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Abstract

Property Testing is the study of super-efficient algorithms that solve "approximate
decision problems" with high probability. More precisely, given a property 'P, a
testing algorithm for P is a randomized algorithm that makes a small number of
queries into its input and distinguishes between whether the input satisfies P or
whether the input is "far" from satisfying P, where "farness" of an object from P
is measured by the minimum fraction of places in its representation that needs to
be modified in order for it to satisfy P. Property testing and ideas arising from it
have had significant impact on complexity theory, pseudorandomness, coding theory,
computational learning theory, and extremal combinatorics.

In the history of the area, a particularly important role has been played by linear-
invariant properties, i.e., properties of Boolean functions on the hypercube which
are closed under linear transformations of the domain. Examples of such properties
include linearity, homogeneousness, Reed-Muller codes, and Fourier sparsity. In this
thesis, we describe a framework that can lead to a unified analysis of the testability
of all linear-invariant properties, drawing on techniques from additive combinatorics
and from graph theory. We also show the first nontrivial lowerbound for the query
complexity of a natural testable linear-invariant property.

Thesis Supervisor: Ronitt Rubinfeld
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

1.1 An Invitation to the Testability Question

Science is the systematic attempt to discover the laws of nature. One can schemati-

cally depict a scientific experiment as follows:

Experimental Law Of Observed
Setup Nature Phenomenon

Once the experiment is run a few times, or in other words, once it becomes known

what output phenomena are produced by a few different experimental setups, the

scientist tries to use the data to discover some property of the law of nature under

consideration. For instance, Galileo famously discovered that gravitational accelera-

tion is independent of mass by dropping two different weights from the Leaning Tower

of Pisa.

A fundamental problem of science then is understanding how to design good ex-

periments. Usually, a scientist has a hypothesis in mind (for instance, that a law of

motion satisfies conservation of energy), and she wants to test if the hypothesis is

satisfied by nature. What is the most "efficient" way to test the hypothesis? Unless



the setting is trivial, it is infeasible to run the experiment for all possible experimen-

tal setups. The scientist must then cleverly choose particular setups so as to yield

the most information about her hypothesis. Sometimes, she is helped by prior in-

formation already acquired about nature. Sometimes, she is helped by the fact that

any violations to the hypothesis are easy to detect. Sometimes, she is helped by her

willingness to admit a small possibility of error in her findings.

In theoretical computer science, we study these problems in a rigorous and ab-

stract fashion. The formal setting is as follows:

x D , f:D-+R ,f(x) E R

The object at the center of attention is a function f mapping a finite domain D to

a finite range R. In the above discussion, D is the set of all possible experimental

setups and R the set of all possible observed phenomena. The function f is not

known exactly, although there may be some prior information available. Additional

information about f can only be obtained by querying, i.e., observing the value of f
on elements of D. The goal is to determine if f satisfies some particular property P

or not, by making as few queries as possible.

Note that a more ambitious goal might be to learn the function f itself, instead of

merely deciding whether it satisfies a particular property. This task is formally studied

in the field of computational learning theory. In learning theory, one has a priori

knowledge of a nontrivial property satisfied by f and then one wants to determine the

function. The stronger the property known to be satisfied by f, the easier it usually

is to learn f. In this thesis, our concern is with obtaining the prior knowledge,

that is, determining whether f satisfies a given property. For instance, given an

unknown natural phenomenon, the scientist might first want to check whether the

system produces net positive entropy before treating it as a closed system and finding

the laws governing it. Or, an economist might want to determine whether stock

market values increase with consumer confidence before making a detailed economic



model.

We define the query complexity of a property P to be the minimal number of

queries needed by an algorithm to determine whether a given f satisfies P or not.

The query complexity is defined with respect to: (1) the computational model for the

algorithm that chooses the values in D to query and that makes the final decision,

and (2) any prior conditions that the unknown f is known to satisfy. We consider

three settings below, each more restrictive than the previous. We will see that the

first two require high query complexity for interesting properties, whereas the third

setting does not and, at the same time, is sufficient for many purposes.

e Deterministic Query Complexity. The deterministic query complexity of

a property P is the minimum number of queries that a deterministic algorithm

has to make to be able to determine whether a given f satisfies P or not. For

instance, let P be the property that is satisfied by a function f : D - {0, 11

exactly when f is constant on all of D. The deterministic query complexity

of P is |DI because otherwise, the function could be non-constant just due to

the element of D not queried. Properties with query complexity IDI are called

evaszve.

Unfortunately, evasiveness has been shown to hold for many interesting proper-

ties. One important family of properties to which we will refer repeatedly and

which will serve as a reference throughout this thesis is the class of graph prop-

erties. A graph property is any isomorphism-invariant property of a graph, such

as planarity or connectivity or bipartiteness. Now, in the above described query

model, suppose D = ), the set of unordered pairs from [n] f {1, 2,..., n},

and interpret any function f : D -+ {0, 1} as describing the adjacency ma-

trix of a graph on n vertices. Then, each query, or experiment in the physical

metaphor, reveals whether there is an edge between a pair of vertices.

Many graph properties are known to be evasive. Examples include containing

a clique of a given size, k-colorability [Bol76], planarity [BvEBL74], and per-

fectness [HW04]. Chakrabarti, Khot and Shi [CKS01] showed that any minor-



closed graph property is evasive. Also, Aanderaa, Karp and Rosenberg [Ros73]

famously conjectured that evasiveness is immediate for any non-trivial graph

property P that is' preserved under deleting edges (or preserved under adding

edges). For any such property, Rivest and Vuillemin [RV76] proved the weaker

fact that at least Q(n 2 ) queries are necessary, while Yao proved [Yao88] the

conjecture for any such property of bipartite graphs. In short then, it turns

out that almost every interesting graph property is provably either evasive or

nearly evasive.

* Randomized Query Complexity. Given that deterministic algorithms often

require too many queries, it is natural to ask what happens if the computational

model is made probabilistic. The randomized query complexity of a property

is the minimum number of queries needed by a randomized algorithm which is

allowed to err with some small probability (where the probability is over the

randomness of the algorithm, not over choice of f).

However, even with randomness, the query complexity of many natural proper-

ties remains high. Consider again the class of non-trivial properties of n-vertex

graphs which are preserved under addition of edges. Recall that Rivest and

Vuillemin showed that the deterministic query complexity of such properties is

Q(n 2 ). It turns out that even with randomness, there is no such property known

with randomized query complexity less than n 2 /4, and Karp conjectured that

Q(n 2 ) queries are necessary here as well. The current best proof [Haj91, CK07)

gives a lower bound of U(n 4/3 ) queries and for specific graph properties, such as

connectivity, Hamiltonicity, absence of isolated vertices, and containing a tri-

angle, [FKW02] have proved the randomized complexity to be indeed at least

Q(n 2) queries.

" Approximate Randomized Query Complexity. Going back to the scenario

described earlier, suppose the scientist does not care much if nature doesn't

'Such graph properties are often called monotone but we reserve the term for a different meaning
to be given later on.



conform to her hypothesis for a small fraction of possible experimental setups.

Perhaps, she knows there are lower-order effects that could lead to the hypoth-

esis being violated a small fraction of times. It is only when there is significant

inconsistency with any law satisfying the hypothesis that she deems it necessary

to reject the hypothesis. In this very reasonable setting, where one only needs

to solve an "approximate decision problem" instead of an exact one, it turns

out that the query complexity often decreases dramatically.

More precisely, the setting is as follows. It is guaranteed that if the given

function f does not satisfy property P, then in fact, it is going to disagree on at

least 5% of the domain D with with any function satisfying P. The approximate

randomized query complexity of P is the minimum number of queries needed by a

randomized algorithm to determine membership in P assuming this guarantee

about f. For functions f which do not satisfy this assumption, the testing

algorithm can make an arbitrary decision.

As a reference, let us again consider the problem of testing a graph property

by querying entries from an adjacency matrix. In stark contrast to the dis-

cussion above, nearly every natural graph property has constant approximate

randomized query complexity, meaning no dependence on the size of the graph

whatsoever! This phenomenon was first unearthed by Goldreich, Goldwasser

and Ron [GGR98] in a seminal work. They showed that many properties such

as k-colorability, containing a large clique as a subgraph, and having a large

cut, have constant query complexity. Their work was substantially generalized

in a series of works, ultimately resulting in the important theorem of Alon and

Shapira [AS08a] that every hereditary graph property, meaning every graph

property preserved by taking induced subgraphs, has constant query complex-

ity!

So we see that query complexity in the approximate randomized model can be-

have very differently from more traditional models. The conventional term for the

approximate randomized model is property testing, and its study is the focus of



our work. We will formally describe the model and our results soon, but before we

do so, let us state the main question that motivates our work:

For what properties P of functions mapping D to R is the approximate

randomized query complexity of P a constant, independent of the size of

the domain D and range R?

Such properties are called testable. As we described above, the testability of graph

properties has been very well studied. Here, we will describe work towards a complete

characterization of testability for another important family of properties, the linear-

invariant properties.

1.2 Property Testing and Linear-Invariant Prop-

erties

1.2.1 Boolean Functions

Our primary concern in this thesis will be properties of functions f: {0, 1}" - {0, 1}.

So, D = {0, 1}" and R = {0, 1} in the above. This is a very common setting in

computer science. We will interpret D {0, 1}" as Fn, the n-dimensional vector

space over the field of two elements F2 .

It should be possible to extend the work described here to vector spaces over larger

fields of constant characteristic, but we will not attempt to do so here. While it is

true that larger characteristic (and zero characteristic) is of considerable interest, we

restrict overselves to F2 right now since it is the simplest setting in which to carry

out our program of characterizing testability.

1.2.2 Property testing definitions and historical background

Let P be a property of Boolean functions over the hypercube. In other words, P =

UnE+ Pn where Pn is a subset of the set of functions f : {O, 1}" -+ {O, 1}. Two

functions f, g : {0, 1}" -+ {O, 1} are e-far if they differ on at least c2" of the inputs.



We say that f is e-far from satisfying a property P if it is E-far from any function g

satisfying P.

A tester for the property P is a randomized algorithm which distinguishes between

the case that an input function f satisfies P from the case that it is E-far from

satisfying P. Here we assume that the function f is given to the tester as an oracle

that can be queried. P is said to be testable if there is a function q : (0, 1) Z+

and an algorithm T that, given as input a parameter E E (0, 1) and oracle access to

a function f : {0, 1} - {0, 1}, makes at most q(E) queries, accepts with probability

at least 2/3 if f E P and rejects with probability at least 2/3 if f is E-far from P.

Thus, the query complexity of a testable property is a constant, independent of n.

Finally, we say that a testing algorithm has one-sided error if it always accepts (i.e.,

with probability 1) functions satisfying P.

The study of testing of Boolean functions began with the work of Blum, Luby

and Rubinfeld [BLR93] on testing linearity of Boolean functions. This work was

further extended by Rubinfeld and Sudan [RS96]. Around the same time, Babai,

Fortnow and Lund [BFL91] also studied similar problems as part of their work on

MIP=NEXP. These works are all related to the PCP Theorem, and an important

part of it involves tasks which are similar in nature to testing properties of Boolean

functions. The work of Goldreich, Goldwasser and Ron [GGR 98] extended these re-

sults to more combinatorial settings, and initiated the study of similar problems in

various areas. More recently, numerous testing questions in the Boolean functions

settings have sparked great interest: testing dictators [PR S02], low-degree polynomi-

als [AKK+05, Sam07], juntas [FKR+04, Bla09], concise representations [DLM+07],

halfspaces [MORS09], codes [KS07, KS09]. These are documented in several surveys

[Fis04, Rub06, Ron08, Sud10], and we refer the reader to these surveys for more

background and references on property testing.

1.2.3 Linear Invariance

What features of a property make it testable? On the one hand, Goldreich, Gold-

wasser, and Ron [GGR98] showed that with high probability, a random property of



Boolean functions is not testable2 . In fact, nearly all of the domain needs to be

queried with high probability. On the other hand, we have already mentioned that a

variety of mathematically natural properties of Boolean functions are testable. Can

we isolate the ingredients in natural properties that make them testable?

Kaufman and Sudan in [KS08] suggested that the large number of symmetries

usually exhibited by properties occurring in mathematics might play a crucial role in

explaining their testability. They initiated the study of the relationship between a

property's testability and its invariance group. A very common invariance shown by

properties of Boolean functions is linear invariance. Formally, a property of Boolean

functions P is said to be linear-invariant if for every function f : F- {0, 1} satisfy-

ing P and for any linear transformation L : F' -+ F, the composition f o L satisfies

P as well, where we define (f o L)(x) f(L(x)). Note that here we explicitly identify

{0, 1}' with F', and we will use this convention from now on throughout.

For a thorough discussion of the importance of linear-invariance, we refer the

reader to Sudan's recent survey on the subject [Sud10] and to the paper of Kaufman

and Sudan which initiated this line of work [KS08]. As should be apparent from the

title of this thesis, the main thrust of our work will be to classify the set of testable

linear-invariant properties. Before we do so, though, let us describe some specific

linear-invariant properties and what is known about their testability.

1.2.4 Examples of Linear-Invariant Properties

We will refer to the following four linear-invariant properties for reference throughout

this work:

9 Linearity: We say a function f : F' -+ F2 is linear if f(x + y) = f(x) + f(y)

for all x, y E F. It is clearly linear-invariant as compositions of linear functions

are linear. The testability of linearity was shown in the seminal paper [BLR93]

which introduced property testing as a line of inquiry in computer science. They

2By a random property, we mean a random subcollection of the collection of functions mapping

{0, 1}" to {0, 1}.



proved that if f is e-far from linear, then with probability at least c, uniformly

chosen x, y from F' does not satisfy the condition f(x + y) = f(x) + f(y).

Repeating this process independently for 0(1/c) times ensures that such an

c-far f is rejected with probability 2/3 as desired.

Low-degree polynomials: The property of a function f : Fn -+ F2 being a

polynomial of degree at most d is also clearly linear-invariant. [AKK+05] showed

that one can test the property using 0(d4d/E) queries. Subsequently, [BKS+09]

improved the query complexity to O(2d + 1/c) (not included in this thesis). For

constant d, these works show that the property of being of degree at most d is

testable. The testability of low-degree polynomials was also studied much earlier

in the context of probabilistically checkable proofs, but these works addressed

the problem when the field characteristic is very large, growing with n.

* Fourier dimensionality 3 and sparsity: A function f : F -4 {0, 1} is said

to have Fourier dimension k if the Fourier spectrum 4 of f is supported in

a subspace of dimension k, while it is said to have Fourier sparsity k if the

number of. nonzero Fourier coefficients of f is at most k. It is easy to check

that both of these properties are linear-invariant. Namely, one has to observe

that if F = f o L for a linear transformation L, then the spectrum of F is a

subset of the image of a linear transformation applied to the spectrum of f.
The testability of Fourier dimensionality and Fourier sparsity for constant k

was established by [GOS+09].

* Odd-Cycle-Freeness: A function f F -+ {0, 1} is said to be odd-cycle-

free if there exists some a E- Fn for which f(a) = - E,[f(x)]. Note that

- E2 [f(x)] is the minimum value a Fourier coefficient can attain. One can check

the linear-invariance of odd-cycle-freeness starting from its definition. We will

give one proof of the testability of odd-cycle-freeness in this thesis. Two different

3 Another term used for the same property is subspace junta [VX11].
4We define Fourier coefficients later on in the context of our work. But to be self-contained, we

recall that for any a C yF, f(a) is defined to be E.[f(x)(-1)(]x)I and the Fourier spectrum of f
refers to the set {a If(a) # 0}.



proofs, both much better quantitatively than the proof given here, were found

subsequently in [BGR S11] (not included in this thesis). Those same works also

show that the minimum Fourier coefficient can be estimated efficiently, by using

a modification of the testing algorithm.

