
MIT Open Access Articles

Partitioning Techniques for Fine-grained Indexing

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Wu, Eugene and Samuel Madden. "Partitioning Techniques for Fine-grained Indexing."
International Conference on Data Engineering, ICDE 2011, Hannover, April 11-16, 2011.

As Published: http://www.icde2011.org/node/94

Publisher: International Conference on Data Engineering

Persistent URL: http://hdl.handle.net/1721.1/63110

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike 3.0

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/63110
http://creativecommons.org/licenses/by-nc-sa/3.0/

Partitioning Techniques for Fine-grained Indexing
Eugene Wu, Samuel Madden

CSAIL, MIT
eugenewu@mit.edu, madden@csail.mit.edu

Abstract— Many data-intensive websites use databases that grow
much faster than the rate that users access the data. Such growing
datasets lead to ever-increasing space and performance overheads
for maintaining and accessing indexes. Furthermore, there is often
considerable skew with popular users and recent data accessed
much more frequently. These observations led us to design Shinobi,
a system which uses horizontal partitioning as a mechanism for
improving query performance to cluster the physical data, and in-
creasing insert performance by only indexing data that is frequently
accessed. We present database design algorithms that optimally
partition tables, drop indexes from partitions that are infrequently
queried, and maintain these partitions as workloads change. We
show a 60× performance improvement over traditionally indexed
tables using a real-world query workload derived from a traffic
monitoring application

I. INTRODUCTION

Indexes are the standard method for improving the per-
formance of selective queries and the past decade has seen
considerable research focused on selecting a near-optimal set
of indexes for a representative workload [1]. A careful balance
must be maintained between creating too many indexes, which
sacrifices disk space and insert performance, and creating too few
indexes, which results in poor query performance. Furthermore,
as the indexes grow alongside the datasets, the performance
and resource costs can be very high for a number of reasons.
First, updating the index for rapidly arriving data can be very
expensive; for example, we found that installing a single varchar
attribute index on a 3.4 GB table in Postgres or MySQL can
reduce insert performance by up to 40×. Second, the total
index size can easily rival that of the dataset – a snapshot of
Wikipedia’s revision table from 2008 uses indexes that total
27 GB for 33 GB of raw data that does not include article
text. In order to constrain the amount of index space, index
selection tools require a maximum space bound [1]. Third,
online reoptimization by creating and dropping indexes on large,
unpartitioned tables is prohibitively expensive.

Our key observation about many workloads is that despite
rapidly growing data sizes, the amount of accessed data increases
at a far slower pace. For example, Cartel [2] is a sensor-based
system we built for collecting data from cars as they drive around
Boston. The centroidlocations table stores GPS information of
participating cars every second and has grown to over 18 GB in
a few years. Yet the workload only accesses 5% of the table on
any given day, and more than 50% of the queries access data
from just the last day (Figure 1). Similar query skew exists for
Wikipedia’s revision table, which stores metadata information
of every article’s revision history. 99.9% of the requests access
the 10% of records that represent the most recent revision of an
article.

Fig. 1. CDF of number of queries that access historical time-ranges in Cartel’s
centroidlocations table. The workload is from Cartel’s Nov. 19, 2009 workload
trace.

If the queries always access a small subset of the table, then a
clear optimization is to split the table into the queried and non-
queried partitions, and selectively index the partitions that are
beneficial. Many applications already do this – warehouses may
partition the fact table into historical and recent transactions and
only index the latter. Unfortunately, the policies to define the
partitions and decide which partitions to index have so far been
adhoc, or have not taken the tradeoff of query performance and
index updates into account.

Additionally, data is not always clustered on the keys the
table is partitioned on. For example, a workload consisting of
spatial queries will benefit from partitioning centroidlocations
by the lat, lon attributes; however, the records are not likely
to be physically ordered by their lat, lon values, which leads
to excessive disk seeks when answering the queries [3]. Range
partitioning the data along the keys will group records with
similar values together and reduce the number of disk seeks.

In this paper, we describe Shinobi, a system that uses par-
titioning to provide fine-grained indexing and improves the
performance of skewed query workloads, while optimizing for
index update costs. Shinobi uses three key ideas: first, it par-
titions tables, such that regions of the table that are frequently
queried together are stored together, separate from regions that
are infrequently queried. Second, it selectively indexes these
regions, creating indexes on partitions that are queried frequently,
and omitting indexes for regions that are updated but queried
infrequently. Third, over time, it dynamically adjusts the par-
titions and indexes to account for changes in the workload.
Shinobi takes as input a set of indexes, a set of keys to partition
on, a query workload, and machine statistics such as RAM
and the table size, and uses a cost-based partitioner to find
the optimal range partitioning of the table and the best set of
indexes for each partition. As the workload evolves, Shinobi
minimizes the amount of repartitioning necessary to re-optimize
the system for the new workload characteristics. Shinobi is
intended for workloads with predicates on ordered attributes
(e.g., salary or time). In other workloads, it is sometimes possible
induce an ordering on the queried attributes to utilize Shinobi’s

optimizations [4].
Our contributions toward partitioning in a single-machine

database are as follows:
1) Enabling selective indexing with partitioning. Shinobi

chooses the optimal partitions to index, which dramatically
reduces the amount of data that is indexed. In our exper-
iments using a workload from Cartel, Shinobi can avoid
indexing over 90% of the table and reduce index update
costs by 30× as compared to a fully indexed table without
sacrificing performance.

2) Partitioning based clustering. Shinobi optimally partitions
tables for a given workload, which increases query per-
formance by physically co-locating similarly queried data.
Using the same Cartel workload, we improve query perfor-
mance by more than 90× as compared to an unpartitioned,
fully indexed, table.

3) Reducing index creation costs. Shinobi only indexes parti-
tions that are frequently accessed. By splitting the table into
smaller partitions, the cost of creating an index on a single
partition becomes cheaper, which lets the system make fine-
grained optimizations.

4) Novel workload lifetime estimation. Shinobi uses a novel
online algorithm that uses past queries to estimate the
number of queries the workload will continuously access
in a given data region.

II. RELATED WORK

There is a large body of related work in the areas of automated
index selection and partitioning, index optimization, adaptive
databases and partial indexes.
Database Designers. Modern database design tools use query
optimizer extensions to perform what if analysis [5] – at a high
level, the optimizer accepts hypothetical table configurations
and queries as input and outputs the optimizer estimates. The
optimizer’s wealth of statistics and its highly tuned cost model
are powerful tools for estimating the cost of a potential workload.
Shinobi uses a cost model that does not attempt to replicate
decades of optimizer research [6], [7], but rather identifies a
small set of parameters for evaluating various table configura-
tions on a mixed query and insert workload.

Index selection tools explore the space of potential indexes
and materialized views. Both offline [1], [8], [9] and online [10],
[11], [12] tools find an optimal set of indexes within user
specified constraints (e.g., maximum index size). Rather than
replicate this work, Shinobi analyzes the output of such tools
(or hand-crafted physical designs), and runs index selection
and partitioning techniques to further optimize their designs by
identifying subsets of a table where installing an index will be
detrimental to performance.

Partitioning techniques such as [3], [13], [14], [15] partition
tables using workload statistics in order to improve query
performance. However, they do not explicitly consider index
update costs during cost estimation. In contrast, Shinobi accounts
for both query and insertion costs and uses partitioning as
a mechanism for dropping indexes on infrequently queried
portions of the data.

