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Abstract

This thesis has two flavors:

1. A theory of universal multi-user communication with fidelity criteria: We prove the opti-
mality of digital communication for universal multi-user communication with fidelity
criteria, both in the point-to-point setting and in the multi-user setting. In other words,
we prove a universal source-channel separation theorem for communication with a dis-
tortion criterion, both in the point-to-point setting and the multi-user setting. In the
multi-user setting, the setting is unicast, that is, the sources which various users want to
communicate to each other are independent of each other. The universality is over the
medium of communication: we assume that the medium might belong to a family. Both
in the point-to-point setting, we assume that codes can be random: the encoder might
come from a family of deterministic codes and the decoder has access to the particular
realization of the deterministic code, and finally, an average is taken over all these de-
terministic codes. In Shannon’s theory, random-coding is a proof technique. However,
in our setting, random codes are essential: universal source-channel separation does not
hold if codes are not allowed to be random. This happens because we are asking the uni-
versal question. We also show the partial applicability of our results to the traditional
wireless telephony problem.



iv ABSTRACT

2. An operational theory of communication with a fidelity criterion: We prove the source-
channel separation theorem operationally: we rely only on definitions of channel capac-
ity as the maximum rate of reliable communication and the rate-distortion function as
the minimum rate needed to compress a source to within a certain distortion level. We
do not rely on functional simplifications, for example, mutual information expressions
for the proofs. By operational, we do 7ot mean that what we are doing is “practically
operational”. The view that we have can also be viewed as a layered black-box view: if
there is a black-box that is capable of one form of communication, then the black-box
can be layered in order to accomplish another form of communication.

Thesis Supervisor: Sanjoy Mitter
Title: Professor of Electrical Engineering and Computer Science
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When things become manifest

To the ardent meditating brahmin,

All his doubts vanish

Because he understands [each] thing with its cause.

- Mahavagga Pali 1

In his influential book The Structure of Scientific Revolutions, Thomas Kuhn argues that a field
of scientific inquiry is made up by paradigms and puzzles. He describes paradigms as models
for research, a general problem area sharing a common formulation, a framework in which
it becomes possible to ask valid’ questions. Puzzles are concrete applications, conjectures,
open problems. Most scientists piece together puzzles and it is this activity which Kuhn calls
normal science. The term puzzle suggests spielerei - playing games. This negative connota-
tion is - so it said - unintentional. By formulating puzzles, a scientist can focus on specific
questions, questions lead to answers, answers are the products of scientific research.

This structure of scientific inquiry is very much present in (applied) mathematics in general
and in the theory of dynamical systems in particular. However, there has been an unfortunate
unexplicable total domination of puzzle solving. Paradigms have been muted, supressed, not
spoken about, let alone scrutinized, rejected, updated. Examining and formulating paradigms
has achieved a reputation in mathematical circles as being soft: it leads to too many defini-
tions and not enough theorems. Solving puzzles, on the other hand, is considered a serious
activity, requiring intelligence, mathematical culture, virtuosity. The ultimate of mathemat-
ical achievernent is to solve a puzzle (a conjecture) formulated by someone else preferably in
another century. Thus, we have attained a complete reversal in which posing paradigms is
considered spielerei, we find ourselves in a situation in which proving theorems, not building
theories, appears to be the aim of mathematical research.

-Jan Willems in his paper Models for Dynamics
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Chapter 1

Introduction: Digital communication
architectures, why or why not?

What many of us fail to realize is that the last four hundred years are a highly special period
in the history of the world. The pace at which changes during these years have taken place is
unexampled in earlier history, as isthe very nature of these changes. This is partly the results
of increased communication, but also of an increased mastery over nature, which on a limited
planet like the earth, may prove in the long run to be an increased slavery to nature. For the
more we get out of the world the less we leave, and in the long run we shall have to pay our
debts at a time that may be very inconvenient for our own survival.

-Norbert Wiener

B 1.1 Introduction

Communication is a basic need of most (if not all) living beings. For humans, verbal language
has developed as a very important form of communication and language is supposed to be the
reason why humans have dominated other living species on this planet [Hay05]. With the
advance of technology, communication has flourished over long distances in some form of
language, be it speech, images or text. Also has flourished communication over long distance
between machines or between humans and machines using some form of language.

This thesis is concerned with a theory of communication in scenarios where communication
is desired over long distances between many users. There are various sources which various
users want to communicate to each other with various guarantees over a communications
medium. Examples of such media are wireless and internet. In the example of traditional
wireless, telephone, the sources are voice of various users and the medium of communication
is the atmosphere. In the case of the internet, the sources can take various forms, for exam-
ple, text, audio, video, etc., and the medium of communication is the internet architecture.
Wireless communication over the atmosphere or communication over the internet requires
communication technology in the modern sense of the word, and not in the sense of smoke
signals and drum rolls that primitive societies used as technological aids to communication.
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In what follows in this chapter, I have taken material directly, on various instances, from
the first chapter in Gallager’s book [Gal08], a version of which can also be found on MIT
OpenCourseWare [Gala] and the first and second video lectures of his course on Digital
Communications which can be found on the MIT OpenCourseWare [Galb].

Also, in what follows throughout the thesis, when I use the word “wireless communications,”
I'would be referring to traditional wireless telephony. Wireless communication is used today,
not just for voice communication, but also for transmission of various kinds of data.

W 1.2 Chapter outline

This chapter is a high-level discussion of analog and digital architectures and factors which
determine which technology (analog or digital) should be implemented and which should
not, and whether or not any technology should be implemented. We also discuss the contri-
butions of this thesis, which are partly motivated by the factor of cost / performance which
determines in an important way, which technology is implemented.

In Section 1.3, we discuss analog and digital point-to-point communication systems.

In Section 1.4, we discuss the reasons for which technology (analog or digital) is implemented
and which is not. We also discuss reasons which should be considered when determining
which technology is implemented, or whether a technology should be implemented at all,
and which are not considered. These reasons belong to various categories as discussed in this
section. One very important reason is cost / performance.

In Section 1.4.2, we discuss, why the reason of cost / performance is a very important reason
which determines which technology is implemented. In this section, we also consider the
reason of human nature and how it determines what exists in this world. In Section 1.4.3 we
discuss that the reason of cost / performance, just by itself is not well understood in multi-
user settings. Understanding this is one of the motivations for this thesis.

In Section 1.6, we discuss multi-user analog and digital communication systems. Another
motivation of this thesis is to undertand why digital architectures are good on a conceptual
level. These are the two flavors of this thesis: understanding digital architectures from the
point of view of cost / performance in multi-user communication systems and understanding
why digital separation based architectures are good on a conceptual level.

These two flavors are discussed in Section 1.7.

At the end, Section 1.8 discusses the organization of the rest of this thesis.
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|, source )
source — ™ encoder channel decoder reconstruction

Figure 1.1. A general point-to-point communication system

B 1.3 Point-to-point analog and digital communication systems

For simplicity, consider a point-to-point communication problem: there are 2 users, and one
user wants to communicate a source to the other user over a medium (which is synonymous
with a channel in the point-to-point setting) with some guarantee. In the point-to-point set-
ting, the medium will be called, the channel. For example, a person in Boston wants to send
an e-mail to his parents in Mumbai over a simplified point-to-point internet channel. The
guarantee is that the e-mail should have no errors in that it should be received exactly as it
was sent. Another example is that a person in Boston wants to talk to his parents in Mum-
bai on the phone over a simplified point-to-point wireless channel. The guarantee is that the
parents should be able to hear what the son spoke and make sense out of it even though the
reproduction might not be exact.

This is done with the help of an encoder and a decoder. The encoder encodes the source. The
encoded source is the input to the channel. The channel communicates the input with errors.
The decoder reconstructs the source from the erroneous channel output. In the example of
wireless, a cellphone acts as both an encoder and a decoder.

W 1.3.1 A general/analog point-to-point communication system

A general point-to-point communication system is the composition of an encoder, channel,
and a decoder, see Figure 1.1.

W 1.3.2 A digital point-to-point communication system

Modern day communication systems are usually digital. Digital communication systems are
communication systems which use a digital sequence as an interface between the source and
the channel input, and similarly, between the channel output and the final destination.

A digital sequence is a sequence made up of elements from a finite alphabet, for example,
the binary digits (bits) {0, 1}, the decimal digits {0,1,2,...,9}, or the letters from the english
alphabet. Binary digits are almost universally used for digital communication and storage,
and hence, when we say digital communication, we would mean that the interface is binary.
Communication sources, for example, speech waveforms, image waveforms, and text files, are
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Figure 1.2. Placing a digital (usually binary) link between source and channel. The source encoder converts the
source output to a binary sequence and the channel encoder (usually called a modulator) processes the binary
sequence for transmission over the channel. The channel decoder (demodulator) recreates the incoming binary
sequence, and the source decoder recreates the source output

represented as binary sequences. The binary sequence is then converted into a form suitable
for transmission over particular physical media such as a cable, twisted wire pair, optical fiber,
or electromagnetic radiation through space.

Thus, a point-to-point digital communication system is a special case of a general communica-
tion system where the encoder is the composition of a source encoder and a channel encoder,
and the decoder is the composition of a channel decoder and a source decoder. See Figure 1.2.

The idea of converting an analog source output to a binary sequence was quite revolutionary
in 1948, and the notion that this should be done before channel processing was even more
revolutionary. By today, with digital cameras, digital video, digital voice, etc., the idea of dig-
itizing any kind of source is commonplace. The notion of a binary interface before channel
transmission is almost as commonplace. For example, we all refer to the speed of our internet
connection in bits per second.

The input to the channel encoder is a digital sequence, usually a binary sequence.

Note, finally, that digital schemes are a special case of analog schemes.
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B 1.3.3 A note on digital point-to-point communication systems

In general, an analog source can be converted into a digital sequence as follows: sample the
analog source very finely and quantize the sampled source very finely. The finer the sampling
and the quantization, the closer, the digital sequence is a replica of the original analog source.
In the limit, the digital sequence completely represents the analog source.

In this thesis, we would consider questions related to the optimality of digital architectures:
that is, whether digital architectures can perform as well as analog architectures.

Since, by very fine sampling and quantization, the digital representation will approach the
analog source as closely as we want, it seems that digital architectures can be made to perform
arbitrarily closely to analog architectures. This is not necessarily that direct because usually,
there is a limitation on the resource consumption in the system. Very fine sampling and
quantization can consume a lot of switching energy and thus, the digital scheme, built this
way, might end up consuming a lot more energy than the analog scheme. Thus, it is a priori
unclear whether digital schemes will perform as well as analog schemes.

Another very important point is that we do not want the digital interface to be of very large
cardinality. In fact, we want that cardinality to be independent of the source. If the source
quantization is very fine and depends on the source, this can lead to a very large cardinality
of the digital interface, and we would like it to be as small as possible: as stated before, we
prefer if it is binary.

W 1.3.4 Separation based architectures

In practice, digital architectures are built in the following manner:

1. The source encoder compresses the source to within an allowable distortion level. The
output is a binary sequence.

2. The channel encoder and decoder help to communicate the binary sequence reliably
over the channel. By “reliably”, we mean that the error probability in the detection of
the binary sequence is “very” small.

3. The source decoder reconstructs the source from the original binary sequence

Separation based architectures are called so because they separate the source and the channel:
the source encoder and decoder are independent of the channel and the channel encoder and
decoder are independent of the source. In addition, however, when defining separation based
architectures, we require “reliable” communication of the binary sequence over the channel.
A general digital communication scheme may or may not be a separation based scheme with
the above definition.
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Separation based architectures are thus, a special case of digital architectures. When proving
results concerning the optimality of digital communication, we will always do it by the use
of separation based architectures.

M 1.4 Factors which determine which technology is implemented and fac-
tors which should be considered when determining which technology
is implemented or whether a particular technology should be imple-
mented, but are not

In Subsection 1.4.1, we discuss the reasons which determine which technology is imple-
mented and factors which should be considered but many times, not, when determining
which technology is implemented, and whether a technology should be implemented in the
first place. These are a whole variety of reasons: cost / performance (in other words, profit
motive), architectural, social, etc. These reasons are discussed in subsection 1.4.1.

Among all these reasons, there is one very important reason determines whether a technology is
implemented. This is the reason of cost /performance. The reason why this is the factor of cost
/ performance is the a very important factor, is speculated on, in Subsection 1.4.2. Another
consideration is human nature, and its effect on whether a technology is implemented or
which technology is implemented, and this is also speculated on, in Subsection 1.4.2.

In Subsection 1.4.3, we argue that the cost / performance reason, just by itself, without the
other reasons, is not well understood in multi-user settings. This leads us to one of the moti-
vations for this thesis: understanding cost / performance in multi-user scenarios.

B 1.4.1 The reasons, both, which determine and do not determine which
technology is implemented

There are a number of reasons why communication systems now usually contain a binary
interface between source and channel (that is, why digital communication is now standard,
and has replaced analog communication). The reasons mentioned below all into to two cate-
gories:

e those which drive what finally gets implemented in practice. In my opinion, one of the
main factors here is cost / performance. This is a simplification, but still very true.

e reasons concerning simplicity of architectures, understanding related to the functioning
of the communication system arising from the simplicity of architecture, and social
reasons. This can be sub-catagorized into various reasons.

These reasons are discussed below:
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Cost / performance considerations

1. Cost / Performance characteristics: This has three components

@

(®)

©

Cost of digital hardware: Digital hardware has become so cheap, reliable and minia-
turized, that digital interfaces are eminently practical. This has been possible be-
cause of 20/30 generations of Moore’s law. Very roughly, since the number of tran-
sistors that can be placed on a particular area of a chip doubles every 18 months (or
two years): the cost to put a transistor on a chip decreases and thus, the cost for
obtaining the same performance decreases. Things are more complicated than this,
but this is the rough idea.

Standardization: Digital communication is a general way of communication irre-
spective of the source and the channel: the source is first converted to binary and
these binary sequences are then communicated over the channel. Analog design
can be much more complicated, and much more of an art than digital design, and
hence, it costs more: an analog designer usually gets paid much more than a digital
designer! The cost of a chip is approximately related to the cost of development
divided by the number stamped out. Standardization leads to lowers cost of devel-
opment, and thus, cheaper chips. This is partly elaborated on in Gallager’s first and
second video lectures in the series [Galb].

Separation theorem: One of the most important of Shannon’s information theo-
retic results is that if a source can be transmitted over a channel with certain distor-
tion guarantee in any way at all, it can also be transmitted using a binary interface
between the source and the channel, without any significant change in the use of
system resources like energy and bandwidth. This is known as the source/channel
separation theorem. Thus, given an analog architecture which achieves some perfor-
mance, the same performance can be achieved with the same energy and bandwidth
consumption by using a digital architecture. As a result, the best possible digital
architecture will cost the same from the point of view of energy/bandwidth con-
sumption as the best possible analog architecture. This does require assumptions
that delay in reception of the source is not a concern, but making this assumption
is probably an okay approximation.

Note 1.1. The above optimality of separation based architectures was proved by
Shannon in [Sha48] for reliable point-to-point communication. In [Sha48], Shan-
non also stated the optimality of separation based architectures for communica-
tion with a fidelity criterion (distortion criterion), and proved it in [Sha59].
Separation, in fact, does not bold in the most general possible multi-user scenar-
ios. This point of whether separation holds in multi-user scenarios is commented
on in Subection 1.7.1, and proving optimality of separation in certain multi-user
scenarios is one of the main foci of this thesis.
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Other reasons

The other reasons are classified as technical /technological reasons and social reasons.

Technological reasons:. This can be categorized further, as follows:

o Layering and hence, simpler conceptualization: This is the same as the standardization

reason, but viewed very differently. Digital architectures give a simple conceptual way
of building architectures: first convert the source into binary, then, communicate the
binary sequences over the channel, and finally, get a reconstruction of the source. In a
digital communication system, the action of the source encoder is independent of the
channel (that is, depends only on the source) and the action of the channel encoder is
independent of the source (that is, depends only on the channel). This is not necessary
from the definition of a digital communication system, but this is how digital commu-
nication systems are constructed. in practice. A most general analog communication
scheme would be a complicated non-linear function of the source and the channel. Dig-
ital communication linearizes this into source coding followed by channel coding, and
hence, conceptually much simpler than a most general communication scheme. This is
elaborated on in [GalO8] (or the equivalent course notes [Gala] )and first and second
lectures in the series [Galb]. What is questionable about this point in terms of being a
reason why digital architectures are used is that layered schemes can be built even in an
analog way, and hence, this cannot be a fundamental reason for why architectures are
digital. I will add that others might disagree about this last point.

Simpler networking: A standardized binary interface between source and channel simpli-
fies networking, which now reduces to sending binary sequences through the network.
This is elaborated on in [Gal08] (or the equivalent course notes [Gala]). This point is
very important, for example, in the case of the internet because the internet architecture
consists of a series of links and it is good to have a standardized interface for the input
and output of each link. This point is questionable in the sense, again, that one can also
have a standardized analog interface. Probably, what is good about a standardized bi-
nary interface is that its cardinality is the smallest possible cardinality that an interface
can have, that is 2, instead of a standardized analog interface which will have infinite

cardinality.

Physical performance: This performance is different from Reason 1, which discussed the
cost/peformance characteristics. This reasons refers to the “physical” performance of
the system.

Copying directly from [OPS48], which talks about the advantages of PCM (pulse code
modulation) over analog systems, in particular, frequency modulation:

“In most transmission systems, the noise and distortion from the individual links cu-
mulate. For a given quality of over-all transmission, the longer the system, the more
severe are the requirements on each link. For example, if 100 links are to be used in
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tandem, the noise power added per link can only be one-hundredth as great as would be
permissible in a single link.

Because the signal in a PCM system can be regenerated as often as necessary, the effects
of amplitude and phase and non-linear distortions in one link, if not too great, produce
no effect whatever on the regenerated input signal to the next link. If noise in a single
link causes a certain fraction p of the pulses to be regenerated incorrectly, then after m
links, if p < 1, the fraction incorrect will be approximately m p. However, to reduce
ptop' = {7 requires only a slight increase in the power in each link as we have seen in
the section on threshold power. Practically, then, the transmission requirements for a
PCM link are almost independent of the total length of the system. The importance of
this fact can hardly be overstated.”

The above refers to the section on threshold power, part of which basically says that in
a PCM system, as the signal power is increased, after a particular point, even a slight
increase in signal power will decrease the probability of error by a huge amount. The
reader is refered to [OPS48].

In a usual analog system, however, such performance cannot be achieved. This is because
a usual analog system uses amplifiers to amplify the analog signal and noise is amplified
in the same proportion as the signal is amplified.

I wonder, however, if there are smart ways of building analog systems which achieve the
above performance of a PCM system.

These reasons are a mixture of my own understanding synthesized with talking to some
experts and the reasons which I have taken from [Gal08] (or equivalently, [Gala]), [Jr.a],
and [OPS48]. The reader is refered to the first chapter, each in [Gal08] or equivalently, the
course notes [Gala], and the first two videos of the corresponding course [Galb] , lecture
notes [Jr.a] and the first video of the corresponding course [Jr.b], and [OPS48], for a more
detailed exposition.

There are societal reasons which should drive which technology gets implemented, they are:

Societal reasons: Some of them are the following:

o Health: World Health Organization has declared that cellphone radiation might cause
cancer [WHO)]. Thus, the communication schemes should also be designed in a way
such that they reduce such risks. Potentially, some particular electromagnetic wave-
forms are more harmful than others, and this can potentially determine, what architec-
tures to use

o Is it interesting?: Digital design is more modular than analog design. However, fact
is also, that digital design is much less interesting than analog design. Analog design
is much more of an art, whereas digital design is more, just a process which needs to
be implemented. Another way of saying this is that digital design is 2 much more auto-
mated process (the automation might be done by human, and not necessarily, a machine)
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compared to analog design. I wonder about the ramifications of this in the workplace.
Because of the modularity got out of digital design, and the division of labor it can
produce, what is the effect of this on the individual working in the workplace? Is the
individual just playing the role of a nail in a big machine, or does the individual see work
as a whole, and a process of human growth?

There are further societal reasons, which should drive whether technology like wireless com-
munications or internet gets implemented in the first place or not, whether in an analog or a
digital manner. The reasons of health also falls under this bullet.

o Health: Again, let us take the example of wireless. As we said above, the World Health
Organization has declared that cellphone radiation might cause cancer. It is totally pos-
sible that this means that wireless radiation at radio frequency, but with the amount
of energy needed in the cellphone radiation is going to cause cancer irrespective of any-
thing else, and this factor should be taken into consideration when determining whether
a technology like wireless should be implemented or not. This is a reason for whether
wireless technology should be implemented or not, and not a reason for whether analog
or digital.

o Concentration: There are unverified studies which show that concentration can suffer
in the presence of too much electromagnetic radiation from computers and potentially
cellphones, and this should determine, whether a technology is implemented or not.
This is a reason for whether wireless technology should be implemented or not, and
not a reason for whether analog or digital.

o Environment: Again, let us take the examples of wireless. The environmental impact of
manufacturing cellphones, managing the base-stations, the waste dump produced in the
process, etc, is another factor which should be taken into consideration.This is a reason
for whether wireless technology should be implemented or not, and not a reason for
whether analog or digital.

o Ramifications of living in a globally interconnected world: The internet has made the
world very connected and fast paced. Is this the kind of super-globally connected, fast
paced, multi-tasking way of living conducive to human happiness or not? This is a
reason for whether wireless technology should be implemented or not, and not a reason
for whether analog or digital.

This list of societal factors is incomplete. However, the point is that as we said before, Reason
1 is the primary (and probably the only) reason which determines whether a technology is
implemented and which technology is implemented. The reason for this is speculated on, in
the next sub-section.

Just as a note, reasons like effect on health can definitely be studied before a technology gets
implemented. Reasons like ramifications of living in an interconnected world can probably
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only be understood in hindsight unless someone really wise with a lot of vision ends up
looking at the problem. This is another discussion, for another day.

W 1.4.2 A very important reason for which technology is implemented: cost
/ performance, and human nature

Reason 1, that is cost/profit motive, is #nfortunately a very important reason which ultimately
drives which technology gets implemented. This is due to the fact that we live in a partly
dysfunctional capitalist society where empathy takes a back seat. Capitalism can, in general,
be good. Here, I am commenting on the present capitalist structure, and not saying that
capitalism is bad in general. The way present day capitalism is structured really might be
a physical manifestation of the brain anomaly known as psychopathy [Ron11]. The bigger
picture of what is good for the world is lost many times because of the overemphasis on
monetary gains. This is just my opinion and that of some others, and others might disagree.

I'should add that things are more complicated than what I have written above. Technology is
a process, and what gets implemented tomorrow is a function of what exists today. However,
in my opinion, the fact still remains that at the fundamental level, a lot of things happen in
the society because of some kind of monetary motive. One might want to package things in
a way that it is not just monetary motive, but in my opinion, it is monetary motive which is
at the base of a lot of things. Others disagree with me.

Questions like the above bring us to some of the most fundamental questions in economics,
and I would leave any further discussion here.

There is one reason which might be more fundamental than cost / performance, and that is
human nature: many of us want to be someone and do something, and monetary urge beyond
what one needs, is but one facet of this urge. This is not a negative urge. But it can become
negative without wisdom. For example, with the question of wireless communications, one
can argue in a positive way that it helps people keep in contact, and hence, it is a good thing.
On the flip-side, are the negative effects to health and environment, and questions about
ramifications of living in a global interconnected world. Evidently, the reason of people being
able to keep in touch, won. I wonder, why? I wonder whether the people who made the
initial breakthroughs, both theoretical and implementation in wireless systems, really cared
about people being able to keep in touch or whether their real motivations lay somewhere
else. I would like to believe that their real motivations lay somewhere else: doing something
exciting, fun, making something out of their life, making money, and being famous. They
might make themselves “feel good” by telling themselves that this system will do something
good by helping people keep in contact with each other. If this were not the case, I would
like to believe that there would have been more of a debate on whether systems like wireless
got implemented. I am just speculating here. Also, things, of course, are more complicated
than this. The point however, is that “I am” is a huge factor in many bad things happening in
this world.
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Questions like the above bring us to some of the fundamental questions about human nature,
and I would leave a further discussion here.

There are various other reasons. I am taking the view of a skeptic here, and stating only the
negative reasons. I should say that in my opinion, these negative reasons are very fundamental
reasons, probably the most fundamental.

A corollary of the fact that Reason 1 is a very important driving motive behind which tech-
nology gets implemented is that if someone came up with an analog architecture which saved
billions or trillions of dollars compared to a digital architecture, and thus, someone find ways
of making money, then some one would find a way of implementing the analog scheme, irre-
spective of anything else. Again, things are more complicated than this because overhauling
a huge existing system is a non-trivial matter.

M 1.4.3 The cost / performance reason, even just by itself, is not understood
well enough, in multi-user settings

Also, as regards Reason 1, it is Reasons 1a and 1b and not Reason 1c which have been crucial
in replacing analog technology with digital technology. Reason Ic is in fact not understood
in the biggest communication problems like wireless and internet. Shannon proved 1c under
two assumptions:

1. The setting is point-to-point: there are two users and one user wants to communicate a
source to another user

2. The action of the channel as a transition probability is known

Real situations, for example, wireless or internet, do not follow this paradigm. Let us consider
the example of wireless:

1. Wireless is a multi-user problem and not a point-to-point problem.

2. The wireless medium is time-varying and only partially known, that is, its action cannot
be modeled as a known transition probability. Of course, the channel state can be
ascertained to some extent by exchanging messages between the users but still, the fact
is, that the action of the channel as a transition probability is only partially known.

Thus, it is unclear, for example, in the wireless communications problem whether digital
communication is the best thing to do as regards cost / performance related to point 1c.
It might well be the case that one comes up with an analog architecture which saves bil-
lions/trillions of dollars in energy costs in the electromagnetic waves that cellphones emit,
and leads to much more than the energy savings from reason 1a and 1b, and enough to over-
haul the wireless communication system to analog. It takes a lot to overhaul such a big system
like wireless, but the prospect of enough profit might well, do it.
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In fact, it is known that in certain multi-user communication problems with correlated

sources, digital communication is not optimal in the sense of reason 1c, see, for example,
[Gas02].

Many people believe that the most fundamental problems in wireless communications are
related to reliable communication of binary sequences over the wireless medium, in particu-
lar, for example, understanding the effect of fading. Another important question is to model
the propagation of electromagnetic waves through random media. These are definitely a very
important question irrespective of whether the architecture is analog or digital because fading
will have to be dealt with in either architecture. However, this is a question, which is impor-
tant irrespective of whether one wants to use analog architecture or digital architecture. In
my opinion, an even more fundamental question is whether one wants to build architectures
digitally for wireless communications in the first place. Others would disagree because they
would say that things are digital, and that is how things are going to be. There is truth to that,
too.

The previous discussion leads us to one of the motivations for this thesis.

B 1.5 Analog or digital from the point of view of cost / performance: one
of the motivations for this thesis

From the above discussion, it follows that from the perspective of cost / performance, it is
not entirely evident that digital communication systems should be used in multi-user com-
munication problems. This was one of the questions I had in mind when I started working
on this problem. I would not say that I have answered this question, but this thesis does pro-
vide some understanding of point 1c in multi-user scenarios when the medium action might
only be partially known. '

Cost / Performance: If it turned out to be the case that the energy consumption by an analog
architecture in certain multi-user problems like wireless are much less compared to a digital
architecture, in the long run, compared to the cost of building digital architectures, then, the
system might possibly get overhauled. In other words, it is possible that an analog architec-
ture exists for which the cost savings from reason 1c are more than the cost savings of reasons
laand 1b of the best possible digital architecture By optimality, we mean the following: dig-
ital architectures are optimal if, given an analog architecture which consumes some amount
of system resources for some performance, a corresponding digital architecture exists which
consumes roughly the same or lesser system resources and provides roughly the same or bet-
ter performance. Others disagree with me on this point, in that it is almost next to impossible
to overhaul a big system like wireless.

Another flavor of this thesis is intellectual /conceptual understanding of why separation holds,
and this is discussed in Section 1.7 and Subsection 1.7.2.

Before I go into a description of our results, I'll first look at multi-user networks.
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B 1.6 Multi-user analog and digital communication systems

Let there be N users. N might vary with time. User i wants to communicate source X;; to
user j, 1 < i,7 < N to within some guarantee G;;, overa medium m. X; j is reconstructed
as Y; at user j. This is accomplished with the help of modems (modulators/demodulators)
h; at user i, 1 < i < N. In the example of wireless communications, the medium is the
atmosphere and the modems are cellphones and base stations (the cellphone towers). This
is a general multi-user communication system. See Figure 1.3. A more elaborate high-level
description and rigorous description is in Chapter 3.

The guarantee depends on the particular situation. When talking on the phone, the guarantee
is that communication should happen to within a distortion level. When sending an e-mail,
it is the e-mail is received perfectly (this is not possible in a noisy system, and the way this is
abstracted is by building systems where the probability of error is very small).

At time ¢, the modem b; at user i takes inputs Xj;(¢), Xj5(¢), ..., X;js - Xin(t). At time
t, h; produces an output O;(¢) which is an input to the medium of communication 7. The
various inputs O;(¢),1 < i < N into the medium “mix” and noise is added on top of it. The
medium produces an output /;(¢) which is an input to the modem 5b;. Based on O;, the
modem produces outputs Yy;, ¥y, ...y Yy, ..., Yy;, where Y} is the reproduction of X,
the source that user ;j wants to communicate to user i. X;;, Y, O;, I;, are evolving in time.
The story is the same at each user 7.

In a digital multi-user communication system, each modem is digital. A digital modem b; is
portrayed in Figure 1.4. At user 7, the sources Xj4, X, ..., X;y are first converted to random
binary sequences by the source encoders. These binary sequences are communicated reliably
over the medium with the help of medium modems at the various users. Finally, at user 7, the
source decoders help produce the reproductions Yy, ..., Yy;, of Xj;, ..., X;, respectively.
The story is the same at each modem 5.

Next I discuss the two flavors of this thesis.

M 1.7 The questions asked and answered in this thesis/ the rwo flavors of
this thesis

This thesis, as stated in the abstract, has two flavors, and here, they are stated in the order
which is the reverse of the order in the abstract:

1. Optimality of separation from the perspective of cost/peformance: Understanding reason
1c, that is, whether source-channel separation holds in multi-user communication prob-
lems when the medium description as a transition probability is only partially known.
This has already been stated in Section 1.5. Discussion on the nature of our results
concerning this point is there in Subsection 1.7.1



For all 4, j, X;; is communicated over the medium and received as Y;; with
the use of modems h;

User 1

User j

Xn —™

= X1
Xio -

-— XN
_Xij — I; Ij
> < I—y
hi h; Yy
Xt C11 (21 mm— Y-Zj
S 7
Yii <+ M ‘
i\ | e
iy
ny
YyN; <+ '

/N

hy hn

A4

Figure 1.3. A general multi-user communication system



Xi2

Xin

Yni

digital

link
.
hi :
]
"
| |
—_» source
encoder "
| |
|
M
"
—a - SOurce __my,
encoder :
.
"
| ]
.
|
| |
— 1 5 source __g,
encoder "
[ ] Ii
: N
s medium s
" modem
]
—3 » source g, O;
encoder . p
Y
M
M
M
M
"
| |
"
| |
"
- Source . gpg—|
decoder "
| ]
M
| |
"
| |
[ ]
<] — source g
decoder .
[ ]
[ |
L]
| ]
-

Figure 1.4. A digital modem




Sec. 1.7. The questions asked and answered in this thesis/ the [0 flavors of this thesis 17

2. Intellectual /Conceptual There is no fundamental understanding, as regards a separation
theorem, even in the point-to-point setting, when the channel behavior as a transition
probability is only partially known. Also, there is no fundamental understanding, as
regards a separation theorem in multi-user problems. We will make some statements
about separation in both the point-to-point case when the channel is only partially
known and also in the multi-user case when the medium is only partially known. Also,
Shannon’s proof of source-channel separation for a known channel in the point-to-point
setting is, in my opinion, not very transparent, and we believe that our proof, more gen-
eral in setting in many ways, is also more transparent. Thus, we want to understand,
why separation holds, on a conceptual level. This is discussed in Subsection 1.7.2.

W 1.7.1 Understanding reason 1c: does separation hold in multi-user com-
munication problems?

Recall the multi-user communication problem discussed in the previous section. We consider
the problem of communicating soures X;;, 1 < i,j < N, from user i to user ;j within a
guarantee G;; over a medium m. The guarantee that we will use is that the source X;; is
communicated to within a distortion level D;; under a distortion metric 4;;. The medium m
is only partially known. Mathematically, this is abstracted out by saying that the medium m

might belong to a family of transition probability matrices.

We will make the following assumptions:

1. The sources X;; are independent of each other
2. The users can generate random codes

3. In order to prove rigorous results, we will assume that the distortion measures d;; are
additive. However, as we shall see from the nature of the proofs, the results should hold
for permutation invariant distortion measures also. Permutation invariant distortion
measures are those for which rearranging the input and the output in the same way does
not change the distortion between the input and the output

4. Delays do not matter: more precisely, an arbitrary but finite delay is allowed between
the transmission of the sources and their reception

Under these assumptions, we prove that digital communication is optimal from the point of
Reason 1c: that is, we will prove that assuming random-coding is permitted, if there exists
some architecture to communicate independent sources X;; over a partially known medium
m to within a distortion D;; under a distortion metric d;;, then, there exists a digital com-
munication scheme which accomplishes the same, and has the same bandwidth requrements
as the original scheme and essentially the same energy/power consumption as the original
scheme. '
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Thus, from the point of view of reason 1c, for communication problems which satisfy the
above assumptions, digital architectures are as good as analog architectures. Since digital ar-
chitectures are already better from point of view of reason 1a and 1b, and since, it follows
that from the view-point of cost / performance, digital architectures are optimal.

Assumption that the sources X;; are independent of each other is necessary. Gastpar [Gas02]
provides examples of multi-user problems where sources are correlated and separation is not
optimal from the point of view of reason 1c.

In Chapter 2, we will prove the optimality of digital communication in the point-to-point
setting. This has been done by Shannon in [Sha59]. Shannon, however assumed that the ac-
tion of the channel as a transition probability is known. We do not make this assumption. In
Chapter 3, we prove the optimality of digital communication in the multi-user setting under
the above assumptions. This is done by reducing the problem to a point-to-point problem
and an inductive argument. In Chapter 4, we will see, how this result is partially applicable
to the wireless problem. The wireless problem is complex, and we can only capture some
features into a mathematical abstraction. As we shall see, the assumption of independence of
sources only holds partially. Also, delays matter. However, our modeling does offer partial
justification in terms of reason 1c for the use of digital architectures.

I’'m not claiming that I'm solving a practical problem or that I am solving the wireless prob-
lem. To summarize my view-point:

1. FirstIclaim that the question, “Are digital architectures optimal from the point of view
of cost / performance in multiuser settings, for example wireless” is a question that is
not entirely well understood. As I have said some others disagree with me in that they
believe that the implemented architectures, for example, in the wireless problem, will
be digital, no matter, what, and hence, this is not a question of any concern at all.

2. Then, I prove that under various assumptions (stated before), digital architectures are in
fact optimal from the point of view of reason 1c, and thus, from the point of view of
cost / performance. Finally, we see, to what extent the assumptions hold in the wireless
example.

Next, we come to the second point of this thesis, which is, why does separation hold in the
first place, on a conceptual/intuitive level

B 1.7.2 Why does separation hold on a conceptual level?

Shannon proved the optimality of digital communication in the sense of Reason 1c (source-
channel separation) for reliable communication in [Sha48] and communication with distor-
tion in [Sha59] in the point-to-point setting,

The very important contribution of these works was not just proving source-channel sepa-
ration but also, simple expressions for the information content of a source, the minimum



Sec. 1.7. The questions asked and answered in this thesis/ the L0 flavors of this thesis 19

number of binary sequences needed to compress a source to within a distortion level (the
rate-distortion function) and the maximum rate of reliable communication over a channel.

The problem of maximum rate of reliable communication over a channel is an infinite di-
mensional optimization problem for which, Shannon provided that a corresponding finite
dimensional optimization problem expression (called single letterization) exists. This is a
mutual information expression. The enormous importance of this expression is that it can in
fact be calculated by a machine (or by hand using pen and paper), and thus, it can be figured
out, which channels allow reliable communication at which rate. This view has been taken
in practice, and a lot of research has, for example, been devoted to finding capacity achieving
codes over the AWGN channel, as is clear from Dave Forney’s course notes and video lectures
[Jr.a] and [Jr.b], respectively.

Similarly, the problem of the minimum number of binary sequences needed to compress a
source to within a particular distortion level is an infinite dimensional optimization problem.
Shannon provided a corresponding single letterization, the rate-distortion function, which is
a mutual information expression, and which can be calculated by machine or by hand. Thus,
we know the minimum number of binary sequences needed to represent a source.

The disadvantage of reliance on mutual information expressions in my view (and the view
of some others, and there are others who disagree with this view) is that the proof of why
separation holds is not evident. Asa mathematical proof, one can see the correctness of the
result, but on a more intuitive level, it is unclear why separation holds. This is especially true
for the rate-distortion problem, and Shannon’s proof can be found in [Sha59].

In short, in my view, mutual information expressions and proofs based on mutual informa-
tion expressions are good to make calculations on which sources can be communicated over
which channels but they do not lend much insight into the nature of separation.

Reality can be understood at various levels. A very good example is gravity. The various
levels of understanding are:

1. Newton came up with a formula for the force of attraction between two bodies. This is
helpful in terms of making calculations and predictions. However, it is totally unclear,
how, this action at a distance happens physically

2. There is the postulate of gravitons or gravitational waves which machines are trying to
detect. If true, this will tell, how the bodies exchange information, and the force of
attraction is produced

3. The third reality is that of direct experience: as humans who can feel, if we can de-
velop the capability to feel that there, indeed, is a force of attraction caused just due to
attraction based on masses. This is the best form of understanding reality

The question of why digital communication does not fit exactly into the above framework,
but there are some similarities:
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1. A mathematical proof that separation holds
2. Intuition based on the mathematical proof, of why separation holds

3. Direct experience based on examples and real engineering problems. No direct experi-
ence at the level of self-experience is possible in some of these engineering problems

In my opinion and that of some others, Shannon’s proof in [Sha59] provides a mathematical
proof that separation in problem of communication with distortion holds, but it does not
give much intuition as to why separation holds.

The proof of the separation theorem for communication with distortion in [Sha59] has two
parts:

1. Achievability: If the channel capacity is larger than the rate-distortion function for a par-
ticular source, then communication of the source to within the distortion level over the
channel is possible by the separation architecture of source-coding followed by channel-
coding

2. Conwverse: If communication of a particular source to within a distortion level is possible
over a channel by some architecture, then the channel capacity is larger than or equal to
the rate-distortion function for the source for that distortion level. Thus, by achievabil-
ity, the communication of the source to within the distortion level is also possible by
using a source-channel separation based architecture

The direct part is fairly intuitive. Shannon’s proof of the converse in [Sha59] seems to work
based on a lot of mathematical manipulations with entropy and mutual information and
using their properties like convexity. The ideas are those of a standard information-theoretic
converse proof.

We provide a proof of the separation for communication with distortion which uses only the
definitions of channel capacity as the maximum rate of reliable communication and the rate-
distortion function as the minimum rate needed to compress a source to within a particular
distortion level. We do not use any simplified mathematical expressions for channel capacity
or the rate-distortion function like the single-letter mutual information characterizations.
We call this an operational proof because it only uses the operational meanings of channel
capacity as the maximum rate of reliable communication and the rate-distortion function as
the minimum rate needed to compress the source to within a certain distortion level and
not any simplified mathematical quantifications of these quantities. Our usage of the word
operational should not be confused with “being operational in practical implementations”.
The proof of the direct part is the same as that of Shannon. However, for us, the converse
is an achievability: we prove the converse using achievability technigues, and in my opinion,
lends much more insight into the nature of separation than Shannon’s proof. The proof
also demonstrates a duality between source and channel coding and our proof of separation
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is built on ideas from that duality. Why separation fundamentally holds is, in my opinion,
hidden in this duality.

H 1.8 Organization of this thesis

In Chapter 2, we prove the optimality of digital communication for communication with a
fidelity criterion in the sense of reason 1c (in other words, a universal source-channel separa-
tion theorem for rate-distortion) assuming that random-coding is permitted.

In Chapter 3, we prove the optimality of digital communication for communication with
fidelity criteria in the multi-user setting assuming that the various sources which the users
want to communicate to each other are independent of each other (the setting is unicast) and
that, random coding is permitted at the various encoders and decoders.

In Chapter 4, we discuss the partial applicability of the results of Chapter 3 to the traditional
wireless telephony problem.

In Chapter 5, we provide an operational perspective on the source-channel separation theo-
rem for rate-distortion. We also provide an alternate proof of the rate-distortion theorem for
certain sources which we believe is more insightful than Shannon’s original proof.

in Chapter 6, we recapitulate and discuss potential research directions.

H 1.9 In the next chapter ...

In the next chapter, we prove the optimality of digital communication for universal com-
munication with a fidelity criterion in the sense of reason Ic in the point-to-point setting
assuming random-coding is permitted.
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Chapter 2

Optimality of digital communication for
communication with a fidelity criterion:
universal, point-to-point setting

The fundamental problem of communication is that of reproducing at one point exactly or
approximately a message selected at another point.
-Claude Shannon

Our difficulty is not the proofs, but in learning what to prove.
-Emil Artin

H 2.1 In this chapter ...

H 2.1.1 Introduction

In this chapter, we prove that digital communication is optimal for rate-distortion commu-
nication in the sense of reason 1c stated in Section 1.4.1 in Chapter 1. That is, we prove a
source-channel separation theorem in the rate-distortion context. A source-channel separa-
tion theorem for rate-distortion in the point-to-point setting was hinted at by Shannon in
[Sha48] and proved rigorously in [Sha59]. Shannon [Sha59] assumes that the action of the
channel as a transition probability is known. We call these, fully known channels. The main
contribution of our source-channel separation theorem for rate-distortion is that we assume that
the channel is only partially known. This is abstracted by saying that the channel probability
may belong to a set. In mathematical terms same encoding-decoding schemes should work for all
channels in the set.

This is important because real life media like the internet and wireless are only partially
known. One way of modeling these situations is to say that the medium action is only par-
tially known as a transition probability. Internet and wireless are multiuser networks. In this
chapter, we only prove the optimality of digital communication in the point-to-point setting.
Another important contribution of this thesis is to prove the optimality of digital communication
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in certain multiuser settings where the medium is only partially known.. This is the subject of
the Chapter 3.

Our formulations will be information-theoretic, see Section 2.2. In the information theory
literature, encoding-decoding schemes which work for a partially known channel are called
universal. Note that the universality is over the channel, and not the source. We will assume that
the source statistics are known. The reason why we assume the knowledge of source statistics
1s commented on, in Section 2.19.

In our work, we use the probability of excess distortion criterion instead of the expected
distortion criterion for the definition of “communication to within a distortion D”. The
probability of excess distortion criterion is (2.29) and the expected distortion criterion is
(2.28). This use of the probability of excess distortion criterion instead of the excess distortion
criterion is crucial to our work. This is commented on in Section 2.12.

Also, throughout, we will assume that random-coding is permitted. That is, the encoder
and the decoder are allowed to generate random codes. That is, the encoder can belong to
a family of encoders and the decoder has access to the particular realization of the encoder.
Errors get averaged out over the random code. Over a fully known channel, if there exists a
random code which achieves a particular performance, usually, there also exists a determin-
istic encoder-decoder which achieves the same performance. However, over partially known
channels, random codes can enhance the performance of the system. Mathematically, this
happens because since we model a partially known channel as coming from a set of fully
known channels, some of the deterministic codes that make up the random encoder-decoder
may work well for some channels, and others will work well for other channels, and they
can be constructed in such a way that taking an average over all these deterministic encoder-
decoder work well for all the channels and achieve a performance which a single deterministic
encoder-decoder cannot achieve. This point is discussed precisely in Section 2.17. We empha-
size again, that we insist in good performance over “all channels” in the set which make up
the partially known channel, rather than good performance averaged over the channels. -

The channel model as a transition probability will be very general in the sense that the present
channel output can depend, in an arbitrary manner, on all the past channel inputs, all the past
channel outputs, and possibly, an initial channel state.

We will hint at the essential connection between source and channel coding that allows sepa-
ration to be true. This essential connection or duality will not use the definition of channel
capacity as a maximum mutual information or the rate-distortion function as a minimum
mutual information. Only the meanings of channel capacity as the maximum rate of reliable
communication and the rate-distortion function as the minimum rate needed to compress a
source to within a certain distortion level will be used. This discussion will be high level.
This is the subject of Section 2.14.

Rigorous results will be proved when the source is i.i.d., and the time evolves discretely for
the source and channels and additive distortion measures. This is done in Section 2.15.
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High level remarks will be made when the source and channel evolve continuously in time,
the source is stationary ergodic and the distortion measure is permutation invariant. Of
course, separation will not hold for arbitrary stationary ergodic sources and arbitrary chan-
nels. The point of this discussion will be to bring out the idea of why results are expected
to generalize to this more general setting. Permutation invariant distortion measures are dis-
cussed in Sections 2.14 and 2.16. Generalization to stationary ergodic sources evolving in
continuous time is discussed in Section 2.18.

W 2.1.2 A high-level statement of universal source-channel separation for
rate-distortion in the point-to-point setting

The following is a high-level statement of the universal source-channel separation theorem
for rate-distortion:

High level statement 2.1 (Universal source-channel separation for rate-distortion or the
optimality of digital communication for universal communication with a fidelity criterion).
Assuming random-coding is permitted, in order to communicate a random source universally
over a partially known channel to within a particular distortion level, it is sufficient to consider
source-channel separation based architectures, that is, architectures which first code (compress) the
random-source to within the particular distortion level, followed by universal reliable commu-
nication over the partially known channel. There is sufficiency in the sense if there exists some
architecture to communicate the random source to within the required distortion level, univer-
sally over the partially known channel, and which consumes certain amount of system resources
(for example, energy and bandwidth), then there exists a separation based architecture to univer-
sally communicate the random source to within the same distortion universally over the partially
known channel, and which consumes the same or lesser system resources as the original architec-
ture.

We emphasize, again, that universal means that the same encoding-decoding scheme should
work irrespective of the particular action of the partially known channel, which, as we have
said above, belongs to a set of transition probabilities. Also, we emphasize again, that univer-
sality is over the channel, not the source.

N 2.1.3 Chapter outline

The following is the outline of this chapter:

The first part deals with the set-up, definitions, comments on the definitions and a small
discussion on important past literature:

Section 2.2 discusses the information theoretic set up and the assumptions that we make.
Some assumptions like “delays do not matter” (in other words, arbitrarily large delays are
allowed) are crucial to our results whereas other assumptions like the channel input and out-
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put sets are finite and time evolves discretely are not crucial and are made only to simplify
mathematical technicalities.

