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ABSTRACT
With transistor miniaturization leading to an abundance of
on-chip resources and uniprocessor designs providing dimin-
ishing returns, the industry has moved beyond single-core mi-
croprocessors and embraced the many-core wave. Scalable
cache coherence protocol implementations are necessary to al-
low fast sharing of data among various cores and drive the
many-core revolution forward. Snoopy coherence protocols, if
realizable, have the desirable property of having low storage
overhead and not adding indirection delay to cache-to-cache
accesses. There are various proposals, like Token Coherence
(TokenB), Uncorq, Intel QPI, INSO and Timestamp Snoop-
ing, that tackle the ordering of requests in snoopy protocols
and make them realizable on unordered networks. However,
snoopy protocols still have the broadcast overhead because
each coherence request goes to all cores in the system. This
has substantial network bandwidth and power implications.
In this work, we propose embedding small in-network coher-
ence filters inside on-chip routers that dynamically track shar-
ing patterns among various cores. This sharing information is
used to filter away redundant snoop requests that are traveling
towards unshared cores. Filtering these useless messages saves
network bandwidth and power and makes snoopy protocols on
many-core systems truly scalable. Our in-network coherence
filters are able to reduce the total number of snoops in the sys-
tem on an average by 41.9%, thereby reducing total network
traffic by 25.4% on 16-processor chip multiprocessor (CMP)
systems running parallel applications. For 64-processor CMP
systems, our filtering technique on an average achieves 46.5%
reduction in total number of snoops that ends up reducing the
total network traffic by 27.3%, on an average.

Categories and Subject Descriptors
C.1.2 [Computer Systems Organization]: Multiproces-
sors—Cache coherence protocols, Interconnection architectures

General Terms
Design, Measurement, Performance

1. INTRODUCTION
With continued transistor scaling providing chip designers

with billions of transistors, architects have embraced many-
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Figure 1: Redundant snoop requests in parallel appli-
cations.

core architectures to deal with increasing design complexity
and power consumption [1,2,13,27]. In these systems, a shared
memory model eases programmability. Hence, as core counts
increase, a scalable cache coherence implementation is criti-
cally needed.
There are two broad sets of cache coherence protocols that

have been proposed: broadcast-based snoopy protocols and
directory-based protocols. Both sets of protocols have their
advantages and disadvantages. Broadcast-based snoopy co-
herence protocols [4,15,17,18,24] have the advantage of direct
cache-to-cache transfers (1-hop protocol) and do not require
a directory structure. However, the main limitation of these
protocols is that they rely on broadcasting cache misses, which
places exorbitant demands on on-chip network bandwidth be-
yond a moderate number of cores. The directory protocols
get rid of this problem of broadcasting coherence requests by
maintaining sharer information at distributed directory nodes.
However, the traversal to the directory node and directory
look-up introduces indirection (2-hop protocol) in cache-to-
cache accesses. Directory protocols also have to store the di-
rectory structure on-chip, which introduces storage overheads.
These overheads worsen as core count increases.
Snoopy protocols do not maintain sharing information at

either the source of the request or at remote nodes, like a
directory. Thus, on a cache miss, the coherence request is
broadcasted to all cores to be snooped. If all of the cores are
caching a block that is being snooped, a broadcast would not
be wasteful. However, this is rarely the case. We performed
evaluations (refer to Section 5.1 for methodology and con-
figuration) for 16-processor CMP systems and measured the
amount of redundant coherence requests in the system while
running 16 threads of the same application. A redundant co-
herence request is one that reaches a destination core that does
not share the cache line being snooped, thus unnecessarily
consuming resources. Figure 1 shows the percentage of coher-
ence requests that are redundant for different parallel multi-

232



������ ������ �����	

�����
 ������ ������

�����
 ������ ������

(a) No Filtering

������ ������ �����	

�����
 ������ ������

�����
 ������ ������

(b) Source Filtering

������ ������ �����	

�����
 ������ ������

�����
 ������ ������

(c) In-Network Coherence Filtering

Figure 2: Request traversal for non-shared data, with different filters.
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Figure 3: Request traversal for data shared across two cores, with different filters.

threaded applications in SPLASH-2 [28] and PARSEC [6]. We
found that 72% of coherence requests, on an average, are re-
dundant and thus unnecessarily consume network bandwidth
and power, while also resulting in redundant snoop-induced
cache-tag look-ups. In this paper, we target this broadcast
overhead of snoopy protocols, so that we can retain the 1-
hop performance benefits of snoopy protocols, while ensuring
that they are viable on scalable interconnects, consuming low
bandwidth, storage and power.
In the past, snoop filtering solutions have been proposed to

deal with the broadcast problem of snoopy protocols. Destina-
tion filters [21,23] avoid snoop-induced cache-tag look-ups, but
do nothing to avoid the interconnect broadcast bandwidth and
power problem. Source-based filters [8,20] avoid broadcasts for
non-shared data, but resort to broadcasting even for data that
might be cached by just one or two cores. Moreover, in their
current form, source-based filters only work on synchronous
broadcast interconnects, like buses, and not on distributed
networks. To address the above problems, we propose main-
taining coarse-grain sharing information at on-chip routers
that filter out redundant snoop requests, as close to the re-
questor as possible, and save precious interconnect bandwidth
and power. Our filtering technique comprises in-network co-
herence filters, present at each network router, that store in-
formation on non-shared data in the system. This information
is dynamically observed and adapts to changing sharing pat-
terns. The network routers look up this information and filter
out requests that are en-route to non-shared cores. Figures 2
and 3 show how In-Network Coherence Filtering (INCF) is
effective in filtering away redundant request traffic for data
that is non-shared, as well as data that is shared across a few
cores. Source filters, in their current form, do not work on
distributed packetized networks. Even when extended with
our proposed region updating step (described in Section 3.2),
so that they can function on distributed networks, they would
still only be able to filter requests for non-shared data.
Our in-network filtering technique is successful in reducing

the total number of snoops in the system by 41.9% (16-core)
and 46.5% (64-core), thereby leading to a significant reduction

in total network traffic: 25.4% (16-core) and 27.3% (64-core).
As a bonus, request filtering in the network also results in
the saving of redundant cache-tag look-ups at the destination
cores, leading to lower snoop-induced cache-tag look-up power
and port contention.
The rest of the paper is organized as follows. Section 2

provides background on how snoop filtering solutions work
and motivates the need for tracking of coarse-grain sharing
information instead of per cache line information. Section 3
describes our in-network coherence filtering proposal. Sec-
tion 4 discusses the implementation details of our technique
and presents the hardware design of our implementation. Sec-
tion 5 discusses the evaluation methodology and presents quan-
titative results. Section 6 delves into prior related work and
Section 7 concludes.