Optimized B-Trees. To optimize B-tree insert performance,
most work focuses on minimizing insert overheads by buffering
and writing updates in large chunks. Such work include insert
optimized B-trees [16], [17], [18], and Partitioned B-trees [19],
[20], for traditional disk based systems, and flash optimized B-
trees such as [21]. Shinobi is agnostic to any particular indexing
technique as it focuses on dropping indexes on partitions where
indexes are not beneficial. Regardless of the index that is being
used, we can still realize insert performance wins on insert
intensive workloads.
Adaptive Storage. Database Cracking [22], [23] and other
adaptive indexing techniques incrementally sort and index the
underlying table based on the query workload. Database cracking
creates a copy of the keyed column and incrementally sorts
the column using the results of workload queries. It is in-
tended for in-memory databases and has been shown to perform
comparably to a clustered index without the need to provide
a set of indexes up front. [24] describe similar strategies for
databases using B-trees and block-oriented (e.g., disk) storage.
Fundamentally, these approaches fully index the table or column
and would still benefit from dropping indexes from unqueried
data ranges.
Partial Indexes. Finally, partial indexes [25] are a method for
building an unclustered index on a predicate-defined subset of a
table. Seshadri and Swami [26] propose a heuristic-based method
that uses statistical information to build partial indexes given
a constraint on the total index size. Unfortunately, there are
several practical limitations to partial indexes. First, in all partial
index implementations we know of, the query optimizer only
uses a partial index when it can determine that queries access
a strict subset of the index; by physically partitioning a table
and creating conventional indexes on a subset of partitions, we
avoid this subset limitation. Second, partial indexes cannot be
clustered because multiple partial indexes can overlap; this limits
the applicability of partial indexes to all but the most selective
queries. In contrast, Shinobi can cluster indexes just like in a
conventional system. When we used Postgres’ partial indexes for
the experiments in Section VI-A, each query on average took
20 seconds to execute while index creation took nearly 2000
seconds. On the other hand, Shinobi can partition and index the
same data in 500 seconds and execute the same queries in 0.1-
0.8 seconds on average. Thus, one way to view our work is as
an efficient implementation of clustered, non-overlapping partial
indexes.

III. ARCHITECTURE

Shinobi partitions and indexes tables to efficiently process
workloads with a high insert-to-query ratio. The input to Shinobi
is a list of attributes each table is to be partitioned on, a set
of indexes to install on the table, and a set of queries and
inserts that apply to the table. Indexes may be provided by a
database administrator or database tuner (e.g., [27]). Shinobi
finds an optimal set of non-overlapping range partitions and
chooses indexes for each partition (together denoted as the table
configuration) to maximize workload performance.

Shinobi supports arbitrary queries over SQL partitions. Most
DBMSs support the ability to store a table in partitions and direct

2

Fig. 2. The Shinobi architecture

queries over a partitioned table to the appropriate partitions (in
our implementation we use the master/child partitioning feature
of Postgres [28]; MySQL includes similar features).

Shinobi acts as an intermediary between a database and the
workload. It consumes a workload and outputs rewritten queries
and inserts as well as SQL to repartition and re-index the
table. Shinobi can be used both to find an initial, optimal table
configuration for a static workload and to continuously optimize
the configuration under a dynamically changing workload.

Figure 2 illustrates the system architecture. The solid and
dashed arrows indicate the query/data and call paths, respec-
tively. The workload follows two paths. Path 1 samples incoming
SQL statements and updates workload statistics for the Cost
Model. The Optimizer uses the cost model to (re)optimize
the table configuration. Path 2 parses queries using the Query
Rewriter, which routes queries with predicates on the partition-
ing attribute to the relavent partitions. Queries without such
predicates are directed to all partitions.

The Workload Sampler reads recent SQL statements from
the query stream and computes workload characteristics such
as the insert to query ratio, and the query intensity of different
regions of the table. Similarly, the Machine Statistics component
estimates capabilities of the physical device as well as database
performance information. Physical statistics include RAM size
and disk performance while database statistics include append
costs, insert costs, and typical query costs (see Table IV-B for a
full parameter list.)

The Cost Model uses these statistics to calculate the expected
statement cost for a workload. The key idea is that the model
takes into account not only query cost but also the non-trivial
cost of updating indexes on inserts and updates. The Index
Selector and Dynamic Repartitioner components both use the
Cost Model to optimize the table configuration. The Index
Selector calculates the best set of indexes to install on each
partition of a table and the Dynamic Repartitioner re-optimizes
the table configuration as the workload varies and calls the Index
Selector to decide which indexes to build.

IV. COST MODEL

In this section, we introduce models for predicting the average
cost per query in a workload, the cost to repartition and reindex
a table, and the overall benefit of switching to a new table
configuration. These models are used in Section V to choose
the optimal index configuration and partitioning.

Our cost model estimates the cost of range scans over single
tables (though the system itself can handle any query). We

RAM 512MB Amount of memory
data size 3400MB size of the table
costseek 5ms disk seek cost
costread 18ms/MB disk read rate
costdbcopy 55ms/MB write rate within PostgreSQL
costcreateindex 52ms/MB bulk index creation rate
icostfixed 0.3ms record insert cost (no index updates)
icostoverhead .003ms/MB insert overhead per MB of indexes

(.019ms/MB) clustered (unclustered) data
lifetimeW variable Expected # queries in workload W

TABLE I
MODEL STATISTICS AND THE VALUES USED IN EXPERIMENTS

preprocess the queries fed into our optimizers to extract a set
of ranges that they access from each table. Key-foreign key
joins between a table T1 with primary key k and a table
T2 with foreign key fk referencing k are treated as a range
scan on k in T1 and a range scan on fk in T2 with value
restrictions on k or fk propagated from the other table (if any
such restrictions exist.) Joins without such value restrictions are
treated as complete scans of all partitions of the underlying
table (as such joins are likely to be executed via hash or sort-
merge joins which scan tables in their entirety.) Our current
preprocessor is somewhat limited and will discard complex
queries which it cannot analyze; we are currently able to handle
all of the queries issued against the CarTel database we use for
evaluation, but implementing a more sophisticated preprocessor
is an area for future work.

The goal of the cost model is to accurately order the query
and update performance of different table configurations, and not
to exactly estimate the expected cost of all types of queries. As
our experiments validate, the simplified cost model is enough to
achieve this goal and allow us to see large performance gains.

A. Variables

The values of the model constants were derived experimen-
tally and are shown in Table IV-B. Additionally, the following
is a list of common variables (and their values measured on a
3.4 GB database running Postgres 8.1) used throughout the rest
of this paper. To improve readability, we assume that W and
I are globally defined and available to all cost functions and
algorithms.

W = Wq ∪Wi : The workload W consists of a set of select
queries Wq and insert statements Wi over a single table.

Π = {p1, .., pN} : The partitioning Π is composed of N range
partitions over the table. Each partition is defined by a
set of boundaries, one for each of D dimensions pi =
{(sd,pi , ed,pi]|d ∈ {1, .., D}}.

I = {I1, .., Im} : The predetermined set of m indexes to install
on the table (from a database administrator, for instance).

Ψ = {ψi ⊆ I|0 ≤ i ≤ N} : The set of indexes to install on each
partition. ψi defines the set of indexes to install on partition
pi. Ψ and its corresponding partitioning Π always have the
same number of elements.

B. Query Cost Model

The query cost model estimates the average expected cost per
statement in W given Π and Ψ. To a first approximation, the

3

average statement cost is proportional to a combination of the
average select and insert cost.

cost(Π,Ψ) ∼ a ∗ costselect + b ∗ costinsert
We use the probabilities of a select and insert statement for a
and b, respectively,

cost(Π,Ψ) =
|Wq|
|W | × costselect(Π,Ψ) +

|Wi|
|W | × costinsert(Ψ)

We now consider how to evaluate costselect and costinsert.