1.2.5 Subspace Hereditary Properties

If P is a linear-invariant property of Boolean functions on Fn, then it does not depend

on the basis used to represent the coordinates of points in F'. This is a hallmark of

many natural properties of Boolean functions, as illustrated in the previous section.

But the properties described in the previous section have another common feature:

they are defined uniformly, independently of n. For arbitrary linear-invariant prop-

erties, it might be that for different values of n (log of the domain size), membership

in the property is defined in completely different ways. That is, the description of a

linear-invariant property might heavily depend on n. Intuitively, this makes it im-

plausible that an arbitrary linear-invariant property is testable because knowledge

about the function restricted to a smaller space (the space of queried points) may

not yield much information about whether the function satisfies the property on the

entire space. Indeed, a variant5 of an argument in [GGR98] shows that there exist

linear-invariant properties that are not only non-testable but require Q(2n) queries.

Subspace-hereditary properties gets around the possible obstruction to testability

mentioned above.

Definition 1 (Subspace-Hereditary Properties) A linear-invariant property P

is said to be subspace-hereditary if it is closed under restriction to subspaces. That

is, if f is in Pn and H is a m-dimensional linear subspace of F, then f|H e Pm also,

5Proposition 4.1 of [GGR98] shows that for every n, there exists a property of Boolean functions
that contains 2102 of the Boolean functions over F2 and cannot be tested with less than 12
queries. This family of functions is not necessarily linear-invariant, so we just "close" it under
linear transformation, by adding to the property all the linear-transformed such functions. Since the
number of these linear transformation is bounded by 2" 2 (corresponding to all possible n x n matrices
over F2) we get that the new property contains at most 2"22 Boolean functions. One
can verify that since this new family contains a small fraction of all possible functions, the argument
of [GGR98] caries over, and the new property cannot be tested with o(2") queries.



where6 f IH : F2 {0, 1} is the restriction of f to H.

Subspace-hereditary properties include all the properties mentioned in the previous

section: linearity, low-degree polynomials, Fourier sparsity, and odd-cycle-freeness.

One of the main contributions of this thesis is the following conjecture.

Conjecture 2 (Main Testability Conjecture) Every subspace-hereditary linear-

invariant property is testable with one-sided error.

The truth of the conjecture would unify testability results for all the properties from

Section 1.2.4, as well as lead towards an exact characterization of testable linear-

invariant properties (see Section 1.3.3 below). In this thesis, among other things, we

develop tools for establishing the conjecture for a limited class of subspace-hereditary

properties that we hope is useful in the future. Before we describe our results though,

we need one additional piece of terminology.

1.2.6 Local Constraints for Linear-Invariant Properties

The notion of a local constraint turns out to be crucial in describing the class of

linear-invariant properties for which we show testability as well as for their analysis.

First, let us define what we mean by local constraints for arbitrary properties of

Boolean functions. For a positive integer k, a k-local constraint C = (a1, ... , ak; c-)

is given by k elements ai, . . . , ak E {0, 1}" and a string o- E {o, 1 }k. A function

f : {0, 1}" -* {0, 1} is said to satisfy the constraint C if (f(ai),... , f(ak)) # o, and a

property P satisfies C if every function f E P satisfies C. For instance, the property

of linearity (as defined in Section 1.2.4) satisfies the constraints (a1, a2, ai + a2 ; 111)

and (ai, a2 , ai + a 2 ; 001) for every choice of ai, a2 E F', since a function f will violate

the identity f(x + y) = f(x) + f(y) if f(ai) = 1, f(a 2 ) = 1, f(ai + a2 ) = 1 or if

f(ai) = 0, f(a 2 ) = 0, f(ai + a2 ) = 1 for some choice of ai, a2 E F2. In fact, these

constraints suffice to completely define the linearity property. We will see next that

6Note that we are implicitly composing f I H with a linear transformation so that it is now defined
on F2. Here, we are using the fact that F is linear-invariant.



any subspace-hereditary linear-invariant property can be defined using such local

constraints.

For linear-invariant properties, local constraints have an especially nice struc-

ture. To see this, observe that specifying a property to be linear-invariant also en-

forces a symmetry among the local constraints satisfied by the property. If a linear-

invariant property P satisfies the constraint C = (ai,..., ak; a), then it must also

satisfy the constraint C o L = (L(ai),... , L(ak); -) for any linear map L : FI -+ FI.

Thus, P must satisfy all constraints in the orbit of C, i.e. the family of constraints

{C o L | linear L : F' -+ F'}. It is straightforward to verify that one can en-

code the orbit of a constraint C = (ai,. .. , ak; a) by a tuple (V1..., vk; a) for vec-

tors vi in the smaller space F (for some r < k) such that the orbit of C equals

{(L(vi), ... , L(vk); -) : linear L : F -+ F'}. Here, the exact identity of the elements

Vi, . Vk is not important - the only thing that matters is the linear dependencies

between them. Hence, it is convenient to think of them as the representation of a

linear matroid.7 . To make the discussion more concrete, consider again the property

of linearity. It can be defined as the property which satisfies the orbit of the following

two constraints: (ei, e2, ei + e 2 ; 111) and (ei, e2 , ei + e 2 ; 001), where ei, e 2 are two

linearly independent vectors in F.

We thus arrive at the following definition:

Definition 3 (Induced Matroid freeness) Given integers k > r > 1, a set M =

{V1,...,Vk} of k vectors in Fr, and a string o- E {0, 1 }k, we say that a function

f : Fn {0, 1} is (M, a)-free if there does not exist any linear map L : F -+ Fn

such that f(L(vi)) = ai for all i C [k]. Otherwise, if such an L exists, we say f
contains (M, o-) at L.

Any property that is equivalent to (M, o)-freeness for some M and o- is called

an induced matroid freeness property, and furthermore if o- = 1, then it is called a

matroid freeness property.

7The formal definition of a matroid is not too important in this context. In the rest, the reader
can just think of a matroid as a set of elements in a vector space over F 2.



Notice that we needed two induced matroid freeness constraints to define linear-

ity. Thus, it is natural to formulate the condition of a property satisfying multiple

constraints.

Definition 4 Given a collection F {(M,or) : i E Z+}, where each M' is a set of

ki vectors in F", for some integers ki > ri ;> 1, and each or E {0, 1}ki, we say that a

function f : F7 {0, 1} is F-free if f is (Mi, or)-free for every i E Z+.

We will show later on (Chapter 3) that the subspace-hereditary properties are

exactly the properties described by Definition 4.

Proposition 5 A linear-invariant property P is subspace-hereditary if and only if it

is an F-freeness property as in Definition 4 or Definition 7.

This formulation of subspace-hereditary properties using local constraints will be

essential in what follows.

In this thesis, we will sometimes switch between the notation used in Definitions

3 and 4 to an alternate but entirely equivalent notation. Let us quickly define this

alternate notation now. To motivate it, observe that if the vectors v1, .. . , Vk satisfy a

linear dependency, then L(vi),..., L(vk) also satisfy the same linear dependency for

every linear transformation L. In fact, the only information that is needed about M

in Definition 3 above is the linear dependencies between the vectors v 1 ,... , Vk.

Given M {v 1 ,.. . , Vk} C F, let V be the k-by-r matrix whose ith row is the

vector vi. Now, let M be the matrix over F2 whose kernel is exactly the column-space

of V. Immediately, MV = 0, and also if, for a linear transformation L : F --+ F,

VL is the matrix formed out of the rows L(vi), ... , L(vk), then MV = 0. Combining

these facts, we can reformulate Definition 3 as follows:

Definition 6 ((M, o-)-free) Given an m x k matrix M over F2 and o E {0, 1}k We

say that a function f : Fn -+ {0, 1} is (M, o-)-free if there is no X = (x 1 , ... , Xk) E

(Fl)k such that MX = 0 and for all 1 < i < k we have f(xi) = o-1.

Such a constraint (M, -) is said to an induced system of linear equations.

And similarly, we also have an alternate notation for F-freeness in Definition 4.



Definition 7 (F-free) Let F = {(M', a'), (M 2 , o2),... } be a (possibly infinite) set

of induced systems of linear equations. A function f is said to be F-free if it is

(Mi, o,)-free for all i.

To return to the example of linearity, it is equivalent to the property defined by

{([1 11], 111), ([1 1 1], 001)}-freeness, as can be verified directly. Also, Proposition 5

implies that subspace-hereditariness is equivalent to being an F-freeness property in

the sense of Definition 7.

1.3 Our Results

1.3.1 Testability of some Subspace-Hereditary Properties

Our first main result in this thesis is that a large subclass of subspace-hereditary

linear-invariant properties of Boolean functions is testable with one-sided error. Recall

that a property is said to be testable if its query complexity does not depend on n.

Theorem 8 (Main Testability Result) Let F = {(Ml, o 1 ), (M 2 , C2 ),. .. } be a

(possibly infinite) set, where each M' is a matrix of size 1-by-ki for some integer

ki and each a is an arbitrary string in {0, 1}*. Then the property of F-freeness is

testable with one-sided error.

Linearity and odd-cycle-freeness meet the conditions of this theorem and are thus

testable by Theorem 8.

One can view our work as paralleling previous work on testing graph properties.

The correspondence is informal but useful to keep in mind. Given a function f : Fn -

{0, 1}, consider the set S = {E-2 : f(x) = 1}. Then, f is ([1 11], 111)-free if and

only if Sf contains no X1, X2, X3 such that X1 + x2 + X3 = 0. The notion of (M, 1)-

freeness is analogous to the graph property of being H-free for some fixed graph H,

where a graph is said to be H-free if and only if its edge set does not contain a copy

of H. Observe that in both cases, the property is monotone in the sense that if f is

(M, 1)-free, then removing elements from Sf results in a set that contains no solution



to Mx = 0. Similarly if G is H-free, then removing edges from G results in an H-free

graph.

Let us now go back to considering arbitrary a E {0, 1}k in Definition 6, where

again the intuition comes from graph properties. Observe that a natural variant of

the monotone graph property of being H-free is the property of being induced H-free

for some fixed graph H, where a graph is said to be induced H-free if it contains no set

of |H I vertices that induces a copy of H and no other edges. Note that being induced

H-free is no longer a monotone property since if G is induced H-free, then removing

an edge can actually create induced copies of H. Getting back to the property of

being (M, u)-free, observe that we can think of this as requiring Sf to contain no

induced solution to the system of equations Mx = 0. That is, the requirement is that

there should be no solution vector V = (v 1, . . . , vk) satisfying MV = 0, where vi E Sf

if cx = 1 and v E F \ Sf if cr = 0. So we can think of a as encoding which elements

of a potential solution vector V should belong to Sf and which should belong to its

complement.

Keeping in mind this informal correspondence with graph properties, let us com-

pare Theorem 8 with what is known for testability of graph properties. H-freeness for

a fixed graph H was shown to be testable by Alon (cited as private communication

in [GGR98]). Testability of induced H-freeness came a few years later [AFKSOO].

Subsequenly, Alon and Shapira [ASO8b] showed that (non-induced) freeness from any

fixed collection of subgraphs is testable and, finally, the same two authors [AS08a]

established testability for induced freeness from any fixed collection of subgraphs.

The last result shows that any hereditary graph property is testable, meaning any

property P for which if a graph G satisfies P, then every induced subgraph of G

also does. The result of [AS08a] has been later extended to hereditary hypergraph

properties by Austin and Tao [AT08] and R6dl and Schacht [RS09].

Now, let us return to our linear-invariant properties. One work that initiated the

results motivating this thesis was by Green [Gre05]. His result can be formulated as

saying that for any rank one matrix M, the property of being (M, 1)-free can be tested

with one-sided error. Green conjectured that the same result holds for matrices of



higher rank also. This conjecture was confirmed by Shapira [Sha09] and Kral', Serra

and Vena [KSV08]. In our language, the results of [Sha09, KSV08] can be stated

as saying that for any matrix M, the property of being (M, 1)-free is testable with

one-sided error. The work described here is incomparable to these results; recall that

we show testability of (M, -)-freeness when a is arbitrary but M is of rank one. Also,

we show testability of an infinite collection of such properties whereas previous works

did not address the possibility of having an infinite number of constraints.

Comparing Theorem 8 to the results on graph properties, it seems that we have

achieved the parallel of the result of Alon and Shapira [ASO8a] that hereditary graph

properties are testable. We believe that when M is of high rank, it is actually the

hypergraph property of being induced H-free (for some fixed sub-hypergraph H) that

is analogous to being (M, o)-free. Since as mentioned, the result of [AS08a] has been

later extended to hypergraphs, it is natural to expect that one could also handle an

infinite number of forbidden induced systems of equations in the functional case as

well. All the above provides inspiration for Conjecture 2 which we now reformulate

in terms of local constraints.

Conjecture 2 (restated) For every (possibly infinite) set of systems of induced

equations F, the property of being F-free is testable with one-sided error.

We mention that while the notions of graph properties being hereditary and func-

tions being subspace-hereditary are somewhat more natural than the equivalent no-

tions of being free of induced subgraphs and equations respectively, it is actually

easier to think about these properties using the latter notion when proving theorems

about them. This was the case for graphs in [AS08a], and it will be the case in the

present work as well.

Let us now recall the four examples of testable linear-invariant properties described

in Section 1.2.4: linearity, low-degree polynomials, Fourier dimensionality/sparsity,

and odd-cycle-freeness. One can observe that all these properties are subspace-

hereditary. Thus, if our Conjecture 2 is true, as we strongly believe, then we could



explain the testability of all these properties through a unified perspective. Note

that our main result already shows (yet again!) that linearity is testable but from a

completely different viewpoint than used in previous analysis. Furthermore, to show

the testability of low degree polynomials (a.k.a., Reed-Muller codes) and Fourier di-

mensionality/sparsity, we would only need to resolve Conjecture 2 for a finite family

of forbidden induced systems of equations.

1.3.2 Lower Bound for Triangle-Freeness

Our second main result gives a non-trivial lower bound for an explicit testable linear-

invariant property. Observe that for any property P of functions, a tester that makes

o(1/E) queries will not be able to distinguish with constant probability between func-

tions satisfying P and functions e-far from satisfying P. So, Q(1/e) is a trivial lower-

bound that holds for any one-sided tester of a non-trivial property. We give the first

super-linear (in 1/c) lower-bound for a linear-invariant property of Boolean functions.

We analyze the testability of triangle-freeness: a function f: F' - {0, 1} is said

to be triangle-free if there are no X, y E Fn such that f(x) = f(y) = f(x + y) = 1.

Theorem 9 (Main Lower Bound Result) The one-sided query complexity for triangle-

freeness is at least Q((1/e) 2 .4 2 ).

Green [Gre05] showed that triangle-freeness is testable with query complexity that

is a tower-of-exponentials of height polynomial in 1/c. Thus, while we are quite far

away from understanding the right query complexity, our work shows that one cannot

expect an 0(1/E) or an 0(1/E2 ) algorithm, such as those for the properties described

in Section 1.2.4.

It is interesting to compare the testability of triangle-freeness for Boolean func-

tions and triangle-freeness for graphs. Using Szemer6di's regularity lemma, triangle-

freeness in graphs is also known to be testable with a tower-type query complexity

upper bound. Alon [Alo02] gave a super-polynomial query complexity lower bound,

and it is the strongest query lower bound for a natural testable property known to



date. However, the proof technique in [Alo02] does not seem to directly apply to the

our setting due to the algebraic structure of the Boolean cube.

Let us briefly describe the main thrust of the analysis. Call a 3-element set

{x, y, X + y} for some x, y E R a triangle in a function f : Fi - {0, 1} if f(x) =

f(y) = f(x+y) = 1. The canonical tester for triangle-freeness repeatedly picks x and

y uniformly and independently at random and checks if f(x) = f(y) = f(x + y) = 1.

