuvering flight test reconstruction. 58

3-8 Flight path history trails from flight testing. 59

3-9 Results from flight tests. 60

9

4-1 Example shortest path problem solved using dynamic programming. . 66

4-2 Example shortest path problem solved using approximate dynamic pro-

gramming. 70

4-3 Data set of 105 state space samples used for approximate dynamic

programming. 73

4-4 An alternative representation of the data points shown in Figure 4-3 . 74

4-5 Defined position of advantage behind adversary. 75

4-6 Plot of reward function for flight within Goal Zone. 75

4-7 Probability of termination function (pt) 78

4-8 Probability of termination function (pt) with walls. 78

4-9 A graphical representation of the aspect angle (AA) feature. 82

4-10 A graphical representation of the aspect angle ȦA feature. 83

4-11 A rotated view of the ȦA Figure. 83

4-12 A forward-backward search used to select the set of features used for

the function approximation algorithm. 85

4-13 Function approximation from dynamic program. 88

5-1 The approximate dynamic program performs Bellman backups over

0.25 s discrete time interval. 95

5-2 Multiple maneuvering polices were generated as the weight placed on

the two goal reward functions were varied. 96

5-3 Multiple maneuvering polices were generated as the penalty weighting

factor wp was varied. 97

5-4 Calibration process for a neural-net used to classify the 6-step minimax

red maneuvering policy. 98

5-5 Policy extraction computation time. 98

5-6 Simulation performance using the neural net classifier for the red policy

in the rollout algorithm. 99

5-7 Simulation performance of best maneuvering policy 100

5-8 The calibrated function approximation blue maneuvering policy was

tested against different red policies. 101

5-9 Simulation result from dynamic program function approximation demon-

strating effective performance in a perch BFM setup. 103

5-10 Simulation result from dynamic program function approximation demon-

strating effective performance in a high aspect BFM setup. 103

5-11 Flight and simulation results comparison. 105

10

5-12 Test flight #7 using policy π40
8 0 against a left turning red aircraft. . . 107

5-13 Test flight #14 using policy π40
8 0 against a left turning red aircraft. . . 108

A-1 Setup 1. 113

A-2 Setup 2a. 114

A-3 Setup 2b. 115

A-4 Setup 3a. 116

A-5 Setup 3b. 117

A-6 Setup 4a. 118

A-7 Setup 4b. 119

A-8 Setup 4c. 120

A-9 Setup 5a. 121

A-10 Setup 5b. 122

A-11 Setup 6a. 123

A-12 Setup 6b. 124

A-13 Setup 6c. 125

11

12

List of Tables

3.1 Micro-UAS Controller Gains. 52

4.1 Symbols used for approximate DP architecture. 64

4.2 Features Considered for Function Approximation 81

5.1 Six initial states (called setups) used for simulation testing. 92

13

14

List of Algorithms

1 State Transition Function f(xi, ub, ur) 31

2 Control Planning Algorithm . 34

3 Bank angle command determination given u 56

4 State Transition Function f(xi, ui) 65

5 Goal Reward Function gpa(x) . 76

6 Probability of Termination Function pt(x) 77

7 State Transition Function f(xi, ub, ur) 79

8 Air Combat Policy Learning Algorithm 87

9 Air Combat Policy Rollout Extraction Algorithm, π̄Napprox(xi) 89

15

16

Chapter 1

Introduction

Unmanned Aircraft Systems (UAS) have been successful in replacing manned air-

craft in a variety of commercial and military aerial missions. However, due to the

challenging and dynamic nature of air-to-air combat, these missions are still solely

accomplished by manned platforms. An agile, unpredictable, and possibly human-

piloted adversary, coupled with a complex and rapidly changing environment, creates

a problem that is difficult to model and solve. One approach to using Unmanned

Aircraft (UAs) for air combat is to pilot them remotely, as was first accomplished

by an MQ-1 Predator UAS in 2002 [18]. This approach still requires a one-to-one

pilot-to-aircraft ratio and would not necessarily leverage the particular strengths of

a combat UAS. By automating some of the decisions required in air combat, an op-

erator could potentially maximize vehicle performance and manage multiple UAs in

combat simultaneously.

While weapon and missile technology improves, air combat continues to extend to

longer and longer ranges. However, employment of long range and high off bore-sight

weapons is not always practical or possible depending on the situation. Consequently,

the most modern fighter aircraft (e.g., F/A-22, F-35, and F-15) are still built with

a gun designed for close combat and military pilots are trained to effectively use in

one-on-one air combat, or basic fighter maneuvering (BFM). If a UAS is ever going

to fulfill the air combat missions performed by these manned aircraft it is my opinion

17

that the the ability to effectively fly BFM will be a requirement. 1

The purpose of this research is to develop a method that allows for on-line com-

putation of near-optimal maneuvering decisions for a UAS engaged in BFM. As is

common in human flight training, an incremental approach is taken to develop this

BFM method. This work focuses on solving a simplified air combat problem. The

velocity for both aircraft is set to a constant value, and both aircraft are constrained

to maintain level fight. These restrictions emphasize the need to use maneuvering ge-

ometry to solve the BFM problems and help to reduce the search space. As such, the

proposed planning methods optimize a 2-dimensional (horizontal plane) flight trajec-

tory with fixed aircraft velocities. Combat simulation results are presented showing

the capabilities of the planning techniques. Additionally, actual micro-UAS flight

results are presented using Real-time indoor Autonomous Vehicle test ENvironment

(RAVEN) [24]. The next step in the development of a more capable planning algo-

rithm would incorporate velocity control and 3-dimensional trajectories using similar

methods. This extension is beyond the scope of this thesis, and will be explored in

future works.

1.1 Literature Review

Modeling and solving air combat games has been the subject of previous research uti-

lizing various techniques. The use of dynamic programming, as applied to air combat,

however, has been limited due to the computational complexity of formulating and

solving such an approach. The optimal solution to the pursuer-evader model was

first defined in [10]. The defining conditions and approach were subsequently named

the principle of optimality and dynamic programming respectively [4]. Yet methods

found in the literature tend to ignore these principles for computational expediency.

Burgin and Sidor developed an Adaptive Maneuvering Logic Program in [7]. The

authors developed a rule-based air combat simulation. This method requires hard

1The author is a former U.S. Air Force F-15C Eagle and MQ-1B Predator UAS pilot with training
and experience in air-to-air and UAS combat missions.

18

coding the preferences of experienced pilots into a maneuver selection algorithm.

The authors noted that while this method was capable of operating successfully in

simulation with human pilot adversaries, it was extremely time consuming to improve

the tactical performance. They commented on the extreme complexity of real-life air-

to-air combat and the importance of algorithm evaluation with highly-skilled human

pilots. The difficulty with such a rule based approach is the effort and time required

to manually evaluate and adjust the maneuver selection parameters. Of course, the

development process would need to be repeated for application on any vehicle with

different performance characteristics than those originally considered.

Austin et al. suggest using a game theoretic approach in [2, 3]. This method

uses a recursive search over discrete maneuver choices to maximize a heuristic scor-

ing function with a fixed planning horizon. Using this approach, they demonstrate

the feasibility of real-time autonomous combat in simulation. However, as presented,

the method is computationally complex and can only be extended to relatively short

planning horizons in real-time (0.5 to 3.0 s). They demonstrated that the method was

capable of producing some on-line maneuvering decisions which are similar to those

made by experienced human pilots; note this was accomplished without specifically

coding such maneuvers. However, the authors state that the selected maneuver is

optimal only in the short-term sense and may not be optimal if the game is played

out to its end. Additionally, this method is only optimal in relation to the chosen

heuristic scoring function. A nonlinear model predictive tracking controller (NMPTC)

is demonstrated in [12, 22], which presents a real-time implementation of a evasion

controller game involving fixed wing aircraft. The demonstrated algorithm did not

have the ability to switch between pursuit and evasion roles. The authors also com-

ment on the need to encode proven aircraft maneuvering tactics from [21] into the

cost functions used for the optimization, in order to encourage these behaviors. The

requirement of such input in the development phase indicates the need to hard code

desired maneuvers. The method presented is not shown to have the ability compute

such desirable maneuvers. Virtanen et al. utilize an influence diagram game to model

air combat [13]. The authors mention the combinatorial explosion in computation

19

attributed to solving the proposed game using dynamic programming. They circum-

vent this problem by using a moving horizon control approach. The planning horizon

is limited by computational complexity, but they demonstrate plausible and desir-

able control choices with the relatively short planning horizons required for real-time

computation.

1.1.1 Objectives

This thesis describes an algorithm which attempts to utilize the benefits of dynamic

programming (DP) introduced in [4] to solve an air combat game. The goal is to

develop a method that has the following desirable qualities: Is Capable of making

maneuvering decisions on-line in real-time, incorporates a long planning horizon, has

the ability to learn control sequences of desirable maneuvers without expert pilot

inputs, and allows switching from pursuit to evasion rolls during an engagement. DP

has the potential to produce such maneuvering policies. While an exact DP solution

is intractable for a complex game such as air combat, an approximate architecture is

capable of producing good results in a finite time. A neuro-dynamic programming

approach [6] is used to learn a value function which represents an approximation of

the true DP solution. This technique requires some computation time prior to the

engagement in which to learn the maneuvering policy based on the adversary aircraft’s

capabilities and assumed adversary maneuvering strategy. The resulting policy can

then be used on-line to make real-time decision making during combat. An additional

goal of this research is to demonstrate successful planning algorithm implementation

using fixed wing UAS flying in MIT’s RAVEN.

1.2 Overview of MIT RAVEN Research Platform

The MIT Real-time indoor Autonomous Vehicle test ENvironment (RAVEN) was

used as the hardware testbed for this research. A brief overview of RAVEN is pre-

sented here; for more details see [15, 16].

The core of the testbed consists of a Vicon motion capture system [25] that is

20

Figure 1-1: Vehicles under autonomous control in MIT’s RAVEN

used to provide highly accurate measurements of the positions of numerous ground

and aerial vehicles within a flight space measuring approximately 6 × 8 × 5 m. The

array of Vicon cameras can be seen in Figure 1-3. This positioning information is

distributed in real-time to a number of processing computers that run the controllers

for each vehicle in the system. The control commands are then sent to the vehicles

over a R/C wireless link, closing the control loop and stabilizing the vehicles.

The system allows multiple vehicles to be flown and tested in a controlled environ-

ment simultaneously. To date, a number of different vehicle types have been used in

the system to including helicopters, quadrotors, fixed wing aircraft, and ground vehi-

cles. Figure 1-1 shows a variety of vehicles under autonomous control in the RAVEN.

21

Figure 1-2: Operator station and vehicle control computers

Figure 1-3: MIT’s Real-time indoor Autonomous Vehicle test ENvironment (RAVEN)
showing the Vicon motion capture camera system.

22

This research used fixed wing balsa/mylar airplanes designed and built specifically

for this research, see Chapter 3 for more information.

1.3 Approach

This thesis presents methods for computing maneuvering decisions for one-on-one

air combat, also referred to as basic fighter maneuvering (BFM). The primary con-

tribution of this work is the application of a neuro-dynamic programming learning

architecture to the air combat problem. The result is an algorithm capable of learning

a maneuvering policy and utilizing this policy to make air combat decisions in real-

time. Leading up to the work with dynamic programming, different formulations for

a scoring function to quantify the desirability of given combat states were considered.

In Chapter 2, the thesis describes the development of two such scoring functions for

use in air combat decision making. The utility of these functions is tested using a

search tree algorithm in an air combat simulation. In Chapter 3 the scoring functions

are used to develop a path planner capable of operating in real-time. This planner is

implemented in the RAVEN where actual unmanned aircraft (UAs) are flown in air

combat. Additionally, a discussion is included in Chapter 3 on the development of

the flight vehicles and flight controllers used in this demonstration. Results from the

flight tests are presented. The scoring function discussed in Chapters 2 and 3 is used

in further development in the following chapters. Chapter 4 discusses the methods

used to formulate the problem as an neuro-dynamic program. This approach defines

BFM as a discrete time approximate dynamic programming problem. The resulting

policies are easily evaluated in real-time. Chapter 5 describes the calibration of this

method and presents the resulting simulation performance data and flight results.

Chapter 6 concludes the thesis with a summary, a discussion of the thesis objectives,

and suggested research directions for the continuation of this work.

23

24

Chapter 2

Scoring Function Development

The first step taken to develop an air combat trajectory planner was to develop a way

to quantify the desirability of a given combat situation. This chapter describes the

development of two methods for evaluating the desirability of any given orientation

of the two aircraft relative to each other. The utility of these scoring functions is

tested with a receding horizon control trajectory planner. The planner that makes

maneuvering decisions in a simplified air combat game by attempting to maximize

the value returned from the scoring functions.

The combat game involves two aircraft engaged in BFM (Basic Fighter Maneu-

vering). The threat or adversary aircraft will be referred to as the red aircraft. The

friendly interceptor aircraft will be referred to as the blue aircraft. The methods

presented in this paper will always be applied to the blue aircraft. Both aircraft have

a similar, yet conflicting, goal: To establish flight in a specified region behind the

other aircraft. The complexity of air combat is simplified to some degree to make

formulating and evaluating new methods simpler and more intuitive.

The major simplifications of the air combat game used in this project are limiting

both aircraft to level flight, and fixing the velocity of the aircraft to a constant value.

These simplifications remove some of the dynamic complexity of air combat, while

keeping the basic maneuvering problems which are critical to BFM. This simplified

problem allows a human observer to easily assess the desirability of a particular

maneuver. Weapons employment will also be ignored in this game. Both aircraft

25

will continue to maneuver until one establishes flight behind the other for a specified

period of time. However, the ability of the aircraft to avoid threat zones (i.e. area

in front of the nose of the red aircraft) will be measured along with time required

to complete an intercept. Another technical issue that will be ignored is that of

the required sensor technology. It will be assumed that both aircraft have perfect

information about the other aircraft’s location and orientation. In reality, the position

and orientation information could be derived from a number of sources with various

degrees of accuracy. This thesis will focus on using that information, not how it is

collected.

The first of two scoring functions (the baseline scoring function) used to evaluate

air combat situations is based on basic geometry between the two aircraft engaged

in combat. This method is described in Sectionr̃efsec:bl. The resulting performance

of this scoring function, when used to guide an aircraft in simulated combat, is pre-

sented in Section 2.2. In Section 2.4 the baseline scoring function is used as a basis

for the development of the expert modified scoring function. This function includes

heuristic components which encourage behaviors desired by experience combat pilots

during simulation. The expert modified scoring function is also testing using simu-

lation to compare with the baseline. In the following chapter, both of these scoring

functions are tested in actual flight using micro-UAS. The scoring functions and other

methods presented in this chapter are also used in the development of the dynamic

programming solution.

2.1 Baseline Scoring Function

The relative merit of every possible state has been reasonably captured by a scoring

function. The scoring function is intended to guide an aircraft to a position of ad-

vantage and avoid threatening defensive situations. The scoring function considers

relative aircraft orientation and range. The baseline scoring function is computed

in a similar fashion to methods described in [2, 3] and provides an initial basis for

quantifying the value of a given combat situation. Figure 2-1 shows a representation

26

Figure 2-1: Aircraft relative geometry showing Aspect Angle (AA), Antenna Train
Angle (ATA) and Heading Crossing Angle (HCA).

of relative aircraft geometry. The angles are shown from the point of view of the blue

aircraft. The red and blue aircraft are represented by velocity vectors rooted at the

aircraft center of mass. The aircraft centers of mass are connected by the line of sight

(LOS) line. The aspect angle (AA) is the angle between the tail of the red aircraft

and line of sight line. Aspect angle is a value monitored by pilots of fighter aircraft

(both visually and electronically) to help make maneuvering decisions. The antenna

train angle (ATA) is measured from the nose of the blue aircraft to the LOS line. The

three simple terms AA, ATA, and range are sufficient to describe the basic geometry

of a BFM situation to a pilot: ATA tells the blue pilot where to look, range indicates

how far to look and AA represents which direction the red aircraft is heading. Another

number used to extract more details about the current situation is the heading cross-

ing angle (HCA), which is simply the difference in heading between the two aircraft.

AA, ATA and HCA are all limited to a maximum magnitude of 180◦ by definition. As a

convention, angles to the right side of the aircraft are considered as positive, angles

to the left as negative.