Section 2.3 discusses a very important notation that we use: the superscript notation. It is
important enough to merit a separate section.

Section 2.4 discusses sources and section 2.5 discusses channels. We will assume that the
channel is only partially known, and the channel model is a very general channel model.
These sections also discuss in brief, the validity of our source and channel models.

Sections 2.6 and 2.7 discuss analog and digital communication systems respectively. They
discuss analog encoders and decoders, digital encoders (source encoder and channel encoder)
and digital decoders (channel decoder and source decoder), the make up of point-to-point
analog and digital communication systems and resource consumption in point-to-point com-
munication systems. The sections also discuss the problem of point-to-point communication
problem, and the particular problem of communication with a fidelity criterion that we study
in this thesis. In part, this section makes rigorous, the discussion in Section 1.3.

This is followed by a discussion of distortion in Section 2.8. We discuss two kinds of distor-
tion measures: permutation invariant and additive. Additive distortion measure is a special
case of permutation invariant distortion measure. Sections 2.9 defines what it means for a
channel to be capable of universally communicating a random source to within a certain
distortion level. Channels which communicate a random source to within a certain distor-
tion level are defined with the probability of excess distortion criterion. Section 2.10 defines
source codes which code (compress) a source to within a certain distortion level. Two criteria
are used when defining source codes which compress a source to within a certain distortion
level: the expected distortion criterion and the probability of excess distortion criterion.

Section 2.11 defines universal reliable communication over a partially known channel.

This is followed by a small discussion of why we use the probability of excess distortion
criterion instead of the expected distortion criterion in Section 2.12.

Section 2.13 discusses the important past literature on the problem of point-to-point commu-
nication with fidelity criterion.

Then, we come to the results:

Section 2.14 discusses why universal source-channel separation in the point-to-point setting
holds in the point-to-point case. We use what we call the uniform X source for this discussion.
The uniform X source consists of sequences with type precisely py, and this helps avoid a
lot of €s and J's in the proofs. This discussion holds for permutation invariant distortion
measures. We assume a technical condition on the rate-distortion function, and with this
assumption, we have a rigorous proof of universal source-channel separation theorem for
communication with a fidelity criterion in order to communicate the uniform X source when
the distortion metric is permutation invariant. This section is the most important section of the
whole thesis and is the main idea why separation foptimality of digital communication holds for
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universal communication with a fidelity criterion.

This is followed, in Section 2.15, by a rigorous proof of the universal source-channel sep-
aration theorem for rate-distortion when the source is i.i.d. and the distortion measure is

additive.
The results are followed by various discussions:

Section 2.16 discusses the high-level idea for proving universal source-channel separation rig-
orously for permutation invariant distortion measures .

Throughout, we have made the assumption that random-coding is permitted. This assump-
tion is crucial Section 2.17 discusses why this assumption is crucial.

Throughout, we have assumed that the source evolves in discrete time. Section 2.18 discusses
high-level ideas for generalization to continuous time sources.

Section 2.19 comments on the assumptions described in Section 2.2, which was discussed
above in brief.

Finally, we recapitulate this chapter in Section 2.20.

W 2.2 Our set up: Information theoretic, and various assumptions made

We will use an information-theoretic set up. In particular, we will assume that

e Delays do not matter: That is, it is okay if the source is reproduced with arbitrarily large
(but finite) delay. This assumption makes sense in certain cases, but not in others. For
example, it makes more sense when sending a text message compared to real-time voice
communication over a cellphone. In any case, it is a good assumption from the point of
view of getting insight into the nature of communication architectures. This assumption
is crucial. The cruciality of this assumption is in the sense that if this assumption is not
made, in fact, source-channel separation based architectures are not optimal

o The source can be modeled as a random process, in particular, a stationary ergodic random
process: This is the usual assumption made in communications theory, that the source
can be modeled as a random process. Also, it is the usual assumption in communications
theory, that the source is stationary, ergodic.

Without these assumptions, it is very difficult to prove any rigorous results. Comments
are made in Subsection 2.4.3, on this assumption

o The channel can be modeled as a (partially known) transition probability: In information
theory, channels are modeled as transition probabilities.

We will assume that the channel is only partially known, and thus, we will model the
channel as coming from a set of transition probabilities. We will assume that this model-
ing makes sense. The motivation behind this modeling is that real channels like wireless
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and internet are time-varying, and their action is not entirely known: at any point of
time, the action of the wireless channel is not entirely known as a transition proba-
bility, and the exact internet architecture and its behavior is not entirely known as a
transition probability. If the channel were adversarial, it can usually be modeled as a
partially known channel. Comments are made in Section 2.5.4, on modeling a channel
as a known transition probability or a partially known transition probability. The more
usual language of saying that the channel is modeled as a transition probability is that
we will be solving the universal/compound problem.

In most of the information theory literature, further assumptions on the behavior of
the channel, for example, memorylessness, Markoff nature or some assumptions on
the memory of the channel (for example, indecomposability in the sense of Gallager
[Gal68]) are needed. We will not require any such assumptions, and our model will be
a very general channel model a la Verdu-Han [VH94]

o The source can incur distortion, and the distortion can be modeled as a distortion metric:
We will allow the source to incur distortion, and we will work in the framework of rate-
distortion theory as developed by Shannon [Sha59]. Our treatment will be different in
the sense that we will use the probability of excess distortion criterion instead of the
average distortion criterion. We will assume that the distortion can be modeled as a
distortion metric, and this is the usual assumption made in communications theory

The above assumptions are the basis on which information theory is built. We would require
further assumptions, and they are stated below

The following crucial assumptions are made concerning the nature of the distortion metric
and the distortion criterion, and on random-coding:

o The distortion metric can be modeled as a permutation invariant distortion metric, and
the distortion criterion is the “probability of excess distortion” criterion: A permutation
invariant distortion function is the following: the distortion between the source input
signal and its reproduction does not change under the same rearrangement of the source
and its reproduction. We require the distortion metric to be permutation invariant in
the sense that our results are not true if this assumption is not made. Also, we use, what
we call the “probability of excess distortion criterion (2.29), the same as the one used in
the book of Csiszar and Korner in [CK97], instead of the expected distortion criterion
(2.28) which was used by Shannon in [Sha59]. Again, our results are not directly true if
we use the expected distortion criterion.

¢ Random-coding is permitted: We assume that random-coding is permitted. This assump-
tion is crucial in the sense that if ratndom-coding is not permitted, the universal source-
channel separation theorem for rate-distortion that we prove is not true. In Shannon’s
random-coding argument, random-coding is a proof technique: assuming that a random
code exists, a deterministic code exists. For us, random-coding is 7ot just a proof tech-
nique. It is necessary. This is because we assume that the channel is only partially known
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unlike Shannon who assumed that the channel is fully known. This is commented on
further, after we have proved our results, in Section 2.17.

We make the following assumption concerning the statistics of the source. We conjecture
that we do not require this assumption, but we are not sure.

o The source statistics are known: That is, the source distribution is known. As stated in the
previous line, we conjecture that we do not require this assumption. This is commented
on further in Section 2.19.

The remaining assumptions are made to prove results rigorously and to avoid mathematical
complications, and we are quite sure that modulo some technical assumptions, they can be
removed.

We will make the following assumptions on the cardinality of the source and source repro-
duction alphabet:

o The source alphabet and source reproduction alphabet are finite: (in fact, to make any kind
of physical sense, it is enough to assume that source alphabet is finite: it does not make
sense to have the reproduction alphabet cardinality larger than the source alphabet car-
dinality): this assumption is needed to prove rigorous results. It not crucial to our work,
and the results can be generalized to many sources with infinite alphabet size.

We make also make the following assumption on the random process corresponding to the
source:

o The source that needs to be communicated over the channel is i.i.d.: this assumption is made
only to prove the results rigorously and for simplicity of presentation. We believe (in
fact, we are sure), that the results will generalize to many stationary ergodic sources.

We make the following assumption concerning the distortion measure:

o The distortion measure is additive: this assumption is made to prove rigorous results. We
will hint at how to generalize the results to permutation invariant distortion functions.
Permutation invariant distortion functions and additive distortion functions are defined
in Section 2.8.

We will make the following assumptions on the time evolution of the source and the channel:

o The channel evolves discretely in time: this assumption is made for simplicity of presenta-
tion. Continuous time stochastic models for channels involve a lot of technicalities. As
will be clear, the results generalize without any change in proofs, even when the channel
evolves in time continuously.
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o The source evolves discretely in time: this assumption is made for simplicity of presenta-
tion. Continuous time models for sources involve a lot of technicalities. We will point
out ideas for generalizing to sources which evolve continuously in time.

o The source and the channel evolve on the same time scale: We will assume that the source
and channel evolve on the same time scale. In particular, we will assume that the source
and the channel evolve at every integer time. In practice, source can be evolving faster
than the channel or vice-versa. For example, when sending a text message on a cell-
phone, the source is in fact, evolving in time discretely, whereas the wireless medium
evolves in time continuously. We make this assumption for simplicity of presentation.
Odur results can be generalized to the case when the source and channel evolve on differ-
ent time scales.

The assumptions which are crucial are:

¢ Delays do not matter

e The source can be modeled as a stationary ergodic random process and the channel can
be modeled as a transition probability

o Allowed distortion between the source and its reproduction can be modeled as a permu-
tation invariant distortion metric

o The source statistics are known,

and an assumption which we have made and is crucial to proving our results, but which we
believe can be removed is

e Source statistics are known

The rest of the assumptions are made in order to prove rigorous results and to avoid math-
ematical complications. Of course, universal source-channel separation will not hold for
arbitrary stationary ergodic sources and arbitrary permutation invariant distortion metrics;
however, we believe that it should hold for a wide variety of stationary ergodic sources and
permutation invariant distortion metrics. These assumptions are commented on in Section
2.19 after we have have provided the the rigorous proof of the universal source-channel sepa-
ration for rate-distortion.

B 2.3 The superscript notation

Superscript # will denote a quantity with or related to sequence length (or block length) 7.
For example, For example, x” will denote a sequence of length #n. Y” denotes a random
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variable on the set #”. Note that Y” need not be i.i.d.: the superscript 7 refers to the block
length being 7. £” and ¢” will denote n-length channel transition probabilities. e” will
denote an encoder which encodes 7 length sequences and f” will denote a decoder which
decodes 7 length sequences.

We will denote sequences of these quantities for various block lengths with < >. For example,
sequences < x” >{°, < y” >, < k" >, < ¢” >1°. We will denote these infinite sequences
by their single letters: for example, x =< x” >, y =<y" >, k=< k” >, c =< " >P.

In general, the superscript 7 just denotes block length # and is not supposed to indicate a
cartesian product or nesting of sorts. For example, Y” need not be i.i.d., and in general, there
might be no relation whatsoever between Y and Y"*!: it need not even be the case that the
first » components of Y”*! are the same as Y”. In other words, there might be no nesting.

In certain cases, there will be nesting. For example, when we discuss physical channels, &”,
the transition probability corresponding to the channel for 7 length sequences will be the first
n components of £”+1, However, this will z0t be the case when we discuss abstract channels:
¢” might be unrelated to ¢”*!. Similarly, for encoders, e”, the encoder used to encode #-
length sequences might be completely unrelated to e”*!, the encoder used to encoder 7 + 1
length sequences.

In certain cases, superscript 7 will indeed denote a cartesian product of sorts. For example,
X" will be reserved for an i.i.d. X sequence of length 7. For a set ./, .” will many denote
the cartesian product of ./ with itself, » times. There are other cases when this will not be
true: we will discuss sets %" consisting of sequences of a particular type: in that case, there
need not be any cartesian product relation between % ” for various n.

The i*» component of x” will be denoted by x”(i). In particular, x"(n) will denote the
value of the sequence x” at time 7. Usual literature uses the notation x,, for x”(n). The
reason why we do not want to use this notation is because this notation makes sense only
when x” is the first # components of x”*!. In our set-up, nesting will happen in certain
situations and not in others. For example, output sequences y” will not be nested, in which
case, y"*1 #£ (9",9"*(n + 1)), and the notation of y; for the i*” component will not make
sense because it would be unclear, we are talking about the i*# component of y” for which
block length 7. For that reason, we use the notation y” (7). The same discussion holds for
abstract channels, encoders and decoders which are not nested in general. There are certain
cases when quantities will be nested. For example, when we consider the model of physical
channel £ =< &” >, the k" will be nested, that is, #"*! = (k”,k"*!(n +1)). In this
case, we will also denote £”(i) (which is the same irrespective of the block length 1, that is,
k"(i) = k" (i)¥n,n’) by k;: the notations k; and k! will be used interchangeably in such
situations.

We would have occasion to require the part of a sequence corresponding to block length 7.

a"(p..q) will denote (a”(p),a”(p +1),...,4"(q)).

There will be one case when we will not use the superscript notation. That will be when we
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are dealing with real numbers related to certain block lengths. Then, we will use sub-scripts.
For example, w,, will denote a real number related to block length 7 and correspondingly,
the sequence < w,, >7°. We will not use the superscript notation in this case to prevent the

possibility of confusion of e” with the 7*# power of w.

B 2.4 Source and source reproduction

In this section, we describe our abstraction of a source and source reproduction. The problem
of point-to-point communication is to communicate a source from a sender to a receiver over
a possibly noisy channel with some guarantee.

Sources will be modeled as random processes.

First, we start with some notation.

B 2.4.1 Some notation

Notation 2.1 (Source space). The source alphabet is &'. We assume that & is a finite set. "
denotes the cartesian product of & with itself 7 times. An element of & is x. An element of
X" is denoted by x”.

Notation 2.2 (Source Reproduction space). The source reproduction alphabet is %. We as-
sume that & is a finite set. &” denotes the cartesian product of % with itself 7 times. An
element of % is y. An element of #” is denoted by y”.

Note 2.1. The source reproduction space is not the same as the source space for the purpose
of abstraction, and also, for the purpose that the source reproduction need not always be a
perfect replica of the source. The latter is the case, for example, with voice communication
where the received voice need not be the same as the transmitted voice for the recipient to
make out, what the speaker said.

B 2.4.2 i.i.d. X source

We will assume that sources evolve discretely in time.

We will model sources as random processes. For simplicity, we will use the i.i.d. X source.

Notation 2.3 (i.i.d. X source). X is a random variable on &'. py is the corresponding prob-
ability distribution. X” denotes the i.i.d. X source of block length ». X” denotes i.i.d. X
sequence of length 7. < X” > is the i.i.d. X source.



Sec. 2.5. Physical channels 33

W 2.4.3 Discussion: are “real” sources really stationary ergodic

We stated in the previous section that our results stated in the further sections and chapters
can be generalized to stationary ergodic sources. The question arises: can practical sources be
modeled as stationary ergodic sources.

The answer is, no.

For example, the sources related to language, for example, written text in some language, or
spoken language, are not stationary ergodic. The use of stationary ergodic sources is made
only to understand the problem of communication and get some hints into the nature of
things, and hopefully, design systems.

Exact models of real world are difficult to make, and even if made, it is difficult to come up
with any theory about them.

See, for example, [Galb], for a discussion.

B 2.5 Physical channels

In this section, we describe the physical channel model that we use.

The kind of model we are interested in is the following: Consider the example of wireless
channel. The exact behavior of the wireless medium is unknown, even though we might
have some knowledge. One criticism to this argument is the following: the wireless channel
changes behavior over time scales which are large compared to the block lengths used in
wireless communications and thus, over each block length, the wireless channel is essentially
fixed. This is true, but what we are saying is that this fixed channel over a particular block
length is not known, and this is what we want to model.

We will abstract a channel as a transition probability. This will be called a known channel.
As we would like to model channels whose action is not entirely known. These channels
are the partially known channels and will be modeled as coming from a set of transition
probabilities. Before we state these definitions, we state some notation.

Time will be assumed to evolve discretely.

B 2.5.1 Some notation

Notation 2.4 (Channel input space). The channel input space is the set is .#. We assume that
# is a finite set. #” denotes the cartesian product of # with itself 7 times. An element of &
is 2. An element of #” is denoted by ¢”. We do not denote an element of #” by i” because i
is used for indexing.

Notation 2.5 (Channel output space). The channel output space is the set is . We assume
that 0 is a finite set. ©” denotes the cartesian product of @ with itself 7 times. An element
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of @ is 0. An element of 6" is denoted by o”.

W 2.5.2 A fully known physical channel, %

A fully known physical channel is one whose action as a transition probability is known.
This is mathematically abstracted as follows:

Definition 2.1 (A fully known physical channel). We want to use a very general channel
model: the output of the channel at time i can depend on the inputs of the channel up to and
including time i — 1 and the outputs of the channel up to and including time i — 1. Let the
block length be 7. The channel transition probability at time i is denoted by &;:

E (0" () |I"(1..i = 1),0"(1.i = 1)), if i < n
Ei(0"(3) |", 0" (1i = 1)), if i > n @.1)

is the probability that the channel output at time i is 0”(7) given that the channel inputs
and outputs up to and including time ¢ — 1 are ¢*(1..; — 1) (or ¢* if i > n) and 0”~!(1..i — 1)
respectively.

Note that k; is independent of the block-length 7. When the block-length is 7, the channel
evolves until some time ¢, > n. The channel is k” = (k;,k,,...,k, ). For simplicity, we
assume that ¢, = n. Thus, when the block-length is 7, the channel #” = (k;,k,,...,k,).
Assumption that ¢, = n can be made without loss of generality: it is related to the issue of
time scales, discussed in Note 2.6.4.

In the superscript notation as defined earlier, k,, is also denoted as £”(n). Note that £”+! =
(k”,k"+\(n + 1)), that is, this model of a physical channel is nested, as it should be. It is
for this reason, as stated in Section 2.3 that we can use the notation k,. The full channel
evolution in time, as stated in Section 2.3, is denoted by k& =< £&” >°.

Note 2.2 (Is there no dependence on the initial channel state?). In general, there is a depen-
dence of k; on the initial channel state. However, we do not show this dependence. This is
because, as we shall see, the model of the channel that we will use is a partially known chan-
nel, in that, the channel can belong to a family. For that reason, we will treat the same channel
with different initial states as different channels and assume that all these channels belong to
the family which make up the partially known channel. A partially known physical channel
is the subject of the next subsection.

Note, also, that even though the model of a physical channel is nested, the channel inputs,
and hence also, the channel outputs, may not be nested.

Note 2.3 (A very general channel model). This is a very general model of a “physical” channel
as a transition probability evolving in discrete time. It is in fact, the most general possible
model of a “physical channel” evolving in discrete time other than the fact that we have not
made the dependence on the initial channel state for the reason described in Note 2.2. In
particular, we do not impose any memorylessness or Markoff assumptions on the channel.
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W 2.5.3 A partially known physical channel

Note that since the initial state s may not be entirely known, in general, and also, since
the transition probability £” might not be entirely known, we want to model a channel as
belonging to a set of transition probabilities. This motivates the definition of a partially
known physical channel:

Definition 2.2 (Partially known physical channel). A physical channel is said to be partially
known if it belongs to a set of transition probabilities ..

Notation 2.6 (Notation for a partially known channel). A partially known channel £ which
comes from a set of transition probabilities .2 is denoted by k£ € &7, and it is will be referred
to as, “partially known channel k € &/.”

Note 2.4 (Partially known channels and compound channels). In the information theory lit-
erature, partially known channels are referred to as compound channels. See for example
[CK97] for a discussion of memoryless compound channels. Our model is different from
[CK97] in the sense that our channels are not memoryless.

B 2.5.4 Discussion: Can “real” channels be modeled as a transition proba-
bility or a family of transition probabilities?

We have modeled channels which are partially known as coming from a set of transition
probabilities.

Question arises: is modeling “real” channels or media as coming from a sets of transition
probabilities, a good model? For example, can wireless medium or the internet be modeled
as a coming from a set of transition probabilities.

The answer is that we do not know.

Some people like to model channels adversarially. Adversarial models can usually be modeled
as a set of transition probabilities. Again, it is unclear if this is the right thing to do.

The important thing, from our perspective will be, as we shall see, is that the channel model
will be quite irrelevant: we want to prove the optimality of source-channel separation. From
the nature of the proof, it will be clear that we will convert any given architecture into a
digital architecture in order to prove the optimality of a digital scheme, and thus, the channel
model will be quite irrelevant.

The optimality of digital communication is probably much more fundamental than the un-
derlying channel model. This will be commented on further in Subsection 2.14.10, after a
proof of universal source-channel separation for rate-distortion for the uniform X source.

Of course, it would fail to hold for very pathological channel models. And of course, it
can still happen that real channels belong to the family where digital communication is not
optimal. We leave these questions unanswered.
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Multi-user media will be modeled and results of this chapter, generalized to the multiuser
setting, in Chapter 3

B 2.5.5 The problem of communication over a partially known channel

The problem of communication over a fully known channel is to construct an encoder and a
decoder in order to communicate the source over the channel with a particular guarantee.

The problem of communication over a partially known channel £ € ./ is to construct an
encoder and a decoder such that the source is communicated over the channel withsome
guarantee irrespective of the particular # € .. The encoder and the decoder should be
independent of the particular channel.

The guarantee that we will use is communication to within a distortion level.

The question we want to answer is: given a partially known channel & € &/, are source-
channel separation based architectures optimal to communicate i.i.d. X source over this par-
tially known channel to within a distortion level D. In other words, if there exists some
general architecture to communicate i.i.d. X source over the partially known channel to
within a distortion D, does there exist a digital scheme which consumes the same or lesser
system resources and accomplishes the same?

We discussed analog and digital point-to-point communication architectures in Section 1.3.
In Sections 2.6 and 2.7, we make these rigorous.

M 2.6 An analog point-to-point communication system

In this section, we describe rigorously, the general point-to-point communication system
described on a high-level in Section 1.3. A general point-to-point communication system
consists of an encoder, a channel and a decoder. The encoder encodes the source and the
encoder input is communicated over the channel. The decoder reconstructs the source from
the channel output. Hopefully, end-to-end, the source has been communicated to within the
required guarantee. The guarantee that we will use is communication to within a distortion
level.

In this section, we define the action of the encoder, channel and decoder rigorously.
The precise definition of communication to within a distortion level are left for later sections.

As stated before, throughout, we will assume that time evolves discretely, both for the source and
the channel, and that, the source, source reconstruction and channel input and output alphabet

are all finite.
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B 2.6.1 Discussion: Is this not already digital?

We have assumed that the source space, the channel input space, the channel output space
and the source reproduction space are all finite. Thus, from the definition of Chapter 1,
this architecture is already digital. The question comes, why are we calling this an analog
communication system. The answer is that we have assumed the spaces to be finite only for
the sake of avoiding mathematical technicalities. All definitions made so far and that will
be made for the rest of this section can also be made with infinite sets. Our results can be
generalized to the setting where the input and output spaces are infinite. The fact that we use
a digital interface consisting of a finite alphabet (two) will remain unchanged even when the
rest of the alphabets are infinite.

B 2.6.2 Encoder and decoder

The encoder takes input from the source. Thus, & is also the encoder input space. The
encoder produces an output into the channel. Thus, .# is also the encoder output space. The
output of the encoder is transmitted over the channel and the channel output is an input to
the decoder. Thus, & is also the decoder input space. The decoder reconstructs the source.
Thus, & is also the decoder output space. Definitions 2.5 and 2.6 state these definitions
precisely.

Definition 2.3 (Random codes and random coding). Random codes are codes where the
encoder can belong to a family of deterministic codes and the decoder has access to the par-
ticular realization of the deterministic encoder that happened. The performance of the code
is judged by averaging over the family of deterministic codes under a certain probability dis-
tribution of the particular deterministic code. Random codes can be generated by using
common randomness which is defined next.

Note 2.5. i.i.d. random codebook generation, as done by Shannon in his random-coding
argument, is a special case of above random codes.

Definition 2.4 (Common randomness). The encoder and decoder have access to common
randomness. This means that they have access to a continuous valued random variable inde-
pendent of all other random variables in the system. Common randomness is used to generate
random codes. The common randomness input is denoted by 7.

Definition 2.5 (Encoder). When the block length is 7, the encoder acts as e”:
e (2" | x",r) (2.2
is the probability that the encoder output is i ” given the encoder input is x” and the common

randomness input is 7.

Note that the encoder is not necessarily nested. Also, note that in the encoder model, we
assume that the input x” is available at the beginning of time. This assumption can be made
because we allow arbitrary delays and the input can be thought of as buffered.
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Definition 2.6 (Decoder). When the block length is 7, the decoder acts as f”:
PO 0", r) 2.3)

is the probability that the decoder output is y” given the decoder input is 0” and the common
randomness input is 7.

Note 2.6 (How can common randomness be used to generate random codes). We defined ran-
dom codes as codes where the encoder belongs to a family of deterministic encoders and the
decoder has access to the particular realization of the deterministic encoder that happened.
Note that such codes can be generated using common randomness. For each r, assume that
the encoder e”(- | x”, r) is deterministic in the sense that e”(i” |x”,r) is 1 for some particular
i" and zero otherwise. This happens for all x” and i” might depend on x”. Similarly, for
each 7 assume that the decoder /”(- | 0”,7) is deterministic in the sense that f"(y” | 0”,7) is
1 for some particular y” and zero otherwise. This happens for all 0” and y” might depend on
o™. Such an encoder-decoder pair e”, f” is a deterministic encoder-decoder pair. 7 can vary,
and is available both at the encoder and the decoder. Thus, we have generated codes when the
encoder can belong to a family of deterministic encoders and the deterministic decoder can
depend on the particular choice of the deterministic encoder. Shannon used random-coding
arguments by generating codes i.i.d. from a particular distribution. As we stated before,
random codes of this variety are a special case of random-codes as defined by us. There is
a big difference however: for Shannon, random-coding was a proof technigue, whereas for us,
random-coding is not just a proof technique.

Note 2.7 (A note on real-time evolution and the corresponding mathematical abstraction).
Note that the encoder and decoder are not necessarily nested. Also, note that in the encoder
model, we assume that the input x” is available at the beginning of time. This assumption
can be made because we allow arbitrary delays and the input can be thought of as buffered.
Also, note that in the decoder model, we assume that the channel output 0” is available at the
beginning of time. This assumption can be made because we allow arbitrary delays and the
decoder output can be buffered before making an estimate of y”.

The real time-evolution will probably happen as follows:

e Time 1to n: x” arrives
e Time 7+ 1 to 2n: The encoder produces i”
e Time 7+ 1 to 2n: The channel produces output 0”

e Time 27 + 1 to 3n: The decoder produces the estimate y”

The mathematical model that we have abstracts this real-time evolution.
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W 2.6.3 The composition of the encoder, channel and decoder: the point-
to-point communication system

Definition 2.7 (Composition of encoder, channel and decoder). The composition of the
encoder, channel and decoder is the point-to-point communication system. When the block
length is 7, this composition is a transition probability e” o k o f”, which we denote by c”.

(" | £7) 24)
is the probability that the composite channel output is y” given that the input is x”.

Notation 2.7. Since we are interested in block lengths as they become larger and larger, the
composition of the encoder, channel and decoder will be denoted by < e¢” 0 k" o f” >%.

Since we model channels as belonging to a set of transition probabilities ., we would like to
think of the point-to-point communication system as

{<e’ok™of" > | <k" >Te A} (2.5)

W 2.6.4 Time scales

Note that the encoder has been defined as a transition probability
e”(i" | x",r) (2.6)

In effect, this means that the source and the channel are evolving on the same time scale. This
is because, until time 7, the number of source inputs is # and the number of encoder outputs
which is the same as the channel inputs is also 7: thus, the rate of source input is the same as
the rate of channel input. Another way of saying this is that the source and the channel are
evolving on the same time scale.

This is an assumption for modeling convenience. We can state all definitions with source and
channel evolving on different time scales. It only leads to notational difficulties. For this
reason, throughout, we will assume that the source and the channel evolve on the same time
scale. Our results can be generalized to the case when the time-scale of source and channel
evolution are different.

B 2.6.5 The view of a point-to-point communication system as an abstract
channel, ¢

Definition 2.8 (Composite or abstract channel model, < ¢” >$°). The point-to-point com-
munication system can thus be viewed as a composite transition probability, < ¢” >$°. When
the block length is 7, the point-to-point system acts as ¢”:

(y" | x7) 2.7)
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is the probability that the composite system output #p to time 7 is y” given that the system
inputs up to time 7 are x”. ¢ =< c¢” >° is the composite or the abstract channel.

Note 2.8 (Why do we call this channel model, abstract?). Note that the abstract channel model
is noncansal and nonnested. This is the reason for calling this model abstract. Of course, we
also call it the composite channel model because it is the composition of the encoder, the
channel, and the decoder.

This is the abstract channel model we will use: a channel should be thought of as a sequence
of transition probabilities < ¢” >{° where, when the block length is 72, the channel acts as ¢”,
and c”(y”|x",s) is the probability that the channel output is y” given that the channel input
is x” and the initial state is s. We will denote the composite channel by ¢ =< ¢” >P=<
e”ok”o " >,

Similarly, when the channel belongs to a family of transition probabilities, we will think of
the abstract communication system as

Cy={<e’ok™of">T | <k">Pe )} 2.8)

Note 2.9. Note that the input space of the abstract channel ¢ is & instead of .# and the output
space is % instead of @

W 2.6.6 Communication of a random source over a point-to-point commu-
nication system

Let the block length be 7. The steps of communication are the following

1. Theinput to the encoder e” is a realization x” of the i.i.d. X source X” (for this descrip-
tion, the source need not be i.i.d., it might be some general random variable X”). The
encoder produces the source encoding which is a realization ¢” of the random variable
I". i” is the input to the channel

2. i" is communicated over the channel £ and the channel output is a realization 0” of
the random variable O”

3. The decoder d” reconstructs the source from o”. The decoder output is a realization y”
of the random variable Y.

For block length 7, this results in the joint random variable X”Y” on the source-source
reproduction space X” x ¥” with the corresponding probability distribution pynyn. See
Figure 2.1.
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Figure 2.1. The action of a point-to-point communication system

W 2.6.7 Resource consumption in the point-to-point communication system

In this subsection, we discuss the resource consumption in this point-to-point communica-
tion system. We want to think of system resources like energy and bandwidth. Note that
our set-up is abstract, in that the sets ', %,.#, and @ are finite sets. Thus, defining energy
consumption or bandwidth consumption physically is not possible. What we will instead
state, is a sufficient condition for two system resources to consume the same resources, and
see, why this abstraction makes sense.

A sufficient condition for two systems to consume the same system resources

We want to think of point-to-point communication systems in terms of the previous sub-
section (Subsection 2.6.6). Let s; and s, denote two communication systems with the same
spaces &, .#, 0 and %, which are used to communicate a random source over a channel k.
The encoder-decoder for the system s, are < e],f” >$° and the encoder and decoder for
system s, are < e}, fé >%°. In abstract terms, the two systems are

sy=<efokof” > 2.9)
s;=<ejokof) > (2.10)

The source < X” >7° which needs to be communicated over the two systems is the same for
both systems. The random-variables defined in the previous subsection for the system s, are

X", 17, O and Y}". The random-variables defined in the previous subsection for the system

s, are X7, Iz", (94 :md ¥

A sufficient condition for the systems s, and s, to consume the system resources is: Y, I”
has the same distribution as I’ as random variables (note that I’ and I/ are n-length random

variables).

Note that the above is a sufficient condition for two systems to consume the same system
resources; it is not necessary. Even if the distribution of " and I} is not the same, it does not
directly imply that the two systems consume different system resources.
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In the next subsection, we argue, why this abstract sufficiency of the equality of consumption
of system resources makes sense.

Why does this sufficient condition for two systems to consume the same system resources
make sense?

The two resources which we are concerned with are energy and bandwidth. In general, these
definitions make sense only for systems evolving in continuous time.

Consider a system evolving in continuous time. The input to the system at time ¢ is X (¢), the
output of the encoder at time ¢ is I(¢) is the input to the channel, the output of the channel
at time ¢ is O(¢) is the input to the decoder and the output of the decoder at time ¢ is Y(¢)
which is the source reproduction.

Energy is consumed in the point-to-point communication system in two ways:

1. Energy consumed in the processing and computations in the encoder and the decoder.

2. Energy transmitted into the channel, that is, the energy in the signal.

In many practical scenarios, the energy consumed in the processing in the encoder and the
decoder is much less than the energy consumed in the signal transmitted into the channel. For
example, in the wireless example, most of the energy is consumed in the signal transmitted
by the cellphone into the air, and not in voice processing.

The instantaneous power input into the system at time ¢ is (%(t) where «(¢) is a realization
of I(t). The expected instantaneous power consumption is E[/%(¢)]. Clearly, the power
consumption depends only on the distribution of the random process /. Energy consumption
is an average over time, of the power consumption, and thus, again, depends only on the
distribution of 7.

Thus, assuming that the energy consumed in the processing and computations in the encoder
and the decoder can be neglected, the energy consumed in the system depends only on the
distribution of the channel input process I.

Now, let us consider bandwidth consumption. Let one particular realization to the channel
over time ¢ be ¢(¢). The bandwidth requirement is the support of the fourier transform of
«(t). Again, if two systems with inputs /;(¢) and , to the channel have the same distribution
for the processes /; and 1, the bandwidth requirements on the channel will be the same.

Thus, energy and bandwidth consumption are a function, only of the channel input distribu-
tion. For this reason, we have made the abstract condition under which two systems consume
the same energy. Of course, this is a sufficient condition, and not a necessary condition.

As we have stated before, we believe our results can be generalized to systems evolving in
continuous time; we are restricting to discrete spaces to avoid mathematical technicalities.
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When generalizing our results to continuous time system evolution, the only fact that would
be needed about the consumption of system resources is the above sufficient condition for
the equality of consumption of system resources, and for that reason, we just restrict to this
rather general condition. We will use this condition when proving the optimality of digi-
tal communication for communication with a fidelity criterion when we construct a digital
system which consumes the same system resources as an analog system by showing that the
channel input distribution for both the analog and the digital system is the same.

Consumption of “lesser” system resources

Suppose a communication system needs to be built to meet certain communication guaran-
tees. Suppose this can be done with certain consumption of system resources. Then, we will
say, abstractly, that the same guarantee can be met by consumption of the same or “lesser”
system resources. This, again, is an abstract definition because we have not defined the con-
sumption of a system resource; we have only stated a sufficient condition for the equality
of consumption of the same system resources by two systems. However, the reason for this
abstract use of the word “lesser” is done because for physical systems where resource con-
sumption can in fact be defined, this would be the right usage of “the same guarantee can be
met by consumption of the same or lesser system resources.”

B 2.6.8 The point-to-point communication problem

The systems problem of point-to-point communication is to construct encoder-decoder pair
< e”, f* > which satisfy certain constraints on resource consumption and such that the
source is communicated over the partially known channel (the channel belongs to a set ./)
with a certain guarantee.

The guarantee that we will use is communication to within a distortion level. The precise
definition of communication with distortion is defined in Section 2.9.

The question that we will ask is: can the encoder-decoder < e”, " >%° be constructed dig-
itally without loss of optimality. First, we define digital architectures rigorously in the next
section.

B 2.7 A point-to-point digital communication system

In a digital point-to-point communication system, the encoder is broken down into source
encoder and channel encoder, and the decoder is broken down into channel decoder and the
source decoder. This was described, on a high-level, in Section 1.3.

The source encoder - source decoder pair is called the source code.

The channel encoder - channel decoder pair is called the channel code.
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The source encoder converts the source into a binary sequence, that is, a sequence of Os and
1s. The binary sequence is communicated reliably (with a small probability of error) over the
channel with the help of the channel encoder and the channel decoder. The source decoder -
reconstructs the source from the output of the channel decoder. Hopetully, end-to-end, the
source has been communicated with the required guarantee. The guarantee that we will use
is communication to within a distortion level.

In this section, we define mathematically, the action of source encoder-source decoder pair,
and the channel encoder-channel decoder pair. The channel has already been rigorously de-
fined in the previous section.

The precise definitions of communication to within a distortion level and reliable communi-
cation are left to later sections.

In this section, we will only talk about things abstractly, and thus, the models will be non-
causal. However, behind every noncausal model, there is a causal model.

B 2.7.1 A rate R binary sequence

When the block length is 7, a rate R binary sequence would be a binary sequence of length
nR. Physically, this means a sequence of #R 0s and 1s.

The source encoder produces a binary sequence as output. If the source is random, the binary
sequence is also random. This is abstracted as follows:

Definition 2.9 (The binary sequence set or the message set). The set of rate R binary se-
quences evolving for 7 units of time (block length is 7) is the set

M =11,2,...,21"R)} @.11)

Each message € .#7 should be thought of as being associated with a particular binary se-
quence. A generic element of .47 will be denoted by m”.

The binary sequence is communicated over the channel, hopefully, reliably, with the help
of the channel encoder and the channel decoder. The output of the channel decoder is the
reconstructed binary sequence. This gives the binary sequence or the message reproduction
set.

Definition 2.10 (The binary sequence reproduction or the message reproduction set). The
message reproduction set should be thought of as the message set along with an error message,
if the message could not be reconstructed

M =1{1,2,...,2"RI U {e} (2.12)

e is the error message, and one should think of another possible binary sequence being asso-
ciated to e. A generic element of ./} will be denoted by 72”

In general, decoding will happen with a delay.
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W 2.7.2 Source code

The source code consists of a source encoder and a source decoder.

When the block length is 7, a realization of the source input is x” € . This is mapped
by the source encoder into 7", an element of the message set .#. m" is communicated,
hopefully reliably over the channel with the help of the channel encoder and the channel
decoder. The output of the channel decoder is 72”. The source decoder reconstructs the
source from the output 7%” of the channel decoder and the source reconstruction is y”.

The mechanism by which the source encoder and the source decoder act is abstracted as
follows:

Definition 2.11 (Rate R deterministic source code). Rate R deterministic source code is a
sequence s =< s” >°=< ¢, fs” >, where e’ is a function with domain & and range
z»and £ is a function with domain M % and range ¥”.

We usually think of encoders and decoders as transition probabilities. In the above defini-
tion, we have defined e and f” as functions. This is because deterministic functions can be
thought of as transition probabllmes

Note 2.10 (Interpretation of a rate R deterministic source code). It would be helpful to refer
to Figure 2.2, except that there is no common randominess input. e =< e” > is the source
encoder and f =< f” >%° is the source decoder in Figure 2.2. When the block length is
n, the source encoder is e;’ and the source decoder is £”. x” € & is source coded by
e’ as m” = e”(x"). This message is communicated over the channel with the help of the
channel encoder and the channel decoder. The output of the channel decoder is the message
reconstruction 72" of m”. In a “good” digital communication system, we would like m
to be equal to m” with high probability. " is source decoded as y” = f(h"). y"
the reconstruction of x”. In a “good” digital communication system, y" would be w1th an
acceptable distortion of x”. Note that the sets My and ./{{ " are the same. However, we have
used different notation just to emphasize that ./{ 4 is the message reconstruction set and .#7
is the message set.

We would assume that there is common randomness at the transmitter and the receiver. In
other words, the codes can be random. This is made precise as follows.

Definition 2.12 (Rate R random source code). A rate R random source code is a sequence

s =<s” >P=<e’, " >P. There is a source of randomness which we denote by r. which is
$ 1

available both at the encoder and the decoder. e} is a transition probability

e’ (m”"|x",r) (2.13)
is the probability given that the source input is x” and the common randomness is 7.

[ m",r) (2.14)
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is the probability that the source reconstruction is y” given that the message reconstruction
is m"” and the common randomness input is r

Note 2.11. If there is no common randomness input (mathematically this can be thought
of as the same source encoder and source decoder being used irrespective of the common
randomness input), a random source code reduces to a deterministic source code.

Note 2.12 (Interpretation of a rate R random source code). It would be helpful to refer to
Figure 2.2. e =< e >{° is the source encoder and f =< f” >{° is the source decoder in
Figure 2.2. When the block length is 7, the source encoder is e and the source decoder is f”.
There is a common randomness input at the encoder and the decoder. Recall that the encoder
consists of a source encoder and a channel encoder and a decoder consists of a channel decoder
and a source decoder. There is a common randomness input at the encoder and the decoder.
This means that both the encoder and decoder have access to a common random variable.
This random variable is used to generate random codes. x” € " is source coded by e”
as m” with probability e”’(m”|x”,c). This message m” is communicated over the channel
with the help of the channel encoder and the channel decoder. The output of the channel
decoder is the message reconstruction 72" of m”. In a “good” digital communication system,
we would like 772" to be equal to m” with high probability. /" is source decoded as y” with
probability £ (y*|m",c). y” is the reconstruction of x”. In a “good” digital communication
system, y” would be within an acceptable distortion of x”.

Definition 2.13 (Transition probability corresponding to a source code). If there were per-
fect reproduction through the channel, that is, m” is always reproduced as 72", the final
distribution of the source reproduction given the source is given by the transition probabil-
ity e’ o f". e o f”(y”|x") denotes the probability that the source reproduction is y” given
that the source input is x”. < e} o f” >° is called the transition probability corresponding
to the source code s.

Discussion 2.1 (Why define the transition probability corresponding to a source code?). The
transition probability corresponding to a source code is defined by taking the composition
<elo fs ” >2° of the source-encoder < e >° and the source-decoder < fS * >%°. However,
in a digital communication system, the source-encoder and the source-decoder are not inter-
connected to each other, directly. The channel encoder, the channel and the channel-decoder
exist between the source-encoder and the source-decoder. The question arises: does taking the
composition of the source encoder and the source-decoder make physical sense? The answer is
that it does make physical sense. This is because, in a digital communication system, the chan-
nel encoder, the channel and the channel decoder act in a way so that the input to the channel
encoder is communicated reliably, that is, with 2 very small error, and received at the channel
decoder. Thus, the composition of the channel encoder, the channel, and the channel decoder
can be thought of as a point-to-point communication sub-system which does almost perfect
transmission. For this reason, the composition of the source encoder, the channel encoder,
the channel, the channel decoder and the source-decoder will be “close to” the composition
of the source-encoder and the source-decoder, and in effect, the source reproduction from
of a source after passing through the whole communication system consisting of the source
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encoder, channel encoder, channel, channel decoder and the source decoder will be the same,
with high probability, to the source reproduction, as if the the channel encoder, the channel
and the channel decoder did not exist, and the source encoder were directly connected to the
source decoder. Further in particular, the distortion incurred, end-to-end (defined rigorously
in Section 2.9), by a point-to-point communication system consisting of the source-encoder,
channel encoder, channel, channel decoder and source decoder for a particular source will be
“close to” the distortion incurred by the system consisting of the composition of the source
encoder and the source decoder with the source input.

Discussion 2.2 (Construction of source codes via random-coding arguments, and directly
defining the transition probability corresponding to the source code). In usual random-coding
arguments for source-coding in the information theory literature, and also, the random-
coding arguments for source-coding that we will use, source codes are usually constructed by
directly defining the transition probability < e” o £ >%° corresponding to the source code
<e’, fs " >%°, and not the source-encoder < e >7° and the source-decoder < [ >, sepa-

rately. If one is not defining the source encoder <1 e} >7° and the source decoder < £ >%°,
separately, it might not be clear, what the rate of the source code is. In the random-coding
arguments, usually, the encoding is done in the following way: when the block length is 7,
generate 21”8l codewords using a particular distribution. This means that the set on which

e’ o {7 puts nonzero probability for any possible source distribution has cardinality 2l"Rl. It

follows that e” o f" factors through a set of cardinality 2"Rl, and thus, has rate R. We will
use such a random-coding construction by defining the transition probability e” o f* directly
for constructing a source code in Sections 2.14 and 2.15.

B 2.7.3 Channel code

The channel code consists of the channel encoder and the channel decoder.

The source encoder produces a message m” € .4 as output which is an input to the channel
encoder. The message m” is encoded by the channel encoder into (", an element of the
channel input space. The channel produces an output 0”. The message is reconstructed by
the channel decoder from the channel output 0”, and the reconstructed message is 72” which
is hopefully equal to m”.

The mechanism by which the channel encoder and the channel decoder act is abstracted as
follows:

Definition 2.14 (Channel encoder). On an abstract level, the action of the channel encoder
is a transition probability.

e’ (" |m",7) (2.15)

is the probability that the encoder output is " given that the channel input message is m”
and the common randomness is 7.

The channel encoder should be thought of as the sequence < e” >°.
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Definition 2.15 (Channel decoder). On an abstract level, the action of the channel decoder
is a transition probability.

£rm”jo”,r) (2.16)

is the probability that the output of the channel decoder is 77" given that the input is 0” and
the common randomness is 7.

The channel decoder should be thought of as the sequence < £ >°.

Note 2.13. Since the source-encoder and the channel encoder are at the same location phys-
ically when building a communication system, and similarly, since the channel decoder and
the source decoder are at the same location physically when building a communication sys-
tem, the common randomness input 7 can be thought to be the same for both the channel
code and the source code.

B 2.7.4 Digital communication system

See Figure 2.2.

Definition 2.16 (Digital encoder). The digital encoder consists of the composition of the
source encoder and the channel encoder:

n fo = B n n (o]
<e">T=<e’oe’ >] (2.17)

Definition 2.17 (Digital decoder). The digital decoder consists of the composition of the
channel decoder and the source decoder

<f" >‘1’°=<fc”of$">‘1’° (2.18)

Definition 2.18 (Digital point-to-point communication system). The digital communication
system is the composition of the digital encoder, channel and the digital decoder:

<e"ok"of" >r=< (el 0e’)ok"o(f"0e’) > (2.19)

The channel model that we will use is that of a partially known channel £ € .. Thus, we
would like to think of the set of digital communication systems

{<e"okmof">T=< (e 0e)ok"o(f"0e) > k=<k” > € .F} (2.20)

W 2.7.5 Communication of a random source over a point-to-point digital
communication system

Let the block length be 7. The steps of point-to-point digital communication are the follow-
ing:
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1. The input to the source-encoder e” is a realization x” of the i.i.d. X source X”. The
output of the source encoder is a realization 7" of the random binary source M%. m”
is input to the channel encoder.

2. The channel encoder encodes the random binary source realization 7" into a sequence
¢* which is a realization of the random variable /", and is the input to the channel

3. The channel acts on ¢” and produces the output 0” which is a realization of the random
variable O”

4. The channel decoder decodes o” into the reconstruction of the random binary source
m” which is a realization of the random variable M.

5. The source decoder reconstructs the source from 7:”. The source reconstruction is y”
which is a realization of Y”.

See Figure 2.2.

B 2.7.6 Resource consumption in a digital point-to-point communication
system

A digital point-to-point communication system is a special case of a general point-to-point
communication system: the speciality lies in that the encoder and decoder are both digital.

For this reason, and the fact that the sufficient condition that we have stated for equality of
consumption of system resources depends only on the channel input, this discussion is the
same as for a general point-to-point communication system, see Subsection 2.6.7.

W 2.7.7 Since all the spaces are finite, is the point-to-point communication
system not already digital?

We discussed before that the assumption that all the spaces are finite is made only for technical
simplifications. Our results stated in the further sections and chapters will generalize to the

case when the source, channel input, channel output and source reconstruction alphabets are
infinite.