C. Select Costs

The main components that determine select cost are the cost
of index and sequential scans over each partition. We make the
simplifying assumption that a query q uses the index in ψP that
can serve its most selective predicates, and the cost is propor-
tional to the amount of data being accessed. Additionally, we
consider the cases where the heap file is physically ordered on
the partitioning key (clustered), and when it is not (unclustered).

The model considers the select cost of each partition sepa-
rately, and calculates the weighted sum as the select cost across
the entire table:
costselect(Π,Ψ) =

X
p,ψp∈Π,Ψ

|Wq ∩ p|
|Wq|

× costpselect(Wq ∩ p, p, ψp)

Where Wq∩p is the set of queries that access p, and costpselect()
is:

costpselect(Wqp, p, ψp) =
X

q∈Wqp

(
iscan(|q∩p||p| , p) q uses ψp
seqscan(p) otherwise

|Wqp|

costpselect is the average cost per query in Wqp. seqscan is the
cost of a sequential scan, and modeled as the sum of the seek
cost plus the cost of reading the partition:

seqscan(p) = costseek + size(p)× costread

where size(p) is the size in MB of p.
iscan is the cost of scanning an index and depends on whether

the data is clustered. If it is, then the cost is modeled as a disk
seek plus a sequential scan of the query result:

iscan(s, p) = costseek + s× size(p)× costread data is clustered

However if the data is not clustered, the cost is dependent on
the query selectivity, s, and the size of the partition, p, w.r.t.
the size of RAM. It is modeled using a sigmoid function that
converges to the cost of a sequential scan [29]. We assume that
the database system is using bitmap scans that sort the page ids
before accessing the heap file [30]. In this case, for scans of just
a few records, each record will be on a different heap-file page;
as more records are accessed, the probability of several records
being on one page increases. Eventually, all pages are accessed
and the cost is identical to a sequential scan. The speed that the
function converges to its maximum is dependent on a parameter
k which depends on the size of the table and whether or not
it fits into memory. We experimentally measured k to be 150
when the partition fits into RAM, and 1950 when it does not:

iscan(s, p) = seqscan(p)× 1− e−k×s

1 + e−k×s
data not clustered

(a) size(table) < RAM (b) size(table) >= RAM

Fig. 3. Query cost w.r.t. query selectivity

(a) Real cost (b) Estimated cost

Fig. 4. Blanket query cost for varying table sizes (curves) and # partitions
(x-axis)

Figure 3 compares the actual and model estimated costs of
queries using an unclustered index on a machine with 512 MB
of memory for two different table sizes – one much smaller than
physical memory (155 MB) and one much larger (996 MB). The
selectivities vary from 0.001% to 100% and each query accesses
a random range. In Figure 3(a), the model under-estimates the
cost for very small queries and over-estimates the cost for queries
larger than .1% in Figure 3(b), however the overall shapes are
similar. We found the curves to be consistent for smaller and
larger table sizes, although the cost curves for when the tables
are very close to the size of memory lie somewhere in-between.

Queries that don’t contain a predicate on the partitioning key
(blanket queries) must execute the query on all of the partitions
and combine the results. A blanket query incurs costpselect on
every partition. Figure 4 compares the actual and estimated per-
formance of blanket queries on differently sized and partitioned
tables. The overhead of querying an individual partition grows
with the number of partitions (Figure 4(a)) due to additional
selects and queries required to access each partition. We believe
the cost decreases for 5 partitions because the partitions are small
enough that the cost curves shift towards the curve shown in
Figure 3(a). When the number of partitions increases further,
however, the overhead dominates the cost.

D. Insert Costs

The average cost of an insertion into a partitioned table is
dependent on the total size of all indexes, and the distribution of
inserts across the various partitions. For simplicity, we assume
that the distribution of inserts within a partition is uniform,
whereas there may be skew across partitions. Although this can
overestimate the insert cost for large partitions, the accuracy
improves as partitions are split. We first describe how to model

4

(a) Actual costs (b) Model estimates

Fig. 5. Insert cost w.r.t. fraction of data in smaller table (curves) and insert
skew (x-axis)

the cost of inserting into a single partition, followed by a model
for multiple partitions.

1) Single Partition: The insert cost of a single partition, πi,
is modeled as the sum of a fixed cost to append the record to
the table, icostfixed, and the overhead of updating the indexes
(e.g., splitting/merging pages, etc) installed on the partition. We
experimentally observed that this cost is linearly proportional to
the size of the index. The overhead is the product of the cost of
updating each MB of index, icostoverhead, and the total size of
all indexes on the partition in MB:

costinsert(ψi) = icostfixed + icostoverhead ×
X
u∈ψi

size(u)

where size(u) is the size in MB of index u. size(u) can be
easily calculated from the sizes of the partition keys and the
number of records in the partition.

It is widely known that B-tree insertions take time proportional
to logd(N), where d is the fan-out and N is the number of records
in the tree [31]. Our experiments showed that PostgreSQL
insertion costs increase linearly rather than logarithmically as the
total size of the indexes grows, which is surprising. We believe
the reason why update performance deteriorates given larger total
index sizes is that with larger tables, each insert causes more
dirty pages to enter the buffer pool, leading to more evictions
and subsequent page writes to disk. [32] and experiments on
Oracle observed similar behavior.

2) Two Partitions: For simplicity, we first describe the model
for varying insert distributions between two partitions, π0 and
π1, and their respective sets of indexes ψ0 and ψ1. Intuitively, the
insert cost will be maximized when the insertions are distributed
uniformly across the ranges of both partitions (analogous to a
single table of size=size({p0}) + size({p1})); conversely, the
cost will be minimized when all of the inserts are directed
to p0 or p1. As described above, the cost of an insertion is
directly proportional to the sizes of the installed indexes. The
insert cost can be modeled with respect to an effective total
index size (sizeet(ψ0, ψ1)) that varies in size based on the insert
distribution:

costinsert(ψ0, ψ1) = icostfixed + icostoverhead × sizeet(ψ0, ψi)

sizeet is modeled using a modified triangle function where
its value at the peak is the total size of ψ0 and ψ1 whereas the

minimums are equal to the size of either ψ0 or ψ1:

totalsize = size(ψ0) + size(ψ1)

sizeet(ψ0, ψ1) = totalsize−X
j=0,1

max

„
0,

„
size(ψj)− totalsize ∗ |Wi ∩ ψj |

|Wi|

««

where |Wi∩πj |
|Wi| is the percentage of the insert workload that

inserts into partition πj .

Figure 5 compares the actual and model estimated costs of
inserts with varying data and insert skew on a machine with 512
MB of memory. We used a single 600 MB table that is split into
two partitions; the size of the smaller partition varies between
0% to 50% of the original table (curves). The distribution of
inserts within each partition is uniform, however the percentage
of inserts into the small partition (x− axis) varies from 0% to
100%. For each partition configuration (curve), the insert cost
is most expensive when the distribution is uniform across the
dataset – when the smaller partition contains 25% of the data,
the insert cost is maximized when it serves 25% of the inserts.
Although there is a nonlinear component to the cost, our model
captures the overall trend very well.

3) N Partitions: The above model naturally extends to N par-
titions, Π, and the respective indexes, Ψ. sizeet(Ψ) is modeled
by a multidimensional triangle function:

totalsize =
X
ψk∈Ψ

size(ψk)

sizeet(Ψ) = totalsize−X
ψj∈Ψ

max

„
0,

„
size(ψj)− totalsize ∗ |Wi ∩ ψj |

|Wi|

««

E. Repartitioning Cost Model

The repartitioning cost model estimates the cost to switch from
one table configuration to another. It takes as input the existing
configuration Πold, Ψold and the new configuration Πnew, Ψnew,
and calculates the cost of creating the new partitions and
indexes. We measured the cost of dropping existing partitions
or indexes to be negligible. This repartitioning cost is used in
the partition optimizers to balance repartitioning costs against
improved workload performance. For clarity, we use • to denote
the arguments (Πold, Ψold, Πnew, Ψnew).