2. BACKGROUND AND RELATEDWORK
ON SNOOP FILTERING

In this section, we provide relevant background on previous
snoop filtering proposals and motivate the tracking of coarse-
grain sharing information instead of per cache line informa-
tion.

2.1 Source vs. destination filtering
Previous works, which target the filtering of coherence re-

quests of snoopy protocols using hardware techniques, fall un-
der two broad categories: destination filtering and source fil-
tering. Destination filters [21, 23] maintain filtering informa-
tion at destination cores, and use this information to filter out
redundant snoop requests that are going to miss in the cache
and thus save on snoop-induced cache-tag look-ups. This
saves cache-tag look-up power as well as reduces contention
for cache-tag look-up ports. Source filters [8,20] improve upon
the destination filters by also saving on interconnect band-
width and power. These filters maintain coarse-grain sharing
information at source cores1 and eliminate unnecessary broad-

1Here, by source cores, we mean the cores that are requesting
the cache line.
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casts and snoops for non-shared data. The source-based fil-
tering techniques work as follows. The first block access to a
particular region, where region is defined as a contiguous set
of addresses, is broadcasted to all cores to be snooped. All
destination cores reply with the data, if present, and report
whether they are caching any block from that region. If no
remote core is caching the region, the source core marks the
region as non-shared in a table. Subsequent misses to the
blocks in the region are directly requested from memory with-
out broadcasting to all cores. If another core starts sharing the
same region, the non-shared entry at all cores are invalidated
via the broadcast request of the cache line.
Source-based filters are not sufficient for future many-core

snoopy protocol proposals. This is due to two reasons. Firstly,
apart from saving broadcasts for data that are non-shared,
saving interconnect bandwidth and power for data that are
shared, but not by all cores, is also critical. As we will show
in Section 2.2, the average number of sharers of a cache line
is far smaller than the total number of cores in the system.
Thus, a mechanism to filter out these redundant snoop re-
quests is required. Secondly, source filters, in their current
form, only work on synchronous broadcast interconnects, like
buses, and not on distributed packetized networks, whereas fu-
ture many-core chips with 10’s to 100’s of cores will likely em-
ploy a scalable on-chip network like packet-switched meshes,
tori, etc. Packetized interconnects lead to source filters not
having up-to-date sharing information, leading to wrong fil-
tering decisions, thus resulting in protocol races. In prac-
tice, snoop requests can be filtered out only using up-to-date
sharing information and percolating this information instanta-
neously to all source nodes in non-synchronous interconnects
is not possible.
This paper shows that the above-mentioned problems with

source filters can be mitigated by moving the filters into the
interconnection network. We believe that the on-chip network
is a good candidate for maintaining up-to-date filtering infor-
mation, while imposing only reasonable storage requirements.
We will call these filters in-network coherence filters (INCFs).
We address the storage problem by maintaining per-port shar-
ing information in the INCFs that grows proportionately to
the degree of an on-chip router (which can remain constant as
core count increases), as opposed to the the number of cores.
The problem of maintaining up-to-date sharing information in
distributed on-chip networks is tackled in our work by adding
a region update step to every request that is the first in a re-
gion by a core. This step ensures that the filtered coherence
requests are indeed redundant and do not cause protocol-level
races. Our region update step can be applied to source filters as
well, so they can use it to ensure that ordering of snoopy pro-
tocols is not violated. We discuss these details in Section 3.2.

2.2 Regions
To determine whether a cache block is cached by a particu-

lar core, the sharing information needs to be stored somewhere
so that snoop requests can be filtered out. Conventionally, in-
formation about cache coherence is maintained on a per-block
granularity. However, on-chip storage is very precious and
mechanisms to reduce this storage overhead are required. Pre-
vious works [8,12,20,29] have proposed tracking of coherence
information at a much coarser granularity than cache lines,
using regions. A region is a contiguous portion of memory
addresses and each physical cache line maps to exactly one re-
gion. What has been observed in the past is that if a cache line
is not shared among a set of cores, there is a high chance that
the region to which it belongs is also not shared among the
same set of cores. This property of parallel programs leads
to optimizations in which maintaining region-level informa-
tion suffices. To confirm these observations, we did similar
studies (refer to Section 5.1 for methodology and configura-
tion) and measured the average number of sharers present
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Figure 4: Region-level sharing properties in parallel
applications with varying region sizes.

per region in parallel applications for 16-processor CMP sys-
tems. Apart from collecting block-level (where each block is
64 Bytes) sharing information, we also looked at sharing prop-
erties at a coarser granularity. The region sizes we explored
were 256 B, 1 KB and 4 KB.
Figure 4 shows the average number of sharers per-region for

various SPLASH-2 and PARSEC benchmarks. For 64 B re-
gions, the average number of sharers was found to be about
2.4. As region size increases, the average number of sharers in-
creases slightly. This is a result of false sharing due to coarser
regions. We observe that even for 1 KB regions, the average
number of sharers is about 4.0. For 16-processor systems, this
means that only one-fourth of the cores share cache blocks be-
longing to 1 KB regions. Maintaining per-region sharing infor-
mation would result in sending of snoop requests to a slightly
higher number of cores, but it would result in substantial area
savings, as we will show later in Section 4.1. Like previous
works that used regions, we also choose 1 KB regions, for all
evaluations in this paper, as a good trade-off between area
savings and redundant sharing information.

