
MIT Open Access Articles

General Strategy for Querying Web
Sources in a Data Federation Environment

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Firat, Aykut, Lynn Wu, and Stuart Madnick. “General Strategy for Querying Web Sources
in a Data Federation Environment.” Journal of Database Management 20 (2009): 1-18. Web. 1
Dec. 2011. © 2009 IGI Global

As Published: http://dx.doi.org/10.4018/jdm.2009092201

Publisher: IGI Global

Persistent URL: http://hdl.handle.net/1721.1/67341

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/67341

Journal of Database Management, 20(2), 1-18, April-June 2009 �

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Abstract

Modern database management systems are supporting the inclusion and querying of non-relational sources
within a data federation environment via wrappers. Wrapper development for Web sources, however, is a
convolution of code with extraction and query planning knowledge and becomes a daunting task. We use IBM
DB2 federation engine to demonstrate the challenges of incorporating Web sources into a data federation.
We, then, present a practical and general strategy for the inclusion and querying of Web sources without
requiring any changes in the underlying data federation technology. This strategy separates the code and
knowledge in wrapper development by introducing a general-purpose capabilities-aware mini query-planner
and a data extraction engine. As a result, Web sources can be included in a data federation system faster,
and maintained easier. [Article copies are available for purchase from InfoSci-on-Demand.com]

Keywords:	 Capability Restriction; Federated Database; Wrapper; Query Planning

INTRODUCTION

Federated databases offer information integra-
tion on demand in dynamic environments, where
data warehousing approaches are not feasible
(Sheth & Larson, 1990; Geer, 2003). In mod-
ern relational database management systems,
even non-relational sources can be included in
a data federation via “wrappers” so that they
can be queried as if they are part of a single
large database (Somani, Choy, & Kleewein,

2002; Thiran, Hainaut, Houben, & Benslimane,
2006). Wrappers are mechanisms by which the
federated server interacts with non-relational
data sources by performing operations such as
connecting to a data source and retrieving data
from it iteratively.

Retrieving data from Web sources, how-
ever, is complicated because data is semistruc-
tured and Web sources may have requirements
(e.g., they may require forms to be filled before
returning data); thus general-purpose wrappers

General Strategy for Querying
Web Sources in a Data

Federation Environment
Aykut Firat, Northeastern University, USA

Lynn Wu, Massachusetts Institute of Technology, USA

Stuart Madnick, Massachusetts Institute of Technology, USA

IGI PUBLISHING

This paper appears in the publication, Journal of Database Management, Volume 20, Issue 2
edited by Keng Siau © 2009, IGI Global

701 E. Chocolate Avenue, Hershey PA 17033-1240, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.igi-global.com

ITJ 4842

� Journal of Database Management, 20(2), 1-18, April-June 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

for arbitrary Web pages are not provided in
data federation systems. Instead the user needs
to implement a custom wrapper for each Web
source by coding data extraction patterns and
parts of the federated query planning protocol
in a low-level programming language such
as C. This convolution of code with the data
extraction and planning knowledge turns wrap-
per development into a daunting task, results
in code duplication, and slows down the data
federation process.

Within the last decade or so, many research
projects (Papakonstantinou, Gupta, & Haas,
1998; Levy, Rajaraman, & Ordille, 1996; Li
& Chang, 2000; Zadorozhny, Bright, Vidal,
Raschid, & Urhan, 2002; Li, 2003; Pentaris &
Ioannidis, 2006) offered algorithmic solutions to
“query planning with source restrictions.” The
goal of these studies was to offer an expressive
language to specify source restrictions, and
let the federated query planner come up with
an optimal plan using this knowledge. These
approaches do not need any cooperation from
the individual data sources other than knowing
about their limitations. Had they found their way
into commercial systems, they would eliminate
part of the code and knowledge convolution
problem: the wrapper developer would only
need to code the data extraction knowledge and
not worry about the query planning aspects.
Yet the separation of code and knowledge
would still not be satisfactorily achieved in
non-cooperative federated query planners. For
this study, we have chosen to work with IBM
DB2’s cooperative federated query planner,
which poses more challenges than the non-
cooperative ones. Our focus is on improving
the usability and maintenance aspects of the
wrapper development process without requiring
any changes in its underlying data federation
technology. We do not offer yet another pro-
posal to rewrite a state-of-the-art distributed
query planner (Kossmann, 2000), or create an
independent infrastructure for querying Internet
data sources (Braumandl et al., 2001; Suciu,
2002), but provide a non-intrusive approach
that works with what is available today with
minimal effort.

 We have tested our prototype implementa-
tion with numerous Web sites. A moderate user
with no programming experience can include
a typical Web site into a data federation in less
than an hour. The process often takes much
longer when the existing procedural coding
approach is used by an experienced program-
mer. Furthermore, explaining, learning, and
tutoring wrapper development becomes much
easier, as the task changes from writing and
debugging a program to specifying and debug-
ging knowledge.

In the rest of this paper, we start with a
motivational example that illustrates the need
for data federation involving Web sources.
We then provide some background on data
federation with non-relational data sources and
describe the current architectural difficulties of
incorporating a Web source. Next, we describe
our approach to wrapper development, and
the algorithms used to perform planning and
optimization for Web sources with capability
restrictions. We end with an overview of related
work and future research issues.

MOTIVATIONAL EXAMPLE

Consider, first, finding the military expenditure
per capita of countries in the world using the
CIA world fact book Web site. This informa-
tion is scattered inside the world fact book
(see Figure 1), and first needs to be located
and extracted. By using the Web wrapper,
Cameleon# (Firat, Madnick, Yahaya, Kuan, &
Bressan, 2005; Firat, Madnick, & Siegel, 2000)
and its accompanied visual helper, Cameleon#
Studio, we can wrap the CIA world fact book
site using simple regular expressions and treat
it as a very simple relational table as illustrated
in Figures 2 and 3.