Note that the canonical tester is inded a one-sided testing algorithm for triangle-

freeness. Moreover, if the number of triangles is NA for a function that is c-far

from being triangle-free, then for the canonical tester to reject such functions with

constant probability, it needs to make at least Q(!i) queries. Thus, in order to show

that the canonical tester has constant query complexity O(Q(E)) for some function

Q : (0, 1) - Z+, one would want to show that NA = 22,/Q(E). Green [Gre05] showed

this fact, albeit for Q(E) that was enormous, upper-bounded by a tower of 2's of height

polynomial in 1/e. The question of obtaining a better bound for NA was explicitly

left open in [Gre05].

In our work, we essentially show the existence of a function f : IF - {0, 1}

which is E-far from being triangle-free but for which NA = O(c4-847-) . 2 2n. Thus,

we get a lower-bound of Q((1/E) 4 .84 7 --) for the query complexity of the canonical

tester. Ultimately though, the goal is to lower bound the query complexity for an

arbitrary testing algorithm. To this end, we show that if there is a one-sided, possibly

adaptive tester for triangle-freeness with query complexity q, then one can transform

that tester into a canonical one with query complexity at most O(q 2 ). A more naive

argument blows up the query complexity to 2 q. The main fact used in our proof is the

pairwise independence of linear subspaces. Combining with our results for canonical

testers, this implies a query complexity lower bound of (1)2423 for triangle-freeness,

with respect to one-sided testers. A lower bound for 2-sided testers remains an open

problem.



1.3.3 One-sided Testability and Subspace Hereditariness

We now turn to discuss our third result, in which we explore the converse direction

to the results of Section 1.3.1. Namely, we roughly show that one-sided testability

using "natural" testers implies that the property is subspace-hereditary. Let us start

with formally defining the types of "natural" testers we consider here.

Definition 10 (Oblivious Tester) An oblivious tester for a property P =

is a (possibly 2-sided error) non-adaptive, probabilistic algorithm, which, given a dis-

tance parameter e, and oracle access to an input function f :Fi -+ {0, 1}, performs

the following steps:

1. Computes an integer d = d(E). If d(E) > n, let H = Fn. Otherwise, let H < IFn

be a subspace of dimension d(e) chosen uniformly at random.

2. Queries f on all elements x E H.

3. Accepts or rejects based only on the outcomes of the received answers, the value

of c, and its internal randomness.

We now discuss the motivation for considering the above type of algorithms. We

prove the fact that we can assume the tester is non-adaptive and queries a random lin-

ear subspace without loss of generality; this is analogous to the fact [AFKSOO, GT03]

that one can assume a graph property tester makes its decision only by inspecting a

randomly chosen induced subgraph. The only essential restriction we place on oblivi-

ous testers is that their behavior cannot depend on the value of n, the domain size of

the input function. If we allow the testing algorithm to make its decisions based on n,

then it can do very strange and unnatural things. For example, we can now consider

properties that depend on the parity of n. As was shown in [AS08c], the algorithm can

use the size of the input in order to compute the optimal query complexity. All these

abnormalities will not allow us to give any meaningful characterization. As observed

in [AS08a] by restricting the algorithm to make its decisions while not considering the

size of the input, we can still test any (natural) property while at the same time avoid



annoying technicalities. We finally note that all the testing algorithms for testable

properties of Boolean functions in prior works were indeed oblivious, and that fur-

thermore many of them implicitly consider only oblivious testers. In particular, these

types of testers were considered in [Sud10].

We first show that if Conjecture 2 is true, meaning subspace-hereditary properties

are testable, then actually, oblivious testers can test properties which are slightly

more general than subspace-hereditary properties. This larger class of properties is

defined as follows.

Definition 11 (Semi Subspace-Hereditary Property) A property P =

is semi subspace-hereditary if there exists a subspace-hereditary property ' such that

1. Any function f satisfying P also satisfies W.

2. There exists a function M (0, 1) - N such that for every e E (0, 1), if f
F, - {0, 1} is e-far from satisfying P and n > M(e), then flV does not satisfy

'N, for some subspace V < Fn.

The intuition behind the above definition is that a semi subspace-hereditary prop-

erty can only deviate from being "truly" subspace-hereditary on functions over a finite

domain, where the finiteness is controlled by the function M in the definition. Our

next theorem connects the notion of oblivious testing and semi subspace-hereditary

properties. Assuming Conjecture 2, it essentially characterizes the linear-invariant

properties that are testable with one-sided error, thus resolving Sudan's problem

raised in [Sud1.0].

Theorem 12 If Conjecture 2 holds, then a linear-invariant property P is testable by

a one-sided error oblivious tester if and only if P is semi subspace-hereditary.

Getting back to the similarity to graph properties, we note that [AS08a] obtained

a similar characterization for the graph properties that are testable with one-sided

error. Let us close by mentioning two points. The first is that most linear-invariant

properties are known to be testable with one-sided error, and hence the question of



characterizing these properties is well motivated. In fact, for the subclass of linear-

invariant properties which also themselves form a linear subspace, [BHR 05] showed

that the optimal tester is always one-sided and non-adaptive. Our second point is

that it is natural to ask if there are linear-invariant properties which are not testable.

A linear-invariant property with query complexity Q(2") arises implicitly from the

arguments of [GGR98]. A second, more natural, example comes from Reed-Muller

codes. [BKS+p09] shows that for any 1 < q(n) < n the linear-invariant property of

being a log2(q(n))-Reed-Muller code cannot be tested with o(q(n)) queries. We also

conjecture that the property of two functions being isomorphic up to linear transfor-

mations of the variables is not a testable property. Lower bounds for isomorphism

testing have been studied both in the Boolean function model [FKR+04, B010] and

in the dense graph model [Fis05], but our problem specifically does not seem to have

been examined in a property testing setting.

1.4 Organization

This thesis has four chapters subsequent to this one with technical content. Chapter

2 establishes combinatorial results regarding Boolean functions defined on Fn that are

instrumental in our testability work. In particular, we establish strengthened arith-

metic regularity lemmas, in the style of those developed by Alon et al. [AFKSOO] for

graphs. In Chapter 3, we prove Theorem 8 on the testability of properties described

by freeness from a collection of induced linear equations. At the end of this chapter,

we also show a stronger version of the theorem which shows testability for proper-

ties described by freeness from induced systems of equations of complexity 1. The

matrices describing such equations can have rank greater than 1. Chapter 4 gives

the proof of Theorem 9. In the course of doing so, we actually prove a more general

result about the structure of testers of (non-induced) matroid-freeness properties. In

Chapter 5, we prove the claims in Section 1.3.3, leading up to Theorem 12, the con-

ditional characterization of the testable linear-invariant properties. This chapter also

includes the proof of Proposition 5.



The content of Chapters 2, 3 and 5 appeared in [BGS 10]. The content of Chapter

4 appeared in [BX10].



Chapter 2

Regular Partitionings of the

Hypercube

In this chapter, we prove several facts about Boolean functions of the hypercube. In

particular, we will see a few different arithmetic regularity lemmas that are extensions

of Green's regularity lemma discussed in the Introduction. These extensions will be

important for proving the main testability result in this thesis.

2.1 Fourier Coefficients and Subspace Restrictions

The support of a Boolean function f refers to the subset of the domain on which f
evaluates to 1. If H is a subspace of F' and given function f : H 0 {, 1}, let p(f),

the density of f, denote . Recall that the Fourier coefficients of f, defined

for each a E H*, are:

f^(a) = E [f(x) 1) '">]
x6 H

For a parameter E E (0, 1), we say f is E-uniform if maxago If(a)I < E. This definition

captures the notion that the function does not agree with any linear function on H

and is hence "pseudorandom" against the class of linear functions.

Given a function f : F-+ {0, 1}, a subspace H < Fn and an element g E F',

define the function fjY : H -+ {0, 1} to be fH"(x) = f(x+g) for x E H. The support



of f+9 represents the intersection of the support of f with the coset g + H. The

following lemma shows that if a uniform function is restricted to a coset of a subspace

of low codimension, then the restriction does not become too non-uniform and its

density stays roughly the same.

Lemma 13 Let f : F -+ {0, 1} be an c-uniform function of density p, and let

H < Fn be a subspace of codimension k. Then for any c C Fn, the function f+C

H -> {O,1} is (2ke)-uniform and of density pc satisfying |pc - p| < 2kE

Proof: Let H' = {a E FIl (a, h) = 0 Vh E H} be the dual to the vector

H, and let H' = F2/H be the quotient of H in F2. We wish to show that, for

c E H', the Fourier coefficients of f 4+C are small.

For every 3 E Fn/H' and a E H':

space

every

f^(3+a)= E [f(x)X 0 (x)]
xEFn fXXO'Xl

=E IE fH"c'(h) Xo+.(c' + h)
c'EH' hEH

=IE Xf+a(c') E fH+C'(h)X(h)c'EH' hEH

2k S X,+a(c')f c'()
c'EH'

Recall that EH Xa(C) if C' ' 0 Fixing # E FI/H' and c E H' and
1, if C' = 0.

summing up the quantity computed above over all a (E H', we obtain

2k ( I: X!3a(c)f(# + a))
\aE H /

= S S Xa.+(c +
c'E H' aEHl

= X0+a(0)fL+I(3)
azEH-L

= 2kf~g~c(#)+ +

= 2kf^3C(#)+

= 2kf+c(3).

c'EH'-{O}

S
c'EH'-{0}

c')fc' (/)

± SX +a(c + c')f'(/)
c'EH'-{c} aEH'

S Xa±a(c')f~gc'+c(/3)aEHL

X0 (C'){ Xa (C' J ̂+ '+C(0
\aeHL



Furthermore,

f^+c(#) = ~ Xfa(c)f(/+ a) Z x 0+a(c)f'P + a) = f(/3+ a)
QCH'L aEH' aCH-L

Since f is c-uniform, setting # = 0 in the above inequality shows that |pc - pl <

EO HI If(a) I < 2kc. For nonzero / in FI/H', it follows again from c-uniformity

that I jfc(3)1 < 2kE. *

2.2 Regularity Lemmas

For a subspace H < Fr, the H-based partition refers to the partitioning of F' into the

cosets in F'/H. If H' < H, then the H'-based partition is called a refinement of the

H-based partition. The order of the H-based partition is defined to be [G : H], i.e.,

the index of H as a subgroup or the dimension of the quotient space F'/H. Using

this notation, Green's regularity lemma can be stated as follows.

Lemma 14 (Green's Regularity Lemma [Gre05]) For every m and e > 0, there

exists T = T1 4 (m, C) such that the following is true. Given function f : Fn -+ {0, 1}

with n > T and H-based partition of F" with order at most m, there exists a refined

H'-based partition of order k, with m < k < T, for which f)4? is not c-uniform for at

most c2" many g C F .

Our main tool in this work is a functional variant of Green's regularity lemma, in

which the uniformity parameter c is not a constant but rather an arbitrary function

of the order of the partition. It is quite analogous to a similar lemma, first proved

in [AFKSOO], in the graph property testing setting. The recent work [GT10] shows

a (very strong) functional regularity lemma in the arithmetic setting but it applies

over the integers and not F2 .

Lemma 15 (Functional regularity lemma) For integer m and function S : Z+

(0,1), there exists T = T15 (m, 8) such that the following is true. Given function

f :F -+ {0, 1} with n > T, there exist subspaces H' < H < F' that satisfy:



" Order of H-based partition is k > m, and order of H'-based partition is f < T.

" There are at most S(0) -2' many g E F' such that f+g is not 8(O)-uniform.
ever 22'- +g+h i

For every g E F, there are at most E(k) 2 n-k many h E H such that fH'is

not E(k)-uniform.

" There are at most E(0) -2' many g E F' for which there are more than E (0)- 2 -k

many h E H such that |p( f +g+h| > E(0)

Proof: Let us first give an informal overview of the proof. The basic idea is to re-

peatedly apply Lemma 14, at each step refining the partition obtained in the previous

step. At each step, Lemma 14 is applied with a uniformity parameter that depends

on the order of the partition obtained in the previous step. We stop when the index

of the partitions stop increasing substantially. Given a subspace H, the index of the

H-based partition is defined to be the variance of the densities in the cosets:

ind(f, H) 1 I p2 f)

gEFg

We show that when the indexes of two successive partitions are close, then on average,

each coset of the finer partitioning has roughly the same density as the coset of the

coarser partitioning it is contained in.

To implement the above ideas, we need the following two claims about the index of

partitions. Their proofs are essentially identical to those for the corresponding Lem-

mas 3.6 and 3.7 respectively in [AFKSOO], and so we are a bit brief in the following.

Claim 16 Given subspace H < IF' and function f : F- {0, 11, suppose that there

are at least e2" many g E Fn such that |p( f) - p(fi)j > e. Then:

ind(f, H) >p 2 (f) + 2
2

Proof: Observe that the average of p(f ") over all g E Fn equals p(f). From our

assumptions, either there are 12" many g E Fn such that p(f) - p(f ") > e or there



are 12" many g E F' such that p(f) - p(flY) < -e. For either case, we can use the

defect form of the Cauchy-Schwarz inequality to prove our claim. U

Claim 17 For function f : F - {0, 1} and subspaces H' < H < F', suppose the H-

based partition of order k and its refinement, the H'-based partition, of order f satisfy

ind(f, H') - ind(f, H) < 4 for some e. Then, there are at most c2' many g E F for

which there are more than e2"-k many h E H satisfying |p( + ?(+g+h

Proof: Suppose that there are > E2"n many g E Fn such that there are > E2 -k many

h E H satisfying |p(fj+g) - p(f +h)| > E. Use Claim 16 to obtain a contradiction:

ind(f,H')= = 1 2 (f+v+h)ind~f, H' 2f 2k 21,k Z
uEFn/H' v6F /H h6H/H'

1 
vnd(fv)

>~(zp2(fH~v)±C Ek-)

= ind(f,H)+±
2

U

Now we have the pieces needed to prove the lemma. We can assume E(-) is

monotone non-increasing. Let e = E(0). We define T inductively as follows. Let

T()- T14 (m, e), and for i > 1, let:

T T14 (Ti-1, 2 ( 2

We now show that this choice of T suffices. Given function f : F-+ {0, 1}, apply

Lemma 14 with m and e to get a subspace H1 , and thereafter repeatedly apply it to

get a sequence of finer subspaces H2 , H3 , H4 ,..., with Hi > H2 > H3 ;> H4 > - - -

by invoking Lemma 14 at each step i > 1 with T~-1 and E (T(- 1 3)- 2 -T 1)as the



two input parameters. Stop when ind(f, Hi+1) - ind(f, Hj) < (. This happens when

i is at most 2c-4 + 1 because the index of any partition is less than 1. Let H = Hi

and H' = Hi+1. It's clear that the codimension k of H at least m and that the

codimension f of H' is at most T. The second item in the lemma follows from the

uniformity guarantee of Lemma 14 and from the fact that E(T('- 1 )) <,E(0). For the

third, note that Lemma 14 guarantees that there are at most E(k)2-k2n = E(k)2-k

values of g E Fn such that f+g is not (E(k)2-k)-uniform and, hence, not E(k)-uniform.

So, clearly, there are at most so many g contained in any coset of H. Finally, the

fourth item follows from Claim 17. This completes the proof of Lemma 15. M

We use Lemma 15 in two main ways. For one of them, we use the lemma directly.

For the other, we use the following simple but extremely useful corollary which allows

us to say that there are many cosets in a partitioning which, on the one hand, are all

uniform, and on the other hand, are arranged in an algebraically nice structure.