3. IN-NETWORKCOHERENCEFILTERING
We keep INCFs at every router and maintain sharing in-

formation for each output port. Specifically, they maintain
information about regions that are not shared by any of the
cores that can be reached through an output port. This allows
routers to locally determine which output ports are redun-
dantly being snooped by a broadcast coherence request. The
routers filter away the redundant requests, i.e., they do not
forward these requests onwards, thereby saving interconnect
bandwidth and power. At a high level, whenever a core issues
a memory broadcast request, as the request traverses the net-
work, along the way, it informs all routers about its intention
to share the cache-line. This triggers the INCFs to clear the
entry corresponding to the request’s region, if present. This is
because an INCF entry, that is set, indicates that the region is
not shared by a particular output port and this update request
clears the particular bit. Since the memory request is a broad-
cast, all cores snoop the request and the coherence controllers
present at remote cores take appropriate action. If the remote
core does not currently hold any block in the corresponding
region, it informs the local router to which it is attached. The
local router checks its INCF to see if a non-shared entry needs
to be added and takes appropriate action. It then propagates
the non-sharing information to neighboring routers. Thus,
over a period of time, non-sharing information spreads across
the whole network and the network becomes rich with filter-
ing information. Subsequent broadcast requests to blocks in
non-shared regions will then be trimmed into unicasts, with
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(a) Core 0 sends request Read A

������

� 	 
 � ���


�������

������

� 	 
 � ���


�������

������

� 	 
 � ���


�������

������

� 	 
 � ���


�������

������

� 	 
 � ���


�������

������

� 	 
 � ���


�������

������

� 	 
 � ���


�������

������

� 	 
 � ���


�������

������

� 	 
 � ���


�������

��

� �

� �

� �

�

�

�� � � �

� �

� �� ��

�

	


�

���

	�������

��

��
����

��
����

�����������	
	����
��������������	
	�����������������
������

(b) Remote nodes reply that Region A is not shared
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(c) Routers propagate information up North that the South port

is not shared
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(d) Routers propagate information down South that the North

port is not shared
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(e) Routers propagate information West that the East port is not

shared
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(f) Core 5’s broadcast request filtered into a unicast to Core 0

Figure 5: In-network coherence filtering: Walkthrough example

each router locally filtering off redundant messages.
What allows INCFs to be effective is that only one bit of

information per-port guarantees that no core reachable via
that output port is caching the region. Moreover, the INCFs
need not maintain information about all regions seen so far.
We design the filters to act like a cache where older entries
get evicted if there is insufficient space in the filters. Limited
storage in the filters leads to some redundant requests being
missed by them, but enables a practical design that is feasible
within on-chip area and power constraints.

3.1 Walk-through example
We will next walk through our filtering technique in detail.

For simplicity, we will not be tackling the ordering require-
ments of various snoopy coherence protocols in this example.
We discuss them later in Section 3.2. Figure 5 shows the
steps involved in the filtering process. We assume dimension-
ordered X–Y routing for the example. In this routing protocol,
all requests first traverse the East/West hops towards the des-
tination core and then the North/South hops. An entry 1
in the INCF table indicates the corresponding port does not
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share the region while an entry X indicates that the particu-
lar port does not exist for the router. The entry being clear
indicates that the output port is a sharer for the region. The
various steps shown in the figure are as follows:

(a) Core 0 broadcasts a request, Read A, to all cores in the
system to be snooped.

(b) Assuming none of the remote cores hold any cache line
belonging to the region that address A belongs to, say
Region A, all of them notify their local routers about
their non-sharing status. The INCF tables at the local
routers add an entry corresponding to Region A and
set the bit at the port that leads to the local network
interface (NIC), indicating that the core does not share
Region A.

(c) Next, routers 6–8 notify the neighboring routers along
their North direction that no core towards the South
is sharing Region A. Routers 3–5 then set the bit cor-
responding to the South port for Region A indicating
that there is no sharer for Region A towards the South.
Hence, at Routers 3–5, the NIC and South bits are now
set. Since the routing is X-Y, this indicates that no re-
quest coming from the North to these routers will find
any shared core for Region A. Thus, they notify the
neighboring routers towards North of this fact.

(d) Similar to the above step, Routers 1 and 2 forward the
sharing information about the North port to routers 4
and 5. Routers 4 and 5 set the bits corresponding to the
North port at the INCF table entry for Region A and
forward the information southward to Routers 7 and 8.
Note that Router 0 has the NIC port as a sharer and thus
cannot signal the southern routers saying that nothing
is shared towards the North.

(e) Routers also exchange sharing information about the
East/West directions. For example, Router 5 finds that
it has no sharer towards the North, South or the NIC.
Thus, any message for Region A, coming from the West
direction, would be redundant. Router 5 thus informs
Router 4 about this. Router 4 sets the bit correspond-
ing to the East port for Region A, indicating that there
are no sharers towards the East for Region A.

(f) Now, Core 5 sends a request, Read A, to Router 5.
Router 5 checks the INCF tables and filters out the
North- and South-going requests and forwards the re-
quest only to the West direction. Router 4 similarly
filters out the North- and South-going requests and for-
wards the request to the West. Router 3 finds that only
the North direction needs to be snooped for Region A
and forwards the request accordingly. Router 0 finds
that only the NIC port is sharing Region A and thus
forwards the request to Core 0. Thus, filtering leads to
the request only going to shared cores and redundant
message traversals being filtered off.

The walkthrough example shows how our in-network filter-
ing technique is successful in reducing the bandwidth require-
ment of snoop requests to the minimum possible, i.e., just a
unicast from the source to the sharer. In more general cases,
INCFs filter out a significant fraction, not all, of redundant
coherence requests, as will be seen from our evaluations in
Section 5.