The Cameleon# wrapper engine’s main
functionality is, however, extraction and thus
is only able to answer SQL queries involving
a single source, with required inputs bound
to a single set of values at a time. For that
reason, we decided to use the powerful query
planning, optimizing, and execution capabili-

Journal of Database Management, 20(2), 1-18, April-June 2009 �

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

ties of a commercial data federation engine to
handle more complex query situations. Using
the extended architecture to be described later
on, we define a nickname for our Web source
in DB2 as shown below:

CREATE NICKNAME CIA (
country char(20),

population dec(10,1),
GDP dec(10, 2),
GDP_unit char(20),
MilExpendPercent dec(9,4) for server Cam-
eleon#_server
options(SERVER_NAME ‘http://interchange.
mit.edu/Cameleon_sharp/camserv.aspx?’,
PREDICATES ‘country’)

Figure 1. Available data in CIA World Fact Book site

Figure 2. CIA World Fact Book site is visually wrapped with Cameleon# Wrapper Engine

� Journal of Database Management, 20(2), 1-18, April-June 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

The options in the above description
indicate the location of Cameleon# informa-
tion extraction server, and the required input
column country. We are then able to treat the
CIA fact book like a relational table and issue
the following query using DB2:

Q1: SELECT country, population,
GDP, gdp_unit, MilExpendPer-
cent
 FROM cia
 WHERE country IN
(“Singapore”, “Israel”, “United States”,

“United Kingdom”, “Malaysia”)

(see Table 1)

Since we want to calculate the military
expenditure per capita, we need to perform the
appropriate calculation with a mathematical
expression. In addition, we must perform unit
conversions (e.g., adjust for the fact that some
GDP values are in billions and some in trillions)
with the auxiliary database table scalefactor:

 TEXT SCALE

Billion 1000000000

Trillion 1000000000000

This is achieved by joining the non-re-
lational CIA Web source with the relational
scalefactor table using the following query:

Q2: SELECT country, (MilExpendPercent *
GDP * scalefactor.scale / population)

AS MilExpPerCapita
 FROM cia, scalefactor
 WHERE scalefactor.text=cia.gdp_unit AND
country IN
(“Singapore”, “Israel”, “United States”, “United
Kingdom”, “Malaysia”)

COUNTRY MilExpPerCapita

Singapore 1379.85

Israel 1901.93

United States 1674.64

United Kingdom 716.72

Malaysia 238.91

Finally, we would like to obtain the military
expenditure per soldier by creating another
NICKNAME for a Wikipedia Web source that
has the sizes of armed forces and formulating a
federated query joining multiple Web sources,
as shown in Figure 4.

As this simple example shows, querying
Web sources using a data federation offers many
operational benefits. One can take advantage of
the relational database technology in processing
semistructured Web data. For example, Web
sources can be joined with each other and with
other sources, calculations and set operations
can be performed, and queries can be optimized.
Currently, however, even setting up this moti-
vational example is extremely difficult, if not
impossible using one of the data federation

COUNTRY POPULATION GDP GDP_UNIT MILEXPEND-
PERCENT

Singapore 4492150 126.5 billion 4.90

Israel 6352117 156.9 billion 7.70

United
States 298444215 12.31 trillion 4.06

United
Kingdom 60609153 1.81 trillion 2.40

Malaysia 24385858 287 billion 2.03

Table 1.

Journal of Database Management, 20(2), 1-18, April-June 2009 �

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

country population gdp gdp_unit milexpendpercent

Singapore 4492150 126.5 billion 4.90

Figure 3. Simple SQL Query against the wrapped CIA World Fact Book

CREATE NICKNAME ARMFORCES (
country char(15),
armed_forces integer)
for server Cameleon#_server
options(SERVER_NAME
'http://interchange.mit.edu/Cameleon#_sharp
/camserv.aspx?',
PREDICATES 'country')

Q3: SELECT cia.country, armed_forces,

(MilExpendPercent*GDP*scalefactor.uni
t)/ (armed_forces*1000) AS
milpersoldier

FROM cia, armforces, scalefactor
WHERE cia.country IN ('Singapore',
'Israel',

COUNTRY ARMED_FORCES MILPERSOLDIER

Singapore 60 103308.33

Israel 168 71912.50

United States 1426 350481.07

United Kingdom 190 228631.58

Malaysia 110 52964.54

Figure 4. Available data in Wikipedia

� Journal of Database Management, 20(2), 1-18, April-June 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

engines. The most direct solution offered by
DB2 requires coding a custom wrapper for each
Web source, but even then those Web sources
cannot be joined with each other on the required
input attributes (IBM, 2006).

We designed and implemented a new archi-
tecture that drastically accelerates the inclusion
and querying of Web sources in a data federa-
tion. The motivational example, for instance,
can be set up in less than an hour without any
low-level programming. Users only need to
locate and specify the information they want
to use on the Web with Cameleon# Studio--a
point and click helper tool--and define the Web
sources with data definition statements similar
to classical “CREATE TABLE” statements.
Before explaining the details of our extended
architecture, we provide background on the
typical operation of data federation systems by
using DB2 and its Request-Reply-Compensate
protocol as an example.