The orientation and range contributions were developed using the approach in [2].

27

In order to maneuver to a position of advantage the blue aircraft wishes to minimize

both AA and ATA. This is summarized by the function:

SA = 1−
[(

1− AA

180◦

)
+

(
1− ATA

180◦

)]
(2.1)

The goal is to minimize SA. The best case is SA = −1 for the offensive position

represented by AA = ATA = 0◦. The worst case is SA = 1 for the defensive position of

AA = ATA = ±180◦.

A range contribution returns a score relative to a desired range (Rd).

SR = e
−
(
|R−Rd|

180◦k

)
(2.2)

where R is the current range from the red aircraft in meters. The constant k has

units of meters/degree and is used to adjust the relative effect of range and angle.

A value of 0.1 was found to be effective for k. The orientation and range terms are

combined to create the baseline scoring function using the following equation:

Sbl = SASR (2.3)

Further discussion of the development of Equation 2.3 is available in [2, 3]. These

papers use four different scores that contribute to the cost function: orientation,

range, velocity, and terrain. Since velocity changes and terrain are not considered in

the air combat game, Equation 2.3 is used as a basis for comparison. This function

accepts a state with 8 components that represent the current combat situation. This

state is composed of x–position, y–position, heading, and bank angle for both blue and

red aircraft. The state vector,x, will be defined as: x = {xb, yb, ψb, φb, xr, yr, ψr, φr}.

The function returns a 0 for neutral positions, a negative number for offensive po-

sitions and positive number for defensive positions. Thus, in combat the goal is to

minimize the value of the scoring function.

A graphical depiction of the baseline scoring function can be seen in Figure 2-8.

28

These plots are a cross section of what is actually a 6-dimensional function (Sbl does

not use aircraft bank angle in computing the score, and thus ignores two components

of the state). This particular representation shows the values as a function of blue

aircraft location relative to the red aircraft. Red aircraft location and heading is

fixed. In each plot the blue aircraft heading is fixed to the indicated value. Blue

color on the plot represents blue advantage, while red represents red advantage. The

red aircraft’s current position and flight history is represented by the red asterisk and

line, respectively. The red aircraft 3 o’clock - 9 o’clock line (3/9 line) is also plotted.

When red and blue headings are aligned, the 3/9 line is the dividing line between

offensive and defensive positions for the blue aircraft. However, note how the blue

aircraft heading effects the zones deemed offensive. When headings are opposed, as

in Figure 2-8(c), neither aircraft has an advantage. Finally, note that the minimum

score of -1.0 is only possible when the headings are aligned with the blue aircraft

centered in the goal zone, see Figure 2-8(a).

2.2 Combat Simulation using the Baseline Scoring

Function

The simulation uses a limited look-ahead search which evaluates a heuristic scoring

function and predefined adversary policy. During execution, the algorithm conducts a

depth first search starting from the current two aircraft states. The depth first search

considers each control action ub ∈ {left, straight, right} of the pursuing aircraft and

the adversary aircraft. At each time-step both aircraft have three available control

actions: roll left, roll right, or maintain the current bank angle. The adversary

action selection is dictated by a predefined human constructed policy. The algorithm

searches a fixed number of time- steps into the future and then computes the values

of the trajectories using a heuristic scoring function. The first action of the best

trajectory is executed. The process then repeats.

The baseline scoring function was used to make decisions in a simulated air combat

29

game. A simulation was developed using simplified vehicle dynamics based on the

micro-UAS shown in Figure 3-2. The state of the game is defined for each aircraft by

the state x as described above. The flight dynamics and limitations are summarized

by the state transition matrix, f(x, ub, ur), described in Algorithm 1. The function

f(x, ub, ur) is the heart of the simulation algorithm. The roll rate for the aircraft

is fixed at 45◦/s, this represents the maximum roll rate possible with full rudder

deflection. The velocity was fixed at 2.5 m/s, which is a good maneuvering speed

for the aircraft. Both aircraft are restricted to level flight, so a given bank angle

corresponds to a particular lateral acceleration by the following relationship:

Alat = g tan(Φ) (2.4)

where g ≈ 9.81m/s2. The blue aircraft was given a performance advantage over the

red aircraft by having a larger maximum bank angle. For the blue aircraft φbluemax = 23◦

and for red φredmax = 18◦.

A performance advantage is a common technique used in actual BFM training to

assess a student’s improvement from engagement to engagement. In the simulation,

we wish to assess the blue aircraft’s performance using various maneuvering policies.

It is difficult to assess the performance of a particular policy if the two aircraft con-

tinue to maneuver indefinitely (as would be the case with equivalent maneuvering

policies and equivalent performance). The performance advantage allows the use of

time to intercept (TTI) as the primary measure of the effectiveness of a particular

maneuvering policy. The metrics used for comparison are: time to intercept (TTI),

defensive time and threat time. TTI was measured from the beginning of the simu-

lation until an aircraft was established in a position of advantage. This position was

defined as an area ±30o off the tail of the adversary in a range of 1 to 3 m, see Fig-

ure 2-2. The aircraft needed to maintain this position continuously for 3 s to ensure

it was truly established in position. It is assumed that once blue is established, there

is little chance the red aircraft will manage to escape. This particular region was

selected based on the turn performance of the aircraft and the reaction time of the

30

Algorithm 1 State Transition Function f(xi, ub, ur) (Simulates 0.25 s, given red and
blue actions)

Input: {x, ub, ur}
∆t = 0.05, v = 2.5 m/s, φ̇max = 45◦/s
φredmax = 18◦, φbluemax = 23◦

for i=1:5 (once for each 0.05 s time increment) do
for both red and blue aircraft do

if u = left then
φ = φ− φ̇∆t
if φ < −φmax then
φ = −φmax

end if
else if u = right then
φ = φ+ φ̇∆t
if φ > φmax then
φ = φmax

end if
end if
ψ̇ = g

v
tan(φ)

ψ = ψ + ψ̇∆t
xpos = xpos + ∆t sin(ψ)
ypos = ypos + ∆t cos(ψ)

end for
end for
Output: (xi+1)

path planner. If the blue aircraft follows closer than approximately 1 m behind the

red aircraft, the planner may not have enough time to react if the adversary makes

an unexpected move. Further back than approximately 3 m, the red aircraft has the

ability to make a tight turn and meet the blue aircraft with a high aspect angle.

The minimum value of the baseline scoring function is centered at 2 m to encourage

flight in this region. Defensive time was accumulated any time |AA| > 90o. Threat

time is similarly defined as time the red aircraft could potentially employ ordnance

(|AA| < 150o).

The control actions available to the aircraft were also limited as a further sim-

plification. Both aircraft have three actuators: elevator, rudder and throttle (see

Chapter 3). Due to the limitation of level flight and constant velocity, the elevator

control and throttle control are scheduled to maintain these parameters. The remain-

31

Figure 2-2: Defined position of advantage behind adversary.

ing control action is aircraft roll, which is discretized to minimize the search space.

At each planning time-step (∆t = 0.25 s) the planner has the option to (1) roll left,

(2) maintain the current ψ, or (3) roll right, so u ∈ {left, no−roll, right} ≡ {1, 2, 3}.

This simplifies the aircraft control, but still allows for a wide range of bank angles.

The application of these control actions can be seen in Algorithm 1.

A search was in a simulation algorithm which examined all possible combinations

of blue maneuvering. Depth first search was used to examine each combination of blue

aircraft control actions. For example, when using a search simulating 8 time-steps

into the future, there are 38 or 6561 possible sequences of control actions (ū). The set

of all possible sequences will be referred to as U , where Ui refers to the ith sequence,

ūib. The nth action in the ith sequence would be ūib(n). In the 8 step example, the set

of all possible control sequences would be:

U =

{11111111}

{21111111}

{31111111}

{12111111}
...

{23333333}

{33333333}

(2.5)

32

Figure 2-3: The blue line and X represents the blue aircraft current position and
recent flight history. The green X’s represent all possible future blue aircraft positions
following 3 s look-ahead. The resulting positions and headings from all possible
trajectories are compared using the scoring functions.

By evaluating each sequence of control actions in order with f(x, ub, ur), the re-

sulting blue and red locations and orientations can be computed. An example result

from the evaluation of each sequence in U with an 8 step look-ahead and ∆t = 0.375

s is shown in Figure 2-3. Most of the states appear to be to the left of blues ini-

tial position. This is because in initial state the blue aircraft is banked full left

(φ = −23◦) with a compass heading of 315◦ (equivalent to ψ = −45◦). Even with

ub = {3 3 3 3 3 3 3 3}, the blue aircraft would continue turning left for some time

before coming back to the right. In order to find a value for each one of these states

(from the baseline scoring function), an assumption must be made regarding the red

aircraft maneuvering policy (πr). For this simulation three different policies were

assumed for the red aircraft: left turning, pure pursuit and multi-policy. The left

turning policy assumes the red aircraft will always make a maximum performance

left hand turn, so ur = 1 at all time-steps. The pure pursuit policy assumes that

the red aircraft will make a turn in the shortest direction to obtain pure pursuit

33

Algorithm 2 Control Planning Algorithm

Input: Current Game State {x}
Initialize U : set of all possible ūb sequences
Initialize L: number of time-steps to look ahead
Initialize JBest =∞
for i = 1 : L3 (L3 is the number of sequences) do
xtemp = x
ūib = Ui
for j = 1 : L do
xtemp = f(xtemp, ū

i
b(j), πr(xtemp))

end for
if Sbl < JBest then
JBest = Sbl
ūbest = ūib

end if
end for
ūb = ūbest
Output: {ub} sequence

(AA = 180◦). The multi-policy considered three possible red policies simultaneously:

Left turning, right turning and pure pursuit.

The planning algorithm is depicted in Algorithm 2 The planner generates a se-

quence of actions for both aircraft, then predicts what the state will be at the end

of the planning horizon. Once the resulting aircraft states are determined, they are

evaluated by the baseline scoring function (Sbl(x) from Equation 2.3). The control

sequence resulting in the minimum score is chosen as the best choice. When using the

multi-policy, the depth first search algorithm selected the blue maneuvering choice

that provided the lowest average score over each red policy. The chosen path is then

sent to the simulation or flight controller for execution. The approximate computa-

tion time was 0.25 s. So, although 3 s of commands were generated by the search,

only the first 0.25 s are executed before a new plan is computed. This allows for rapid

re-planning when the red aircraft policy is not exactly as expected.

Using the simulator, a variety of specific starting positions were evaluated to assess

BFM performance. The simulation allows for consistent starting conditions from one

set to the next. Five setups were used in the initial simulations for comparison of

the two scoring functions. Setups 1 through 5 are depicted in Figure 2-4. They are

34

Figure 2-4: Starting geometry for simulation runs. The red aircraft is always at the
origin heading North. The units of the coordinates on the graph are in meters.

in order of increasing difficulty for the blue aircraft. Setup 1 is an offensive starting

position. Setups 2 and 3 are neutral starting positions. Setups 4 and 5 are both

defensive, decreasing in range.

2.3 Simulation Results using Baseline Scoring Func-

tion

As mentioned above, several different methods were considered for the assumed red

maneuvering policy, πr. Clearly, it is impossible to know what the red aircraft is

going to do, so some assumption must be made. In order to evaluate the effective-

ness of the various assumptions, each assumed red policy {left turning, pure pursuit,

multi-policy} was tested against three actual red policies, {left turning, pure pursuit,

random}. This was done to determine which assumptions about red would produce

35

Figure 2-5: Results from combat simulation using various red policies. All simulations
were accomplished using Setup 3. A TTI of 90 s represents failure to complete the
intercept. Better overall performance was enjoyed by the multi-policy algorithm.

the best overall planning algorithm. The results can be seen in Figure 2-5. Overall,

the assumed left turning policy had the highest TTI against each of the actual red

maneuvering policies. The 90 s TTI against the pure pursuit policy indicates a failure

to win in 90 s. This is not surprising since assuming the red aircraft will continue

left is a poor assumption. The planner using the assumed pure pursuit policy did

not perform much better. Again, the planner failed to win against the pure pursuit

bandit in the maximum allowed time of 90 s. The multi-policy had the overall lowest

average TTI. The multi-policy method was thus chosen for future testing and im-

plementation against an unpredictable adversary. The strength of the multi-policy is

that it selects the maneuver that produces the best average score, over three worst

case red maneuvering strategies scenarios. The multi-policy proved to have the best

performance over a variety of red behaviors.

During simulation testing of the baseline scoring function it became clear that

some sub-optimal decisions were being generated by the path planner. A represen-

tative maneuvering error can be seen in Figure 2-6. This is referred to as a flight

path overshoot. The numbers along the flight path represent time in seconds. In

this situation the blue aircraft takes an overly aggressive bid toward the red aircraft.

36

This maneuver is similar to “pointing” the aircraft at the opponent; it is a natural

mistake for humans and a common error among novice pilots. The blue aircraft ends

up crossing the red aircraft’s 6 o’clock with a relatively high HCA at approximately 4.5

s. Once the blue aircraft drifts outside the red aircraft flight path, the red aircraft is

able to increase range and ATA by continuing the left turn, or force another overshoot

by a quick reversal to the right. These reactions can result in a larger TTI or even a

role reversal from offensive to defensive for the blue aircraft. The root cause of this

error is the limited look ahead available to this search algorithm. While the search

horizon increases linearly, the computation time increases exponentially. The search

algorithm uses a prediction of the red aircraft’s future position to optimize the blue

aircraft’s actions. Due to the large search space, the search algorithm is limited to

an approximately 3 s look-ahead. This short search horizon leads to relatively greedy

maneuver selection in simulation and flight implementation. This observation is con-

sistent with those made by Austin et al. [2] when dealing with short search horizons

using game theory.

In the next section, improvements are made to the baseline scoring function to

encourage better maneuvering without increasing the search time. There are many

techniques that have been developed by pilots of combat aircraft which help to im-

prove tactical performance. The modifications to the baseline scoring function are

designed to encourage some of these techniques. A discussion of the results of simu-

lation testing and a comparison of the scoring functions is included in section 2.4.1.

2.4 Expert-modified Scoring Function

The baseline scoring function was modified to encourage good decisions despite the

limited look-ahead. Maneuvering policies, as described in [21], are rules utilized by

human pilots which approximate optimum solutions. Algorithm performance im-

provements were realized by modifying the scoring function to encourage usage of

these simple BFM concepts.

The basic cost function was extended by adding an extra term that quantifies

37

Figure 2-6: A poor decision made when
using the baseline scoring function.

Figure 2-7: The expert-modified scoring
function makes a better maneuvering de-
cision.

the effect of the red aircraft turn circle. While the basic function returns a value

representing the current orientation of the two aircraft, it provides no information

regarding maneuvering choices made by the red aircraft. The turn circle of the red

aircraft is a way of representing its current maneuvering and possible future maneu-

vering. It is a tool used by human pilots to visualize the current state and make

maneuvering decisions [17]. The simplest form of BFM is a defensive aircraft making

a continuous maximum performance turn to keep an offender from lining up behind

while the offensive aircraft turns to establish a firing position. A combination of turn-

ing rate and geometry can be utilized by both aircraft to improve their individual

situations. An increased turning rate by one aircraft will, over time, improve that air-

craft’s position in relation to the other aircraft. Consequently there is the necessity

to maximize aircraft performance. Likewise, appropriate use of lead, pure and lag

pursuit can be used to affect the flight geometry to appropriately increase or decrease

the range between the aircraft [21]. The turn circle provides a basis with which to

make these decisions.

The red aircraft turn circle (TC) is shown in Figure 2-8. Assuming similar aircraft

with equal energy, the blue aircraft is in a relatively stable position when established

in flight on the red turn circle. From this stable position, a turn to the inside of the

circle will reduce the range between the aircraft (as in a low yo-yo maneuver [21]).