3.2 Ordering in various protocols
The coherence filtering technique described so far assumes

that all routers have up-to-date information about sharing of
regions. In CMPs with distributed on-chip networks, the infor-
mation about non-shared data maintained at the cores/routers
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Figure 6: Logical ring network embedded inside a
physical mesh topology.

is not updated immediately. Usage of stale information might
lead to filtering of wrong messages and the cache coherence
protocol not functioning correctly. In snoopy protocols, before
broadcasting a request into the network, the protocol state of
the cache line goes into an intermediate state and the core (say
Core A) needs to see all subsequent requests to the cache line.
In practice, remote requests that are ordered before the core’s
own request can be ignored. This is because the requesting
core does not start owning/sharing the cache line until it sees
its own request in a global order. What this implies is that all
remote requests that are ordered before Core A’s request can
be safely filtered out. We make use of this property to ensure
maintenance of up-to-date information in all our INCFs.
On a request miss to a new region, implying that the region

is about to be shared and the core was not caching any block
belonging to this region thus far, the core sends out a region
update message to its locally attached router, while stalling the
new request. The router updates its INCF to invalidate the
entry belonging to the region, if present. This region update
message is then sent in a snake-broadcast (like a unicast mes-
sage that travels in a ring to all nodes and finally to the source
node) fashion to all routers in the system. Figure 6 shows how
a logical ring network is embedded in a physical mesh network
and can be used by the region update request, thus requiring
no additional physical links. The region update messages tra-
verse the logical ring to visit all nodes in the system and finally
back to the requestor. The remote routers also invalidate their
INCF entries, while appending necessary ordering information
to the region update message. When the region update mes-
sage comes back, Core A releases the new request and uses
the ordering information to order the current request behind
every request that could have assumed that Core A is not a
sharer. This extra step in the coherence protocol adds a lit-
tle delay to coherence requests, but since a region switches
very infrequently between sharing and non-sharing status, the
overhead of this step is negligible. Our region update step can
also be used by source filters to work on distributed on-chip
networks. The ordering techniques that we propose next are
effective for both source filters as well as INCF. We will de-
scribe how ordering is done for various snoopy protocols next.

Token coherence and Intel QPI. Token Coherence (To-
kenB) [17] and Intel QPI [15] are two snoopy protocols that
are resilient to ordering races in the network, since they have
a fall-back mechanism in case of an ordering race. Thus, our
in-network filtering mechanism needs no ordering adjustment
for these protocols, thereby not requiring the region update
step. However, whenever a core starts sharing a region, the
network routers need to be informed in order to update their
INCF entries. This sharing update message from the source
travels similarly to the non-sharing update message that des-
tination cores send. The message first goes to the attached
local router, which updates its INCF table and then forwards
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Figure 7: INCF Table

structure.

Pseudo code: INCF non-share update

Figure 8: Pseudocode for

propagation of non-sharing

information.

Pseudo code: INCF share update

Figure 9: Pseudocode for

propagation of sharing in-

formation.
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and pipeline.

the request to neighboring routers. The same network that is
used by cores to inform others of the non-sharing status can
be used by this update message.

In-network snoop ordering (INSO). INSO [4] is a re-
cent snoopy coherence proposal that orders snoop requests
in the network. All the network routers contain pre-assigned
snoop-orders (SOs) that are tagged onto requests when they
arrive from the attached cores. These SOs are disjoint num-
bers, 0, 1, 2, etc., and the lower the SO, the earlier the ordering
of a request. INSO achieves global ordering of requests by en-
suring that cores process requests in SO order. As discussed
above, to guarantee coherence, the request to a new region
needs to be ordered behind all currently outstanding requests
belonging to the same region. To ensure this for INSO, the
new region request should be assigned an SO greater than the
SOs of requests currently in the network that belong to the
same region. More approximately, if the SO is greater than
all the requests in the system right now, it should suffice. To
establish this, the region update message is sent, which goes
to the entire system and collects the lowest SO present in the
routers currently. Certainly, all requests that are in-flight have
an SO less than the lowest SOs in the banks. While in flight, if
the request finds a higher SO, it replaces the SO it is carrying
with the higher SO. When the region update request comes
back to the requestor, it has the highest SO it has seen in the
network. The buffered request is now sent to the attached
router along with this tagged SO. The local attached router
ensures that it assigns an SO to the request that is greater
than this SO. The above steps makes sure protocol ordering
is never violated due to filtering.

Timestamp snooping. Timestamp Snooping [18] is an-
other snoopy coherence proposal that creates a logical ordering
of snoop requests on physically unordered networks by using
logical timestamps and reordering requests at the end points.
NICs assign an Ordering Time (OT) to every snoop request,
where OT is defined as the logical ordering time of the re-
quest. NICs also maintain a counter called Guaranteed Time
(GT), which is defined as the logical time that is guaranteed
to be less than the OTs of any request that may be received
later by an NIC. GTs are initialized to 0 at system start-up.
Timestamp Snooping provides a global order to requests by
assigning OT = GT + logical time to get from the source to
the furthest destination + slack, and ensuring that requests
are processed by all cores in the OT order. This is achieved
by ensuring NICs increment GT only after processing all re-

quests with OT ≤ GT. Our objective is to order the request
belonging to a new region behind all requests currently out-
standing in the system. To accomplish this, whenever a new
region request comes to the NIC, the NIC buffers the request
and sends out a region update message to the network to col-
lect the highest OT (GT + logical time to get from the source
to the furthest destination + slack) in the system. Every NIC
maintains this information and, hence, obtaining this informa-
tion does not require any additional area overhead. OTs of all
in-flight requests are guaranteed to be less than this number.
When the region update message returns to the requestor, it
gets the highest OT it has seen in the network. The NIC uses
this information to assign the buffered request an OT greater
than the highest OT seen in the system. These steps ensure
that the global ordering of Timestamp Snooping still works
with our filtering proposal.

Uncorq. Uncorq [24] is a snoopy coherence protocol in
which snoop requests are directly broadcasted to all cores, us-
ing the shortest network path, and the global ordering among
requests is done via a response message that traverses a logical
ring. The logical ring is embedded inside the physical network
topology. A request that reaches the supplier core, the core
that owns the cache line being requested, gets ordered ahead
of other competing requests to the same cache line. This is
ensured by the following two properties:

1. After the supplier node processes a winning request, it
does not forward the response of another request belong-
ing to the same cache line before forwarding the response
of the winning request.