Corollary 18 For every m and 8 : Z+ -+ (0, 1), there exist T = Tis(m, S) and 6 =

61s(m, 8) such that the following is true. Given function f : F' {0, 1} with n > T,

there exist subspaces H' < H < Fn and an injective linear map I Fn/H - Fn/H'

such that:

e The H-based partition is of order k, where m < k < T. Additionally, |H'|

62".

* For each u E Fn/H, 1(u) + H' lies inside the coset u + H. Note that 1(0) = 0

since I is linear.

* For every nonzero u e F2/H, the set f51(") is 8(k)-uniform.

" There are at most E(0)2" many g E Fn for which |p(f!") - p(fUf(")| > E(0)

where u = g (mod H).

Proof: We can assume 8 is a nonincreasing function. Denote E(0) as e, and set
will =def

'(r) = min(E(r), 1, ). We will show that T = Tis(m, E)=Ti(m, 8') and =

61 (m, 8) 1/2 suffice for our proof.



Apply Theorem 15 with m and the function E as inputs. Let H and H' be the

subspaces obtained there, for the given f : F + {0, 1}. We find I satisfying the

conditions of the claim exists using the probabilistic method.

Fix k linearly independent elements u1,... , E E Fi'/H (viewing Fn/H as a vector

space over F2). For every i E [k], choose independently and uniformly at random an

element v from H/H' and let I(ui) equal ui + v + H'. The value of I over the rest of

F/H is determined by linearity, as the uw's form a basis for Fn/H. It's immediate

that 1(u) + H' lies inside u + H for every u E Fn/H.

Observe that unless u = 0, each I(u) + h' is uniformly distributed among the

cosets of H' lying in u + H. Hence, for any nonzero u, the probability that fif(U)

is not E(k)-uniform is at most 1/ 2 k+1, by our choice of parameters. Applying the

union bound, the probability that there exists nonzero 2 F/H such that fi,) is

not E(k)-uniform is at most 1/2. Also, the expected number of g E Fn, with u = g

(mod H), for which |p(f g) - p(ff())| > e is at most '2"+'2"+1 < '24, and hence

by the Markov inequality, with probability at least }, the number of g E Fn satisfying

this condition is at most e2n. Therefore, there must exist a choice of I making both

the third and fourth claims true. U

The next lemma is in a similar spirit to Corollary 18. It also obtains a set of

uniform cosets which are structured algebraically, but in this case, all of them are

contained inside the same subspace.

Lemma 19 For every positive integer d and 1' E (0, 1), there exists 6 = 619 (d, -y) such

that the following is true. Given f : Fn -+ {0, 1}, there exists a subspace H < Fn and

a subspace K of dimension d in the quotient space F/H with the following properties:

" |H > 62".

" For every nonzero u E K, fH" is a-uniform.

" Either p(ff") > } for every nonzero u E K or p(fHj") < - for every nonzero

u E K.



We need a different set of tools to prove this lemma. Specifically, we use linear

algebraic variants of the classic theorems of Turin and Ramsey. We note that the

(classic) Turin and Ramsey Theorems are key tools in many applications of the graph

regularity lemma, for example in the well known bound on the Ramsey numbers of

bounded degree graphs [CRSW83]. Hence, the variants that we use of these classic

results may be useful in other applications of Green's regularity lemma.

Proposition 20 (Turin theorem for subspaces) For positive integers n, if S is

a subset of F" with density greater than 1 - 2-1, then there exists a subspace H < FI

of dimension d such that H - {0} is contained in S. Moreover, there is a subset of

Fi with density (1 - 2_-1) which does not contain H - {0} for any subspace H FP.

Proof: Let S C Fn be a maximal set that does not contain H - {0} for any d-

dimensional subspace H. Since S is maximal, it must contain K -{O} for some (d-1)-

dimensional subspace K (if not, we can simply add it to S without introducing points

of H - {0} for any d-dimensional subspace H). Let K' be an (n - d + 1)-dimension

subspace that intersects K only at {0}.

Now, observe that for any nonzero a E K', at least one of the elements of {a + k:

k E K} must not belong to S. Otherwise, S would contain (K - {0}) U {a + k : k E

K} = H - {0} for a d-dimensional subpace H = span(K U {a), contradicting our

assumption for S. Thus, we can upper-bound the number of points in S by:

|SI < IK'-{0}|-(IK-1)I+K-{0}| = (2 n-d+1 -) ( 2 d-11)+( 2d-1 1) = 2n-2n-d+1

To see that the above bound is tight, let S = Fn - K' for any (d - 1)-dimensional

subspace K < Fn and K' as above. It is easy to check that this S does not contain

H - {0} for any H < Fn with dim(H) = d. 0

Theorem 21 (Ramsey theorem for subspaces) For every positive integer d, there

exists N = N21 (d) such that for any subset S C FN, there exists a subspace H < F'

of dimension d such that H - {0} is contained either in S or in S.



Proof: We will show a stronger statement, which we describe in the following

lemma.

Lemma 22 For every positive integer d1 , d2 , there exists N(d1 , d2 ) such that for any

subset S C F N(dd2) , either there exists a subspace H1 < F (d,d2) of dimension d1

such that H1 - {0} is contained in S or there exists a subspace H 2 < FN(d1,d2) of

dimension d2 such that H 2 - {0} is contained in S.

One can immediately deduce the statement of the theorem by taking d = di = d2

in Lemma 22. To prove Lemma 22 we first prove the following helpful result. For a

subspace H < Fn we say that an affine subspace a + H is strict if a E Fn/H - {0}.

Lemma 23 For every positive integer d, there exists Na = Na(d) such that for any

subset S C FNa, there exists a strict affine subspace A < FNa of dimension d such

that A is contained either in S or in S.

Proof: Notice that Na(1) = 1. Assume, by induction that the lemma holds for

dimension d - 1, and let Na(d) = 2 Na(d-1)+1 + Na(d - 1). Let S C FNa(d) be an

arbitrary set, let H = FN"(d-
1

), and H' = IF (d) /H. Notice that IH'l = 22Na(d-1)+1

For each c E H' - {0} consider the set f+c C H. Since there are 2 2 Na(d-1)+1 - 1

possible such sets, and each set has size at most 2 Na(d-1) it follows that there exists

c1 f c2 E H' - {0} such that fnc= fC2 By the induction hypothesis, either fC

or its complement contains a d - 1 dimensional affine subspace. Assume w.l.o.g. that

f+C1 contains an affine subspace a + fl-1 of dimension d - 1 (otherwise replace S by

S), for some a E H - fd-1. Then the affine subspaces a + c1 + fd-1 and a + c2 + fd_1

are both contained in S. Let Ad = (a + c1 + fd-1) U (a + c2 + fd-1) c S. To conclude

the proof, notice that Ad = a + ci + span(c2 - c1 , fd-1) is a strict affine subspace of

dimension d, since a f ci and c2 - c1 g fd 1. U

Proof of Lemma 22: The proof follows by induction on di and d2 , with the base

cases N(O, 1) = N(1, 0 = 1. Assume that there exists N(di - 1, d2) and N(di, d2 - 1)



satisfying the conditions of the lemma. Define

N(di, d2 ) = Na(max(N(di - 1, d2 ), N(di, d2 - 1))),

where Na(d) is the quantity defined in Lemma 23. We show that for any arbitrary

set S C FN(di,d2 ) either it contains a subspace of dimension di (except 0) or its

complement contains a subspace of dimension d2 (except 0). Suppose N(di - 1, d2 ) >

N(di, d2 - 1). By definition and by Lemma 23, there exists a strict affine subspace

A G FN(d,'d2) such that A = a+H C S or A C S (where H is the subspace underlining

A). Assume for now that the former holds. Since HnS C FN(di-1,d2), by the induction

hypothesis, either H n S contains a subspace of dimension di - 1 or H - S contains

a subspace of dimension d2 , in which case we are done. If H n S contains a subspace

fd 1 -1 - {0} of dimension di - 1, then define fd, = fd 1 _1 U a + fd 1-1 = span(a, fd-1).

Clearly fdi E S and it has dimension di, which completes the proof of this case. It

remains to deal with the case when A C S. Since N(di - 1, d2) > N(di, d2 - 1), there

exists another affine subspace A' = a' + H' C A C S of dimension N(di, d2 - 1).

Again, by the induction hypothesis, the set H' n S either contains a subspace of

dimension di, in which case we are done, or H' - S contains a subspace fd 2 -1 of

dimension d2 - 1. In the latter case define fd 2 = fd 2 -1 U a' + fd 2 -1 = span(a', fd 2 -1).

Finally, notice that fd 2 E S and it has dimension d2. 0

This concludes the proof of Theorem 21.0

Given these results, Lemma 19 follows fairly readily.

Proof of Lemma 19: Set 6 = 619 (d, y)d eT 4 (r,min(2-r 2,) with r = N 2 1 (d). Given

f :F -+ {0, 1}, apply Lemma 14 with inputs r and min(2-r- 2, -y) to obtain a

subspace H such that restrictions of S to at most 2 -r-2 fraction of the cosets of the

H-based partition are not 'y-uniform. Using Proposition 20, there exists a subspace

L F2/H of dimension r such that for every nonzero u E L, the set fZ" is 'y-uniform.

Furthermore, since L is of dimension N21(d), by Theorem 21, there exists a subspace

K K L < F'/H satisfying the final condition of the lemma. U



Chapter 3

Testability of Non-Monotone

Properties

In this chapter, we prove the result (Theorem 8) that properties characterized by

infinitely many forbidden induced equations are testable. To begin, let us fix some

notation. Given a matrix M over F2 of size m-by-k, a string o- E {0, 1}k, and a

function f :F - {0, 1}, if there exists x = (x1,... , z,) E (Fl)k such that Mx 0

and f(xi) = a, for all i E [k], we say that f induces (M, o-) at x and denote this by

(M, o-) - f .

The following theorem is the core of the proof of Theorem 8.

Theorem 24 For every infinite family of equations F = {(E', o1), (E 2 , .2 ),... (Eia) }

with each E' being a row vector [1 1 1] of size ki and oa E {0, 1}k a ki-tuple, there

are functions N7 (-), kF(.) and 6 y(.) such that the following is true for any e E (0,1).

If a function f : Fn _ {0, 1} with n > Ny(E) is c-far from being F-free, then f
induces 6 - 2 n(ki-1) many copies of some (E',a'), where ki < ky(e) and 6 > 6y(c).

Armed with Theorem 24 our main theorem becomes now a straightforward con-

sequence.

Proof of Theorem 8: Theorem 24 allows us to devise the following tester T for

F-freeness. T, given input f : Fn {0, 1}, first checks if n < N-(e), and in this



case, it queries f on the entire domain and decides accordingly. Otherwise, T selects

independently and uniformly at random a set D of d elements from F', where we

will specify d at the end of the argument. It then queries all points in the linear

subspace spanned by the elements of D and then accepts or rejects based on whether

f restricted to this subspace is F-free or not.

Clearly, if f is F-free, then the tester always accepts because the property is

subspace-hereditary. Also, if n < Ny(e), then the correctness of the algorithm is

trivial. So, suppose f is e-far from F-free and n > Ny(e). For the M' guaranteed

to exist from Theorem 24, let K be a ki x c matrix over F2 , where c = ki - mi <

ky(e), such that the columns of K form a basis for the kernel of M2. Then, every

y (i, . . . , yc) E (F')C yields a distinct vector x = (x 1 , ... ,.zk) E (FR)k formed by

letting x = Ky that satisfies M'z = M'Ky = 0. Therefore, because of Theorem 24,

the probability that uniformly chosen y1,--- , yce EF yield x = (x 1 ,... , Xz) such that

f induces (Mi, a) at x is at least 6y(e). The probability that D does not contain

such y1, . . . , yc is at most (1 - 6)d/c < e )d/c < 1/3 if we choose d = O(c/or(e)) =

O(ky(e)/6(e)). Thus with probability at least 2/3, span(D) contains x 1 ,... , xk such

that f induces (M', o7) at x = (x 1 , ... , Xk), making the tester reject. U

To start the proof of Theorem 24, let us relate pseudorandomness (uniformity) of

a function to the number of solutions to a single equation induced by it. Similar and

more general statements have been shown previously, but we need only the following

claim for what follows.

Lemma 25 (Counting Lemma) For every r E (0, 1) and integer k > 2, there

exist 2 = y(17, k) and 6 = 625(rl, k) such that the following is true. Suppose E is

the row vector [1 1... 1] of size k, o- E {o, 1 }k is a tuple, H is a subspace of Fn,

and f : IF - {0, 1} is a function. Furthermore, suppose there are k not necessarily

distinct elements u1 ,... ,Uk E F2/ H such that Mu = 0 where u = (U,... ,Uk)

fju: H - {0, 1} is 7-uniform for all i E [k], and p(f "i) is at least r/ if -(i) = 1

and at most 1 - 77 if -(i) = 0 for all i E [k]. Then, there are at least 6|H k-1 many

k-tuples x = (x 1 , x2 ,... , Xk), with each xi E ui + H, such that f induces (E, o) at x.



Proof: Fix vi E ui+ H, v2 E u2+H,. , k E uk+ H such that v1+v 2 +- - -+Vk = 0;

there exist such vi's because ui+i2+- - -+uk = 0 in the quotient space F'/H. Define

Boolean functions fi, . . . , fk : H - {0, 1} so that fi(x) = f+vz(x) if o-(i) = 1 and

fi(x) = 1 - fjvi(x) if -(i) = 0. By our assumptions, fi(0) r/ and each |fi(a)I < -

for all a # 0. Now, observe that, using 7y-uniformity and Cauchy-Schwarz, we have:

E [fi(Xi)f 2 (X2 ) ... fk-1(Xk_1)fk(X1 + X2 + - + Xk-1)]
X1,---,Xk-1EH

=H fi(a)f2(a ) - -fk(O)
aEH*

> 77 k - 5: f1(af(f(

>77ky h Sfi2 A1(a)1

af0

>k _ k-2

Setting y = 72(r, k)f(,,k/ 2 )1/(k-2) makes the above expectation at least 77 k/ 2 . Now

note that every x 1, .. . , z E H such that X1 + -'' + Xk = 0 gives y = (y1,...,y),

where y, = vi + x for all i E [k], such that f induces (E, o) at y. Thus, we have from

above that there are at least 61H~k many such y's, where 6= 625(r/, k) 77 /2. U

3.0.1 Proof of Theorem 24

Before seeing the full technical details of the proof of Theorem 24 we proceed with a

more intuitive overview.

In light of Lemma 25, our strategy will be to partition the domain into uniform

cosets, using Green's regularity lemma (Lemma 14) in some fashion, and then to

use the above counting lemma to count the number of induced solutions to some

equation in -F. But one issue that immediately arises is that, because F is an infinite

family of equations, we do not know the size of the equation we would want the

input function to induce. Since Lemma 25 needs different uniformity parameters to

count equations of different lengths, it is not a priori clear how to set the uniformity



parameter in applying the regularity lemma. (If F was finite, one could set the

uniformity parameter to correspond to the size of the largest equation in F.)

To handle the infinite case, our basic approach will be to classify the input function

into one of a finite set of classes. For each such class c, there will be an associated

number kc such that it is guaranteed that any function classified as c must induce

an equation in F of size at most kc. If there is such a classification scheme, then

we know that any input function must induce an equation of size at most maxc kc.

How do we perform this classification? We use the regularity lemma. Consider the

following idealized situation. Fix an integer r. Suppose we could modify the input

f :F -+ {0, 1} at a small fraction of the domain to get a function F : F - {0, 1}

and then could apply Lemma 14 to get a partition of order r so that the restrictions of

F to each coset was exactly 0-uniform. F is then a constant function (either 0 or 1) on

each of the 2r cosets, and so, we can classify F by a Boolean function y : F' --+ {0, 1}

where p(x) is the value of F on the coset corresponding to x. Notice that there

are only finitely many such p's. Since F differs from f at only a small fraction of

the domain and since f is far from F-free, F must also induce some equation in F.