38

Similarly, a turn to the outside of the turn circle will bring about an increase in

range (as in a high yo-yo). For an offensive aircraft, consideration of the adversary’s

turn circle helps to avoid overshoots (passing the tail of the enemy aircraft with high

heading crossing angle). Overshoots can lead to a long TTI or even a role swap

(becoming defensive). The turn circle can also help choose the appropriate lead turn

for high aspect situations. Simply put, the goal of the offender is to align the turn

circles, then reduce the range. In a defensive role, consideration of the offender’s turn

circle helps make good evasive decisions. The goal of the defender is to mis-align

turn circles. By incorporating the turn circle into the scoring function, it was found

that better maneuvering decisions were made with minimal additional computational

complexity. Figure 2-7 shows how consideration of the turn circle helps to improve

intercept performance. The simulations represented by Figures 2-6 and 2-7 began

with the same starting conditions and ran for the same amount of time. The blue

aircraft using Sbl in Figure 2-6 greedily begins to point at the red aircraft too early

because this maneuver minimizes the return from the scoring function. However,

this early turn leads to a flight path overshoot as the blue aircraft crosses the red

aircraft turn circle with a high HCA. This overshoot will lengthen the amount of

time it will take for the blue aircraft to establish flight in the goal region. The blue

aircraft in Figure 2-7 delays making the turn until a more appropriate time due to

the modifications incorporated into the expert modified scoring function (Sem). The

development of this function is detailed below.

The turn circle portion of the scoring function keeps a history of the red aircraft

position in memory. A least squares circle fit is used to approximate the current

red aircraft turn circle. Based on the 100 Hz data available from RAVEN it was

found that computing the turn circle using the 5 previous aircraft recorded positions

produced a reasonable turn circle approximation. Because only a few points were

used the turn circle very closely approximated the instantaneous turn circle. The

simulation used the same technique. The curve fit returns the center point location

(xc, yc) and a radius rc. The distance of the blue aircraft current position from (xc,

yc) is computed as rb. The turn circle contribution to the function is then computed

39

(a) Blue heading: 305◦ (b) Blue heading: 215◦

(c) Blue heading: 125◦ (d) Blue heading: 035◦

Figure 2-8: Visualizations of the baseline scoring function. The blue areas represent
negative values of Sbl, these are areas of blue advantage. The red areas represent red
advantage. In this plot the red aircraft position and heading are fixed as depicted.
The blue aircraft’s heading is also fixed. The colors represent the score the blue
aircraft would receive for being in various locations relative to the red aircraft. The
red aircraft 3/9 line and instantaneous turn circle are shown for reference. The units
of: x–y position are in meters.

40

(a) Blue heading: 305◦ (b) Blue heading: 215◦

(c) Blue heading: 125◦ (d) Blue heading: 035◦

Figure 2-9: Visualizations of the expert-modified scoring function. The blue areas
represent negative values of Sbl, these are areas of blue advantage. The red areas
represent red advantage. In this plot the red aircraft position and heading are fixed
as depicted. The blue aircraft’s heading is also fixed. The colors represent the score
the blue aircraft would receive for being in various locations relative to the red aircraft.
The red aircraft 3/9 line and instantaneous turn circle are shown for reference. The
effect the red aircraft’s turn circle has on the function can be seen. The units of x–y
position are in meters.

41

as:

STC = 2− 2 |rc − rb| (2.6)

By multiplying STC by SRA, both positive and negative values of SRA are scaled up.

In other words, when the blue aircraft is defensive, the scoring function will encourage

flight away from the turn circle, thus foiling the red aircraft’s attempt to align the

turn circles. Conversely, when the blue aircraft is offensive, the search algorithm will

chose maneuvers which align the turn circles.

The final term added to the basic cost function encourages the blue aircraft to

establish a flight path that is tangent to the red aircraft’s turn circle. This term

further rewards establishing flight on the turn circle. It is especially helpful in guiding

the aircraft to establish the correct flight-path separation in a high aspect merge

(AA ∼ 180◦) as suggested by Shaw [21]. This term is computed as:

SC =
|AA|+ |ATA|

180
(2.7)

This term is only computed for locations on the red aircraft turn circle for which the

blue aircraft heading is oriented within 30o of the circle tangent. This encourages

turn circle alignment in a blue offensive situation and turn circle misalignment in a

blue defensive situation. The final formulation for the new scoring function is then

calculated as:

Sem =
SRASTC

2
+ STCSC [sgn (SRA)] (2.8)

A graphical representation of eq. (2.8) is seen in Figure 2-9. As in Figure 2-8, this

is a cross section of the expert-modified scoring function. This function depends on

six components of the state vector, {xb, yb, ψb, xr, yr, ψr}, as well as the recent flight

history of the red aircraft. In this visualization, the red aircraft position, flight history

and heading are fixed. The blue heading is also fixed in each of the subplots. The

values of the function vary for different positions of the blue aircraft in relation to

the red aircraft. The addition of the turn circle term clearly encourages flight along

the red aircraft turn circle. The benefits of the function modifications are discussed

42

Figure 2-10: Results from combat simulation using 4 s look-ahead.

in the next section.

2.4.1 Simulation Comparison

To determine the tactical advantages of using the heuristic function over the basic

function a number of simulations were run. Both functions were tested using the

set of initial conditions shown in Figure 2-4. The setups increase in difficulty from

setup 1 to setup 5, with setup 5 being the most difficult and most defensive setup. In

general the results show a greater advantage for the heuristic function for the more

difficult setups. It appears, the longer the engagement, the more gain. The expert-

modified scoring function showed an overall average lower TTI, defensive time, and

threat time. The times were equal or better in each of the individual setups. This

suggests that the expert preference additions to the baseline scoring function had the

desired result of encouraging better overall tactical behavior from the planner without

causing any situation specific decrease in performance. The algorithms used in the

simulations were recoded into C++ and implemented in the RAVEN for actual flight

testing. These results are discussed in next chapter.

43

44

Chapter 3

Combat Implementation Using

Heuristic Value Function

Following successful testing in simulation, the next step was to implement the combat

planner using actual UAs flying in RAVEN. In order to accomplish this task, the

aircraft themselves had to be designed, built and flight tested. A brief description of

this process follows. Subsequently, the author designed and tested a low level flight

controller and implemented a trajectory follower algorithm to achieve autonomous

flight. Finally, the combat planner software was integrated into RAVEN to complete

actual air combat experiments. This chapter concludes with a discussion of air combat

flight test results.

3.1 Fixed Wing Aircraft Development

The flight vehicles used for air combat flight testing were designed and built in-house.

Previously, the majority of flight testing accomplished in the RAVEN was done with

quad-rotor aircraft [15]. The hovering capabilities of these vehicles are very well

suited to the space limitations in RAVEN. An autonomous fixed wing aircraft was

successfully flown within RAVEN in [8]. The airplane was capable of both horizontal

and vertical takeoffs, hovering flight, transition to forward flight, forward flight, tran-

sition back to hover, and perch landings. While this was a very capable aircraft and

45

autonomous control system, the approximately 7 m/s forward speed of the airplane

made it unusable for air combat maneuvering within the confines of the RAVEN flight

space. To accomplish fixed wing combat flight testing in the confined flight space re-

quired, an airplane with a slow flight speed (approximately 2 m/s) and the ability to

make tight turns (turn radius of approximately 1 m) needed to be developed.

Ten different model airplane configurations were designed and built by the author

and assistants. Some aircraft were built with balsa with mylar covering and others

with foam. The designs included conventional mono-wing and biplane airplanes, as

well as flying wing designs. Due the desire to have a maneuverable airplane many

attempts were made to have functional ailerons. This proved to be challenging as the

aileron effectiveness was very low at such slow flight velocities. Increasing the size of

the ailerons failed to succeed due to the limited torque available from the extremely

lightweight micro-radio controlled actuators and servos.

The airplane that met the requirements was a design loosely based on the Cloud

II airplane [1] and had only rudder and elevator flight controls. After approximately

five design iterations including considerable flight testing and modifications at each

step, the aircraft shown in Figure 3-1 was chosen for use in combat flight testing.

A photograph of the test aircraft can be seen in Figure 3-2. The aircraft weighs

approximately 20 g. It has an airframe constructed of balsa and is covered with RA

Microlite available from [9]; this is a self adhesive iron-on mylar film with a weight of

0.8 g/m2. The polyhedral wing approximates a circular arc to maximize the dihedral

effect. To achieve this, the panels of the wing have the following angles in relation to

level: {−15◦,−5◦, 5◦, 15◦}; this can be seen in the front view in Figure 3-1.

The ribs of the wing are cut from balsa in the shape of circular arcs. The wing

is covered only on the top to reduce weight and to produce a wing with high cam-

ber. This was found to be the best approach as the mylar film does not adhere well

to concave surfaces. As such, covering the bottom of the wings produces an airfoil

with a flat bottom. We determined through flight testing that a flat bottomed air-

foil fails to produce sufficient lift at the slow speeds desired. Experimentation also

demonstrated that a wing located above the aircraft center of gravity produced the

46

best stability and turning ability with the polyhedral wing. Additionally, the high

wing allows the propeller wash to flow directly over the vertical tail and rudder, thus

providing sufficient rudder authority. Both rudder and elevator control surfaces were

mass balanced and aerodynamically balanced to minimize the torque required from

the micro-actuators. Lightweight Blenderm hinge tape was also used to keep the

torque requirements low. The airplanes use MicroInvent MCA3 and MCA3A actua-

tors for the elevator and rudder. The other equipment included a GB45S7O motor,

MicroInvent MCF5030 prop, MINOR receiver/ESC, 15 mm fiberboard wheels, and

a LIPO85-P battery. All of the micro-radio control hardware listed was obtained

from [1]. The battery and electronics weigh a total of approximately 10 g, i.e. about

half the weight of the airplane.

The flight performance of the vehicles used in this testing could be described as

relatively poor in comparison with actual fighter aircraft. However, they appear to be

a good platform for testing the viability of combat planning methods as it would apply

to larger combat UAS. Despite the small size and slow flight speeds of the models, the

rate at which interaction happens between aircraft is considerably higher for these

model aircraft than for full sized fighter aircraft engaged in combat. Essentially, real-

time planning for the micro-UAS requires faster computation than may be required

with a larger combat UAS. To consider the time scales that full size aircraft operate

at in combat, we can use the flight performance data of an F-4U aircraft, as it is

readily available at [11]. This gives the sustained turn rate of an F-4U at a medium

altitude of 20,000 ft MSL to be 14◦/s. This equates to a complete 360◦ turn in 25 s,

suggesting that during a typical 2-circle fight the aircraft would meet with high AA

every 25 s. It can reasonably be argued that the UAS of the future may significantly

out maneuver the outdated F-4, thus requiring a control algorithm to perform at a

higher rate. However, the time scale of the micro-UA’s is approximately an order of

magnitude faster. Considering the limit on bank angle of φmax = 23◦ placed on the

blue aircraft, this produces a turn rate of:

ψ̇ =
g tan(φmax)

V
=

9.81 m/s2 tan(23◦)

2.5m/s
= 95◦/s (3.1)

47

Figure 3-1: 3-View drawing of Micro-UAS design used in flight testing.

Figure 3-2: Micro-UAS designed for Real-time indoor Autonomous Vehicle test En-
vironment (RAVEN).

48

At 95◦/s a complete 360◦ requires only 3.8 s, suggesting that the vehicles maneuvering

within the RAVEN will be operating at much faster time scales than what might be

required in actual combat situations. The combat flight results in Section 3.3 confirm

these results. There are, of course, many differences between the test platform used

here and actual combat aircraft, particularly, in the precision of maneuvering and

agility. However, the micro-UAS should provide a sufficient platform to prove the

planning methods are capable of being scaled to real-world situations.

3.2 Flight Control and Trajectory Following

To enable the micro-UAs to fly autonomously within RAVEN, both low-level con-

trollers and a waypoint tracking algorithm needed to be implemented. This section

describes the process taken to develop these systems.

3.2.1 Flight Controller

The aircraft is easily capable of flight within the confines of RAVEN. Initial flight

testing was done with a human pilot at the controls, and the data was recorded

while the aircraft flight characteristics were evaluated by hand control flight. The

RAVEN data included control inputs, position and orientation data, and associated

rates sampled at 100 Hz. The roll and pitch response of the aircraft was assumed to

be decoupled. Based on the slow speeds and slow rotation rates of the aircraft, these

proved to be acceptable assumptions. Additionally, the velocity response to throttle

input was also assumed to be independent. Each was modeled as a linear system

with a time delay. Comparing the control input with vehicle response showed an

overall time delay of τ = 0.14 s. This delay takes into account: computer processing,

transmitter, receiver, servo mechanical, and aerodynamic delays. Each system was

then modeled as G(s) = e−sτC; where C is a constant chosen to match the model

output with the experimental data. These simple models were used to determine

initial gains for the aircraft control system.

A Matlab R© Simulink representation of the control system used is presented in

49

Figure 3-3. Aircraft control was divided into three separate systems to enable al-

titude, lateral acceleration (Alat), and velocity reference signal tracking. Each sys-

tem was assumed to be decoupled from the others. The velocity controller uses a

proportional–integral–derivative (PID) controller to track the commanded velocity.

The Alat controller (see Figure 3-3(a)), is essentially a bank angle (φ) controller. The

trajectory planner will be designed to output the current reference Alat. Due to the

assumption of level, coordinated flight, Alat can be easily converted into a φ using

Equation 2.4. The controller is then a PID designed to track this reference φ by

producing a rudder control (urud) output.

The altitude controller is designed as a PD pitch controller inside a PID altitude

controller (see Figure 3-3(c)). The reference signal from the planner is an altitude. A

PID structure is used to determine a required pitch to maintain this altitude. A PD

structure is then used to command the elevator deflection (uelev) required to achieve

the pitch command. For the relatively constant altitude commands required for most

flight testing, this structure was successful in providing sufficient altitude tracking.

Figure 3-4 shows the altitude plot of an aircraft tracking 1.7 m altitude. Based on

the sensitivity of these extremely light planes to gusts (including their own propeller

wash on subsequent circles), this is deemed to be adequate performance.

The high fidelity RAVEN platform makes implementing a vehicle controller ex-

ceptionally easy. The aircraft flight data, which is returned from the Vicon system

at 100 Hz, is simply fed into the controller to produce the control signals. The com-

puted gains were programmed into the flight computer initially; some adjustments

were made experimentally during flight testing until acceptable tracking performance

was achieved. The gains used are listed in Table 3.1. The control signal sent to the

vehicle was normalized to the range [−1, 1], with the extremes representing the limits

of travel of the aircraft servos and speed control. A saturation function was included

in each controller to ensure this limit was not exceeded. The following section dis-

cusses the flight performance results using the autonomously controlled micro-UAS

aircraft.

50

(a) Aircraft roll controller.

(b) Aircraft velocity controller.

(c) Aircraft altitude controller.

Figure 3-3: Controllers used for reference signal tracking on the micro-UAs. The
bank angle, altitude, and speed controllers were assumed to be decoupled systems.

51

Table 3.1: Micro-UAS Controller Gains.
Roll Altitude Pitch Velocity

Kφ
P 1.50 u

rad
Kalt
P 0.30 u

m
Kθ
P 0.70 u

rad
Kφ
P 0.7 u s

m

Kφ
I 0.05 u

rad s
Kalt
I 0.05 u

m s
Kθ
I 0.00 u

rad s
Kφ
I 0.15 u

m

Kφ
D 0.02 u s

rad
Kalt
D 0.05 u s

m
Kθ
D 0.20 u s

rad
Kφ
D 0.3 u s2

m

3.2.2 Trajectory Follower

A waypoint follower, as described in [8], was used to produce the Alat guidance for

the micro-UA. This algorithm generates a continuous trajectory between waypoints.

It uses the trajectory tracking algorithm presented in [20] to follow this trajectory.

During flight testing the L1 length used to track the trajectories was varied. Shorter

values of L1 allow for more aggressive trajectories to be followed. However, due to

the inherent delay in the system it was discovered that too short of a value creates a

tracking instability. The value of L1 found to be most effective was 1.6 m.

Initially, the aircraft was commanded to track a circular trajectory with a radius of

1.8 m. This is a relatively simple tracking task, as the required Alat becomes relatively

constant once flight is established on the circle. A plot of tracking over 160 s of flight

is shown in Figure 3-5(a). Slight deviations left and right of the course can be seen

from lap to lap. As mentioned previously, the aircraft is susceptible to very small

gusts. Although the air conditioning units in the RAVEN are powered down during

the flight tests, the air disturbed on previous laps by the airplane are enough to

cause a noticeable flight disturbance the next time by. Overall, good tracking of the

circular trajectory was observed. The aircraft in Figure 3-5(a) was tracking a 3.67 m

diameter circle. Over the course of the 165 s flight, the aircraft tracked the circle with

a standard deviation of 0.22 m.