1) Partition Costs: The total partitioning cost, repartpart, is
the sum of the cost of creating the new partitions:
repartpart(•) =X
p∈Πnew

createp(p, {(pi, ψi) ∈ (Πold,Ψold)|pi ∩ p 6= ∅ ∧ pi 6= p})

createp(p,Λ∩) =X
p∩,ψ∩∈Λ∩

(costpselect(Wcreate,p∩, p∩, ψ∩) +
size(|p∩ ∩ p|)
costdbcopy

)

The second argument to createp is the set of existing partitions
and indexes that intersect the new partition p. If the new partition
already exists, there is no need to create it, and the argument
will be the empty set. createp is the cost of creating p; it is the
aggregate cost of querying each intersecting partition, p∩, for the
new partition’s data and writing the data into p (at costdbcopy

5

MB/sec). Wcreate,p∩ is the workload consisting of queries that
select data belonging in p.

2) Indexing Costs: The cost of installing indexes is directly
proportional to the size of the partition being indexed:

repartidx(•) =
X

(p,ψ)∈(Πnew,Ψnew)

createindex(p, ψ,Πold,Ψold)

createindex is the cost of creating the indexes ψ for p. It is
modeled as the product of p’s size, the cost to index one MB of
data and the number of indexes to create:

createindex(p, ψ,Πold,Ψold) = size(p)× costcreateidx×
|ψ \ {x ∈ ψj |pj = p ∧ (pj , ψj) ∈ (Πold,Ψold)}|

Note that if p already exists and has indexes installed, the cost
of recreating them is not included in the cost.

3) Total Cost: Given the previous partitioning and indexing
models, the total repartitioning cost is the sum of repartpart
and repartidx:

repart(•) = repartpart(•) + repartidx(•)

F. Workload Cost Model

The workload cost model calculates the expected benefit of
a new table configuration over an existing configuration across
the new workload’s lifetime.

benefitW (•) = (cost(Πold,Ψold)−cost(Πnew,Ψnew))∗ lifetimeW

lifetimeW is the expected lifetime, in number of queries, of
the new workload before the workload shifts to access a different
set of data. This value is useful for the Dynamic Repartitioner in
order to estimate the total benefit of a new table configuration
and balance it against the cost of repartitioning the table. As
the value increases, the partitioning cost is amortized across the
workload so that more expensive repartitioning can be justified.
This value can be calculated as the sum of the lifetimes of the
query only workload, lifetimeWq , and the insert only workload,
lifetimeWi

.

lifetimeW = lifetimeWq + lifetimeWi

In Section V-C, we present an online algorithm that learns the
expected lifetime of a query-only or insert-only workload and
test its effectiveness in Section VI-A.3.

G. Total Workload Benefit

The total benefit of a new configuration, benefittotal, includ-
ing repartitioning costs, is defined as:

benefittotal(•) = benefitW (•)− repart(•)

V. OPTIMIZERS

This section describes Shinobi’s three primary optimizers that
use the cost model to partition the table, select indexes for each
partition, and repartition the table when the workload changes,
and a strategy for estimating the value of lifetimeW . We begin
with by describing the Index Selector as it is needed by the
repartitioner.

A. Index Selector

The goal of Index Selector is to find the Ψ that minimizes
the expected cost workload W on a database with partitions Π.
Formally, the optimization goal is:

Ψopt = argmin
Ψ

(cost(Π,Ψ))

Finding the naive solution to this optimization problem re-
quires an exhaustive search (O(2|Π|∗|I|)) because the indexes
do not independently affect the cost model (e.g., creating an
index on partition A affects the cost of inserting into partition
B because DB performance is proportional to the total amount
of indexed data). We instead consider a greedy approach that
adds a small number of indexes at a time, stopping once a
local maximum is reached. This algorithm, called Configuration
Enumeration in [9], picks k indexes from a set of candidate
indexes that will most improve a given workload.

1: Ψ← {{}|0 ≤ i ≤ |Π|}
2: allpairs ← {(Ij , ψj)|Ij ∈ I ∧ ψj ∈ Ψ}
3: costbest ← cost(Π,Ψ)
4: while true do
5: Ψbest,Vbest ← null, null
6: for V ∈ {v ⊆ allpairs|0 < |v| ≤ k} do
7: Ψ′ ← {ψ1, .., ψN}
8: for (Ij, ψj) ∈ V do
9: Ψ′ ← {ψ1, .., ψj ∪ {Ij}, ..}

10: end for
11: cost’ ← cost(Π,Ψ′)
12: if cost′ < costbest then
13: Ψbest,Vbest, costbest ← Ψ′,V, cost′

14: end if
15: end for
16: if Vbest = null then
17: return Ψ
18: end if
19: Ψ← Ψbest

20: allpairs ← allpairs \Vbest
21: end while

Algorithm 1: SelectIndex(Π,k)

SelectIndex (Algorithm 1) takes as input a partitioning Π and
a look-ahead value k and iteratively adds the most beneficial k
indexes until additional indexes do not improve the performance.
Ψ keeps track of the installed indexes; initially no indexes are
selected. allpairs contains all pairs of indexes and partitions
where the index can be installed on the partition, and costbest
keeps track of the best index configuration so far. In each
iteration (line 4), we pick up to the best k indexes to install.
To do this, we loop through all potential orderings of pairs up
to length k (line 6) and compute the expected cost, cost′, after
installing them (lines 8-11). We keep track of the best indexes
to install if cost′ is an improvement over the best configuration
so far (line 12,13). If none of the indexes improve the cost, the
algorithm exits (line 17), otherwise Ψ is updated with the best
indexes in this iteration (line 19) and the installed indexes are
removed from future consideration (line 20).

The look-ahead value, k, is a parameter that dictates how
thoroughly to explore the search space. For a given k, the
algorithm runs for up to (|Π||I|)/k iterations, and each iteration
examines all subsets of allpairs up to size k. Thus, SelectIndex
has a runtime of O(|Π||I|k ×

∑k
n=0

(|Π||I|
k

)
). When k = |Π||I|,

the algorithm is equivalent to an exhaustive search. In our exper-
iments k is set to 1 which reduces the runtime to O((|Π||I|)2).

6

B. Dynamic Repartitioner
The Dynamic Repartitioner merges, splits and reindexes the

partitions as the workload evolves and existing table configura-
tions become suboptimal. For instance, if the workload shifts to
a large, unindexed partition, the cost of sequentially scanning the
partition will be very high, while creating an index reduces insert
performance; the Dynamic Repartitioner will split the partition
so that the queried ranges are isolated. In order to avoid costly
repartitions that marginally improve workload performance, this
component uses benefittotal (section IV-F) to evaluate whether
a new configuration is worth the repartitioning cost.

We use an N-dimensional quad-tree (where N is the number of
partitioning attributes) that splits/merges partitions if the query
performance is expected to improve. Each leaf node represents
a single partition containing a sub-range of the data. The tree
implements the method getPartitions(), which returns the
partitioning represented by the leaf nodes.

Algorithm 2 takes as input the tree representation of the
current partitioning (root) and the current indexing (Ψ), and
outputs an optimized logical partitioning (no data is moved while
the algorithm runs) that the optimizer uses to physically partition
the data. Reoptimization begins with a merge phase followed by
a split phase; each phase takes root and Ψ as input and returns
the root of the modified tree. The order of the phases is not
important 1. The merge and split algorithms are nearly identical,
so we present them together and highlight the differences in
italics.