2. If a node receives a positive response, the node can for-
ward a negative response only after it has received the
winning request and forwarded the winning response.

To order a new region request behind other in-flight re-
quests, we propose the following. We will call the new re-
questor R and the supplier core S. R has to ensure that all
active requests to the same region as the new request, whose
responses have already visited R in a logical ring order as well
whose responses have not, get ordered before the new region
request. To achieve this, R broadcasts a region update message
using the logical ring. Every node that sees this request does
not snoop but simply ensures that all responses belonging to
the same region as the region update are forwarded before it.
This might require nodes to wait for the requests belonging
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to pending responses. The routers attached to these nodes
update their INCF tables, thereby ensuring that no newer re-
quests would filter incorrectly. When the region update mes-
sage returns to R, it is guaranteed that snoop requests, whose
responses had traversed R before the new region request was
initiated, have been ordered ahead of the new region request.
It is also guaranteed that all snoop requests, whose responses
had not traversed R, have already done so or are pending at R.
R now frees up the new region request and converts it into a
request + response message that nodes would now snoop, and
gets forwarded in the logical ring. The nodes snoop the request
and embed their response in the same message. They again
ensure that all responses to the same region travel ahead of the
new region request. When this request + response reaches S,
it is now safe for S to order it behind current responses to the
same region that it has pending. Thus, every new region re-
quest requires two logical ring trips, one for the region update
and one for the actual request + response, to complete. How-
ever, this new region request would be rare and this additional
delay should impact performance negligibly.

4. IMPLEMENTATION
In this section, we discuss the implementation of various

structures involved in our design and present the router mi-
croarchitecture required for our in-network filtering solution.

4.1 Region structures
To filter out redundant coherence requests, our scheme relies

on the INCFs and a structure at the coherence controllers that
maintains local region-level sharing information. We describe
these structures next.

INCF tables. The central design block in our filtering
scheme is the INCF that sits at every on-chip network router.
As shown in Figure 7, the INCF is a simple table with entries
comprising a region tag (most significant portion of the ad-
dress) and O bits, where O is the number of output ports of
the router. Each of the O bits indicates whether the output
port shares the region or not. While a request is going through
route computation at a router, the INCF is looked up and if a
matching record exists, the router knows that forwarding the
request using the output port is redundant. The router avoids
such forwarding and filters out such redundant requests. The
INCF entries are evicted either as a result of limited space or
when a region gets shared. Small INCF tables are sufficient
for our purposes. We will show later (Section 5) that INCFs
with just 64 entries are sufficient to filter away most of the
redundant requests and table sizes larger than 64 lead to di-
minishing returns. Next, we calculate the actual overhead of
the INCF tables. For a 40-bit physical address space and 1 K
regions, the region tag is 30 bits long. For a conventional mesh
topology, each router has five ports and, hence, each INCF ta-
ble entry is 35 bits long. For 64-entry tables, the total storage
overhead is only 280 B per router. To estimate the latency and
power overhead of the INCF tables, we used the CACTI [25]
cache model. The technology node that we assumed is 65 nm.
The read access delay of a 4-way associative, 64-entry INCF
table (This is what we use in our evaluations) was reported
to be 0.049 ns. Thus, each table access can be done within a
clock cycle for up to 2 GHz clock. The dynamic energy spent
in accessing the INCF table was reported to be only 0.0025
nJ. Thus, we see that the latency and power overheads of the
INCF tables are small.

INCF updates. The INCF table entries are updated with
non-sharing information by the destination cores and are inval-
idated whenever a core starts sharing a region. In our current
design, the source and destination cores use separate phys-
ical links to update routers about region sharing and non-
sharing. As shown in the above example, each region can be
encoded using 30 bits. An additional bit is required to signal

whether the message is to indicate region sharing or to in-
form about non-sharing. Thus, the separate INCF update links
are about 4 bytes wide. After updating its INCF table, each
router’s filtering logic informs neighboring routers about the
sharing/non-sharing update, depending on the entries already
present in the INCF table corresponding to the region. Fig-
ure 8 shows pseudo-code of how INCFs propagate non-sharing
information to neighboring routers. The propagation of this
information is tightly coupled with the routing protocol as it
is the routing protocol that dictates which destination nodes
are reachable using a particular output port. The pseudo-
code assumes dimension-ordered X-Y routing. Figure 9 shows
pseudo-code of how INCFs propagate sharing information to
neighboring routers. This logic, like the logic to propagate
non-sharing information, is used for communication between
neighboring routers. These update requests are only about
4 bytes wide (region size + one bit indicating sharing) and
are not like a full broadcast request. The table update logic in
the routers decide whether these requests need to be forwarded
to adjacent routers and this depends on the current sharing
status of the ports, as indicated in the INCF tables. Our ex-
periments show that the power overhead of these updates is
only about 1%. Potentially, this router-to-router communica-
tion could be done using the data path links as well; idle cycles
could be stolen from the links, in which case the extra physical
links could be avoided. We will investigate this design in the
future. For adaptive routing, the logic again needs to keep a
record of whether no core reachable from an output port is a
sharer. It should be noted that the other message classes can
use adaptive routing, independent of the routing protocol in
the request message class.

Region tracker. Previous works that have leveraged coarse-
grain sharing information among cores have all used some kind
of structure that sits alongside the last-level private cache of
cores and tracks sharing at the coarse-grain level of regions. A
recent proposal, Region Tracker [29], replaces a conventional
tag array with region tracking structures, and achieves com-
parable performance to the fine-grained tag array with the
same area budget. Region Tracker provides the region-level
sharing information “for free.” In our design, we also use a
Region Tracker structure at the last-level private caches that
maintain a one-bit information that indicates whether there
is any block cached in that region, locally, or not. Since the
caches are managed at a region granularity, a region miss in
the last-level local cache implicitly indicates that a region up-
date is necessary. Note that this information is already part
of the Region Tracker structure and thus we do not add any
overhead to the original proposal.