There is another reason why we have to go through this whole discussion. This is the follow-
ing:

As described before, the way digital communication systems are constructed is the follow-
ing: the source is first coded by the source encoder into a binary sequence. This step usually
compresses the source to within the desired guarantee of communication. The binary se-
quence is communicated reliably over the channel. This reliably transmitted binary sequence
is reconstructed back to the source by the source decoder. Thus, digital architectures, at least
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Figure 2.2. Action of a point-to-point digital communication system
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the ones used in practice, have the special feature that the channel communicates the binary
sequence reliably, and this needs to be described irrespective of whether the alphabets are
finite or infinite. This is another reason for this whole description of digital communication
systems.

We will take this as the definition of a digital communication system:

1. There is a digital interface (usually binary) between the source and the channel

2. The channel encoder and decoder perform in a way which accomplishes reliable com-
munication over the channel

B 2.7.8 The point-to-point communication problem

As stated before, the systems problem of point-to-point communication is to construct en-
coder decoder pair < e”, " >° which satisfy certain constraints on system resources, and
such that the source is communicated over the partially known channel (the channel £ € .«
with a certain guarantee.

The question is: can this be done with digital encoders and decoders which have the same sys-
tem resource consumption (or, digital has lesser system resource consumption). Advantages
of digital architectures have been discussed, to some extent, in Chapter 1.

We will prove the optimality of digital architectures for the guarantee of communication to
within a distortion level. The digital architecture that we will construct to communicate a
random source to within a particular distortion level will function as follows (this is the usual
way an architecture is constructed for communication with distortion):

1. A source encoder which will code (compress) the source to within the distortion level
D

2. A channel encoder and a channel decoder which will help communicate the coded (com-
pressed) source over the partially known channel, reliably

3. A channel decoder which will reconstruct the source

End-to-end, the source will be communicated to within the required distortion level.
From the descriptions in Sections 2.6 and 2.7, it follows that we still need to define the fol-
lowing rigorously:

e A general point-to-point communication system which communicates a random source

to within a distortion level over a partially known channel

e A source code which codes (compresses) a source to within a particular distortion level
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¢ Reliable communication over a partially known channel

This is the subject of the next few sections: Sections 2.8, 2.9, 2.10, and 2.11.

B 2.8 Distortion

We will allow the source reconstruction to be distorted compared to the source. In this
section, we state some definitions related to distortion.

Notation 2.8 (D). D > 0 denotes a distortion level.

Definition 2.19 (Single letter distortion metric, d). d : & x & — [0,00) is the single letter
distortion metric. Let x € &',y € ¥. d(x,y) is the distortion incurred if x is reconstructed
as y.

Definition 2.20 (n letter distortion measure/metric, d”). d” : " x #” — [0,00) is the
n-letter distortion metric. Let x” € Z'”,y" € ¥”. d(x",y") is the distortion incurred if x”
is re-constructed as y”.

Definition 2.21 (Permutation invariant 7 letter distortion metric). Let 7” be a permuta-
tion (rearrangement) of (1,2,...,n). That s, for 1 <i < n, #*(i) € {1,2,...,n} and ="(1),
7*(2),..., £"(n) are all different. For x” € X", y" € ¥", denote

n"(x") 2 (x"(n"(1)), (7" (2)), ..., x" (" (n))) @21)
(") = (A D)y (" @)y (2" (1)) (2.22)

We will denote ”(x”) as 7”x”, and similarly, for the action of 7" on any sequence.

An n-letter distortion measure d” is said to be permutation invariant if
d*(n"x", n"y") =d"(x",y") ‘ (2.23)

Discussion 2.3 (Physical interpretation of permutation invariant distortion measure). In-
tuitively, a permutation invariant distortion measure is one where the distortion remains
unchanged if both the input and the output are re-arranged. We would like to believe that
physical distortion measures satisfy this requirement to some extent. For example, consider
a voice signal (at the transmitter) and a corresponding reconstruction (which might not, as
stated before, be a precise replica of the original voice signal) at the receiver. Suppose what
the person spoke consisted of two sentences and the two sentences are interchanged. The
reconstructed voice signal is rearranged in the same way at the receiver. We would like to
believe that the receiver would be able to make out what the person spoke to the same extent
in both of the above cases. The definition of a permutation invariant distortion measure is an
abstraction of this. Note that this is a simplification in the sense that sentences of language
have meaning and meaning is lost by permutation.
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Definition 2.22 (Additive 7 letter distortion measure). 7 letter distortion metric d” is said
to be additive if

d7(x",y")= id(x"(i)»y"(i)) 2.24)
i=1

for some single letter distortion measure d

Note 2.14. Additive distortion measures are permutation invariant.

We would be interested in sequence of distortion measures for each block length 1, < d” >%°,
and this is what we will call a distortion measure

Definition 2.23 (Permutation invariant distortion measure). A permutation invariant distor-
tion measure is a sequence < d” > where d” is a permutation invariant 7 letter distortion
measure

Definition 2.24 (Additive distortion measure). An additive distortion measure < d” >%° is
one for which each d” is additive with the same single letter distortion metric for each n

B 2.9 Universal communication of a random source over a partially known
channel to within a certain distortion level

In this section, we define communication of a source over a partially known channel to within
a certain distortion level.

Let k € ./ be a partially known channel with input space .# and output space & as described
in Subsection 2.5.2.

First, we describe the point-to-point communication system which communicates i.i.d. X
source over a channel k£ € .&/. Recall the action of a a point-to-point communication system
in described in Subsection 2.6.6.

The input to the encoder is the i.i.d. X source. Thus, when the block length is 7, the input is
thei.i.d. X sequence of length 7, X". The composition of the encoder, channel, and decoder,
produce an output sequence Y. This results in a joint random variable X”Y™ on the input-
output space X" x ¥” and the corresponding probability distribution py»y». Note that
we are talking about a partially known channel and thus, pyny» will vary depending on the
particular k € ..

Definition 2.25 (A partially known channel which is capable of universally communicating
iid. X source to within a distortion level D). The partially known channel & € .« is said
to be capable of universally communicating i.i.d. X source to within a distortion D if there
exists a sequence @ =< w,, >{° such that w, — 0 as 7 — 00, and an encoder-decoder pair
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\ Pr(1d*(X",Y") > D) < w, Vk € A/

Figure 2.3. Universal communication to within a distortion D over a partially known channel k € .of

<e",f" >{° independent of the particular £ € ./ such that under the joint distribution
Pxny» as described above,

1
Pxnyn (—‘d”(Xn,Yn)>D) Sw,, Vke&f (2.25)
n

See Figure 2.3. In the figure, we have not shown the common randomness input r to the
encoder and the decoder. In the future, in this chapter, in the figures, we might not show the
common randomness input. It will be assumed to be there.

Note 2.15 (Universal?). The word universal in the above definition refers to the fact that the
same encoder-decoder work for all channels & € .</.

Note 2.16 (Why «?). The reason why the sequence w =< w,, >{° is important is that it helps
introduce #niformity in the rate at which error — 0 as n — co. If we made Definition 2.25
with

1
Pxnyn (—dn(Xn,Yn)>D) —’oasn—}OOVkend (2.26)
n

instead of (2.25), the rate of probability of distortion > D will tend to 0 for all k£ € ./, but
this rate will not be independent of the particular channel £ € .«/. In real scenarios, given
a partially known channel, we would want to construct an encoder and decoder which will
work and achieve a particular error criterion in the probability of distortion > D, and thus,
we require a uniformity in the definition over all k € ..

Note 2.17 (Probability of excess distortion criterion).
1
By (—d”(X",Y”) > D) <w,Vked 2.27)
n

is called the probability of excess distortion criterion (for obvious reasons).

Note 2.18 (Intuitive action of a channel which is capable of communicating i.i.d. X source
to within a certain distortion level). Intuitively, the composition of encoder, channel and
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sequence y" € Y™

sequence z" € A™ with empirical distribution “close to px"

Figure 2.4. Pictorial action of a channel which is capable of communicating the 1.i.d. X source to within a
distortion level D

decoder in Definition 2.25 acts as follows: with high probability, a py typical sequence is
distorted to within a ball of radius 2D, and this probability — 1 as the block length » —
oo. See Figure 2.4. This figure superimposes the " and #” spaces. Red squares denote
sequences in the " space with empirical distribution “close to py”. Sequences x” whose
empirical distribution is “not close to py” do not affect the probability of excess distortion
definition. For this reason, Figure 2.4 does not show these sequences. y” € #", however, can
have any empirical distribution. Thus, the figure shows all points in #” and these are shown
in gold circles.

When defining source codes which communicate sources to within particular distortion lev-
els, in addition to the probability of excess distortion criterion, we will also consider the ex-
pected distortion criterion. Expected distortion criterion is the one more commonly found
in literature, for example, in [Sha59].

W 2.10 Source codes which code a source to within a particular distor-
tion level, the rate-distortion source-coding problem, and the rate-
distortion function

In this section, we define what it means for a source code to code a source to within a certain
distortion level and the associated minimum rate at which this can be accomplished. This is
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followed by a discussion on the importance of the definition of a source code which codes a
source to within a certain distortion level.

W 2.10.1 Source-coding or source compression?

We will use the terms source-coding and source-compression synonymously. This is because
a source code is used to code a source to within a distortion level, and in effect, this is com-
pressing the source.

B 2.10.2 Source codes which code (compress) a source to within a particular
distortion level and the rate-distortion function

In this subsection, we define what it means for a source code to compress a source to within a
certain distortion level and the associated minimum rate at which this can be accomplished.

Consider a source code s =< s” >%.

Let the block length be 7. The composition of e and f” is a transition probability e’ o
f(¥"|x"). The action of e o £ on the n-length source X” results in an output random
variable Y” on %7, and thus, a joint random variable X”Y” on &” x #” with the corre-
sponding probability distribution pynyn.

We consider two definitions of distortion: expected distortion and probability of excess dis-
tortion. These are defined below. The expected distortion definition is the one used usually
in literature. This is the definition used by Shannon [Sha59]. The probability of excess dis-
tortion definition is used, for example, by Csiszar and Korner [CK97].

Definition 2.26 (Achievability of expected distortion D by source code s when encoding
iid. X Source). Distortion D is achievable in the expected sense (or that, distortion D is
E-achievable, or that expected distortion D is achievable ) by the source code s for the i.i.d.
X source if under the joint distribution pynyn as described above,

1
limsupEynyn [—d"(X”,Y”)] <D (2.28)
n

n—00

See Figure 2.5. In this figure, the common randomness input 7 to e and f* has been omitted.

Note 2.19. By definition, if distortion D is achievable in the expected sense (or that, distortion
D is E-achievable) by the source code s for the ii.d. X source, then distortion D’ > D is also
achievable in the expected sense by the source code s for the i.i.d. X source.

Definition 2.27 (Rate-distortion function R)E((D)). Rate R is E-achievable corresponding to
distortion level D for the i.i.d. X source if there exists a rate R source code s which achieves
expected distortion D when encoding the i.i.d. X source. The infimum of all E-achievable
rates for distortion level D is the rate-distortion function R)E{ (D).
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\ ) 1 /
lim E [Ed”(X",Y")] <D

nN=—o00

Figure 2.5. A source code which communicates i.i.d. X source to within an expected average distortion D

X er -\ /5

Yﬂ
\Pr( d*(X™,Y")>D) —»0asn— oo /

1
n

Figure 2.6. A source code which communicates i.i.d. X source to within a probability of excess distortion D

Definition 2.28 (Achievability of probability of excess distortion D by source code s when
encoding i.i.d. X Source). Distortion D is achievable in the probability of excess distortion
sense (or that, distortion D is P-achievable) by the source code s for the i.i.d. X source if

n—oco

1
lim pynyn (;d"(X", s D) =0 2.29)

See Figure 2.6. In this figure, the common randomness input 7 to e” and f;” has been omitted.

Note 2.20. In the above definition, we use nlim and not limsup because both definitions are
=0 n—oo
the same. This is because, if 2, > 0,1 < 7 < 0o, then, limsupa,, =0 if and only if lim a,=0.

n—00 A=t08
Note 2.21. By definition, if distortion D is achievable in the probability of excess distortion
sense by the source code s for the i.i.d. X source, then distortion D’ > D is also achievable in
the probability of excess distortion sense by the source code s for the i.i.d. X source.

Definition 2.29 (Rate-distortion function R;(D ). Rate R is P-achievable corresponding to
distortion level D for the i.i.d. X source if there exists a rate R source code s which achieves
probability of excess distortion D for the i.i.d. X source. The infimum of all P-achievable
rates for distortion level D is the rate-distortion function RE(D).
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Note 2.22. The probability of excess distortion definition is local unlike the expected distor-
tion definition which is global. In my opinion, the probability of excess distortion definition
is also more intuitive, and makes more sense than the expected distortion definition. This is
elaborated on, in Section 2.12.

The above definitions of R%(D) and RE(D) are based on the “physical” meaning of what it
means to compress a source. The rate-distortion function can also be defined information-
theoretically:

Definition 2.30 (The information-theoretic rate-distortion function R§( (D)).
RL(DYZ inf IX;Y 2.30
x( ) {tvix : Xiex yea Px()Pyx(v]x)<D} ( ) (2.30)

The rate-distortion theorem of Shannon [Sha59] states that an expression for Rf((D) is in
fact, R} (D):

Theorem 2.1 (Rate-distortion theorem). An expression for Rf( (D) is RY.(D)

Note 2.23. The source-coding problem that we consider is the above described problem of com-
pressing the i.i.d. X source to within a distortion D under the expected and probability of excess
distortion definitions.

B 2.10.3 The rate-distortion source-coding problem

The rate-distortion source-coding problem is to find the minimum rate needed to compress a
source to within a certain distortion level. For the i.i.d. X source, these functions, as defined
above, are denoted by R)E((D) and RE(D).

W 2.10.4 Discussion: Why are source codes which compress a source to
within a certain distortion level, important?

In defining source codes which compress a source to within a certain distortion level, we have
taken the composite transition probability corresponding to the composition of the source-
encoder and the source-decoder. In practice, however, there is the channel encoder, channel
and the channel decoder between the source encoder and the source decoder.

From discussion 2.1. it follows, on a high level, that the distortion introduced in a source (ei-
ther under the expected distortion criterion or the probability of excess distortion criterion)
after passing through the whole communication system consisting of the source encoder, the
channel encoder, the channel, the channel decoder and the source decoder will be “close” to
the distortion produced by a source code as defined in this section.

This will become clearer, after reliable communication has been defined rigorously. This is
the subject of the next section.
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B 2.11 Universal capacity of a partially known channel

The way usual digital communication systems are constructed, the random binary sequence
at the output of the source encoder is communicated with a very small error over the channel
with the help of the channel encoder and the channel decoder. This motivates definition of
reliable communication or the achievability of a rate R reliably, and the definition of channel
capacity. The channel model we have is only partially known, and thus, the channel comes
from a set k& € .&/. Thus, we would be defining universal reliable achievability of rate R and
universal capacity. The word “universal” refers to the fact that the same encoding-decoding
scheme should work for all channels in the set.

Let k € ./ be a partially known channel with input space .# and output space € as described
in Subsection 2.5.2. This is the partially known channel.

Recall the definition of a channel encoder < e” >3° and a channel decoder < [ >$° defined
in Subsection 2.7.3.

When the block length is 7, the input to the source encoder e” is X”. X" is source encoded
by e” and the output is a random binary sequence which is a random variable M? with
corresponding distribution Puz- My is the input to the channel encoder e”. The output of
the channel encoder is /” which is an input to the channel £”. The channel produces output
O” which is an input to the channel decoder f”, which reconstructs the random binary

o n
sequence as Mp.

My, is the input to the source decoder £ which produces the reconstructed source output
Y”.

For now, we are only interested in the dynamics of M} to M7.

If the source code has rate R, the output of the source encoder is a rate R random binary se-
quence M} with the corresponding probability distribution on the set .#7 = {1,2,...,2l"R]},
Py can, in general, be quite arbitrary depending on e]’, and we will assume that it can be any

possible probability distribution on {1,2,...,2l"8l},

In a usual digital communication system, the channel encoder < e” > and the channel
decoder < f” >{° are constructed in such a way that the random binary sequence should be
communicated over the channel with a very small error. This is abstracted out by saying that

the small error — 0 as the block length 7 — oo.

Let the input to the channel encoder e’ be a rate R random binary sequence M2. The output
of the channel decoder is the reconstruction of the random binary sequence, M %+ Note that

Mz will depend on the particular £ € .o/; however, we do not show this dependence. For
reliable communication, we would require that

Pr(Mp #M?) —0asn — oo (.31)
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As we said above, the distribution p Mz O be arbitrary, the above should hold irrespective of
the distribution Puz- One way of ensuring this is to say that this happens on a per message
level with a uniformity over all messages

Pr(M: £ MEME =m") < 8, Ym" € M}, for some §,, 0 as n — oo (2.32)
Note that if
Pr(Mp #MIME =m") < 8, Ym" € M}, (2.33)
then it follows that
Pr(My #M) <8, an— 00 (2.34)

for arbitrary distribution pys, and note that 8, is independent of the distribution pyz- The
fact that &, is independent of the distribution p My can be important if we do not know the
distribution apriori of the source. Then, after compression, the distribution p;» might not
be known. The system should be able to provide a certain error guarantee for the same block

length (this is important when building the system) irrespective of the distribution of the
source, and thus, it is important that &,, be independent of the distribution Pur-

Also, we would want the rate of fall of error probability to zero with increasing block length
at a uniform rate independent of which particular realization of the channel & € .« occurs.
This is because, when building a real system, we will not know which particular channel k£ €
«f will happen, and the communication guarantee should hold irrespective of this guarantee.

This motivates the definition of universal reliable achievability of rate R over a partially
known channel.

Definition 2.31 (Universal reliable achievability of rate R over a partially known channel
k € /). Rate R is said to be universally achievable over the channel set . if there exists
a channel code < e”, " >{°, independent of the particular k£ € 7, and if there exists a
sequence < &, >%°, 8, = 0 as 7 — co independent of the particular £ € ./ such that

Pr(M:E #MUME =m") < 8,,Ym" € M7 Vk=<k" >T€ of (2.35)

See Figure 2.7. The common randomness input 7 to the channel encoder and the channel
decoder exists but has been omitted in the figure.

Note 2.24 (Universal?). Universality in the above definition refers to the fact that the same
encoder-decoder work for the partially known channel & € .«/.

Definition 2.32 (Universal capacity of the partially known channel # € &/, C, (#)). The
supremum of all universally achievable rates over the partially known channel k£ € .« is the
universal capacity of the partially known channel k£ € ./, and is denoted by C, ().
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M3 e ke A o M3

Pr(Mp # MRIME = m™) < 6,,Ym™ € M5,

Vk =< k™ >1°€ A, for some 6, > 0asn — oo

Figure 2.7. Universal reliable communication over partially known channel k

Note 2.25. The sub-script r¢ in C, (/) stands for random-coding. We allow the encoder
and decoder to be random, and thus, C, (/) is the random-coding universal capacity of the
partially known channel k € /.

Note 2.26 (Resource consumption). One would also like, in the definition of universal capac-
ity, to have a dependence on the consumption of system resources. As we shall see, results
concerning resource consumption that we need will automatically result from the encoding-
decoding scheme that we will use and for that reason, we are not making the capacity depend
on any resource constraints. In general, however, the capacity should be defined by restricting
the encoder and decoder in such a way that only certain system resources are being consumed.

Note 2.27 (Universal capacity and compound capacity). The definition of universal capacity
of a partially known channel is the same, in spirit, as the definition of compound capacity
as defined in information theory literature, see, for example, [CK97]. [CK97] talks about a
compound DMC and thus, the partially known channel comes from a set which consists of
discrete memoryless channels (DMCs). We allow the set to consist of arbitrary channels with
the same input and output space.

Note 2.28 (The universal capacity of a set of abstract channels). An abstract channel, that
is, thinking of the composition of an encoder, channel, and a decoder, as a channel, was
defined in Subsection 2.6.5. Universal capacity can analogously be defined for a set of abstract
channels with input space 2 and output space #. We will use this view of universal capacity
of a set of abstract channels in Sections 2.14 and 2.15, when proving the universal source-
channel separation theorem for rate-distortion.

The channel-coding problem that we will consider is that of the universal capacity of a partially
known channel which is capable of universally communicating i.i.d. X source to within a distor-
tion D. We will relate this universal capacity to the rate-distortion function for the i.i.d. X source.
This will be used to prove the universal source-channel separation theorem for rate-distortion.
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M 2.12 A comparison of the expected distortion and the probability of excess
distortion criterion and the reason why we use the probability of
excess distortion criterion

In this section, we compare the expected distortion and the probability of excess distortion
criteria. We also state the reason why we use the probability of excess distortion criterion
and not the expected distortion criterion.

B 2.12.1 A comparison of the expected distortion and the probability of
excess distortion criteria

We use the probability of excess distortion criterion (2.29) for communication to within a
distortion level D and not the expected distortion criterion (2.28). The following is a com-
parison of the two criteria:

The probability of excess distortion criterion is local whereas the expected distortion crite-
rion is not. This observation has been made by Csiszar and Korner [CK97]. The probability
of excess distortion criterion is local in the sense that it says (roughly) that with high probabil-
ity, a sequence x” € & " whose empirical distribution is “close to py” is distorted to within a
ball of radius 2D with high probability and this probability — 1 as the block length 7 — oc.
Thus, with the probability of excess distortion criterion, statements can be made (with high
probability) concerning individual x” sequences. The expected distortion criterion, however,
is an expectation condition, and hence, global (not local) because statements cannot be made
about particular py typical sequences.

For this reason, the probability of excess distortion criterion is also more intuitive: it can be
represented pictorially, see Figure 2.4 as opposed to the expected distortion criterion.

For the same reason, we believe that the probability of excess distortion criterion makes
more sense than the expected distortion criterion. When communicating a source sequence,
we would like to have most sequences be communicated with a certain guarantee, rather than
a guarantee averaged over all the source sequences.

We should add that the probability of excess distortion criterion is stronger than the expected
distortion criterion in the sense that if the probability of excess distortion criterion holds, the
expected distortion criterion also holds (under minor technical assumptions).

B 2.12.2 Why do we use the probability of excess distortion criterion instead
of the expected distortion criterion?

Most literature on information theory uses the expected distortion criterion. However, we
use the probability of excess distortion criterion.

We use the probability of excess distortion criterion (2.29) for communication to within a distor-
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tion level D instead of the expected distortion criterion (2.28) because we do not know how to
prove universal results with the expected distortion criterion.

Also, as discussed in the previous sub-section, in my opinion, the probability of excess dis-
tortion criterion makes more sense than the expected distortion criterion. Finally, from a
practical standpoint, none of them really makes sense: for example, if we want to put a dis-
tortion criterion on voice, neither the expected distortion criterion or the probability of
excess distortion criterion make sense. However, in my opinion, the probability of excess
distortion criterion does make “more” sense. I will add that the probability of excess distor-
tion criterion making “more” sense than the expected distortion criterion is a very marginal
reason for using the probability of excess distortion criterion: the main reason, as we said
above, is that we do not know how to prove universal results with the expected distortion
criterion.

H 2.13 Important past literature

Shannon proved a source-channel separation theorem for rate-distortion in the point-to-point
setting for the problem of reliable communication in [Sha48]. In this paper, Shannon also
hinted at, but did not give any proofs of optimality of separation for communication with
distortion. This was the subject of [Sha59].

As we have said before, Shannon assumed knowledge of the channel as a transition prob-
ability. We only assume partial knowledge of the channel as a transition probability, and
prove a universal source-channel separation theorem for communication with distortion in
the point-to-point setting. This is the main contribution of this chapter. In Chapter 3, these
results are generalized to the multiuser setting.

Shannon assumed that the distortion measure is additive. Since then, results have been gen-
eralized to sub-additive distortion measures, see for example [Han10]. We prove our results
with the assumption of permutation invariant distortion measures. There is no real relation,
to the best of our understanding, between sub-additive distortion measures and permutation
invariant distortion measures.

B 2.14 The main ideas for why separation holds for universal communication
with a fidelity criterion: separation for the uniform X source under
a technical assumption on the rate-distortion function

This is the most important section in the whole thesis, and discusses the main idea for why
separation or the optimality of digital communication holds for universal communication
with a fidelity criterion.

We prove the universal source-channel separation theorem for rate-distortion for what we
call, the uniform X source (which is defined below) under a technical assumption on behavior
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of the rate-distortion function. Throughout this section, the distortion metric is assumed to
be permutation invariant.

B 2.14.1 The organization of this section

This section is organized as follows:

Subsection 2.14.2 discusses the uniform X source which we use throughout this section in-
stead of the traditional i.i.d. X source. The uniform X source consists of all sequences with
type precisely py. It thus has a single type class. We use the uniform X source because the
proofs with a source which has a single type class avoids a lot of €s and &'s in the proofs.

Subsection 2.14.3 discusses source codes and various rate-distortion functions when coding
the uniform X source. These would be direct generalizations of the definitions for the i.i.d.
X source. One new definition that we will introduce will be that of the inf rate-distortion
function, and this would be related to the technical assumption that we will make.

Subsection 2.14.4 discusses encoders and decoders, and further discusses the capability of a
partially known channel for universally communicating the uniform X source to within a
certain distortion level.

Subsection 2.14.5 states the technical condition that we will need on the rate-distortion func-
tion in order to prove the universal source-channel separation theorem for rate-distortion.

Subsection 2.14.6 states the universal source-channel separation theorem for universal com-
munication with a fidelity criterion for the uniform X source, Subsection 2.14.7 discusses the
two steps in the proof, and Subsection 2.14.9 proves it. Before the proof, we make a small
note on random-coding in Subsection 2.14.8.

This is followed by various discussions in Subsection 2.14.10 on the nature of the proof, why
separation holds, and connections between source and channel coding.

Finally, we make a short note on the technical assumption that we make concerning the rate-
distortion function in Subsection 2.14.11.

B 2.14.2 The uniform X source

Definition 2.33 (Uniform X source). Let X be a random variable on &. Let py(x) be
rational Vx. Let ny be the least positive integer for which 7, py(x) is an integer Yx € &.
Let %" denote the set of sequences with (exact) empirical distribution (type) py. %" is
nonempty if and only if , divides . Let n’ = nyn. Let U" denote a random variable which
is uniform on %" and zero elsewhere. Then, < U” > is the uniform X source and is
denoted by U. Intuitively, the uniform X source is the source which puts uniform distribution
on the set of all sequences whose empirical distribution is py.

Note 2.29. The superscript 7’ in %" denotes that the block length is 7’. It does ot mean



Sec. 2.14. The main ideas for why separation holds for universal communication with a fidelity criterion: separation

for the uniform X source under a technical assumption on the rate-distortion function 65

that %" is the cartesian product of some set % with itself’ n times. In fact, the set % = %!
is empty unless 7, = 1. Similarly, the superscript #’ in U” denotes block length. It does not
mean that U” is i.i.d. U source for some random variable U.

Definition 2.34 (n,). n, is the least positive integer for which 7y py (x) is an integer Yx € &
Definition 2.35 (/). n’ = nyn.
Note 2.30 (Uniform X source makes sense only for block lengths divisible by n,). Uniform

X source is defined only for those block lengths which are divisible by n,.

Note 2.31. If py(x) is irrational for some x € &', %" is empty Yn. Thus, in order to define
the uniform X source, the assumption that py(x) be rational Vx € & is necessary.

Note 2.32. Let py(x) be rational Vx € &. The uniform X source and the ii.d. X source
are “close” to each other in the following sense. The uniform X source puts mass only on
sequences with empirical distribution exactly py. For large n, i.i.d. X source puts “most of”
its mass on sequences with empirical distribution “close to” py . We are interested in i.i.d. X
source.

Note 2.33 (Why use the uniform X source). Uniform X Source has a single type class by
definition. This helps avoid a lot of €s and &'s in arguments.

B 2.14.3 Source codes for the uniform X source and rate-distortion func-
tions for the uniform X source

Assume that X is such that py(x) is rational Vx € &'.

The definitions of source codes for coding the uniform X and the transition probability cor-
responding to such a source code are analogous to the corresponding definitions, Definition
2.11, Definition 2.12 and Definition 2.13 of Subsection 2.7.2. There are two differences:

e Since the uniform X source is defined only for those block lengths of the form n’ = nyn,
source codes for the uniform X source are defined only for these block lengths

e The input space, when the block length is #” is %" and not "

Achievability of expected distortion D when coding the uniform X source is defined analo-
gously to Definition 2.26, except that (2.28) is replaced by

. 1 / / /
llr}lsupEU,,zY”/ [;d" u”,y” )] <D (2.36)

n —o0

The rate-distortion function Rf,(D) is defined analogously to (2.27).
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Achievability of probability of excess distortion D when coding the uniform X source is
defined analogously to Definition 2.28, except that (2.29) is replaced by

lim
7 —o0

1 / / /
Py po' (7dn ur,Y”)> D) =0 2.37)

The rate-distortion function RZ(D) is defined analogously to (2.29).

We also need the definition of inf achievability of probability of excess distortion D when
coding the uniform X source. This is the same as the definition of achievability of probability
of excess distortion D when coding the uniform X source, except that (2.37) is replaced with

. | O
limint ¢, (7‘1" ',y )>D> =0 2.38)
The above is called the inf probability of excess distortion criterion.

'_I'he rate-distortion function R’;,(D, inf) can be defined analogously to R‘;}(D) by using (2.38)
instead of (2.37).

B 2.14.4 Encoders and decoders to communicate the uniform X source, and
universal communication of the uniform X source over a channel
to within a certain distortion level

In this subsection, we want to define, what it means for a partially known physical channel
to be capable of communicating the uniform X source to within a certain distortion level.

A physical channel & =< £” >{° has been defined in Subsection 2.5.2 and a partially known
physical channel £ € .« has been defined in Subsection 2.5.3. The channel evolves for ev-
ery integer time. However, what will matter, when we consider the interconnection of the
encoder, channel and the decoder is the channel subsequence < £’ >%°.

The view of an analog point-to-point communication system to communicate the uniform

X source is the same as the view of Section 2.6 with the following differences:

e Encoders and decoders are sequences < e” >® and < d” > defined only for those
q 1 y

block lengths »’ which are divisible by 7,
e The input space when the block length is #’ is %" instead of &

e The interconnection will be made among encoder < e” >, channel < &” > and
decoder < f” >

It is important to note that encoders, channels and decoders are defined only for block lengths
n’ of the form nyn, but they evolve, as before, for each integer time.
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The view of a point-to-point digital communication system to communicate the uniform X
source is the same as that of Section 2.7 with the same differences:

o Source encoders, source decoders, channel encoders, channel decoders are defined only
for those block lengths »’ divislble by 7,

e The input space when the block length is ' is %" instead of &

The distortion function 1 is defined in the same way as Section 2.8 except for the same reasons
that the sequence is < 4" > and d” ;U x " S [0,00)instead of d” : X" x H" -
[0, 00). Definition of permutatnon invariance and additiveness is defined in the same way as
in Section 2.8.

Consider a partially known channel 2 € .«¢.

Thei input to the encoder is the umform X source. Thus, then the block length is »’, the input
is the i.i.d. X sequence of length r/, % 7| The composition of the encoder, channel and de-
coder, produce an output sequence Y" . This results in a joint random variable U” Y on the
input-output space U” x %™ and the corresponding probability distribution Pty - Note
that we are talking about a partially known channel and thus, Pyt yw will vary depending
on the particular k € .&/.

The partially known channel £ € & is said to be capable of universally communicating
uniform X source to within a distortion D if there exists a sequence w =< w,y >° such that

@, — 0 as 7 — oo, and an encoder-decoder pair < ™, /7 >%° independent of the particular
k € ./ such that under the joint distribution p y'y 2 described above,

1 / / !
Pyt <—/d” ", y"y> D) <w,Vked 2.39)
n

See Figure 2.3, except that all 7 are replaced with 7’ and X” is replaced with U”. In the
figure, we have not shown the common randomness input 7 to the encoder and the decoder.

W 2.14.5 The technical condition on the rate-distortion function that we
will require in order to prove the universal source-channel separa-
tion theorem for rate-distortion for the uniform X source under a
permutation invariant distortion metric

We will assume that R’b(D) = RIZ,(D, inf). We will prove this for an additive distortion metric
in Chapter 5.

Another assumption which we require is that py(x) is rational Vx € . We require this
assumption because otherwise, the uniform X source is not defined.
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B 2.14.6 A statement of universal source-channel separation theorem for
rate-distortion for the uniform X source

Theorem 2.2 (Universal source-channel separation theorem for rate-distortion in the point-
to-point setting for the uniform X Source / Optimality of digital communication for univer-
sal communication of the uniform X source with a fidelity criterion). Let d =< d" > bea
permutation invariant distortion metric under which R’Z](D) = RZ(D, inf). Assuming random-
coding is permitted, in order to communicate the uniform X source over a partially known chan-
nel to within a particular distortion level, it is sufficient to consider source-channel separation
based architectures, that is, architectures which first compress the uniform X source to within the
particular distortion level, followed universal reliable communication over the partially known
channel. There is sufficiency in the sense if there exists some architecture to communicate the
uniform X source to within a certain distortion universally over the partially known channel,
and which consumes certain amount of system resources (for example, energy and bandwidth),
then there exists a separation based scheme to universally communicate the uniform X source to
within the same distortion universally over the partially known channel and which consumes the
same or lesser system resources as the original scheme.

B 2.14.7 Steps to prove Theorem 2.2

In this section, we state the steps in proving Theorem 2.2. The steps are:

o Step 1 for why Theorem 2.2 holds: Given a partially known channel £ which is capable of
universally communicating uniform X source to within a distortion D, first prove that
the universal capacity of the partially known channel & is larger than or equal to the
rate-distortion function R’L’,(D). Also, prove that the universal reliable communication
at rates < R'Z,(D) can be accomplished by using an encoder and a decoder such that
the resulting architecture consisting of the composition of the encoder, channel and
decoder, when used for universal reliable communication, consumes the same system
resources irrespective of the distribution on the message set as the original architecture
when used for universal communication to within a distortion level D of the uniform
X source over the partially known channel.

This step is illustrated in Figure 2.14.7.

o Step 2 for why, the Theorem 2.2 holds: Thus, in fact, given a partially known channel
which is capable of communicating uniform X source to within a probability of excess
distortion D, and hence, from Step 1, its universal capacity is > R‘Z(D), universal com-
munication to within a distortion D over the partially known channel could actually be
carried out by first compressing the uniform X source to within a distortion D under
the probability of excess distortion criterion and then communicating the resulting rate
RY(D) random binary sequence universally and reliably over the partially known chan-
nel. Since the reliable communication can be accomplished by using an encoder-decoder
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Given, 3 < e, f7' > and < w" - w" — 0 as n’ — oo such that
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| at rates < R{;(D)

such that resource consumption remains unchanged.
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Step 2:

I ! !
Thus, 3 source code < e, f;" >, and < W™ >, W™ — 0 as
n’ — oo such that

! 1 ! ] [] !
‘ Unle &7’ i en ke A P )eye
.
L ]

’

| digital link
Pr (l,dﬂ’(U"', ¥y D) <w™ Vke€ A
n

such that resource consumption is the same as in the original
architecture of Step 1

such that the resulting architecture consisting of the composition of the digital encoder,
channel and digital decoder consumes the same system resources as the original archi-
tecture to universally communicate the uniform X source to within a distortion D over
the partially known channel &, the digital architecture to communicate the uniform X
source to within a distortion D over the partially known channel k also consumes the
same system resources.

This step is illustrated in Figure 2.14.7.

We argue these steps in Subsection 2.14.9. Before that, we make a note on random-coding in
the next subsection.

W 2.14.8 Random codes
In part of the proof, we will generate codebooks uniformly from the set of all sequences

which have type precisely X. As we have emphasized before, for us, random-coding is not
just a proof technique. It is essential. This will be discussed further in Section 2.17.

B 2.14.9 The proof of Theorem 2.2

Proof. Proof of Step 1 in order to prove Theorem 2.2

Recall that we will denote #’ = nyn.

Let b =< k" >$°€ o be a partially known channel which is capable of universally commu-
nicating the uniform X source U to within a distortion D. Thus, there exist an encoder-
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decoder < e”, [ > and a sequence w =< w, >, w, — 0as n’ — oo such that
with the composition of the encoder, channel and decoder, < ¢” o k" o 7' >$° with input
U=<U" >%°, end to end,

1 / /7 /
Pr(-,d”(U” ,Y”)>D> <w,, Yke .o (2.40)
n

Consider the partially known abstract channel

ce{<e” ok o f" >® k=< k" >Pe A} 26, @.41)

We will prove that the universal capacity of the partially known channel ¢ € €, is > RE (D),
P pacity p y s U
. . / / .
and this can be accomplished by an encoder-decoder < E”,F” >%° such that for universal
reliable communication at rates R < R%(D), the point-to-point communication system <
7/ 7 . . .
E" oc” oF" >{° consumes the same system resources (irrespective of the particular ¢ €
/) as the original point-to-point communication system < e” o &” o f% >% when used to
; OTigina’ porntto p ; TS °f 1
communicate the uniform X source universally to within a distortion D.

From this it will follow that the universal capacity of the partially known channel £ is
> R’[’](D), and this universal reliable communication at rates < R§ (D) can be accomplished
with the help of encoder < ef/ >P=<E " oe" > and decoder < f] o >P=<f " o F" >%.
The point-to-point communication system < e C’”ok”' of 4 >$° when used for reliable commu-
nication at rates < R§ (D) consumes the same system resources as the original point-to-point

. . / / 7 . .
communication system < e” ok™ of” >%° when used to communicate the uniform X source
to within a distortion D.

We proceed to prove that the universal capacity of the partially known channel ¢ € €, is
> RZ(D). Note that we have assumed that RZ(D) = RZ(D,inD. Thus, it is sufficient to
prove that the universal capacity of the partially known channel ¢ € €, is > Rf/(D,inf).
This is what we proceed to prove.

This is done via parallel random-coding arguments for

e the universal capacity of the partially known channel c € 6, and

o the rate-distortion source-coding problem of finding the minimum rate needed to com-
press the uniform X source to within a distortion D under the inf probability of excess
distortion criterion.

The random-coding arguments are similar, yet different from the ones used in the informa-
tion theory literature. We want to derive a connection between the above two problems in
order to prove the desired result, and we are not interested in simplified functional expressions
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for the universal capacity of the partially known channel ¢ € . or simplified expressions for
the rate-distortion function RI[’/(D,inf).

The two problems:

o The channel-coding problem: The channel-coding problem is that of computing the uni-
versal capacity of the partially known channel c € €,

o The source-coding problem: The source-coding problem that we consider is to derive

an upper bound on RZ(D,inf), the minimum rate needed to compress the uniform

X source to within a distortion level D under the inf probability of excess distortion
criterion

Block length: For both the channel coding and the source coding problems, let the block
length be n’. Towards the end of the argument we will take the limit »’ — co. Recall that
n’ = nyn is the set of all integers for which the uniform X source makes sense.

Codebook generation:

o Codebook for the channel-coding problem: Let communication be desired at rate R. Gen-
erate 2l""Rl sequences independently and uniformly from the set %", the set of all
sequences € X " which have empirical distribution precisely py.

This is the code book ¢ ™. Note that the codewords € %" . The encoder is denoted
by < E” >%°. Note that the encoder is random.

o Codebook for the source-coding problem: Let q be an empirical distribution (type) on %,
that is g € P (%). Let g be an achievable type when the block length is 7’. In other
words, n'q(y) is an integer Vy € ¥. Let % q”' C ¥" denote the set of all sequences

with empirical distribution, precisely 4. Generate 217 2] codewords independently and
uniformly from the set %q”l

This is the code book £”. Note that the codewords € % q"/ c %", Note that the
codebook is random.

Joint typicality:

o Joint typicality for the channel coding problem: Sequences (4" ,y™ ) € the channel input-
output space %" x ¥ are said to be jointly typical if

1 / ' ’
711" (" ,9")<D (2.42)
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o Joint typicality for the source coding problem: Sequences (4™ ,y") € the source input -
. ’ ’ . .. . .
source reconstruction space %” x & are said to be jointly typical if

1 7 / 7
—d"(w",y") <D (2.43)

Note that the definition of joint-typicality for both the channel-coding and the source-coding
problems is the same.

Note 2.34 (A note on the definition of joint typicality). Jointly typical sequences are defined
in the information theory literature in a way so that the set of all jointly typical sequences
occurs with high probability and this probability — 1 as the block length n’ — co. In our
framework, from the codebook generation and from the action of the channel, all we know
is that

1 / / 7
—d"(",y")<D @.44)

with high probability , and this is, thus, our definition of jointly typical sequences. In usual
information theory frameworks, the channel action is known as a transition probability and
thus, when defining jointly typical sequences, there is usually a requirement on the condi-
tional type of the output sequence given the input sequence. However, our description of the
channel is not in terms of a transition probability. Our description of the channel is in terms
of the distortion that it produces on sequences with type precisely X and hence, the above
definition of joint typicality.

Decoding:

e Decoding for the channel coding problem: Let the sequence y" be received. If there exists
unique codeword #” in the code book " for which (#™,y") are jointly typical
declare that #” is transmitted, else declare error. The decoder is denoted by F ", Note
that the encoder-decoder E”',F" is random

Note 2.35. This decoding rule can be thought of as a variant of minimum distance de-
coding

Note 2.36 (Are the encoder-decoder random-codes in the sense of Definition 2.3). We
defined random codes in Definition 2.3. In our coding scheme, we are generatlng code-
words uniformly from the set % 7" and the decoder is, as defined above, a variant of
minimum distance decoding . This encoder-decoder be thought of as a random-code
in the sense of Definition 2.3. We leave out an elaboration as to why that is the case.
As disussed in Note 2.6, our encoder-decoder can thus be generated using common ran-
domness.

e Encoding for the source coding problem: Let the sequence #” € %™ needs to be source
coded. If there exists some sequence y” in the code book £” for which (#',y" ) are
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jointly typical, encode #” to one such y”, else declare error. Note that the encoder-
) y typ y
decoder is random.

Note 2.37. Note that “unique” in the channel coding problem gets converted to “some” in the
source coding problem

Some notation:

e Notation for the channel coding problem: We will do the analysis assuming that a partic-
ular message is transmitted. The message set is

M ={1,2,...,27R]) (2.45)

/ /. .
Assume that message m? € A} is transmitted.

Let the codeword corresponding to message m;’/ be denoted by # c”l. Let the nontrans-
mitted codewords be denoted by #’ '1’,, u ;", u :ll"'RJ—l'

uc’” is a realization of Uc”l. By the random code book generation, Uc”' has uniform
distribution on %" .

u ;’l is a realization of U’ :',, 1<i < 2"RI_1, By the random code book generation,
U ';’I, 1 <i < 2Rl _ 1 has uniform distribution on %"

By the random code book generation, the codewords are generated independently of
each other, and thus, UL_”’, U’ :’I,l <i<2"Rl_1areall independent of each other as
random variables.

The action of the partially known channel ¢ € €, on the transmitted codeword n:"
produces an output y” .

y* is the realization of some random variable Y” which is got by the action of the
channel ¢ on U”. Note that Y will be different for different ¢ € 6. Assume that
some particular ¢ € €, happens, and Y" is the corresponding channel output random
variable. Our argument will hold for all c € € .

y" depends on # ;‘/.

By the codebook generation, the codewords are generated independently of each other,

n om /

: / i m . 4 /
and there is no dependence between y” and '}, #’ , # Ry That is, y* , and Y”
. / .
are independent of U’} ,1<i < 2l7'R] _ 1,

e Notation for the source coding problem: We will do the analysis assuming that a particular
#" € U™ needs to be coded.

. . /. . . 7 i
The source is the uniform X source. Thus, #” is a realization of U” where U” has
. . . . !
uniform distribution on %"
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The codebook is

L7 =01097 -V} (2.46)

For all z, yi’” is a realization of the random variable V‘.”'. By the random codebook
generation, Vi”' is the uniform distribution on the set % q"’ c U™ of all sequences with
precise type q.

By the random code book generauon, the codewords are generated independently of

each other, and thus, V. 7,128 < 2R are independent of each other as random
variables.

Also, the codewords are of course, mdependent of the source sequence, and thus, #
and U” are independent of V” 1<i<2lwRl,

Analysis:
o Error analysis for the channel coding problem: We analyze the probability of correct de-

coding.

We analyze the probability that a message is correctly received given that a particular
message is transmitted. Think of some probability distribution M” on the message
set M} #' This probability distribution will 70t matter for the calculation. In fact, the
calculation that we do can be done even if there is no probability distribution on the set
of messages. We calculate

Pr(M” =M”1|M"/ = m?’/) where m?’/ € .//t”/ (2.47)

The code book generation is symmetric. For this reason, the above probability will be
independent of the particular message m” = My ",

Also, M” will depend on the particular k € .&. We will get a bound for
Pr(MZ =M |M" =m") (2.48)
which is independent of the particular kb € /.

From the decoding rule, it follows that for correct decoding, the following should hap-
pen:

1 7 7’
711” (u?,9")<D (2.49)

1 ’ / / ’
=d" (w7 ,y")>D,1<i<2"Rl—y (2.50)
n
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Thus, the event of correct decoding is:
1, ’ ’ n'R)_ 1, / ’
{yd"(ur",Y")sD}rmf=1 ‘{7d”(U’:’,Y")>D} 2.51)

o Error analysis for the source coding problem: We analyze the probability of error.

The analysis is done assuming that a particular sequence #” € %™ needs to be source
coded. As we shall see, this error is independent of the particular source sequence be-
cause of the same empirical distribution of the source sequences, the symmetric nature
of the code book construction, and permutation invariant distortion measure.

An error happens if there exists no ” in the code book %" such that (#”,y") are
jointly typical, that is, an error happens if

1 7 ! 7 / /
7d" («”,y")>DVy" € £" (2.52)
The event of error is

nll”“’{ —d” (u" ,V")>D} (2.53)

i=1

Note 2.38. Note that in the channel coding problem, we analyze the probability of
correct decoding and in the source coding problem we analyze the probability of error

Calculation:

o Calculation of probability of correct decoding for the channel coding problem:
The correct decoding event is:

1 ’ ’ ’ n 1 ’ 4 ’
{74" Y 51)} Nt ot {71" w7,y )>D} (2.54)
We wish to calculate the probability of the above event.