During air combat the aircraft needs to be able to roll quickly and reverse the turn.

The ability of the aircraft to track a more complicated trajectory, requiring both left

and right turns, is shown in Figure 3-5(b). This shows the aircraft tracking a figure-

8 shaped trajectory. The aircraft is flying in a counter- clockwise direction on the

lower portion, and clockwise around the top portion of the figure-8. Some deviation

52

Figure 3-4: Plot of altitude controller performance while tracking a reference altitude
of 1.7 m.

is seen, particularly in the upper left-hand side of the plot. This is primarily due

the limited roll rate of the vehicle (approximately 45◦/s). After completing the tight

left-hand turn at the bottom of the plot, the aircraft must quickly roll out and initiate

a right-hand turn to complete the top part of the figure-8. The inherent delay in the

trajectory tracking algorithm with a L1 = 1.6, combined with the limited roll rate of

the aircraft, creates this deviation. The aircraft maneuvering performance, however,

proved sufficient to proceed with air combat flights.

3.3 Air Combat Flight Testing

Implementing the planning algorithm presented in section 2.2 required coding the

algorithm in C++ and running it on the vehicle computers along with the vehicle

53

(a) Circular Trajectory Tracking. (b) Figure-8 Trajectory Tracking.

Figure 3-5: Flight path of micro-UA in left hand circular orbit. This stable platform
was used as a target aircraft during flight tests. Also shown is a flight path of
micro-UA tracking a figure-8 pattern, demonstrating the aircraft’s ability to follow
an arbitrary flight path within the confines of RAVEN.

54

controllers. The time-step utilized for the flight testing ranged from 0.25 s to 0.5 s.

This limited the look ahead search to 6 steps and 8 steps, respectively, based on

the available computation time. This produced total look ahead times and control

sequences for future actions between 1.5 and 4 s in length.

One important change to the planning architecture needed to be made due to the

realities of real-time implementation. The flight simulations performed in Chapter 2

assumed that planning could be performed and executed instantly; the aircraft would

wait in the current state for the next control action to be determined by the planner,

then execute said action. During real-time flight, the aircraft continue to maneuver

during the time required to produce the next control action. Typically, the algorithm

would take 0.25 s to produce a maneuvering set, ūb. The aircraft response delay is

τ = 0.14 s. This means that the decision made by the planner does not actually have

any effect on the system until 0.39 s after the current state is sent to the planner.

To compensate for this, the current state, x, is passed to Algorithm 1 to create

a the predicted future state 0.39 seconds in the future. This future state is then

passed to Algorithm {alg:basicsim. This allows the decision made to take effect

in approximately the state it was computed for. Without this compensation, the

returned control action would be executed more then one time-step too late.

The ability to avoid colliding with walls and the other aircraft was also incorpo-

rated into the real-time planning software. During the planning algorithm search,

the planner is attempting to optimize the scoring function at the end of the plan-

ning horizon. A large penalty (100) was added to the value returned by the scoring

function if the predicted path intersected a wall or the other aircraft. Based on the

limited roll rate of the aircraft, a 4 s look ahead was required to significantly reduce

collision avoidance between aircraft. Of course, due to the stochastic nature of actual

model aircraft, gusts and other disturbances ensure that collisions are still possible.

Using Algorithm 3 the current control action was converted into a bank angle. Alat

was computed using Equation 2.4 and passed along to the roll controller (Figure 3-

3(a) as a reference signal for the blue aircraft. At each controller time-step (∆t = 0.02

s), the commaned bank angle is computed per Algorithm 3. For the air combat flight

55

Algorithm 3 Bank angle command determination given u
Input: u
∆t = 0.02, φ̇max = 45◦/s
φredmax = 18◦, φbluemax = 23◦

if u = left then
φcmd = φcmd − φ̇∆t
if φcmd < −φmax then
φcmd = −φmax

end if
else if u = right then
φcmd = φcmd + φ̇∆t
if φcmd > φmax then
φcmd = φmax

end if
end if
Output: φcmd

tests, the red aircraft was commanded to take off and fly in a continuous left hand

circle, maintaining approximately φmax = 18◦ while tracking a circular trajectory. The

blue aircraft then took off and was required to maneuver to the position of advantage

behind the red aircraft. This simple form of air combat is used in the initial phase

of training for human pilots. While the target aircraft maintains a constant turn,

the student pilot is required achieve a position of advantage using pursuit curves and

basic maneuvers such as high and low yo-yos [21]. Using this simple exercise for

evaluation, the flight tests demonstrated that the blue aircraft was capable of making

good maneuvering decisions and achieving and maintaining an offensive stance. A

photograph of the micro-UAs engaged in combat can be seen in Figure 3-6 in MIT’s

RAVEN.

The algorithm development and initial testing was completed in RAVEN. How-

ever, combat flight tests were performed at Boeing’s Vehicle SWARM Technology

Lab in Seattle, WA. The larger facility allowed the aircraft slightly more room to

maneuver. Flight tests were performed using both the baseline and expert-modified

scoring functions. The actual flight testing demonstrated both scoring functions were

capable of generating useful maneuvering decisions in real time. However, the results

indicate that there is little difference between the scoring functions during actual im-

56

Figure 3-6: Micro-UAs engaged in Basic Fighter Maneuvering (BFM) during flight
test.

plementation. The distinction between the different scoring functions was obscured

by the uncertainties involved with actual flying vehicles.

Despite the difficulties that actual flight tests present good combat maneuvering

behavior was observed. For example, Figure 3-7 shows a representative flight sequence

in which the blue and red aircraft have a relatively neutral merge in Figure 3-7(a).

This is a typical 1-circle fight, where both aircraft are essentially on opposite sides of

the same turn circle. The blue aircraft manages to outperform the red aircraft and

gain the opportunity to reverse the turn in Figure 3-7(b). This produces what can

be described as a 2-circle fight, in which the red and blue aircraft are each flying on

their own turn circle. Typically these circles are offset as in Figures 3-7(c)–3-7(e).

The blue aircraft used the available performance advantage to align the turn circles

and has achieved a very offensive position in Figure 3-7(f).

However, as the overall summary values suggest, not all of the behavior seen in

57

(a) History trails at 10.2 s (b) History trails at 12.8 s

(c) History trails at 15.8 (d) History trails at 18.6

(e) History trails at 21.6 (f) History trails at 24.2

Figure 3-7: Basic Fighter Maneuvering flight test reconstruction. The red and blue
lines represent history trails marked with 1 s intervals for the red and blue aircraft,
respectively. The green and black dashed lines represent the current planned path for
the associated aircraft.

58

(a) History trails at 34.6 s (b) History trails at 37 s

Figure 3-8: Flight path history trails from flight testing. This is representative of an
observed maneuvering error which is attributed to using an assumed red maneuvering
policy of left hand turns in the predictive algorithm.

flight tests was good. The blue aircraft performed one notably bad maneuver several

times throughout the flight testing. The search algorithm was using a left turning

assumed red policy. This was selected since it was known that the red aircraft would

be continuously turning left for the flight. However, this had a negative effect on

the maneuvers chosen by the blue aircraft, as shown in Figure 3-8. This sequence of

maneuvering shows the blue aircraft starting in a defensive position in front of the

red aircraft. The appropriate response to this situation would be turn make a sharp

defensive turn to minimize exposure to the threat zone (|AA| > 150◦). Instead, the

blue aircraft extends out in front of the red aircraft, then turns hard left rolling out

in the position of advantage. While this is certainly not an advisable technique when

faced with an enemy behind, the blue aircraft found a maneuver that was best based

on the information it was given. The lesson learned here, is that a different assumed

red policy (such as the multi-policy) would have been more effective in encourag-

ing realistic behavior, since the blue aircraft would have expected more aggressive

behavior from the adversary.

A summary of the performance of the baseline and expert-modified scoring func-

tions can be seen in Figure 3-9. The algorithms are compared using the total accu-

mulated time in four different zones: offensive, defensive, goal and threat. Offensive

59

Figure 3-9: Results from flight tests. Bars represent percentage of total engagement
time spent in those zones. Offensive time is accumulated when SA < 0 (see Equa-
tion 2.1). Conversely, defensive time is accumulated when SA > 0. Goal zone time
is accumulated when the aircraft is in the goal zone shown in Figure 2-2. Threat
time is accumulated when the red aircraft is essentially pointing at the blue aircraft
|AA| > 150◦.

time is accumulated when SA < 0 (see eq. 2.1). Conversely, defensive time is accu-

mulated when SA > 0. Goal zone time is accumulated when the aircraft is in the

goal zone shown in Figure 2-2. Threat time is accumulated when the red aircraft is

essentially pointing at the blue aircraft |AA| > 150◦. The information was compiled

from approximately 600 s of combat data. There is relatively little difference between

the algorithms. The majority of time was spent offensive, with approximately 10%

of the total time spent in the goal zone. Approximately 15% of the time was spent

defensive, with only 2% of the time spent in the threat zone.

60

3.4 Chapter Summary

The results in this chapter demonstrate the validity of the scoring functions at rep-

resenting the value of a particular combat state. The functions were used with an

algorithm that searched up to 4 s into the future to maximize the scoring function

return. Computational limitations restricted using this particular method for look-

ahead times much larger than those presented. The next chapter describes how the

problem is reformulated as a neuro-dynamic program, thus, allowing for much larger

effective search look-ahead times. The scoring functions described in this chapter are

still necessary; their use is explained in the next chapter as well. However, the search

method implemented in this chapter is not used further in this thesis.

61

62

Chapter 4

Neuro-Dynamic Programming

Method

Dynamic programming (DP) provides the means to precisely compute the optimal

maneuvering strategy for the blue aircraft in the proposed air combat game. The

resulting strategy or policy provides the best course of action given any game state,

eliminating the need for extensive on-line computation. While DP has many good

qualities, it quickly becomes computationally prohibitive as the problem size in-

creases. This problem arises from the need to solve a DP over a very large set of

discrete states. This chapter introduces DP with an example problem and motivates

the need for an approximate solution. A method of computing an approximate solu-

tion is also introduced, followed by a detailed explanation of how it is applied to the

air combat problem.

4.1 Example Problem and Nomenclature

The shortest path DP problem shown in Figure 4-1 will be used to define some

of the terminology and methods used in the following sections. For reference, the

terminology is summarized in Table 4.1. In the example problem, a robot is capable

making a one step move within the 4×4 grid at each time-step, i. The robot is

allowed actions u ∈ {up, down, left, right}. The location of the robot is defined by

63

Table 4.1: Symbols used for approximate DP architecture.

Nomenclature
x state vector
xi state vector at time or time-step t
xn nth state vector in X
xterm special terminal state
xposb x coordinate in x− y plane for blue aircraft
yposb y coordinate in x− y plane for blue aircraft
X vector of states [x1, x2, . . . , xn]T

f(x, u) state transition function
π(x) maneuvering policy
π∗(x) optimal maneuvering policy
π̄(x) maneuvering policy generated via rollout
J(x) future reward value of state x
Jk(x) kth iteration of J(x)
J∗(x) optimal value of J(x)

Japprox(x) function approximation form of J(x)

Ĵ(x) scalar result of Bellman backup on state x

Ĵ(X) [Ĵ(x1), Ĵ(x2) . . . Ĵ(xn)]T

T Bellman backup operator
γ future reward discount factor
u control or movement action

φ(x) feature vector of state x
Φ [φ(x1), φ(x2), . . . , φ(xn)]T

β function parameters vector
g(x) goal reward function
gpa(x) position of advantage goal reward function
pt probability of termination function

Sbl(xb) baseline scoring function evaluated for blue

64

Algorithm 4 State Transition Function f(xi, ui)

Input: {x, u}
[row, col] = x
if u = (up) and row 6= 4 then
xt+1 = xt + [1, 0]

else if u = (down) and row 6= 1 then
xt+1 = xt + [−1, 0]

else if u = (left) and row 6= 1 then
xt+1 = xt + [0,−1]

else if u = (right) and row 6= 4 then
xt+1 = xt + [0, 1]

else
xt+1 = xt (to enforce walls)

end if
if xx+1 = [3, 4] then
xt+1 = xt (to enforce blocked square)

end if
Output: (xi+1)

the [row, column] coordinates in the state vector xi = [rowi, coli]. Additionally, xn

refers to the nth state vector when referring to a set of states X = [x1, x2, . . . , xn]T . A

state transition function f(x, u) is defined which computes the next state of the game

given a certain control action. The state transition function executes the dynamics

of movement and enforces the limitations of the game (i.e., the robot can not move

outside the grid or to the blocked square), see Algorithm 4.

The objective is to compute a movement strategy that results in the optimal path

to reach the goal. The goal, which is accessible only from square (4,4), provides a

reward for success and is defined by the function g(x):

g(x) =

if x = [4, 4], g = 10

else g = 0

(4.1)

A function J(x) is defined at each state representing the future reward value of that

state. The initial value of J(x) is set to zero, such that J0(x) = 0 for all x. The

optimal future reward function, J∗(x) can be computed by repeatedly performing a

Bellman backup [14] on each state. This optimal value will be referred to as J∗(x).

65

(a) Shortest path problem. (b) J∗ future reward value of
each state for g = 0 and γ = 0.9.

(c) π∗ optimal movement policy.

Figure 4-1: Example shortest path problem solved using dynamic programming.

An optimal policy, π∗ can then be computed from J∗(x) using Equation 4.5. The

Bellman backup operator, T is defined as:

Jk+1(x) = TJk(x) = max
u

[γJk(f(x, u)) + g(x)] (4.2)

where γ < 1 is the discount factor. The discount factor means that future rewards

mean less to us than current rewards [6]. This has the effect of encouraging the robot

to move toward the reward as quickly as possible. In this example γ = 0.9 will be

used. The vector x can also be replaced by a set of states, X, to accomplish Bellman

backup operations on a number of states simultaneously.

After performing multiple Bellman backup operations, Jk(x) converges to the

optimal discounted infinite horizon value J∗(x). The number of iterations required

depends on the problem design and complexity. The values computed for the example

are shown in Figure 4-1(b). Note the future reward of being in the goal square is 100.

As an example, the first Bellman backup for state [4,4] is computed as follows:

Jo([4, 4]) = 0

J1([4, 4]) = max
u

[γJo(f([4, 4], u)) + g([4, 4])]

In this case, the u or control action that provides the maximum return from the

Bellman backup is either up or right. This will keep the robot in location [4,4] due to

66

the wall limitation. State [4,4] is unique that it continues to receive the goal reward

at each time-step, thus:

J1 = 0.9 · 10 + 10 = 19.0

J2 = 0.9 · 19 + 10 = 27.1

...

J∞ = 0.9 · 90 + 10 = 100

The square to the immediate left of the goal, [4,3], has an optimal discounted future

reward of 90. This is because the square is one step away from the goal region and

g(x 6= [4, 4]) = 0. A robot located in this square will not receive a reward until it

moves one square right in the first time-step. The future reward for location [4,3]

becomes:

J∞([4, 3]) = max
u

[γJ∞(f([4, 3], u)) + g([4, 3])]

= γJ∞([4, 4]) + g([4, 3]) = 0.9 · 100 + 0 = 90 (4.3)

For the next state to the left, [4, 2]:

J∞([4, 2]) = max
u

[γJo(f([4, 2], u)) + g(x)] = 0.9 · 90 + 0 = 0.92 · 100 + 0 = 81 (4.4)

The process continues for all states with the future reward decreasing for each step

away from the goal. The optimal future reward function J∗ can then be used to derive

the optimal policy π∗. Where the optimal action at time-step i is defined as:

ui = π∗(xi) = u ∈ {up, down, left, right}

= arg max
u

[g(xi) + γJ∗(f(xi, u))] (4.5)

The policy π provides the shortest path move from any given state. The computed

J∗(x) for the example problem is shown in Figure 4-1(b) and Figure 4-1(c) shows the

resulting optimal policy π∗. Note that while x = [2, 4] has only one optimal action,

67

all other states have multiple optimal actions. Due to the absence of obstacles in

most of the grid, many squares have two possible actions that lead to a shortest path

to the goal.