4.2 Router microarchitecture and pipeline
Figure 10 shows the proposed router microarchitecture and

pipeline (newly added portions are highlighted in grey) that
incorporate our in-network filtering design. The additions that
we make to a state-of-the-art router design are the INCF table,
the INCF update logic and the logic to handle region update
requests. In a state-of-the-art on-chip router [9], the header
flit of a packet arrives at an input port and goes through the
Route Computation stage to determine the output direction.
The header then arbitrates for a output virtual channel in the
Virtual Channel (VC) Allocation stage and then proceeds to
the Switch Allocation stage where it arbitrates for the switch.
Upon successful switch allocation, the header moves onto the
Switch Traversal stage to traverse the crossbar. It then goes
through the Link Traversal stage to reach the next router.
Subsequent body and tail flits simply follow the route and VC
that is reserved by the header flit. For our design, the routing
pipeline remains the same apart from the Route Computation
stage in which the INCF table entries are checked in paral-
lel. In case a matching entry is found, redundant messages to
unshared output ports are not forwarded. In a conventional
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Table 1: Simulation parameters

Processors 16 in-order SPARC cores
L1 Caches Split I&D, 32 KB 4-way set associative, 2 cycle access time, 64-byte line
L2 Caches 1 MB per core, 10 cycle access time, 64-byte line
Memory 4 memory controllers, 275-cycle DRAM access + on-chip delay
On-chip Network 4×4 2D Mesh, 16-byte links, 4-cycle router pipeline,
Orion parameters Technology: 65 nm, Vdd: 1.0 V, Vthreshold: 0.285 V, Frequency: 1 GHz

router pipeline, only the header flit goes through the Route
Computation stage, while the body and tail flits simply infer
their routes by looking up the VC state table. For a packet
that is to be filtered, the head flit is already in the buffer and
is thus deleted once it is known that it should be filtered. The
VC state table is updated to indicate that the body and tail
flits corresponding to this packet have to be dropped. Thus,
when the body and tail flits arrive, they are simply dropped
without even writing to the buffer. Since the region update
network is a logical ring that steals cycles from the data net-
work links, the INCF logic in the routers is required to have
output queues for the links that are part of the logical ring. We
will show in Section 5 that the average load on the logical ring
network is very low and thus the output queues can be very
small. Deadlocks in the logical ring network are avoided using
two VCs and “dateline” routing [9]. At no loads, we assume
the region update requests spend one cycle at the routers.

4.3 Overhead of source filters
As we showed in Section 3.2, source-based filters can be

made to work on distributed on-chip networks using our region
update step. However, even after adding the region update
step, source filters would be successful in filtering only requests
that are not shared by any of the cores in the system. If source
filters wish to save redundant requests for data that is shared,
albeit by a few cores, they need to store a list of sharers for
every region that is shared. The storage overhead to keep
this information is proportional to the number of regions a
core is caching × the number of cores in the system. Even if
the source filters are designed to be conservative and have a
fixed-sized table to store sharing lists for only certain regions,
the list of sharers would still be proportional to the number
of cores. For example, for a 64-core system, the sharing list
for each table entry would require 64 × log(64) = 384 b =
48 B. If the table has 64 entries, similar to our INCFs, and
the region tags are 30 bits long, the total storage overhead
at each core would be 3312 B. This is an order of magnitude
higher as compared to the storage overhead required for our
INCFs: 280 B. Moreover, every time a core starts sharing a
region, it needs to collect information about all present sharers
in the system. This adds additional communication overhead.
Even directories require similar storage overheads as they have
to maintain a list of sharer cores. For our INCF proposal,
the storage required at every router remains constant even as
many-cores scale, assuming the degree of the routers remains
constant. Thus, we argue that on-chip routers offer the most
efficient location for storing sharing information.

5. EVALUATION
For all our evaluations, we perform full-system simulations

using Virtutech Simics [26]. The GEMS [19] tool set is used
to perform timing simulation. The Garnet [3] interconnect
model is used to capture the detailed aspects of the intercon-
nection network. The above simulation framework provides a
complete cycle-level memory system timing model. We used
Orion 2.0 [14] to estimate the power consumed by various com-
ponents of the network. Orion models the power consumed by
all the major components of the routers (buffer reads, writes,
allocators and crossbar) and the network links. We also model
the extra region links and the power consumed by these links.
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Figure 11: Total number of snoops with various INCF
filter sizes for Token Coherence.
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Figure 12: Total number of snoops with various INCF
filter sizes for INSO.

We use CACTI to estimate the power consumed by the INCF
table look-ups.

5.1 Target system and configuration
We simulated a 16-core tiled CMP architecture with the pa-

rameters shown in Table 1. Each tile consists of an in-order
SPARC core with a private L1 and a private L2. DRAM is
attached to the chip using four memory controllers that are
at the corners of the chip. We model a 4×4 2-D Mesh net-
work with 16-B links. The routing protocol used is dimension-
ordered X–Y routing. The on-chip routers are assumed to have
perfect hardware multicast support [11].
We evaluate SPLASH-2 [28] and PARSEC [6] parallel bench-

marks for all the configurations. Each run consists of 16
threads of the application running on the 16-core CMP. We
perform multiple runs with small random perturbations to
capture the variability in parallel workloads [5]. We average
the results of various runs.

5.2 Filtering techniques and coherence proto-
cols

We evaluated our in-network coherence filtering technique
against a design with source filtering. The source filtering de-
sign has tables, which have information about non-shared re-
gions, at each core, and requests for those regions are directly
sent to memory without broadcasting. We also did simulations
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Figure 13: Network traffic for Token Coherence.
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Figure 14: Network traffic for INSO.
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Figure 15: Network power for Token Coherence.

without any filtering techniques to model a baseline design. To
find out the appropriate INCF table size, we explored a design
with infinite table entries (Oracle) and two designs with 256
and 64 entries, respectively. When comparing the source filter
with INCF, both designs had 64-entry tables at each tile (the
table is at the router for INCF and at the core for source fil-
ter). All other parameters remain the same while comparing
different filter designs.
We evaluated two coherence protocols on the above config-

urations. We chose one protocol, Token Coherence (TokenB),
that does request ordering at the cache controllers and does
not rely on the ordering in the network. Our region update
step is not required for such a protocol. The other proto-
col, INSO, relies on the ordering of coherence requests in the
network and, hence, uses our region update step for correct
coherence ordering. The region update step was implemented
both for the source filter and INCF. The specific coherence
protocol parameters were kept constant across runs.