QUERYING NON-RELATIONAL
SOURCES IN A DATA
FEDERATION

The goal of a data federation system is to al-
low clients to access diverse and distributed

data sources, regardless of location, format,
or access language, from a single interface.
While data federation may have a slower access
performance compared to data consolidation
(as in data warehousing), it has the benefits of
(i) reduced implementation and maintenance
costs, (ii) access to current data from the source
of record, and (iii) combining traditional data
with mixed format data (IBM, 2006; Haas, Lin,
& Roth, 2002).

As shown in Figure 5, a data federation
system uses wrappers to access non-relational
data sources such as flat files, XML pages,
and Web services. After the user submits a
query, the federated server collaborates with
the wrapper for each data source to generate an
optimized access plan for the query and then
evaluates it. Such a plan might call for parts of
the query to be processed by the wrappers, by
the federated server, or partly by the wrappers
and partly by the federated server. The federated
server chooses among the plans primarily on
the basis of cost.

Upon receiving the request, the wrapper in-
dicates which sub-pieces of the query fragment
it can evaluate, and puts this information in the
reply to the request. Request properties such as
cost, cardinality and ordering properties can also
be included. For a typical request, a wrapper

Figure 5. IBM DB2 data federation architecture [Adopted from (DB2 Information Center
2006)]

Journal of Database Management, 20(2), 1-18, April-June 2009 �

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

could return zero or more reply objects. Each
reply represents a different accepted fragment.
By the end of query planning, the federated
server will weigh all the cost estimations and
determine a query execution plan incorporating
some set of the accepted fragments offered up
by the wrapper in response to requests. During
query execution, the federated server will ask the
wrapper to execute these query fragments. The
federated server can also compensate for any
query fragments that have not been accepted.
Examples of this include a complex predicate or
sorting that is beyond the capability of the data
source in question. This protocol is therefore
called a request-reply-compensate protocol in
IBM DB2.

Consider Figure 6 as an example. The
query fragment (SELECT Name, Rate +
Tax FROM Hotels WHERE Stars=3
AND Rate < 120) is passed to the wrapper
as a request by indicating the head expressions
(HXPs), table name, and the predicates. In this
case, we assume that the wrapper cannot handle
the complete request as it cannot do the Rate +
Tax calculation and it cannot do two predicates
at a time, so replies with two separate parts,
which when combined in the federated server
answers the original query.

The request-reply-compensate protocol of-
fers a generic framework allowing the federated
server to communicate with non-relational data
sources through a black box wrapper. Among

the built in wrappers that comes with IBM DB2,
there are two that are particularly relevant to
querying Web sources: XML and Web services
wrappers. These wrappers can be used if Web
sources can be turned into XML format, or Web
services. Neither of these, however, satisfies our
desire to include an arbitrary Web source in a
data federation and query them without artificial
restrictions. The XML wrapper, for instance,
does not have the concept of a required input
attribute: the XML page should be accessible
with a fixed address. Many Web sources are
dynamically generated based on input attributes,
which precludes the use of XML wrapper as
it is. The Web services wrapper, on the other
hand, has artificial query restrictions such as
“no IN or OR predicates are allowed for input
columns” (IBM, 2006). For instance, even our
simplest query Q1 cannot be handled by the Web
services wrapper assuming our Web source was
somehow turned into a Web service.

THREE-TIER ARCHITECTURE
FOR QUERYING WEB
SOURCES IN A DATA
FEDERATION

The solution we offer for the inclusion and
querying of Web sources in a data federation
involves extending the existing two-tier custom

Figure 6. Request-Reply-Compensate protocol example [Adopted from (DB2 Information Center
2006)]

� Journal of Database Management, 20(2), 1-18, April-June 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

wrapper architecture into a three-tier architec-
ture while separating the generic and custom
aspects of wrapper development as shown in
Figure 7. This new architecture separates code
and knowledge, minimizes redundancy, and
complements the central query planner when
incorporating web sources in a data federation
by following the wrapper development protocol
specified in DB2 Information Integrator Wrap-
per Developer’s Guide (IBM, 2004).

In the first tier of our solution we have
a general-purpose mini planner-wrapper re-
sponsible for planning queries involving Web
sources. We call it a mini-planner because Web
sources have characteristics that limit the query
planning space; therefore we do not have to
deal with the complexity of a traditional query
planner. Our mini planner, in most cases, only
needs to handle query planning for a single Web
source, leaving complex planning involving
multiple sources to the federated server. The
mini planner can run Web source queries in
parallel, and order them intelligently when they
are joined, while respecting their capabilities.

Web source capabilities are expressed using
simple capability records, which indicate the
required input attributes, and whether input
attributes can be bound to more than one value
at a time. For example, the capability record
[b(1), f, f, f, f] for the CIA nickname means
that the first attribute country needs to be bound
with one value at a time (b(1)), and the rest of
the attributes must be free (f). In general b(N)
indicates that the attribute can be bound with
up to N values; “f” indicates that the attribute
must be free; and “?” indicates that the attribute
can be either bound or free. These capability
records are implemented for each source using
the nickname definition, right after the predicate
keyword. The second-tier is a general-purpose
data extraction engine responsible for retrieving
data from a Web source and presenting it in the
format expected by the data federation engine.
For this task, any capable general-purpose data
extraction engine can be used. We used the
data extraction engine, Cameleon#, which uses
declarative rules based on regular expressions
to extract data from Web pages. Cameleon#

Generic

Query

Capability
Handler

Data
Extractor

Wrapper for S1
Capability
Handler

Data
Extractor

Wrapper for S2
Capability
Handler

Data
Extractor

Wrapper for S3

 S1 S2 S3

Tiers

Query

 S1 S2 S3

Tiers

General-purpose
Mini Planner Wrapper

General-purpose

C R 1
C R 2

C R 3

C apability
R eco rds

D ata
E xtrac tion
S pecs

D E 1
D E 2

D E 3

Custom

Figure 7. Comparison of Architectures. The extended architecture separates data extraction and
capability handling functionalities. Furthermore the primary wrapper is responsible for planning
queries posed against web sources with capability restrictions

a. Existing two-tier architecture b. Extended three-tier architecture

Journal of Database Management, 20(2), 1-18, April-June 2009 �

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Studio can be used to help generate the neces-
sary specification file. An example specification
file is shown in Figure 8.