This discrete two dimensional path planning problem has very few states. Unfor-

tunately, the The required number of discrete states for typical real-world problems

make exact DP impractical. Consider the simplified air combat problem described in

chapter 2. We desire to define a given state of the game with the following vector

x = [xposb , yposb , ψb, φb, x
pos
r , yposr , ψr, φr]

T (4.6)

where the components xpos and ypos are coordinates expressed in meters; ψ and φ

are the aircraft heading and bank angle, respectively. Subscript b indicates the blue

aircraft, subscript r represents the red aircraft.

In order to solve this problem as a DP, the entire state space needs to be discretized

into unique points within an 8-dimensional space. Assume the flight area is defined

as a 10×10 m space, the bank angle is limited to ±25◦ and the heading is between 0◦

and 360◦. Dividing each component into 10 discrete intervals results in the following

increments: 1 m for position, 5◦ for bank angle and 36◦ for aircraft heading. This

is arguably a coarse resolution that would most likely not be capable of representing

the problem sufficiently to produce useful results. Even so, this simple problem

representation would have 100, 000, 000 discrete states. A finer resolution would have

many more states, thus requiring an unacceptably long time to complete the required

number of Bellman backup operations. This “curse of dimensionality” [5] motivates

the use of an approximate technique.

4.1.1 Approximate Dynamic Programming Example

Neuro-dynamic programming is a general term for approximate dynamic program-

ming [6]. A continuous function approximator eliminates the need to represent and

compute the future reward for every discrete state. The simple shortest path prob-

lem can be redefined with continuous values for the coordinates (see Figure 4-2). The

68

components of x can now take any value between 0 and 4. J(x), which is essentially

a look-up table of values at discrete points, is replaced by Japprox(x), a continuous

function that can approximate the future reward of a given state. The state transi-

tion function f(x, u) is redefined to allow movements from any arbitrary point. To

accomplish this, the velocity of the robot, v, is used. The distance traveled by the

robot is computed as v∆t at each time-step, ∆t. Japprox(x) is initialized to be 0 at all

locations. The state space is sampled with some manageable number of sample states;

9 were selected as shown in Figure 4-2(b). We refer to the set of state samples as X.

A Bellman backup operator (T) is applied to each state sample as in Equation 4.2.

The resulting values are stored in a target vector, Ĵ(X).

Ĵk+1(X) = TJkapprox(X) (4.7)

where Ĵk+1(X) refers to the set of values produced by a Bellman backup on X.

The target vector Ĵk+1(X) is used by a linear estimator to produce the future reward

function Jk+1
approx(X). Jk+1

approx is a linear estimation of the values contained in the target

vector Ĵk+1(X), and can be evaluated at any arbitrary state. Jk+1(X) will be used

in the next Bellman backup operation. The linear estimator uses a set of descriptive

features to estimate the Ĵk+1(X).

A descriptive feature set φ(x) is computed for each state in X. φ(x) can contain

any number of features. Typically, more than one is required to produce an accu-

rate function approximation, and too large of a number can become computationally

expensive to handle. The development and selection of features is discussed in Sec-

tion 4.6. Each feature contained in φ(x) produces a scalar value for a given state.

Therefore, with n features the φ(x) vector will contain n scalar values. Features are

selected, which contain information related to the future reward of a given state. For

example, a reasonable feature for the example problem is the Euclidean distance from

the robot to the goal location. The feature sets are computed for all state samples

69

(a) Shortest path problem with
continuous states.

(b) Random samples within the
state space. Four actions are pos-
sible at each step.

(c) J∗approx(x), continuous func-
tion approximation of the future
reward value of all states.

Figure 4-2: Example shortest path problem solved using approximate dynamic pro-
gramming. Once found J∗approx(x) can be used to compute the optimal policy, π∗(x).

xi ∈ X and stored in Φ so that:

Φ(X) =

φ(x1)

φ(x2)
...φ(xn)

 (4.8)

The new Japprox(x) can now be computed using standard least squares estimation

as follows [6]:

βk+1 = (ΦTΦ)−1ΦT Ĵk+1(X) (4.9)

Japprox is computed as:

Jk+1
approx(x) ≡ φ(x)β (4.10)

Where β are the value function parameters computed in Equation 4.9. The func-

tion Jk+1
approx can now be used to evaluate the future reward of any state x. Additional

discussion on this function approximation method can be found in [6].

The resulting function Jk+1
approx is a continuous function approximating the Ĵk+1(x)

values An approximation of the true J∗(x) can be generated through repeated Bell-

man backup operations. Figure 4-2(c) provides a visualization of J∗approx(x) for this

example problem. The approximate policy π can then be computed from the resulting

J∗approx(x) using Equation 4.5.

70

This method for solving an approximate DP can be extended to problems with

much larger state spaces than that of the example problem. The architecture re-

lieves some of the difficulty that the curse of dimensionality causes in classical DP

techniques. The remainder of this chapter explains how neuro-dynamic programming

was applied to the air combat game.

4.2 States

The air combat system state x is defined by the position, heading and bank angle as

shown in Equation 4.6. There is also a special terminal state xterm from which no

future rewards can be obtained. The terminal state is used as a way of reinforcing

specific air combat behavior (i.e. not flying in front of the adversary), as discussed in

Section 4.4. The components of x are continuous. The position of the aircraft xpos

and ypos have no limits, thus allowing for flight in any portion of the x–y plane. The

aircraft bank angle and heading are allowed to take any value between the specified

limits.

As in the shortest path problem example, the air combat game state space was

sampled to produce representative states. A higher density sampling produces a

better approximation to the optimal solution than a lower density sampling. The

limit on the number of points selected was based on the computation time. The

amount of time required to execute Bellman backup operations on all points and

approximate the results to produce the next Japprox(x) increases linearly with the

number of states chosen. A sample set, X, of 105 points proved to be a reasonable

number to use during development and testing. One DP iteration using this set

required approximately 60 s.

Due to the limit on the number sampled points, it was important to choose sam-

ples wisely. Areas of the state space with a higher density sampling would have a

higher fidelity function approximation, Japprox(x), and therefore a policy more closely

resembling π∗(x). To ensure the areas most likely to be seen during combat were

sampled sufficiently, points were selected using a trajectory sampling technique. Red

71

and blue starting positions were selected from a Gaussian distribution with σ = 7 m.

The initial aircraft headings and bank angles were selected from a uniform distribu-

tion. From this beginning state a combat simulation was run using the simulation

described in chapter 2 and the state of the game was recorded every 0.25 s. The

simulation terminated when the blue aircraft reached the goal zone behind the red

aircraft. The simulation was initialized again at a randomly generated state. This

process continued until all 105 points were generated.

A representation of this set of states, X, is shown in Figures 4-3 and 4-4. Each

state, xn, consists of the location and orientation of both aircraft so it is difficult to

visualize all of the information in a 2D plot. Figure 4-3 is a plot of all states with the

blue and red aircraft positions plotted on the x–y plane. The initial positions of the

individual aircraft can be seen at the edges before they turn toward their adversary

and begin turning in an engagement. Some of the circles flown during combat can

also be distinguished at the edges. Note that the highest density of states is near the

origin, which is where most maneuvering takes place.

Figure 4-4 shows two plots of the same set X. In these plots the red aircraft is

shown at the origin, the relative blue aircraft position is then plotted. In Figure 4-4(a)

the blue location appears to be similar to a Gaussian distribution relative to the red

aircraft, as the center region has the highest density and tapers off as distance from

the red aircraft increases. However, Figure 4-4(b) shows a densely sampled region

surrounding the red aircraft. The pattern is a product of the relative aircraft capa-

bilities and maneuvering strategies. However, it is not particularly obvious that this

pattern would occur. Furthermore, the likely headings and bank angles of the sam-

ples in this dense region would be difficult to produce except through the trajectory

sampling method used here.

The data set produced also contains information regarding the assumed red air-

craft maneuvering policy. Some maneuvering strategy must be assumed for the red

aircraft initially. This can be updated later in future iterations or when a better

model of the red maneuvering strategy is determined. The technique developed in [2]

was successful at producing realistic maneuvers for adversaries that were part of a

72

Figure 4-3: Data set of 105 state space samples used for approximate dynamic pro-
gramming. Points represent blue/red aircraft location in the x–y plane. Each sample
consists of a pair of aircraft and all the information contained in the state X. The
points were generated using a combat simulation from randomly generated initial
starting conditions.

flight simulation. A similar strategy is used to produce the maneuvers for the red

aircraft in the simulation used in this thesis. This technique computes a ur(x) at

each state using a limited look-ahead minimax search. The minimax search uses the

baseline scoring function (Sbl(x) from Equation 2.3) to determine the score of some

future state. The specific search algorithm used is minimax with alpha–beta pruning

as outlined in [19]. The recursive minimax algorithm returns the ur that maximizes

the baseline scoring function Sbl(x) at each time-step under the assumption that the

blue aircraft will select a ub that minimizes Sbl(x). The minimax search was per-

formed over a 0.75 s receding search horizon, thus giving the red aircraft a relatively

short look ahead. The algorithm manages to produce a πr that was challenging to

fly against and allowed the red aircraft to act as a good training platform. The pre-

computed ur(x) are used by the following DP formulation to train against and learn

an appropriate counter policy, πb.

73

(a) Full sample set. (b) Magnified view of center area.

Figure 4-4: An alternative representation of the data points shown in Figure 4-3. The
red aircraft is used as the point of reference and is plotted at the origin. The relative
location of the blue aircraft is plotted for each point. A dense ring of data points can
be seen encircling the red aircraft; this is an apparent common relative orientation
of the aircraft. The advantage of sampling states from combat simulation is that it
produces a set of points with states likely to be seen in air combat.

4.3 Goal (reward)

The true goal of the blue aircraft is to attain and maintain an offensive position

behind the red aircraft. A combination of two goal functions were used to reinforce

this behavior. The baseline scoring function, Sbl from Equation 2.3 was utilized

again. It proved to be a useful representation of the relative desirability of a given

state during flight testing and has the added advantage of being a smooth, monotonic

function. Sbl was modified to return values in the range (0,1), with 1 representing

the best possible score for an aircraft in an offensive position. The modified function,

Smodbl was computed as follows:

Smodbl =
−Sbl + 1

2
(4.11)

Additionally, a more specific goal zone was defined as the area between 0.1 and 3 m

behind the red aircraft. A position of advantage reward function is defined as gpa(x)

as shown in Algorithm 5.

This goal zone, depicted in Figure 4-5, represents the location that a stabilized

74

Figure 4-5: Defined position of advantage behind adversary. Maneuvering into this
Goal Zone provides a reward to the blue aircraft. It was enlarged from the goal zone
used in chapters 2 and 3 to ensure flight on the red aircraft turn circle was rewarded.
The minimum allowed range was decreased. A limitation was also placed on antenna
train angle (ATA), requiring the blue aircraft to be within ±30◦ of pure pursuit to
receive the reward.

Figure 4-6: Plot of reward function for flight within Goal Zone.

75

Algorithm 5 Goal Reward Function gpa(x)

Input: {x}
R =Euclidean distance between aircraft
if (0.1 m < (R) < 3.0 m) & (|AA| < 60◦) & (|ATA| < 30◦) then
gpa(x) = 1.0

else
gpa(x) = 0.0

end if
Output Reward: (gpa)

position of advantage can be maintained regardless of evasive maneuvers, thus, allow-

ing weapons deployment. By rewarding states in the goal zone, the DP should learn

a Japprox(x) that will guide the blue aircraft toward the defined position of advantage.

The two goal functions were combined to create g(x), which was used in the DP

learning algorithm described in Section 4.7:

g(x) =

if x = xterm, return − 1

else return wggpa + (1− wg)Sbl
(4.12)

where wg is a weighting value in the range [0, 1]. The value of wg used was determined

experimentally as discussed in Chapter 5. The goal function g(x) is used in Bellman

backup operation (Equation 4.13) similar to Equation 4.7. The goal function g(xi) is

now evaluated at xi+1 = f(x, u) for all states in set X.

Ĵk+1(X) ≡ TJkapprox(X) = max
u

[γJk(f(X, u)) + g(f(X, u))] (4.13)

The set of states, X is evaluated by the state transition function inside of g(·). This

means that for each xni , the function g(·) is evaluated at xni+1, the state of the next

time-step given the control action, u is applied to the system. Thus, the gpa component

of reward is given to states which are not in the goal zone only if an action is

selected that causes them to arrive in the goal zone in the following time-step. This

modification effectively enlarges the goal zone slightly, while encouraging movement

into the zone. The blue aircraft receives the reward in Equation 4.12 for each time-

76

Algorithm 6 Probability of Termination Function pt(x)

Input: {x}
if R < 5.0 m & AA > 165◦ then
pt = 0.1

else if R < 5.0 m & AA > 150◦ then
pt = 0.05

else
pt = 0

end if
pt = pt + 0.05(2R), (add collision hazard penalty)
pt = ptwp, (apply weight factor)
Output Probability: (pt)

step it is in the goal zone and continues to accumulate this reward if it is able to stay

in the goal zone. However, states at the edge of the goal zone will not receive the

reward from gpa(·) if the selected control action moves the aircraft outside of it.

4.4 Avoid Risk (Negative Rewards)

The complete air combat problem entails balancing risk while attaining rewards.

While the reward structure is shown above, the risk is captured in the pt function

which defines the probability (per second) of entering a terminal state xterm. For

example, pt(x) (Algorithm 6) would return pt ≈ 0.1 for a range=4.5 m and AA = 180◦.

This means that for each 1 s spent in this location, there is a 10% probability that the

aircraft will end up in the terminal state. This is intended to represent the real-world

situation of flying into the weapons engagement zone of a threat aircraft. As the

time spent there increases, so does the chance the adversary will successful employ

ordnance.

The blue aircraft’s probability of termination (pt) discourages the blue aircraft

from flying through the defined danger zone, plotted in Figure 4-7. An increased pt

increases the probability that the aircraft will enter the terminal state, xterm. Upon

entering the terminal state, the aircraft receives a one-time reward of g(xterm = −1).

Once in the terminal state, no future rewards are accrued (i.e. J(xterm) = 0). This

has the effect of reducing the expected reward.

77

Figure 4-7: pt function representing ar-
eas of increased probability of termina-
tion due to threat weapons and aircraft
collision.

Figure 4-8: pT function including
wall/terrain avoidance in addition to
threat weapons and aircraft collision.

To discourage maneuvering that incurs unnecessary risk, equation 4.13 is modified

to utilize the probability of termination at the current time-step to compute the

expected future reward.

Ĵk+1(X) ≡ TptJ
k
approx(X) (4.14)

= max
u

[
(1− pt(X))(γJkapprox(f(X, u))) + g(f(X, u))− g(xterm)pt(X)

]
The operator Tpt is defined to represent the Bellman backup process when pt is in-

cluded in the computation. Note that if the current state results in pT > 0, then

the blue vehicle is considered to be at risk, which is captured in the cost by reducing

Jk+1(X) through the RHS terms {1− pt(X)} and −Rpt(X). This should encourage

control actions that quickly get the blue vehicle out of harms way.

An additional use for pt can be to create terrain avoidance. Figure 4-8 expands the

pt definition to include the walls of the RAVEN, where pt = 1.0. This capability was

not used in this thesis, but could have potential for incorporating terrain avoidance

in the computation of π.

78

Algorithm 7 State Transition Function f(xi, ub, ur) (Simulates 0.25 s, given red and
blue actions)

Input: {x, ub, ur}
∆t = 0.05, v = 2.5 m/s, φ̇max = 40◦/s
φredmax = 20◦, φbluemax = 25◦

for i=1:5 (once for each 0.05 s time increment) do
for both red and blue aircraft do

if u = 1 then
φ = φ− φ̇
if φ < −φmax then
φ = −φmax

end if
else if u = 3 then
φ = φ+ φ̇
if φ > φmax then
φ = φmax

end if
end if
ψ̇ = 9.81

v
tan(φ)

ψ = ψ + ψ̇∆t
xpos = xpos + ∆t sin(ψ)
ypos = ypos + ∆t cos(ψ)

end for
end for
Output: (xi+1)

4.5 Control Inputs and Vehicle Dynamics

The micro-UA vehicle dynamics were modeled by a simple state transition function

f(x, ub, ur). This function takes both red and blue control actions into account and

simulates forward one time-step, ∆t = 0.25. The control actions available to both

aircraft are uε{roll − left,maintain− bank, roll − right} which is equivalently rep-

resented as uε{1, 2, 3}. Thus, the aircraft maintains control action ui for ∆t, then

executes ui + 1 for ∆t, etc. The pseudo-code in Algorithm 7 defines the operation of

the state transition function.