5.3 Evaluation results
We next present the evaluation results of INCF as compared

to source filtering as well as a design with no filters. First,
we analyze whether small INCF table sizes provide adequate
filtering.

INCF table size exploration. Figures 11 and 12 show
the normalized total snoop requests (smaller is better) in the
system with INCF table sizes being infinite (Oracle), 256 and
64 entries for Token Coherence and INSO, respectively. All
values are normalized to the total number of snoops without
any filtering implementation. We do not plot source filters in
this graph, since the aim of this exercise is to find out the
appropriate table size for INCF. The figures show that with
an INCF table size of 64 entries, our filtering solution is able
to reduce the total number of snoops by 50% and 47%, on an
average, for Token Coherence and INSO, respectively. It can
also be seen that even with an infinite INCF table size, the
total number of snoops can be reduced by 59% and 53.5%, on
an average, for Token Coherence and INSO, respectively. This
shows that INCF tables with 64 entries are reasonably close
to what an Oracle INCF implementation would achieve. For
the rest of the paper, we present results with INCF table size
of 64 entries. Note that in one of the benchmarks, Swaptions,

240



,

)*�

)*�

)*�

)*1

+

+*�

��

��


���

��


�	-� 	


��


���

��


�	-� 	


��


���

��


�	-� 	


��


���

��


�	-� 	


��


���

��


�	-� 	


��


���

��


�	-� 	


��


���

��


�	-� 	


��


���

��


�	-� 	


��


���

��


�	-� 	


��


���

��


�	-� 	


��


���

��


�	-� 	


��


���

��


�	-� 	


��


���

��


�	-� 	


��


���

��


�	-�

��� ������ 
� ��� �
� ����� ��������� �������� �
��!��"

�� ������
 ������
�� #��� �
���������� $#���$�

!�
��
���
��
�
�	

�
��
�
�	

+�

�	 -	�����	 �-���������	 �����������	 ���
 ����������
 ��-�������

���$�����+���� �	
� �$!�,-�+���� �	
�

+����	

Figure 16: Network power for INSO.
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Figure 17: Normalized runtime with and without fil-
tering for Token Coherence.

for both protocols INCF has total number of snoops close to
a design with no filters. This is because most of the snoop re-
quests that enter the network are not redundant. This can be
confirmed from Figure 1 that showed the total number of re-
dundant snoop requests in the system. Although INCF tables
with 64 entries are good enough for most of the benchmarks,
in one particular case on Token Coherence: x264, INCF with
64 entries reduces the snoops by 60%, whereas an Oracle im-
plementation would have reduced the total number of snoops
by 85%. This difference in effectiveness of a smaller table size
could be due to data access patterns of the benchmark having
low region temporal locality. In that case, INCF table entries
get frequently swapped out, necessitating a larger INCF ta-
ble for the benchmark. On an average, however, INCF tables
with 64 entries fare quite well.

Reduction in network activity. Figures 13 and 14 show
the relative interconnect traffic (smaller is better) for Token
Coherence and INSO, respectively, with no filtering, source
filtering and INCF. For Token Coherence, source filtering re-
duces the coherence traffic by 17.5%, on an average, thereby
reducing total network traffic by 9.9%, on an average. On the
other hand, INCF reduces the coherence traffic by 42.7%, on
an average, resulting in the total network traffic decreasing by
24.6%. For INSO, source filtering gets rid of 16.3% of coher-
ence traffic, on an average, bringing down the total network
traffic by 9.2%, on an average. In comparison, INCF reduces
coherence traffic by 41.1%, on an average, thus reducing total
network traffic by 26.2%. Thus, we see that INCF is successful
in reducing the total interconnect traffic by a significant frac-
tion. This saves network power and improves performance, as
we show next.

Reduction in network power. Figures 15 and 16 show
the relative total dynamic power consumption (smaller is bet-
ter) for Token Coherence and INSO, respectively, with no
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Figure 18: Normalized runtime with and without fil-
tering for INSO.
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Figure 19: Total number of snoops with various INCF
filter sizes for Token Coherence on a 64-core CMP.

filtering, source filtering and INCF. We also model the link
power consumed by the links used by INCF update messages
and the power consumed by region update messages. For To-
ken Coherence, source filtering reduces total power consump-
tion by 9%, on an average. The major power-consuming com-
ponents of the network are the buffers, crossbars and links.
By filtering redundant requests, source filtering reduces the
power consumption of all the three components by about 10%,
on an average. In comparison, INCF reduces the total power
consumption by 23.5%, on an average. It reduces the buffer,
crossbar and link power by 25.2%, 25.4% and 22.6%, on an
average. Both for source filtering and INCF, additional power
is consumed by links used to carry INCF update messages.
However, their contribution to total power is, on an average,
only about 1%. This is because the INCF update messages
are infrequent and only get initiated whenever a core enters
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Figure 20: Network traffic for Token Coherence on 64 cores.

or leaves a region. Additional power consumed by the INCF
table look-ups also turn out to be negligible. As highlighted
in Section 4.1, INCF table lookups consume minimal energy
and is thus not significant when compared to the router and
link energy consumption. For INSO, source filtering is suc-
cessful in reducing the total power consumption by 8.1%, on
an average. On the other hand, INCF reduces the total power
consumption by 23.1%, on an average. The major reduction
in power is due to the reduction in buffer, crossbar and link
power. Again, the additional power consumed by region links
is about 1%, on an average.