The second-tier extraction wrapper accepts
these specification files as input to extract data
from any Web source without any procedural
coding. Next, we provide the details of the mini
query planner for Web sources with capability
restrictions.

MINI QUERY PLANNER FOR
WEB SOURCES

The mini query planner creates a plan that can
efficiently retrieve remote data while satisfying
query restrictions. Generally, a query planning
engine needs to decompose the original query
into component subqueries (CSQ), such that
each CSQ can be answered using a single data
source (Alatovic, 2001; Fynn, 1997). Our mini
query planning engine does not need to perform
the decomposition since the federated database
engine already divides the original query into
CSQs, known as requests, where each request
can be processed by a single data source. In ad-
dition to query decomposition, a query planning
engine also needs to maintain the CSQ execution
order. Typically, independent CSQs are executed
first, followed by dependent CSQs that can be
answered using prior results. Thus, detecting
the dependencies among the CSQs is crucial to
successful planning. Our query planning engine
uses both the federated engine and capability
records to analyze CSQ dependencies. When
the CSQ dependency can be determined using
query semantics, our query planning engine uses
the federated database engine. When a CSQ
does not meet all the capability restrictions of
a source, however, the query planning engine
will determine if information from other parts
of the query can be used to satisfy the capability
restrictions. If the restrictions can be satisfied,
the CSQ will be modified with the required
information so that it can be answered by the
native data source.

The simplest case for a query execution
plan (QEP) is when all CSQs meet the capability

restrictions imposed by their native data sources,
and they can be executed independently and
in parallel. In this case, the federated engine
simply decomposes the original query into
CSQs and sends them to the native sources
through wrappers. After receiving all processed
row sets from the native sources, the federated
engine aggregates the data and returns the final
result.

When a CSQ cannot be executed by itself,
however, it is necessary to determine if the CSQ
can still be processed using results from other
CSQs. Two procedures are used to determine
the dependencies: the first method relies on
detecting dependencies using query semantics;
the second method employs the capability re-
cords to meet any unsatisfied restrictions using
information from other processed CSQs. The
next two sections describe in detail how the
two procedures work and how they compensate
for each other.

Dependencies Detected via Query
Semantics

In Figure 9, we show an example dependency
between CSQs that can be detected using the
query semantics. In this example, the original
query is decomposed into an inner-select CSQ,
which can be executed independently, and an
outer-select CSQ, which depends on the data
returned by the inner-select CSQ. The federated
engine facilitates the detection of this depen-
dency by tagging country attribute with a type
called “unbound kind” to signal to the wrapper
that the binding values would be available after
the inner-select CSQ is executed. Once the re-
sult from the inner-select CSQ is returned, the
wrapper needs to create a new set of CSQs by
replacing the “unbound kind” tag in the original
CSQ with the returned value(s). In this example,
as illustrated in Figure 9, since country names
are returned from the inner-select CSQ; (e.g.,
Albania, Andorra, Austria, Belarus, etc.), new
CSQs are formed after binding each country
name to the country attribute. The wrapper then
needs to send this new set of CSQs to the native
data source. Once the native source processes

10 Journal of Database Management, 20(2), 1-18, April-June 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Figure 8. Example Specification File For the CIA Web Source

the CSQs, the wrapper needs to assemble the
results and return them to the federation engine.
In this example, the wrapper sends the queries to
the CIA Web source, retrieves the GDP values
and returns them to the federated engine.

Dependencies Implied by
Capability Restrictions

Some CSQ dependencies may be not be de-
tected via query semantics, but are implied by
capability restrictions. Consider for example
query Q5, which asks for the GDP and armed-

Journal of Database Management, 20(2), 1-18, April-June 2009 11

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

force size of countries that are ranked in the top
10 both in terms of highest GDP and largest
armed-force size. Like in the previous example,
countryTable is a relational source that has the
list of countries and their regions.

Q5: SELECT cia.country, armed_
forces, GDP
FROM countryTable,
(SELECT GDP
 FROM cia
 ORDER BY GDP DESC FETCH FIRST
10 ROWS ONLY) cia,
(SELECT armed_forces
 FROM armforces
 ORDER BY armed_forces DESC FETCH
FIRST 10 ROWS ONLY) armforces
WHERE cia.country = country-
Table.country AND
armforces.country = country-
Table.country

To process this query, the query planning

engine needs to invoke the countryTable relation
to retrieve the list of all countries, and then pass
them to the cia and armed_forces relations to
obtain the requested data. In order to answer this

query, however, the federated engine creates the
following two CSQs on Web sources:

CSQ1: SELECT GDP
 FROM cia

CSQ2: SELECT armed_forces
 FROM armforces

Since none of the CSQs has unbound
parameters, the federated engine assumes that
they can be executed independently by using the
native data sources. Both Web sources, however,
require that country must be bound before they
can return any results. Thus, we cannot produce
an answer to the query by only using query
semantics. If we consider the capability infor-
mation, however, it is possible to process both
CSQs by finding the missing information from
other parts of the query. Using the join condi-
tions “cia.country = countryTable.country” and
“armforces.country = countryTable.country” we
can rewrite CSQ1 and CSQ2 into CSQ3 and
CSQ4 by providing the values for the country
attribute from the countryTable relation:

Independent
CSQ

SELECT country

FROM countryTable

WHERE Region = ‘Europe’

Dependent
CSQ

SELECT country, GDP

FROM cia

WHERE country= [<unbound kind>]

Q4: SELECT country, GDP

 FROM cia

 WHERE country IN

(SELECT country

FROM countryTable

WHERE Region= ‘Europe’)

COUNTRY

………………………………………

Albania

Andorra

Austria

Belarus

…

SELECT country, GDP

FROM cia WHERE country= ‘Albania’

SELECT country, GDP

FROM cia WHERE country= ‘Andorra’

SELECT country, GDP

FROM cia WHERE country= ‘Austria’

SELECT …

Rows returned from
the independent CSQ

Multiple queries are created to
answer the dependent query

COUNTRY GDP

…………………………………………

Albania 20.21

Andorra 1.84

Austria 279.50

Belarus 80.74

…

Final Results

Figure 9. An example query dependency that can be detected by query semantics

12 Journal of Database Management, 20(2), 1-18, April-June 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

CSQ3:SELECT GDP

FROM cia

WHERE country IN

(SELECT country FROM count-

ryTable)

CSQ4:SELECT armed_forces

FROM armforces

WHERE country IN

(SELECT country FROM count-

ryTable)

With this added condition, CSQ3 and CSQ4
satisfy the capability restrictions and thus can
be processed by the native sources. Although
CSQ3 depends on the result from countryTable,
this dependency can now be resolved via query
semantics with the help of the federation engine
as in Figure 10.

The query execution plan (QEP) algorithm,
which uses capability records to process CSQs,
is presented in Figure 11. The algorithm is based
on finding independently executable CSQs
in the query and processing them before any
dependent CSQs. In most cases, the CSQs that
cannot be executed independently lack at least
one binding restriction. Once such a CSQ is
detected, the algorithm determines if the CSQ
can still be executed by searching for the miss-
ing binding from other CSQs. If the algorithm
finds the missing binding, it is incorporated
into the CSQ so that it can be processed by the
native source.

There are two non-trivial steps in this
algorithm: a) determining if a CSQ can be
independently executed (step 3), and b) decid-
ing whether a CSQ can be processed using join
bindings from a set of executed CSQs (step 8).
The details of these two steps are illustrated in
the following sections.

Q5:SELECT cia.country, armed_forces, GDP

FROM countryTable,

(SELECT GDP

 FROM cia

 ORDER BY GDP DESC

 FETCH FIRST 10 ROWS ONLY) cia,

(SELECT armed_forces

 FROM armforces

 ORDER BY armed_forces DESC

 FETCH FIRST 10 ROWS ONLY) armforces

WHERE cia.country = countryTable.country

AND

armforces.country = countryTable.country

COUNTRY

……………………………………

Afghanistan

Akrotiri

Albania

Algeria

…

Select gdp from cia
where country=’Afghanistan’

Select GDP from cia
where country=’Akrotiri’

…

Select armed_forces from armforces
where country=’Afghanistan’

Select armed_forces from armforces
where country=’Akrotiri’

…

Rows returned from the
independent CSQ

Multiple queries are created to
answer the dependent queries

COUNTRY ARMED_FORCES GDP

………………………………………………………………

China 2255000 10

United States 1426713 12.98

Final Results from Q5

Independent
CSQ

SELECT country

FROM countryTable

Dependent
CSQs

SELECT GDP

FROM cia

WHERE country

=[<unbound kind>]

SELECT armed_forces

FROM armforces

WHERE country

=[<unbound kind>]

Figure 10. An example query dependency implied by capability restrictions

Journal of Database Management, 20(2), 1-18, April-June 2009 13

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Determining Independently
Executable CSQs

Figure 12 shows the algorithm for determining
whether a CSQ is independently executable.
The algorithm uses the capability restrictions
to detect any missing binding in the CSQ, and
if they exist, the algorithm determines if these
binding conditions can still be satisfied.

Determining Whether a CSQ is
Executable Given a set of
Executed CSQs

The algorithm for determining whether a CSQ
is executable, given a set of CSQs that have
already been executed, is depicted in Figure 13.
Consider the earlier example in Figure 10 once
more. Although the cia and armforces CSQs
cannot be executed independently, they can still
be processed by finding the missing binding
through the use of join conditions in the query.
This algorithm detects this class of CSQs that

are missing bindings, but can still be executed
using information made available through ex-
ecuting other parts of the query. For the specific
example of Figure 10, upon finding the attribute
country to be unbound, the algorithm discov-
ers a joint binding, countryTable.country=cia.
country, that can provide the missing values to
the attribute country. After modifying the cia
CSQ with the new joint binding, the cia CSQ
can be executed. Similarly, the binding for
armforces CSQ is discovered from the count-
ryTable.country=armforces.country predicate;
the CSQ is modified and executed.