1 7 ’ 7 » '
Pr<{—7d”(Uc”,Y")5D}ﬂnzl - ‘{ —d"(U'7,Y") })

n

1 7 / 7 n
=Pr<{—,d”(Uc”,Y”)5D}>+Pr< “‘-1{ —d"(u', Y”)>D}>

n

1 nryrn’ yon 2l7'Rl_q n n'
(l—w/)+Pr<ﬂleJ ‘{ 4", Y”)>D}>

=—w,y +Pr (nf:;“_ {7(1" (U/:'/,Ynl) > D})
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207'RI_q
=—wy+ ]—[ Pr({ —d"( U”’ Y” )>D})
(since U"” ; ,1 <i<2RI_1, V" are independent random variables)
[ 1 ’ / / 2Rl
=—w”/+ Pr({?d” (U" ,Yn ) >D})]
(where U” has the same distribution as U/ " and is independent of Y")
zln/RJ_l
/ 1 / / 4 7/ /
==yt | T ppeb™ P (a7, ¥")> D1 ¥ =)
_y"le‘.’l"" n
2[n'RJ_1
7 1 / / / / /
=—wy+ Z pynl(yn )Pr(-—,d”(U”,y")>D§Y" =yn>
_y"/EQ/"/ n
- 2[n/RJ_1
=—wy+ Z pY”z(y” Pr( ( ”/,y"l)>D)
| " 6‘3/”
(since U” and Y™’ are independent)
1 2[71’1(]_1
> = w,+ L,inf IPr({—,d"'(U”',y”') >D}>] 2.55)
" ey” n
Rate R is achievable if
1 2l°RI_q
—w,+ L/inf Pr <{-—,d”,(U”’,y"’)>D}):| —lasn'—o0  (2.56)
" ey n
It is known that w,/ — 0 as n’ — oco. It follows that rate R is achievable if
1 zln’RJ_l
[ inf Pr ({—,d”’(U”/,y”’)>D}>:| —1lasn’ -0 (2.57)
y”/e‘.?/”l n
o Calculation of probability of error for the source coding problem:
The error event is:
" 1 ’ ’ ’
i {701" ", V") > D} (2.58)
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We wish to calculate the probability of this event.

n 1 ’ / ’
Pr (nf'zfj {—-;d" ",v")> D}) (2.59)

_ﬁPr({ 4" (u ,V")>D}> [r({&dﬂ’(“n"vn’)>D})]2[”,RJ (2.60)

where V* is a random variable which is uniformly distributed on ‘Zlq"’ and is indepen-
dent of #™ for all 4™ € %" .

The type g with which the codewords are generated can be chosen by us. For block
length 7', we can choose the best possible achievable g for which the above error prob-
ability is the minimum. Let the set of all possible achievable types ¢ for block length 7’
be denoted by 9" . The least possible error probability is given by

2ln'R|
1 s 7/ ’
[ inf Pr<{—,d” (u” ,V")>D}>] (2.61)
qe9” n

To show the above dependence of the distribution of V* on ¢, we denote it by Vq”'.
Thus, the least possible error probability is

zln’R]
1 / / /
inf Pr({-—,d” (" ,V”)>D}> (2.62)
qc9” n 1

Since we are using the inf probability of excess distortion criterion, it t follows that rate R is
achievable if

n'R)

2l
[ inf Pr ({—d i(w™, )>D}>} — 0 for some 7, = nyn; for some n; — oo

qe94”i i

2.63)
Connection between channel coding and source coding:
It turns out that the main calculation we need to do in the channel coding problem is
1 / ! 7
inf Pr<{ —d" (U” ,y”)>D}> (2.64)
I = n’

and the main calculation we need to do in the source coding problem is

inf Pr <{-1—,d"’(u"’,vq"') > D}) (2.65)

qe9” n



Sec. 2.14. The main ideas for why separation holds for universal communication with a fidelity criterion: separation

for the uniform X source under a technical assumption on the rate-distortion function 79

We will prove that the above two expressions are equal.

We will prove more generally, that
1 / / 7 1 7 / / /
Pr <{—/—d" u”,y" )>D}) =Pr ({—,d” (", Vq” )>D}) , if " hastypeq  (2.66)
n n

Let y* have type g.

First we prove for the channel coding problem that if y” and y have the same type g, then

Pr ({5:1”'( U™,y > D}) =Pr ({;}d"’(u"’, ¥y > D}) 2.67)

. . . . . . /. . . .
Since U" is the uniform distribution on %” , it follows that it is sufficient to prove that the
cardinalities of the sets

! 1 A / / / 1 ’ / /
{u” :zd" (#” ,y”)>D} and {u" :7d” (#" ™ )>D} (2.68)

are equal
!

. ! / /. - ! ’ 7/
Since y” and ™ have the same type, " is a permutation of y” . Let y” = n"'y" .

Denote the sets
7 1 ! / 7
Qy”/ é{u” :—,d” (u” ,y")>D} (2.69)
n
and

/ 1 ! / 4
gy'"/ = {un : —,d” (u” ,y/n ) > D} (270)
n

Let " € %y /. Since the distortion measure is permutation invariant, d” (n" ", £ y"') =
d” (u”,y"). Thus, o 4" € B Nz Ha” #u, a¥u’ £ u It followsthatl.% >
L% /|- y” and ¥ in the above argument can be interchanged. Thus, |.% | > I% |- Ie
follows that IQ 7= IQ w |- Thus, it follows that

Pr ({7d"’(vn’,y"’) > D}) =Pr ({ l,d"’(U"’,y’"’) > D}) @.71)

V” denotes the uniform random variable on the set of all sequences of all type g. Let vy be
1ndependent of U”. It follows, by use of 2.71 that

we({ 7)>0})=p <{§d"’(u"/"’é")>0}) @)
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Next, we prove for the source-coding problem that if 4™, ™ € %" (in particular, they have
the same type), then

1 / / / 1 ',om n'
pr<{;7d" ",V )>D}) =Pr<{-’7d" N )>D}> 2.73)

. /. - . . . / . .
Since Vq” is the uniform distribution on the set of sequences %q” of type ¢, it follows that it
is sufficient to prove that the cardinalities of the sets

» 1 / / / 1 / n /
{y” :;-;d" (" ,y")>D} and {y” :zd” (" y") > D} (2.74)

are equal.

/

. ! / ! /. . 7 / /!
Since #” and #” belong to the set %™, #’" is a permutation of #” . Let #’* =" u™.

Denote the sets

a2 o a7y ) -
and

N { y %d”/(u'"’, y)> D} 2.76)

Let y" € @y",. Since the distortion measure is permutation invariant, d 7 (7w gy =
d”' (" ,y"). Thus, pi”y” € D - Ify™ # 9™, 77'y" # 7"y . It follows that 12D | 2
12, |- #" and 4™ in the above argument can be interchanged. Thus, 12 /1212 .| It
follows that ‘gu’", |= |@“"/ | Thus, it follows that

Pr ({%d”,(u”’, vr)> D}) =Pr ({id"/(u’"l, vy > D}) @.77)

U" denotes the uniform random variable on %" . Let U” be independent of Vq"'. It follows
from 2.77 that

1 / ’ / 1 / 7 /
Pr({-—,—d” W, vy> D}) - Pr({—,d" (U, v >D}> @.78)
n 1 n 1
From (2.73) and (2.78), it follows that if y” has type g,

Pr <{%d”/(U”l,y”’) > D}) =Pr <{$d”l(u”/, V) > D}) 2.79)
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inf Pr

1, r
ot oe({erwm>))
y

1 ! / 7
- it ({02 0)
q€9” n 9
coding.

This proves what we had set out to prove in the connection between source and channel
Denote

(2.80)

F” 2 inf Pr

1 ! ! '
g re({erwron>o})
y

1 / / /
= inf Pr ({—7d” (u™, V" )>D}) (2.81)
ged” n 7

Relation between the universal capacity of the partially known channel c € € and the rate-
distortion function RZ(D, inf)

o Channel coding problem: From (2.57), it follows that rate R is achievable if
[F",]ZI"IRJ_1 —1lasn’ — o0

(2.82)
o Source coding problem: From (2.63), it follows that rate R is achievable if

1 AlnR}
[F]*" —0as n; — oo for some n; = ngn; for some n; — 0o

2.83)
If rate R is achievable for the channel-coding problem, so is any rate < R. Define:
@ = sup{R|rate R is achievable for the channel coding problem
by use of the above random-coding method} (2.84)
Then,
”giinoo(}'" i )zl”im'1 <1V R’ > a for some sequence 7; — co (2.85)
Thus,

Tim (F")"* 1 =0 for " > R’

(2.86)
Note that R” > R’ > a, but other than that, R’ and R” are arbitrary. It follows that rates < a
are achievable for the source coding problem.
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Note that the above random-coding method is just one possible method to generate codes for
the channel coding problem. In general, it is possible that there exists another coding method
which performs better than the above random-coding method, that is, for which rates > a
are achievable for the channel coding problem. Thus, what we can claim from the above
argument is that rates < a are achievable for the channel-coding problem. Thus, C, (6 ,) >
a. Similarly, the above random-coding method is just one possible method to generate codes
for the source coding problem. In general, it is possible that there exists another coding
method which performs better than the above random-coding method, that is, for which
rates < a are achievable for the source-coding problem when we use the probability of excess
distortion criterion with the inf definition. Thatis, R y(D,inf) < a. Thus, C, (€4) > a and
RE/(D,inf) < @. In particular, C, (6,4) > RE(D, mf)

We have assumed that R{,(D,inf) = R’l’,( ), and thus, C, (€ 4) > R? (D).

Thus, by use of encoder-decoder < E”,F” >, rate R is universally and reliably achievable
over the unknown channel c € €, if R < R (D) Recall that ¢ € {< e” o k" of" >%° | <
k" >°€ .} It follows that by use of encoder <E"oe" >° and decoder < f7oF" >

rates R < RE (D) are universally and reliably achievable over the partially known channel
ked.

Next, we want to see the resource consumption of the architecture for reliable communica-
tion.

Let the block length be 7’. The original architecture consists of the encoder e”’ » the partially
known channel & and decoder f*'. With the input, the uniform X source U", in the limit,
the uniform X source is communicated to within a distortion D universally over the partially
known channel k With input U™ to the encoder e, let the dlstrxbutlon of the channel input
be denoted by I” . In the new architecture, encoder E” and decoder F” are bullt on top of”
the already existing architecture in order to communicate the message source M” universally
and reliably over the channel The encoder E” generates codewords with the same distri-
bution as the source U”'. This is because, the codewords are generated independently and
umformly from the set “Zl "' Let this random variable be denoted by U*"’. The superscript
s” should be thought of as “simulated”. It follows that in this new architecture for reliable
commumcatnon, the 1 input to the channel will be some random variable I*" which has the
same distribution as I" . From comments in Subsections 2.6.7 and 2.7.6, it follows that the
new architecture, consisting of the encoder < E” oe” >, partially known channel £, and

decoder < f" o F¥ >%°, when used to communicate the message source < M "> >%°, con-
sumes the same system resources as when the original architecture consnstmg of the encoder
<e” % the partially known channel k, and decoder < £ >{° is used to communicate
the umform X source. See Figure 2.8. The common randomness input exists but has been
omitted in the figure.

This finishes Step 1. We use this to prove Step 2.
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reliable communication at rates < Rf;(D) for all k € A

Figure 2.8. Universal reliable communication over the partially known channel k € ./

Proof of Step 2 in order to prove Theorem 2.2

Let the partially known channel & be capable of universally communicating the uniform X
source to within a distortion D. This is accomplished with the help of an encoder-decoder
<, f 4 >$°. From the above argument of Step 1, it follows that with the help of encoder
<’ >°°—< E" oe" >2° and decoder < f N >P=< f " o P >%°, universal reliable com-

munication can be accompllshed over the cha.nnel k at rates < R (D) by use of the same
system resources as in the original architecture. In other words, the universal capacity of the
partially known channel & is > R},(D).

Assume that the universal capacity of k is strictly greater than R (D). It now follows that
by source-compression followed by universal reliable communication, the uniform X source
can be communicated umversally over the partially known channel % to within a distortion
D. A rough argument is the following: Take the uniform X source. Compress it usmg a
source-encoder < e >{° to within a probability of excess distortion D. The output is a

rate RY (D) message source (this is not entirely precise and we are omitting some es and &'s).
This rate RY y/(D) message source can now be communicated umversally and rehably over the
partially known channel & with the help of channel encoder < e” >°°—< E" oe” >°° and
channel decoder < f; o >r=<F W o fm >{. Finally, the output of the channel-decoder is
source-decoded using decoder </ "' -l End to end, the uniform X source is universally
communicated to within a distortion D over the partially kncwvn channel &, digitally. The

input to the channel has distribution 7*”" when block length is 7’ as described in Step 1 and
thus, this source-channel based scheme consumes the same system resources.

A precise argument is the following:

We said above that the universal capacity of the partially known channel & is > R? (D). As-

sume that the universal capacity is strictly > R? (D). Let the universal capacity be R?, (D) +
8,8 >0.

Let ¢ = By the definition of R? (D), it follows that there exists a rate R (D) + € source
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7 ! . . . . g
code <e”,f” >P° which compresses the uniform X source to within a probability of excess
distortion D.

Let the block length be 7’.
The action of es"/ on U” produces an output random variable 1’{ on the set A I’{. The set
M ;{’ is

MY ={1,2,... 2RO (2.87)

Since the universal capacity of & € .« is strictly greater than RZ(D) + ¢ by assumption, the
message M 1’;’ can be universally and reliably communicated over the partially known channel
k in the limit as # — co. Finally, the source is re-constructed by using the source decoder f, &

See Figure 2.9. The common randomness input exists but it has been omitted in the figure,
but it exists.

For every ¢ > 0, 3n/ such that when the block length is > n: forall ke .o, Pr(/l:lf'{ #
M 1’;') < e. It follows that

1 / / !
Pr <—;d”(U",Y”)>D> <wy+eifn' >n Vehed (2.88)
n

¢ > 0 is arbitrary, and thus, it follows that end-to-end, in this separation based architecture,
the uniform X source is communicated universally and reliably to within a distortion level
D over the partially known channel k.

The input to the channel has distribution /*” when block length is 7 as described in Step 1
and thus, this source-channel based scheme consumes the same system resources like energy

and bandwidth.
This completes the argument.

Note that we assumed that the universal capacity of the partially known channel k is strictly
> R{,(D), whereas from Step 1, it only follows that the universal capacity of the partially known
channel k is > RE (D). It is unclear what will happen if the capacity of the partially known
channel k is precisely RE (D). This “tension” of what happens if the capacity is precisely RE,(D) is
usual in information theory.

O

Note 2.39 (Time delays). Note that the definition of capability of universal communication
of the uniform X source over a set of channels ./ requires the existence of some sequence
w =< w,y >P, w,y — 0asn’ — oo, such that end-to-end, over the composition of the
encoder, channel and decoder,

1 ! / /
Pr (—7d" o, Yy”? )>D> <w,VYked (2.89)
n
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Figure 2.9. Converting an arbitrary architecture for communicating the uniform X source to within a distortion
D universally over the partially known k, into a digital architecture

In the separation based scheme for communication of i.i.d. X source to within a distortion
level D over the set of channels .o/,

L it ot
Pr (—,d" £ )>D) Swy+e¥n'>n! (2.90)
n

Note that € > 0 can be chosen arbitrarily. Thus, the error sequence is some other &’ =<
™ >2°. On a physical level, this translates into saying that for a particular probability of
excess dlstortlon requirement, the delay (the block length) required might be different, and
in particular, larger in the digital separation architecture compared to the analog architecture.
For this reason, we require the assumption stated in Section 2.2, that delays do not matter.
As we said in Section 2.2. if delays did concern us, separation does not hold.

B 2.14.10 Discussions

A note on the proof technique and a comparison with Shannon's proof: using achievability
techniques to prove a converse

Our proof, as the usual proofs of source-channel separation go, consist of two steps which
have been stated before and are stated incompletely here:

1. If there exists some scheme in order to communicate the uniform X source universally
over the partially known channel £ to within a distortion D under the probability of
excess distortion criterion, then the universal capacity of k is > R? v(D)

2. Tf the universal capacity of a partially known channel & is > R} (D), then universal
communication of the uniform X source to within a probabnllty of excess distortion
D can be accomplished over the channel £ by source compression followed universal
reliable communication



CHAPTER 2. OPTIMALITY OF DIGITAL COMMUNICATION FOR COMMUNICATION WITH A FIDELITY
86 CRITERION: UNIVERSAL, POINT-TO-POINT SETTING

We need to make sure that the system resource consumption is the same in both steps. From
these two steps, the universal source-channel separation theorem follows.

These two steps traditionally are called converse and achievability, respectively. Step 1 is
called converse because its traditional proof due to Shannon [Sha59] uses the usual converse
techniques of equalities and inequalities related entropies and mutual informations. This
proof of Shannon is discussed in brief in Subsection 5.7.4. Step 2 is usually achievability.
Also, usually, Step 2 is Step 1, and Step 1 is Step 2. However, we will stick to our ordering.

For us, both Step 1 and Step 2 are achievability. Step 1 is achievability for us because we
demonstrate a coding scheme with which communication at rates < RZ(D) is possible over
the partially known channel k. We use a traditional random-coding argument for Step 1. We
are thus using achievability methods to prove a result which is traditionally viewed as converse.
In my opinion, this lends more insight into the nature of separation.

Further comparison of Shannon’s and our proof is made in Subsection 5.7.4.

A further note on the proof technique: layering “on top of” the original architecture

Note that given an original analog scheme consisting of encoder < e >2° and decoder <
Vid >%° for universal communication to within a distortion D over the partially known
channel &, the digital scheme that we construct is built “on top of” this scheme. The digital
encoder consists of the source encoder < es”/ >, the channel encoder < ec"l >P=< E" o
e” >{°. Note that the channel encoder < E " oe” > is layered on top of the original encoder
<e” >%. The digital decoder consists of the channel decoder < fc"/ >P=<f " o F7 >
and the source decoder < fs"/ >7°. Note that the channel decoder < f " o F7 >%° is layered
on top of the original decoder < /" >%. The original scheme is thus, converted into a digital
scheme by introduction of a digital link. This also lends insight into how separation holds

Also, this should also be thought of as a proof technique, and we are illustrating just one
possible digital scheme. There might be other ways of constructing digital schemes which
accomplish the same goal which might not be layering on top of the original scheme.

Note, further the layered input-ontput view we have taken. The composite abstract channel <
e” okof" >$° can be thought of as a black-box. In the first step, we are building additional
encoders to accomplish universal reliable communication over this black-box at rates < RZ(D).
In this sense, we see a relationship between two major constructs of information, namely, capacity
and rate-distortion function, and to how they are related in this black-box sense.
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A note on the connection between source coding and channel coding

The main step, in our opinion, in proving Steps 1 and 2 is noting that equality (2.66) is true.
This equality is re-stated below:

1 / 7 / 1 7 7 7 /
Pr ({—7d” (u”,y" )>D}> =Pr ({—,d" (u” ,Vq” )>D}) , if " hastypeq (2.91)
n n

This illustrates the mathematical duality between source and channel coding which finally
leads to separation being true. We believe that this duality can be interpreted as a covering-
packing duality; however, we are unsure. On a more intuitive level, the duality can also be
seen in the parallel random-coding argument for the source-coding and the channel-coding
problems. We discuss this further in Subsection 5.8.1

Why does separation hold?

In my opinion, fundamentally why separation holds boils down to (2.66), and is reproduced
below:

1 7 7/ 7/ 1 7 ' 7 4
pe({ a7 (W"y")> D} ) =pr({Sa ", V)5 D} ) ity hastypeq @2
n n

This equation illustrates the connection between the problems of rate of reliable communi-
cation and the rate-distortion function, and why reliable communication at rates < RY (D) is
possible over a partially known channel which is capable of communicating the uniform X
source to within a distortion D. This helps in converting the original scheme into a digital
scheme.

An operational perspective on the optimality of digital communication

The perspective on the optimality of digital communication in this section is operational: we
use only the definition of channel capacity as the maximum rate of reliable communication
and the rate-distortion function as the minimum rate needed to compress a source to within a
certain distortion level. Unlike traditional proofs, for example, the one in [Sha59], we do not
use simplified mathematical expressions, for example, mutual-information expressions for the
channel capacity or the rate-distortion function. As we said, the proof in this section is not
entirely precise. A precise proof, both for the uniform X source and the i.i.d. X source, are
the subject of Chapter 5. We believe that our operational proof lends more insight into the
nature of separation compared to the traditional proofs.

The operational nature of our proof is discussed in much more detail in Subsection 5.7.4:
Chapter 5 is in fact devoted to an operational perspective on the optimality of digital com-
munication for communication with a fidelity criterion.
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W 2.14.11 A note on the technical assumption R’;,(D):R’Z/(D,inf)

We have assumed that the distortion metric is permutation invariant and that, R’Z,(D) =
R’Z,(D,inf). We do not know if R‘Z,(D) = RS(D,inf) is true for an arbitrary permutation
invariant distortion metric. We would like to believe that it is not true for an arbitrary per-
mutation invariant distortion metric. However, we would also like to believe that for most
“well behaved” permutation invariant distortion metrics, R, (D) = R} (D, inf) should hold.

One kind of permutation invariant distortion metrics for which R? (D) = R% (D, inf) holds
is additive distortion metrics, and this proof is carried out in Chapter 5.

M 2.15 A rigorous proof of the universal source-channel separation theorem
for rate-distortion for i.i.d. X source and additive distortion measure

In this section, we provide a rigorous proof of the source-channel separation theorem for
rate-distortion for the i.i.d. and the distortion measure is additive.

B 2.15.1 A statement of the universal source-channel separation theorem
for rate-distortion for i.i.d. X source and additive distortion metric

Theorem 2.3 (Universal source-channel separation theorem for rate-distortion in the point-
to-point setting for the i.i.d. X Source / optimality of digital communication for universal
communication of the i.i.d. X source with a fidelity criterion). Assuming random-coding is
permitted, in order to communicate the i.i.d. X source over a partially known channel to within
a particular distortion level under a an additive distortion metric, it is sufficient to consider
source-channel separation based architectures, that is, architectures which first compress the i.i.d.
X source to within the particular distortion level, followed universal reliable communication
over the partially known channel. There is sufficiency in the sense if there exists some architecture
to communicate the i.i.d. X source to within a certain distortion universally over the partially
known channel, and which consumes certain amount of system resources (for example, energy and
bandwidth), then there exists a separation based scheme to universally communicate the i.i.d. X
to within the same distortion universally over the partially known channel and which consumes
the same or lesser system resources as the original scheme.

W 2.15.2 Steps to prove Theorem 2.3

There are two steps in the proof of Theorem 2.3 They are the same as the steps in the proof
of Theorem 2.2 stated in Subsection 2.14.7 with the following changes:

e Replace the uniform X source with the i.i.d. X source

o Replace permutation invariant distortion metric with additive distortion metric
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B 2.15.3 The proof of Theorem 2.3

Proof. Proof of Step 1 in order to prove Theorem 2.3

Let k =< k” >{°€ .of be a partially known channel which is capable of universally commu-
nicating the i.i.d. X source to within a distortion D. Thus, there exist an encoder-decoder
<e”,f” >{° and a sequence w =< w, >%°, w, — 0 as 72 — oo such that the if the input to
the composition of the encoder, channel and decoder < e” 0 k” o f” >% is i.i.d. X source
X =< X" >, theoutput is Y =< Y > nf ty such that end to end,

1
Pr (—d”(X",Y”) > D) <w,Ykeo (2.93)
n

Consider the partially known abstract channel

ce€f{<e’ ok of" > k=<k">Pe A} 2 E, (2.94)

We will prove that the universal capacity of the partially known channel c € 6, is > R? (D)
and this can be accomplished by an encoder-decoder < E”,F” >%° such that for univer-
sal reliable communication at rates R < R? % (D), the point-to-point communication system
<E"oc” oF” >{° consumes the same system resources (lrrespectlve of the particular ¢ € /)
as the original pomt-to-pomt communication system < e” o k” o f* >%° when used to com-
municate the i.i.d. X source universally to within a distortion D.

From this it will follow that the universal capacity of the partially known channel & is
> R%(D), and this universal reliable communication at rates < RE(D) : in fact, this commu-
mcatlon can be accomplished with the help of encoder < e >{°=< E” 0¢” >% and decoder
<fI >P=< f"oF" >$. The point-to-point communication system <elok™of” >7° when
used for reliable communication at rates < R, % (D) consumes the same system resources as the
ongma.l point-to-point communication system <e"ok"of” >° when used to communicate
the i.i.d. X source to within a distortion D.

We proceed to prove that the universal capacity of the partially known channel ¢ € €, is
> RE(D).

We do this by use of a random-coding argument. First, we prove that C, (%) is > R! (D),
where RL (D) is defined in Definition 2.30.

First, we recall some notation concerning the method of types.

Notation 2.9 (The type of x”, p,»). Let x” € X", p,» denotes the empirical distribution of
x” and is called the type of x”. That is, for x € &,

. number of x in the sequence x”

Pxr (x) = (2.95)

n
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Notation 2.10 (Typical set, 7(p,¢)). Let p be a probability distribution on &'. Let ¢ > 0.
The sequence x” is said to belong to 7(p,¢), and such an x” is said to be ¢ p typical if

D per(x) = p(x)| < € (2.96)

x€X

Codebook generation: Generate 21"R] codewords i.i.d. py. This is the code book £, As
usual, the superscript 7 in ¢” denotes the block length. This is the encoder E”. Note that
this is a random encoder

Note 2.40 (Note on code book generation method). For a channel € €, a py typical se-
quence is distorted, with high probability, to within an average distortion D. In general,
the behavior of the channel on a nonpy typical sequence can be arbitrary. In other words,
the belonging of a channel to €, is independent of the behavior of the channel on nonpy
typical sequences. When thinking of the action of € as an attacker, the attacker can act on
nonpy typical sequences arbibrarily: for example, produce a random output sequence. For
this reason, the codebook should contain sequences which are py typical, else, the attacker
will destroy the sequence. For this reason, we use i.i.d. py source generation. Another way
of thinking about i.i.d. py code book generation is the following: we only have knowledge
of the behavior of the attacker when the source is i.i.d. X. Thus, it makes sense to use a code
book which is i.i.d. X. The encoder can be thought of as simulating the i.i.d. X source.

Definition 2.36 (Joint typicality). (x”,y"), x” € X", y" € ¥" are said to be ¢ jointly typical
if

1. x" is € py typical, that is, x” € T (px,¢)
1

2. —d"(x",y")<D
n

Note 2.41 (A note on the definition of joint typicality). In information theory, typical set are
defined in a way so that the set of typical sequences have high probability. Since the input to
the channel is i.i.d. X, the definition of joint typicality requires that p.» € 7 (px,¢). When
the input to the channel is i.i.d. X, with high probability, the average distortion between the

1
channel input and output < D. For this reason, we require that —d”(x",y”) < D. We do not

have any other information about the action of the channel. In the usual information theory
literature, the channel is a discrete memoryless channel. In that case, the definition of joint
typicality requires that the conditional type of the output y” given the input x” be close to
the channel transition probability. However, our description of the channel is not in terms
of its transition probability. Our description of the channel is in terms of the distortion that
it produces on py typical sequences. Hence, the above definition of joint typicality.

Decoding: Let y” be received as the output of the channel. If 3 unique x” € the code book
2™ such that (x”,y") e-jointly typical, declare that x” is transmitted, else declare error. This
is the decoder F”. Note that the encoder-decoder E*,F” is random.
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Note 2.42 (A note on the decoding process). The decoding rule is the usual joint typicality
decoding rule. It can potentially be thought of as a variant of minimum distance decoding.

Note that the encoding and decoding scheme are independent of the particular channel €
€.

In what follows,
e x” € X" denotes the transmitted codeword. x” is a realization of the random variable
. &P

e " denotes the received sequence (output of the channel). y” is a realization of the
q p Y
random variable #”. Y is the output of the channel when the input is X”.

e z" € X" denotes a codeword which is not transmitted. z” is a realization of the random
variable Z”. Z” is i.i.d. X and by the codebook construction, Z” is independent of
X", Since, Y is the output of the channel when the input is X”, Z” and Y are also
independent.

Next, error analysis is carried out.

The error analysis is carried out given a particular message 7" needs to be communicated.
That is, we calculate

Pr(error | message m” needs to be communicated) = Pr(M RFEMp | My =m") (2.97)

Since the random code book is symmetric over all messages, this error probability is indepen-
dent of the particular message m”. It follows that

Pr(error) = Pr(M R FMz) (2.98)
is in fact equal to
Pr(Mp # M2 | ML =m") 2.99)

By the notation described above, x” denotes the encoding of m”. Since the code book is

random, x” is a realization of X”. z” denotes the encoding corresponding to another message
m

m'”.

The error events given that the message m” is transmitted can be decomposed into two (not
necessarily disjoint) events:
1. &: (X",Y")is not ¢ jointly typical
2. &7: 32" such that (Z”,Y™") is € jointly typical. That is,
(a) 3z”" such that p,» € T(py,¢€) and
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() %d”(l”,Y”)SD

Pr(M2 #M" | M2 =m")=Pr(E UEY)

<Pr(&")+Pr(8r) (2.100)
Since, as discussed before,
Pr(M7 # M2 =Pr(ME # M7 | ME=m"), (2.101)
it follows that
Pr(M7 # M2) < Pr(67) +Pr(67) (2.102)

Note that the encoding and decoding scheme is independent of the particular ¢ € €. How-
ever, the probabilities are not. We would like to make statements concerning probabilities
which hold irrespective of the ¢ € .&/. Thus, rate R is universally achievable over the partially
known abstract channel c € 6, if

Pr(M2 #M7)— 0asn — oo (2.103)
at a uniform rate over all channels € 6.
It follows that rate R is achievable if
Pr(8])—0asn— o0 (2.104)
at a uniform rate over all channels € €, and
Pr(8))—0asn— o0 (2.105)
at a uniform rate over all channels € €.

We now proceed to bound Pr(8}*) and Pr(&}')
By definition of a channel € €, and by the way the code book is generated,

Pr(6) S w,,Yce b, (2.106)

Pr(&}) requires a more elaborate calculation. A bound on Pr(&}') is calculated, next. This is
done by a method of types calculation, a-la [CK97].

For simplifying notation, let the sets & and % be

X =1{1,2,...,|%|},and
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Figure 2.10. The sorted received sequence y" and the correspondingly shuffled codeword z” illustrating the
relevant types

ngy (1) ngy (j) ngy (|Y)

Blown up

ngy (5)azy (1)5) ngy (7)az)v (il5) ngy (7)gzy (|X|5)
- - S - —————————_
¥ ={1,2,...,|%|} (2.107)

In what follows, it will be helpful to remember that ¢(-) and ¢,.(-|) will denote probability
measures and transition probability kernels respectively of observed types (empirical distri-
butions), and p(-) will denote probability measures of transmitted types.

Recall that the received sequence is y”. Let the type of y” be gy-. That is, Vj € %, the number
of j occurring in y” is nqy(f).

Sort the output y” to place all the j € # together, and correspondingly shuffle the positions
in the code book’s codewords. This leads to no change in distortion between shuffled code-
words and the sorted received sequence y”, and thus, will not effect the analysis of Pr(&)).
The sorting and shuffling is done, only to aid the reader in this error calculation: the shuf-

fling will make it easier to give a pictorial representation, Figure 2.10, which is described, and
alluded to, in the next paragraph.

Recall that z” is a nontransmitted codeword. Over the chunk of length ngy (), let the type
of the corresponding entries of z” be gy y(-|f). In other words, over the chunk of length
nqy(j), the number of i in 2" is nqy(;)gzy(i|7)- See Figure 2.10.

For now, the type of y”, p,» is assumed to be gy. Later, we will take a bound over all possible
qy-

For error event &7, (2”,y") are € jointly typical. Mathematically,

1. Denote qu( 7axiy(ilj) as qz(i). gz is a probability distribution on &'. By the
je¥
definition of joint typicality, z” is ¢ py typical if

qz € 7 (px»e) (2.108)

2. Denote gzy(i,7) = gy (j )4z)y(2]7)- qzy is a probability distribution on & x ¥ result-
ing from the probability distribution g,- € 2 (%) and the transition probability kernel
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1
g7y ¥ — P(X). Thus, =d"(z",y") < D can be restated as
n

> gzpli,j)dG,j)<D (2.109)
eX je¥y

Recall that Z” is generated i.i.d. py, and is independent of y”. The probability that over the
chunk of length ngy(f), the corresponding entries of Z” have type g7y (7) is

< 24y (/)D{gz)y (1illex) 2.110)

where D(-||-) is the Kullback-Leibler divergence and defined for probability distributions p
and g where p,q € P(X) as

D(pllg)2 3 plx)log 22 1)
r€X q(x)

Note that we are using the same alphabet D for the distortion D and the Kullback-Leibler
divergence D(+||-). It will be clear from context, which one is being referred to.

Thus, the probability that over the whole block of length 7, in the chunks ngy(7), the cor-
responding entries of z” have type gx)y(-|7) for all j

< l_l 274y (7 )D(az)y C1illpx) (2.112)
1€EY

— 27" 2je 9r() Dz (1illpx) 2.113)

= 2-1D{4zyllpxay) (2.114)

It would be helpful to note the positions of where p occur and where ¢ occur, in the above
expression.

To bound the probability that z” is at a distortion < D from y”, the above probability needs
to be summed over all possible types g7y (-|7),1 < j <|¥| such that (2.108) and (2.109) are
satisfied.

The number of conditional types gy ('[7) is < (n+ 1)* 111, Recall that number of nontrans-
mitted codewords < 21"A), Putting all this together and using the union bound,

Pr(&}| py» =gy) (2.115)
< Z 217R]o—nDl(gzylipxay) (2.116)
9zv€S

< (n+1)ZIFlR] g~ninty, es Dazylipxay) @.117)
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where & denotes the set of types satisfying (2.108) and (2.109), along with the type of y”,
which, for now, has been fixed to gy:

9z€pxxe
& =1{4qzy: Ziex jen 9zv(i,j)d(i,j) <D (2.118)
qy ﬁxed
The type of the received sequence 5™ is arbitrary. In other words, gy is arbitrary. Thus,
Pr(é’z”) <(n+ 1)].%’||'3/|2[nRJ2—n inf,, eo Digzyllpxay) (2.119)
where the set 7 is
€ PX +e
T={qz: & o 2.120
{qzy 2icx jey dzv(i,7)d(i,j) <D } (2.120)

The set 7 is the union of the & over all possible gy. Thus, in in the bound (2.119), gy is
allowed to be arbitrary.

It follows that

Pr(87)+ Pr(8)) < w,, +(n + 1)F 1¥12lRIy=nintyy 9 Dlazyllpxay) @.121)

From previous discussions, it follows that
Pr(error = Pr(M}y # M%) < Pr(87)+ Pr(&)) <
w, + (n+ 1)|&‘S'||‘8/|2[nRJ2—ninquYe:7 Dlgzyllpxay) (2.122)
By definition, Pr(€”) = w, — 0 as» — oo and w,, is independent of the particular channel
1 n n P p

€ECy.
Note that the bound

(n+ l)lxll‘B/IZ[nRjz—ninfqzyeg D(?zy”l’x‘iy)’ (2.123)
on Pr(&}) is independent of the particular channel € € ,.

Also, note that (z 4 1)I*NI%D is a polynomial. Thus, Pr(&;') — 0 as 7 — oo at a rate indepen-
dent of the particular channel € €, if

R< inf D(qzyllpxqy) (2.124)
42v€T

It follows that Pr(error) — 0 as 7 — oo at a rate which is independent of the particular
channel € €, for rates

R< inf D(gzyllpxay) (2.125)
9zv€T



CHAPTER 2. OPTIMALITY OF DIGITAL COMMUNICATION FOR COMMUNICATION WITH A FIDELITY
96 CRITERION: UNIVERSAL, POINT-TO-POINT SETTING

(2.126)

;hus, rates R < inf, 5 D(q7yl|px qy) are universally achievable over the set of channels
‘d .

Note that
D(qzyllpxqy) =D(azllpx)+ D(qzvllazay) = D(qzyllazay) (2.127)
Thus, all rates R for which
R< inf D = inf I(Z;Y 2.128
oo, (9zvllaz4ay) Sy (Z;Y) (2.128)

are universally achievable.

Recall (2.30), the definition of the information theoretic rate-distortion function, R% (D). It
follows that

inf I(Z;Y)= inf RL(D 2.129

42r€7 (Z:Y) 267 () 2(D) ( )
Thus, rates

R< inf RL(DD 2.130

2zt 4 2(D) (2.130)

are universally achievable.

€ > 0 is arbitrary and the information theoretic rate-distortion function is continuous. It
follows that rates R < R;(D) are achievable. In general, it is potentially possible that with the

use of other encoding-decoding schemes, rates > R% (D) are pseudo universally achievable.
Thus,

C,.(6.4)> RY(D) @.131)

The goal is to prove that C, (4 ) > RQ(D). To this end, we prove that R;(D) = Rf\,(D). In
fact, we will also end up proving that R, (D) =R%(D) and thus, in effect, we will prove that
C,(.4) > RE(D)= RE(D).

We proceed to prove that Rf((D) = Rf{(D) = Rg((D)
Proof that RE(D) = R%(D) is there in [Sha59].
Next, note that Rf( (D)< R; (D). This is because of the following:

The idea is that the probability of excess distortion criterion is “stronger” than the expected
probability of error criterion. That is, if a particular probability of excess distortion level is
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achievable for some source, the same expected distortion is also achievable by the same source
code for the same source. A rigorous argument is the following:

Define:

4 , 2.
Dmax xinl.%;a;{e’yd(x y) 2.132)

Let probability of excess distortion D be achievable with source code s =< s” >%°. Then, for
the source code s,

1
Pr [—d"(X”,Y")>D] =¢"—=0asn—o00 (2.133)
n

It follows from the above equation that

1
E [—d"(X”, Y"):| <(1-€")D+¢"D,,,—Dasn— oo (2.134)
n

Thus, the expected distortion D is achievable by use of the same source code s, and in partic-
ular, by a source code of the same rate. It follows that Rf( (D) <RE(D).

By interpreting the definitions in Chapter 2.2 in [CK97] properly, one can see that they
are in fact using the probability of excess distortion criterion. From their proofs, and by
some additional arguments, it follows that R% (D) <R f\ (D). These additional arguments are
related to taking liminf instead of lim. We omit these arguments. They are similar in spirit
to the ones in Chapter 5 .

We have proved or cited references where the following are proved:

1. RE(D)=RE (D)
2. RE(D)< RE(D)

3. RE(D)< RL(D)

It thus follows that Rf{(D) = R;(D) = R&(D).

Back to finishing Step 1, it follows that C, (6) > R} (D) = RE(D) = RE(D), and in
particular, C, .(%6,) > RE(D).

Thus, by use of encoder-decoder < £”,F” >, rate R is universally and reliably achievable

over the unknown channel ¢ € €, if R < R}(D). Recall that c € {< e” 0 k" 0 f" >T | <
k” >°€ o }. It follows that by use of encoder < E” oe” >%° and decoder < f”oF” >, rates

R< Ri, (D) are universally and reliably achievable over the partially known channel £ € /.
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Next, we want to see the resource consumption of the architecture for reliable communica-
tion.

Let the block length be 7. The original architecture consists of the encoder e”, the partially
known channel £ and decoder f*. With the input, the uniform X source U”, in the limit,
the uniform X source is communicated to within a distortion D universally over the partially
known channel &£. With input X” to the encoder e”, let the distribution of the channel input
be denoted by I”. In the new architecture, encoder £” and decoder F” are built “on top of”
the already existing architecture in order to communicate the message source M” universally
and reliably over the channel. The encoder E” generates codewords with the same distri-
bution as the source X”. This is because, the codewords are generated independently and
uniformly from the set Z'”. Let this random variable be denoted by X*”. The superscript
“s” should be thought of as “simulated”. It follows that in this new architecture for reliable
communication, the input to the channel will be some random variable I*” which has the
same distribution as I”. From the discussion in Subsection 2.6.7, it follows that the new ar-
chitecture, consisting of the encoder < E” o ¢” >{°, partially known channel &, and decoder
< f"oF” >, when used to communicate the message source < M7 >2°, consumes the same
system resources as when the original architecture consisting of the encoder < e” >%, the
partially known channel &, and decoder < f” >° is used to communicate the uniform X
source.

See Figure 2.8 with the uniform X source replaced with the i.i.d X source and the rate-
distortion function R’Z,(D) replaced with the rate-distortion function R;}(D) for the i.i.d.
X source.

This finishes Step 1. We use this to prove Step 2.
Proof of Step 2 to prove Theorem 2.3

Let the partially known channel & be capable of universally communicating the i.i.d. X
source to within a distortion D. This is accomplished with the help of an encoder-decoder
<e”, f” >{°. From the above argument of Step 1, it follows that with the help of encoder-
decoder < E” oe”, f" o F" >, universal reliable communication can be accomplished over
the partially known channel £ at rates < Rlzj (D) by use of the same system resources as in the
original architecture. In other words, the universal capacity of the partially known channel
ke is>RE(D).

It now follows that by source-compression followed by universal reliable communication,
the i.i.d. X source can be communicated universally over the partially known channel & to
within a distortion D. A rough argument is the following: Take thei.i.d. X source. Compress
it using a source-encoder < e’ >%° to within a probability of excess distortion D. The output
is a rate RS (D) message source. This rate R% (D) message source can now be communicated
universally and reliably over the partially known channel £ with the help of channel encoder
<e’ >®2< E” 0" > and channel decoder < F” o f >%°. Finally, the output of the
channel-decoder is source-decoded using decoder < £ >$°. End to end, the i.i.d. X source is
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universally and communicated to within a distortion D over the partially known channel &,
digitally.

A rigorous argument for the above source-coding followed by channel coding is the following:

We said above that the universal capacity of the partially known channel & is > RL(D).

Assume that the universal capacity is strictly > R% (D). Let the universal capacity be R% (D)+
8,8 >0.

Let € = By the definition of R (D), it follows that there exists a rate R% x(D)+ € source
code < e" »f >3 which compresses the i.i.d. X source to within a probabnhty of excess
distortion D,

Let the block length be 7.
The action of e on X” produces an output random variable M} on the set .#7. The set
MR s

My ={1,2,. ., 2R DMy (2.135)
Since the universal capacity of k € .o/ is strictly greater than R% (D) + ¢ by assumption, the

message M7 can be universally and reliably communicated over the partially known channel
k in the lumt as n — oo. Finally, the source is re-constructed by using the source decoder /.

See Figure 2.9 with the uniform X source replaced with the i.i.d X source.

For every € > 0, 3n, such that when the block length is > », ,forallk € </, Pr(]l:[;; #MP) <
€. It follows that

1
Pr <—d”(X",Y") > D) <w,+e¢ ifn>n, ke (2.136)
n

€ > 0 is arbitrary, and thus, it follows that end-to-end, in this separation based architecture,
the i.i.d. X source is communicated universally to within a distortion level D over the par-
tially known channel k.

The input to the channel has distribution 7*” when block length is 7 as described in Step 1
and thus, this source-channel based scheme consumes the same system resources.

Note that we assumed that the universal capacity of the partially known channel k is strictly
> RE(D), whereas from Step 1, it only follows that the universal capacity of the partially
known channel k is > R%(D). It is unclear what will happen if the capacity of the partially
known channel & is precnsely R? (D). This “tension” of what happens if the capacity is pre-
cisely RE (D) is usual in mformauon theory.

This completes the argument, and thus, rigorously proves the universal source-channel sep-
aration theorem for rate-distortion when the source is i.i.d. and the distortion metric is

additive.
O
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B 2.16 A universal source-channel separation theorem for rate-distortion for
permutation invariant distortion measures: discussion and high-level
view

We do not know how to generalize our results to arbitrary distortion measures.

However, we do know, on a high level, how to generalize our results to certain permuta-
tion invariant distortion measures. This follows because the proof of Section 2.14 holds for
permutation invariant distortion measures, though it required a technical condition on the
rate-distortion function .

Also, the proof calculations of Section 2.15 for the iid. X source, to a large extent, hold for
permutation invariant distortion measures. In particular, the method of types calculations
works exactly, for permutation invariant distortion measures. This is because for permuta-
tion invariant distortion measures, rearranging the sequences x” and y” by the same rear-
rangement does not change the distortion. Still, some technical conditions might be required
on the distortion function. We have not worked out these details.

I do not think the results can be generalized to arbitrary distortion measures (which are not
necessarily permutation invariant).

High level ideas for generalization to stationary ergodic sources and permutation invariant
distortion measures are discussed in Section 2.18.

B 2.17 Discussion: are random codes needed? And if yes, can random-
coding be practically realized?

B 2.17.1 Are random codes needed?

In Shannon’s random-coding argument, [Sha48], random-coding is a proof technique. Given
a random code to achieve a particular rate of reliable communication, there exists a determin-
istic code to. For us, random-coding is 7ot just a proof technique: random codes are in fact
needed. The difference in our situation and the situation in [Sha48] is that we have a partially
known channel whereas Shannon assumed a fully known channel.

On a high level, with the average probability of error criterion this happens for the follow-
ing reason: given a random code which achieves a particular error, one of the deterministic
codes that “make up” the random code will have an error which is less than or equal to that
produced by the random code. It follows that restriction to deterministic codes is sufficient.
For the maximum probability of error criterion that we use, the usual argument which we
omit has to go through throwing away half the codewords (note that throwing away half the
codewords does not change the rate).

An example can be provided for the case of partially known channel £ € ./ which is capable
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of communicating i.i.d. X source to within a distortion D, for which universal capacity with
random-coding is R%, (D) > 0 but universal capacity without random-coding is zero. We omit
this example here; but one can be constructed based on ideas in [AKM]. From this example,
it in fact follows that a universal source-channel separation theorem for rate-distortion does not

hold if random-coding is not permitted.

N 2.17.2 How can random codes be generated in practice?

In practice, perfect randomness is not needed. What is needed is pseudo randomness. Pseudo
randomness is used, for example, in PN sequences in CDMA. Pseudo randomness can thus
be generated with the help of a seed.

We believe that the requirement of random codes (or pseudo-random codes) is 7ot a hinder-
ance in practical implementation.

M 2.18 Discussion: Continuous time sources

The whole discussion in this chapter has rested on sources and channels evolving in discrete
time. In our framework, continuous time evolution of channels is easy to deal with and this
is one of the points discussed in the next section.

In this section, we discuss the problem of how does one deal with continuous time source
evolution in this framework. This view also generalizes to general stationary ergodic sources
(in fact, i.i.d. sources in continuous time do not make physical sense: the only way to model
them would be as some kind of white noise).

One incorrect way which of thinking about generalizing to continuous time sources is the
following:

Assume that the source is band-limited. The source can then be sampled by the sampling
theorem or by using some other orthonormal expansion as discussed, for example, in Gal-
lager’s book [Gal08], the corresponding course notes [Gala] or the video lectures [Galb].
This makes the source discrete.

This approach works for the problem of reliable communication. However, this approach
does not work for communication with a fidelity criterion. This is because if the distortion
measure for the continuous source is additive (instead of 2 summation, this would be an inte-
gral) or permutation invariant, it is not necessary that the corresponding distortion measure
for the sampled source is additive or permutation invariant. Unless the distortion measure
is, for example, mean-squared distortion in which case, by Parseval’s theorem, the distortion
measure for the discretized source will also be additive. In general, this is not the case.

We believe that discretization procedures of the form of sampling will not work. For con-
tinuous time sources, we need to carry out arguments either in the continuous time domain,
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or discretize the time very finely and then take a limit as the discretization blocks become
smaller and smaller. [PG77], for example, proves the source-coding theorem for compression
with a fidelity criterion for quite general continuous time sources, and it might be possible,
then, to use this result to prove a source-channel separation theorem for communication with
a fidelity criterion.