79

4.6 Feature Development

The approximation architecture uses features of the state to estimate the value func-

tion. Good features are the key to good estimation. Human decision making gives

some insight to the process. Pilots use on-board system information (radar and flight

performance instruments) and visual cues to select maneuvers. The same information

is encoded as state features (Table 4.2). To produce good value function estimates.

The features were developed as follows.

Decisions made during BFM are primarily based on relative aircraft position.

The main exception is when terrain, or other obstacles, become a factor. Terrain

avoidance is not being considered in the initial formulation in order to keep the state

space smaller, but can be included later as an additional penalty function in the

dynamic programming formulation. Thus, the air combat decisions will be made

solely on relative positions. We can compute the decisions for the blue aircraft,

therefore, the convention is to represent the feature information from the perspective

of the blue aircraft. The features xposrel and yposrel represent the blue aircraft position in

relation to the red aircraft. The orientation of the x–y axes remain fixed to the global

frame. While this provides some information regarding the current combat situation,

combinations with other information are much more useful.

The range, R, is clearly an important tool for assessing the tactical situation.

Range coupled with AA, ATA and HCA (see Figure 2-1) provides complete instanta-

neous information about the current state. For reference, a graphical representation

of AA can be seen in Figure 4-9. However, the current state change rate is also relevant

to maneuvering decisions. ȦA represents the rotation rate of the red aircraft from the

perspective of the blue aircraft. ȦA incorporates the adversaries bank angle and turn

rate, range and own-ship velocity into one piece of information. ȦA is typically deter-

mined visually by a human pilot and is used as an initial indication of an impending

adversary aggressive maneuver. It is also part of the information included in the

heuristic representation of the turn circle as discussed in in Chapter 2. See Figures

4-10 and 4-11 for a graphical representation of ȦA. ˙ATA is also known as the line-of-

80

Table 4.2: Features Considered for Function Approximation

Feature Description
xposrel Relative position on X axis
yposrel Relative position on Y axis
R Euclidean distance between aircraft
vc Closure velocity
||vrel|| Norm of Relative velocity
θc Closure Angle
AA Aspect Angle
|AA| Absolute Value of Aspect Angle
AA+ max(0, AA)
AA+ min(0, AA)
ȦA Aspect Angle rate
ȦAint 10−

∣∣ȦA∣∣
ATA Antenna Train Angle
|ATA| Absolute Value of Antenna Train Angle
ATA+ max(0, ATA)
ATA+ min(0, ATA)

˙ATA Antenna Train Angle rate
˙ATAint 10−

∣∣ȦA∣∣
HCA Heading Crossing Angle
|HCA| Absolute Value of Heading Crossing Angle
SA Combination of ATAand AA(defined in Equation 2.1)
SR Desired Range Heuristic (defined in Equation 2.2)
xposb Blue Aircraft x-position
yposb Blue Aircraft y-position
φb Blue Aircraft Bank Angle
ψb Blue Aircraft Heading
xposr Red Aircraft x-position
yposr Red Aircraft y-position
φr Red Aircraft Bank Angle
ψr Red Aircraft Heading

81

Figure 4-9: A graphical representation of the aspect angle (AA) feature used as part of
the function approximation. AA represents part of the geometric relationship between
the aircraft (see Figure 2-1). In this plot the red aircraft is in a fixed position heading
0 degrees. The plot represents the AA for various locations of the blue aircraft.

sight rate of the red aircraft. From the perspective of the blue aircraft ˙ATA is the rate

in radians per second at which the opposing aircraft tracks across the windscreen. It

incorporates own-ship bank angle and turn rate, range and adversaries velocity. ˙ATA

is another piece of information which can be determined visually and is used to make

critical decisions such as turn reversals during adversary turn circle overshoots. It is

interesting that the approximation algorithm was able to achieve good function fits

using the same features that a pilot uses for decision making during the course of

BFM.

A critical and challenging component of successfully learning π∗(x) is generat-

ing Japprox(x) from the set of Ĵ(x) values derived from repeated Bellman backup

82

Figure 4-10: A graphical representation of the feature ȦA used in the function ap-
proximation. For this moment of time the red aircraft position is fixed and has a
bank angle which relates to a specific turning rate. The scale to the right shows the
ȦA perceived by the blue aircraft at various locations.

Figure 4-11: A rotated view of the ȦA Figure. The portion of the graph which passes
through an ȦA rate of 0 rad/s also represents the red aircraft’s current turn circle, as
explained in the development of the heuristic scoring function. Continued flight on
this circle allows the blue aircraft to stabilized the current aircraft relative geometry.

83

operations across the state space. Failure of the function approximation to fit and

interpolate this data set will lead to errors. As it is an iterative process, those errors

can grow to be quite large. The goal is to select a set of features that is capable

of fitting the data. Likely features were selected based on the types of information

used in actual air combat (see Table 4.2). The features selected are expanded via

a 2nd order polynomial expansion to build the feature vector, φ(x) that is used in

the approximation process. This produces combinations of features for use by the

function approximator. For example, if three features (A(x), B(x), and C(x)) were

selected, the feature vector would consist of the following components:

φ(x) =
{
A(x), B(x), C(x), A2(x), A(x)B(x), A(x)C(x), B2(x), B(x)C(x), C2(x)

}
(4.15)

The polynomial expansion successfully produces useful feature sets, however, using

a large number of features in this manner proves to be computationally expensive,

making manipulation of Japprox(x) time consuming. This has the effect of slowing the

learning process and, more critically, slowing the policy extraction process.

The forward–backward algorithm [19] was adapted to search the available fea-

tures for a set that could accurately fit a Japprox(x) function to a Ĵ(X) set. A

single Bellman backup operation was performed on a set of states X to produce

Ĵ(X). Six different selections of wg and wp were chosen to ensure the resulting

features were capable of fitting the resulting Ĵ(x) sets. These were: (wg, wp) ∈

[(0.0, 0.0) (0.0, 1.0) (1.0, 0.0) (0.0, 1.0) (0.3, 0.0) (0.5, 1.0)]. The six different lines in

Figure 4-12 each represent a different (wg, wp) setting.

The forward–backward search begins with an empty set of features. It searches

each available feature for the one that minimizes the mean squared error (MSE) of

Japprox(x) as compared to Ĵ . Cross validation [19] was used to determine the average

MSE of each feature. The feature that minimizes MSE the most is added to the

feature set. This process continues until each feature has been added to the set; this

is the forward portion of the algorithm. The backward portion removes features one

at a time, also selecting the feature that minimizes the MSE.

84

Figure 4-12: A forward-backward search was used to select the set of features used
for the function approximation algorithm. The plot shows the mean squared error
(MSE) of the function approximation produced from each set of features tested. Cross
validation was used to determine the set of features that provided the lowest MSE.

The results of this process are shown in Figure 4-12. The stair-step appearance of

the graphs on the left side represents the decreasing MSE as features are added on by

one. The MSE reaches a minimum between 250 and 300 iterations when the feature

sets have grown to a size of between 11 and 14 different features. Adding additional

features has essentially no effect right up to iteration 407 when all 32 features were

used in the set. As features are selected for removal, during the backward phase,

the minimum MSE remains the same until iteration 700 (when there are 14 features

remaining). At this point the MSE begins increasing as features are removed from

the set.

The feature set that produced the absolute minimum MSE contained 22 different

features. A subset of this feature set with 13 different features was selected for

85

use in the function approximation. The reduced number of features decreased the

computation time significantly with only a 1.3% increase in MSE over the minimum

found. The features selected were:

{|AA| , R, AA+, ATA−, SA, SR, |HCA| , ȦAint, ˙ATA, ˙ATAint, θc, φr, φb} (4.16)

All of the features are derived from the eight components of the state, x, so there is

a considerable amount of redundant information available in the features. As a pilot,

I consider range, AA, ATA, ȦA and ˙ATA to be the most critical pieces of information,

so it seems logical that they would be chosen as features capable of approximating

the future reward function J(x). Furthermore, knowledge of the bank angle of each

aircraft is important in understanding the current maneuvering situation, just as a

pilot observes an opposing aircraft’s orientation to make maneuvering decisions. Some

of the bank angle information is built into ȦA and ˙ATA. To grasp the current turning

performance of the two aircraft, the bank angles are the only possible source of that

information.

4.7 Air Combat: Putting It All Together

In this section the ideas developed to this point are assembled to clarify the process

used to apply approximate DP to the air combat game. The policy training process

is discussed first, followed by an explanation of the policy extraction process.

4.7.1 Learning a Policy

The objective is to learn a maneuvering policy for a specific aircraft for use when en-

gaged in combat against another specific aircraft. The flight dynamics of both aircraft

are known and are defined by the state transition function f(x, ub, ur) (Algorithm 7).

The threat aircraft’s weapons capability is known and is represented by the pt func-

tion (Algorithm 6). Based on the maneuvering capabilities of both aircraft, a desired

position of advantage can be defined. The g(x) is defined to reward flight in this

86

Algorithm 8 Air Combat Policy Learning Algorithm

Initialize J1
approx(x) ≡ Sbl(x)

Initialize N : the number of Bellman backup iterations desired
for k = 1 : N do
f = f(X, ub, π

nom
r (X))

Ĵk+1(X) = max
ub

[(1− pt(X))γJkapprox(f) + g(f)− pt(X)g(xterm)]

Φ(X) = [φ(x)∀ x ∈ {X}]
βk+1 = (ΦTΦ)−1ΦT Ĵk+1(X)
Jkapprox(x) ≡ φ(x)βk+1

end for
Output: (JNapprox(x))

desired flight region behind the adversary aircraft. Finally, some expected maneu-

vering policy must be assumed for the adversary pilot. This policy can be developed

based on knowledge of expected tactics and maneuvering techniques observed from

the adversary pilots, or based on some form of optimization. The initial strategy

is defined as πnomr (x) and outputs the control actions ur for the red aircraft given

a state x. A neural-network classifier was found to be a good tool for representing

π(x). This policy can be updated in future iterations by the policies learned through

approximate DP.

The next step is to sample the space to select a set of states for training (X).

Selecting the appropriate number and the proper distribution of states is a challeng-

ing problem, see Section 4.2 for a discussion on the trajectory sampling technique.

Selecting a feature vector (φ(x)) is another difficult problem. Section 4.6 describes

the types of features found useful for air combat. Once the mentioned functions are

defined, Algorithm 8 can be used to produce a maneuvering policy.

The resulting JNapprox defines the blue aircraft maneuvering strategy:

ub = πNapprox(xi) ≡= arg max
ub

[
g(xi) + γJNapprox(f(x, ub, π

nom
r (xi)))

]
(4.17)

This will select the best blue control action given any state of the game. However,

this assumes that JNapprox(x) is a perfect representation of the true J∗(x), which it

is not. To minimize the effect this difference has on the resulting policy, a policy

87

(a) (b)

Figure 4-13: Function approximation from dynamic program. Function is used at
each time-step with a one-step look-ahead maximization to determine best control
action. In this graph the red and blue heading and bank angle are fixed. The color
represents the relative value (blue=good, red=bad) given to blue aircraft positions
surrounding the red aircraft.

extraction method using rollout can be used.

4.7.2 On-line Policy Extraction

Rollout is a technique used to extract a policy from JNapprox(x) that more closely ap-

proximates the optimal policy π∗(x) than πNapprox(xi) manages to do. This is done

by selecting each possible ub as the first action in a sequence, then simulating subse-

quent actions using πNapprox(xi) for a selected number of rollout stages [6]. The policy

resulting from rollout is referred to as π̄Napprox(xi). Algorithm 9 shows the procedure

used to determine π̄Napprox(xi) on-line in both simulation and flight tests.

sectionChapter Summary

Section 4.7 outlines how the approximate DP method is utilized in this research to

first learn and then execute air combat maneuvering. I would like to comment on how

this method can be applied in a slightly broader sense. This sequence of processes

can be considered the first of a continuing cycle of learning and adapting. A human

pilot’s maneuvering decisions will vary based on the type of aircraft they are engaged

with and what the opponent’s maneuvering policy is. Similarly, an operational UAS

would need to have access to a variety of maneuvering policies for each opponent

88

Algorithm 9 Air Combat Policy Rollout Extraction Algorithm, π̄Napprox(xi)

Input: xi
JBest = −∞
for ub = {left, straight, right} do
xtemp = f(xi, ub, π

nom
r (xi)) (where xtemp is temporary future state variable)

for j = {1 : Nrolls} (where Nrolls is desired number of rollout stages) do
xtemp = f(xtemp, π

N
approx(xtemp), π

nom
r (xtemp)

end for
ftemp = f(xtemp, ub, π

nom
r (xtemp))

JCurrent = [(1− pt(xtemp))γJNapprox(ftemp) + g(ftemp)− pt(X)g(xterm)]
if JCurrent > JBest then
ubest = ub
JBest = JCurrent

end if
end for
ub = ubest
Output: ub

airframe and for different types of red policies. During a continued conflict, the

tactics demonstrated from both sides have the tendency to evolve. Human pilots are

capable of learning and adapting to changing tactics. A successful algorithm for flying

air combat would need to take the data learned one day and apply it the next. By

using data collected by a number of engagements, the models used for red policies can

be continually updated. A neural net classifier proves to be an effective method of

generating a maneuvering policy from a set of data. The updated red policy can then

be used to learn a new, improved blue maneuvering policy. This new policy can easily

be distributed and utilized by any number of UAS aircraft. This process probably

requires human interaction at some level, but it does not require intensive human

interaction to update or teach. The algorithm is capable of learning the required

maneuvering on it’s own.

89

90

Chapter 5

Combat Implementation Using

Function Approximation

The process outlined in Chapter 4 was successfully in generating maneuvering policies

capable of making decisions for air combat. Numerous aspects of the learning and

policy extraction process allow for adjustments that have an impact on the resulting

maneuvering decisions. This chapter describes a combat simulation and how it was

utilized as a metric for policy comparison. The results from large numbers of simu-

lations were used to select algorithm settings. The settings that were adjusted based

on simulation results are as follows:

• The number of iterations to train Japprox(x),

• The weight placed on the goal functions, wg,

• The weight placed the risk function, wpt

• The number of rollout stages to use during policy extraction.

Additionally a neural-network classifier was used to approximate the red maneuvering

policy, thus decreasing the time required for policy extraction. The calibration and

performance of the neural-network is discussed, as are the resulting simulated combat

performance data. Finally, the ability of the calibrated maneuvering policy to perform

91

Table 5.1: Six initial states (called setups) used for simulation testing.

xinit Desc. xposb yposb ψb φb xposr yposr ψr φr
1 offensive 0 m −2.5 m 0◦ 0◦ 0 m 0 m 0◦ 0◦

2 1–circle 2.75 m 0 m 0◦ −25◦ 0 m 0 m 0◦ 20◦

3 defensive 0 m 0 m 0◦ 0◦ 0 m −2.5 m 0◦ 0◦

4 high aspect 0 m −4.0 m 0◦ 0◦ 0 m 0 m 180◦ 0◦

5 reversal 0 m 0 m 40◦ 25◦ 0.25 m −0.25 m −45◦ 0◦

6 2–circle 0 m 0.1 m 270◦ −25◦ 0 m −0.1 m 90◦ −20◦

real-time air combat using micro-UAS aircraft was tested. The results from these

flight tests are included in Section 5.4.

5.1 Combat Simulation

The policy, π learned by the dynamic programming method, was tested in air combat

using a simulation program. The simulation is based on the state transition function

described in Algorithm 7. The aircraft were initialized at the specific starting points

defined in Table 5.1. Complete plots of the simulations from each setup can be seen

in Appendix A. The simulation accepted a control action, u, from both aircraft, then

progressed the state forward ∆t = 0.25 s using xt+1 = f(xk, ub, ur). The simulation

terminates when one aircraft manages to receive the reward gpa = 1.0 for 10 consec-

utive steps (2.5 s), thus demonstrating the ability to achieve and maintain flight in

the defined position of advantage.

The six initial states in Table 5.1 were chosen to evaluate a range of specific

maneuvering tasks. The specific setups were designed to assist in easy evaluation of

maneuvering performance. For example Setup #1, is an offensive setup for the blue

aircraft. The blue aircraft is initialized inside the goal zone behind the red aircraft.