Handling Key-at-a-Time Query
Restriction

Many Web sources require a single key value
to be provided at a time. Consider for example
the query Q1 again. (Cia web source has b(1)
– one binding at a time – restriction on the at-
tribute country):

Input: Single Query q

Output: Query Execution Plan (QEP)

QEP Generation Algorithm:

1. initialize set S to an empty set

2. for all CSQs c in S

3. if c is independently executable

4. add c to set S

5. add entry 0:c to QEP

6. repeat until no more CSQs are added to S

7. for all CSQs c outside of S

8. if CSQ c can be executed using bindings from CSQs in S

9. add an entry for c to QEP including all join bindings of c

10. add CSQ c to set S

11. if S does not contain all CSQs in a query

12. throw exception “query cannot be executed”

13. return QEP

Figure 11. QEP generation algorithm supporting binding query restrictions

14 Journal of Database Management, 20(2), 1-18, April-June 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Q1: SELECT country, population,
GDP, gdp_unit, MilExpendPer-
cent
 FROM cia
 WHERE country IN

(“Singapore”, “Israel”, “United States”, “United
Kingdom”, “Malaysia”)

In order to answer this query, the mini-
planner needs to change the query into a union
of four one-key-at-a-time queries, and perform

Figure 13. Algorithm for determining whether a CSQ is executable given a set of executed
CSQs

 Independently Executable CSQ:

1. for all binding specifiers bs of c’s underlying relation r

2. for all attribute specifiers as of bs

3. if as is of type bound and there is no binding in CSQ c

for corresponding attribute

4. continue 1

5. else

6. continue 2

7. end for

8. return true

9. end for

Input: set of executed CSQs S, new CSQ n

Output: if n cannot be executed given join bindings from CSQs in S

 returns null

 else

 returns list of join bindings for CSQ n

CSQ Executable:

1. for all binding specifiers bs of CSQ n

2. initialize list of join bindings to an empty list jbl

3. for all attribute specifiers as of bs

4. if as is of type bound and CSQ n does not contain binding

 for attribute matching as

5. if there is a join binding jb from n’s attribute

 matching as to one of CSQs in S

6. add jb to jbl

7. continue 3

8. else

9. continue 1

10. return jbl

11. return null

Figure 12. Algorithm for determining whether a CSQ is independently executable

Journal of Database Management, 20(2), 1-18, April-June 2009 15

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

the union operations locally in parallel. In gen-
eral, Web sources may have b(N) – N binding
at a time – restriction. The short algorithm,
shown in Figure 14, handles the general case
by recursively rewriting the original query into
subqueries. Finally, the algorithm returns the
result by performing the union operator on the
results of all the subqueries.

Cost Statistics Generation

Cost statistics are especially important for
federated queries (Kache, Han, Markl, Raman,
& Ewen, 2006). The mini planner wrapper can
also return cost statistics for Web sources to
the federated engine to aid in query optimiza-
tion. These cost statistics, as described in DB2
Information Center, are:

1.	 The cardinality of a nickname. This is
defined as the number of rows contained
in the nickname (default 1000 rows).

2.	 The setup cost for a nickname. Setup cost
represents the typical time, in milliseconds,
that it takes a wrapper to get a query frag-
ment ready to submit to the remote source
(default 25 milliseconds).

3.	 The submission cost for a nickname. Sub-
mission cost represents the typical time,
in milliseconds, that it takes a wrapper
to submit a query fragment to the remote
source (default 2000 milliseconds).

4.	 The advance cost for a nickname. This is
the typical time, in milliseconds, that it
takes to fetch a single row for the nickname
(default 50 milliseconds).

Among these cost statistics, the set up
and submission cost can be easily figured out,
but the cardinality and the advance cost for a
nickname are not easy to calculate for dynamic
Web sources. We can, however, estimate the
cardinality and advance cost for a nickname by
keeping time statistics and cardinality informa-
tion of previously executed CSQs on the same
underlying relation. The estimation process
can be initiated by starting with a conservative
default time estimate and then improving on it

using time statistics on recently executed CSQs
on the same underlying relation.

RELATED WORK AND
DISCUSSION

Our general strategy for querying Web sources
in a data federation system fundamentally dif-
fers from other studies (see Florescu, Levy, &
Mendelzon, 1998, for a review) in the same
area for two reasons:

1.	 We clearly separate knowledge from code
in wrapper development, and improve
wrapper development speed and ease of
maintenance.

2.	 We do not assume that we have the liberty
to recode the existing federated database
systems; thus we focus on improving the
process of including and querying Web
sources in cooperation with the existing
data federation planners.

The majority of the studies in the area are
concerned with query planning under source
capability restrictions, and we find two types
of approaches in the existing literature: 1) the
black-box approach of pushing the capabil-
ity handling to the wrapper level, and 2) the
central planning approach by using a complex
declarative language to describe capability
restrictions. The IBM DB2 follows the first
approach: handling capability restrictions is
pushed down to the wrapper layer and it relies
on Request-Reply-Compensate protocol to
communicate with the wrappers. Although this
is a generic framework to incorporate many
different sources, coding a different wrapper
every time for a Web site with different capabil-
ity restrictions can be extremely wasteful and
error-prone, since most of the code between
these wrappers will be common.

There are projects that follow the second
approach by describing capability restrictions
with a declarative yet complex language. Ex-
amples of research projects, which more or less
take this route, are Garlic Project at IBM (Roth

16 Journal of Database Management, 20(2), 1-18, April-June 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

& Schwarz, 1997; Papakonstantinou, Gupta,
& Hass, 1998; Hass, Kossman, Wimmers, &
Yang, 1997), TSIMMIS Project at Stanford
(Chawathe, Garcia-Molina, Hammer, Ireland,
Papakonstantinou, Ullman, & Widom, 1994),
Information Manifold (Levy, Rajaraman, &
Ordille, 1996), and DISCO (Tomasic, Raschid,
& Valduriez, 1998). While this approach is more
generic, it has not found its way into existing
data federation technologies – perhaps due to
its complexity.