We offer another approach for generalization to continuous time source evolution. We out-
line this approach, below.

The fundamental reason, why source-channel separation holds is, as we discussed before in
Section 2.14, is that (2.66) holds, and this equation is reproduced below.

1 7/ 7 / 1 ! / 7 /
Pr<{——,d” (u”,y”)> D}) =DPr ({—7d” (" ,Vq” ) >D}) , if y” hastypeq (2.137)
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We want to see, how this will generalize to stationary ergodic sources, both in discrete time
or continuous time. The discussion will be rough.

Assume that time runs from —oo to +o0.

As Shannon says in [Sha48], “If an ensemble is ergodic we may say roughly that each function
in the set is typical of the ensemble.” Thus, all realizations of the ensemble look the same
under time permutations. Whatever behavior happens in one realization in certain time
interval, a similar behavior will be observed in all other realizations in different time intervals.
In other words, after permutation, all realizations of the ensemble look the same. This is not
entirely true, but in spirit, it is.

This is precisely the property needed for (2.137) to be true: the sequences #™ € %", are
. . . . . / 7

precisely the same under time permutations, and similarly, the sequences y” € %q” are also

precisely the same under time permutations.

In the continuous time, stationary ergodic source case, still, the codewords can be generated

from a stationary ergodic process. Thus, the equivalent of (2.137) will be true, the entire

argument. Of course, this needs to be made precise, and things get complicated when the

time is finite. We have not worked out the details ourselves. However, we do believe that this
high level idea can be made precise.

W 2.19 A discussion of the assumptions described in Section 2.2

In the light of our proof of the universal source-channel separation theorem for rate-distortion,
we want to further comment on the assumptions of Section 2.2.

The assumptions in Section 2.2 were divided into various categories:

The basic assumptions of communications theory:
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o The assumption that delays do not matter: We use this assumption crucially. In the digital
scheme, the delay (or the block length) required for a particular error for the probability
of excess distortion beyond D might be larger than in the original architecture. This is
elaborated on, in Discussion 2.39. As stated in this discussion, if delays matter, digital
architectures are not optimal

o The assumptions that the source can be modeled as a stationary ergodic random process:
This is the usual assumption in information theory, and it is difficult to prove results
for sources which are not stationary ergodic. Such results exist, however, for example,
see [VVS95]. However, we do require this assumption. Further comments were made
in Subsection 2.4.3, on this assumption

o The assumption that the channel can be modeled as a partially known transition probability:
This was commented on, in Section 2.5.4. What is interesting, however, is that we do
not require any further assumptions on the channel. The usual assumption made on
the channel is memorylessness, Markoff nature, or more generally, in Shannon’s words,
channels for which “historical influences die away”, a concept made precise by Gallager
and called indecomposability in [Gal68]. We do not require any further assumptions
on the channel because we use the probability of excess distortion criterion instead of
the expected distortion criterion. The probability of excess distortion criterion can
be thought of as forcefully enforcing a weak law of large numbers of condition, and
that ends up, on an intuitive level, being the reason that we do not require any further
assumptions on the nature of the transition probability of the channel

o The source can incur distortion, and the distortion can be modeled as a distortion metric:
This is the usual assumption made in information theory.

The following crucial assumptions has been made on the nature of the distortion metric and
the allowability of random-coding:

o The assumption that the distortion metric can be modeled as a permutation invariant dis-
tortion metric, and that, the distortion criterion is the “probability of excess distortion” cri-
terion: Many comments have been made on the permutation invariant distortion metric
in the previous sections. We will not repeat here. However, we wonder if our results
can be generalized to more general distortion metrics, for example, sub-additive distor-
tion metrics as is the case in some of the information theory literature, see for example,
[Han10]. We do not know how to do this. Our proof technique of Section 2.14 seems
to rely crucially on the use of a permutation invariant distortion metric. Also, to the
best of our knowledge, there is no relation between permutation invariant distortion
metrics and sub-additive distortion metrics; however, it would be good to understand
this further.

o The use of the probability of excess distortion criterion is crucial in the sense that the
universal source-channel separation theorem is not true if we use the expected distortion
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criterion instead of the probability of excess distortion criterion. An example can be
constructed similar to the example in [VH94] on the first page of this paper where it
says, “Consider a binary channel where the output codeword is equal to the transmitted
codeword with probability % L7

Note that this is an example of a “highly nonergodic channel,” and the only examples
that we know of, belong to this category. If we impose ergodicity assumptions on the
channel, we know that at least in certain cases, even under the expected distortion crite-
rion, a universal source-channel separation theorem for rate-distortion holds. Some of
these ideas are due to Amos Lapidoth.

This approach of Amos Lapidoth to proving a universal source-channel separation theo-
rem for rate-distortion uses the traditional information theory tools of entropy and mu-
tual information. We conjecture another possible way of attacking the same problem
which is the following: given a partially known channel £ which satisfy some ergodic-
ity assumptions and is capable of communicating i.i.d. X source to within a distortion
level D under the expected distortion criterion. Does this imply that the partially known
channel & is also capable (with a possibly different encoder-decoder) of communicating
the i.i.d. X source to within a distortion D under the probability of excess distortion
criterion. We would like to believe that this is true. However, we are unsure of this.
However, if this were true, then based on our results, it would follow that even if we
used the expected distortion criterion and imposed some ergodicity assumptions on the
channel, we could convert the problem into a problem with the probability of excess
distortion criterion, and thus, universal source-channel separation would hold even un-
der the expected distortion criterion. This is discussed further in Chapter 6.

o The assumption that random-coding is permitted: As we have stated before, if random-
coding is not permitted, universal source-channel separation for rate-distortion is not
true. This has been commented on, in Section 2.17.

The following assumption has been made on the knowledge of source statistics but we con-
jecture that this assumption can be removed:

o The assumption that the source statistics are known: As stated in Section 2.2, we conjecture
that this assumption can be removed, but we are not sure. A possible way to remove this
assumption is the following: Ziv proved in [Ziv72] that under certain alphabet assump-
tions, there exist universal algorithms for the class of all stationary sources that perform
as well for each source as an optimum source code custom designed for each source,
that is, reaches the rate-distortion limit for each source. The distortion definition used
in this paper is the expected distortion criterion, and we believe the result should hold
even with the probability of excess distortion criterion. Also, this is a source-coding re-
sult, and we are looking more for a separation result for communication over a channel.
With the above source-coding result, though, we believe that we should be able to prove
a universal source-channel separation theorem for rate-distortion where universality is
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both over the source and the channel. Possibly, [Ziv80] might be useful. We have not
carried this argument out.

The following assumptions have been made to prove results rigorously and to avoid mathe-
matical complications, and we are quite sure that modulo some technical assumptions, they
can be removed:

o The assumption that the source alphabet and source reproduction alphabet is finite: We
believe that argument can be carried out for some source alphabet which is not finite.
For example, let the source alphabet be a finite length interval of 2. Then, a rigorous
argument can be carried out by discretizing the alphabet into small intervals of size A
and then, taking the limit as A — 0. If the source alphabet is the whole real line 2,
and assuming that the source has sufficiently light tails in that probability outside finite
length intervals falls off sufficiently fast, we can truncate the real line and then take limit
to the whole real line. We believe that this argument can also be made rigorous though
we have not carried out the steps.

o The assumption that the source is i.i.d: We believe that the simulation argument of Section
2.15 can be carried out for many non i .i.d. sources also. We have not carried out this
argument. In particular, we believe that the simulation argument can be carried out for
many stationary ergodic sources.

For sources in which memory dies out with time, another way of carrying out a rigor-
ous argument is the following: consider large blocks of the source £ interspersed with
smaller blocks of size k. Over the block of size £/, the source memory will die out so
that the source will be “almost” independent over the blocks of length k. This argument
needs to be carried out rigorously, and we believe it can be carried out. However, we
have not done it.

Another view of this was provided in the previous section where we justified, on a high-
level, why the result should hold for stationary ergodic sources.

o The assumption that the distortion metric is additive: This has been commented on, in
Sections 2.14 and 2.16.

o The assumption that the channel evolves discretely in time: We have made this assump-
tion only for simplicity of presenting the physical channel model of Subsection 2.5.2.
This model can be assumed to be continuous time and none of the proof change. This
is because of the nature of our proofs. As stated in Subsection 2.14.7, the first step is
to prove that the universal capacity of the partially known channel & € ./ which is
capable of universally communicating i.i.d. X source to within a distortion level D is
> RE(D). We claim that this argument does not depend on whether the channel evolves
in time discretely or continuously. This is because the first step in the argument is to
consider the composite channel €, defined in argument in Section 2.14.9. ¢ € 6,
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evolves in discrete time even if £ € ./ evolved in continuous time. The proof nowhere
uses the exact description of the set of channel £ € .&; it only uses the description of
the channel ¢ € €. It follows that proving that the universal capacity of the partially
known channel k£ € . which is capable of universally communicating i.i.d. X source
to within a distortion level D is > R? (D) does not require the assumption that the par-
tially known channel channel & € & evolve in discrete time. The proof of the universal
source-channel separation theorem for rate-distortion uses source-compression followed
by universal reliable communication over ¢ € 6, and thus, again, uses the descrip-
tion of the partially known channel k£ € ./ only through the partially known abstract
channel ¢ € €. It follows that the universal source-channel separation theorem for
rate-distortion holds even if the channel evolved in time continuously.

The only thing that one needs to care about is, how to rigorously model channels which
evolve in time continuously. Once this is done, the proofs are automatic because of the
reason described above.

o The assumption that the source evolves in discrete time: The ideas for how the universal
source-channel separation theorem for rate-distortion can be generalized to a source
evolving in continuous time is discussed in Section 2.18.

o The assumption that the source and the channel evolve on the same time scale: For simplic-
ity of presentation, we have presented the results only for the source and the channel
evolving on the same time scale. The results can be generalized to the case when the
source and the channel evolve on different time scales.

B 2.20 Recapitulation

In this chapter, we proved a universal source-channel separation theorem for rate-distortion.
The universality is over the channel and not the source, and we conjecture that the result can
be made universal over the source.

The source-channel separation theorem, on a high-level says the following:

Assuming random-coding is permitted, in order to communicate a random source univer-
sally over a partially known channel to within a particular distortion level, it is sufficient to
consider source-channel separation based architectures, that is, architectures which first code
(compress) the random-source to within the particular distortion level, followed by universal
reliable communication over the partially known channel. There is sufficiency in the sense if
there exists some architecture to communicate the random source to within a certain distor-
tion universally over the partially known channel, and which consumes certain amount of
system resources (like energy and bandwidth), then there exists a separation based architec-
ture to universally communicate the random source to within the same distortion universally
over the partially known channel, and which consumes the same or lesser system resources
as the original architecture.
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By a partially known channel, we mean a channel whose behavior as a transition probability
is only partially known. That is, the channel transition probability might belong to a family
of channels. Other than that, the channel model is very general in that the present output
of the channel can depend on some initial channel state, all past channel inputs and all past
channel outputs

The set up is information theoretic, and thus, we assume that delays do not matter. In fact,
if delays did matter, separation based architectures are not optimal from the point of view of
Reason 1c stated in Section 1.4.1 of Chapter 1.

We prove why universal source-channel separation should hold when all sets (source space,
channel input space, channel output space and source reproduction space) are finite, the
source is the uniform X source and the distortion metric is permutation invariant. This
requires a technical condition on the distortion function. This section is the most important
section of this thesis and should be thought of as the main idea for why separation holds for uni-

versal communication with a fidelity criterion.

We rigorously prove the optimality of point-to-point setting when all sets (source space, chan-
nel input space, channel output space and source reproduction space) are finite, the source is
i.i.d. and the distortion metric is additive.

We discuss, on a high level, how to generalize the results to infinite sets, stationary ergodic
sources, and continuous time source and channel evolution. We also comment in brief that
if random-coding were not permitted, universal source-channel for rate-distortion does not

hold.

H 2.21 In the next chapter ...

In the next chapter, we generalize the results of this chapter to the multiuser setting. We
prove that if random-coding is permitted, and if the sources that various users want to com-
municate to each other are independent of each other (unicast setting), then separation based
architectures are optimal for universal multiuser communication with fidelity criteria in the
sense of reason 1c.
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Chapter 3

Optimality of digital communication for
communication with fidelity criteria:
universal, unicast multi-user setting

It is, therefore, with a certain amount of hesitation that the present paper has been written. Its
purpose is to present the formalization of the picture of Fig. 1 as the paradigm of a dynamical
system in the hope of showing its usefulness in mathematics, engineering and physics alike.

Mode! of
dynomical
system I

Unexplained
environment

Interaction
variables

Fig1

A dynamical system T is defined as a triple
=(T,W,R) G.1)

with T C 2 the time axis; W an abstract set, called the signal alphabet; and B ¢ W7 the
behaviour.

-Jan Willems

W 3.1 In this chapter ...

N 3.1.1 introduction

In this chapter, we generalize the results of Chapter 2 to the multi-user setting. That is, we
prove that digital communication is optimal for rate-distortion communication in the sense
of reason 1c stated in Section 1.4.1 in Chapter 1, in the multi-user setting.

109
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Mathematically, the question is the following: Given a partially known medium 7 over
which N users want to communicate. N might be unknown. For 1 < i,j < N,i # j,
user Z wants to communicate a random source X;; to user ; to within a distortion level D, j
under the distortion metric d;;. If such communication is possible with certain consumption
of system resources (like energy and bandwidth) at each user, is the same communication
possible with digital schemes with the same or lesser consumption of system resources at
each user? See Figure 3.1.

Note that since we are assuming the medium to be partially known, we are asking the univer-
sal question, where universality is over the medium of communication.

We will answer the above question in the affirmative under the following assumptions:

e The sources X;; are independent of each other. In the information-theory literature,
the technical term for this is that the setting is unicast. This assumption is crucial in
the sense that if the sources are correlated, digital communication is not optimal in the
sense of reason 1c. This is discussed further in Section 3.2.

¢ Random-coding is permitted. This is the same assumption required in the point-to-point
setting discussed in Chapter 2, and for precisely the same reason, as discussed in Section
2.17.

e For rigorous results, we assume that the sources are i.i.d. and the distortion measures
are additive. As in Section 2.14, results will hold for permutation invariant distortion
measures for uniform sources under certain technical assumptions on the rate-distortion
functions of the various sources. As in Section 2.16, results should be rigorously gener-
alizable for certain permutation invariant measures, for both i.i.d. and uniform sources
without enforcing technical assumptions on the rate-distortion functions.

In this chapter, we will outline the proof for the reduction of the multi-user problem to the
point-to-point problem. The proof is complete, though it is written in discursive style: the
reader can fill in the minor missing details.

We do not provide any answers to the problem of reliable communication of bits over a
medium. This is the classical problem of network information theory. Our view is a re-
duction view. We reduce the problem of rate-distortion communication of various sources over a
medium to the classical network information theory problem of reliable communication by show-
ing the optimality of digital communication fsource-channel separation architectures. Indeed, we
do this in the universal setting.
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W 3.1.2 A high-level statement of universal source-channel separation for
rate-distortion in the multi-user setting

High level statement 3.1 (Universal source channel separation or the optimality of digital
communication for universal multi-user communication with fidelity criteria in the unicast
setting). Let there be N users which want to communicate with each other universally over a
partially known medium m. User i wants to communicate source X;; over the medium m to
user j to within a distortion level D;; under distortion metric d; ;. Assummg that sources X;; are
independent and assummg that mmﬁim -coding is permitted, it is sufﬁczent to consider sepamtton
architectures: each user i, 1 <i <N first compresses the sources X;;, 1 < j < N, to within distor-
tion levels D;; under the distortion metric d;;, followed by the unwersal reliable communication
of all the compressed at various users over the partzally known medium. There is sufficiency in the
sense if there exists some architecture to communicate the random sources to within the required
distortion levels universally over the partially known medium, and which consumes certain sys-
tem resources (like energy and bandwidth) at each user, then there exists a separation architecture
to universally communicate the random sources to within the same distortion levels universally
over the partially known medium, and which consumes the same or lesser system resources at each
user as in the original architecture.

W 3.1.3 Chapter outline

Section 3.2 discusses the important past literature on the problem of communication with
fidelity criteria in multi-user scenarios and the associated reduction to the traditional network
information theory problem reliable communication over a network.

Section 3.3 discusses multi-user communication systems. A multi-user communication sys-
tem consists of a physical medium interconnected with modems. We first we discuss multi-
user communication systems on a high level, and then a rigorous view of these systems. As in
the point-to-point framework, we assume that time evolves discretely in the medium though
the results can be directly generalized to the case when the medium evolves in continuous
time for the medium. This is followed by a discussion of resource consumption, for example,
energy and bandwidth consumption in the system. This is followed by a short note on digital
communication systems.

Section 3.5 is probably the most important section of this chapter. This section discusses the
methodology that we will use to prove the optimality of digital communication for multi-
user communication with fidelity criteria. This section will describe the methodology to
reduce this problem to the problem of point-to-point communication discussed in Chapter
2.

Section 3.1 gives a precise statement of the universal source-channel separation for rate distor-
tion in the unicast, multi-user setting, and Section 3.7 uses the methodology of Section 3.5 to
prove this theorem.
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This is followed by a recapitulation of this chapter in Section 3.8.

H 3.2 Important past literature

In Chapter 2, we discussed previous research for the point-to-ponit setting. In this section,
we discuss previous important work for the multi-user setting.

The model of the medium that we will use is very general: the present medium outputs (the
number of medium outputs is some number N) may depend, in genral, on all past medium
inputs and all past medium outputs. The only research on multi-user problems with fidelity
criteria which hold for general media (and not just for 3 user multiple-access or broadcast
or for very specific media) is [TCDS]. [TCDS] proves the optimality of separation based
architectures in multi-user, rate-distortion context, assuming the sources are independent of
each other (that is the setting is unicast). In that sense, [TCDS], like us, also use the unicast
setting. Our work is more general in the sense that we assume the medium to be only partially
known whereas the medium in [TCDS] is assumed to be fully known: in other words, we
are solving the universal problem over the medium, whereas [TCDS] does not. There is
one other minor difference: [TCDS] uses the expected distortion criterion whereas we use
the probability of excess distortion criterion. As a result, [TCDS] requires finite memory
assumptions on the medium whereas we do not: this is 2 minor difference however, the major
difference is that we are solving the universal problem over the medium whereas [TCDS] is
not.

Both [TCDS] and our work use the unicast setting to prove separation for communication
with a fidelity criterion. One wonders if this is necessary. The answer is that there exist
counter examples when separation does not hold if the sources are correlated. Two examples
where separation does not hold are discussed in [Gas02] on Pages 27 and 28: reliable com-
munication over the multiple access channel with correlated sources and communication of
a gaussian source over a broadcast channel with fidelity. In both these examples, it is shown
that uncoded transmission achieves better performance than the performance achievable by
separation architectures. Thus, it follows that in order to prove general results, the unicast setting
is the extent to which we can go in order to prove exact separation results.

One question that arises is the following: can we say anything about the nature of separation
when the sources are not independent (that is, they are correlated). [TCDS] proves approx-
imate optimality results for separation under various restrictions on the distortion measure,
in the multi-cast setting, that is, when a user wants to communicate the same source to within
distortion levels to different users: in certain cases, they prove that the performance of sepa-
ration architectures is to within % bit of the performance of general architectures.

We have not proved any approximate optimality results in this thesis when the sources are
correlated.

The network coding literature also talks about another sense of separation: separation be-
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tween channel-coding and network-coding. See for example, [KEM]. Separation of channel-
coding and network-coding means the following: consider a network which consists of noisy
channels/links. Channel/network coding separation holds for a link in a network if a chan-
nel of capacity C in the network can be replaced with an error free link with throughput
C without changing the rate region. For networks for which this happens, the network in-
formation theory problem of reliable communication can be reduced to the network-coding
problem. As we have stated before, reliable communication and how to accomplish it is not
the focus of this thesis. The focus of this thesis is the reduction of rate-distortion communi-
cation problems in multi-user settings to the problem of reliable communication of bits in
multi-user settings; thus, we implicitly assume that we know how to solve the multi-user re-
liable communication problem. In this thesis, when we mention separation, we always mean
the separation of source-coding and channel-coding, and not the separation of channel-coding
and network-coding.

B 3.3 A multi-user communication system

In this section, we describe the model of a multi-user communication system and a digi-
tal multi-user communication system. We also comment on the resource consumption in a
multi-user communication system.

In a point-to-point communication system, communication happens over a channel. In a
multi-user communication system, communication happens over what we call, a medium.
In a point-to-point communication system, encoders and decoders aid communication. In a
multi-user communication system, the communication happens with the help of modulators-
demodulators or modems: this is because each user is both a sender and a receiver.

H 3.3.1 High level view of a multi-user point-to-point communication sys-
tem

The following is the high-level view of a multi-user point-to-point communication system.
This is a more detailed description of the description can be found in the next sub-section.

There are various users. The users communicate sources among each other. The system con-
sists of "architecture boxes" interconnected to a medium. The architecture boxes aid com-
munication. The architecture boxes can be thought of as system protocol or modulators-

demodulators. Architecture boxes, now onwards, will be refered to as modems. See Figure
3.2.

More concretely:

There are N users. N might change with time. User i communicates source X;;(¢) to user
J over the system. i # j: a user does not transmit anything to itself. The reproduction of
X;j(t) at user j is Y;;(¢). The system potentially provides some guarantees on how close the
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source reproduction Y;;(¢) is to the source X;;(t). One example of a guarantee, and the one
we will use is the following: source X; ;(¢) is communicated to within some distortion level.

Note the ordering of i and j in Y (t).

m denotes the medium. by, by, ..., b;, ...hy are various modems constructed over the
medium. b; is the modem used by user i, 1 <i <N.

Modem b; at user i takes source inputs X;;(¢), X;5(t), .-, X;;(t), .-, X;n(2). b; takes input
I(t) from the medium m. In wireless systems, I;(¢) is an electromagnetic wave. Modem
h; produces an output O;(¢) into the medium m. In wireless systems, O;(¢) is an electro-
magnetic wave. The modems also have a common randomness input r which they use the
generate random codes. Modem A; produces outputs source reproductions Y7;(t), Y5;(t), - .,
Y;i(t) ..., Yn;(¢). I; is an input to the medium m but output to the modem ;. O;(¢)is an
output of the medium  but an input to the modem b;.

The medium takes inputs I;(¢), I)(¢), ..., Iy(t) and produces outputs O,(t), Oy(t), ...,
ON(t).

The time evolution in X; (), I;(¢), O;(¢), Y;;(¢) will be sometimes supressed. They will be
denoted by X, 1;, 0;, Y.

;’,‘, FL

The modem b; encodes information into input J;. /; contains information about

1. Sources X;;,1<j < N that user i wants to communicate to other users.

7

2. Sources X/1,#’ # i. Modem h; has knowledge of other other sources X;/» which are
not inputs at user  through the medium output O;. In this case, information about
Xy is being relayed through user i.

The behavior of medium m may be complex. For example, wireless medium. The interaction
of medium 7 and modems b; and the resulting flow of information may be complex. The
users may be co-operating. There may be multi-hopping and feedback.

The exact medium and system behavior does not concern us. In our formulation, the end-
to-end system behavior that X;; is communicated from user i to user j and received as Y;;
is what will matter. The precise model that we will use is that the medium behavior as a
transition probability is only partially known in the sense that it might come from a set of
transition probabilities. We will call this a partially known medium. The precise mathemati-
cal model is the subject of Subsection 3.3.2.

The sources X;; should be thought of as primitive in the sense that system behavior, that is,
the behavior of modems A; and medium m do not affect the sources. Sources evolve in time,
independently of “everything else.”
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M 3.3.2 Rigorous, mathematical view of a point-to-point communication
system

This subsection states the precise mathematical model of the given system which was de-
scribed imprecisely in the previous subsection. This model illustrates, how a “physical”
model of interconnection of a partially known medium with modems can be abstracted math-
ematically.

Some basic definitions

There are N users. N might change with time.

The system consists of

1. amedium m, and

2. amodem b; at each user i,1<i <N,

interconnected to each other.
Medium and modems are modeled stochastically. Sources are modeled as random processes.

We assume that medium and modems evolve only at integer times. They would start evolving
at some time, and we assume that this time is 1 (in general, it can be any integer time). This
assumption of evolution at integer times is made only for simplicity of presentation. All our
results hold even if medium and modems evolved in time, continuously.

In what follows, i # j. This just means that a user is not communicating to itself. This will
not be stated again.

A fully known medium

First, we describe a fully known medium. This discussion will parallel the discussion of a
fully known physical channel in Section 2.5.2.

A fully known physical medium is one whose action as a transition probability is known.
This is mathematically abstracted as follows:

We want to use a very general medium model. The output of the medium can depend on all
past medium inputs and all past medium outputs. The medium input at user i is denoted by
¢; and the medium output at user i is denoted by o;. Let the block-length be . The medium
transition probability at time k& is denoted by m,:

my(07(k)1<i SN |J(1.h=1),1<i <N,0"(1.k—1),1<i <N)ififk<n
my(07(k),1<i <N | 1<i<N,0"(Lk—1),1<i<N)ifk>n (3.2)
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is the probability that the medium output at time k at user i is 07(k), 1 < i < N, given that
past medium inputs at various users are :?(1..k — 1) (or !, 1 < i < N if & > 1) and the past
medium outputs at the various users are ol.”(l..k -1),1<i<N.

See Figure 3.3.

For each &, the medium input (?(k) is assumed to belong to some finite set .#; and medium
output o”(k) is assumed to belong to some finite set G;.

Note that m, is independent of the block-length 7. When the block-length is 7, the medium
evolves until some time ¢, > » where ¢, is an increasing function of n. The medium is
m” =(m1,m2,...,m,n).

Note that the medium model is nested.
Over various block-lengths, the medium evolution is m =< m” >.

In general, there is a dependence of m;, on the initial channel state. However, we do not show
this dependence. This is because, the model of the medium that we will use is a partially
known medium, in that, the medium can belong to a family. For that reason, we will treat
the same medium with different initial states as different media and assume that all these
media belong to the family which make up the partially known medium. A partially known
medium is discussed next.

A partially known medium

Since the medium initial state might not be entirely known, and also, the exact action of
the medium m” as a transition probability might not be entirely known, we will model the
medium as a partially known medium:

A partially known medium is one which belongs to a family of transition probabilities ./
We will denote this by m € /.

Modems

There is a modem b; at each user i. Each modem takes various inputs and outputs. For
block-length 7, the modem acts as »?. As the encoders and decoders in the point-to-point
setting, the modems A” need not be nested. Thus, b; =< b;’ >P. The action of a modem is
described below. See also, Figure 3.4.

When the block-length is 7, the modem A? at user i takes various inputs:

1. The source input sequence x,1<j <N, that user i wants to communicate to user j.
%} is a realization of X X (k) belongs to some set &;; for all &

2. The input o? from the medium 7. The notation is o; because o; is an output of the
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Figure 3.3. The medium

medium.

3. Common randomness input 7. r is input to all b;,1 < i < N. r is a realization of a
continuous-valued random variable R.

The modem A; produces various outputs:

1. The source reproduction output ¥i;12j <N, that user j wants to communicate to
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Figure 3.4. The modem at user i

user . y7; (k) belongs to some set %;; V.

Note the ordering of i and j in x;; and y;;. The modems and the medium act causally.
We should think of y;; as a reproduction of x;;, but with a time delay. The n' b source
symbol of the source x;; may be reproduced at some time n' > n. Thus, y;’;(n’) might be the
reproduction of x,(n) for some n' >n.

2. The output ¢? into the medium from the modem. The notation is ¢; because ¢; is an
input to the medium.

Note 3.1. Sources, modem inputs and outputs, and source reproduction outputs are all ran-
dom processes. The corresponding notation is described later.

The modem A is a transition probability. At time k, the transition probability is 4'(k) and
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it acts as:
BT < < N2R)]
x;'j,l <j<N,o'(l.k—1),c (1. — l),y;’,.(l..k -1),1<;<N,r), (3.3)

is the probability that when the block-length is 7, the modem outputs at time & are

e source reproduction outputs yl’.’z. (k),1<j<Nand

e modem output ¢ (k) which is an input to the medium

given that

e source inputs are xi"j ,

e medium outputs (into the modem) until time & — 1 are 07 (1..k — 1),
e the common randomness input is 7, and

o the past modem outputs until time &£ — 1 are y”.’i(l..k —1),1<j<Nand (1.k—-1)

The modems evolve until time ¢,,. ¢, is the same time which we discussed when talking about
media. The reproduction of the source input x;’,.(k) will happen at some time ¢, , > k. Thus

%7 (k) is reproduced as ¥;;(t14)- When the block-length is 7, the modem

b =(h7(1),h7(2),...,P2(2,)) (3.4)
b 7 need not be nested.

In the point-to-point case, when the encoders and decoders were separate, the model was less
complex. We could just define a block-length 7 encoder as ¢”(i” | x”) and block-length 7
decoder as f"(y” | 0™). Since, the modem acts as both a modulator and a demodulator, we
need to take into account the causality of the interaction of the medium inputs (which are
outputs of the modems) and medium outputs (which are inputs to the modems), and this
leads to the above model where we need to describe "; (k) separately for each k.

Interconnection of medium and modems

The medium 7 and modems h;, 1< i < N are interconnected as shown in Figure 3.2. Note,
in this figure, that the common randomness input 7 is the same for all modems.

The sources x;, as stated before, are realizations of random processes X; j- With these inputs,
and the common randomness input variable R, the interconnected system evolves stochasti-
cally. After marginalizing out the common randomness variable R, for each initial state s,
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this leads to a joint random variable on the space of source, medium input, medium output
and source reproduction random variables:

X2POIYT, 1<, <N (5)

Note that forall ,7, X i’;. is a vector of length r, whereas I, O7, Y"; are vectors of length ¢,,.
x;"(k) is reproduced at a time ¢, ; > & as Y7t p)-

We will re-label y i (tap)asy ";(k) This way, y;’j(k) will be the reproduction of x7 (k) and this
would lead to simpler notation. The rest of the y;’j(t) such that t is not equal to t,, , for any k are
not represented in this notation. That is fine because these 'y l?’).(t) do not serve any purpose anyway.

Thus, now, in (3.5), Xi’;. and Y;’; are vectors of length 7 whereas I”” and O are vectors of
length ¢,,.

See Figure 3.2, except that in the more rigorous notation, X; (t) would be denoted by X7

when the block-length is 7 and similarly for other inputs and outputs, and the modem 4, is
denoted by 4, and similarly for other modems.

The end-to-end or the abstract system

With the interconnection of the medium and the modems, we can think of the end-to-end

system consisting only of source inputs and and source reproduction outputs and not looking

at the medium inputs and outputs. When the block-length is 7, at time £, the source input
n M n

xil.(k) is reproduced as i (k).

B 3.3.3 Resource consumption in the multi-user communication system

Th following discussion of resource consumption builds on top of the corresponding discus-
sion for the point-to-point setting in Subsection 2.6.7.

Consider two multi-user communication systems s, and s,. Let the various random-variables
of (3.5) for system s, when the block-length is 7 be X" I n O" Y” ,1<i,7j <N,andlet these
random-variables for system s, be X1 OF Y Note that as in the point-to-point setting

ij74,2 74,27 if,2°
of Subsection 2.6.7, the inputs X;;, the same for both the systems.

1[ ’
A sufficient condition for the two systems s; and s, to consume the same system resources is
that for each block-length 7, the joint distribution of I”’,,1 < i < N is the same as the joint dis-
tribution of /7,1 < i < N. Note the parallel with the deﬁmtlon in the point-to-point setting.

Also, as in the point-to-point setting, this is a sufficient condition for two systems to consume
the same system resources, not a necessary condition. This sufficient condition for equality
for consumption of system resources makes sense for reasons similar to the point-to-point
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setting, discussed in Subsection 2.6.7; a discussion is omitted here. For our purposes, when
making digital architectures corresponding to general analog architectures, we will maintain
the medium input distributions, and for that reason, this is the only condition which we will
need.

The following discussion of the consumption of “lesser” system resources is precisely the
same as in the point-to-point setting:

Suppose a communication system needs to be built to meet certain communication guaran-
tees. Suppose this can be done with certain consumption of system resources. Then, we will
say, abstractly, that the same guarantee can be met by consumption of the same or “lesser”
system resources. This, again, is an abstract definition because we have not defined the con-
sumption of a system resource; we have only stated a sufficient condition for the equality
of consumption of the same system resources by two systems. However, the reason for this
abstract use of the word “lesser” is done because for physical systems where resource con-
sumption can in fact be defined, this would be the right usage of “the same guarantee can be
met by consumption of the same or lesser system resources.”

B 3.4 A multi-user digital communication system

A multi-user communication system is one where each modem is digital. We only provide a
high-level description, which is the same as the description of Section 1.6.

A digital modem b; is portrayed in Figure 1.4. At user i, the sources X;,, X,,, ..., X, are
first converted to random binary sequences by the source encoders. These binary sequences
are communicated reliably over the medium with the help of medium modems at the various
users. Finally, at user , the source decoders help produce the reproductions Yy, ..., Yy;, of
Xiis -+ Xy» respectively. The story is the same at each modem b;.

Resource consumption in a digital communication system is defined in exactly the same way
as in a general communication system: this is because the sufficient condition that we have
stated for equality of consumption of system resources depends only on the medium inputs.

A rigorous description is omitted.

W 3.5 Spirit of the question: the idea that we will use to reduce proving
optimality of digital communication in multi-user setting to proving
the optimality of digital communication in the point-to-point setting

In this section, we describe the idea that we will use to reduce proving the optimality of dig-
ital communication for the multi-user setting to the point-to-point setting. This section just
describes the idea: the high-level methodology for proving the optimality of digital commu-
nication in multi-user communication problems is discussed in the next section.
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Given a multi-user communication system which is known to communicate random sources
Xi(t) from user i to user j, 1 < i,j < N over a medium m with the help of modems 5,
at user z. Further, let s and 7 be two particular users. It is known that source X, (¢) is
communicated from user s to user r over the system to within some guarantee. Denote the
guarantee by G. See Figure 3.5.. X, (¢) is received as Y;,(¢). An example of a guarantee and
the one we will use is that X, ,(¢) is communicated to within some distortion level.

We ask a question about the communication of another random source X! (¢) evolving in
time from user s to user 7, in place of the source X, (). The source X/ (¢) should be received
with some other guarantee G’. An example of gaurantee G’ and the one we will use is that
X! (t) needs to be communicated to within some distortion level. By “X! (¢) should be
communicated in place of X, (t) with guarantee G,” we mean that the source X, (¢) need
not be communicated to with guarantee G any more in the new communication system
which communicates X/ (¢) with guarantee G.

We will assume that the sources X; ; are independent of each other Vi, j. This assumption is crucial.

We will also assume that the source X (t) is independent of sources X;;(¢)Vi, j. Weare uncertain
about the cruciality of this assumption for our results. In order to prove the result concerning
optimality of digital communication in the multi-user setting that we do in the next section,
this assumption is okay to make; in fact, we will make X (¢) have the same distribution
as X, ,(t) but independent of all X;;(¢)V1, ], in particular, independent of X, (). X[ (t) is
primitive in the sense that it evolves in time, independently of the rest of the system.

We require that changes made in the system for the desired communication of X (t) from
user s to user 7 should not change the communication of X;;(t) from user i to user j for
(3,7) # (s, 7). Mathematically, this means that X; (¢ ) should be received precisely as Y;;(¢) in
distribution for (i,7) # (s, r). Of course, as stated and emphasized before, instead of X, (¢),
Xs’r(t) now, needs to be communicated from user s to user r.

Each user only has local knowledge. At time 7, user i has knowledge of the source realization
x,-l-(t), —00 <t < 1,1<j <N, the modem b;, medium input realization ¢;(t),—co < t < 7,
medium output realization 0,(¢),—c0 < t < T, the realization of reproduction of sources
from various users destined for user 7, y;;(t),—0c0 < t < 7,1 < j < N and the common
randomness input 7. User i also has knowledge of any guarantees associated with sources
at user z, that is, sources X; p1<j<N. There is knowledge at each user that the sources

Xijp1<i,j <N ,Xs’ , are all independent of each other.

Users do not have knowledge of the action of the medium as a transition probability. In
particular, the setting is universal.

System architecture can be changed, only locally. 4, and A, can be changed in order to com-
municate the source X . All other modems should remain the same: that is, for i #s,7, b;
should remain unchanged.
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Question: When can X (¢) be communicated to within the required guarantee G’ in place
of X,,(¢) which is known to be communicated with guarantee G, and how?

We have not stated the definitions of guarantees G and G’. In this section, we only state the
view that we are going to take.

The communication of X (t) in place of X, (t) will be accomplished in the following way:

Since there is no knowledge of the medium transition probability, we would like to man-
tain the input-output behavior of the medium. We want to use this method because if the
joint input distribution of the medium inputs /;(¢),1 < i < N is changed, in the absence of
the knowledge of medium transition probability, it is impossible to know the evolution of
the medium outputs. In order to mantain the medium joint input distribution, we would
mantain the distribution X, (). We would build an encoder e which would map the source
X! (t) into an encoded input whose distribution is precisely the same as the source process
X,,(t). We will thus simulate X, (t). Denote this simulated source by X? (t). The guarantee G
will be satisfied between the simulated source X? (t) and output which we denote by Y7 (¢).
We will then use this output Y7 (¢) to make a Jecoding Y] (¢) with the use of a decoder f.
See Figure 3.6.

Notation 3.1 (Simulated source). The simulated source at the input to modem A, at the point
where the input was X, is X, . The corresponding “simulated output” is Y7, .

This encoding procedure can be thought of as embedding information about X! into X, .

Interconnecting the encoder e to the modem h, by maintaining the distribution can also
be thought of in terms of interconnections and maintaining behaviors, as in the stochastic
counterpart of the behavioral view of Willems [Wil89] and [Wil07].

Note that with this encoding-decoding procedure, we will not be “breaking” the modems A,
and b,. The new modem A/ at user s is the composition of b, and e. The new modem A/
at user r is the composition of d and h,. In other words, we are building “on top of” the
existing architecture to accomplish the required communication. Note that ¢ is a random
code. Note that the encoder-decoder (e, f) is a random code.

By requirement, the modem ] is the same as b; for i # s, 7.

The joint distribution of the inputs to modems ; has been mantained. This is because X; ;(¢)
is unchanged for (i, 7) # (s, 7). For (i,7) = (s, 7), the input, now is X? (¢) instead of X, (¢).
X’ (t) has the same distribution as X[, (¢). X’ (¢) is independent of X;;(£),(4,7) # (s,7)
by construction and because of the assumption that X! (¢) is independent of X; j(¢). Thus,
the joint distribution at the inputs to modems A; has been mantained. As a result, X;(¢)
is received precisely as Y;;(¢) for (i,7) # (s, 7) (note that this is a statement about random
processes and what we mean is that in distribution, X;;(¢) is received precisely as Y;;(¢) for
(2,7) # (s, 7). Of course, X, (¢) is not received as Y, ,(¢) because X, () does not need to be
communicated any more. The goal is to communicate X! (t) instead of X;,(¢). Instead of
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X, (t), thus, its simulated version X? (¢) is transmitted.

We stated before that we would like the joint medium input and output distributions to be
mantained. By mantaining the distribution of X, (t), this has automatically happened.

Note 3.2. We are using this way of simulating X,(¢) and “building on top” of the already
existing architecture in order to communicate X_ (t) from user s to user 7. Other ways may
exist. This is the view and method that we use.

The assumption of independence of sources X;; is required in the above construction for the
following reason:

Let X;(t) and X,,(¢), (i,7) # (s,7) be dependent. In order to communicate X, (t), we
simulate X;,(¢) as described above. This would mean that X;;(¢) would also need to be,
atleast partially simulated in order to respect the joint distribution of X, (¢) and X; ;(¢). This
would mean that the system behavior would change for the transmission of X;;(¢) from user
i to user j. This is not permitted.

By construction, the joint distribution of the medium inputs has been maintained. By the
discussion in Subsection 3.3.3. consumption of systems resources at each modem and the
consumption of system resources in total is unchanged.

Note that it is not yet unclear if such a system for communication of X!, with guarantee G’
in place of X, exists. We are just describing the view that we will take. A similar procedure

can potentially be followed for communication of other sources X i,l' (t)from a user i to user j,
1<, <N in place of source X; i with some other guarantee. This results in a decentralized

system for communication of various sources between various users over a medium.

Note further that in order to construct e and f , we did not require the knowledge of the medium
transition probability. Thus, the medium might only be partially known. We are thus, solving the
universal problem, where universality is over the medinm.

In Section 3.7, we will use the reasoning described in this section to prove universal source-
channel separation for rate-distortion in the multi-user setting by making the source X/ (z)
have the same distribution as the source X, (¢). First, we make a precise statement in the
next section.

H 3.6 A precise statement of the optimality of digital communication for
universal multi-user communication with fidelity criteria

Theorem 3.1 (Universal source channel separation or the optimality of digital communica-
tion for universal multi-user communication with fidelity criteria in the unicast setting). Let
there be N users which want to communicate with each other over a partially known medium
m. User i wants to universally communicate source X;; over the medium m to user j to within
a distortion level D;; under an additive distortion metric d,;. Assuming that sources X;; are
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Figure 3.6. Methodology that we will use: need to build encoder-decoder e — f such that source X’_is commu-
nicated with guarantee G from user s to user r in place of X,, in such a way that the marginal input into 4,, X2,
has the same distribution as X,
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independent and assuming that random-coding is permitted, it is sufficient to consider separation
architectures: each user i, 1 < i < N first compresses the sources X;;, 1 < j < N, to within distor-
tion levels D; ; under the distortion metric d; , followed by the universal reliable communication
of all the compressed sources at various users over the partially known medium. There is suffi-
ciency in the sense if there exists some architecture to communicate the random sources to within
the required distortion levels universally over the partially known medium, and which consumes
certain system resources (like energy and bandwidth) at each user, then there exists a separation
architecture to universally communicate the random sources to within the same distortion lev-
els universally over the partially known medium, and which consumes the same or lesser system
resources at each user as in the original architecture.

B 3.7 The proof of Theorem 3.1

Using the point-to-point formalism of Chapters 2 and the methodology described in the pre-
vious section, we provide an outline of how to generalize universal source-channel separation
from the point-to-point setting to the multi-user setting. The proof is written in discursive
style and is essentially complete.

Let X;, =< X” >%,1<i,7 <N be independent sources.
) if 1 ]

Given that there exists a system consisting of a partially known medium 7 and modems 4;
at user 7, 1 <7 < N, interconnected to each other as in Figure 3.2, such that independent
sources X ; are communicated from user i to user ; and received as Y;; with the help of
modems < b >{° at user i, 1 < i < N, where the modem at user i is h? when the block-
length is 7.

Let s and r be two particular users.

Let the source X, be i.i.d. Note that for now, this i.i.d. assumption is made only for the
source X, and not for the other sources X;;, (,7) # (s, 7). It is known that with the above
system architecture, the source X, is communicated to within a probability of excess dis-
tortion D, under an additive distortion metric d,, from user s to user 7 over the partially

known medium m . That is, for some w,, =< w %, Wy, = 0as 7 — oo, end-to-end,

sr;m 57,

sroosr r

1
Pxnyn (;ds”r(Xs"r, Y')> D$,> <, , —=0asn— o0 (3.6)

We will keep referring to Figure 3.7.

Question: assuming that there is common randomness, can source X,, be communicated to
within a distortion D from user s to user 7 by using a separation architecture, that is, by using
an architecture which first compresses the source X, , to within distortion level D, , followed
by reliable communication of the compressed source over the medium in such a way that
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Figure 3.7. Source X, can be universally communicated from user s to user r to within a distortion D,, over
the partially known medium m by using a digital architecture, using the methodology described in Section 3.5
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consumption of system resources is unchanged, and such that the communication of the rest
of the sources in the system is unchanged in distribution?

We will answer this question in the affirmative by using the methodology of Section 3.5 by
using the results from the point-to-point setting of Chapter 2.

For now, neglecting the communication of the rest of the sources, and thinking of the com-
munication of source X, from user s to user r to within a probability of excess distortion
D, as a point-to-point system, by using the results from Chapter 2, it follows that there exist

source encoder-decoder < se”,s}’ >%° and channel encoder-decoder < ¢, f” > (see Figure

3.7) such that the source X, is communicated, end-to-end, to within a distortion D,, by use
of a digital architecture. However, the question arises whether in this new architecture, the
communication of the rest of the sources has been affected. The answer is that it has not
been affected and this follows from the construction of e’”. Recall from Chapter 2 that e’”
generates i.i.d. X, codes. Thus, the input to 5? in the new architecture which we denote by
X has the same distribution as X, . From the arguments of Section 3.5, it follows that the
communication of the rest of the sources has not been affected in distribution, nor has the
consumption of system resources been increased. Since we do not require the exact knowl-
edge of the medium, we are also solving the universal problem.This answers the question
raised above in the affirmative.

Next assume that all sources X;; are i.i.d. In general, source X;; needs to be communicated
from user i to user j to within a probability of excess distortion D;;, 1 < i < N. By comments
from Section 3.5, it follows that the same procedure carried out from user s to user r can be
carried out for any two pair of users.

The independence assumption on sources X;; is required for reasons of Section 3.5.

Thus, optimality of digital communication for universal multi-user communication with fi-
delity criteria when the sources are independent of each other and random-coding is permit-
ted, follows.

B 3.8 Recapitulation

We have proved the optimality of digital communication for communication with fidelity
criteria in multi-user settings. There are two crucial assumptions:

1. The sources which the various users want to communicate are independent of each other
(the setting is unicast)

2. There is common randomness, that is, random-coding is permitted.

Without these assumptions, the results are false.
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The proof is a simple generalization of the point-to-point universal source-channel separation
theorem for rate-distortion discussed in Chapter 2: we do an induction over all source pairs
in the network. This needs to be done with care, and we do this by maintaining the marginals
at the inputs to the medium by using the methodology described in Section 3.5.

Since the proofs just build on the point-to-point proofs, many comments made in Chapter 2
also hold here, and we omit a discussion.

H 3.9 In the next chapter ...

In the next chapter, we discuss, to what extent, the results of this chapter are applicable to the
traditional wireless telephony problem.



Chapter 4

Optimality of digital communication:
Partial applicability of result from the
previous chapter to the traditional wireless
telephony problem

We should make things as simple as possible, but not simpler.
-Albert Einstein

B 4.1 In this chapter ...

B 4.1.1 Introduction

In this chapter, we see the application of results from the previous chapter to the problem
of traditional wireless telephony. The results will only be partially applicable but lend some
insight into the use of separation architectures in traditional wireless telephony. In the rest of
this chapter, when we say wireless, we will be referring to the problem of traditional wireless
telephony.