With the appropriate maneuvering, the blue aircraft can claim victory in 2.5 s, simply

by maintaining the position of advantage for 10 time-steps. If a policy were to fail to

accomplish this basic task, it would be obvious that it is failing to produce reasonable

decisions.

Of course, evaluating air combat performance is not simply a matter of either good

92

or bad performance. To compare the algorithms in a more continuous manner, two

metrics were chosen to represent success level: time to intercept (TTI) and probability

of termination (pt). TTI was measured as the elapsed time required to maneuver to

and maintain flight within the goal zone for 2.5 s. A smaller TTI is better than a

larger value. Either aircraft has the possibility of winning each of the setups, however,

it is expected that blue should win due to the performance advantage enjoyed by the

blue aircraft (φb max > φr max). The pt was also accumulated over the course of each

simulation to produce a total probability of termination for the entire engagement.

To compute this value we must define a new term representing the probability of

continuing, pc:

pc = 1− pt (5.1)

pc total = pc total(1−∆t pt(xt)) (5.2)

Equation 5.2 must be evaluated at each time-step. At the end of the simulated

combat, pc total can be used to determine the pt total for the engagement.

pt total = 1− pc total (5.3)

A minimum amount of risk is desirable. While, the primary goal is to minimize TTI,

a secondary goal is that of minimizing pt total.

In order to have some basis for comparison, a nominal maneuvering strategy was

used for the blue aircraft. As explained in Section 4.2, the red aircraft uses a minimax

search with the baseline scoring function to produce ur. The nominal maneuvering

strategy, πnomb , used for the blue aircraft is generated using the same technique.

While both aircraft have equivalent strategies, the blue aircraft consistently wins the

engagements due to the available performance advantage. An additional comparison

strategy was produced by the author using manual human control of the blue aircraft

in simulation. Utilizing approximately 10 years and 1000 flight hours of U.S. Air Force

combat training, the author manually input ub at each time-step of the simulation.

93

The best results obtained are similarly used for comparison with the DP generated

maneuvering policies. This maneuvering policy will be labeled πpilotb .

5.2 Parameter Calibration

To calibrate the learning algorithm, a series of simulation tests were done on various

policies. The naming convention for policies will be: πkwg wp. This policy was produced

after k iterations, using a goal weight value of wg and a penalty weight of wp.

In the first phase of testing the number of iterations was varied to determine the

effect of the resulting policies on combat performance. The policy used was πk0 0,

where wg=wp=0, and k was varied from 0 to 80. Because each Bellman backup

iteration can also be considered equivalent to a 0.25 s increase in planning horizon,

this could be considered as varying the planning horizon between 0 s and 20 s. The

results from this series of simulations is plotted in Figure 5-1. The policies πk0 0 were

determined using a rollout of 3, 4, and 5 stages. The resulting TTI is plotted and

compared to the average TTI resulting from the πnomb and πpilotb policies. The value of

40 iterations, or 10 s look-ahead was chosen for use in continued testing as it provided

the best TTI and pt performance.

The next step in calibration was to select the weighting value wg that produced

the most effective policy. The number of iterations was fixed at 40, and wp was fixed

at 0. The policies, π40
wg 0, were evaluated in the simulator with rollout of 1, 2, 3,

4 and 5 stages. The results are plotted in Figure 5-2. Values of wg > 0.8 caused

inconsistencies and poor behavior in both TTI and pt. Based on this testing the goal

weighting was chosen to be wg = 0.7 for future tests.

With the number of iterations and wg values determined, the best value of wp was

computed using a similar series of policies, π40
0 wp where wp was varied from 0 to 1.0 in

0.1 increments. The value for wg was optimized first because wg has a greater effect

on overall performance than pt. As seen in Figure 5-3 the results of both TTI and

pt are erratic. The simulation performance seems somewhat indifferent to wp except

when wp > 0.8, then the policy performance degrades drastically. This particular

94

Figure 5-1: The approximate dynamic program performs Bellman backups over 0.25 s
discrete time interval. The policy resulting from a variety of algorithm iterations were
tested in the simulator for performance. 40 iterations, representing a 10 s look ahead,
proved to provide the best results.

method of reinforcing aversion to risk appears to be insufficient, or simply incorrect.

A value of 0 was used for wp for the remainder of the testing to eliminate the effect

of pt on the learning and policy extraction process.

As explained in Section 4.7.2, the red maneuvering policy must be evaluated multi-

ple times during the policy extraction process. The red policy uses a minimax search,

which is relatively time consuming to compute. When executing a 3-step rollout, the

red policy must be evaluated 30 times. In order to accomplish the policy extraction

process in real-time, a fast method must be used to determine the assumed red control

action. A probabilistic neural-network classifier is available in the Matlab R© Neural

Net Toolbox [23]. This function called, newpnn, accepts a set of feature vectors, φ(X)

and a target vector, which in this case is the corresponding set of red control actions

Ur = πnomr (X) (computed using the minimax algorithm). Using the same architec-

ture described in Section 4.6, a forward–backward algorithm was used to search for a

feature set that produced the highest correct percentage of red policy classification.

95

(a) Time to intercept. (b) Probability of termination.

Figure 5-2: Multiple maneuvering polices were generated as the weight placed on the
two goal reward functions were varied. The value of wg was varied between 0 and 1.0.
The resulting average TTI derived from running the simulator with the respective
policy is plotted versus the various weight combinations. The lowest TTI seem to be
obtained using approximately wg = 0.7.

A plot of the classifier performance during the search process is shown in Fig-

ure 5-4. A set of 5000 states was used to generate the features and associated ur

used to train the neural net. Larger data sets created networks that were slower to

evaluate. Likewise, the larger the number of features selected, the slower the neural

net operated. Fortunately, the highest classification percentage for the neural net

was obtained with only five features. Figure 5-4 shows this point occurred during

the forward portion of the search and produced the correct value for ur 95.2% of the

time. The features selected were {AA, R, Sbl, x
pos
rel vrel}.

This neural-net helped to increase the operating speed of the policy extraction al-

gorithm by an order of magnitude. Figure 5-5 shows the improvement of computation

time over the use of the minimax function. The neural net allows for a 4-step rollout

to be accomplished in real-time (represented by the horizontal line at 100). The neu-

ral net is a useful tool that could most likely be adapted to classify most πr regardless

of the specific method used to produce the policy (i.e. hard coded maneuvers, game

theory, model predictive control).

With the neural-net classifier calibrated, a second series of simulations was done to

verify the goal weight (wg) used. The policy π40
wg 0 was used as wg was varied from 0 to

96

(a) Time to intercept. (b) Probability of termination.

Figure 5-3: Multiple maneuvering polices were generated as the penalty weighting
factor wp was varied. wg was varied from 0 to 1 in 0.1 increments. Simulation perfor-
mance appears to be relatively indifferent to this method of penalty reinforcement.

1.0. The results from a simulation using a 3-step rollout is shown in Figure 5-6. The

results show a marked improvement over the pilot reference policy and a minimum

TTI and pt at wg = 0.8. Thus the policy π40
8 0 was selected as the best obtainable

with the current arrangement. A rollout of 3-steps is used for future testing.

The performance of the π40
8 0 policy as compared to the baseline blue policy, πnomb ,

is shown in Figure 5-7. In Figure 5-7(a) the average TTI per engagement and accu-

mulated pt is shown for both the π40
8 0 (left column in each figure) and πnomb . The π40

8 0

policy is approximately 23.6% faster in achieving the position of advantage and does

so with a 13.0% decrease in pt. This performance is also 7.2% better than the pilot

reference results in TTI and 14.6% in pt. Figure 5-7(b) and 5-7(c) show the results

of the individual setups. Setup #5 (reversal) is the one engagement where the πnomb

policy managed a shorter TTI. The difference is small, approximately 1 s, and the

improvements in the other setups are comparatively large. π40
8 0 accumulated an equal

or lower pt than πnomb for all setups.

The π40
8 0 policy was tested against policies other than the πnomr policy that it was

trained against. This demonstrates the ability to maneuver successfully against an

adversary that doesn’t quite do what is expected, which is an important attribute of

any combat system. The results appear promising. Figure 5-8 shows four plots similar

97

Figure 5-4: Calibration process for a neural-net used to classify the 6-step minimax
red maneuvering policy. A forward-backward search was used to find a set of features
that would produce minimal classifier error. The classifier was used to reduce the
on-line time required to extract a decision from the maneuvering policy.

Figure 5-5: This plot demonstrates the decrease in policy extraction time enjoyed
through the use of a classifier to represent the red maneuvering policy, eliminating
the need to perform a mini-maximization during the rollout process.

98

(a) Time to intercept (b) Probability of termination.

Figure 5-6: Simulation performance using the neural net classifier for the red policy
in the rollout algorithm.

to Figure 5-7(a); the difference here being that each chart represents the performance

of π40
8 0 and πnomb policies in combat versus a different red policy. The policies were

a 10-step minimax search, a pure-pursuit policy, a left turning policy and a right

turning policy. In each case π40
8 0 did better than πnomb in TTI. Note the considerable

additional average time required against the 10-step minimax search, as compared to

Figure 5-7(a). The additional look ahead of the 10-step minimax policy creates ur

maneuvering decisions that are much more difficult to counter than the policy used

to train π40
8 0. However, π40

8 0 still shows improvement over the nominal blue policy.

5.3 Simulation Results

Figure 5-9 shows a typical perch setup simulation flown by a function approximation

policy. Upon initial setup, the blue aircraft is positioned behind the red aircraft, who

is showing a +40 degree AA. At the initiation of the simulation, the red aircraft begins

a maximum performance right turn. The blue aircraft drives ahead then initiates a

break turn which concludes with flight in the goal zone behind the red aircraft. At the

termination of the break turn, the blue aircraft’s flight path is aligned with the red

aircraft’s flight path; this allows continued flight in the goal zone, without a flight path

overshoot. This is excellent behavior with respect to traditional BFM techniques.

99

(a) Overall Performance comparison.

(b) TTI of each setup. (c) Pt of each setup.

Figure 5-7: Simulation performance of best maneuvering policy evaluated with a 3-
step rollout using the neural net classifier for red maneuvering policy evaluation. This
represents a large improvement of performance over the baseline πnomb policy, and the
pilot reference performance.

100

(a) 10 step minimax red policy. (b) Left turn only red policy.

(c) Pure pursuit red policy (d) Right turn only red policy

Figure 5-8: The calibrated function approximation blue maneuvering policy was
tested against different red policies. The blue maneuvering policy was trained against
a 6-step minimax red maneuvering policy. Here the blue policy shows it is still effec-
tive in combat against policies other than the one it was trained on.

101

In Figure 5-10 a high aspect setup is shown. Both aircraft initially fly toward each

other. The red aircraft initiates a left turn forcing a 1-circle fight1. The blue aircraft

correctly chooses a maximum performance right turn. At approximately 5 s into the

engagement, after one leaf of the 1-circle fight, the blue aircraft has established flight

in the goal zone.

Appendix A contains complete drawings from each setup during simulation test-

ing. The plots were drawn every 3 s during combat simulation and show 4 s history

trails of both the red and blue aircraft. Side by side comparison of the simulations

enables the reader to see some of the subtle differences in maneuvering from the

π40
8 0 policy that result in considerable improvements. The ability of the function ap-

proximation to learn small nuances that lead to better performance would appear to

validate its usefulness in solving complicated problems of this nature.

Setup #1 in Figure A-1 is not particularly interesting; both policies found the

best solution and the lines look equivalent. During Setup #2 (Figure A-2 and A-3)

the π40
8 0 policy does better than the πnomb policy. In Figure A-2(e) one can see that

the red aircraft chooses to reverse the turn to the left, while in Figure A-2(f) the red

aircraft continues to the right. There is no noticeable difference in the previous frame,

however, close inspection of the lines at 5 s shows a small difference. In the following

Figure, A-2(e), π40
8 0 quickly takes advantage of the red aircraft’s decision and wins.

Note that these simulations are completely deterministic, so any deviation on the part

of red is due to some difference in the blue maneuvering. Red is reacting to something

different that blue did. In essence π40
8 0 is capable of “faking-out” red by presenting a

maneuver that appears attractive to red, but blue is capable of exploiting in the long

term. The π40
8 0 policy was trained against the red policy and learned based on the

decisions observed. The ability to learn how to elicit a response from the adversary

that is advantageous to yourself is a very powerful tool.

Setup #4 in Figures A-6, A-7, and A-8 shows a very similar behavior. In the very

first frame (Figure A-6(b)) the π40
8 0 policy makes a small check turn to the left, then

1A 1-circle fight is the term given to a portion of a BFM engagement in which both aircraft are
established on the same turn circle, but are traveling in opposite directions around the circle.

102

Figure 5-9: Simulation result from dynamic program function approximation demon-
strating effective performance in a perch BFM setup. The numbers along each tra-
jectory represent time in seconds.

Figure 5-10: Simulation result from dynamic program function approximation demon-
strating effective performance in a high aspect BFM setup. The numbers along each
trajectory represent time in seconds.

103

immediately initiates a right hand lead turn. This forces a 2-circle fight and allows

the blue aircraft to make a small gain prior to the initial merge. In the following

frame, at 4 s, π40
8 0 is extremely offensive, while the πnomb is practically neutral. This

small improvement in maneuvering pays big benefits as the fight unfolds causing π40
8 0

to complete the engagement much quicker.

A final example of this behavior is in Setup # 6 in Figures A-11(e) and A-11(f).

The π40
8 0 manages to force the red aircraft to reverse back to the right, culminating

in a faster victory. The red aircraft will only choose to reverse when it appears to be

advantageous based on the minimax search algorithm applied. The π40
8 0 appears to

have done a good job of exploiting its knowledge of the reds minimax maneuvering

strategy.

Setup #5 in Figure A-9 was designed to be right on the edge of a reversal situation.

A reverse is a maneuver the blue aircraft would make in this situation when the red

aircraft overshoots the blue aircraft’s flight path. A severe overshoot countered by

an appropriately timed reversal can result in a swap of the offensive/defensive role.

This situation is not as severe, and therefore the decision to reverse or not is more

difficult make. The algorithms selected opposite choices in this case. As it turns out

the decision made by π40
8 0 resulted in a quicker engagement.

Apart from the situations mentioned, it appears that based on accepted methods

of basic fighter maneuvering, π40
8 0 continues to make good maneuver selection. Once

the two different maneuvering policies deviate, is difficult to make direct comparisons,

but π40
8 0 appears to be thinking further ahead and, therefore, completes the intercepts

in less time and with less accumulated risk.

5.4 Flight Testing

Section 5.3 demonstrated the efficiency of the DP method in a simulated environment,

and the results showed that the DP method was able to learn an improved blue policy.

Furthermore, using the red policy classifier we are able to execute that policy in real-

time. This section completes the results by demonstrating the policy using flight tests

104

(a) Flight Trajectory. (b) Simulated Trajectory.

Figure 5-11: Flight and simulation results comparison. The simulation was started
at the same initial state as this particular flight sample to compare actual flight with
the simulation used to train the blue policy.

on a real micro-UA in RAVEN.

The π40
8 0 policy was tested using the micro-UA aircraft and system architecture

described in Chapter 3. The policy extraction algorithm (Algorithm 9) was run on a

desktop computer linked with the RAVEN vehicle controllers. State data was received

from RAVEN, processed using the Matlab R© code used for simulation testing. The

blue control action (ub) was then sent directly to the vehicle controllers, where the

PID controllers generated the vehicle commands.

In order to generate technically interesting results in RAVEN, flight tests using

an extended perch setup (similar to Setup #1 in Table 5.1). In the perch setup, blue

is positioned behind red where red has already entered a banked turn. To keep the

fight within the restricted flight environment, the red aircraft followed a (left-hand)

circular trajectory with no additional evasive maneuvers. The circle represented the

maximum performance turn allowed in the simulation. This procedure was necessary

to avoid the walls and other obstacles in RAVEN. However, a hard left turn is exactly

the evasive maneuver performed by red in simulation starting from Setup #1. Thus,

the flight tests demonstrate realistic behavior.

105

Effective maneuvering from the perch setup requires lead pursuit to decrease range.