Then, for every such p and corresponding F, there is a smallest equation in F that

is induced by F. We can let 'IF(r) be the maximum over all such [1 of the size of the

smallest equation in F that is induced by the F corresponding to pa. We then might

hope that this function IF(-) can be used to tune the uniformity parameter by using

the functional variant of the regularity lemma (Lemma 15).

There are a couple of caveats. First, we will not be able to get the restrictions to

every coset to look perfectly uniform. Second, if F induces solutions to an equation,

it does not necessarily follow that f also does. To get around the first problem, we

use the fact that Lemma 25 is not very restrictive on the density conditions. We think

of the uniform cosets which have density neither too close to 0 nor 1 as "wildcard"

cosets at which both the restriction of f and its complement behave pseudorandomly

and have non-negligible density. Thus, the p in the above paragraph will map into

{ 0, 1, *}', where a '*' denotes a wildcard coset. For the second problem, note that it is

not really a problem if F-freeness is known to be monotone. In this case, F inducing



an equation automatically means f also induces an equation, if we obtained F by

removing elements from the support of f. For induced freeness properties, though,

this is not the case. Using ideas from [AFKSOO] and the tools from Chapter 2, we

structure the modifications from f to F in such a way so as to force f to induce

solutions of an equation if F induces a solution to the same equation. We elaborate

much more on this issue during the course of the proof.

The observations described in the proof sketch above motivate the following defi-

nitions.

Definition 26 Given function yp F: {0, 1, *}, a rn-by-k matrix M and a k-

tuple o E {0, 1 }k, suppose there exist x 1,..., Xk F such that Mx = 0 where

x = (x 1 ,..., Xk), and for every i E [k], pi(xi) equals either -(i) or *. In this case, we

say p partially induces (M, -) at x and denote this by (M, o-) -,up.

Definition 27 Given a positive integer r and an infinite family of systems of equa-

tions F = {(M 1, U), (M 2 , .2),... } with M' being a mi-by-ki matrix of rank mi and

o E {0, 1 }ik a ki-tuple, define F, to be the set of functions pu Fr -+ {0, 1, *} such

that there exists some (M', a') E F with (Mi, a') 9, p. Given F and integer r for

which F, , 0, define the following function:

def
Wy(r) = max min k

Proof of of Theorem 24: Define the function E by setting E(0) = e/8 and for any

r > 0:

E(r) = 61 9 (y(r), 725 (E/8, xPyF(r))) -min(E/8, 725(E/8, Ty(r)))

Additionally, let T(e) = T18(8/E, S), and set NF(e)=T(E). Also, set ky(e)='='y(T(e))

and

=(E) (619 ('F(r), 125(c/8, 'I'y(r))) ' 218(8/E, E))/( -5(E/8, TIy(T(e)))

We proceed to show that these parameter settings suffice.



Suppose we are given input function f : IF -+ {0, 1} with n > Nr(e) = Tis(8/c, E).

As mentioned in the paragraphs preceding the proof, our strategy will be to partition

the domain in such a way that we can find cosets in the partition satisfying the

conditions of Lemma 25. To this end, we apply Corollary 18 with 8/E and the function

as inputs. This yields subspaces H' < H < F' and linear map I: Fn/H -+ Fn/H',

where the order of the H-based partition, which we denote f, satisfies 8/E < f <

T18 (8/E, E). Recall that I(u) + H' is contained in u + H for every coset u E Fn/H.

Observe that from our setting of parameters, we have that for every nonzero u E

Fn/H, the restriction f+(U) is (619('y(t), 72(e/ 8 , Wy(t))) -2 5 (E/8, WF7 (e)))-uniform.

But we have no such uniformity guarantee for f+I?. This would not pose an

obstacle if F-freeness were a monotone property (i.e., if each o equalled 1i). If that

were the case, we could simply make f zero on all elements of H. Since H is still only

a small fraction of the domain, the modified function would still be far from F-free,

and we would be guaranteed that remaining solutions to equations of F induced by

f would only use elements from cosets of H for which we have a guarantee about the

corresponding coset of H'. But if F-freeness is not monotone, such a scheme would

not work, since it's not clear at all how to change the value of f on H so that any

solution to an equation from F would only involve elements from nonzero shifts of

H.

To resolve this issue, we further partition H' to find affine subspaces within H'

on which we can guarantee that the restriction of f is uniform. The idea is that

once we know that there is a solution involving H, we are going to look not at

H' itself but at the smaller affine subspace within H' on which f is known to be

uniform. Specifically, apply Lemma 19 to fi? with input parameters W'(f) and

725(E/8, 'I()). This yields subspaces H" and W, both of which contained in H', such

that |H"| ; 619(>_ (/),725(E/8, Wy(f)))|H' and dim(W/H") = Iy(e). We further

know that for every nonzero v E W/H", the function fg is 72 5(E/8, TTWy(f))-uniform.

Now, let's "copy" W on cosets 1(u) + H' for every u E Fn/H. We do this by



specifying1 another linear map J: F'/H * Fn so that for any u E Fn/H, the coset 2

J(u)+W lies inside I(u)+H' (which itself lies inside u+H). Each coset J(u)+W also

has an H"-based partition of order Wy(f), just as W itself does. Consider v E Fn/H"

such that v + H" lies inside J(u) + W for some nonzero U E Fn/H. Then, because

we know the uniformity of fjI(u) and we have a lower bound on the size of H", it

follows from Lemma 13 that fHJt is 25(6/8, TI'(f))-uniform. Thus, for any nonzero

o E Fi/H" such that v + H" lies inside J(u) + W for some u E F2/H, it is the case

that fij is 725(c/ 8 , WI'y(f))-uniform.

In the following, we will show how to apply Lemma 25 on some of these cosets

fi1. We have already argued their uniformity above. We now need to make sure that

the pattern of their densities allow Lemma 25 to infer many induced copies of some

equation in F. To this end, we modify f to construct a new function F : Fi {0, 1}.

F is initially identical to f on the entire domain, but is then modified in the following

order:

1. For every nonzero u E F/H such that |p(Fju) - p(F, f"))I > e/8, do the

following. If p(F!(u)) > j, then make F(x) = 1 on all x E u + H. Otherwise,

make F(x) = 0 on all x E u+ H.

2. For every nonzero u E Fn/H such that p(FI(u)) > 1 - c/4, make F(x) = 1 for

all x E u+ H. On the other hand, if u E IFn/H is nonzero and p(FI(u)) < E/4,

make F(x) = 0 for all x E u + H.

3. If for all nonzero v E W/H", p(F41) > j, then make F(x) = 1 for all x E H. On

the other hand, if for all nonzero v E W/H", p(Fjv) < 1, them make F(x) = 0

for all x E H. (One of these two conditions is true by construction.)

The following observation shows that F also must induce solutions to some equa-

tion from F, since F is e-far from being F-free.

'One way to accomplish this is to define J appropriately for f linearly independent elements of
IFn/H and then use linearity to define it on all of F'/H.

2 Note that the image of J is to elements of F' and not IF'/W, even though we think of the
output as denoting a coset of W. The reason is that we will find it convenient to fix the shift and
not make it modulo W.



Claim 28 F is c-close to f.

Proof: We count the number of elements added or removed at each step of the

modification. For the first step, Corollary 18 guarantees that at most S(0) < E/8

fraction of cosets u + H have |p(Fu) - p(Ff(u))I > e/8. So, F is modified in at

most '2' locations in the first step. In the second step, if 1 > p(FI(u)) > 1 - c/4,

then p(FH4u) > 1 - 3c/8 because the first step has been completed. Similarly, if

0 <p(F+f(u)) < e/4, then p(Fju) < 3e/8. So, F is modified in at most L2' locations

in the second step. As for the third step, H contains at most 2n-' < 2n-8/ < n

elements for c E (0, 1). So, in all, F is c-close to f. U

Now, we define a function :F --+ {0, 1, *} based on F and argue that it

must partially induce solutions to some equation in F. Since H is of codimension f,

Fi/H E Ft and we identify the two spaces. For u E Fr/H, if F(x) = 1 on the entire

coset u + H, let p (u) = 1. On the other hand, if F(x) = 0 on the entire coset u + H,

then let p(u) = 0. In any other case, let p(u) = *.

Claim 29 There exists (E,a') E F such that (E',ua) -+* p.

Proof: As already observed, F is not F-free, and let (E, o) E F be some equation

whose solution is induced by F at (X1 ,..., s) E (F)ki. Now let y = (yi, ... , yk2) E

(Ft)ki where for each j E [ki], yj = xj (mod H). It's clear that E*y = 0. To argue

that F partially induces y at y, suppose for contradiction that for some j E [ki],

t(yj) = 0 but oj = 1. But if p(yj) = 0, then F is the constant function 0 on all of

yj + H, contradicting the existence of xj E yj + H with F(x) = 1. We get a similar

contradiction if p(yj) = 1 but aj = 0. M

Using Definition 27, we immediately get that there is some (E, o) E F of size

at most Wy'~(f) such that (E',o) -, p. Fix X1,... , E Fi where F induces

(E, a'), and as in the above proof, let Y1,... , Yk, E Fn/H where each y3 = zj

(mod H). Also, pick ki - 1 linearly independent elements 1,. .. , v 2 _1 from W/H",

which is possible since dim(W/H") = TWr(f) > ki - 1, and choose vi E T)1 +



H", ... , Vk1 E Vkj-1 + H" such that Vi... . , V, are linearly independent. Addi-

tionally set V, = v-1 o. Notice that none of v1,..., vk, are in H". Now, consider
theses J(Yi)+vi f ...)V2 +J(Yk)Vi

the sets f+(2)v2 fH1 k . (Notice these are restrictions of f, not

F!) We will show that these sets respect the density and uniformity conditions for

Lemma 25 to apply.

As for uniformity, we have already argued that each of these sets is 725 (E/8, W )) -

uniform, since J(yj) + vj is not in H" for every j E [ki]. For density, we argue as

follows. For every j E [ki], there are three cases: p(yj) = 1, p(yj) = 0, and p/(y) = *.

Consider the first case. If y3 + H was affected by the first modification from f to

F, then, p(f>f(Y")) -j, and using the E(e)-uniformity of f f (Yj) along with Lemma

13, we get that p(fI()V ) S g(f) . 6 1 (y(r),7 25(c/8, 4'(r))) > _ - 8 -

If y3 + H was affected by the second modification, then, by the same argument, we

get that p(fw+" j "±) >1- .- . Else, if yj + H was affected by the third
_ 4 8 -8

modification from S to S', we are automatically guaranteed that p(fW(Y+v

since J(yj) + v, # H". The case p(yj) = 0 is similar, and the analysis shows that

p(f (YJ)+VJ) > 1 - 1. Finally, consider the "wildcard" case, p(yj) *. This case

arises only if yj # 0 and c/4 < p(f f(Y) K 1 - c/4. Again using E(e)-uniformity of

/f(Y) along with Lemma 13, we get that e/8 < p(f 3j)±vj) < 1 - E/8.

Thus, we can apply Lemma 25 with E/8 and WIy(f) as the parameters to get

that there are at least 625(c/8, lWy(Q)IHi -' tuples z 1 - - - , zki) with each zj E

J(y,) + vi + H" at which (E', a) is induced . Finally, each such zi,... , zkj leads to a

distinct z' = (z', ... , z) E (F)kt at which (E', a') is induced by f, by setting each

zj to J(yj)+vj +zj and observing that EkI J(yj)+v= J ( kyi ) + E 1 vj = 0.

This completes the proof of Theorem 24. U

3.0.2 Extending to Complexity 1 Systems of Equations

As mentioned in the introduction, the result we actually prove is stronger than The-

orem 8. To describe the full set of properties for which we can show testability, we

first need to make the following definition.



Definition 30 (Complexity of linear system [GT08]) An m x k matrix M over

F2 is said to be of (Cauchy-Schwarz) complexity c, if c is the smallest positive integer

for which the following is true. For every i E [k], there exists a partition of [k]\{i}

into c + 1 subsets Si,--., Sc+1 such that for every j E [c + 1], (ei + Zi'C, ei)

rowspace(M), where rowspace(M) is the linear subspace of Fk spanned by the rows of

M.

In other words, if we view the rowspace of the matrix M as specifying a collection of

linear dependencies on k variables X1, .. . , Xf, then M has complexity c if for every

variable xi, the rest of the variables X1 , .. . , Xi_ 1, Xi+1, .. . , xk can be partitioned into

c + 1 sets S1, . .. , Sc+1 such that xi is not linearly dependent on the variables of just a

single Sj. Let us make a few remarks to illustrate the definition. Green and Tao show

(Lemma 1.6 in [GT08]) that if each of these linear dependencies involves more than

two variables, then the complexity of M is at most rank(M) = m. In particular then,

if M has one row and is nonzero on more than two coordinates, M has complexity

1. This is the setting we discussed in the introduction. We slightly extend this

observation in the claim below. Before we state it, we observe that in the context of

property testing, it is only natural to exclude matrices which yield linear dependencies

involving less than three variables. If the rowspace of the matrix M contains a vector

which is nonzero only at one coordinate i, then for any string - of length k, the

property of (M, -)-freeness must contain all functions f such that f(0) = 1 - a-, and

so every function is exponentially close to such a property. Similarly, if rowspace(M)

contains a vector nonzero only at two coordinates i and j, then for any a E {O, 1}k,

either (M, -)-freeness is trivial (if o- # o3 ) or it is equivalent to (M', -')-freeness where

o-' is the string obtained by removing coordinate j and M' is the matrix obtained by

removing column j, adding 1 (mod 2) to every element in column i and removing any

resulting all-zero rows.

Claim 31 If M E F,"k is a matrix with two rows such that every vector in its

rowspace has at least three nonzero coordinates, then M has complexity 1.



Proof: Let R 1 C [k] be the set of coordinates for which the first row is nonzero,

and R 2 C [k] those for which the second row is nonzero. We can assume that R1 g R2

and R 2 g R 1, because if, say, R1 C R 2 , we could replace the second row by the sum

of the first and second, making R1 and R 2 disjoint but preserving the rowspace of the

matrix. Also, we we can assume w.l.o.g. that R1 U R 2 = [k].

Fix i E [k]. We want to show a partition of [k]\{i} into sets S 1, S2 such that

ej + EICS eg V rowspace(M) and similarly for S2. If i E R 1 \R 2, let Si consist of two

elements, one from R 2\R 1 and one from R1\{i}, and let S2 be the rest. If i E R2\R 1 ,

let Si consist of one element from R1 \R 2 and one from R 2 \{i}, and let S2 be the

rest. And finally, if i E R 1 n R 2 , let Si consist of one element from R 1 \R 2 and one

from R 2\R 1 , and let S2 be the rest. It is straightforward to check that the definition

of complexity 1 is satisfied by these choices. U

More generally, an infinitely large class of complexity 1 linear systems is generated

by graphic matroids. We refer the reader to [BCSX09] for definition and details.

That this class contains the class of matrices proved to be of complexity 1 in Claim

31 is easy to show. We proved the claim separately above only to be self-contained

without introducing matroid notation. One final remark is that if M is the matrix in

the characterization of Reed-Muller codes of order d, then M has complexity exactly

d; see Example 3 of [GT08].

Our main result in this section is the extension of Theorem 8 to complexity 1

systems of equations.

Theorem 32 Let F {(M 1 , o1 ), (M 2 , .2), ... } be a possibly infinite set of induced

systems of equations, with each M' of complexity 1. Then, the property of being F-free

is testable with one-sided error.

We next describe how to modify the previous proof to the new settings. The

following analogue to Theorem 24 is the core of the proof of Theorem 32.