H 4.1.2 Chapter outline

In Section 4.2, we discuss the features of traditional wireless telephony problem. We also
prove that under certain assumptions that are not necessarily true, digital communication is
optimal for the traditional wireless telephony problem. We do this to understand, to what
extent digital communication is optimal for the traditional wireless telephony problem.

One crucial assumption that we make which is not true is that the voice signals of all the
users are independent of each other. Why this assumption is not true is discussed in Section
4.2 in brief. In Section 4.3, we discuss a toy problem, an understanding of which can help
understand what happens when correlated sources need to communicated over a medium and
to what extent if at all, will separation hold in such a scenario.
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In Section 4.4, we recapitulate this chapter.

W 4.2 Partial application to the wireless problem

In this section, we discuss the traditional wireless telephony problem and the partial applica-
bility of the optimality of digital communication to this problem.

B 4.2.1 The wireless telephony problem
There are 2N users, Sy, S5, ..., Sy, and 51, ), ..., Sy, Forall i, users §; and S wish to talk to
each other. The voice signal of user §; is V; and the voice signal of user § is V,.

The question is: how does one design wireless architectures to maximize the number of users
communicating at the same time over the wireless medium under certain constraints on re-
source consumption.

B 4.2.2 The features of the wireless problem and the assumptions that we
make .

The wireless problem has the following features:

1. Pairwise independence of voice signals: V; is independent of V/, Vj’ for j #i. Thisis
because what two users talk to each other is independent of what other users are talking
amongst each other. They might be talking about the same subject. For example, if it is
close to the elections or valentines day, a lot of conversations will revolve around these
particular topic. What we are saying is that the conversation between a pair of users is
independent of the conversation between another pair of users.

However, V; and V are dependent of each other. This is because the conversation
between two users will depend on what they are saying to each other.

For our result on separation to be applicable, we require that all signals be independent
of each other. In particular, we require that V; be independent of V; for all j. As

discussed above, this is not true for j # i. This is a crucial assumption which is not
true which we will make in order to prove the optimality of digital communication for the
traditional wireless telephony problem.

2. The wireless medium is time varying and only partially known: Wireless medium, that
is, the atmosphere, changes with time and the exact operation of transmission of elec-
tromagnetic waves through the atmosphere might not be known. The communication
methodology should work irrespective of the state of the atmosphere. Of course, there
will be certain “very bad” states of the atmosphere under which the communication
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will not be possible at all; however, we would want the communication to happen for
some states of the atmosphere.

3. Voice admits distortion: Voice admits distortion in the sense that what the listener hears
need not be exactly the same as what the speaker speaks in order for the listener to make
out, what the speaker spoke.

4. Other concerns: There are other important features and concerns, for example, security
and delay. Voice communication happens in real-time and only delays of the order of
milli-seconds are permitted. Voice communication should happen securely. There are
other concerns which we do not talk about here.

We make the following assumptions:

1. All the voice signals V,-,V].’ , 1< i,j < N are independent of each other, not just pair-
wise. As stated above, this is not true. However, we assurne that this is the case.

2. Distortion measure on voice is permutation invariant

3. Delays do not matter

B 4.2.3 Optimality of digital communication for wireless

With the above assumptions, it follows from results from the previous chapter that separation
holds: assuming random coding is permitted, it is sufficient to consider separation based
architectures where each user first compresses its voice signal and this is followed by the
universal reliable communication of the compressed voice signals over the wireless medium.
There is sufficiency in the sense that if voice communication of certain number of users can be
accomplished over the wireless medium with certain energy, bandwidth and other resource
consumption, the same can be accomplished using a separation based architecture, too. In
other words, there exists a “best possible” digital architecture.

M 4.3 The assumption that all the voice signals are independent

As stated above, we assumed that all voice signals V;, Vl.’ are independent of each other. How-
ever, as we said, this is not true in that V; and V! are not independent of each other.

To understand what happens when signals are dependent, it would be helpful to consider the
problem only with two users s and s’. User s wants to communicate a source V to user s’
with some distortion D under distortion metric d and user s’ wants to communicate a source
V' to § with some distortion D’ under some distortion metric d’. The sources V and V' may
be dependent on each other. See Figure 4.3. V denotes the reconstruction of V at user s’ and
V' denotes the reconstruction of V' at user s.
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User s User s’

V- LV
A’ hs hs’ ~
o .

Figure 4.1. How do we build modems A, and b, for communication of sources V and V’ which may be
dependent? To what extent, if at all, and maybe approximately, does separation hold?

If this problem is understood, this would lend further insight into the ramifications of the
dependence between V; and V/ in the wireless problem. As we discussed in Section 3.2,
Gastpar, in [Gas02] discusses two examples where separation does not hold if the sources are
correlated. We do not expect separation to hold in the example discussed above. However, we
have not worked this out.

Even if separation does not hold, it would be insightful to understand, to what extent separa-
tion holds in the above example, and in general, when sources are correlated and the medium
is only partially known. [TCDS] does consider the question of approximate optimality in
the case when a user wants to communicate the same source (multi-cast) to various users to
within different distortion levels. This is a special

As we stated in Section 3.2, [TCDS] proves, in certain scenarios, approximate optimality
results when the sources are correlated with each other. It would be interesting to see if one
can do the same for the setting described in this section. The setting in [TCDS] to prove
approximate optimality results is very different from the example described in this section:
[TCDS] has the the setting where a user wants to communicate the same source to within
possibly different distortion levels to other users, and thus, this can be thought of as the case
when sources at a particular user are perfectly correlated with each other. In particular, the
correlated sources are at the same user. The example in this section has correlated sources
at different users. In spite of these differences, it would be interesting to see if approximate
optimality results can be proved for the example in this section, and for the most general
scenario of correlated sources at multiple users.
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M 4.4 Recapitulation

In this chapter, we proved the partial applicability of the optimality of digital communication
to the traditional wireless telephony problem. This requires certain assumptions which are
not true: the main such assumption is that the voice signals which users want to communicate
to each other are independent of each other. Some of the other assumptions are that the
distortion metric that can be put on voice are permutation invariant and that, delays do not
matter, but we do not consider these serious assumptions compared to the assumption of
voice signals being independent.

Because of the assumptions that we have to make which are not true, the applicability of our
results to the wireless telephony problem is partial and not full.

W 4.5 In the next chapter ...

In the next chapter, we change gears. We discuss an operational perspective on the optimality
of digital communication for universal communication with fidelity criteria. This was dis-
cussed partly in Chapter 2 and will be discussed further in the next chapter. I think of this as
the second flavor of my thesis.
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Chapter 5

Optimality of digital communication:
operational view-point

Work on a proof until it is as evident as 2+ 2 =4.
-Paraphrased from a source which I do not remember

W 5.1 In this chapter ...

B 5.1.1 Introduction

In this chapter, we switch gears and discuss the second flavor of this thesis as discussed in
Chapter 1: a rigorous operational view of the optimality of digital communication for com-
munication with a fidelity criterion in the point-to-point setting. Since the proof for the
multi-user setting was a simple generalization of the proof in the point-to-point setting, this
also provides an operational view of the optimality of digital communication for communi-
cation with fidelity criteria in the multi-user setting.

In Section 2.14 of Chapter 2, we gave a proof of the universal source-channel separation for
communication with a fidelity criterion holds in the point-to-point setting for the uniform
X source when the distortion measure is permutation invariant. This proof was based on the
assumption that RY (D) = R? (D, inf). This proof, as we said in Section 2.14 is operational: it
uses only the definitions of channel capacity as the maximum rate of reliable communication
and the rate-distortion function as the minimum rate needed to compress a source to within
a certain distortion level. It does not use the definitions of channel capacity as a maximum
mutual information and the rate-distortion function as a minimum mutual information. Note
that when we use the word operational, it does not have to do anything with something being
physically operational or practical. What we mean is that we want to try to deal only with
mathematical structures which reflect the real meaning of the quantities rather than simplified
mathematical structures.

One of the things that we will prove in this chapter is R’Z,(D) = RI;](D,inf). We do this opera-

tionally. This will just provide an operational perspective on universal source-channel separa-
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tion without any technical assumptions. This proof will require steps which go through the
iid. X source. Some readers would question the use of the uniform X source. Traditional
information theory literature uses the i.i.d. X source. In my opinion, the uniform X source
captures all the ideas: it is simpler than an i.i.d. X source, in that it consists of only one type
class and yet, is “close to” an i.i.d. X source because most of the probability of an i.i.d. X
source rests on sequences with type “close to” py. In my opinion, this is enough.

However, for the reader unsatisfied with the uniform X source, we will generalize the results
to the iid. X source. However, for the i.i.d. X source, we will provide an operational
proof of pseudo-universal source-channel separation for rate-distortion for additive distortion
measures instead of universal source-channel separation for rate-distortion. Pseudo-universal
differs from universal in that we will not require a uniformity in the rate at which probability
of excess distortion — 0 as block-length — 0o when communicating over the channel:

The partially known channel £ € .« is said to be capable of pseudo-universally commu-
nicating i.i.d. X source to within a distortion D if there exists an encoder-decoder pair
< e”,f” >P° independent of the particular £ € .« such that under the joint distribution
Pxnyn as described above,

1
Pxnyn (;d”(X",Y”)>D) —>0a.sn—>ooVk€.d (5.1)

The reader should compare this definition with the definition of a partially known channel
which is capable of universally communicating i.i.d. X source to within a distortion level D
in Definition 2.25: there is no w =< w” >%° sequence in the definition anymore which was
introduced to enforce the uniformity over the partially known channel £ € ./ in the rate
at which the probability of excess distortion — 0 as # — co. Now, we do not ask for this
uniformity.

We defined in Chapter 2, a channel which is capable of communicating ii.d. X source to
within a distortion D. Note that we in fact defined a partially known channel which is capable
of communicating i.i.d. X source to within a distortion D. However, let £ € ./ denote a
partially known channel which is capable of universally communicating i.i.d. X source to
within a distortion D. Thus, there exist encoder-decoder < e”, f” >%° such that for the
composition of the encoder, channel and decoder < e” o k o f* >, (2.25) holds for some
w=<w, >’ w, > 0asn— o0o. Wecanthinkof c € € =< e”okof” > asa composite
channel with input space & and output space %, and we can think of this partially known
channel as directly communicating i.i.d. X source to within a distortion D.

We define € , to be the set of channels which pseudo-directly communicates the i.i.d. X
source to within a distortion D. ¢ € 6y p can then be thought of as a partially known
channel. Note that the e sequence for different channels in 6y ;, might be different, and for
this reason we call it pseudo-direct communication and not direct communication.

We will define what we call the pseudo-universal capacity of the set of channel 6y 5,. The
pseudo-universal capacity differs from universal capacity in the sense that we do not ask for a
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uniformity in the rate at which error probability — 0 as block-length 7z — co over the set of
channels; it can be different for different channels; of course, as in the definition of universal
capacity, the same encoder-decoder should work for all channels in the set. Similarly, we
will define what it means for a partially known channel £ € &/ to be capable of pseudo-
universally communicating a random source to within a distortion level D: again, the only
difference will be that we will not ask for uniformity in the rate at which the probability of
excess distortion — 0 as block-length 7 — oo over the particular k£ € ./; of course, as in the
definition of universal capability of a channel to universally communicate a source to within
a certain distortion level, the same encoder-decoder should work for all k € ./

We prove operationally that the pseudo-universal capacity of the set of channels 6y , is
> RE(D) = RE(D). From this, will follow the optimality of digital communication for
communication with a fidelity criterion where we use pseudo-universal communication for
communication to within a distortion D instead of universal communication to within a dis-
tortion D. We will call this the An operational view-point on optimality of digital communica-
tion for pseudo-universal communication with a fidelity criterion or An operational view-point
on pseudo-universal source-channel separation for rate-distortion.

On the way, we will need to define the corresponding channel set for the uniform X source
which we will denote by 6, 5, and we will derive relation between pseudo-universal capaci-
ties of various channel sets and the various rate-distortion functions.

We believe that the above steps can also be carried out with universal capacity instead of
pseudo-universal capacity with only minor modifications; however, we have not worked
them out. For the reader unhappy with this explanation, the reader can think of this as
an operational view of the non-universal view on the optimality of digital communication,
that is the channel is a fully known channel: for a fully known channel, pseudo-universal
capacity and the universal capacity are the same because uniformity is trivial for a channel set
which consists of just one channel.

Another consideration that we do 7ot have in this chapter is that of resource consumption.
We prove the optimality of digital communication but do not look at the resource consump-
tion in the digital architecture as opposed to a more general architecture. Again, this is some-
thing I believe is something that should be possible quite easily but I have not done it. For the
reader unhappy with this explanation, the reader should think of it as the way things are done
in the usual information theory literature in the discrete case where resource consumption
is not considered at all. I should add that I do not agree with this approach in the literature
because resource consumption is a very important issue, and when proving optimality of dig-
ital communication, one should prove that it can be done with the same or lesser resource
consumption as compared to other architectures; in our case in this chapter, I quite strongly
believe that it can be done; just that I have not done it.

We will in fact prove that the pseudo-universal capacity of the set of channels €y p, is precisely
R; (D), and not just > R§(D). We will use this to give the idea for an alternate proof of the
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rate-distortion theorem for those i.i.d. sources X for which py(x) is rational Vx € &. 1
believe that our proof is more insightful than the original proof of Shannon [Sha59]. This
also leads to connections between source and channel coding which was talked about in brief
Subsection 2.14.10, and is elaborated on a bit more in this chapter.

W 5.1.2 Chapter outline

In Section 5.3, we discuss the i.i.d. X and the uniform X sources: the two sources which we
use in this chapter, and the to sources for which the theorems interplay with each other.

In Section 5.4, we discuss the rate-distortion source-coding problem. We define source-codes
and what we call, jump source codes. The definitions of source-codes are made for coding
both the i.i.d. X and the uniform X sources. We define various rate-distortion functions for
the i.i.d. and the uniform X sources and prove the equality of all the rate-distortion functions.
The proof of the equality of the various rate-distortion functions is operational.

In Section 5.5, we discuss the channel-coding problem. We define channels and what we call
jump channels. We define, what we means for these channels to pseudo-directly communicate
i.i.d. X and uniform X sources to within certain distortion levels, and correspondingly define
various sets of channels or jump channels which pseudo-directly communicate the i.i.d. X
and the uniform X sources to within certain distortion levels. We define the pseudo-universal
capacities of these sets of channels and derive relations between these capacities. The deriva-
tion of these relations is operational.

In Section 5.6, we link the source-coding and the channel-coding problem. We prove that
the pseudo-universal capacity of the set of channels which pseudo-directly communicate the
uniform X source to within a distortion D is equal to the minimum rate required to compress
the i.i.d. X source to within a distortion D. A similar statement is proved for the ii.d. X
source. The derivation of this result is operational.

In Section 5.7, we state the pseudo-universal source-channel separation theorem for rate-
distortion and use the result of the previous section to finish the final step in proving oper-
ationally, the pseudo-universal source-channel separation theorem for communication with
a fidelity criterion. Comments are made that we do not take into account resource con-
sumption unlike Chapter 2, and that, we are operationally proving a pseudo-universal, not
universal source-channel separation theorem for communication with a fidelity criterion. We
also discuss the operational nature of the proof and compare our proof with Shannon’s non-
operational proof.

Out of our operational proof, also come out connections between source and channel cod-
ing. These connections are discussed In Section 5.8. Also, we provide an alternate proof of the
rate-distortion theorem for those i.i.d. X sources for which py(x) is rational Vx € &. Com-
ments are made on why this proof is in our opinion, more insightful and more operational
than Shannon’s.
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In this chapter, we have proved operationally, a pseudo-universal, not a universal source-
channel separation theorem for rate-distortion. In Section 5.9, we comment briefly on what
changes might be needed in order to prove a universal source-channel separation theorem for
rate-distortion. Further, in this chapter, we have not taken into account resource consump-
tion in the system when constructing the digital architecture. In Section 5.10, we comment
very briefly on how we could also take into account, the resource consumption in the system,
when proving the universal source-channel separation theorem for rate-distortion.

In Section 5.11, we recapitulate this chapter and make some final remarks on this chapter.

B 5.2 A note on definitions

We will, en-route, be re-defining many quantities, that have already been defined in Chapter
2. We do this for two reasons:

e To make this chapter complete in itself

e Some definitions like those of random source-codes and random channel-codes will look
different from those of Chapter 2 but will be the same in spirit as those of Chapter 2

M 5.3 Sources

We consider 2 kinds of sources: 1.1.d. and uniform. These are defined below.
Let & be a finite set.

Definition 5.1 (i.i.d. X source). Let X be a random-variable on &'. Let X” denote i.i.d. X
sequence of block-length 7. X” is a random-variable on . < X” >{° is the i.i.d. X source.
By abuse of notation, we denote X =< X” >%°.

Definition 5.2 (Uniform X source). Let X be a random variable on X'. Let py(x) be rational
Vx. Let ny be the least positive integer for which ngpy(x) is an integer Vx € &'. Let %"
denote the set of sequences with (exact) empirical distribution (type) py. %" is non-empty if
and only if n, divides 7. Let n’ = nyn. Let U” denote a random variable which is uniform
on %" and zero elsewhere. Then, < U” > is the uniform X source and is denoted by U.
Intuitively, the uniform X source is the source which puts uniform distribution on the set of all
sequences whose empirical distribution is py.

Note 5.1. The superscript 7’ in %" denotes that the block-length is ’. It does not mean that
U™ is the cartesian product of some set % with itself 7 times. Infact, the set % = %! is
empty unless 7, = 1. Similarly, the superscript 7’ in U” denotes block-length. It does not
mean that U” is i.i.d. U source for some random variable U.

Definition 5.3 (n,). 7, is the least positive integer for which nypy(x) is an integer Vx € &
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Definition 5.4 (n'). n’ = nyn.

Note 5.2. Uniform X source is defined only for those block-lengths which are divisible by ny,

Note 5.3, If py(x) is irrational for some x € &, %" is empty Vn. Thus, in order to define
the uniform X source, the assumption that py(x) be rational Vx € & is necessary.

Note 5.4. Let py(x) be rational Yx € &. The uniform X source and the i.i.d. X source
are “close” to each other in the following sense. The uniform X source puts mass only only
sequences with empirical distribution exactly py. For large 7, i.i.d. X source puts “most of”
its mass on sequences with empirical distribution “close to” py. We are interested in i.i.d.
X source. Uniform X source is introduced only because some arguments can be made can
rigorous for the uniform X source, which, we do not know, how to make rigorous for the
i.id. X source.

B 5.4 The rate-distortion problem

In this section, we discuss the rate-distortion problem of source-coding (compressing) the
iid. and the uniform X sources. We define source-codes and jump source-codes We define
various rate-distortion functions for the i.i.d. X and the uniform X sources with the expected
and the probability of excess distortion definitions, taking limits as liminf and limsup, and
allowing jump source codes when source~coding the i.i.d. X source. We prove the continuity,
convexity and the equality of various rate-distortion functions defined.

W 5.4.1 Source codes

Source-codes are sequences for various block-lengths.

This subsection defines deterministic and random source-codes and jump source-codes for the
1.1.d. X source, and deterministic and random source-codes for the uniform X source. The
output space of the source-codes will be a finite set %.

Source codes to encode the i.i.d. X source

When the block-length is 7, the input space is ', the cartesian product of & with itself »
times, and the output space is %", the cartesian product of % with itself, 7 times.

Let &£.(R) denote the set of all functions with domain X” and range {1,2,...,2?Rl}. Let
F4/(R) denote the set of all functions with domain {1,2,... ,217R1} and range ¥”.

Definition 5.5 (Rate R deterministic source-code). Rate R deterministic source-code is a
sequence s =< s” >’=<e”,f" >¥. ¢” € 7.(R) and f” € F(R). This is interpreted as
follows. When the block-length is 7, x” € " is encoded as e”(x") and 4 € {1,2,...,2#7R]}
is decoded as f”(a). f”(e”(x")) is the actual encoding of x” by the source-code.
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Note 5.5. In the definition of a rate R deterministic source-code, the set {1,2,...,2l"Rl} can
be replaced by any set of cardinality 217Rl,

Random source codes, which consist of a random source encoder and a random source de-
coder were defined in Section 2.7.2 as transition probabilities. In this chapter, we will view
them in another, equivalent way: as a joint distribution on the space of deterministic source
encoders and decoders

Definition 5.6 (Rate R random source-code with common randomness). A rate R random
source-code with common randomness is a sequence s =< s” >$° which should be inter-
preted as follows. p.« is a probability distribution on &.(R) x F(R). That is, p» €
P (85 (R) x Fz(R)). This is interpreted as follows. When block-length is 7, the determinis-
tic source-code (e”, f*),e” € &4.(R), f* € F(R) is used as the source-code with probability

p((e”, f7))-
Note 5.6. If a source-code s has rate R, it also has rate > R.

Definition 5.7 (Transition probability corresponding to a source-code). Let &/, ,» denote
the set of all deterministic encoder-decoder pair (e”, f”) which encode x” as y”. That is,
B yn = {(e”, /M (e*(x™)) = y"}. psn(Fyn yn) is the probability that x” is encoded as
»” by the source-code s. This can be used to define a stochastic kernel/transition probability
matrix g : X" — P (") as follows. 7' (y"|x") = pon(yn yn). q7'(y"|x") is the probability
that x” is encoded as y” by the source code s. The sequence g, =< ¢7 >{° is the transition
probability corresponding to a source-code s =< s” >°.

Note5.7. The sequence g, =< q” >{° is important because the distortion incurred by source-
code s depends only on g,. This will become clear later.

Definition 5.8 (Rate R deterministic jump source-code). Rate R deterministic source-code
is a sequence s =< s*” >P=< ek, f&n >{° where & > 0 is some positive integer, where
definitions of e*”, f#7 and the interpretation of the source~code is exactly as in Definition
5.5. The only difference is that quantitities in a jump block-code are defined only for block-
lengths k7, 1< n < co.

Note 5.8. In the above definition, when we say < kn >° refers to < kn > . k remains
fixed. This will be the case throughout the rest of the thesis: for n’ = f(n), < 2" >3 refers
to < o/ >0

Definition 5.9 (Rate R random jump source-code). This is defined exactly as definition 5.6,
except that quantities are defined only for block lengths k7, 1 < 7 < oo, for some positive
integer k.

Note 5.9. Jump source-codes do not have physical significance. We define them because proof
of some equalities concerning rate-distortion functions require the introduction of jump
source-codes. This will be clarified in more detail, later.
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Definition 5.10 (Transition probability corresponding to a a jump source-code). This is ex-
actly the same as Definition 5.7, except that quantities are defined only for block-lengths k7,
1 < n < o0, for some positive integer k.

Source-codes to encode the uniform X source

Recall the definitions of 7, and 7’.

When the block-length is #’, the input space is %" . The output space is #", the cartesian
product of ¥ with itself, n’ times.

Let é’;;l/(R) denote the set of all functions with domain %" and range {1,2,...,2l" R}, Let
9‘,3,' (R) denote the set of all functions with domain {1,2,...,2!"Rl} and range Y.
Definition 5.11 (Rate R detern}inisfic source-code). Rate R deterministlic source-code is
a sequence § =< s" >P=< ", f" >P. e” € &" (R) and f” € F4(R). This is in-
terpreted as follows. When the block length is n u" € U is encoded as e” (u" ) and

a €11,2,...,2"R1} is decoded as f"(a). f™(e" (x" )) is the actual encoding of x” by the
source—code

Note 5.10. In the definition of a rate R deterministic source-code, the set {1,2,.. .,Zl”'RJ} can
be replaced by any set of cardinality 2],

Definition 5.12 (Rate R random source-code with common randomness). A rate R random
source-code with common randomness is a sequence s =< s > which should be inter-
preted as follows. p . is a probability distribution on é’;’;(R) X 9&’,’ (R). Thatis, p €
9(6’;]’1/ (R) x 9&’,’(R)). This is interpreted as follows. When block-length is »’, the deter-
ministic source-code (e”, /™ ),e” € é’a’,';(R), f*e 9?'3‘,'(R) is used as the source-code with
probabilcy p,¢((e”, /)

Note 5.11. Since the uniform source is defined only for block-lengths n’ = nyn, source-codes

to encode the uniform X source are also defined only for block-lengths n’ = nyn. This does
not mean that these source-codes are jump source-codes.

Note 5.12. If a source-code s has rate R, it also has rate > R.
Definition 5.13 (Transition probability corresponding to a source-code). Let A o denote

the set of all deterministic encoder-decoder pair (¢”, /) which encode #" as y 7. That is,
e 2 (e, SN (" (u™) =y"}. p(A e /) is the probability that #” is encoded

as y” by the source-code . Thls can be used to deﬁne a stochastic kemel/tra.nsmon proba-
bility matrix g” : %" — P (Y™ as follows. q, 7" |u") = p (A /) q’ (" |u" )isthe

probability that #” is encoded as y” by the source code s. The sequence g =<q’ >‘1’° is
the transition probability corresponding to a source-code s =< s* >
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Note 5.13. The sequence g, =< ¢ >{° is important because the distortion incurred by
source-code s depends only on g,. This will become clear later.

Note 5.14. We do not need to define jump source-codes for encoding the uniform X source.

B 5.4.2 Distortion produced by a source-code and a jump source-code

In this subsection, we define the distortion produced by a source-code. We consider two
definitions of distortion: the expected distortion and the probability of excess distortion.
Both the expected distortion and the probability of excess distortion can be defined by taking
limits in two ways: liminf and limsup. When the source is i.i.d. X, distortion is defined for
both source-codes and jump source-codes. For the uniform X source, distortion is defined
only for source-codes: we would not need the definition with jump source-codes.

Assume that & = ¥ This assumption will be used throughout the rest of this chapter.

d: X x % — [0,00) is the distortion function. Let x € & and y € #¥. d(x,y) should be
thought of as the distortion between x and y, or as the distortion incurred if x is received as

y.

Let d be such that d(x,x) =0Vx € X. This assumption will be used throughout the rest of this
chapter.

For x” € X" and y" € %", the distortion between x” and y” is defined additively:
n
d"(x",y") 2 D d(x"(i)y" (i) (5.2)
i=1

A
Denote D,,,, = max,cg- o 4(%, 7).

Distortion produced by a source code which encodes i.i.d. X source

Consider a source-code s =< s” >

The action of s” on source X" results in a joint probability distribution on the input-output
X" x H” space. This action is that of the kernel ¢” on the source X”. The output random-
variable is Y. The joint random-variable on the " x Y space is X" Y.

Definition 5.14. [Achievability of expected distortion D by source-code s when encoding
i.i.d. X Source] Distortion D is achievable in the expected sense (or that, distortion D is
E-achievable, or that expected distortion D is achievable ) by the source-code s for the i.i.d.
X source if there exists

n—o0

1
limsupExnyn [—dn(X”, Yﬂ)] SD (5.3)
n
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Note 5.15. By definition, if distortion D is achievable in the expected sense (or that, distortion
D is P-achievable) by the source-code s for the i.i.d. X source, then distortion D’ > D is also
achievable in the expected sense by the source-code s for the i.i.d. X source.

Definition 5.15. [Achievability of probability of excess distortion D by source-code s when
encoding i.i.d. X Source] Distortion D is achievable in the probability of excess distortion
sense (or that, distortion D is P-achievable) by the source-code s for the i.i.d. X source if

1
]im PX”Y” (;d”(X”,Y”)>D) =0 (5.4)

n—o0

Note 5.16. In the above definition, we use nlgl(}o and not limsup because both definitions are

n—o0
the same. This is because, if 2, > 0,1 < 7 < 00, then, limsup 4, = 0if and only if lim 4, =0.
n—oo n—00

Note 5.17. By definition, if distortion D is achievable in the probability of excess distortion
sense by the source-code s for the i.i.d. X source, then distortion D’ > D is also achievable
in the probability of excess distortion sense by the source-code s for the i.i.d. X source.

Definition 5.16. [Inf-achievability of expected distortion D by source-code s when encoding
iid. X Source] Expected distortion D is inf-achievable by the source-code s for i.i.d. X
source if

1
liminfE nyn [—d"(X”, Y")] <D (5.5)
n—o0 n

Note 5.18. By definition, if expected distortion D is inf-achievable by the source-code s for
the i.i.d. X source, then expected distortion D’ > D is also inf-achievable by the source-code
s for the i.i.d. X source.

Note 5.19. When we say that expected distortion D is achievable, we would mean that ex-
pected distortion D is achievable with Definition 5.14. When we want to talk about achiev-
ability of probability of excess distortion D in the sense of Definition 5.16, we would ex-
plicitely refer to it as inf-achievability.

Definition 5.17. [inf-achievability of probability of excess distortion D by source-code s
when encoding i.i.d. X Source] Probability of excess distortion D is inf-achievable by the
source-code s for i.i.d. X source if

n—00

1
liminf pynyn <—d"(X”,Y”) > D) =0 (5.6)
n

Note 5.20. By definition, if probability of excess distortion D is inf-achievable by the source-
code s for the iid. X source, then probability of excess distortion D’ > D is also inf-
achievable by the source-code s for the i.i.d. X source.

Note 5.21. When we say that expected distortion D is achievable, we would mean that proba-
bility of excess distortion D is achievable with Definition 5.15. When we want to talk about
achievability of probability of excess distortion D in the sense of Definition 5.17, we would
explicitely refer to it as inf-achievability.
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Distortion produced by a jump-source code which encodes i.i.d. X source

Consider a jump source-code s =< s*” >, Denote n" = kn

The action of s"" onsource X" results inajoint probabxllty distribution on the input-output
& x ™" space. This action is that of the kernel q! on the source X"". The output

random-variable is Y”". The joint random-variable on the £ x Y spaceis X" Y"'.

Definition 5.18. [Achievability of expected distortion D by the jump source-code s when
encoding i.i.d. X Source] This definition is the same as Definition 5.14 except that limits are
taken along 7”instead of 7.

Note 5.22. Note 5.15 holds for jump source-codes.

Definition 5.19. [Achievability of probability of excess distortion D by jump source-code
s when encoding 1.i.d. X Source] This definition is the same as definition 5.15 except that
limits are taken along #” instead of 7.

Note 5.23. Note 5.16 holds for jump block-codes.
Note 5.24. Note 5.17 holds for jump source-codes.

Note 5.25. We do not talk about inf-achievability with jump block codes. This is because of
the following reason. Suppose we are given a jump source-code s =< s*” >$° for which we
want to define inf-achievability. Thus, there would be some subsequence k#7; along which
limits are taken. Now, consider a source~code t =< t” >%° which is the same as source-code
s for block-lengths k7 and arbitrarily defined, for other block-lengths. Limits can then be
taken along the same block-lengths k7; for this code without jump. Thus, for the definition
of inf-achievability, a jump code can first be converted into a code without jump by the
above procedure. Thus, one does not gain anything by allowing jumps when considering
inf-achievabilty.

Distortion produced by a source-code which encodes uniform X source

Let X be such that py(x) is rational Yx € &.

Recall that the umform X source is defined only for block lengths which are multiples of 7,
Recall that n’ = = non. Also, source-codes for coding the uniform X source are defined only

for block-lengths n’.

. /
Consider a sourcecode s =< 5" >P.

The action of s” on source U™ resultsin ajoint probabnhty dlstrlbutlon on the input-output
U x Yy space. This action is that of the kernel g on the source U"'. The output random-

variable is Y. The joint random-variable on the %" x %" spaceis U" Y .
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Definition 5.20. [Achievability of expected distortion D by source-code s when encoding
uniform X Source] This definition is the same as Definition 5.14 except that limits are taken
along n’, and that, expectation is taken with respect to the joint random variable U” Y.

Note 5.26. Note 5.26 holds for the uniform X source.

Definition 5.21. [Achievability of probability of excess distortion D by source-code s when
encoding uniform X Source] This definition is the same as Definition 5.15 except that limits

are taken along n’, and that, probability is taken with respect to the joint random variable
Ur'y”,

Note 5.27. Note 5.16 holds.
Note 5.28. Note 5.17 holds for the uniform X source.

Definition 5.22. [Inf-achievability of expected distortion D by source-code s when encoding
umform X Source] This definition is the same as Definition 5.16 except that limits are taken
along n’, and that, expectation is taken with respect to the joint random variable U” Y.

Note 5.29. Note 5.18 holds for the uniform X source.

Note 5.30. When we say that expected distortion D is achievable, we would mean that ex-
pected distortion D is achievable with Definition 5.20. When we want to talk about achiev-
ability of probability of excess distortion D in the sense of Definition 5.22, we would ex-
plicitely refer to it as inf-achievability.

Definition 5.23. [inf-achievability of probability of excess distortion D by source~code s
when encoding uniform X Source] This definition is the same as Definition 5.17 except that

limits are taken along n', and that, probability is taken with respect to the joint random
variable U Y™,

Note 5.31. Note 5.31 holds for the uniform X source.

Note 5.32. When we say that expected distortion D is achievable, we would mean that proba-
bility of excess distortion D is achievable with Definition 5.21. When we want to talk about
achievability of probability of excess distortion D in the sense of Definition 5.23, we would
explicitely refer to it as inf-achievability.

Note 5.33. As stated before, jump source-codes are not considered, when encoding the uni-
form X source.

Note 5.34. Recall the assumptions that & = % and d(x,x) =0Yx € &. By this assumption,
distortion D = 0 is achievable for all the above definitions, and RE %(0)s RP £(0), RE(0,inf),
RE(0,inf), RL(0,), RP(O 7)) RE(0), RY £(0), RE (0 inf), and R? (O,mf) are all < logl.%'l In
particular, X(O) (O) RE (©, mﬂ RP mf), (0 7 X(O, J)»R (0), (0), (0 inf),
and R? (0 inf) are all deﬁned for De [0 00).
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B 5.4.3 The rate-distortion function

In this subsection, we define the rate-distortion function when encoding the 1.i.d. X and the
uniform X sources. The rate-distortion function can be defined for the expected distortion
definition and the probability of excess distortion definition, under both the liminf and the
limsup definitions.

For i.i.d. X sources, the rate-distortion function can be defined when jump source-codes are
allowed or when only source-codes are allowed. This leads to six different definitions of the
rate-distortion function when encoding the i.i.d. X source: RZ(D), RE(D, inf), RE(D,j),
R§(D), (D inf), andR? x(Ds7)-

For the uniform X source, rate-distortion function is defined when source-codes are allowed.
This leads to four different definitions of the rate-distortion function when encoding the
uniform X source: Rf,(D) RE (D, inf), R (D), and R? o/(D, inf)

Rate-distortion function corresponding to source-codes which encode the i.i.d. X source

Definition 5.24 (Rate—dlstornon function RE %(D))- Rate R is E-achievable corresponding to
distortion level D for the i.i.d. X source if there exists a rate R source code s which achieves
expected distortion D when encoding the i.i.d. X source. The infimum of all E-achievable
rates for distortion level D is the rate-distortion function R%(D).

Definition 5.25 (Rate-dlstomon function R% %(D))- Rate R is P-achievable corresponding to
distortion level D for the i.i.d. X source if there exists a rate R source code s which achieves
probability of excess distortion D for the i.i.d. X source. The infimum of all P-achievable
rates for distortion level D is the rate-distortion function RS (D).

Definition 5.26 (Rate-distortion function R% (D, inf)). Rate R is inf-E-achievable for the i.i.d.
X source if there exists a rate R source code s which inf-achieves expected distortion D for
the i.i.d. X source. The infimum of all E-achievable rates for distortion level D is the rate-
distortion function Rf( (D,inf).

Definition 5.27 (Rate-distortion function R%, (D, inf)). Rate R is inf-P-achievable for the i.i.d.
X source if there exists a rate R source code s which inf-achieves probability of excess distor-
tion D for the i.i.d. X source. The infimum of all E-achievable rates for distortion level D is
the rate-distortion function R% v (D)inf).

Rate-distortion function corresponding to jump source-codes which encode the iid. X
source

Definition 5.28 (Rate-distortion function RZ (D, )). Rate R is E-achievable corresponding
to distortion level D for the i.i.d. X source if there exists a rate R jump source code s which
achieves expected distortion D when encoding the i.i.d. X source. Jump source-codes with
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all possible jump sizes & are under consideration. The infimum of all E-achievable rates for
distortion level D is the rate-distortion function RE 5(Ds7)-

Definition 5.29 (Rate-distortion function R (D, j)). Rate R is P-achievable corresponding
to distortion level D for the i.i.d. X source if there exists a rate R jump source code s which
achieves probability of excess distortion D for the i.i.d. X source. Jump source-codes with
all possible jump sizes £ are under consideration. The infimum of all P-achievable rates for
distortion level D is the rate-distortion function R;(D, )

Rate-distortion function corresponding to source-codes which encode the uniform X source

Definition 5.30 (Rate-distortion function R%, (D)) RE (D) is defined analogously to RE (D)
Definition 5.31 (Rate-distortion function R? £(D)). RY 1/(D) s defined analogously to R, (D).

Definition 5.32 (Rate-distortion function R, (D, inf)). RE (D, inf) is defined analogously to
RE(D, inf).

Definition 5.33 (Rate-distortion function R? (D, inf)). R? (D, inf) is defined analogously to
RE(D,inf).

W 5.4.4 Properties and equalities of the various rate-distortion functions for
i.i.d. and uniform sources

In this subsection, we prove various the convexity, continuity, and equality of various rate-
distortion functions. Our goal is to prove 2 results

1. For X such that py(x) is rational Yx € &, for D € (0,00), RE v(D), R (D) RE YD),
RY(D, ]), RE(D,inf), RE *(D,inf), R, (D), R? (D), RE (D, mD and RP v (Ds mf) are con-
vex, contmuous funcnons of D and are all equa.l

2. For arbitrary X, for D € (0,00), RE ¥(D), R (D,j), (D inf), R? x(D), R (D,j), and
R% (D, inf) are all convex continuous functxons of D and are all equal

Proving the above will be carried out in various steps which the reader might want to refer
to now, or in the future, as the proofs progress. The statements below are not precise, in
particular, they do not mention the range of D for which the results hold.

1. Results concerning achievability with deterministic source-codes

2. Construction of time-sharing code. As a consequence, the proof of convexity and con-
tinuity of RE(D, j) and R% %(Ds7)
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3. Construction of mterpolatnon code. As a consequence, the proof of RE (D)= RE ¥ (D))
and R%(D)=RE(D, )

4. Constructnon of jump repetmon code. As a consequence, the proof of RE (D, inf) =
R%(D,j)and RE(D, inf) = RE(D, )

5. Thus, RE(D) = RE(D, j) = RE(D, inf) and RE(D) = RE(D, j) = RE(D, inf)

6. Description of two constructions describing how to construct a jump source-code for
i.i.d. X’ source given a source-code for the uniform X source, and how to construct
a source-code for the uniform X source given a source-code for the .i.d. X’ source.
As a consequence, the proofs of R E(D) Rf](D), R;(D) = R’;,(D), Rf{(D,inf) =
RE/(D,inf) and RE(D,inf) =R (D, inf).

7. Proof of RE,(D)=RE /(D)

8. Thus, the proof of equality of RZ (D), RE (D), RE(D, j), RE 2(D,j), RE(D, inf), RE (D, inf),
R%/(D), RE(D), RE(D, inf), and RE (D, inf)

9. The proof of equality ofRf(( » R (D 7), RE (D, inf), RE v (D), R? Y(Ds7)s and R? v(D,inf)
by use of limiting arguments

First we prove that there is no loss of generality if one restricts attention to deterministic
source-codes and jump source-codes.

Achievability with deterministic codes

We prove that if rate R is E- achievable with expected distortion D for a source, rate R is also E
achievable with distortion D with a deterministic source-code for the source. Similarly, if rate
R is P-achievable with distortion D for a source, rate R is also P-achievable with probability
of excess distortion D with a deterministic source-code.

Lemma 5.1. 1. Let expected distortion D be achievable for the i.i.d. X source with some rate
R source code. Then, expected distortion D is also achievable for the i.i.d. X source with a
rate R deterministic source-code

2. Let expected distortion D be inf-achievable for the i.i.d. X source with some rate R source
code. Then, expected distortion D is also inf-achievable for the i.i.d. X source with a rate R
deterministic source-code

3. Let expected distortion D be achievable for the i.i.d. X source with some rate R jump source
code. Then, expected distortion D is also achievable for the i.i.d. X source with a rate R
deterministic jump source-code
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4. Let expected distortion D be achievable for the uniform X source with some rate R source
code. Then, expected distortion D is also achievable for the uniform X source with a rate R
deterministic source-code

5. Letexpected distortion D be inf-achievable for the uniform X source with some rate R source
code. Then, expected distortion D is also inf-achievable for the uniform X source with a rate
R deterministic source-code

Proof. We prove the first statement above. The proofs of the rest of the statements are similar;
the only difference is that limits might be taken along particular block-lengths or that, the
source might be different.

Let expected distortion D be achievable for the i.i.d. X source with rate R source-code s =<
s” >3°. That is,

1
Exnyn [;d"(X”, Y”)] =D, where limsupD, <D (5.7)

n—00

1
Exnyn [;dn(X", Yﬂ)]

1
= S el W [ Y = )]
(" f")ebg (R)xF g (R)
1
= X e [ @] <D, 69)
(" /"B RIXFL(R)

Thus, there exists an (e, f*) € €3.(R) x F3.(R) such that

1
B | 27" <, 69)
n
For the deterministic source-code < e?, £ >{°,
. 1 .
Jim B [ ~"(X"£2e2X")| < fim D, <D (5.10)
Since s has rate R, < e, f >{° also has rate R. < e, f7 > is thus a deterministic rate R

source-code with expected distortion D for the i.i.d. X source. O

Note 5.35. It follows from the above lemma that the rate-distortion function RE (D), RE (D, inf),
Rf((D, h Rf/(D), and Rf](D, inf) are unchanged by restriction to deterministic source-codes.

Note 5.36. With appropriate definitions, the above lemma infact holds for arbitrary sources,
not just i.i.d. and uniform.
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Lemma 5.2. 1. Let probability of excess distortion D be achievable for the i.i.d. X source with
some rate R source code. Then, probability of excess distortion D is also achievable for the
i.i.d. X source with a rate R deterministic source-code

2. Let probability of excess distortion D be inf-achievable for the i.i.d. X source with some rate
R source code. Then, probability of excess distortion D is also inf-achievable for the i.i.d. X
source with a rate R deterministic source-code

3. Let probability of excess distortion D be achievable for the i.i.d. X source with some rate R
Jjump source code. Then, probability of excess distortion D is also achievable for the i.i.d. X
source with a rate R deterministic jump source-code

4. Let probability of excess distortion D be achievable for the uniform X source with some rate
R source code. Then, probability of excess distortion D is also achievable for the uniform X
source with a rate R deterministic source-code

5. Let probability of excess distortion D be inf-achievable for the uniform X source with some
rate R source code. Then, probability of excess distortion D is also inf-achievable for the
uniform X source with a rate R deterministic source-code

Proof. We prove the first statement above. The proofs of the rest of the statements are similar;
the only difference is that limits might be taken along particular block-lengths or that, the
source might be different (or jump source-codes, as the case may be).

Let probability of excess distortion D be achievable for the i.i.d. X source with rate R source-
code s =< 5" >¥. That is,

1
Pxryn <-;d"(X”,Y") > D) =¢, where nlirgoen =0 (5.11)

1
pxnyn (;d”(X”,Y") > D)

= X (e Dy (4T > DI = (e, 7)

(e" fMECLRIXFL(R)
1
= >, pan((€” f™))pxn (—d”(X L (ENXT)) > D)
(" fMEEL(RIXFL(R) n
=€, (5.12)

Thus, there exists an (e, /") € 5.(R) x F3.(R) such that

pyn (%d”(X”, frenxm) > D) <e, (.13)
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For the deterministic source-code < er,fr >0,

1
i e (=d”(X", £2e204")) > D) < fim ¢, =0 (5.14)

n—0o0

Since s has rate R, < e”, f >{° also has rate R. < e, " >{° is thus a deterministic rate R
source-code with probability of excess distortion D for the i.1.d. X source. O

Note 5.37. It follows from the above lemma that the rate-distortion function R (D), R (D, inf),

R;(D, i) RZ(D), and RIZ, (D, inf) are unchanged by restriction to deterministic source-codes(or
jump source-codes, as the case may be).

Note 5.38. With appropriate definitions, the above lemma infact holds for arbitrary sources,
not just i.i.d. and uniform.

Next we prove theconvexity and continuity of various rate-distortion functions for D €
(0,00).

Convexity and continuity of rate-distortion functions

We prove the convexity of Rf((D, 7)and R§(D, j) for D € [0,00). As a consequence, will
follow, the continuity of Rf((D, j) and R§ (D,j) for D € (0,00). For this, we first define
equal time sharing between jump source-codes.

Definition 5.34 (Equal time sharing between deterministic jump source-codes which code the
iid. X source). Let s =< sk” >P=< ekn, fhn > be a rate R deterministic jump source-

.. / . e e
code to code the i.i.d. X source. Let s’ =< s’*'7 > be a rate R’ deterministic source-code to

code the i.i.d. X source . The jump source-code code ¢t =< r2F' >P=< gk n p2kk'n >
which time-shares equally between s and s’ is defined as follows

Denote n”/ = kk’n.
Let
g2 (x¥") 2(e*" (x(1..kn)),e*" (x(kn + 1..2kn)), ..., k" (x(k(k' = )n +1..n")),
ek (x(n” 0" +k'n)),e® " (x(n” +E 1+ Ln” +2k n)),...,
e (x(n” + k' (k — 1)n..2n")))
(5.15)

The range of g2*" is {1,2,...2k"RI\ 5 (1,2, 2l¥'"R1}k For 4¥+£, 3 vector of length &'+,
€{1,2,... 2RIk 5 £1,2,.. 2RI}k define

b2n”(ak’+k) é(flen(ak+k’(1)),fkn(ale+k'(2)), . ,fk"(ak"'kl(k/)),
FER G R A1), R 42, SR EE R R 5.16)
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R+R

Lemma 5.3. The jump source-code t has rate

Proof. The range of g2*" has cardinality 28 [k7RIHE'E'nR') /| knR |4+ k' | k'nR'| < |k'knR+
kk'nR’] = n"(R + R’). It follows that the cardinality of the image of g2 < 2l7"(R+R)]

=gl M| Thus, the jump source-code ¢ has rate =5~ R+R O
Note 5.39. By an extension of the above definition, equal time sharing can be defined for
random jump source codes. We would have no need for it, and the notation becomes compli-
cated; hence, we do not define it.

Lemma 5.4. VX, RE % (57) is a convex function of D for D € (0,00). As a corollary, Rf( (D,j)is
continuous function of D for D € (0,00).