The approach we take is a hybrid of these
two. As in the black box approach, we push the
capability handling to the wrapper level, and like
the central planning approach we use declarative
capability records. Yet these capability records
are designed only to handle Web source access
limitations and are not as general as the ap-
proaches found in the literature. This restriction
simplifies the development of the query planner.
Furthermore, our mini query planner creates
query plans in cooperation with the central
federated query planner, and thus differs from
the central planning approach, which does not
cooperate with the individual sources.

Another major difference we present is
the clear separation of extraction and planning
knowledge from the code. This is summarized in
Table 2. The wrapper developer only deals with
the task of specifying extraction and capability
knowledge, and is not involved with low level
coding as in other approaches.

Do not Web Services Solve the
Problem?

It may be mistakenly thought that the solution
offered here would not be needed if the Web
sources were Web services returning XML. In

fact, we are able to create virtual Web services
from any semistructured Web source by using
a version of the Cameleon# Web wrapping tool.
The capability restrictions, however, are still
valid problems for Web services, which often
require input attributes before returning any re-
sults (Petropoulos, Deutsch, Papakonstantinou,
& Katsis, 2007). There is an extra benefit of
using Web services, as the capability restrictions
could be automatically deduced from the Web
service description language (WSDL) docu-
ment instead of declaring them in the nickname
statements. All the query dependency issues for
arbitrary Web sources, however, equally apply
to Web services as well. In fact, the built-in
IBM wrapper for Web services prohibits the
formulation of queries where dependencies
create problems. Our solution is more general
and can be used for Web services without arti-
ficial restrictions.

CONCLUSION

The Web is undoubtedly the largest and most
diverse repository of data; unfortunately it
was not designed to offer the capabilities of
traditional database management systems.
Modern databases promise to include Web
sources in a data federation via “wrappers” so
that they can be queried as if they are part of a
single large database. There are still, however,
significant hurdles to fulfilling this promise.
With this study we introduced an improved
way of dealing with Web source wrappers in
federated database applications. With this new
general strategy not only do we accelerate the
inclusion of Web sources in federated databases,

Extraction knowledge Planning knowledge

Cooperative Planning Approach Embedded in code Embedded in code

Central Planning Approach Embedded in code Declarative

Our approach Declarative Declarative

Table 2. Code and knowledge separation in Web wrapper development

Journal of Database Management, 20(2), 1-18, April-June 2009 17

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

but also we are able to eliminate unnecessary
query restrictions. Our contribution is not
only at a conceptual level, but also has been
implemented using IBM’s commercial database
engine DB2. Most importantly, all of this has
been achieved via extensions allowed by the
federation engine, and without requiring any
implementation changes in the existing data
federation technology.

REFERENCES
Alatovic, T. (2001). Capabilities aware, planner, op-
timizer, executioner for Context Interchange project.
Unpublished master’s thesis, Massachusetts Institute
of Technology, Cambridge, MA, USA.

Braumandl, R., Keidl, M., Kemper, A., Kossmann, D.,
Kreutz, A., Seltzsam, S., & Stocker, K. (2001). Object-
Globe: Ubiquitous query processing on the Internet. The
VLDB Journal, 10(1), 48-71.

Chawathe, S.S., Garcia-Molina, H., Hammer, J., Ireland,
K., Papakonstantinou, Y., Ullman, J.D., & Widom, J.
(1994). The TSIMMIS project: Integration of heteroge-
neous information sources. In Proceedings of the 16th
Meeting of the Information Processing Society of Japan,
Tokyo, Japan (pp. 7–18).

Firat, A., Madnick, S., Yahaya, N., Kuan., C., & Bressan,
S. (2005). Information aggregation using the Caméléon#
Web wrapper (LNCS 3590, pp. 76-86).

Firat, A., Madnick, S., & Siegel, M. (2000). The Caméléon
Web wrapper engine. In Proceedings of the VLDB2000
Workshop on Technologies for E-Services (pp. 1-9).

Florescu, D., Levy, A., & Mendelzon, A. (1998). Database
techniques for the World Wide Web: A survey. SIGMOD
Record, 27(3), 59–74.

Fynn, K. (1997). A planner/optimizer/executioner for
context mediated queries. Unpublished master’s thesis,
Massachusetts Institute of Technology, Cambridge,
MA, USA.

Geer, D. (2003). Federated approach expands database-
access technology. Computer, 36(5), 18-20.

Haas, L.M., Kossmann, D., Wimmers, E.L., & Yang, J.
(1997). Optimizing queries across diverse data sources.
In M. Jarke, M.J. Carey, K.R. Dittrich, F.H. Lochovsky,
P. Loucopoulos, & M.A. Jeusfeld (Eds.), Proceedings of
the 23rd International Conference on Very Large Data

Bases (pp. 276-285). San Francisco: Morgan Kaufmann
Publishers,.

Haas, L.M., Lin, E.T., & Roth, M.A. (2002). Data
integration through database federation. IBM Systems
Journal, 41(4), 578-596.

IBM. (2006, March 14). DB2 information center. Re-
trieved January, 31, 2007, from http://publib.boulder.
ibm.com/infocenter/db2luw/v8//index.jsp

IBM. (2004, September 8). DB2 information integra-
tor wrapper developer’s guide. Retrieved January, 31,
2007, from http://publibfp.boulder.ibm.com/epubs/pdf/
c1891740.pdf

Kache, H., Han, W., Markl, V., Raman, V., & Ewen, S.
(2006). POP/FED: Progressive query optimization for
federated queries in DB2. In U. Dayal, K. Whang, D.
Lomet, G. Alonso, G. Lohman, M. Kersten, S.K. Cha,
& Y. Kim (Eds.), Proceedings of the 32nd International
Conference on Very Large Data Bases (pp. 1175-1178).
San Francisco: Morgan Kaufmann Publishers

Kossmann, D. (2000). The state of the art in distributed
query processing. ACM Computing Surveys, 32(4),
422-469.