Theorem 33 For every infinite family F = {(M 1 , o 1 ), (M 2 , .2), .. . , (Mi, oi),...

where each M* is a mi x ki matrix over F2 of complexity 1, there are functions Ny(-),



ky(-) and 6(-) such that the following is true for any e E (0,1). If a function

f :F -+ {0, 1} with n > Ny(e) is e-far from being F-free, then f induces 6- 2 "(kj-,m)

many copies of some (M', o-), where ki ; ky(c) and 6 > Sye).

The proof of Theorem 33 follows exactly the same argument as before as soon as a

result analogous to Lemma 25 can be established. We state this result formally next.

Lemma 34 (Counting Lemma) For every i E (0, 1) and integer k > 2, there exist

Y= 25(TI, k) and 6 = 625(17, k) such that the following is true. Suppose M is an m x k

matrix of complexity 1 and rank m < k, o E {0, 1 }k is a tuple, H is a subspace of IF,

and f :F -+ {0, 1} is a function. Furthermore, suppose there are k not necessarily

distinct elements U1,...Uk E I F/H such that Mu = 0 where u = (u1..., uk),

fj': H -+ {0, 1} is 7-uniform for all i E [k], and p(f4') is at least r/ if -(i) = 1

and at most 1 - i if a(i) = 0 for all i E [k]. Then, there are at least 6|HIk-m many

k-tuples x = (x1, x 2 , .. , xk), with each xi E ui + H, such that f induces (M, c) at x.

Lemma 34 is an immediate consequence of the Generalized von Neumann Theorem

(Proposition 7.1 in [GT08]).



Chapter 4

Lower Bound for Triangle-Freeness

In this chapter, we prove Theorem 9, an Q((1/e) 4 2 3 ) query complexity lower bound

for testing triangle-freeness. Recall that given a function f :F -+ {0, 1}, a triangle

in f refers to a 3-element set {x, y, X + y} for some x, y E Fn such that f(x) = f(y)

f(x + y) = 1, and f is said to be triangle-free if there are no triangles in f. As we

mentioned in the introduction, the lower bound is proved by first analyzing the query

complexity of the canonical tester for triangle-freeness and then bounding the price

one pays by testing using the canonical tester instead of some other algorithm.

4.1 Lower Bound for the Canonical Tester

4.1.1 Proof Overview

The canonical tester, recall, repeatedly and independently chooses uniformly at ran-

dom two elements x, y E Fn, checks if the pair forms a triangle in f, and rejects if so.

It accepts only when none of the chosen pairs forms a triangle in f. From a combina-

torial point of view, proving a lower bound for the query complexity of the canonical

tester for triangle-freeness amounts to constructing a function F : Fn - {0, 1} (for

every large enough n) which is far from being triangle-free but contains only a small

number of triangles.

Our first observation (also independently due to Eli Ben-Sasson) is that we can



construct such an F by using a seemingly weaker construction. Namely, it is enough

to construct three, not necessarily identical, functions F1, F2, F3 : F' - {0, 1} such

that the the function-triple (F1 , F2, F3) is far from triangle-free but contains a small

number of triangles. Here, a triangle in a function-triple (fi, f2, fa) refers to a triple

(X y, X + y) for some x, y E F' such that fi(x) = f2(y) = f 3 (x + y) = 1, and a

triangle-free function-triple is one which does not contain a triangle. The distance

of (fi, f2, f3) to triangle-freeness is the minimum over all triangle-free (gi, g2 , 93) of

'(Prx[fi(x) # g1(X)] + Prx[f 2(X) # g2(X)] + Pr[f3 (x) # g3 (x)]).

Claim 35 If there are functions F1, F2, F3 : Fn {0, 1} so that the triple (F1, F2 , F3 )

is E-far from triangle-free and contains k triangles, then there is a function F F +2 4
2

{0, 1} that is 3E/4-far from triangle-free and contains k triangles.

Proof: For x E Fn+ 2, write x as x' o x" where x' E Fn and x" E F . Define

F : F 2 {0, 1} in the following way: F(x) = F1(x') if x" = 01, F(x) F2 (x')

if x" = 10, F(x) = F3 (x') if x" = 11, and F(x) = 0 if x" = 00. It is easy to see

that {x, y, x + y} is a triangle in F for some x, y E Fn if and only if one of the six

permutations of (x', y', x' + y') is a triangle in (F1 , F 2, F3). So, F contains the same

number of triangles as (F1 , F2, F3).

To argue about distance, consider the function g : F7 - {0, 1} that is the closest

triangle-free function to F. Observe that g(x) = F(x) when x" = 00 because changing

the value of F from 0 to 1 will never remove a triangle. Thus, we can obtain a triangle-

free function-triple (gi, g2, 93) from g. Because (F1 , F2, F3) is c-far from triangle-free,

the bound on F's distance immediately follows. U

We obtain our desired (F1 , F2, F3) by constructing a vertex-disjoint function-triple,

meaning that for no two triangles (xi, yi, x, + yi) and (x 2 , Y2, X 2 + Y2) in the function-

triple is it the case that x1 = x 2 or yi = Y2 or X1 + Y1 = X2 + Y2. The property of

being vertex-disjoint makes it simple to calculate the function-triple's distance from

triangle-freeness as well as counting the number of triangles within the function-triple.

We start our construction of a vertex-disjoint function-triple from three sets, each

of cardinality m, of k-bit binary vectors, {ai}m, {bj},_l1 and{c}mL1, where k and



m are fixed integers. Next we define three sets, {A 1}, {Bj} and{CL}, of mk-bit

vectors, each consisting of the vectors obtained by concatenating {ai}, {bj} and{ct},

respectively, in all possible orders. Finally we define our function-triple (fA, fB, fC)

to be the characteristic functions of the three sets {A 1 }, {Bi} and{CL}. In order to

make the triangles in this function-triple pairwise disjoint, we impose the constraint

that {ai}, {bj} and{ci} satisfy the 1-perfect-matching-free (1-PMF for short) property

which we define soon. To make this construction work for arbitrarily small e, we make

some n' > 1 copies of each {ai}, {by} and{ce}, take the multiset of all the copies, and

require them to satisfy the n'-PMF property for all n' > 1. It turns out that {ai},

{bj} and{cj} being PMF is equivalent to a (small) set of homogeneous Diophantine

linear equations having no non-trivial solution, which in turn can be checked by linear

programming.

Numerical computation indicates the existence of a PMF family of vectors for

k = 3,4, and 5. (Unfortunately, it was computationally infeasible to search for PMF

families of vectors for k > 6.) The PMF family with k = 5 yields a vertex disjoint

function triple (fA, fB, fc), each of which are Boolean functions on constant sized

domains. To get a function-triple (F1 , F2, F3 ) so that the functions are defined on FI'

for arbitrary large n, we use a blow-up operation which does not affect the distance

to triangle-freeness or the density of triangles. We show that (F1 , F2, F3) is e-far from

trinagle-free but contains O(e4.847) - 22n many triangles.

4.1.2 Perfect-matching-free Families of Vectors

In this section, we show how to build vertex-disjoint function-triples using construc-

tions of perfect-matching free families of vectors.

Definition 36 (PERFECT-MATCHING-FREE FAMILIES OF VECTORS) Let k and m

be integers such that 0 < k < m < 2 k. Let {ail}, and {bii 1, be two families of

vectors, with ai, bi E {0, 1}k for every 1 < i < m. Let ci = ai + bi.

1. Let {A 1}1 be the set of (mk)-bit vectors formed by concatenating the m vec-

tors in {ai} in all possible orders (there are m! such vectors), where I =



(i1 , i 2 ,... ,im) is a permutation of [m]. Similarly define {Bj}j and {CL}L

as the concatenations of vectors in {bi} and {ci} with J = (j1,j 2,..

and L = (1lf2,...,im), respectively. We say the set of vectors {ai,bi,ci} is

a (k,m) 1-perfect-matching-free (abbreviated as 1-PMF) family of vectors if

A 1 + Bj = CL necessarily implies that I = J = L (i.e., i=j = j, for every

1 < s < m).

2. Let n' > 1 be an integer and now let {A 1}1 , {Bj}i and {CL}L be the sets of

n'mk-bit vectors by concatenating n' copies of {ai}, {bi} and {cij, respectively,

in all possible orders (two concatenations are regarded the same if they give rise

to two identical strings in {0, 1}"'mk). We say the set of vectors {ai, bi , ci} is

a (k, m) n'-PMF family of vectors if A1 + Bj = CL necessarily implies that

I = J = L.

3. Finally we say {ai,bi, ci } is a (k, m)-PMF family of vectors if it is n'-PMF for

all n' > 1.

In other words, suppose we color all the 3m vectors in {ai, bi, ci} with m different

colors so that ai, bi and ci are assigned the same color. Suppose further we are given

equal number of copies of {ai, bi,c 1;...; am, bm, cm} and we wish to arrange them

in three aligned rows such that all the ai's are in the first row, all the bi's are in the

second row and all the ci's are in the third row. Then the only way of making every

column summing to 0 k is to take the trivial arrangement in which every column is

monochromatic.

Construction Based on PMF Families of Vectors

Let {ai, bi, ci} be a (k, m)-PMF family of vectors. Let n be an integer such that

mkn and let n' = '. let {A 1}1 , {Bj} and {CL}L be the sets of n-bit vectors

by concatenating n' copies of {ai}, {bi} and {cj} respectively. Note that I{A 1}| =

|{Bj}| = i{CL}| = " Now let fA, fB, fc : 2 -+ {0, 1} be three Boolean functions

which are the characteristic functions of sets {A 1}1 , {Bj}; and {CL}L respectively.

That is, fA(X) = 1 iff x E {A 1}, fB(x) = 1 iff x E {Bi} and fc(x) = 1 iff x E {CL}.



Proposition 37 All the triangles in the function-triple (fA, fB, fc) are pairwise dis-

joint.

Proof: Immediate. U

Lemma 38 If (k, m)-PMF family of vectors exists, then for infinitely many e that can

be made arbitrarily small, there is a no = no (E) and functions fA, fB, fCo {, 1

such that (fA, fB, fC) is c-far from being triangle-free and the number of triangles in

(fAfB,fc) is Q(e-0( 1)) - 2 2n, where a = and the "o(1)" goes to zero as e
k

goes to zero.

Proof: Suppose e= ", / 2n'"k for a positive integer n'. Let fA, fB and fc be

the characteristic functions of {A,}, {Bj}; and {CL}L respectively defined above.

Set no = n'mk and then fA, fB and fc are Boolean functions on no variables. Let NA

be the number of triangles in (fA, fB, fc). Then by Stirling's formula, for all small

enough e (meaning for all large enough n'),

(n'm)!
(n.!)

2nrmn'(')mn'(1+ O())

(12irn'()n'(1 + ( 1)))m

= 2 (miogm)n'--o(1)

- 2(10(1))no,

where # = "'. Since e = NA/2no, it follows that 2n0 = (1/C)1/(1 )+0(1).

By Proposition 37, all the triangles in (fA, fB, fc) are pairwise disjoint. Therefore

modifying the function-triple at one point in the domain can remove at most one

triangle. Hence dist((fA, fB, fc), T-FREE) > - = E. And the triangle density is
2-00

NA/2 2 n o = 2(-2-o(1))no 1-, 0-o(1) - ca-o(1)

One can construct fA, fB, fc to be Boolean functions on F2 for any n > no, by

simply making the functions ignore the last n - no bits and behave as defined above



on the first no bits. In Theorem 47, we give a construction by tensoring with bent

functions so that the resulting functions depend on all n bits.

We conjecture the following to be true.

Conjecture 39 There are infinitely many (k,m)-PMF families of vectors with m >

2 k(1--o(1)) where "o(1)" goes to zero as k goes to infinity.

By Lemma 38, Conjecture 39 would imply a super-polynomial query lower bound for

testing triangle-freeness in function-triples using the canonical tester. To be more

specific, if there exists a (k, m)-PMF family of vectors with m > 2k(1-o(1)), then

the query complexity of the canonical tester is at least Q((!)N). Moreover, when

composed with Theorem 52 it would also give a super-polynomial lower bound for

any one-sided triangle-freeness tester.

Existence of PMF Families of Vectors

In this section we present an efficient algorithm which, given a family of vectors

{ai, bi, ci}I,, checks if it is PMF. We will use this algorithm to find an explicit PMF

family.

Let {ai, bi, ci}i 1 be a family of vectors such that ai, bi, ci E F' and ci = ai + bi for

every 1 < i < m. First we observe that if {ai, bi, ci} is PMF, then all the vectors in

{a2} must be distinct. The same distinctness condition holds for vectors in {bi} and

{ci}. From now on, we assume these to be true. Next we define a set of "collision

blocks".

Definition 40 (Collision Blocks) Let {ai, bi, ci}i 1 be a family of vectors satisfying

the distinctness condition. We say (i, j, f) is a collision block if ai + bj = ce, and for

simplicity will just call it a block. We denote the set of all blocks by B. We will call

a block trivial if i = j = f and non-trivial otherwise.

Since {ai, bi, ci} satisfies the distinctness condition, clearly IL3 < m2 . Let r be the

number of non-trivial blocks, and let {bli, ... , bl.} be the set of non-trivial blocks.

For a collision block bl, we use bl", blI and blI to denote the three indices of the

colliding vectors. That is, if bl = (i, j, f) is a block, then bl" = i, bI= j and bl = f.



Now suppose {ai, bi, cilm1 is not PMF. Then by the definition of PMF, there

exists an integer n' such that A, BJ, CL E {o, 1}n'mk, A1 ±Bj=CL and I, J, and

L are not the same sequence of indices. We consider the equation A, + Bj = CL as

a tiling of 3 x (n'm) k-bit vectors: the first row consists of the n'm vectors from {ai}

with each a, appearing exactly n' times and the ordering is consistent with that of

A. Similarly we arrange the second row with vectors from {bi} according to Bi and

the third row with vectors from {ci} according to CL. Observe that when we look at

the columns of the tiling, each column corresponds to a block in B. Now we remove

all the trivial blocks, then because I, J, and L are not identical sequences of indices,

there are some non-trivial blocks left in the tiling. Since all the blocks removed are

trivial blocks, the remaining tiling still has equal number of ai, bi and ci for every

1 <i m. We denote these numbers by y1, ... , ym. Note that yi's are non-negative

integers and not all of them are zero. Let the number of blocks bli left in the tiling

be xi, 1 < i < r. Again xi's are non-negative integers and not all zero. Moreover,

we have the following constraints when counting the number of ai, bi and ci vectors,

respectively, left in the tiling:

{ jE[r]:bI =i Xi - Yi 0

EjC[r]:bl=i Xi - yi= 0 (for every 1 < i < m) (4.1)

ZjE[r]:blr=i Xi - = 0

where

Xz = number of type j blocks left after removing the trivial blocks

and

yi = number of vectors ai (equiv. bi or ci) left after removing the trivial blocks.

Lemma 41 {ai, bi , ci}I 1 is not PMF if and only there is a non-zero integral solution



to the system of linear equations (4.1).

Proof: We only need to show that if there is a non-zero solution to (4.1), then

{ ai, b2, c2} is not PMF. Let {xi, y3} be a set of non-zero integer solution. Note that

the solution corresponds to a partial tiling with equal number of aj, bi and ci for

every 1 < i < m. Set n' = maxi yi. Since the solution is non-trivial, n' > 1. Now for

each 1 < i < m, add (n' - y2) number of trivial blocks (i, i, i) to the tiling. Then the

resulting tiling gives A, Bj, CL E {0, 1}n'mk and A, + Bj = CL such that I, J and L

are not identical. U

Writing equations (4.1) in matrix form, we have

MZ= 0,

where
1 --- 1 -1

-- 1 -1-

M= 1.... -.