Proof. Let s =< s¥” >% be a rate R jump source-code such that expected distortion D is
achievable when encoding i.i.d. X source. By Lemma 5.1, there exists a rate R determin-
istic jump source-code with expected distortion D when encodmg iid. X source. Thus,
without loss of generality, assume that s is deterministic. Let s’ =< s’*” >% be a rate R’
jump source-code such that expected distortion D’ is achievable when encoding the i.i.d. X
source. By Lemma 5.1, there exists a rate R deterministic jump source-code with expected
distortion D’ when encoding i.i.d. X’ source. Thus, without loss of generality, assume that
s’ is deterministic. Denote n” = k&’n. Define the random variables

D4, Z-dk" (X" (1.kn)), Y2 (1..kn)) (5.17)
D,y 7:d’"' (X" (kn+1..2kn)), Y* (k1 +1..2kn)) (5.18)
Dy yn = k—dk” (X" (k(k' = D)n+1.2")), Y2 (k(K' = )2 +1..2")) (5.19)
and
D] K = ?—dk ” (in (n" + 10" + k'n), Y*E 7 (" 1. n”+k'n)) (5.20)

D; = k’ dk/ (Xz””(n" +h'n41.0" + 28" n), Y (0" 4 k' n+ 10" +2k'n)) (5.21)

D, AL gk (X2"”(n”+k’(k-1)n..zn"),Y2kk'"(n”+k’(k-1)n..zn”)) (5.22)

kk'n b'n
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The expected distortion produced by the jump source-code ¢ which equally time shares be-
tween s and s’ satisfies, by construction,

hmmmEULh]<D1<z<k'mdhmmmEUY J<D 1< <k (5.23)

n—o0 n—00
The expected distortion produced by the jump source-code ¢ is

limsup E [—dz" (X 2””, Yz””):l
2n

n—00

=limsup E I:Z 2‘,:,"+Z D :|

n—oo i=1

k/
=limsup (Z k/E[ tkn]+szE[ 'n])

n—00 i=1

_Z hmsupE[D,,k,,]+Z—-hmsupE[D, en]

n—0c0
ZQHD+2}—U

_D+U
T2

(5.24)

Thus, expected distortion D—*QD—I is achievable with the rate 2= jump source-code ¢t when

encoding the i.id. X source. It follows that RE(D, ;) is rmd-pomt convex for D € [0, c0).
Rf,(D, 7) is a decreasing function of D, and hence, the inverse 1mage of an interval is an
interval. Thus, X(D, J) is a measurable function of D. Thus, R%(D) is mid-point convex
for D € [0,00) and Lebesgue measurable for D € [0,00). By Slerpmskl s theorem, X(D 7)

is a convex function of D for D € (0,00). As a corollary, X(D, 7) is a continuous function
of D for D €(0,00). O

R+R

Note 5.40. The above proof does not hold for the uniform X source. The special structure of
the i.i.d. X source is used.

Note 5.41. Sierpenski’s theorem says that a Lebesgue measurable, mid-point convex function
on an open interval is convex. Sierpinski’s theorem was invoked above to prove that R%(D, )
is convex. In fact, we do not need to use Sierpinski’s theorem. There’s another theorem which
says that a mid-point convex function on an open interval which is not convex is everywhere
discontinuous. Now, R% (D, ;) is a decreasing function of D and thus, has at most countably
many discontinuities. Also, as proved above, R%(D, 7) is a mid-point convex function of D.
Thus, RE(D, j) is convex for D € (0,00).
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Lemma 5.5. Let (R, F,P) be a probability space. Let <, 2,,...,. o, be measurable sets such
that Pr(f;) > 1-8;. Then Pr(N_ ;) > 130" 3.

Proof.
Pr(»d] N ‘dZ) =
Pr(.))+Pr(;) = Pr( U ) > (1-8))+(1=8,)—-1=1-(8,+5,) (5.25)
By induction,
Pr(N_, @) 218, (5.26)
i=1
O

Lemma 5.6. VX, RL(D, j) is convex on D €(0,00). As a corollary, RE(D, j) is continuous for
D €(0,00).

Proof. Let s =< s*” >$° be a rate R jump source-code such that probability of excess dis-
tortion D is achievable when encoding i.i.d. X source. By Lemma 5.1, there exists a rate R
deterministic jump source-code with probability of excess distortion D when encoding i.i.d.
X source. Thus, without loss of generality, assume that s is deterministic. Let s’ =< s >
be a rate R’ jump source-code such that probability of excess distortion D’ is achievable when
encoding the i.i.d. X source. By Lemma 5.1, there exists a rate R deterministic jump source-
code with probability of excess distortion D’ when encoding the i.id. X’ source. Thus,
without loss of generality, assume that s’ is deterministic. Denote n” = kk’n. Define the
random variables D ;,,,1 < i < k', Dj,k’ml <7 <kasin Lemma 5.4. Then probability of
excess distortion produced by the jump source-code ¢ which equally time shares between s
and s’ satisfies, by construction,

Pr(D;4,>D) =€, »0asn > oo V1< i <k 6.27)
Pr(D;y,>D') =€y, —0asn >0 V1<j <k (5.28)
Thus,
Pr(D;y,<D)=1-¢, (5.29)
Pr(Dy, <D )=1-¢y, (5.30)

For the jump source-code ¢, when the block-length 7,

D+D’)
<

l 7 " /'’
Pr <_d2n (XZn ,YZ" )_
n 2
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¥ D /
k'n D+D
—Pr Z skn+ <
’

D; D D;
t,/m<__l<.<k and —2kn <—D—1<]<k)

2k T2k 2k T2k’
=Pr(D;4,<D,1<i<k andD;, nSD1<j<k)

ik
=Pr (n{c/ 1 {Dx kn < D} n?“l {Df’kl” < D,})

(Z €hn +Z €4/n ) by Lemma 5.5

i=1

=1—(key, +F' fk,,)—-» lasn— o0 (5-31)
Thus,
1 4 2 /" D + D’
lim Pr (-d“ x>, Y>> ) =1 (5.32)
n—o0 n
Thus, probability of excess distortion —'L' is achievable with the rate % jump source-

code ¢ when encoding the i.i.d. X source It follows that R% (D, ;) is mid-point convex for
D €[0,00). R% (D, ;) is a decreasing function of D. By an argument similar to Lemma 5.4, it

follows that RP v(D; J) is a convex function of D for D € (0,00) and hence, also, a continuous
function of D for D €(0,00). (|

Note 5.42. The above proof does not hold for the uniform X source. The special structure of
the i.i.d. X source is used.

Note 5.43. The proofs of Lemmas 5.4 and 5.6 provided above do not work for the functions
RE(D) and RE(D). This is one of the reasons for defining the jump source-codes and the jump
rate-distortion functzons RE(D 5D, j)and R? v(D; ). There are other reasons which will be provided
at the right place.

Next we prove the equality of the rate-distortion function with jump source-codes and when
jumps are not allowed.

Equality of rate-distortion function with jump and usual source-codes: Rf‘, (D,j)= Rf((D)
and RL(D,j)=RE +(D)

We prove results concerning relations between achievable distortion levels and rates for source-
codes and jump source-codes for thei.i.d. X source, and as a consequence, prove that R% (D, /)
= RE(D) and RE(D, /) = R%(D).

For this, we first need to define an interpolation code.
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Definition 5.35 (Interpolation code). Let s =< s#” > be a jump source-code. We construct
the interpolation code ¢ =< t” > as follows:

Let 7 €{0,1,2,....k — 1}
Let (e*”,f*") € EE(R) x FEM(R). Fix ay € ¥ arbitrarily. Define (b7, fhntry €
EETHT(R) x FEM1(R) as follows.

e/erz+r(xkn+r) =ekﬂ(xkn) (5.33)
(5.34)

Note that the range of e*"t7 is {1,2,...,2f7Rl} ¢ {1,2,...,2le»+"RI} 1f 4 €{1,2,...,2k7R]},

@) =" @), 3, 9,09) (5.35)
where, in the above expression, the numberof yis r. lfa € {2lknR] 1, .. ,2(kn+7)R] }, define
fkn+r(4)=(y:y,---,y) (536)

where the number of y in the above expression is k7 + 7.

Define ptk,m(ek”"” fRrtr) = P en (ek", f*m) where (e*”, f¥") € 6’;,”(R)x<97;,”(R) and (ek™t7,
fE+7Y is as above.

This defines the source-code t =< " >%.
Note that t#7 = sk,

Note 5.44. In the interpolation code, one can think of interpolation as being done in the
trivial way. Also, for 7 € {0,2,...,k — 1}, t#7+" acts as s¥” on the initial block of length k.

Lemma 5.7. If's =< s¥" >% hus yate R, the interpolation code t =< t” >% also has rate R.
1 1

Proof. This is clear from the definition of the interpolation code. O

Lemma 5.8. If expected distortion D is achievable with a jump source-code s =< s*” > for
the i.i.d. X source, expected distortion D is also achievable with the interpolation source-code
t =< t" > for the i.id. X source.

Proof. Expected distortion D is achievable with jump source-code s =< s*” >%° for the iid.
X source. That is, for the source-code s,

1
E —_—

kn g7k d*"(x** Y**)| =D, where limsupD,, <D 5.37)
24 Gl kn P Lokn

n—oo
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For the interpolation code ¢, for r € {0,1,2,...,k — 1}, for block length &z + r,

1

kn+r
1

kn+r

d’(Xk”+'(kn+l..kn+r),Y’(kn+1..kn+r)))]
_ kn E 1
—m Xlen+rylm+r [E

Ean-H‘ yhntr [ dkn+r(an+r, Yk”""')]

=E gkntr phnir [ (dF*(XE" (L), Y*7 (L kn))+

dk"(Xk'H-r(l..kn),Yk"+r(1..kn))]

1
+ Py rEankam [d’(Xk"*’(/en +1.kn+7),Y (kn+1.kn+ r))]
1 D
<E gintrphontr [Edk"(X"”“(l..kn), Yk”*"(l..kn)):l + krn_:% (5.38)

By construction of the interpolation-code, t#7+" acts as s*” on the initial block of length k7.
It follows that

D
dkn+r(an+r’Ykn+r):| <D, + 7 max (5.39)

Exkn+rykn+r [k kn T

n+r

It follows that

lim Sup E s pinsr [ - d””*'(X”"*’,Y""*')] <D (5.40)

n—0o0

n+tr

Thus, expected distortion D is achievable for the interpolation source-code ¢ for the i.i.d. X
source. O

Lemma 5.9. If probability of excess distortion D is achievable with a jump source-code s =<
skn >0° for the i.id. X source, probability of excess distortion D + ¢ is achievable with the
interpolation source-code t =< t" >%° for the i.i.d. X source, Ve > 0.

Proof. Probability of excess distortion D is achievable with jump source-code s =< s** >
for the i.i.d. X source. That 1s, for the source-code s,

1 .
kanykn (Edk”(xkﬂ’ Ykn) > D) = fkn Whel’e nl'i’ngo Gkn =0 (5‘41)

For the interpolation code ¢, for r €{0,1,2,...,k — 1}, for block length k7 + 7,

kan+r Ykn+v < dkn+r(Xk”+r, Yk”+r) > D + f)

kn+r

=Poghntr phntr ( Py (@b (XEmt (1. kn), Y*"47 (1.kn))
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+ d'(Xk”+’(kn+1 kn+71),Y (kn+1. kn+r))) >D+e)

P hntr phntr ( = d’"‘(Xk”‘“'(l kn), YR (1.kn))

+k e —— "X (kn+ 1 kn+ 1), Y (kn+ 1. kn+r))>D+e>

S Pyhntr phntr (k—ndk"(X"”*’(l..kn), Y** 7 (1.kn))

1
+ k—-_-i_—d’(Xk”"”(kn +1.kn+7r),Y (kn+1.kn+7r))>D +e) (5.42)
n+r

rD
- d’(x",y") < Z :ax < ¢ for n sufficiently large, Vx" € X'7,y” € " . It follows that
n+r n+r

for n sufficiently large,

1
pxkn+rykn+r <k__dkﬂ(Xkﬂ+f(1"kn)’ Yk"'H(l..kn))
n

b AT (X (kn At Lkn 7)Y (bt Lokn 7)) > D+ f)
kn+r
1
S (Ed"”’(Xk"“(l..kn), Y* (1. kn)) +¢>D + e>
1
=Pyhnir phnir (Edk"(Xk"""'(l..k n), YE"7 (1.kn)) > D) (5.43)

By construction of the interpolation code, ¢, for the first £z block, t¥7*" behaves as s#7. It
follows that for » sufficiently large,

kn

Thus, for 7 sufficiently large,

1
Pxhnryhnir (-—-dk"(Xk”+’(1..kn), YR (1.kn)) > D> =¢p, *0asn—o00 (5.44)

1
kn+r yrkntr dk"+r an+r, Ykﬂ""f > D + € S € b 0 asn — oo 5.45)
Phntrytnis | kn

+7r
(5.46)

Thus, Ve > 0 probability of excess distortion D is achievable for the interpolation source-
code ¢ for the i.i.d. X source. a

Lemma 5.10. For D € [0,00), RE(D) = RE(D, j) and for D € (0,00), RF(D) = RE(D, ).
R%(D) and RE (D) are convex and continuous functions of D for D € (0,00).

Proof. For every rate R, the set of rate R source codes which code the i.i.d. X source is a
subset of the set of rate R jump source-codes which code the i.i.d. X source. It follows that
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)E( ) > RE (D, j)- From Lemmas 5.7 and 5.8, it follows that RE £(D) < RE(D,j). Thus,
R (D) (D ) From Lemma 5.4, it follows that R (D) is a convex a.nd continuous
functlon of D for D €(0,00).

For every rate R, the set of rate R source codes which code the i.i.d. X source is a subset of
the set of rate R jump source-codes which code the i.i.d. X source. It follows that RE (D) >

(D 7). From Lemmas 5.7 and 5.9, it follows thatVe > 0, RZ yD+e) < RP(D ]) In
other words, R, (D) < RE(D — ¢, ). Taking limit as € — 0, and by the contmunty of RE(D)
for D € (o, oo) (I.emmma 5.6), it follows that for D € (0,00), RE (D) = RE(D, ). Smce

(0) > R%(D, ;) and since R% (D) is convex for D € (0 00) (Lemma 5.6), it follows that
RP % (D) is convex for D € (0, oo) By the continuity of R%(D, ;) for D € (0,00) (Lemma 5.6),
it follows that R? % (D) is a continuous function of D for D € (0,00). O

Next we prove the equality of the rate-distortion function when jump source-codes are al-
lowed and with the inf definition

Proofs that RZ (D, inf)=RE %(D,j) and RE(D,inf) = RE v(D1)

Next we compare achievable distortions levels and rates for jump source-codes with inf-
achievable distortions and inf-achievable rates for source-codes, and as a consequence, will
follow that RE(D,inf) = RE 2(D,j) and RE(D,inf) = RE %(D: 7). For this, we need to define
jump repetition code.

Definition 5.36 (Jump repetition code). Let s = (e, f*) e é’;(R) X 9;,(R). We construct
a jump repetition source-code s =< sk” >P=< ekn, gkn >{° as follows:

Let x*” € ¥, Define
e®7(x*7) = (e® (k7 (1..k)), e (x*7(k + 1.2R)),..., e (¥ (n — Dk + 1.2k)))  (5.47)
Fora” €{1,2,... ,2“’1}”, define

¥ @) = (@), fH @ (2),-... (@ (n)) (5.48)

This defines the jump repetition code s.

Note 5.45. The jump repetition s code can be defined, analogously if s* € 2 (&% g (R)X% Pk 2 (R).
In this case, the j jump repetition code will be random. We will not have need for thxs, and
hence, we omit a precise definition.

Lemma 5.11. If s¥ = (e*, f¥) e & (R) x Fk a-(R), the jump repetition code s =< skn >r=<
ekn, frn > corresponding to s* bas rate R
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Proof, The image space of e*” is the set {1,2,...,2l%]}”. The cardinality of this set is 27l%! <
2147 Thus, the jump repetition code s has rate R. O

Lemma 5.12. Let s be a rate R source-code for which expected distortion D is inf-achievable
when encoding the i.i.d. X source. Then, V¢ > 0, there exists a rate R jump source-code for which
expected distortion D + € is achievable when encoding the i.i.d. X source.

Proof. Let s =< s” >% be a rate R source-code such that expected distortion D is inf-
achievable when coding the i.i.d. X source. By Lemma 5.1, there exists rate R deterministic
source-code such that expected distortion D is inf-achievable when coding the i.i.d. X source.
Without loss of generality, assume that s is deterministic. There exists a sequence 7; / 0o
such that for the source-code s,

1
Eynymi l:—d”"(X"*’, Y”")] <D+¢;, wheree; »0asn; /oo (5.49)
n;
Denote
L1
D, =—d"(X",Y"™) (5.50)
L ni

Lett, =< t,;'i"” >%° denote the jump repetition code corresponding to s™:. Fix #; and denote
n;n = n". For the source-code ¢, , denote,

1
D,, = ;d"i X""(1om;), Y (1..m))) (5.51)
a1
D,,= —d%( X" (n; +1.2n,), Y™ (n; +1..2n;)) (5.52)
i
L1
D",".' =—d™%( X" ((n — Dn; +1.0n,),Y""((n — Vn; + 1..nn;)) (5.53)

1

By the definition of the jump repetition code, D, ;,1 < k < n; are independent and identi-
cally distributed random variables, each having distribution D,, . For the source-code ¢, ,

1
EX"i"Y"i" {.r_l'_n.dﬂiﬂ(X”iﬂ, Y‘",‘")]

n
=E |:Z Dj’"i]
j=1

: i
== > ED,
n j:] 1%
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>3
=—>» ED_
nig
=EDn‘_

Thus, expected distortion D +e¢; is achievable by use of the rate R jump source~code t,, when
source-coding the i.i.d. X source. Note that ¢; = 0as n; / co. It follows that Ve > 0,
there exists a rate R jump source-code such that expected distortion D + ¢ is achievable when
source~coding the i.i.d. X source. (]

Lemma 5.13. Let s be a rate R source-code for which probability of excess distortion D is inf-
achievable when encoding the i.i.d. X source. Then, Ve > 0, there exists a rate R jump source-code
for which probability of excess distortion D + € is achievable when encoding the i.i.d. X source.

Proof. Let s =< s” >%° be a rate R source-code such that probability of excess distortion
distortion D is inf-achievable when coding the i.i.d. X source. By Lemma 5.1, there exists
rate R deterministic source-code such that probability of excess distortion distortion D is
inf-achievable when coding the i.i.d. X source. Without loss of generality, assume that s is
deterministic. There exists a sequence 7; / 0o such that for the source-code s,

1
Pxriyni (;d”i(X"i,Y”i)>D) =¢;, where¢; »0asn; /oo (5.55)

:

Denote D, as in the previous lemma.
3
ED, <(1-¢€;)D+¢;D,, and D, has finite variance.
Let L, be as in the previous lemma. Denote D,,’,,l ,Dn’”z, e ,DM‘_ , as in the previous lemma.

By the definition of the jump repetition code, D, ,,1 < k < n; are independent and identi-
cally distributed random variables, each having distribution D,,i .

Let & >0.

For the source-code Ly

1
Pr <—-—d"i"(X”i”, Y™") > (1— €D +¢,D,., +3)
n;n

n
=Pr (ZDi’"i > (1 - ei)D+€iDmax+8)
=1

—0 as 7 — oo by the weak law of large numbers (5.56)

Thus, probability of excess distortion (1 — ¢;)D + ¢,D,,, + & is achievable by use of the
rate R jump source-code ¢, when source-coding the i.i.d. X source. Note that ¢; — 0 as
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n; / oo and & > Ois arbitrary. It follows that Ve > 0, there exists a rate R jump source-code
such that probability of excess distortion D + ¢ is achievable when source-coding the i.i.d. X
source. a

Lemma 5.14. For D €(0,00), R%(D, inf) = RE(D, ) and R%.(D,inf) = RE(D, j). RE(D, inf)
and R?, ' (D, inf) are convex and continuous functzons of D for D € (0,00).

Proof. First, we prove that R%(D, inf) = (D, 7)- By definition of RE (D, inf) and RE (D, ),
it follows that VD € [0,00), RE (D,inf) < R %(D, 7). By Lemma 5.12, it follows that Ye > 0,

RE(D +¢,j) < RE (D inf). By Lemma 5. 4 RE(D,j) is a continuous function of D for
D € (0,00). It follows that by taking ¢ — 0, that for D € (0,00), RE %(D,inf) = RE v(D, 7). By
Lemma 5.4, R X(D inf) is a convex and continuous function of D for D €(0,00).

Next, we prove that R X(D,mf) = X(D, 7). By definition of RE(D,inf) and R§(D, )it
follows that VD € [0 00),R%(D,inf) < RE(D,j). By Lemma 5.13, it follows that Ye > 0,
RY(D +¢,7) < RE(D,inf). By Lemma 5.6, RE(D,j) is a continuous function of D for
D €(0,00). It follows that by taking € — 0, that for D € (0,00), R%(D,inf) = RE(D, /). B
Lemma 5.6, R X(D inf) is a convex and continuous function of D for D €(0,00). EI

Note 5.46. Anotber reason for the mtroductzon of jump source-codes is that in order to prove
that R%(D) = RE(D,inf) and RE(D) = RE(D,inf), in our proof technique, we need to pass
through jump-source-codes: we pro've that RE (D) RE(D,j) and RE(D,inf)=RE (D, ;) from
which it follows that RE £(D) = RE(D, mf) and szmzlarly, we prove that R (D) RE(D, )
and R (D,inf) = RY (D, ) from which it follows that R%,(D) = RE(D, mi) This is because,
in order to prove that RE *(D) =RE(D, 7), we converta jump source- code into an interpolation-
code, and in order to prove that R % (D,inf) = RE(D, j), we convert a code for the inf problem
into a repetition code, which is a sequence of jump source codes. Exactly the same happens with
the probability of excess distortion criterion. Passing through jump source-codes cannot be avoided
in our proof technigue. There is one more reason for the introduction of jump source-codes which

will be provided at the right time.

Next, we prove relations between the rate-distortion functions for i.i.d. X and uniform X
sources.

Relation between the rate-distortion functlons of the i.i.d. X and uniform X sources, and
proofs of RS (D) = RE £ (D) and RE(D) = R (D), RE(D,inf)=RE 7(D, inf) and RL(D, inf) =
RE(D,inf)

Let X be such that py(x) is rational Yx € &. We prove relations concerning rates and

achievable distortions for i.i.d. X and uniform X sources. As a consequence, we prove that
RE(D)=RE y(D) and RE(D)=R?! (D). Similarly, we prove relations concerning rates and
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inf-achievable distortions for i.i.d. X and uniform X sources, and as a consequence, prove
that R%(D,inf) = RE (D, inf) and RE (D, inf) = R (D, inf).

Definition 5.37 (Hamming distance between codewords). For x,x’ € &, dy(x,x’) = 0 if
n
x'=x and dy(x,x") =1if x' #x. For x", 2" € X", d},(x",x") £ D dpy(x"(i),y"(i))-
i=1

Lemma 5.15. For x",x” € X", y" € ¥", d"(x",y") < Dy, d7(x", x™*) + d"(x" ,y")

Proof.
d"(x",y") =
= D dE"E"E)+ DL dx"(),y™(i)
{i|x"(i)£x™(i)} {ilx(i)=x"(i)}
= >0 dE"G"EN+ DL dE(E),y"(6)
{ilx™($)£x" (i)} {i|x™(i)=x"(i)}
<Al (x",x"™)Dypa +d"(x",y") (5.57)

a

Definition 5.38 (/! distance between probability distributions). Let p and ¢ be probability
distributions on &'. The /! distance between p and g is d;(p,q) = D | |p(x) — q(x)|
x€X

Let X' be an arbitrary random variable on &. X’ =< X' > is the i.i.d. X’ source.

The following two constructions will be needed. Let X be such that py(x) is rational Yx €
x.

1. Given a source-code s for uniform X source, construct a jump source-code s’ for i.i.d.
X’ source. This construction is such that if X’ has the same distribution as X, the
source-code s’ is “close to” s

2. Given a source-code ¢ for 1.i.d. X’ source, construct a source~code ¢’ for uniform X
source. This construction is such that if X’ has the same distribution as X, the source-
code ¢’ is “close to” ¢

The two constructions are described in detail below.

Construction 5.1. Let X' is arbitrary. Let X satisfy that py(x) is rational Vx € &'. Recall
that 7, is the least positive integer for which 7y py(x) is rational Yx € & Recall that »’ = nyn.

Let s =< s" > be a (possibly random) rate R source-code used for source-coding uniform
X.
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Definition 5.39. Let ¢ > 0. For x” € ", define

/ / / / 1 / / 7
& (x")= {u" EU” : ?d}"l (x",u")< dl(pX,pX/)+e} (5.58)
Definition 5.40. The transition probability & : " — P (%" defined as
o (1 7 if u € E”’(x"/) and f”l(x”’) #é
k7 (0" |x") = 0 if u”' ¢ é‘n (x") and é‘n (x” )75 é (5.59)

uniform on %" if &7 (x" ) ¢

Definition 5.41 (Construction of jump source-code s’/ from source-code s). Consider the
transition probability ¢ : " — P (¥") defined as ¢’ =k’" o q" Recall Definition 5.7
for the definition of transition probability ¢, corresponding to a source-code s.

There exist rate R jump source~codes s’ =< s >%° with input space < " >{° and output
space < #” >, such that qs’i' = ¢"". One such jump source-code is the following. Let

<e” f" >%° be a deterministic jump source-code with domain < % ! >$° and range <
%" >°. The sourcecode s gives a probability to this deterministic source-code given by

P (e, f7). Let < g" >% bea sequence of deterministic functions where g” has domain

& and range %" . Then, < g” ce” , f" >{° is a deterministic jump source-code with input
space < X" >° and output space < ¥/” >°° Define the jump source-code s’ as

P (8" "oe”,f") 5[ IT #7 " ")x" )]P (e f) (5.60)
x” e.%‘"
Note that

> pughee” fM)R [ I k’"'(g"'(x"')lx"')] pa(e”. fM)=1 (561
x”,,e”,,f",,g”/ xnlex”/

(5.60), thus, defines a jump source-code with input space < " >2° and output space <
4 >{°. It can be checked that g, = q"

See Figure 5.1.
Lemma 5.16. Jump source-code s’ has rate R

Proof. The only deterministic jump source-codes on which 5" possibly puts positive mass
are those of the form (g% 0e”, ). g” oe” has domain & and range {1,2,...,2"'R!} and
/™ has domain {1,2,...,2" R} and range #"". Thus, the only deterministic functions that
5" possibly puts positive mass on € 87 (R) x F" (R), where £ (R) and F" (R) are defined
in Subsection 5.4.1 It follows that the jump source-code s’ has rate R. (]
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sﬂ

xn > yn >{1,2,...,2"R]} —— yn

.zn-g\ .

N

z" is mapped to u™ with probability ﬁ;, if u™ € £7(z™)

Figure 5.1. Construction of jump source-code s’ from source-code s

Lemma 5.17. Pr(§” (X" )= §) — 0 as n — co.

Proof. The idea of the proof is the following. If x” is generated i.i.d. X’, with high probabil-
ity, we will show the existence of a #” such that

1 / / /
7“'13 (x",u") <d\(px,px) +e¢ (5.62)

Let x” € X" . Define:

%, = {x|p v (x) < px}

%, = {x|p_(x) > px}

2, 2 {ilx" () =x)

fxeX,2,=2,

If x € ), define &, C P, such that |2, | =n'py(x)

Consider a #” which satisfies the following:

1. fi € @, forsome x, u” (i) 2 x

2. If i ¢ @, for any x, define #” (i) in such a way that the empirical distribution of #” is
Px- This is possible by definitions of 2, and 2, and the relations between the cardi-
nalities of these sets. #” can be thought of as a function, u”/(x"/) of x”.
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1 / / !
7d1”{(x” ,u")

1 /
== 2 |n'p ()= n'px(x)|
x€X

= 3" 1p ()~ px ()

x€X
< Dl () = pxe(x) + pxr(x) = px(*)I]

x€X

=D [P, ()= px (M1 + 2 [pxe(x) = px(x)]

x€X x€X

=3 [p, (%)= px(x)] +dy(px, ) (5.63)
x€X

Thus,
1 / / 4 /
Pr (7‘1;"105’” W7 (X)) > dl(PX’PX’)‘i"‘)

<Pr (Z Upgm (%)= pxe(2)] < f)

x€X
—1 as n — oo by weak law of large numbers (6.64)

O

Definition 5.42. If the input to the jump slourlce-code f’ is i.i.(/i. b ¢ sequence, for block-length
n’, we get a joint random-variable X’” V" Y™ on X" x %" x ¥™ with the corresponding
joint probability distribution p; =p, ./ ../, given by

Py & )= P B W (87 7 ) (0 |47 (5.65)
V" is the marginal random variable on %"
Next, we want to prove that V' has the same distribution as the uniform X source of block-

length n’, U % For this, we need a few definitions and lemmas.

Definition 5.43 (Permutations). Let 7" be a permutation of (1,2,...,7’). Fori € {1,2,...,7'},

7" (i) is the image of i under the permutation n” . The set of all permutations of (1,2,...,7’)
is denoted by I1” . For x” € X" ,y" € ¥, define,

7 (x") 2 (x" (7 (1), 2" (7" (2))y.. ., x" (7" (1)) (5.66)
2" (") E G (T Wy (1 @)y (n" (n))) (5.67)

Foraset &, n" A= {n" ala € o).

7
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Lemma 5.18. If x" ,x"" e X", x” #x', then " (x" ) # n" (x™)

Proof. x™ # x™ = 3i such that x" (i) £ £ (i) = x" (n" (i) # x™ (2" (i) = 7" (x") #
n”'(x”’/). .

Lemma 5.19. |£s”'(x”')| depends only on the type of x™

Proof. Let x™ and x™ have the same type. Thus, x” = 7"'x" for some permutation
7", For u” € U, dr(w” ,x") = a2 (n" w” ;2" ™). Thus, n”’é;:’/(x”') C &7 (x™).
By Lemma 5.18, |2 £7 (x")] = |£f”'(x" )I- Thus, |€7 (xl" N <X (x™)]. The same argu-
ment with x'” interchanged with x” proves that €7 (") <17 (x™)]. Thus, |7 (x")| =

€7 (™). O
Definition 5.44. |£""(q)| = |£6"'(x ")) if x” has type ¢, which by the above lemma, depends
only on the type of "

Definition 5.45. For #” € %", n:’;(u”l) 2 (x"|x" € X", x" has type g, 4" € ff"l(x”/)}.

Lemma 5.20. |77;"q(u"')| is independent of the particular u” € U" .

Proof. All sequences #” € %" have the same type py. The proof of this lemma follows
exactly as the proof of Lemma 5.20. a

Definition 5.46. |17 (g)| £ [, (#™)| for #” € %™, which, by the above lemma, is inde-
pendent of #” .

Lemma 5.21. The random variable V", defined in Definition 5.42 has the same distribution as
U”, that is, uniform on U ",

Proof. Forx" e X", p ot (X "'} depends only on the type q of x". Py (% "'} is denoted by
P X (q )
pyw(#™)= 20 Py R w7 ")
mex”
= 3 pew (R )+
= e £ (x"' )4

D P (W |x™)

x"le.%'"’,f("/(x",)=¢
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=2 > Do (7 W (™ | )+
q xn’ e%n’,é“n’(xn’) # ¢
x" has type ¢

> pw R (W Ix™)

< e &7 (x )=

In?(9)l /
=Zp /ul(q)—‘/_+ Z p w (x7) 7
—~ X IE7 (9] o ea £ ()= X |27 |

which is independent of #” (5.68)

Thus, p.,,/ is uniform on % ", O

This construction ends here.

Construction 5.2. Let X’ be arbitrary and X satisfies that py(x) is rational Vx € . Recall
that 7, is the least positive integer for which 7 py (x) is integer Vx € &'. Recall that »’ = ngn.

Consider the joint random variable X' V" on & x %™ with corresponding probability
distribution p. , given by

pX,”/V"/(x"/, #")= pX,"/(x”/)k'”l(u",|x"/) (5.69)
Recall Lemma 5.21 that p,/ is uniform on % ",

Definition 5.47. Pyt ot €30 be factored the other way:
Pty (&7 587 ) = s (WY (| (5.70)

Let ¢ =< t” >7° be a rate R source-code used for source-coding i.i.d. X source.

Definition 5.48 (C9nstru::tion of sogrce-code t froxln sour,ce-code t). Consider the transi-
tion probability 7" : %™ — P(¥™ ) defined as " =1"" o4’ . Recall Definition 5.7 for
the definition of the transition probability g, corresponding to a source~code ¢.

There exists a rate R source-code t’ =< ¢'” >% with input space < % n >%° and output
/ - .

space < ¥ >%° such that qt",' = 7" The construction of such a source-code ¢ is analogous

to the construction described in Definition 5.41 and hence, omitted.

Lemma 5.22. Source-code t’ has rate R

Proof. The proof is analogous to the proof of Lemma 5.16, and hence, omitted. ]
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sﬂ.

ur - yn =(1,2,...,2lnR]} —— yn

u™ is mapped to ™ with probability I (z™ |u™)

Figure 5.2. Construction of source-code ¢ from source-code ¢

Deﬁmtlon 5.49. If the input to the source-code t/ is uniform X sequence, for block-length
n’, we get a joint random-variable U” T7 Y™ on %" x X" x %™ with the corresponding
joint probability distribution pj = Py / given by

T" Y”
PR )= o WO (2 |67 )g o (7 |2 (571)
T* is the marginal random variable on "',

Lemma 5.23. T has the same distribution as X", that is, Prw = Py
Proof. This follows from Definition 5.47 O

See Figure 5.2.
This construction ends here.

Lemma 5.24. Let X' be arbitrary and X satisfy that py(x) is rational Vx € &. Let 8 > 0.
If there exists a rate R source-code for which expected distortion D is achievable when source-
coding the uniform X source, then, there exists a rate R source-code for which expected distortion
D +D,,,d(px, px’)+ & is achievable when source-coding the i.i.d. X' source.

Proof. Let s be a rate R source code using which, expected distortion D is achievable when
source-coding the uniform X source. Recall the construction of jump source code s’ in Con-
struction 5.1 which is used to source-code the ii.d. X’ source. First, we get a bound on
achievable expected distortion for jump source code s’ when coding the i.i.d. X’ source.
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Recall Definition 5.42 for the definition of ;.
1 / 7 / 1 7 7 4 1 / /
—,d" (x",y")< -—,dI’_'I(x" 4" D+ ;7‘1”(“” ,9" ) by Lemma 5.15

1 7 7 4
> 2 e )| )] <

,“ )y

1 Vs / /
Z P](x “ ’y )[;d;}(x"!””)Dmax]

!y

+ Z p](x " ,y )[—d”( "):| (5.72)
r
That is,

1 7 7 7 l / / /

E [_’dn (Xln ,Y” )] [_dn (Xln Vn )Dmax] [__’dn (Vn ,Y" )]

n n

1 7 / 7

=E [—;d,'}(X/" , v )] D, . +E [—;d” (vr,y” )]

n n
<Pr(E7(X™) # Ny (px>px) + D+
Pl’(é;"/ (X/n/) - ¢)Dmax+
1 7 / /
E [7d” v,y )]
1 / / /
<(di(px px') +€)Dpax +E [7d" (vr,y” )] +
Pr(E” (X"™) =)Dy (5.73)
Thus,
1 7/ / /
limsup E [——,a’” X", y" )] <
n—00 n
lim sup(dy(px, px')+ €)Dpmaxt
1 ! 7/ 7/
limsup E [—,d” vr,y” )] +
llmsupPr(f” Xln) ¢) max

7—00
(5.74)

limsupE [—d” x™,y” )] is the expected distortion produced by the jump source-code

n—o0

1 / / /
s’ for the iid. X’ source. pyw is uniform and thus, limsup E [ —=d"(V",Y" )] is the
n

n—oo
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expected distortion produced by the source-code s for the uniform X source. Pr({f"'(X m —
@) — O as n — oo by Lemma 5.17. It follows that if s is a rate R source-code for which
expected distortion D is achievable when source-coding the uniform X source, then, s’ is
a jump source-code for which expected distortion D + D, (d,(pyx, px’) + €) is achievable,
when source-coding the i.i.d. X source.The source-code s’ can be interpolated to get a rate R
source-code s” for which expected distortion D +D,,,, (d;(px, py') + €) is achievable when
source-coding the i.i.d. X’ source. Such a source-code s” exists for each ¢ > 0. By choosing ¢
such that D, e = &, the lemma follows. O

Note 5.47. This brings us to the final reason for the introduction of jump source-codes for source-
coding i.i.d. X source. In the above lemma, we derive relations between Rf](D) and R)E‘,,(D).
This is done by the use of Construction 5.1 Construction 5.1 constructs a jump source-code for
source-coding i.i.d. X' source given a source-code for source-coding the uniform X source. A direct
construction of a source-code for the i.i.d. X' source from a source-code for the uniform X source
is not possible because a source-code for the uniform X source is defined only for certain block-
lengths. This also justifies, why we do not need to define jump source-codes for the uniform X
source. Given a source-code for the i.i.d. X' source, we can directly construct a source-code for the
uniform X source by use of Construction 5.2: this is a source-code for the uniform X source, not
a jump source-code. Two other reasons were given previonsly for defining jump source codes for
source-coding i.i.d. X source. Firstly, to prove convexity and continuity of Rf{ (D) and R;;, (D),
we have to first prove the same for the jump rate-distortion function. Secondly, to prove that rate-
distortion functions for i.i.d. sources with liminf and limsup definitions are the same, we have
to go through jump rate-distortion function. These reasons do not exist for the uniform X source
because these results are not proved directly for the uniform X source: they are proved indirectly
by proving equality with the corresponding rate-distortion functions for the i.i.d. X source and
then invoking these results for the i.i.d. X source.

Lemma 5.25. Let X' be arbitrary and X satisfy that py(x) is rational Vx € &. Let 8 > 0.
If there exists a rate R source-code for which expected distortion D is achievable when source-
coding the i.i.d. X' source, then, there exists a rate R source-code for which expected distortion
D+ D, d\(px, px')+ & is achievable when source-coding the uniform X source.

Proof. Let ¢ be a rate R source-code using which, expected distortion D is achievable when
source-coding the i.i.d. X’ source. Recall the construction of the source-code ¢’ in Construc-
tion 5.2 which is used to source-code the uniform X source. We get a bound on the achievable
expected distortion for the source-code ¢’ when source-coding the uniform X source.

Recall Definition 5.49 for the definition of p.
1 nl nl ”/ 1 nl ”/ n/ 1 n nl n/
-77d (#",y")< 7dH(u X" )Dp .y +;z—’d (x”,y") by Lemma 5.15

/ 4 ! 1 ”/ 4 nl
> 3 pl ) [ ) <

/
n .n n
LS 2
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7 7 ' 1 / / 7
Z PK(”n ,x” ,yn ) [7‘{1’;(“” yx” )Dmax]
“n/,xnl,yn'
/7 / ’ 1 / 7
+ D0 P x"y") [7d”(x" B% )] (5.75)
u"l,x"’,y",
That is,

1 7 ! J [ 1 7 / 7 1 / / 7
E [-—,d" ", y" )] <E|=dnu”,T" )Dm] +E [—,d" (T, Y™ )]
n n n

-1 / / / 1 / / /
=E|=dy U, T" )] D, +E [-—,—d" T, y" )]
n n

-1 7 /7 7 1 7 / 7/
=E | =dn(T",U" )] D +E [—,d" (T",Y" )]
n n

<Pr(E"(T™) # $)dy(pxs px7) + ) Do+
Pr(E” (T™) = $)Dpau+

1 7 / /
E [;—,d” (177 Y )]
1 7/ / 7
< (dy(px> o)+ D +E [;711" (¥ >] +
Pr(E”(T")=$)Dpax  (5.76)
Thus,

1 7 / /
limsup E [—,d” ", yr )] <
n

n—o0

limsup(di(px, px') + €)Dpaxt+

1 7 7 7
limsup E [—,d” (™, y” )] +
n

n—oo

limsupPr(fe”l( ") = @)D, (6.77)

n—oo

l / ' / . . .
limsupE [—,d ur,y” )] is the expected distortion produced by the source-code ¢’ for the
n—00 n

uniform X source. Recall that p_,, is the same distribution as p ,,/ and thus,

l / / /
limsup E [—,d" (T, y” )] (5.78)
n—00 n

is the expected distortion produced by the jump sourcecode < t” >% for the iid. X’
source. The expected distortion produced by the jump source-code < "’ > is less than or
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equal to the expected distortion produced by the source-code t =< ¢” >%. Pr(é7(T" =
q p p 1 €

@) — 0as n — oo since T has the same distribution as X'* and by Lemma 5.17. It follows
that if ¢ is a rate R source-code for which expected distortion D is achievable when source-
coding the i.i.d. X’ source, then, ¢’ is a rate R source-code for which expected distortion
D + D, (d,(px, px’ + €) is achievable, when source-coding the uniform X source. Such a
source-code ¢’ exists Ye > 0. By choosing ¢ such that D,,,, ¢ = &, the lemma follows. 0O

Lemma 5.26. Let X' be arbitrary and X satisfy that px(x) is rational Vx € &', Let 8 > 0. If
there exists a rate R source-code for which probability of excess distortion D is achievable when
source-coding the uniform X source, then, there exists a rate R source-code for which probability of
excess distortion D + D, d\(px, px') + & is achievable when source-coding the i.i.d. X' source.

Proof. Let s be a rate R source-code using which, probability of excess distortion D is achiev-
able when source-coding the uniform X source. Recall the construction of jump source-code
s" in Construction 5.1 which is used to source-code the i.i.d. X’ source. First, we get a bound
on the achievable probability of excess distortion for the jump source-code s’ when source-
coding the i.i.d. X’ source.

Recall Definition 5.42 that p; = Pyt ' yw 18 the joint distribution on & " ox ' x Yy

inducedl by k" and the source-code s when tgxe distribution on & is i.i.d. X’. Recall also
that V” is a uniform random variable on %*'. Also, by Lemma 5.15,

1 7 / / 1 / / / 1 / /
—d" (=" 7" < = A2 (7, 4" D+ —d (w5 5.79)
n n n
Thus,
1 n/ ,”I "l 1 n/ /”I n/ 1 "/ n/ n/
7(1 0.4 ¢ )S-n—,dH(X ,V )Dmax+7d (V7 Y") (5.80)

Let probability of excess distortion D be achievable with source-code s for uniform X source.
Then,

l 7 /7 /
Pr <;z-;d't (X’n ,Y*)>D +Dmax(d1(PX’PX’)+‘)>

1 4 7 / 1 / ’ 7
<Pr <7d}’} (X" V" D+ =" (V7 Y) > D1, pX/)+e)+D> (5.81)

1 / / / /
Pr <—,dZ(X’" V") >d1(px,pr)+f) =¢] —»0asn’— o0
n
since Pr({F”I(X ’”I) =¢)—0asn— o0

1 ' 7 v '
=>Pr (—,d;"f X",V )D o > (dy(px> ) + e)Dmax> =¢] »0asn—oco0  (5.82)
n
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Recall that p» = p, . Also, it is assumed that probability of excess distortion D is achiev-
able with source-code s for uniform X source. That is,

1 7 7 7 7
Pr(—,d”(V”,Y”)>D)=€;’ —0asn— o0 (5.83)
n
Thus,

1 / / / 1 ! / /
Pe (g (X, VDo o (V7 V)< Do i3 )+ )+ D)
n n

max —

1 / / / 1 4 / /
2P (g (X", VD < Dy )+ Y a0d =" (U7, 7)< D)
n n

1 ’ / 7 1 ! ’ /
=P ({ S 0, VD < Dldi(ps b+ ) 0 { " (v, ¥y < DY)
n n
>1—(¢” +¢”') by Lemma 5.5 (5.84)
Thus,

1 / / 7/ 1 7 /7 /
Pr (;7d}’; (an sV')D, +7d" (v",Y"Y>D +Dmax(d1(pX,pX/)+e)>
56;’/+6;’/ —0asn— o0 (5.85)

Thus,
1 / 7 7
Pe(—d" (X" Y")> Dolds(pr )+ )+ D) m0msn o 689
n

Thus, probability of excess distortion D+ D, (d;(px, px’)+¢€) is achievable for coding i.i.d.
X’ source with rate R jump source-code s’. For each ¢’ > 0, the jump source-code s’ can be
interpolated to form a rate R source-code s” using which probability of excess distortion
D+ D, (d,(px, px)+€)+ € is achievable when source-coding the i.i.d. X’ source. ¢ >0
and ¢’ > 0 are arbitrary. Choosing ¢ and ¢’ such that D, ¢ +¢ = &, the lemma follows. [

Lemma 5.27. Let X' be arbitrary and X satisfy that py(x) is rational Vxin%. Let & > 0.
If there exists a rate R sourc-code for which probability of excess distortion D is achievable when
source-coding the i.i.d. X' source, then, there exists a rate R source-code for which probability
of excess distortion D + D, d\(px, px’) + & is achievable when source-coding the uniform X
source.

Proof. Let ¢t be a rate R source-code using which, probability of excess distortion D is achiev-
able when source-coding the i.i.d. X’ source. Recall the construction of source-code ¢’ in
Construction 5.2 which is used to source-code the uniform X source. We get a bound on
the achievable probability of excess distortion for the source-code ¢’ when sourc-coding the
uniform X source.



180 CHAPTER 5. OPTIMALITY OF DIGITAL COMMUNICATION: OPERATIONAL VIEW-POINT

Recall Definition 5.49 that py = Py : is the joint distribution on %" x X" x ¥"

"1 yn
inducec; by I and the source-code ¢ when the distribution on %" is un’iform. Recall also
that 7" hasthe same distribution asi.id. X’ source of block-length #’, X', Also, by Lemma
5.15,

1 / / / 1 / / / 1 7/ ’
74” (#",9") < ?d}';(“” %" )Dmax+7d”(xn ") (5.87)
Thus,
1 n/ nl nl 1 n/ ”I nl 1 n/ nl "l
7d ",y )S;;dH(U T )Dmax+7d (T, Y") (5.88)

Let probability of excess distortion D be achievable with source-code ¢ for the iid. X’
source. Then,

1 7 / /
Pr <7d" (U™, Y")> D +D, . (d:i(px, px’) +e)>

1 7 /7 7/ 1 4 s !
<Pe (A (U, T") Dy + (17, Y)> Dol 5 ) +)+D) 6.9
n

Pe (o (U7, T)> d(prape) <)
=Pr (-nl—,dl’j‘;(T”', U™)> dy(px» pxr) + e) =" =0asn’ =00
since Pr(§” (T")=¢)—0as n — oo
P (o (U, T\ Dy > (i )+ Dy ) = O mv00 (550

Recall that p_; = p, . Also, it is assumed that probability of excess distortion D is achiev-
able with source-code ¢ for i.i.d. X’ source . That is,

1 7 J 7 /
Pr<—,d”(T”,Y”)>D>=€Z —0asn— o0 (5.91)
n
Thus,
1 7 ! ' 1 7 / 4
Pr (;;,d}';(U" S T7 D, + yd" (T7,v") SDmx(dl(Px,pX/)+e)+D>

1
ZPI‘ (—,d”

! ’ 1 s / J
(U T)D e < D) + ) and (T, ) SD)

1 / / / 1 / / ’
=Pr ({—7d1’-lI(Un ’T” )Dmax SDmax(dl(PX’pX’)'l'e)} n {_/d” (T” ’Y” ) SD})
n n
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>1-— (6’;/ + e;") by Lemma 5.5 (5.92)
Thus,

l 7 7 / 1 / / /
Pr (—,d;’I(U" yT" Dy + —d” (T ,Y")> D +Dmx(d,(pX,pX/)+e))
n n
Se;’I+e;’I-—+0asn—->oo (5.93)

Thus,
1 / / /
Pr (—,d" or,Y")> Dmax(dl(px,pX/)+e)+D) —0asn — oo (5.94)
n

Thus, probability of excess distortion D + D, .(d(px,px) + e) is achievable for coding
uniform X source with rate R source-code ¢’. Such a source-code ¢’ exists Ve > 0. Choosing
€ such that D, ¢ = &, the lemma follows. O

Lemma 5.28. Let X satisfy that py(x) is rational VX. For D € (0,00),RE(D) = RE(D) and
RE(D)=RE/(D). In particular, R% (D) and R%, (D) are convex and continuous ftmctzons of D
for D €(0,00).