The goal of the merging [splitting] phase (Algorithm 2) is to
find the set of nodes to merge [split] that will maximize the ex-
pected benefit (as defined in IV-F) over the existing partitioning.
Π is used to estimate the benefit of candidate partitionings and
benefitbest tracks the benefit of the best partitioning so far (lines
1,2). In each iteration of the while loop, nodes is initialized
with the parents of the leaf nodes [all of the leaf nodes] (line
4). The algorithm searches for the node to merge [split] that
will maximize the benefit over benefitbest (lines 6-15). This
is done by temporarily merging [splitting] the node (line 7) in
order to calculate the benefit of the new partitioning (lines 8-
10), and then reverting to the previous tree (line 11). If a node
that increases benefitbest is not found, the algorithm returns the
root of the tree (line 17). Otherwise the node is merged [split]
and benefitbest is updated to the benefit of the new partitioning
(lines 19-20).

The runtime of the merge algorithm is limited by the number
of leaf nodes, and the fan-out. For L nodes and a fan-out of F,
the algorithm may run for L/F iterations in order to merge L/F
nodes, and call SelectIndex with lookahead=1 on L/F nodes
in each iteration, for a total runtime of O((L/F)2(L|I|)2). The
split algorithm can theoretically run until every partition contains
a single record, but can be bounded by setting a minimum
allowable partition size.

In our experience, splitting occurs far more frequently than
merging. The only reason to merge is if the overhead of extra
seeks becomes significant relative to the cost of accessing the

1If the nodes can have a variable number of children (e.g., a node can have
2, 3, or 4 children), then it is necessary to merge prior to splitting so that the
tree can transform into any configuration.

data. For example, if the workload switches to an OLAP work-
load consisting of large scans of the table, then the optimizer
will consider merging partitions.

1: Π← root.getPartitions()
2: benefitbest ← 0
3: while true do
4: nodes← {l.parent|l ∈ root.leaves()} [root.leaves()]
5: benefit, node ← 0, null
6: for n ∈ nodes do
7: n.merge() [n.split()]
8: Π′ ← root.getPartitions()
9: Ψ′ ← SelectIndex(Π′,1)

10: benefit′ = benefit(Π,Ψ,Π′,Ψ′)
11: n.split() [n.merge()]]
12: if benefit′ > benefit ∧ benefit′ > benefitbest then
13: benefit, node ← benefit′, n
14: end if
15: end for
16: if node = null then
17: return root
18: end if
19: node.merge() [node.split()]
20: benefitbest ← benefit
21: end while

Algorithm 2: MergePartitions/SplitPartitions(root, Ψ) [Differences
in italics]

C. Estimating Workload Lifetime

As we noted earlier, benefittotal is highly dependent on the
value of lifetimeW , defined as the number of SQL statements
for which the workload will continue to access (read or write)
approximately the same data range. This section describes an
algorithm that estimates the lifetime of a workload by sampling
the SQL statements.

The high level idea is to split the table into M equal sized
ranges and keep track of the lifetime of each individually. For
each range, we store a vector of lifetime values, where a lifetime
consists of a number of timesteps during which at least one query
accessed (read or write) the range. The most recent lifetime
increases until the range is not queried for several timesteps,
whereupon a fresh lifetime value is appended to the vector. The
lifetime of a given range is computed as a weighted moving
average of the individual lifetimes in the vector. The lifetime of
a partition is calculated as the average lifetime of the intersecting
ranges. We now describe the details below.

For ease of explanation, we focus on a single range ri. We
describe how to 1) update its lifetime vector vi = [lt1, .., ltN]
and 2) derive ri’s lifetime value. lt1 and ltN are the lifetimes of
the oldest and most recent lifetime in the vector, respectively.

The naive approach for updating vi is as follows: during each
time interval, if range ri is queried at least once, then ltN is
incremented by one. Otherwise a new lifetime (ltN+1) is added
to vi by appending 0. To avoid over-penalizing if ri is not queried
for many timesteps, we only append to vi if ltN is nonzero.
The drawback of this approach is that it keeps no history, so
it is completely dependent on current workload conditions. For
example, if ri is consistently accessed every other timestep, the
lifetime will be reset every other timestep and the range will
never have a chance to be partitioned.

In light of this, we use an additional count variable ci,
which maintains an estimate of the number of queries that have
accessed ri in the past. In each timestep, ci is first multiplied
by a decay factor, α ∈ [0, 1], which controls the number of

7

future timesteps a query is counted, and then incremented by
the number of queries that access ri in the current time interval.
During a given timestep, ltN is incremented by 1 if ci > τ ;
otherwise a new lifetime is added to vi as in the naive approach.

Finally, ri’s lifetime is calculated as the exponentially
weighted average of the values in vi, where β is the decay
factor. In our experiments, we derived α = 0.2, τ = 0.01, and
β = 0.2 by simulating a sample workload using the cost model
and running a greedy algorithm for each factor.

VI. EXPERIMENTS

In the following subsections, we describe experiments that
show the utility of Shinobi for partitioning and indexing tables
and the resulting space savings and performance gains.

Our current prototype is written in Python and issues SQL
commands to a backend database (this work used PostgreSQL
and MySQL). Each partition is implemented as a separate
table, and queries are rewritten to execute on the partitions.
A partition is created by executing a ‘‘create table as
select...’’ SQL query that reads the relevant data from
the existing partitions and adds the data to the new partition
table. The experiments use a dual 3.2 GHz Pentium IV with
512 MB of RAM and a 300GB 7200 RPM drive, running Redhat
Linux 2.6.16, PostgreSQL 8.1.10 and MySQL 5.0.27. Shinobi
uses SQL transactions to repartition tables, quiescing the system
until reorganization is complete.

Although Shinobi uses SQL transactions to repartition the
tables, we quiesce the system until repartitioning is complete so
that partitioning and workload costs can be clearly distinguished.

A. Multi-Dimensional Cartel Workload

In this section, we run Shinobi as an end-to-end system on a
two-dimensional dataset and several workloads. After describing
the experimental dataset and workload, we first show that
Shinobi can reduce the total cost of this workload by over an
order of magnitude. Then, we illustrate the utility of the adaptive
lifetime estimator, and finally explain how partitioning can be
used to avoid re-indexing costs on workloads that exhibit cyclic
properties. Due to space limitations, we do not include results
for one-dimensional experiments, however the results are very
similar. Note that Shinobi works well for, but is not limited to,
spatial datasets – any workload that queries tables via ordered
attributes can benefit from our techniques.

1) Dataset, Workload and Approaches: The dataset is the
centroidlocations table consisting of lat, lon, timestamp, and
several other identification attributes. The values of the lat and
lon fields are approximately uniformly distributed within the
ranges [35, 45] and [−80,−70] (the Boston area), respectively,
which we define as the dataset boundary. The table size is 3.4
GB, contains 30 million records, and is partitioned and indexed
(unclustered) on the lat, lon composite key.

In the following experiments, we use a realistic Cartel work-
load, Wcartel, and two synthetic workloads, Wlifetime and
Wcyclic. All workloads contain multiple timesteps; each timestep
contains a number of spatial range queries followed by a large
number of insertions uniformly distributed across the table. The
queries access 0.1% of the table in a square spatial bound.

The Cartel workload (Wcartel) contains 10 timesteps and
uses queries generated from the Cartel database’s daily trace
files between November 19, 2009 and December 5, 2009. To
generate the queries in a timestep, we pick a trace file, compute
the distribution of data that the file accesses, and sample 100
queries from the distribution. We then generate 360 inserts for
each query (36k/timestep), which is the ratio we found when
processing the trace files.