In the extended perch, blue is positioned further behind red than Setup #1, thus,

requiring additional lead pursuit maneuvers as well as real-world corrections.

Figure 5-11 demonstrates these deviations and the associated corrections. For

example, in the simulated trajectory (Figure 5-11(b)), red makes a perfect left hand

turn. However, in the actual flight test (Figure 5-11(a)) red experiences turbulence

caused by blue’s presence resulting in an imperfect circle. This is also different than

the undisturbed flight in Figure 3-5(a). After the disturbance, red corrects in order

to track the prescribed circle, and thus sometimes exceeds the bank limit imposed in

the simulation.

Figures 5-12 and 5-13 demonstrate two different fights started from the extended

perch setup. We can track blue’s actions by the {L, S,R} labels plotted at 0.2 s

intervals along the blue flight path. In the first flight, blue aggressively pulls lead

pursuit (Figure 5-12(a)). Blue then eases to accommodate red’s elongated turbulence

induced turn (Figure 5-12(a)), then continues lead pursuit in Figure 5-12(b). By

Figure 5-12(d) blue has attained the goal zone position and maintains it until a

disturbance sets the aircraft off course. Blue quickly recovers and reattains the goal

zone positions.

In the second fight blue again aggressively pulls lead pursuit (Figure 5-13(a)).

Blue continues lead pursuit through Figure 5-13(b) in order to close the range with

red. Figures 5-13(c), 5-13(d), and 5-13(e) reflect significant real world disturbances

and corrections involving both the blue and red aircraft. Toward the end of Figure 5-

13(e) blue is in an aggressive pursuit and begins to ease (indicated by the right (R)

control inputs) in order to converge onto red’s path.

The flight results clearly validate the efficacy of the air combat strategy as well

as the flight controller. Blue demonstrated correct strategy and red’s flight controller

demonstrated correct flight path corrections. Overall the flight tests were a success.

106

(a) 7.1 s. (b) 10.1 s.

(c) 13.1 s. (d) 16.1 s.

(e) 19.1 s.

Figure 5-12: Test flight #7 using policy π40
8 0 against a left turning red aircraft. The

red and blue numbers along the respective flight numbers represent seconds. The
black letters L, S, and R represent the current blue maneuver selection, which are
left, straight, or right, respectively.

107

(a) 4.1 s. (b) 7.1 s.

(c) 10.1 s. (d) 13.1 s.

(e) 16.1 s. (f) 19.1 s.

Figure 5-13: Test flight #14 using policy π40
8 0 against a left turning red aircraft. The

red and blue numbers along the respective flight numbers represent seconds. The
black letters L, S, and R represent the current blue maneuver selection, which are
left, straight, or right, respectively.

108

Chapter 6

Conclusions

6.1 Review of Thesis Objectives

The purpose of this research was to develop a method which enables an autonomous

UAS to successfully fly air combat. Several objectives were set to fill gaps found in

the current state of the art. The first objective was to develop a method capable of

operating in real-time, which is a requirement if there is to be any hope of practical

application on operational vehicles. The associated goal of integration with RAVEN

platform demonstrates the potential for real-time operation, providing a “trial by fire”

to expose the strengths and weaknesses of the proposed solution. The second objective

was to develop a method with a relative long planning horizon. The motivation for

a long planning horizon is based on the decision processes used by human pilots

during air combat. As a human pilot flys combat, near term maneuvering decisions

are made within a framework of longer term goals. The consideration of these goals

enable smart choices that generate greater longer-term benefit, critical to successful

air combat. The third objective minimize the need for intensive human involvement

in the learning process encoded strategies; and instead develop an algorithm that

could learn appropriate maneuvers on its own. The final objective was to develop a

flexible algorithm that was capable of switching rolls from defender to offender during

an engagement.

Chapter 2 began by defining a function capable of representing the combat state.

109

Attempts to produce an improved function by incorporating knowledge from an ex-

perienced pilot into the function proved successful. The resulting scoring function

produced better results in simulation. However, the method was still limited to short

look ahead times. Chapter 3 demonstrated the usefulness of the scoring functions

when applied to the air combat problem. Real-time combat flight was demonstrated

utilizing a short look ahead. The flights proved the viability of the RAVEN and

micro-UAS as a tool for flight testing air combat algorithms. Chapter 4 develops the

process used to formulate the air combat game as a dynamic programming problem.

The scoring function provided in Chapter 2 was used in developing a goal reward

structure for the DP architecture. Approximate DP offers the potential for learning

optimal policies, increased look-ahead future planning and real-time implementation.

Once the learning algorithm was tuned in Chapter 5, the resulting policies performed

well in simulation. The blue policies demonstrated the ability to exploit the known

policy of the red aircraft. Additionally, the policies generated by the approximate DP

proved to be successful against a variety of red maneuvering strategies. Finally, the

policy derived from the approximate DP was implemented on micro-UAS within the

RAVEN system. These flight tests proved the ability of the policy to be evaluated in

real-time and control an actual aircraft maneuvering against another aircraft.

Within the context of the simplified air combat game used throughout this thesis,

the approximate DP method manages to meet the objectives set forth at the begin-

ning of the project. The simulations in Chapter 5 show some very interesting results.

The subtle actions taken by the function approximation policy, which improve perfor-

mance, suggest that the method could learn in even larger state spaces. Some human

interaction was required during the learning process to appropriately define the re-

ward function and model the adversary aircraft. However, the model and rewards

are defined, the DP learns the strategy required to defeat the opponent. Overall, the

results are promising. The simplified air combat game used in this project certainly

does not represent the extremely complex problem of real-world flight. An extension

of the simplified game is in order, and, as with most research, there are several other

directions this thesis could lead in terms of continued work.

110

6.2 Extensions of this Research

The successful results in solving the air combat game using approximate DP leads to

a great potential for future continued research on this topic. First and foremost is

to extend the 2-D, fixed velocity combat game. Expanding the game to 3-D would

require considerable changes to the flight dynamics. This would require removal of

the restriction on bank angle, altitude and velocity. Additionally, throttle and ele-

vator control would need to be incorporated, thus increasing the number of possible

control action combinations. The varying velocity and altitude would mean that the

energy state of the aircraft would no longer be constant. Energy would need to be

incorporated into the scoring function to accurately represent the desirability of a

particular combat state. All told, expansion to a 3-D combat game would increase

the size of the state space considerably. Careful selection of sample states and effi-

cient programming will be required to learn and extract the maneuvering policy in a

reasonable amount of time.

In actual combat training programs designed for human pilots, an incremental

approach is taken. First 1-v-1 combat is taught, followed by 2-v-1, 2-v-2, 2-v-4, 4-v-4,

and 4-v-X, where X is some large number of threat aircraft. The first step is expansion

to 2-v-1 maneuvering, which involves two blue aircraft engaged with one red aircraft.

The mechanics are the same, but certain rules need to be followed to ensure deconflic-

tion. Also, some mutually beneficial behavior can result in a quicker win for the blue

team than would be the case if both blue aircraft were operating independently. By

incorporating the required additional state variables, the approximate DP should be

able to learn such cooperative behavior in addition to the basic fighter maneuvering

techniques. A similar approach to each increase in complexity could be taken until

the policy is capable of maneuvering with large numbers of cooperative aircraft, to

maximize effectiveness against a group of red aircraft.

Finally, the issue of imperfect sensor information should be considered. In this

thesis, information about the adversary was assumed to be complete and instanta-

neous. However, data loss, corruption of data, and intermittent coverage certainly

111

complicate the problem. These issues need to be addressed prior to installation on a

combat UAS.

Overall, the method of approximate dynamic programming shows the potential

to learn and execute a successful maneuvering policy within the large state space

and complicated environment concomitant with air combat. However, the current

state of the art has limitations accomplishing this feat. Thus, this thesis represents a

significant step toward autonomous air combat.

112

Appendix A

Complete Policy Comparison

Simulation Results

The following are the results from flight testing. Complete lines for each of the six

setups listed in Table 5.1 are presented here. The left hand lines are from the dynamic

programming function approximation policy π40
8 0, the right hand figures are from the

baseline policy πnomb . The adversary aircraft is using πnomr in both cases.

(a) Policy π40
8 0 (b) Policy πnom

b

Figure A-1: Setup 1.

113

(a) Policy π40
8 0 (b) Policy πnom

b

(c) Policy π40
8 0 (d) Policy πnom

b

(e) Policy π40
8 0 (f) Policy πnom

b

Figure A-2: Setup 2a.

114

(a) Policy π40
8 0 (b) Policy πnom

b

(c) Policy π40
8 0 (d) Policy πnom

b

(e) Policy π40
8 0 (f) Policy πnom

b

Figure A-3: Setup 2b.

115

(a) Policy π40
8 0 (b) Policy πnom

b

(c) Policy π40
8 0 (d) Policy πnom

b

(e) Policy π40
8 0 (f) Policy πnom

b

Figure A-4: Setup 3a.

116

(a) Policy π40
8 0 (b) Policy πnom

b

(c) Policy π40
8 0 (d) Policy πnom

b

Figure A-5: Setup 3b.

117

(a) Policy π40
8 0 (b) Policy πnom

b

(c) Policy π40
8 0 (d) Policy πnom

b

(e) Policy π40
8 0 (f) Policy πnom

b

Figure A-6: Setup 4a.

118

(a) Policy π40
8 0 (b) Policy πnom

b

(c) Policy π40
8 0 (d) Policy πnom

b

(e) Policy π40
8 0 (f) Policy πnom

b

Figure A-7: Setup 4b.

119

(a) Policy π40
8 0 (b) Policy πnom

b

Figure A-8: Setup 4c.

120

(a) Policy π40
8 0 (b) Policy πnom

b

(c) Policy π40
8 0 (d) Policy πnom

b

(e) Policy π40
8 0 (f) Policy πnom

b

Figure A-9: Setup 5a.

121

(a) Policy π40
8 0 (b) Policy πnom

b

(c) Policy π40
8 0 (d) Policy πnom

b

(e) Policy π40
8 0 (f) Policy πnom

b

Figure A-10: Setup 5b.

122

(a) Policy π40
8 0 (b) Policy πnom

b

(c) Policy π40
8 0 (d) Policy πnom

b

(e) Policy π40
8 0 (f) Policy πnom

b

Figure A-11: Setup 6a.

123

(a) Policy π40
8 0 (b) Policy πnom

b

(c) Policy π40
8 0 (d) Policy πnom

b

(e) Policy π40
8 0 (f) Policy πnom

b

Figure A-12: Setup 6b.

124

(a) Policy π40
8 0 (b) Policy πnom

b

Figure A-13: Setup 6c.

125

126

Bibliography

[1] Air Midi Micros. Available at http://www.airmidimicros.com, 2009.

[2] F. Austin, G. Carbone, M. Falco, and H.Hinz. Game Theory for Automated

Maneuvering During Air-to-Air Combat. Journal of Guidance, Control and Dy-

namics, 13(6):1143–1149, Nov-Dec 1990.

[3] F. Austin, G. Carbone, M. Falco, and H. Hinz. Automated Maneuvering During

Air-to-Air Combat. Technical report, Grumman Corporate Research Center,

Bethpage, NY, CRC Rept. RE-742, Nov 1987.

[4] R. Bellman. On the theory of dynamic programming. Technical report, Proceed-

ings of the National Academy of Sciences, 1952.

[5] R. Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ,

1957.

[6] D. Bertsekas and J. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific,

Belmont, Massachusetts, 1996.

[7] G.H. Burgin and L.B. Sidor. Rule-Based Air Combat Simulation. Technical

report, National Aeronautics and Space Administration, CR-4160, 1988.

[8] A. Frank, M. Valenti J. McGrew, D. Levine, and J. How. Hover, Transition,

and Level Flight Control Design for a Single-Propeller Indoor Airplane. In Pro-

ceedings of the AIAA Guidance, Navigation, and Control Conference, August

2007.

[9] Homefly. Available at http://www.homefly.com/, 2008.

[10] R.P. Isaacs. Games of pursuit. Technical report, The Rand Corporation, Santa

Monica, CA, 17 November 1951.

127

[11] J. Knutson . F-4U Energy-Maneuverability Diagram, 20,000 feet. Available at

http://www.cactus.org/AirWarrior/Library/AWInfo/EMDiagrams/f4u1 20k.gif,

1994.

[12] J.Eklund, J. Sprinkle, H. Kim, and S. Sastry. Implementing and Testing a Non-

linear Model Predictive Tracking Controller for Aerial Pursuit/Evasion Games

on a Fixed Wing Aircraft. In Proceedings of 2005 American Control Conference,

volume 3, pages 1509–1514, June 2005.

[13] K. Virtanen and J. Karelahti and T. Raivio. Modeling Air Combat by a Moving

Horizon Influence Diagram Game. Journal of Guidance, Control and Dynamics,

29(5):1080–1091, Sep-Oct 2006.

[14] Philipp W. Keller, Shie Mannor, and Doina Precup. Automatic basis function

construction for approximate dynamic programming and reinforcement learn-

ing. In ICML ’06: Proceedings of the 23rd international conference on Machine

learning, pages 449–456, New York, NY, USA, 2006. ACM.

[15] M. Valenti, B. Bethke, G. Fiore, J. How, and E. Feron. Indoor multi-vehicle

flight testbed for fault detection, isolation, and recovery. In Proceedings of the

AIAA Guidance, Navigation, and Control Conference and Exhibit, Keystone,

CO, August 2006.

[16] MIT Real-time indoor Autonomous Vehicle test ENvironment (RAVEN).

RAVEN home page. Available at http://vertol.mit.edu/, 2007.

[17] Naval Air Training Command. CNATRA P-1289 Air Combat Maneuvering.

Available at https://www.cnatra.navy.mil//pubs/ppub t45 str.htm, 2007.

[18] R. Tiron. Can UAVs Dogfight? Association for Unmanned Vehicle Systems

International: Unmanned Systems, 24(5):39–42, Nov-Dec 2006.

[19] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach

(2nd Edition). Prentice Hall, December 2002.

[20] S. Park, J. Deyst, and J. P. How. A New Nonlinear Guidance Logic for Trajec-

tory Tracking. In Proceedings of the AIAA Guidance, Navigation, and Control

Conference, Providence, RI, August 2004.

[21] R. Shaw. Fighter Combat Tactics and Maneuvering. Naval Institute Press,

Annapolis, Maryland, 1985.

128

[22] J. Sprinkle, J.Eklund, H. Kim, and S. Sastry. Encoding Aerial Pursuit/Evasion

Games with Fixed Wing Aircraft into a Nonlinear Model Predictive Tracking

Controller. In 43rd IEEE Conference on Decision and Control, December 2004.

[23] The Math Works. Neural Network Toolbox newpnn article. Available at

http://www.mathworks.com, 2008.

[24] M. Valenti, B. Bethke, D. Dale, A. Frank, J. McGrew, S. Ahrens, J. P. How, and

J. Vian. The MIT Indoor Multi-Vehicle Flight Testbed. In Proceedings of the

2007 IEEE International Conference on Robotics and Automation (ICRA ’07),

Rome, Italy, April 2007. Video Submission.

[25] Vicon Company. Vicon Motion Capture Systems. Available at

http://www.vicon.com/, 2007.

129

	Introduction
	Literature Review
	Objectives

	Overview of MIT RAVEN Research Platform
	Approach

	Scoring Function Development
	Baseline Scoring Function
	Combat Simulation using the Baseline Scoring Function
	Simulation Results using Baseline Scoring Function
	Expert-modified Scoring Function
	Simulation Comparison

	Combat Implementation Using Heuristic Value Function
	Fixed Wing Aircraft Development
	Flight Control and Trajectory Following
	Flight Controller
	Trajectory Follower

	Air Combat Flight Testing
	Chapter Summary

	Neuro-Dynamic Programming Method
	Example Problem and Nomenclature
	Approximate Dynamic Programming Example

	States
	Goal (reward)
	Avoid Risk (Negative Rewards)
	Control Inputs and Vehicle Dynamics
	Feature Development
	Air Combat: Putting It All Together
	Learning a Policy
	On-line Policy Extraction

	Combat Implementation Using Function Approximation
	Combat Simulation
	Parameter Calibration
	Simulation Results
	Flight Testing

	Conclusions
	Review of Thesis Objectives
	Extensions of this Research

	Complete Policy Comparison Simulation Results
	References