1 --- -1

1 --- -1

1 --- 1 -1

is a 3m x (r + m) integer-valued matrix (actually all entries are in the set {-1, 0, 1})

and

Z = [i, ... Xr Y1, ..,Ym]T

is an (r + m) x 1 non-negative integer-valued column vector. Note that each of first

r columns of M has exactly three is and all other entries are zero, and the last m

columns of M consist of three -Imxm matrices.

The following observation of Domenjoud [Dom91], which essentially follows from



Caratheodory's theorem, gives an exact characterization of when the system of equa-

tions (4.1) has a non-zero integral solution. We provide a proof below for complete-

ness.

Theorem 42 ([Domi91]) Let M be an s x t integer matrix, then the Diophan-

tine linear system of equations MZ = 0 with Z E N' has a non-zero solution if

and only if 0 E Conv(M1,... , Mt), where Mi 's are the column vectors of M and

Conv(M1,... , Mt) denotes the convex hull of vectors M 1 ,... , Mt.

Proof: If there exists a non-zero vector Z E N' such that MZ = 0, the vector z

Z also satisfies Mz = 0. But then, 0 E Conv(M1,... , Mt) because EZ zjM = 0

and each zi > 0 with E zi = 1.

In the other direction, suppose 0 E Conv(Mi,..., M). Let {Mil,..., Mi,} be a

minimal subset of {M 1 , . . . , Mt} which contains 0 in its convex hull. We now need the

following well-known theorem of Carath6odory in convex geometry (see, e.g., [Gru07]).

Theorem 43 (Caratheodory's Theorem) Suppose V is a subset of R' that con-

tains a point X E R" in its convex hull. Then there exists a set V' C V such that

|V'| < n + 1 and X is contained in the convex hull of V'. An implication is that if

V contains 0 in its convex hull and there is no strict subset V' containing 0 in its

convex hull, then rank(V) = IV| - 1.

Carath6odory's theorem implies that the rank of {M 1,. . . , Mi} from above is

k - 1 < s. Let M' be the s-by-k matrix with columns {Mi,... , Mi,}. Then 1 there

exists a unimodular (that is, the determinant of the matrix is either 1 or -1) s-by-s

matrix U such that

N

UM' = 0

0

'See, for example, Theorem 2.4.3 in [CohOO].



where N is a (k - 1)-by-k integer matrix of rank (k - 1) in row-echelon form. It

follows that the nullspace of N is spanned by a single non-zero vector in RV. Since

0 is in the convex hull of {M 1,. .. , Mik}, there exists a non-zero vector X E (R O)k

such that NX = 0. It follows that all the vectors in the nullspace of N have the

same sign at each coordinate. But the vector consists of the cofactors of N, namely,

Y = ( N2 ... N, , . . . , (I)k-1 N1 -. -Nk_1 ) is a solution to NX = 0. Furthermore,

all the entries in Y are non-zero since the rank of N is k - 1. Hence either Y or -Y is

a positive integer solution to NX = 0, and because U is invertible, the same positive

integer vector satisfies M'X = 0. Appending 0 entries to X at all the remaining

(t - k) coordinates gives a non-negative integer solution to MZ = 0. U

It is well known that checking point-inclusion in a convex hull can be solved by

Linear Programming, see e.g. [BC87]. In particular, following the definition of convex

hulls, 0 E Conv(M1,... , Mt) if and only if there exist real numbers 01 0,... , 6t 2 0

such that
t

diMi = 0
i=1

and

64= 1.
i1

After introducing additional slack variables and plugging in our collision matrix M

into the formalism, we finally have the following characterization of a family of vectors

being PMF.

Lemma 44 The family of vectors {ai,bi, ci i}'1 is PMF if and only if the following

LP

Maximize W = c -0

Subject to M'0 = b

0 > 0

has no feasible solution with W > 0.



Here

M/ M
M =I(3m+1)

is a (3m + 1) x (4m + r + 1) integer matrix with M being the collision matrix of the

family of vectors {aj, bi, ci i,

b = [071, 0, 1] T

is a 3m + 1-dimensional integer vector and

c=L ,

r+m 3m+1

is the objective function vector of dimension 4m + r + 1.

Using this procedure for checking if a family of vectors {aj, bi, ci} I is PMF or

not, we find the following (k, m)-PMF families of vectors.

Theorem 45 There are (3, 4)-PMF, (4, 7)-PMF and (5, 13)-PMF families of vectors.

Proof: By numerical calculation, the following set of vectors is (3, 4)-PMF:

a1 = 110

a2 = 010

a3 = 101

a4 = 011

bi= 001

b2 = 100

b3= 111

b4 = 011.

The following set of vectors is (4, 7)-PMF:

a1 = 1101

a2 = 0001

a3 = 0010

a4 = 0110

bi= 0011

b2= 1011

b3= 0111

b4= 1001



a5 = 0000 b5 = 0000

a6 = 0111 b6 = 0100

a7 = 1001 b7 = 0101.

The following set of vectors is (5, 13)-PMF:

ai = 11101 b1 = 01101

a2 = 11001 b2 = 11101

a3 = 11000 b3 = 10011

a 4 = 00101 b4 = 10001

a5 = 10010 b5 = 00101

a6 = 11110 b6 = 10100

a7 = 10000 by = 10000

a8 = 01000 b8 = 01111

ag = 00011 b9 = 01010

aio = 11100 bio = 00111

all = 00010 bu= 11010

a12 = 01100 b12= 10010

a 13 = 01010 b= 11111.

U

We were unable to check the cases k > 6 since they are too large to do numerical

calculations. However, our best findings for k = 3,4,5 indicates that the exponent a

defined in Lemma 38 increases as k increases, which we view as a supporting evidence

for Conjecture 39.

Now using the (5, 13)-PMF family of vectors as the building block, Lemma 38

implies the following.



Theorem 46 For infinitely many c that approach zero arbitrarily closely, there is an

no = no(c) and functions fA, fB, fc F -+ {0, 1} such that (fA, fB, fc) is C-far from

being triangle-free and contains 0(e 4-84 7 ) - 22"o triangles.

A simple blow-up procedure on appropriate number of bits with the function-

triples constructed in Theorem 46 yields the following Theorem.

Theorem 47 For all small enough c, there is an integer no(e) such that the following

holds. For all integers n > no, there are functions F 1, F2, F3 :F2 -+ {0,1} such that

the function-triple (F1 , F2, F3 ) is E-far from being triangle-free and contains O(E4.8 4 7 -).

2 2n many triangles.

Proof: First, apply Theorem 46 to get functions fA, fB, fc : F2 {0, 1} so

that the function-triple (fA, fB, fc) is e-far from triangle-free but has O(e4 .847 ) - 22no

many triangles, where no is a function of E. Next, for any n > no, define F1, F2 , F3 :

F1 -+ {0, 1} by F1(x) = fA(Xno), F2 (X) = fB(XIo), and F3 (x) = fc(xIno), where XzIo

denotes the first no bits of a longer string x. It is easy to see that the number of

triangles in (F1 , F2, F3) is O(E4.847---) . 22n.

To argue that (F, F2, F3) is e-far from being triangle-free, recall that the triangles

in (fA, fB, fc) are disjoint. Suppose (x, y, X + y) is a triangle in (F, F2, F3 ) for some

x, y. If we change F1(x) to zero, we remove exactly 24-n0 many triangles, all cor-

responding to one triangle in (fA, fB, fc). The number of triangles in (F1 , F2, F3) is

22(n-o) times the number of triangles in (fA, fB, fc). So, it follows that (F1 , F2 , F3 )

is also e-far from being triangle-free. U

Applying Claim 35 finally yields our desired lower bound.

Corollary 48 The query complexity of the canonical tester for triangle-freeness is

Q((1/e)4.847-...



4.2 Query Complexities of the Canonical Tester

and General One-sided Testers

In this section, we prove a connection between the query complexities of an arbitrary

one-sided tester and the canonical tester, for a large class of algebraic properties. This

class includes triangle-freeness, and our result will show that if the query complexity of

the optimal one-sided tester for triangle-freeness is q, then the query complexity of the

canonical tester for triangle-freeness is O(q 2 ). Combining with Corollary 48 yields the

lower bound of Q((1/e) 2 4 2 3 ) for the one-sided query complexity of triangle-freeness.

The more general class of properties that we study is related to the class of (M, 1)-

freeness properties as defined in Definition 3.

Definition 49 (M*-free) Given a rank-r matroid M = (vI,... , Vk) with each vi E

F2, a Boolean function f : Fn -+ {O, 1} is said to be M*-free if there is no full-

rank linear transformation L : F -+ F' such that f(L(vi)) = 1 for every i e [k].

Otherwise, if such an L exists, f is said to contain M at L, or equivalently, L is

called a violating linear transformation of M.

Remark: Let (ei,..., er) be a set of basis vectors in F'. Each linear map L in the

above definition is then specified by r vectors z 1, ... , zr in F' such that L(ei) = zi for

every 1 < i < r. The linear map L is full rank if (zi, . . . , z,) are linearly independent.

To see that this generalizes the triangle-freeness property, let ei and e2 be the two

unit vectors in F2 and consider the matroid (ei, e 2 , ei + e 2 ). Then the three elements

of the matroid will be mapped to all triples of the form (x, y, x + y) by the set of

full-rank linear transformations, where x and y are two distinct non-zero elements in

F". Also note that in this case, r = 2 and k = 3.

The property of being M*-free is not linear-invariant. The original notion of

M-freeness (shorthand for (M, 1)-freeness in Definition 3) allows L in the above

definition to be arbitrary linear transformations, not just the full-rank ones, and is

hence truly linear-invariant. However, from a conceptual level, for a fixed matroid



M, the property of being M-free and being M*-free are very similar. It is analogous

to the distinction between a graph being free of H as a subgraph and being free of

homomorphic images of H, for a fixed graph H.

In terms of testability, we have some evidence that the distinction is unimportant,

although we are unable to prove a formal statement at this time. For the case when

M = (ei, e2, e1 +e 2), we can show that a tester for triangle-freeness can be converted

to one for triangle*-freeness. Consider a function-triple (fi, f2, f3) that is promised to

be either triangle*-free or e-far from being triangle*-free, where the distance parameter

e is a constant. Define a new function-triple (fj, f2, f3) by setting, for i = 1, 2, 3,

f4(0) = 0 and f'(x) = fi(x) for all x # 0. Observe that if (fl, f2, f3) is triangle*-

free, then (fl, f2, f3) is triangle-free because setting f4(0) = 0 removes all degenerate

triangles. On the other hand, if (fi, f2, f3) is e-far from triangle*-free, then (fj, f2, f)
is still c' > E - 3/2' far from triangle*-free and, hence, also from triangle-free. Since

C' approaches E as n goes to infinity, assuming the continuity of the query complexity

as a function of the distance parameter, the query complexity of triangle-freeness is

therefore lower-bounded 2 by the query-complexity of triangle*-freeness.

For general binary matroids M = (v1 ,..., Vk) with each vi E Fr, observe that

if a function is far from being M-free, then almost all the linear maps where M is

contained are full-rank. This is because the main theorems of [Sha09] and [KSV08]

show that if a function is Q(1)-far from M-free, then M is contained at Q(2"') many

linear maps, while there are only o(2 ") many linear maps L : F -+ F2 of rank less

than r. Therefore, in fact, any M*-free function is o(1)-close to M-free. If there were

a more query efficient one-sided tester for M-freeness than for M*-freeness, it must

be the case that the few linear maps with rank less than r where M is contained can

somehow be discovered more efficiently than the full-rank maps. But on the other

hand, we know of a large class of matroids M for which there exist functions that

are far from M-free but do not contain M at any non-full-rank linear map. More

2The other direction is easy to show in general: for any binary matroid M and constant E, an
e-tester for M*-freeness can be used to e-test M-freeness (again assuming continuity of the query
complexity function).



precisely, letting Ck = (ei, ... , ek 1, ei + - - - + ek_1) be the graphic matroid of the

k-cycle, Theorem 1.3 in [BCSX09] proves that for any odd k > 5, there exist functions

which are far from Ck-free but contain Ck only at full-rank linear maps (by showing

a separation between the classes Ck-free and C- 2-free). So, for these reasons, it

seems unlikely that the query complexities of testing M*-freeness properties are very

different from those of testing M-freeness properties. We conjecture that the query

complexities of testing M-freeness and M*-freeness properties are the same 3 and

leave this as an open problem.

We first observe a simple fact about the behavior of any one-sided tester for M*-

freeness.

Lemma 50 Let M be a matroid of k vectors. Then any one-sided tester T for M*-

freeness rejects if and only if it detects a violating full-rank linear transformation L

of M.

Proof: Let f : Fn - {0, 1} be the given Boolean function. If T finds a violating

full-rank linear transformation L, clearly it should reject. For the other direction,

suppose that T rejects f without seeing any violating linear maps from the points

it queried. Since M*-freeness is a monotone property, we can set all the points of

the function-tuple that have not been queried by T to 0, thus making f M*-free.

Therefore T errs on this function-tuple. But this contradicts our assumption that T

is a one-sided tester for M*-freeness. U

Next, we define the canonical tester for M*-freeness, which naturally extends the

previously described canonical tester for triangle-freeness.

Definition 51 (Canonical Tester) Let M = (V.. . , vk), with each vi E F', be a

rank-r matroid of k vectors. A tester T for M*-freeness is canonical if T operates as

follows. Given as input a distance parameter c and oracle access to Boolean function

3It seems possible that some functions may have quite different query complexities for these two
properties. However, the query complexities in our conjecture are measured as (non-increasing)
functions of the distance parameter e, which are worst-case query complexities among all input
functions that are e-far from the corresponding properties.



f : -2 {0,1}, the tester T repeats the following process independently i(e) times:

select uniformly at random a rank-r linear transformation L : IF' Fn and check if f
contains M at L. If so, T rejects and halts. If T does not reject after f(e) iterations,

then T accepts. The query complexity of the canonical tester is therefore at most

f(e) - k.

Our main theorem in this section is the following.

Theorem 52 For a given rank-r matroid M = (v1, ... ,Vk) with each vi E Fr, sup-

pose there is a one-sided tester for M*-freeness with query complexity q(M, e). Then

the canonical tester for M*-freeness has query complexity at most O(k -q(M, )r).

Proof: Since the rank of M is r, without loss of generality, we assume that

v 1,... , Vr are the r basis vectors el, . . . , e,. Thus, any linear transformation L

F- F is uniquely determined by L(vi), ... , L(Vr).

Suppose we have a one-sided, possibly adaptive, tester T for M-freeness with

query complexity q(M, c). We say T operates in steps, where at each step i E

[q(M, E)], T selects an element yj from F (based on a distribution that depends

arbitrarily on internal coin tosses and oracle answers in previous steps) and then

queries the oracle for the value of f(yi).

We convert the tester T into another tester T' that operates as follows. Given

oracle access to function f :F 0 {0, 1}, T' first selects, uniformly at random,

a non-singular linear map l: F: FR, and then invokes the tester T, providing

it with f(11(y)) whenever it queries for f(y). For convenience the linear map may

be generated on-the-fly in the following sense. Suppose in the first i - 1 queries, T

queries (yi,... , yji_) and T' queries (x1,... , x_). Now if T chooses a new point

y, to query, tester T' picks a H uniformly at random from all non-singular maps

that are consistent with all the points queried previously, that is, maps satisfying

11(yi) = x1 ,. .. ,l(yi- 1) = xi- 1 , and feeds the query result at H(yi) to the original

tester T.

Claim 53 T' is also a tester for M*-freeness with the same query complexity as T.