The first synthetic workload (Wlifetime) contains 10 timesteps
and showcases how Shinobi responds to skewed workloads that
shift the “hot spot” at varying intervals. Each timestep generates
queries from a gaussian distribution (σ=5× query size) centered
around a random lat,lon coordinate. On average, each workload
uniquely accesses about 8% of the table. Wlifetime has the same
number of queries in each timestep, however the number of
queries vary between 1 and 1000, depending on the experiment –
more queries in each timestep means the workload accesses the
same data for a longer time and thus simulates a less dynamic
workload than one that accesses different data very often. The
ratio of inserts to queries is fixed at 100 inserts per query.

The second sythetic workload (Wcyclic) contains 8 timesteps,
where each timestep is generated in the same way as in
Wlifetime. The center point of the gaussian repeats after every
3 timesteps – the repetition helps illustrate the cumulative cost
of creating new indexes each time the workload moves. Figure
9 visualizes two of the distributions.

We compare approaches that differ along two dimensions:
index selection technique and partitioning type. Full Indexing
(FI) indexes all of the data in the table, and Selective Indexing
(SI) uses the algorithm described in Section V-A to only create
beneficial indexes. Static Partitioning (SPN) partitions the table
into N equally sized partitions, and Optimized Partitioning (OP)
finds the optimal partitioning as described in Section V-B.

The approaches are a fully indexed table (FISI1); full and se-
lective indexing on a table statically partitioned into N partitions
(FISPN , SISPN); and selective indexing on a dynamically
partitioned table (SIOP or Shinobi).

2) Cartel Results: In this experiment we run Shinobi on
a realistic workload (Wcartel) to validate the accuracy of the
cost model. We find that Shinobi performs as well as the best
statically partitioned configuration and avoids the high initial
cost of fully partitioning and indexing the table. The goal is to
maximize total system performance, so the optimizers also take
(re)partitioning costs into account.

Figure 6(b) shows the workload only performance over the
10 timesteps. Although not graphed, FISP1 took on average
1100 sec per timestep. The FISP9,49 curves illustrate the
effectiveness of statically partitioning the table into 9 and 49
partitions, respectively. Increasing the number of partitions from
1 to 9 and 49 reduces the select query costs by over 3× and 4×,
respectively. Selective indexing only creates indexes on heavily
queried partitions, and reduces insert costs for SISP9,49 by 7×
and 21×, respectively. In fact, for timesteps 5-7, SISP49 didn’t
create any indexes. Shinobi performs as well as SISP49; the
higher initial cost is because the estimated lifetimeW is still
small, so that Shinobi uses a non-optimal but much cheaper
partitioning. As lifetimeW increases, Shinobi further partitions

8

(a) Est. workload cost per timestep (b) Actual workload cost per timestep

(c) Est. cumulative workload cost (d) Actual cumulative workload cost

Fig. 6. Shinobi performance on Cartel 2D workload

the table so that Shinobi performs very close to SISP49 by
timestep 2 and slightly out-performs SISP49 by timestep 3.
Overall, Shinobi out-performs FISP1 by over 60×.

Figure 6(d) plots the cumulative cost of partitioning the table
and running the workloads. For reference, FISP1 took 11,000s
to run the experiment. The values in timestep 1 are dominated
by the initial partitioning and indexing costs. Splitting the table
into 9 and 49 partitions costs 660 and 2500s, respectively,
while indexing all of the data costs 240s. Although selective
indexing (SISP9,49) can avoid indexing a large fraction of
the partitions and reduce indexing costs by almost 200s, these
initial partitioning costs are still substantial. The reason for such
high costs is because each partition is created by a query that
accesses the partition’s contents via an index scan of the full
table. In contrast, Shinobi chooses a cheap partitioning because
the estimated lifetimeW is still low, and creates new partitions
by accessing existing partitions.

The slopes of the curves represent the workload performance
and any repartitioning or indexing costs. FISP9 and SISP9

have a low initial cost, but quickly outpace FISP49 and
SISP49, respectively, due to higher query costs when accessing
larger partitions. However, it is interesting to note that SISP9

out-performs the more optimally partitioned FISP49 simply
by reducing index update costs. Shinobi converges to the same
slope as SISP49 and initially partitions the table in 2.5× less
time. The slope between timesteps 1 and 5 are slightly higher
because of additional repartitioning costs that are justified by
an increasing lifetimeW value. Shinobi’s total repartitioning
costs are lower than that of FISP49 and SISP49 because the
cost of splitting a partition becomes significantly cheaper as the
partitions become smaller, and because only the queried data
regions, rather than the full table is partitioned. Most importantly,
Shinobi processes the entire workload before FISP9,49 and
SISP49 finish processing the first timestep and out-performs
FISP1 by 10×.

Figures 6(a) and 6(c) validate the accuracy of the cost model.
Although Shinobi scales the expected costs up, we preserve the
relative differences between the different strategies. For example,
we correctly predict the cross-over point between Shinobi and
SISP49 in Figure 6(a).

To verify that the performance trends observed are not specific
to PostgreSQL, we ran an identical experiment using a MySQL-
MyISAM backend and found similar trends, with 49 partitions
performing better than 1 or 9 partitions, and with selective
indexing significantly reducing insertion costs.

Fig. 7. Shinobi’s 2D partitions and
indexes after timestep 5. Dotted
boxes are partitions, solid edged
boxes are indexed partitions, filled
boxes are queries (more queries
results in darker fill).

Figure 7 shows the resulting
table configuration after timestep
5 on Wcartel; Shinobi focuses
partition costs on regions that
are heavily queried. The filled
boxes are queried regions – more
queries result in a darker fill; the
dotted boxes are partitions and
the solid blue edged boxes (e.g.,
in the lower right quadrant) are
indexed partitions.

3) Lifetime Estimation: In this
set of experiments, we analyze
Shinobi’s adaptivity to workloads
(Wlifetime) that access different
regions with varying rates of dynamism and show the importance
of accurately predicting the value of lifetimeW . We show
that Shinobi running with the adaptive lifetimeW estimator
performs comparably to a “lookahead” that knows the number
of queries in a timestep prior to executing it (Shinobi must
adaptively estimate it). The lookahead is configured with static
lifetimeW values ranging from 100 to 100k queries.

In each timestep, the lookahead approaches load the new
workload, run the repartitioning algorithm using the given
lifetimeW value, and execute the workload to completion.
On the other hand, the adaptive approach estimates the new
lifetimeW in an online fashion.

Figure 8 shows the workload plus repartitioning costs at
each timestep when the workload lifetime is 100, 1k, 10k and
100k SQL statements. We find that for most cases, a naive
lookahead algorithm that sets lifetimeW to the actual length of
the workload results in the best performing curve. However, this
does not always occur, as in Figure 8(c), where the 100k curve
outperforms the 10k curve. The reason is that the naive approach
disregards the fact that two consecutive workloads may overlap,
and therefore underestimates lifetimeW for shorter workloads.
In general if the workload is long running, it is better to over-
estimate lifetimeW and over-partition the table, rather than to
run every query sub-optimally. Shinobi always splits the table
into 4 partitions in the first timestep because it reduces the select
costs from 60 to 20 seconds.