Improvement in performance. Figures 17 and 18 show
the total runtime (smaller is better) for Token Coherence and
INSO, respectively, with source filtering and INCF normal-
ized to no filtering. For Token Coherence, source filtering
reduces the total runtime by 1.7%, on an average. On the
other hand, INCF reduces the total runtime by 3.7%, on an
average. For INSO, source filtering reduces the total runtime
by 0.8%, on an average. In comparison, INCF reduces the
total runtime by 2.9%, on an average. The in-order nature
of the processing cores, coupled with decently sized private
caches, does not stress the on-chip network. This leads to the
network running mostly at low loads. Although, our filtering
technique reduces the network traffic by one fourth, this does
not translate into similar network performance improvements
on our configurations. That is why we see limited full-system
runtime improvements due to filtering. Importantly, our re-
gion update step does not significantly affect performance for
protocols like INSO where it introduces additional delay to
coherence requests to a new region. INCF leads to runtime
improvement even on INSO. Interestingly, with source filter-
ing for one of the benchmarks (Swaptions), the region update
step leads to additional delay that results in total runtime
with source filtering being more than without filtering by 5%.
INCF for the same benchmark on INSO has similar overall
runtime as no filtering. We are currently exploring evaluat-
ing our technique with out-of-order cores which would stress
the network more, in which case filtering would lead to better
overall performance improvement.

5.4 Scalability to higher core counts
To study the scalability of our filtering proposal, we per-

formed the above experiments for Token Coherence on 64-core
CMPs. All the parameters, as shown in Table 1, remain the
same except the following. We simulate 8 memory controllers,
which are attached to the edges of the chip. The on-chip net-
work topology we model is an 8×8 2-D Mesh. We next present
the results for table size exploration and network activity re-
duction.

INCF table size exploration. Figure 19 shows the nor-
malized total number of snoop requests (smaller is better) in
the system with INCF table sizes varied between infinite (Ora-

cle), 256 and 64 entries. All values are normalized to the total
number of snoops in the no-filtering design. With an INCF
table size of 64 entries, our filtering solution reduces the to-
tal number of snoops by 46.5%, on an average. With infinite
INCF tables, the total number of snoops reduces by 56%, on
an average. This shows that INCF tables with 64 entries are
still effective, as compared to an Oracle INCF implementa-
tion. This demonstrates that our INCF table sizes need not
be increased with an increasing number of cores, in order to
be an effective snoop filtering solution.

Reduction in network activity. Figure 20 shows the
relative interconnect traffic (smaller is better) for Token Co-
herence, with no filtering, source filtering and INCF. Source
filtering removes 10.6% of the coherence traffic, on an average,
thereby reducing total network traffic by 7.6%, on an average.
In comparison, INCF reduces the coherence traffic by 38.8%,
on an average, resulting in the total network traffic decreasing
by 27.3%. Thus, even with increasing core counts, our INCF
proposal is successful in reducing the total interconnect traffic
significantly, while source filtering is not able to provide sig-
nificant savings. As discussed earlier, source filtering can only
filter requests for non-shared data whereas INCF can filter
out redundant requests even for shared data. With increasing
core counts, there is a higher chance that some data would be
shared by more than one core, thus rendering source filtering
as an ineffective solution.

6. RELATEDWORK
In this section, we differentiate INCF from prior propos-

als along three axes: filtering proposals, coherence protocols
that leverage multicast, and in-network techniques that ad-
dress scalable cache coherence.

Snoop filtering. We have already discussed various snoop
filtering proposals and how INCF differs from them in Sec-
tion 2. The main point is that prior snoop filtering proposals
are not able to save interconnect bandwidth as well as snoop-
induced cache tag look-ups for shared and non-shared data
on distributed on-chip networks, while INCF is successful in
filtering both shared and non-shared data.

Multicast coherence proposals. Multicast snooping [7]
and destination set prediction [16] use prediction mechanisms
to determine which processors will likely need to see a coher-
ence request. In contrast, our work does not use any kind of
prediction and simply makes use of sharing information in the
network to filter out requests that are actually redundant.
Virtual tree coherence [12] is a multicast coherence protocol
that stores sharer information at virtual tree roots and all re-
quests go to the tree root to get ordered as well as to find the
sharer multicast set. In contrast, INCF works with all snoopy
coherence proposals and filters redundant requests while they
are en-route to non-shared cores. INCF does not introduce
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indirection to cache-to-cache requests.
In-network coherence. In-network cache coherence [10]

replaces conventional directories by embedding sharing infor-
mation inside network routers. These tables are checked to
locate data on-chip, similar to INCF. However, in-network
cache coherence tries to implement the entire cache coherence
substrate inside interconnect routers and runs into storage and
complexity issues. In contrast, INCF provides a filtering layer
to conventional snoopy coherence protocols, which are still
implemented at cache controllers, and thus can be lightweight
and simple. For instance, in-network cache coherence proposes
a virtual tree cache of 4K entries, each entry of 27 bits, a total
of about 13 KB per router, while our INCF filters take up
only 280 B per router. Previous work [22] that is related to
in-network cache coherence is different from INCF in a similar
manner.

7. CONCLUSION
We observed that a major fraction of coherence requests

in snoopy protocols are redundant and waste interconnect
bandwidth and power. Redundant snoops also waste snoop-
induced cache tag look-up power and increase contention at
the destination cache tag ports. First, we proposed a region
updating step that makes it possible for source filters to work
on distributed networks. Second, we proposed INCF, a set of
small and effective filters that sit at on-chip routers and can
detect a significant percentage of redundant snoops. These re-
dundant snoop requests are filtered to save interconnect band-
width and power. It works with all snoopy coherence protocols
and uses a region update step that ensures that the ordering of
the cache coherence protocol remains intact and is not affected
by our filtering proposal. It is fundamentally different from
previous snoop filters as well as coherence protocols based on
directories and multicasting. It is a filtering layer added on
top of the coherence protocol to dynamically detect sharing
patterns and use the information to filter redundant requests.
It tackles the interconnect bandwidth problem of snoopy co-
herence protocols and makes them a scalable option for future
many-core chips.
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