Levy, A.Y., Rajaraman, A., & Ordille, J.J. (1996). Que-
rying heterogeneous information sources using source
descriptions. In T.M. Vijayaraman, A.P. Buchmann,
C. Mohan, & N. L. Sarda (Eds.), Proceedings of the
22th International Conference on Very Large Data
Bases (pp. 251-262). San Francisco: Morgan Kaufmann
Publishers.

Li, C., & Chang, E. (2000). Query planning with
limited source capabilities. In Proceedings of the 16th
International Conference on Data Engineering (p. 401).
Washington, DC: ICDE, IEEE Computer Society.

Li, C. (2003). Computing complete answers to queries
in the presence of limited access patterns. The VLDB
Journal, 12(3), 211–227.

Papakonstantinou, Y., Gupta, A., & Haas, L. (1998).
Capabilities-based query rewriting in mediator systems.
Distributed Parallel Databases, 6(1), 73-110.

Pentaris, F., & Ioannidis, Y. (2006). Query optimiza-
tion in distributed networks of autonomous database
systems. ACM Transactions on Database Systems,
31(2), 537-583.

Petropoulos, M., Deutsch, A., Papakonstantinou, Y., &
Katsis, Y. (2007). Exporting and interactively querying

18 Journal of Database Management, 20(2), 1-18, April-June 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Aykut Firat is an assistant professor in the information, operations, and analysis group at Northeastern
University. Professor Firat received his PhD in management science from MIT Sloan School of Manage-
ment, his MSc in systems analysis from Miami University, OH, and BSc in industrial engineering from
Bogazici University, Istanbul. Professor Firat has primary research interest in understanding the technol-
ogy, strategy, and organizational factors in integrating information systems. In particular, he is interested
in heterogeneous database integration, and achieving semantic interoperability among Web sources and
services in the emerging area of Semantic Web.

Stuart E. Madnick is the John Norris Maguire professor of Information Technology, Sloan School of
Management and Professor of Engineering Systems, School of Engineering at the Massachusetts Institute
of Technology. He has been a faculty member at MIT since 1972. He has served as the head of MIT's
Information Technologies Group for more than twenty years. Dr. Madnick is the author or co-author of
over 250 books, articles, or reports including the classic textbook, Operating Systems, and the book, The
Dynamics of Software Development. His current research interests include connectivity among disparate
distributed information systems, database technology, software project management, and the strategic use
of information technology. He is presently co-director of the PROductivity From Information Technology
Initiative and co-Heads the Total Data Quality Management research program. He has been active in in-
dustry, as a key designer and developer of projects such as IBM's VM/370 operating system and Lockheed's
DIALOG information retrieval system. He has served as a consultant to corporations, such as IBM, AT&T,
and Citicorp. He has also been the founder or co-founder of high-tech firms, including Intercomp, Mitrol,
and Cambridge Institute for Information Systems, iAggregate.com and currently operates a hotel in the
14th century Langley Castle in England. Dr. Madnick has degrees in electrical engineering (BS and MS),
management (MS), and computer science (PhD) from MIT. He has been a Visiting Professor at Harvard
University, Nanyang Technological University (Singapore), University of Newcastle (England), Technion
(Israel), and Victoria University (Australia).

Lynn Wu is a PhD candidate at MIT’s Sloan School of Management. She is interested in studying the role
of information and information technology in the productivity and performance of firms. Previously, she
was a researcher at IBM. Lynn received a Bachelor’s and a Master’s degree from Electrical Engineering
and Computer Science Department at MIT, along with a Bachelor’s degree in finance from the MIT’s Sloan
School of Management.

Web service-accessed sources: The CLIDE system. ACM
Transactions on Database Systems, 32(4), Article 22.

Roth, M.T., & Schwarz, P.M. (1997). Don’t scrap it,
wrap it! A wrapper architecture for legacy data sources.
In M. Jarke, M.J. Carey, K.R. Dittrich, F.H. Lochovsky,
P. Loucopoulos, & M.A. Jeusfeld (Eds.), Proceedings of
the 23rd International Conference on Very Large Data
Bases (pp. 266-275). San Francisco: Morgan Kaufmann
Publishers.

Sheth, A.P., & Larson, J.A. (1990). Federated database
systems for managing distributed, heterogeneous, and
autonomous databases. ACM Computing Surveys,
22(3), 183-236.

Suciu, D. (2002). Distributed query evaluation on
semistructured data. ACM Transactions on Database
Systems, 27(1), 1-62.

Somani, A., Choy, D., & Kleewein, J.C. (2002). Bring-
ing together content and data management systems:
Challenges and opportunities. IBM System Journal,
41(4), 686-696.

Thiran, P., Hainaut, J., Houben, G., & Benslimane, D.
(2006). Wrapper-based evolution of legacy information
systems. ACM Transactions on Software Engineering
Methodologies, 15(4), 329-359.

Tomasic, A., Raschid, L., & Valduriez, P. (1998). Scaling
access to heterogeneous data sources with DISCO. IEEE
Transactions on Knowledge and Data Engineering,
10(5), 808–823..

Zadorozhny, V., Raschid, L., Vidal, M.E., Urhan, T., &
Bright, L. (2002). Efficient evaluation of queries in a
mediator for Web sources. In Proceedings of the 2002
ACM SIGMOD international Conference on Manage-
ment of Data (pp. 85-96). New York: ACM.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