The adaptive lifetimeW estimator (Adaptive) performs com-
petitively in all of the experiments. In Figure 8(a), its curve is
nearly identical to the 10k curve and in the other experiments,
it converges to the optimal curve. The cost of the adaptive
algorithm is the start-up time; it needs to wait for enough
samples before the lifetimeW matches the actual workload

9

(a) Actual Lifetime = 100 (b) Actual Lifetime = 1k (c) Actual Lifetime = 10k (d) Actual Lifetime = 100k

Fig. 8. Shinobi performance with static and adaptive lifetimeW values (curves) for different actual lifetimes (plots)

(a) Timesteps 1, 4, and 7 (b) Timesteps 2, 5, and 8

Fig. 9. Visualization of Wcyclic.

(a) Index costs (b) Index and partitioning costs

Fig. 10. Repartitioning overheads of different partition schemes on Wcyclic

lifetime and the optimizer decides to re-optimize the table layout.
During this period, the query performance can be suboptimal
and Shinobi may repartition the same set of data several times.
This is clear in Figure 8(b), where Adaptive closely resembles
the 100 curve in the first 4 timesteps. In timesteps 5 and 8,
the lifetimeW value in the queried region is large enough
that Shinobi decides to repartition the table, thus reducing the
workload cost in subsequent timesteps.

4) Reindexing Costs: Although selective indexing alone can
improve insert performance and drastically reduce the amount
of data that must be indexed, it still incurs a high re-indexing
overhead for workloads that cycle between multiple hot spots
because it creates indexes for the current workload only to drop
the indexes soon after the workload moves. For example, Figure
9 depicts the workload in two of the timesteps. Timestep 1
(Figure 9(a)) indexes two of the nine partitions. These indexes
are dropped when the workload shifts away in timestep 2 (Figure
9(b)), only to be recreated in timestep 4.

Partitioning is an effective way of alleviating re-indexing over-
heads. First, smaller partitions allow the dataset to be indexed
at a finer granularity, while also reducing the cost of indexing a
particular partition. Second, sequential scan performance may be

fast enough that indexes are not needed for marginally accessed
partitions. This trend is clear in Figure 10(a), which plots
the cumulative indexing costs over the 8 timesteps in Wcyclic.
Increasing the number of partitions decreases the slope, because
fewer indexes are created. Shinobi does not incur any indexing
overhead because it creates small enough partitions that scanning
the partitions is fast. As a comparison, Figure 10(b) plots the sum
of partitioning and indexing costs. The SISP approaches must
trade off between indexing costs and partitioning the entire table
before running the workload. Shinobi partitions the table during
the first three timesteps, then incurs no overhead for the rest of
the experiment.

Finally, we note that even with the recurring indexing costs,
selective indexing still out-performs fully indexing or not index-
ing the entire table.

B. Partitioning Experiments
This section compares different partitioning policies to under-

stand the query benefits of partitioning (without selective index-
ing) on an unclustered dataset. We use the same dataset as above
but values of the timestamp column are uniformly distributed
throughout the table. The table is indexed and partitioned on the
timestamp attribute. This set of experiments only considers a
non-indexed or fully indexed table. The workload contains 1000
select queries that each accesses a random 0.1% range of the
table via a predicate on the timestamp colmun, and no insertions.
Figure 11 shows the results.

The first experiment partitions the table into an increasing
number of equal sized partitions and then executes the workload
to completion. The cost per query decreases inversely with the
number of partitions (Figure 11(a)). Postgres executes each index
scan via a bitmap scan which sorts the ids of the pages containing
relevant records, and reads the pages in order. Since the records
are not clustered, the index must still read a large number of
pages to retrieve them (bounded by the partition size). Beyond
5 partitions, the cost of scanning the partition converges to the
cost of accessing the data using an index. Increasing the query
selectivity shifts the convergence point to the right.

As expected, the cost of partitioning increases linearly with
the number of partitions. Interestingly, the total indexing cost
slightly decreases (Figure 11(b)). This is because an index grows
as Nlog(N) where N is the size of the table. Additionally, there
is improved cache locality as more of the partition and the index
nodes can fit into memory.

Figure 11(c) plots the sum cost of partitioning, indexing, and
running the workload. As in Figure 11(a), indexing is most

10

(a) Query performance (b) Partitioning costs (c) Sum of all costs (d) Shinobi’s online optimizer

Fig. 11. Query impact and overhead costs as the number of partitions varies.

beneficial when there are less than 5 partitions, above which
the cost of creating the indexes outweighs its query benefit. The
optimal number of partitions (25 for this workload) shifts to
the left (right) for shorter (longer) workloads. Section VI-A.3
analyzes Shinobi’s online algorithm for estimating a workload’s
lifetime. The Static curve is the result of Shinobi reading the
entire workload a priori and finding the optimal quad-tree based
partitioning (32 partitions). For comparison, the Dynamic curve
is the total cost when optimizing the table layout using Shinobi’s
online algorithms.

Figure 11(d) depicts the total costs of the dynamic reparti-
tioner (Section V-B, uses a stacked graph to plot the query,
(query + partitioning) and (query + partitioning + indexing) costs
after processing the N th workload query. The optimizer is run
every 10 queries and Shinobi only repartitions the table if the
expected future query benefit outweighs the partitioning cost.
The Static curve is included as reference. At the beginning of
the workload, Shinobi is penalized with expensive queries before
aggressively partitioning the table in nearly every round until the
200th query. At the end, the online algorithm is within 1.5× of
the static optimizer.

Finally, we describe how Shinobi responds to increasing query
sizes and blanket queries, however limit ourselves to a high
level description due to space constraints. In general, Shinobi
tends to favor splitting over merging – merging partitions is
an expensive operation and only reduces the seek overhead of
accessing multiple partitions. This overhead is small compared
to the size of large or blanket queries, thus only very small
partitions will be merged. Shinobi may even split partitions if
the queries partially overlap with them in order to minimize the
sizes of queried partitions. Blanket queries are treated in a similar
fashion, and the partitioning is optimized for the non-blanket
queries. In fact, Figure 4 illustrates that a small number of
partitions can even improve the performance of blanket queries.

C. Selective Indexing Experiments

In this section, we use a clustered version of the CarTel
dataset, and show how the workload performance and the
size of the indexes change as a function of varying workload
characteristics. Although a clustered dataset is highly optimized
for query performance (in fact, partitioning does not improve
query performance at all), we show that Shinobi’s selective index
can still significantly improve performance by reducing insert
overheads.

Because insert performance is directly related to the size of
the indexes, we report the percentage of the table that is indexed
(%indexed) and the expected cost per SELECT statement

(Select). The workload consists of 100 queries generated from
an exponentially decaying distribution over the timestamp values
and a varying number of inserts uniformly distributed throughout
the table. By generating synthetic queries, we are able to control
a range of system parameters, including a) Query Size, the
percentage of the table each query accesses (Default: 1%), b)
Insert to Query Ratio (IQR), the number of insert statements for
every select statement (Default: 100), c) # Partitions, the number
of equally sized partitions the table is split into (Default: 20),
and d) Partitions Accessed (PA), the number of partitions that
the workload accesses (Default: 9). Figure 12 shows how the
Select and %indexed curves vary with respect to the above
characteristics. The left Y-axis displays the percentage of the
table indexed, from 0% to 100%. The right Y-axis shows the
values of the Select curve, in seconds.

Figure 12(a) varies the query size from 0.01% to 100% of
the table, plotted on a logarithmic scale. Shinobi indexes all of
the queried partitions when the queries are smaller than 5% (the
size of a partition). When the query size exceeds 5%, Shinobi
chooses not to index fully read partitions. Above 75%, the cost of
maintaining indexes exceeds their query benefit and all indexes
are dropped. The “cliff” in the curve shifts to the left as inserts
become more expensive (e.g., data is unclustered). As expected,
Select cost increases as more data is accessed.