Proof: This is immediate, since for any function f, f and f o H have exactly the

same distance from M*-freeness. U

For convenience, let us fix the following notation. At a step i E [q(M, e)], the

element whose value is requested by T is denoted yi, and the element of F' queried

by T' (and whose value is supplied to T) is denoted xi. Both x and y, are of course

random variables, and also xi = U(yi). We now make the simple observation that

at each step, no matter how cleverly T selects the yj's, each xi is either uniformly

distributed outside or lies inside the span of elements selected at previous steps. More

precisely:

Lemma 54 Fix an integer i E [q(M, e)]. Let y1,..., y, be the elements in F re-

quested by T in the first i stages, and elements x 1 , . .. , xi_ be the points queried by

T' in the first i - 1 steps. Then, conditioned on these, xi, the element queried by T'

at the ith step, is either an element in span(xi, ... ,zi 1) or is uniformly distributed

in Fn - span(xi,. .. i1)

Due to Lemma 54, we may divide the queries of T into two types: staying query if

the newly queried point is in the span of the previously queried points, and expanding

query if the newly queried point is a random point outside the span of previously

queried points. Let the number of expanding queries of T' be t, t < q(M, e) and let

the subspace spanned by (xi,...,xq(Me)) be VT', then clearly dim(VT,) = t and the

expanding query points generate VT, (i.e., the set of expanding queries (xi,,... , xi)

form a basis for VT,). Therefore, as a corollary to Lemma 54, we have the following

property of VT'.

Corollary 55 The subspace VT' spanned by the query points of tester T' is a random

subspace of dimension t in Fn.

Next, suppose we remove the conditioning on the elements selected by T' in

Lemma 54. Then, the algebraic structure of the domain allows us to prove the

following:



Lemma 56 For any integer i E [qm(e)], the element xi queried by T' at the i'th step,

conditioned on being nonzero, is uniformly distributed on the nonzero elements of F.

Proof: The proof is by induction on i. We show that for each value of i, not

only is xi uniformly distributed on the non-zero elements of Fn , but also any linear

combination of x, ... , x is uniformly distributed on the non-zero elements of Fn. For

i = 1, Lemma 54 directly implies that x 1 is uniform on Fn- {O}. Now consider i > 1

and assume our conclusion holds for smaller i. Fix a choice of the elements y1 , ... , y,

selected by T in the first i steps. Consider some linear combination z = _ cyz 3

which we need to show is uniformly distributed on F- {0}. Assume ci 1 (otherwise,

we are done directly by the induction hypothesis). If y, is a linear combination of

y1..., yi_1, then xi, and so z, is also a linear combination of xi,..., x_ 1 , which

is then uniformly distributed in Fn - {0} by the induction hypothesis. Otherwise,

yj is not in the span of y1 ,... , y-1 and because the only randomness remaining is

in choosing L, x is chosen uniformly at random from Fn - span(i,... , xi_ 1). By

Corollary 55, span(xi,..., xi_1) is a uniformly chosen subspace of Fn of dimension

d, for d = dim(span(y1,..., yj_1 )). Therefore, x itself is uniformly distributed over

F-- {0}. Moreover, z is uniformly distributed over Fn- {0} because z, like xi, is

also a uniformly chosen element of Fn - span(xi,..., xi_ 1 ). U

We will actually need the following more general lemma.

Lemma 57 For any r-tuple (i 1 ,... ,ir) e [q(e)]r, if the r-tuple (Xis,... xi,), where

xi is the element queried by T' at the i'th step, is conditioned on being linearly inde-

pendent, then it is uniformly distributed among the linearly independent r-tuples in

(Fn).

Proof: We can prove a stronger claim. Let f = q(M, c), let L 1 , . . . , Lr : (FT)' -+ Fn

be arbitrary F2 -linear maps and let x = (zi,... , zM). Then, we show that the tuple

(L 1 (x),... , Lr(X)) is uniformly distributed over linearly independent r-tuples in (F2)r.

Fix the choice of internal randomness p for T and the elements y1, .. . , yj selected

by T in the f steps. We can represent the linear maps L1, ... , L as an r-by-f matrix



A over F2 , where the i'th row contains the coefficients corresponding to Li. Next, find

a minimal subset S c [f] with size s such that span({yj j E S}) span({yi, ... , );

so, the elements of {yj : j E S} are linearly independent. For any i g S, one must

be able to express yi as a linear combination of elements from {y : j E S}, and this

same linear combination suffices to express x in terms of elements from {x : j E S}.

Let B be the -by-f matrix with entries bij where xi = EiEs bijxz. Let C = AB with

entries cij. By removing zero columns, we can make sure that C is an r-by-s matrix

over F 2.

From Lemma 54, we know that the s-tuple x' = (xi : I E S) is a uniformly chosen

random linearly independent s-tuple in (Fn)s. If C is not full rank, then Cz' is a

linearly dependent r-tuple. Otherwise, because C is full-rank, Cx' is also a uniformly

chosen linearly independent r-tuple in (F')r, proving our claim. 0

By Lemma 50, T' rejects if and only if it detects a violating full-rank linear

transformation. In other words, T' rejects iff it finds a linearly independent r-tuple

z = (zi,..., zr) such that f((vi, z)) = 1 for all i E [k]. Furthermore, because vi =

ei,... , v. = er, the elements z1,... , Zr must lie in the set of samples made by T'.

Then, since T' makes q(M, c) queries, the total number of linearly independent r-

tuples T' can check is at most q(M, e) -(q(M, c) - 1) - - - (q(A, c) - r + 1) < q(M, c)-.

Let 6 be the fraction of violating linearly independent r-tuples z = (zi,... , z,) E

(F )r. By Lemma 57, each linearly independent r-tuple checked by T' is drawn

uniformly at random from the set of all linearly independent r-tuples in (Fn)r. That is,

the probability that T' rejects after checking any non-singular linear transformation it

inspects is exactly 6. By union bound, the probability that T' rejects (fi, .... fk) after

q(M, E) queries is at most 6q(M, E)r. In order to reject with probability at least 2/3,

the query complexity of T' is at least q(M, e) > ()1/r. Now consider the canonical

tester T" that runs in f independent stages which, at each stage, selects uniformly

at random a linearly independent r-tuple (zi,... , z,) and checks for violation of M*-

freeness. How many queries does T" need to make to achieve the same rejection

probability on (fi,... , fk) as T' does after q(M, E) queries? Clearly the probability



that T" rejects (fi, , fk) after f stages is 1 - (1 - 6) ;> 2/3, for all f > fo = }

O(q(M, e)r). Since T" makes k queries in each stage, the total number of queries T"

makes is at most ko = O(k -q(M, ,)r). *



Chapter 5

One-sided Testability and

Subspace Hereditariness

5.1 Oblivious Testability

We now turn to showing Theorem 12 which states that for linear-invariant properties,

testability with a one-sided error oblivious tester is equivalent to the property being

semi subspace-hereditary (recall here Definition 11).

First we formalize the discussion from the introduction regarding the fact that

it is always possible to assume that the testing algorithm for a one-sided testable

linear-invariant property makes its decision only by querying the input function on a

random linear subspace of constant dimension.

Proposition 58 Let P be a linear invariant property, and let T be an arbitrary one-

sided tester for P with query complexity d(e, n). Then, there exists a one-sided tester

T' for P that selects a random subspace H of dimension d(e, n), queries the input on

all points of H, and decides based on the oracle answers, the value of c and n, and

internal randomness1 . Note that T' is non-adaptive and has query complexity 2d(',")

1Note here, we leave open the possibility that the decision of the tester may not be based only on
properties of the selected subspace. This gap can be resolved using the same techniques as used by
[GT03] for the graph case, but this point is not relevant for our purposes and so we do not elaborate
more here.



Proof: Consider a tester T2 that acts as follows. If the tester T on the input makes

queries x 1, .. ., X, then T2 queries all points in span(xi, . .. , Xd) but makes its decision

based on x 1 ,... , Xz just as T does. Clearly, T2 is also a one-sided tester for P and

with query complexity at most 2d(e).

Now, define a tester T' as follows. Given oracle access to a function f : F7-2

{0, 1}, T' first selects uniformly at random a non-singular linear transformation L

F2 - F2, and then invokes T2 providing it with oracle access to the function f o L.

That is, when T2 makes query x, then algorithm T' makes query L(x). We argue that

the sequence of queries made by T' are the elements of a uniformly chosen random

subspace of dimension at most d(e). To see this, fix the input f and the randomness

of T2. Then, for each i E [2 d(f)] for which the i'th query, xi, made by T2 is linearly

independent of the previous i - 1 queries, xi, . . . , zi_1, it's the case that L(xi) is

a uniformly chosen random element from outside span(L(xi),... , L(xi_1)). So, for

every fixing of the random coins of T2, the queries made by T' span a uniformly

chosen subspace of dimension at most d(e), and hence, this is also the case when the

coins are not fixed. T' is a one-sided tester for P because if f E P, then f o L E P

by linear invariance, and if f is c-far from F, then f o L is also e-far from P because

L is a permutation on F. 0

An oblivious tester, as defined in Definition 10, differs from the tester T' of the

above proposition in that the dimension of the selected subspace and the decision

made by the tester are not allowed to depend on n. As argued there, it is very

reasonable to expect natural linear-invariant properties to have such testers, and

indeed, prior works have already implicitly restricted themselves in this way.

We can now proceed with the proof of Theorem 12.

Proof of Theorem 12: Let us first prove the forward direction of the theorem. Note

that for this direction, we do not need to assume the truth of Conjecture 2. Given

a linear-invariant property P that can be tested with one-sided error by an oblivious

tester, we will build a subspace-hereditary property W containing P, by identifying

a (possibly infinite) collection of matrices M' and binary strings o, such that N is



equivalent to the property of being {(M', a)}i- free.

Let S consist of the pairs (H, S), where H is a subspace of F' and S C H is a

subset, that satisfy the following two properties: (1) dim(H) = d(e) for some c, and

(2) if for this E, the tester rejects its input with some positive probability when the

evaluation of its input on the sampled subspace is 1s. For (H, S) E S let d = dim(H).

Consider the matrix AH over F2 with each row representing an element of H in some

fixed basis. Notice that AH is a (2' x f)-sized matrix. Define MH, a matrix over F2 of

size (2 - f) x 2e, such that MHAH= 0. Finally, for each i E [2'] define os(i) = 1s(xi),

where x is the element represented in the i'th row of AH. Let M be the set of pairs

(MH, us) obtained in this way from every (H, S) E S.

We now proceed to verify that 1t satisfies the conditions of Definition 11. To show

that P is M-free, let f E Ps, and suppose that there exists (MH, us) E M such that

(MH, as) H-> f, for some c, and for some H with dim(H) = d(c) and S C H. We show

that f is rejected with some positive probability, a contradiction to the fact that the

test is one-sided. If (MH, us) is induced by f at (X1 ,. . . , X 2 d()), then these elements

necessarily span a d(E)-dimensional subspace so that the function restricted to that

subspace is 1s o L for some linear transformation L : F F d (determined by the

choice of basis that was used to represent H). Thus, this immediately implies by the

definition of (MH, us) that the tester rejects f with positive probability.

To verify the second part of the Definition 11, let M(c) = d(e). Suppose f : F -+

{0, 1}, with n > M(E) is E-far from satisfying P. In this case, in order for the tester to

reject f with positive probability, it must select a d(e)-dimensional subspace H so that

the restriction to H equals the indicator function on S (upto a linear transformation),

for some (H, S) E S. Therefore T is not M-free, and thus T ( 7.

It remains to show the opposite direction of Theorem 12. We here assume Con-

jecture 2 that every subspace-hereditary property P is testable by a one-sided tester.

Our first observation that, in this case, it is actually testable by an oblivious one-sided

tester. Namely, we show that the clearly oblivious tester, which checks whether the

input function restricted to a random linear subspace satisfies P or not, is a valid

tester. We need to argue that if a non-oblivious tester rejects input f that is c-far



from P by querying its values on a random d(e)-dimensional subspace (we already

know the tester is of this type from Proposition 58), then with high probability, the

input function restricted to a random 3d(E)-dimensional subspace does not satisfy the

property P. Suppose it did. But then, if the original tester first uniformly selected

a 3d(E)-dimensional subspace H and then uniformly selected a d(e)-dimension sub-

space H' inside it, and ran its decision based on f H', it will accept the input with

large probability, which is a contradiction to the soundness of the tester since H"

is a uniformly distributed d(E)-dimensional subspace. Thus, for a testable subspace-

hereditary property, we can assume that the tester simply checks for P on the sampled

subspace, and is hence, oblivious to the value of n. This argument is analogous to

one of Alon for graph properties, reported in [GT03].

Now, assuming that every subspace-hereditary property is testable by an oblivious

one-sided tester (Conjecture 2), we wish to show that every semi subspace-hereditary

property is testable by an oblivious one-sided tester. Let P be a a semi subspace-

hereditary property and let N be the subspace-hereditary property associated to P

in Definition 11. By our assumption, N has a one-sided tester T', which on input

e makes Q'(E) queries and rejects inputs e-far from N with probability 2/3. The

tester T for P makes Q(E) = max(Q'(E/2), 2 M(c/2)) queries (where M(.) comes from

Definition 11) and proceeds as follows. If the size of the input is at most Q(E), then by

definition, T receives the evaluation of the function all of the input and in this case,

it simply checks if the input belongs to P. Otherwise T emulates T' with distance

parameter c/2 and accepts if and only if T' accepts.

Notice that T is one-sided. Indeed, if the input f satisfies P then f c N and thus

T' always accepts, causing T to always accept. To prove soundness, we first argue

that if f is e-far from P then it is e/2-far from W. Suppose otherwise, and modify f
in at most an e/2 fraction of the domain in order to obtain a function g c W. Thus

g is still e/2-far from P, and by Definition 11 g V N, a contradiction. Finally, since

f is e/2-far from N and since T' mistakenly accepts such inputs with probability at

most 1/3 so does T'. 0



5.2 Representing Subspace-Hereditary Properties

by Local Constraints

Below, we prove Proposition 5 that subspace-hereditary properties exactly coincide

with the F-freeness properties from Definition 7.

Proof of Proposition 5: In one direction, it is easy to check that F-freeness is a

subspace-hereditary linear-invariant property, for any fixed family F.

Now, we show the other direction. For a subspace-hereditary linear-invariant

property P, let Obs denote the collection of pairs (d, S), where d > 1 is an integer

and S C Fd is a subset, such that 1 s does not have property P and is minimal with

respect to restriction to subspaces. In other words, (d, S) is contained in Obs iff

1S 0 Pd but for any vector subspace U C FI of dimension d' < d, 1 slu E Pd, where

Slu C U is the restriction of S to U.

For every (d, S) E Obs, we construct a matrix Md and a tuple os such that any

f with property P is (Md, os)-free. Define Ad to be the 2d-by-d matrix over F2,

where each of the 2 d rows corresponds to a distinct element of Fd represented using

some choice of bases. Now, define Md to be a (qd - d)-by-qd matrix over F, such

that MdAd = 0 and rank(Md) = qd - d. Define as as (a(1), a(2),..., a(2d)) where

a(i) = ls(xi) with xi being the element of Fd represented in the ith row of Ad. We

observe now that any f : F - {0, 1} having property P is (Md, as)-free. Suppose

the opposite, so that there exists x = (x 1 ,... , E (Fn)d satisfying Mx = 0 and

f(xi) = a(i). Then, by definition of Md, the X1 ,... ,X 2 d are the elements of a d-

dimensional subspace V over F2, and by definition of as, Sf I v = S where Sf is the

support of f. Thus f IV 0 P which is a contradiction to the fact that f has property

P because P is subspace-hereditary.

Finally, define Fr = {(Md, as)}. We have just seen that any f having property P

is Fp-free. On the other hand, suppose f does not have property P. Then, because

of heredity, there must be a d-dimensional subspace V such that the support of f Iv

is isomorphic to S for some (d, S) E Obs under linear transformations, which means

by the same argument as above, that f will not be (Md, as)-free. U
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