Figure 12(b) varies the IQR from 1 to 100k, also plotted on
a log scale. The %indexed curve starts at 45%, where all of
the queried partitions are indexed, and starts decreasing past
IQR=2000 because the indexes on sparsely queried partitions are
dropped. Shinobi continues to drop indexes until IQR = 100K,
at which point none of the partitions are indexed. Naturally,
the Select curve increases as more queries are executed with
sequential scans of the partitions. However this is justified when
insert costs become the dominant factor.

Figure 12(c) show that partitioning is a good mechanism
for fine grained indexing without impacting query performance.
We show two pairs of curves for IQR=100 (no markers) and
IQR=1k (with markers). When the IQR is low, Shinobi indexes
all accessed partitions so that the Select curve stays flat (the
curve is near the x-axis), however this limits the number of
partitions that do not need indexing. For a larger IQR, when the
workload is insert-dominated, the Select curve increases as Shi-
nobi aggressively drops indexes on sparsely queried partitions,
then gradually decreases as partition sizes decrease.

Figure 12(d) varies the number of partitions accessed by
spreading out the queries. As expected, the amount of indexed
data grows with the number of accessed partitions while the

11

(a) Vary query size (b) Vary insert-query ratio (c) Vary number of partitions (d) Vary number of accessed partitions

Fig. 12. Percentage of table that is indexed and avg. statement cost as various workload characteristics change

Select cost stays constant. This shows that Shinobi is most
effective when the workload accesses a small subset of the data.

Reducing the size of the index also reduces insert overhead.
Eliminating a full index can reduce insert costs by 3-40×,
depending on whether or not the data is clustered. By dropping
indexes on large subsets of the table, Shinobi can drastically
reduce insert costs, even for clustered datasets.

D. Optimization Runtime Overhead

We also ran a number of experiments to measure the runtime
of the optimization algorithms themselves. We omit the details
due to space constraints, but we found that for all of the exper-
iments above, calling the repartitioner cost less than 1 second
(far less than the actual repartitioning time.) The dominant cost
is choosing the partitions, which grows quadratically with the
number of partitions and amount of table accessed, and in
pathological cases can grow to take several seconds when there
are hundreds of partitions. These costs are still likely much less
than the actual repartitioning times.

VII. CONCLUSIONS

This paper presented Shinobi, a system that horizontally
partitions and indexes databases for skewed query workloads
containing queries that access specific regions of the data (which
may vary over time) and possibly many inserts spread across
large portions of the table. Our key idea is to partition the
database into non-overlapping regions, and then selectively index
just the partitions that are accessed by queries. We presented
an index-aware cost model that is able to predict the total cost
of a mix of insert and range queries, as well as algorithms to
select and dynamically adjust partitions and indexes over time
and reorder records so that popular records are close together
on disk.

Our experiments show partitioning significantly reduces query
costs when the dataset is not clustered on the partition keys,
whereas selective indexing can dramatically reduce the index
size, and correspondingly the index costs, even for clustered
datasets. We show dramatic performance improvements on a
real-world two-dimensional query workload from a traffic anal-
ysis website, with average performance that is 60× better than
an unpartitioned, fully indexed database.

REFERENCES

[1] S. Agrawal, S. Chaudhuri, and V. Narasayya, “Automated selection of
materialized views and indexes for sql databases,” in VLDB, 2000.

[2] B. Hull, V. Bychkovsky, Y. Zhang, K. Chen, M. Goraczko, A. Miu, E. Shih,
H. Balakrishnan, and S. Madden, “CarTel: A Distributed Mobile Sensor
Computing System,” in SenSys, 2006.

[3] P. Cudre-Mauroux, E. Wu, and S. Madden, “Trajstore: An adaptive storage
system for very large trajectory data sets,” in ICDE, 2010.

[4] E. Wu, “Shinobi: Insert-aware partitioning and indexing techniques for
skewed database workloads,” Master’s thesis, MIT, 2010.

[5] S. Chaudhuri and V. Narasayya, “Autoadmin “what-if” index analysis
utility,” in SIGMOD, 1998.

[6] M. Jarke and J. Koch, “Query optimization in database systems,” in ACM
Computing Surveys, 1984.

[7] S. Chaudhuri, “An overview of query optimization in relational systems,”
in PODS, 1998.

[8] G. Valentin, M. Zuliani, and D. C. Zilio, “Db2 advisor: An optimizer smart
enough to recommend its own indexes,” in ICDE, 2000.

[9] S. Chaudhuri and V. Narasayya, “An efficient, cost-driven index selection
tool for microsoft sql server,” in VLDB, 1997.

[10] N. Bruno and S. Chaudhuri, “An online approach to physical design
tuning,” in ICDE, 2007.

[11] K. Schnaitter, S. Abiteboul, T. Milo, and N. Polyzotis, “On-line index
selection for shifting workloads,” in SMDB, 2007.

[12] K.-U. Sattler, M. Luhring, I. Geist, and E. Schallehn, “Autonomous
management of soft indexes,” in SMDB, 2007.

[13] S. Ceri, M. Negri, and G. Pelagatti, “Horizontal data partitioning in
database design,” in SIGMOD, 1982.

[14] S. Papadomanolakis and A. Ailamaki, “Autopart: Automating schema
design for large scientific databases using data partitioning,” in SSDBM,
2004.

[15] S. Agrawal, V. Narasayya, and B. Yang, “Integrating vertical and horizontal
partitioning into automated physical database design,” in SIGMOD, 2004.

[16] G. Graefe, “Write-optimized b-trees,” in VLDB, 2004.
[17] C. Jermaine, “A novel index supporting high volume data warehouse

insertions,” in VLDB, 1999.
[18] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil, “The log-structured

merge-tree (lsm-tree),” Acta Inf., vol. 33, no. 4, pp. 351–385, 1996.
[19] G. Graefe, “Partitioned b-trees - a user’s guide,” in BTW, 2003.
[20] ——, “Sorting and indexing with partitioned b-trees,” in CIDR, 2003.
[21] D. Agrawal, D. Ganesan, R. K. Sitaraman, Y. Diao, and S. Singh, “Lazy-

adaptive tree: An optimized index structure for flash devices,” PVLDB,
2009.

[22] M. L. Kersten and S. Manegold, “Cracking the database store,” in CIDR,
2005.

[23] S. Idreos, M. L. Kersten, and S. Manegold, “Self-organizing tuple recon-
struction in column-stores,” in SIGMOD, 2009.

[24] G. Graefe and K. Harumi, “Adaptive indexing for relational keys,” in
SMDB, 2010.

[25] M. Stonebraker, “The case for partial indexes,” in VLDB, 1987.
[26] P. Seshadri and A. Swami, “Generalized partial indexes,” in ICDE, 1995.
[27] S. Agrawal, S. Chaudhuri, L. Kollar, and V. Narasayya, “Index tuning

wizard for microsoft sql server 2000,” http://msdn2.microsoft.com/en-us/
library/Aa902645(SQL.80).aspx.

[28] “http://www.postgresql.org/docs/current/static/ddl-partitioning.html,” http:
//www.postgresql.org/docs/current/static/ddl-partitioning.html.

[29] H. Kimura, S. Madden, and S. B. Zdonik, “UPI: A Primary Index for
Uncertain Databases,” in VLDB, 2010.

[30] “Postgresql 8.1.20 documentation,” http://www.postgresql.org/docs/8.1/
static/release-8-1.html.

[31] D. Comer, “Ubiquitous B-Tree,” in ACM Computing Surveys, vol. 11,
no. 2, 1979.

[32] H. Kimura, G. Huo, A. Rasin, S. Madden, and S. Zdonik, “CORADD:
Correlation aware database designer for materialized views and indexes,”
in PVLDB, 2010.

12