Proof. First, we prove that R% (D)= RE, o(D).

By taking the distribution of X', the same as the distribution of X in Lemma 5.24, it follows,
that V& >0,

R%(D+8)<R}(D) (5.95)

By taking the distribution of X, the same as the distribution of X in Lemma 5.25, it follows
that V& >0,

RE(D+8)<RE(D) (5.96)
From the above two equations,
RE(D+8)<R{(D)<RL(D-8)V0< & <D (5.97)

From Lemma 5.4, RE(D) is a continuous function of D for D € (0,00). By taking & — 0
in the above equation, it follows that VD € (0,00), RE ¥(D)= U(D). Since RE (D) is convex
and continuous for D € (0,00), so is RE (D).

Next, we prove that R%, vD)= R? v(D).

By taking the distribution of X", the same as the distribution of X in Lemma 5.26, it follows
that V& >0,

RE(D+8)<RE(D) (5.98)
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By taking the distribution of X”, the same as the distribution of X in Lemma 5.27, it follows
that V& >0,

R} (D +8)<RE(D) (5.99)
From the above two equations,
RY(D+8)<R(D)<RE(D-8¥0<& <D (5.100)

From Lemma 5.6, R%(D) is a continuous function of D for D € (0,00). By taking § — 0
in the above equation, it follows that VD € (0,00),R%(D) = RZ(D). Since RE (D) is convex
and continuous for D € (0,00), so is R’Z](D). O

Lemma 5.29. Given a rate R source-code s for which expected distortion D is inf-achievable
when source-coding the iid. X' source. Then, there exists a rate R source-code s, for which
expected distortion D is inf-achievable when source-coding the i.id. X' source, where limit is
taken along a sequence where the block-lengths are divisible by ny to achieve the required inf-
expected distortion.

Proof. Let s =< s” >)I be a rate R source-code for which expected distortion D is inf-
achievable when source-coding the i.i.d. X’ source. By Lemma 5.1, there exists a rate R deter-
ministic source-code for which expected distortion D is inf-achievable when source-coding
the i.i.d. X’ source. Without loss of generality, assume that s is deterministic. That is, there
exists a sequence #; /" oo such that

1
E [—d”"(X”f, Y”")] <D+¢;, wheree; »0asn; /oo (5.101)
t

Assume that 7,y — n; > n,. If this were not the case, consider a subsequence of #; such
that this is the case, and re-label it to call it 7;. Let 7] denote the least integer > #; such that
n; is divisible by 7. Note that 0 < n/ — n; < ny. Note that 7/ are distinct because of the
assumption that n; , —n; > n,.

/
n. . . . . .« .
Form s, from s” as s¥7+7 in the same way that from s#” in the interpolation-code Definition
5.35.

Consider the source-code s; =< s7 >%° which is such that s;% is defined as above and s”
is defined arbitrarily for other block lengths. It can be proved that this code satisfies the
requirements of the lemma by an argument similar to the argument in the proof of Lemma
5.8. (|

Lemma 5.30. Given a rate R source-code s for which probability of excess distortion D is inf-
achievable when source-coding the i.i.d. X' source. Let ¢ > 0. Then, there exists a rate R source-
code s for which probability of excess distortion D + ¢ is inf-achievable when source-coding the
iid. X' source, where limit is taken along a sequence where the block-lengths are divisible by n,
to achieve the required inf probability of excess distortion.
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Proof. Let s =<'s” >)3° be a rate R source-code for which probability of excess distortoin D
is inf-achievable when source-coding the i.i.d. X’ source. By Lemma 5.1, there exists a rate R
deterministic source-code for which probability of excess distortion D is inf-achievable when
source-coding the i.i.d. X’ source. Without loss of generality, assume that s is deterministic.
That is, there exists a sequence 7; /* oo such that

1
Pr (—d”i(X”i,Y"i) > D) —0asn; /oo (5.102)
n.

1

Assume that n; ; — n; > ny. If this were not the case, consider a subsequence of 7; such
that this is the case, and re-label it to call it ;. Let 7] denote the least integer > #; such that
n; is divisible by n,. Note that 0 < n] —n; < n,. Note that 7! are distinct because of the
assumption that #; ; — n; > n,.

kntr ;

n! . . . ..
Forms,* from s” as s in the same way that from s*” in the interpolation-code Definition

5.35.

Consider the source-code s; =< 57 >3° which is such that sln  is defined as above and 57 is
defined arbitrarily for other block lengths. It can be proved by an argument similar to the
argument in the proof of Lemma 5.9 that this code satisfies the requirements of the lemma.

O

Lemma 5.31. Let X' be arbitrary and X satisfy that py(x) is rational Vx € X. Let & > 0.
If there exists a rate R source-code for which expected distortion D is inf-achievable when source-
coding the uniform X source, then, there exists a rate R source-code for which expected distortion
D+D,_,.d(px, px)+ & is infachievable when source-coding the i.i.d. X' source.

Proof. Let s be a rate R source code using which, expected distortion D is inf-achievable
when source-coding the uniform X source. Recall the construction of jump source code s’ in
Construction 5.1 which is used to source-code the i.i.d. X’ source.

Rest of the proof is similar to the proof of Lemma 5.24, except that limits are taken along
some subsequence n; /' co instead of along 7', and that, the interpolation argument is not
needed.

O

Lemma 5.32. Let X' be arbitrary and X satisfy that px(x) is rational Vx € &. Let 8 > 0.
If there exists a rate R source-code for which expected distortion D is inf-achievable when source-
coding the i.i.d. X' source, then, there exists a rate R source-code for which expected distortion
D+D,,. d,(px, px)+ & is infachievable when source-coding the uniform X source.

Proof. Let t be a rate R source-code using which, expected distortion D is inf-achievable
when source-coding the i.i.d. X’ source. That is, there exists a sub-sequence 7; /' co such
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that for the source-code ¢,

1
E [—d"i(X”i,Y”i)] <D+¢; wheree; > 0asn; /oo (5.103)
i
Construct a source-code ¢; from ¢ as s, is constructed from s in Lemma 5.29. For the source-
code ¢,

1 / i !
E l:—,d”i(X"i, Y ):| <D+¢; wheree; = 0asn, / oo and n is divisible by noVi (5.104)
n

Rest of the argument follows the argument in the proof of Lemma 5.25 by looking at the
source-code ¢; which is constructed from t; by using Construction 5.2, except that limits are
taken along 7! /oo instead of n’.

The reason why we need to go from ¢ to ¢, in this argument is that if none of the ; is divisible
by ny, t" is not defined for any #;, and thus, taking limits along 7; would not make sense
for the source-code ¢/, which is the main part of the argument in the proof of Lemma 5.25.

O

Lemma 5.33. Let X' be arbitrary and X satisfy that px (x) is rational Vx € &. Let & > 0. If
there exists a rate R source-code for which probability of excess distortion D is inf-achievable when
source-coding the uniform X source, then, there exists a rate R source-code for which probability
of excess distortion D + D, d\(px, px) + & is inf-achievable when source-coding the i.i.d, X'
source.

Proof. Let s be a rate R source-code using which, probability of excess distortion D is inf-
achievable when source-coding the uniform X source. Recall the construction of jump source-
code s’ in Construction 5.1 which is used to source-code the i.i.d. X’ source.

Rest of the proof is similar to the proof of Lemma 5.26, except that limits are taken along
some subsequence 7; /" oo instead of along 7', and that, the interpolation argument is not
needed.

a

Lemma 5.34. Let X' be arbitrary and X satisfy that py(x) is rational VxinZ. Let & > 0. If
there exists a rate R sourc-code for which probability of excess distortion D is inf achievable when
source-coding the i.i.d. X' source, then, there exists a rate R source-code for which probability of
excess distortion D+ D, d,(px, px') + 8 is infachievable when source-coding the uniform X
source.

Proof. Let t be a rate R source-code using which, probability of excess distortion D is inf-
achievable when source-coding the i.i.d. X source. That is, there exists a sub-sequence 7; /*
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oo such that for the source-code ¢,

1
Pr <—d”i(X”i,Y"") > D) =¢; wheree; > 0asn; /oo (5.105)

1

Construct a source~code ¢; from ¢ as s, is constructed from s in Lemma 5.30. For the source-
code t;,

1 ' 7 7
Pr (—,d”i X", Y”i)> D)=¢; where ¢; = 0as n /oo and # is divisible by 7,Yi (5.106)
n.

t

Rest of the argument follows the argument in the proof of Lemma 5.27 by looking at the

source-code ¢/ which is constructed from ¢, by using Construction 5.2, except that limits are
: 10y g P

taken along 7] /" 0o instead of .

The reason why we need to go from ¢ to ¢, in this argument is that if none of the »; is divisible
by ng, t™"i is not defined for any #;, and thus, taking limits along 7; would not make sense
for the source-code t’, which is the main part of the argument in the proof of Lemma 5.27.

O

Lemma 5.35. Let X satisfy that py(x) is rational VX . For D € (0,00), RE(D, inf) = RE (D, inf)
and R; (D,inf) = R? (D, inf). In particular, Rf] (D,inf) and R‘Z](D, inf) are convex and contin-
uous functions of D fuor D €(0,00).

Proof. The proof is analogous to the proof of Lemma 5.28. O

Next, we want to prove the equality of the rate-distortion functions with the expected distor-
tion and the probability of excess distortion definitions for the uniform X source.

Equality of the rate-distortion function for the uniform X source with the expected and the
probability of excess distortion definitions: Rf](D) =RI;](D)

We prove that R%,(D) = R% (D). This is the bridge between our results for the i.i.d. X and the
uniform X sources. This result is interesting in its own right, and so is the proof technique.

Lemma 5.36. Let X satisfy that px(x) is rational N x. Then, for D € (0,00), Rf](D) = RZ(D)

Proof. First, we prove that Rfj(D) < R’;](D). The idea of the proof is that the probability
of excess distortion criterion is “stronger” than the expected probability of error criterion.
That is, if a particular probability of excess distortion level is achievable for some source, the
same expected distortion is also achievable by the same source-code for the same source. A
rigorous proof is the following:



186 CHAPTER 5. OPTIMALITY OF DIGITAL COMMUNICATION: OPERATIONAL VIEW-POINT

Recall the definitions of 74 and 7’

Let probabllxty of excess distortion D be achievable for the uniform X source with source-
code s =< s” >1°. Then, for the source-code s,

1 4 / / /
Pr[—,d”(U”,Y”)>D] =¢" —»0asn— 00 (5.107)
n

It follows from the above equation that

1 / / 7 / /
El:—,d"(U",Y")] <S(A-€¢")D+¢"D,,, +»Dasn— oo (5.108)
n

Thus, the expected distortion D is achievable for the uniform X source by use of the same
source-code, and in particular, by a source-code of the same rate. It follows that RE, v(D) <

RE(D).
Next, we prove that R? P(D)<RE (D).
Let expected distortion D be achievable by a rate R source-code t =< ¢t >$° when encoding
the uniform X source. By Lemma 5.1, there exists a rate R deterministic source—code s =<

s” >r=<e” N >2° using which expected distortion D is achievable for the uniform X
source. That is, for the source-code s,

hmsup Z pU,, (u” )D <D where D /=—d”(u 7 o™ (u™))
weu”

Z Du"’ <D +¢" where ¢ —0asn — oo (5.109)
W eu”

$ /
%™

Let € > 0,0 < & < 1 be such that (1 — 8)|%" | out of the | %" | many D , are > D +¢. We
find a relation between ¢ and & below. From the above equation, it follows that

(1-8)D+¢)<D+¢"

=8> > for n’ sufficiently large since ¢” — 0 as 5.110
2 D¥e 23D +o) rn tently large since ¢” = 0asn — oo ( )

elu

2D +e)

many %" satisfy D ,; <D +¢. Note that this is true for all € > 0 and that, & is independent of
n.

Thus, for sufficiently large #’, possibly depending on €, > 8| %" | = out of the | %" |
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Let % é’l be a set of cardinality 8|%"'| such that for sufficiently large 7/, D ,<D+¢Vu " e
/4 gl. Note that pvn,(%s”l) = &, by definition. Let U;' denote the source which puts a
uniform distribution on % g'. Denote %y =< U 6{” >%°. Denote Uy =< Us’" >

The sourcecode s =< s >P=< e, f" >%° can be used to code the source Uy by just
restricting the source-code input space to %. s still has rate R and when coding the source
Us. With source<code s, probability of excess distortion D + ¢ is achievable for the source

1 / ! / 7 / 7/ 7
Us. In fact, the stronger condition is true that ;—,d” (ug,fy oes (u5))<D+eVug €Uy .
Thus, it follows that R’;,(D+e) < R’(‘}(D) for any source V =< V" >Xon Uy =<U 8’" >P.
In particular, RIIJJ,; (D+e)< Rf](D).

We now cover the whole space %” by polynomially many “copies” of %y and consequently,
VB > 0, construct a rate R + 3 source-code for which the probability of excess distortion
D + € achievable when coding the uniform X source, U. Precisely, this is done as follows:

Recall Definition 5.43 for the definition of permutations.

n"'%a"l 2l ey uw = n”'ugl for some ugl € %3”’}. n"l%é?/ is, what we call, a copy
/ . . / . /

of %, got by permuting the entries of each element of % by the permutation 7"

NotethatU , /7" %, 8"’ =" . Let /™ beasubset of IT” of smallest cardinality such that

n en"
U e ool "t Uy =U "', We will prove that
;. n'log(|%
|.&™] S——————g(ll J (.111)
logm

Assuming this, we first finish the proof that RZ(D) < Rf](D).
For 1" € /™, let B, be disjoint sets such that #B,» C 1" UF and U, g g Bon = U.
For n” € /", let K s denote arbitrary sets, each of cardinality 2"'Rl, Let
i {1,2,.. 2Rl o X (5.112)
be arbitrary bijective maps.
Define maps (1" e” , " f"') as follows:
n”le"l : B W H n
T T

" A " (5.113)

n”’e”l(n"lu(’;') =i, (e”l(ug/)), for n”lugl €ERB ,
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" f"/(kn”') = f"l(i;,.'(kﬂ"')) (5.114)

/ / 7
Define source-code s, =< s >P=<e”, f” > as follows.
* * 1 * * 1

e:'I:‘?/ — U o d,,/x /
f;” "Ie.o/",x /= @/" (5.115)

e”’(u”') =n"e"(u")if 4" € B

*

f (k) =" f(k)ifk €K, (5.116)

Let 8 > 0. For sufficiently large 7/,

1081211
=)
< 2" ®+P) for n’ > 7 for some integer z (5.117)

U_

— ﬂ
et K| = NH | =

The source-code s, can be suitably modified for block-lengths 7’ < z in an arbitrary way such
that the source-code s, has rate R+ . For n’ > z, it follows by construction that V«" € %",

1 4 7 ! / !
-n—,d” (#" f7 (P (") <D+e (5.118)

It follows that for an arbitrary source V =< V* > on %, probability of excess distortion
D + ¢ is achievable with rate R + & sourcecode s,. Thus, RY,(D +¢) < RE u(D)+ B. This is
true for all B > 0. Thus, RE(D +¢) < RE(D).

In particular, R? yD+e)< RE (D). By Lemma 5.28, R? /(D) is continuous for D € (0,00). It
follows that R"J T(D)<RE(D (D) for D e (0,00).

It remains to prove that

|| < rlog*) (5.119)

log 7
This is proved below.
p
Let #”, 4™ e U” .
First, we want to calculate

Pr(u” =P" 4 (5.120)
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Fix #'" . The above probability is independent of #” by symmetry. An elaborate argument
which shows how this symmetry works is the following:

Denote # 2{n" el” |u” =P"4"}. Let u;’/,u;” € %" . Thus, there are the corre-
sponding sets .%ur/ and Q“;/. u;' = ng'u;”. Thus, if 4™ = " u}’, then, ™ = 7" n7 u?.
It follows that {ﬂ"’ﬂg/ | n" € .%uz,,/} C %“{,/. If n;’/ # 71:;’/, then, n;’/rcg' # n;’/ng/. It fol-
lows that |B“1,/| > |Bu;/|. By interchanging ul”/ and u;’l, it follows that |B“1,,/| < |Bu;/|. Thus,

IB /|=|B .| It follows that Pr(s” = P” ™) is independent of #” . Thus,
“1 u.

2

Pr(w” =P" u"™)= (5.121)

%"

7/ 7/ / 7/ - 7 7/ 7/ 7 / /

Let #” ,u™ ,u" € %" . From Lemma 5.18, it follows that #” #”* = 7" 4" = u'" = u"".
Thus,

/
1% |

Pr(s” e P" U )= —>
20 e

=8 (5.122)

Let Pl”/,PZ”', e ,Pt”/ be independent, uniform random variables on 1", Then,
Pr(u” ¢ PFUY UPF UY U---UPT U
=Pr({u” ¢ PIUY }and {u” ¢ P7U[ } and ... and {s" ¢ P U}'})
=Pr({u” ¢PF UTIO{(W" ¢PFULIN..0{u" EPTULY)
=Pr(u” ¢ P" U} ) x Pr(w" ¢ P" U ) x .- x Pr(u” ¢ P" U}
=(1- 8)‘ (5.123)

P(P” Uy UPT UL U UPY U #U™)
=Pr(@u" € %" suchthat u” ¢ PY UT UPY U} U---UPT U]
=Pr(U, /(4" ¢ Pl uPray U UPY UL}
< Z Pr({s” ¢P1”/"1/8"1 UPZ”I%g/ u-. -UP:"%;’}) by the union bound

u”’e%",
=l |(1-8)"
<|Z™|(1-8)"
"og |%
<1ift> n_ggll_l (5.124)

log 5
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/ , "log|%x
It follows that there exists a subset .2/ of the set of permutations IT*' of cardinality < fiigg,
0815
such thatu ,_ U 8"/ = " . This completes the proof. O

We now integrate the above results to prove the equality of all rate-distortion functions when
X satisfies that py(x)is rational Vx € &

Equality of all possible rate-distortion functions for sources which satisfy px(x) is rational
VxeX

The following theorem proves equality of all possible rate distortion functions for the i.i.d.
and uniform X sources when X satisfies that py(x) is rational Vx € &'.

Theorem 5.37. For X sucb that py(x) is rational Vx € . Then, for D € (0,00), RE(D) =
RY(D)=R3(D,j)=RE(D,j)=RE(D,inf) = RE(D,inf) = RE(D) = R (D) = RE (D inf) =
RE (D, inf),

Proof. This follows from Lemmas 5.10, 5.14, 5.28, 5.35, and 5.36. O

Note 5.48. Note that we do not dzrectly pro've that R%(D) = RE(D). We pro've RE (D) =
(D) RE 2(D)=RE (D), and R? x(D)= (D) in arderto prove tbatR (D)= (D) This

can be tbougbt of as one reason ﬁ»' the mtroductzon of the uniform X source. However, this is

not the most important reason for the introduction of the uniform X source. As stated before, the

main reason for the introduction of the uniform X source is that we do not know, how to prove
Theorems 5.46 and 5.47, directly for the i.i.d. X source.

Finally, we prove the equality of the rate-distortion functions for arbitrary X.

Equallty of all possible rate-distortion functions for the i.i.d. X source: proofs that RE 5 (D)=
RE(D)=RE (D, inf)=RE (D, inf)

Theorem 5.37 proves equality of all possible rate-distortion functions for the i.i.d. X source
when X is such that py(x) is rational Vx. Note that uniform X sources are undefined for
arbitrary X. For this, we will carry out limiting arguments with random variables X, — X
where X, is such that py (x) is rational Vx € &. This is the final step in this subsection,
after which, we will move on to channels. The limiting arguments will be useful in their own
right, when we consider channels.

Lemma 5.38. For arbitrary X, for D € (0,00), 0< e < D,

elog|Z|
RE(D)-RE(D +¢) <

(5.125)
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RE(D)-RE(D+¢)< ‘bf’)'%' (5.126)
(5.127)
For X such that py(x) is rational Vx, D € (0,00), 0 < € < D,

RE(D)—RE(D+¢) < ¢log| X (5.128)
RE(D)-RE(D+¢€)< log || (5.129)

Proof. By Lemma 5.4, Rf((D) is convex for D € [0,00). It follows that

RE(D)-RE(D +¢) < RE(0)-RE(D)  logl %]

€ = D = D

S>RE(D)-RE(D +¢)< ¢log| % (5.130)

This proves the first statement in the lemma.

By Lemma 5.6, R% (D) is convex for D € [0,00). The second statement in the lemma follows
exactly as above.

For X such that py(x) is rational Yx, by Lemma 5.28, for D € (0, c0), REU(D) = Rf((D) and
Rg(D) = RE(D). The third and fourth statements in the lemma, now follow by using the
first and second statements in the lemma which have been proved above. O

Lemma 5.39. Let X be an arbitrary random variable on &'. Let X,,,1 < n < 0o be a collection
of random-variables on X such that px (x) is rational Vx € X,VX,. Also, let X, — X in
distribution. That is, Vx € X, nlim px (x)= px(x). U, is the uniform X, source. Let §,, >0

and let 8, — 0 as n — 00 Define ¢, = Dy di (pxs px ) + 8. Then, for D € (0,00),
lim R, (D+¢,)= lim RS (D +¢,)=
lim RY (D +e¢,)= lim R, (D+¢,)=R5(D) (5.131)

Proof. Note that ¢, — 0as n — oo.
By Lemma 5.24, and by an argument similar to that used in Lemma 5.28, for all delta, > 0,
RE(D+ Dpdi(px>x,)+6,) < Rf;"(D)
=>R3(D) SRy, (D — (Dpuudy(Px2x,)+5,) (5.132)
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By Lemma 5.25, and by an argument similar to that used in Lemma 5.28, V&, > 0,

RY, (D + Doy px,) +8,) < R(D) (5.133)

Thus,
R (D+¢,) SRY(D)SRY (D —e,)
=>0<RY(D)—Rf, (D+¢,)<RE (D—¢,)—RE (D+e,)
=>0<RE(D)- Ry (D+¢,)< [Rf}”(D —¢,) —Rfjn(D)] +[R}, (D)- Rf,”(D +¢,)]

X
S, log|X| N ¢, log|Z|

=>0<RE(D)-RE (D <
<Ry(D)-R; (D+e¢,)< Doc, D

£ by Lemma 5.38 (5.134)

Taking limit as 7 — 00, and recalling that ¢, — 0 as 7 — 0o, it follows that

lim Rf,” (D+¢,)=RE(D) (5.135)

n—00

By Theorem 5.37, Rf," (D+e,)= Rf(” (D+e,)= RIZ,” (D+e,)= Rﬁ’,. (D +e,,). It thus follows
that

i RE, (D4 €r) = Jim RS (D+¢,)=
Jlim R’{,n (D+e,)= lim R§"(D +¢,)=R%(D) (5.136)

The lemma follows. O

Lemma 5.40. Let X be an arbitrary random variableon . Let X,,,1 < n < co be a collection
of random-variables on % such that px (x) is rational Vx € X NX,. Also, let X,, — X in
distribution. That is, Vx € X, nlmgo px (x)=px(x). U, is the uniform X, source. Let 8, > 0

andlet &, — 0as n — oco. Define e, éDmdl(pX,pX") +34,. Then, for D €(0,c0),
li 0+ )= iy R 0
lim R{’Jn (D+e,)= lim R§n(D +¢,)=RE(D) (5.137)

Proof. Note that ¢, — 0 as 7 — co.
By Lemma 5.26, and by an argument similar to that used in Lemma 5.28, for all &,, > 0,
RE(D + Doy )+ 8,) < RY, (D)
=>R3(D) SRy, (D~ (Doaxdi(pxs px,) + €1)) (5.138)
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By Lemma 5.27, and by an argument similar to that used in Lemma 5.28, V&, > 0,

Ry, (D + Doy dy(px Px,) +8,) < RY(D) (5.139)

Thus,
R} (D+¢,)<SRY (D)< Ry (D —¢,)
=0 < RY(D)~ Ry, (D+¢,) SRy (D~¢,)= Ry, (D+¢,)
=0 < RY(D)~ Ry, (D +¢,) <[R, (D —¢,)— Ry, (D) +[R], (D)~ R, (D +¢,)]
€,log|¥| ¢,log|¥|
D—e¢ D

n

=>0< R;(D) - RI;j (D+e¢,)< by Lemma 5.38 (5.140)

Taking limit as » — oo, and recalling that ¢, — 0 as 7 — oo, it follows that

lim R’(’,”(D +¢,)=RE(D) (5.141)

By Theorem 5.37, R’L’]n(D+ €n) = Rf(n (D+e,)= Rf,”(D +e,)= R}E(”(D+en). It thus follows
that

Jim K7, (D-+e,)= lim &L (D-+,)=
lim Rf,n(D +¢,) = lim R§"(D +¢,)=RE(D) (5.142)

n—oo

The lemma follows.

O
Lemma 5.41. For arbitrary X, for D €(0,00), RE(D) = R%(D).
Proof. This follows from Lemmas 5.39 and 5.40. O

The following is the theorem which proves the equality of all possible rate-distortion func-
tions for the i.i.d. X source when X is arbitrary.

Theorem 5.42. For arbitrary X, for D € (0,00), Rf‘. (D)= R)E{(D, 5= Rf((D, inf) = R;}(D) =
Ri,(D,j) = R§(D,inf)

Proof. This follows from Lemmas 5.10, 5.14, and 5.41. a
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This ends this section. To re-capitulate, we proved the equality of various rate-distortion
functions for the i.i.d. X and the uniform X sources. Many of the results and proof tech-
niques are interesting in their own right. More importantly, we will require these results, in
particular, the equality of the rate-distortion functions for the i.i.d. X and uniform X sources
when proving the desired result of the equality of the pseudo universal channel capacity of
the set of channels 6y 1, and the rate-distortion function for the i.i.d. X source under the ex-
pected and the probability of excess distortion definitions. Before we do that, we first define,
rigorously, the set of channels and prove various results concerning channels.

B 5.5 The channel-coding problem

In this section, we discuss the channel-coding problem. We define channels and jump chan-
nels. Then, we define what it means for a channel or a jump channel to pseudo-directly com-
municate a source to within a particular distortion level. This is followed by the definition
of the pseudo-universal capacity of the set of channels which pseudo-directly communicate
iid. X source and uniform X source to within particular distortion levels. Finally, we derive
relations between the various pseudo-universal capacities defined in this section.

B 5.5.1 Channels

We will consider 3 sets of channels:

1. Channels with i input space < X" >° and output space < ¥ >°. We will see, what it
means to communicate i.i.d X source pseudo-directly over a channel to within a partic-
ular distortion level.

2. For some k, channels with input space < *” >% and output space < #/*” >%°. These
are jump channels with jump k.

3. Channels with input space < %" >% and output space < ¥" >%°. Recall that n’ =
non where ny is the least positive mteger for which nypy(x) is an mteger Vxe&X for
some random variable X on &. Thus, for channels of this kind, one should think of
an underlying random variable X which is such that py(x) is rational Yx € &. This
random-variable will come into the picture when defining pseudo-direct communica-
tion of the uniform X source over a channel to within a particular distortion level.

Definition 5.50 (Channels with i mput space < X” >{° and output space < ¥” >7°). A chan-
nel is a sequence ¢ =< ¢” > where ¢” : X" — 9’(@/ ") is a transition probabnhty/stochastxc
kernel. This should be interpreted as follows. When the block-length is 7, the channel acts as
c". Forx” € X”,y" € ", c"(y"|x") is the probability that the channel output is y” given
that the channel input is x”.
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Note 5.49. The definition of transition probability corresponding to a source-code s, ¢,, de-
fined in Definition 5.7 is exactly the same as that of a channel defined above.

Definition 5.51 (Channels with input space < X’ ks >$° and output space < ¥ kn >0°: jump
channels with jump k). A channel is a sequence ¢ =< c*” >$° where ckn gk B (Fykn)
is a transition probability/stochastic kernel. This should be interpreted as follows. When the
block-length is 7, the channel acts as ck” For x¥" € 'k ykn € qykn | ckn(ykn|xkn) is the
probability that the channel output is y%” given that the channel input is x*”. These will be
called jump channels with jump k.

Note 5.50. The definition of transition probability corresponding to a jump source-code s,
4, defined in Definition 5.10 is exactly the same as that of a channel defined above.

Definition 5.52 (Channels with input space < %" >2° and output space < ¥ " >%). A
channel is a sequence ¢ =< ¢” >® where ¢ : %" — P(H") is a transition probabil-
ity /stochastic kernel ThlS should be mterpreted as follows. When the block-length is 7/, the
channel acts as ¢”. Foru” e u” y" e y™ %3 (y ’|x"’) is the probability that the channel
output is y” given that the channel input is #”

Note 5.51. The definition of transition probability corresponding to a source-code s, ¢,, de-
fined in Definition 5.13 is exactly the same as that of a channel defined above.

M 5.5.2 Channels which communicate sources to within various particular
distortion levels

In this subsection, we define channels which pseudo-directly communicate i.i.d. X source
to within a distortion level D and channels which pseudo-directly communicate uniform X
source to within a distortion level D.

Definition 5.53 (6x p). Let X be arbitrary. Consider a channel ¢ =< ¢” >$° with input
space < X >%° and output space < #” >{°. Let the input to this channel be the i.i.d. X
source. That is, when the block-length is 7, the input to ¢” is X”*. The channel produces
an output Y. This leads to a joint random variable X”Y™” on the input-output space. The

channel c is said to pseudo-directly communicate i.i.d. X source to within a distortion level
D if

1
lim DPxnyn (—d"(Xn,Y”)>D> =0 (5.143)
n—oo n

The set of all channels which pseudo-directly communicate 1.i.d. X source to within a distor-
tion level D is denoted by € p.

Note 5.52. Let ¢ be a channel with input space < ” >$° and output space < &” >°. Let
s be a source-code such that g, = c. Then, ¢ € 6x p if and only if probability of excess
distortion D is achievable with source-code s when encoding the i.i.d. X source.
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Definition 5.54 (6x p ;). Let X be arbitrary. Consider a channel ¢ =< ¢~ >%° with input
space < & *7 >{° and output space < ¥ kn >%°. Let the input to this channel be the i.i.d. X
source. That is, when the block-length is 7, the input to c*” is X*”. The channel produces
an output Y*”. This leads to a joint random variable X*#¥*” on the input-output space.
The jump channel ¢ with is said to pseudo-directly communicate i.i.d. X source to within a
distortion level D if

1
Jim p iy (Ed""(X’e", Yk > D> =0 (5.144)

The set of all jump channels with jump kwhich pseudo-directly communicate i.i.d. X source
to within a distortion level D is denoted by €y py ;-

Note 5.53. Let ¢ be a channel with input space < & *” >% and output space < ¥*” >P. Let
s be a source-code such that ¢, = ¢. Then, ¢ € 6y p, if and only if probability of excess
distortion D is achievable with jump source-code s when encoding the i.i.d. X source.

Definition 5.55 (6}, ). Let X be such that py(x) is rational Vx € &'. Consider a channel
c=<c” >2° with input space < % o’ >%° and output space < ¥ w >%°. Let the input to
this c}nannel be the uniform X source. That/is, when the block-length is 7’, the input to c”:
is X*. The channel produces an output Y”. This leads to a joint random variable U” Y

on the input-output space. The channel ¢ is said to pseudo-directly communicate uniform X
source to within a distortion level D if

1 ! / /
: — g’ yn —
Bim (n,d "y )>D> =0 (5.145)
The set of all channels which pseudo-directly communicate uniform X source to within a
distortion level D is denoted by 4y, p.

Note 5.54. Let ¢ be a channel with input space < %" >2° and output space < ¥ " >P. Let
s be a source-code such that ¢, = c. Then, ¢ € 6y if and only if probability of excess
distortion D is achievable with source-code s when encoding the uniform X source.

Note 5.55 (Channel sets and partially known channels). Irn Chapter 2, we considered partially
known channels k € /. In this chapter, we will refer to partially known channels simply as
channel sets.

W 5.5.3 Pseudo-universal capacity of the set of channels 6y, 6y p, j» and
In Chapter 2, we defined the universal capacity of a partially known channel & € .«/. In this

chapter, instead of the universal capacity, we will consider the pseudo-universal capacity of a
partially known channel, or equivalently, a set of channels. The pseudo-universal capacity of
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a set of channels differs from universal capacity in that we do not ask for a uniformity in the
rate at which error probability — 0as block-length 7 — 0o over the set of channels. This will
become clearer in the rigorous definition.

We will prove universal source channel separation theorem for rate-distortion by using pseudo-
universal capacity instead of universal capacity, in this chapter. We are quite sure that the

results can be generalized to the case when we use the universal capacity. The reason we have

not proved the results using universal capacity is that this is the way we ended up proving the

results. For the reader unsatisfied with this explanation, the reader can think of this chapter

as an operational view-point of the optimality of digital communication for communication

over a fully known channel. This is because pseudo-universal capacity and universal capac-

ity are same if the channel is fully known: the uniformity over the set of channels becomes

trivial.

We define the pseudo-universal capacity of the set of channels €y p, € p,j, and €y p-

Pseudo-universal capacity of the set of channels 6y

Recall the definitions of &g.(R) and F (R). In a similar vein, let #7.(R) denote the set of all
deterministic functions with domain {1,2,...,2!"R/} and range & and let &5 (R) denote the
set of all deterministic functions with domain #” and range {1,2,...,2l"Rl}.

Definition 5.56 (Encoder-Decoder). A deterministic encoder-decoder pair is a sequence <
e”,f* > where ¢” € F7.(R) and f” € 67 (R). A random encoder-decoder pair is a prob-
ability distribution on Fg.(R) x E} (R), which we denote by < E”,F” >{°: pgnp» is the
probability distribution on Fj.(R) x EJ (R).

Note that in Section 2.7.3, we had defined a random channel code consisting of a random
channel encoder and a random channel decoder as transition probabilities. The above defini-
tion is an equivalent definition of a channel code as a probability distribution on the set of
deterministic channel encoders and decoders.

Let ¢ =< ¢” >{° be a channel with input space < & >{° and output space < ¥” >9°. The
composition of encoder, channel and decoder, which we denote by < D” 0 ¢” 0 E” > isa

transition probability/stochastic kernel: D”oc”oE” : {1,2,...,21"Rl} o B ({1,2,...,217R]}),
Fora,b €{1,2,...,2\"R]},

D" oc" o E*(bla)= Z Z (5.146)
("€ Y e} (" d" e (@)mx" d"(y")=b}

O )pprpn(e”, f7)  (5:147)

Let A7 = {1,2,...,2"R]}, Let Mg be some distribution on .#7. With input M} to the
composition of the encoder, channel and decoder F”oc” 0 E”, there is an output distribution
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M % on {1,2,...,2"RI}, which will depend on the channel ¢, though this dependence on c is
not shown in the notation /17[ 2.

Definition 5.57 (Pseudo-universal achlevablhty of rate R over channel set 6 ,, with en-
coder-decoder < E”,F” >%). Rate R is said to be pseudo-universally achievable over the
channel set 6y p, by use of encoder-decoder < E",F">Pif

sup Pr(M”;éM" |Mg =m")—0asn —ocoVc € Gy p (5.148)
meMy

As we said in Section 2.11, the above definition is independent of the particular distribution
Mg; it only depends on the channel transition probability.

Note 5.56. The reader is urged to compare the above definition of pseudo-universal achievabil-
ity of rate R with Definition 2.31 of the universal achievability of rate R, and note the absence
of uniformity requirement over the particular channel at the rate at which error probability
— 0 as block-length 7 — o0 in the definition of pseudo-universal achievability of rate R as
opposed to the definition of universal achievability of rate R

Definition 5.58 (Pseudo-universal achievability of rate R over channel set Gy D) Rate R
is said to be pseudo-universally achievable over the channel set €y if rate Ris pseudo-
universally achievable over 6y 1, with some encoder-decoder pair < E" F" >%.

Definition 5.59 (Pseudo-universal capacity of 6x p, pC,.(6x p)). The supremum of all
pseudo-umversally achievable rates over €y p, is the pseudo-universal capacity of €y p,, and
is denoted by pC, (6x p)-

Pseudo-universal capacity of the set of channels €y 1, ;.

Encoders and decoders are defined as in Definition 5.56, except that they are defined only for
block-lengths k7.

The composition of encoder, channel and decoder is < F¥* o ck? o EF? >%.

Definition 5.60 (Pseudo-universal achievability of rate R over channel set 6x p» With en-

coder-decoder < E*” Fkn >%°). This is defined analogously to Definition 5.57, expect that
limits are taken along block- lengths kn. Rate R is said to be pseudo-universally achievable
over the channel set Gy p, 4 by use of encoder-decoder < E#7, F&n >% if

sup Pr(ME" £ ME" | ME" = m**) - 0asn — coVc € Gy p (5.149)
mk"E‘//l n

Definition 5.61 (Pseudo-universal achievability of rate R over channel set €y 5, ;). This is
defined analogously to Definition 5.5.3, expect that limits are taken along block-lengths k7.

Rate R is said to be pseudo-universally achievable over the channel set 6y p, ; if rate R is
pseudo-universally achievable over €y 1, with some encoder-decoder pair < E" Fn >
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Definition 5.62 (Pseudo-universal capacity of €x p s, pC,(6x ps))- This is defined anal-
ogously to Definition 5.59, expect that limits are taken along block-lengths k7. The supre-
mum of all pseudo-universally achievable rates over €x p,  is the pseudo-universal capacity
of €x p 4, and is denoted by pC, (€x ps)-

Pseudo-universal capacity of the set of channels 6}, ;,

Recall the definitions of é’;’l/(R) and 9'9”1’(R). A deterministic encoder-decoder pair is a se-
quence < e, f" >2° where " eZ (’7’; (R)and f* € é’a’)’/’ (R). A random encoder-decoder pair
is a probability distribution on F;; (R)x E ;(R), which we denote by < E",F" >3t Pont gt
is the probability distribution on F;; (RYXE ;:(R)

Letc=<c" >{° be a channel with input space < & n >%° and output space < ¥ n >%°. The
composition of encoder, channel and decoder, which we denote by < D™ o ¢ 0 E” >Fisa
transition probability /stochastic kernel: D" oc” oE™ :{1,2,...,2l"Rl} - 2({1,2,..., 21" R]}),
Fora,b €{1,2,... ,21”/RJ},

D" oc™ o E" (bla)= > >

="' €2y e} e d7 e (a)=x" 4" (y")=b}
7 7/ 7/ 7/ s
X"V g g (€ f")  (5.150)

As before, .# ]’{I denotes the set {1,2,... ,Zl”/RJ}. Let M z' denote some distribution on .# ,’{'.
With input M;{ to the composition of the encoder, channel and decoder F " oc" oE™ | there is
an output distribution M ;I on {1,2,...,21"Rl}, which will depend on the particular channel,
though this dependence on c is not shown in the notation M }’{.

Definition 5.63 (Pseudo-universal achievability of rate R over channel set 6y, p, with en-
coder-decoder < E" ,F" >%). Rate R is said to be pseudo-universally achievable over the
channel set 6, p, by use of encoder-decoder < E”, F* >0 if

sup Pr(M;/#M]’{ |M1'(’/=m"/)—»Oasn—->och€‘€U,D (5.151)
m",e./lt;",
Definition 5.64 (Pseudo-universal achievability of rate R over channel set 6}, ). Rate R
is said to be pseudo-universally achievable over the channel set 6}, p if rate R is pseudo-
universally achievable over 6, ;, with some encoder-decoder pair < E”, F” >%.
Definition 5.65 (Pseudo-universal capacity of 6y, p, pC,.(6y p))- The supremum of all

pseudo-universally achievable rates over 6y, , is the pseudo-universal capacity of 6, p, and
is denoted by pC, (6y p)-
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Note 5.57. 'We will not require the notion of jump pseudo-universal capacity for the set of
channels Cy; p,.

W 5.5.4 Relation between the pseudo-universal capacities of the set of chan-
nels €, 5, €xp, and 6y 1,

In this subsection, we prove relations between pseudo-universal capacities of the sets of chan-
l'lelS %U,D’ ch,D’ and %X,D,k‘

The results, not stated entirely precisely here, but stated more precisely in the lemmas that
follow, are:

L. pC,(6x'p1p, (dy(py, pr+e)) < PC,(6yp). This is proved by interpreting channels

as source-codes and using Construction 5.1 to construct a channel corresponding to
every channel € 6, p,.

2. pC,(Cup+p, 4 Px’px,).,_f)) < pC,(€x'p)- This is proved by interpreting channels
as source-codes and using Construction 5.2 to construct a channel corresponding to
every channel € 6y p, , .

In order to prove the above two results, we first prove that pC,.(6y D+e) < pC,(6x p)
< pC,(6x,pt)- This is proved by defining interpolation encoder-decoder < E™” F'* >3°

for the set of channels 6y , given an encoder-decoder < E*”, F¥# > for the set of channels
ch,D,k‘ '
Lemma 5.43. Vk’ Ve > 0, Pcrc(ch,D+e,le) < Pcrc((gX,D) < pcrc((gX,D,le)

Proof. If rate R is pseudo-universally achievable for the set of channels 6y 1, by using an
encoder-decoder < E”,F” >%°, then rate R is pseudo-universally achievable for the set of

channels 6y ,;, by using the subsequence < EF”, Fk» >{° as the encoder-decoder. Thus,
pC(€xp)<pC,(6xpr)

Let rate R be pseudo-universally achievable for the set of channels €y 1, ;. That is, there
exists encoder-decoder < E*7 Fkn >%° such that

Pr(M*" £ M*") > 0as n— 0oVc € €y prep (5.152)

We will modify encoder-decoder < E#", F#» >{° into encoder-decoder < E”, F"” >%° for the
set of channels €y ,. This code will be such that rates < R are pseudo-universally achievable
for the set of channels 6y 5.

The idea is the following: Let r € {0,1,2,...,k — 1}. For block-length kn + r, the channel
is c#7+7. Use only the first block of length k7 to communicate. Precisely, this is done as
follows:
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Let (¥, f#7) € F*(R)x 8L7(R). Let r €{0,2,...,k—1}. Let m € {1,2,...,21#"RI}. Define
*7 (m) = (¥ (m),x") (5.153)
where x” € &7 is arbitrary. For y*"t" € %/#7+7 _ define,

flkn+r(ykn-+r)___/‘kn(ykn) (5.154)

The domain of the function e’#”*7 is the set {1,2,...,2#7R]} and the range of e’”*" isthe set
Z*7+7 . The domain of the function f*7+" is ##7+7 and the range of the function f/*7+”
is the set {1,2,...,2l67Rl},

If (Ek”,Fk”) € 9’(9’;”(1{) X 6’5”(R)), for r € {0,1,2,...,k — 1}, for sufficiently large n,
define (E’#7+7, F/*n+7) € P (F LM+ (R) x 87+ (R ~ B)), defined by
PElkn+rll:lkn+r (elk"+r,f/k”+r) = PEan:lzn(ekn)fkn) (5.155)

where (e#7+7, fR7+7) is constructed from (e*”, £%7) as above.

Given < EF" Fkn >%°, we construct a code < E™ F" >% as above. < E™,F"" >9 is the
interpolation channel-code corresponding to < E¥”, F#7 >.

We prove that by using < E”,F” >, rate R — 3 is pseudo-universally achievable for set of
channels €y p,.

Let ¢ =< ¢” >{°€ €x p. For blocklength kn +7, 7 €{0,1,2,...,r — 1},

1
dkn+r an+r, Ykn+r =
kn+r ( )
1
——— AP (XE T (1 kn), YR (1kn))+
kn+r
A" (X (kn+ 1.kn+7), Y (kn +1.kn +7))
kn+r
1 rD
<—d*n Xk (1 kn), Y** 7 (1.0 mé
“kn ( (1.n) ( n))+kn+r
1
Sk—-dk"(Xk"""(l..kn), Y*"+7(1..kn))+ ¢ for sufficiently large n (5.156)
n

It follows that for channels € 6y p, for r €{0,1,2,...,k — 1},

1
Pr <k—dk”(Xk"+’(1..kn),Yk""”(l..kn)) >D +e> —0asn— oo (5.157)
n

Let block-length be k7 + 7. Let the message set be {1,2,...,2!¥7Rl}, The channel is c***",
where ¢ € 6y p. Let the encoder-decoder be E#+7, F’#7+7 1t follows by construction that
error probability — 0 as block length — co.
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Note that the cardinality of the message set is 21¥7Rl. For B > 0, for sufficiently large 7,
20(kn+rXR-A)] < JlenRI " Tt follows that rates < (R — ) are pseudo-universally achievable
achievable over the set of channels Gy . It follows that pC, (6 p... k) < pC,.(x D)-

The lemma follows.
O
Lemma 5.44. Let X be such that py(x) is rational Vx € &. Let X' be arbitrary. Then, Ve > 0,
Pcrr(("oX’.D+Dm(d1(px,px/)ﬂ)) <pC,(6yp) (5.158)

Proof. Recall the notation 7’ = ngn. Let ¢ =< ¢ >%€ 6, p- Consider a source~code s such
that g, = c. Then, probability of excess distortion D is achievable by the source-code s when
encoding the uniform X source. Let ¢ > 0. From Lemma 5.26, by use of Construction 5.1,
it follows that there exists a jump source-code s’ for which probability of excess distortion
D+D,,,.(d(px> px')+¢) is achievable when encoding the i.i.d. X source. g, can be thought
of as a jump channel ¢’ with jump no. Then, ¢’ € €y p1p__ (s, PO
Denote ¢’ = {¢’ | c € 6y p}, where ¢’ is constructed, as above, from c.

Note that ¢’ = g, =< k" o qs’” >P=< k" o " >. Thus, if rate R is pseudo-universally
acl}ieva;ble for the set of channels 6” by using a possibly random encoder-decoder sequence <
g",h™ >P, rate R is also pseudo-universally achievable for the set of channels 6, 1, by using

the encoder-decoder sequence < g” o 7, b >%. It follows that pC, . (¢’) < pC,.(6y p)-

/
AISO, ¢'cC <€X',D+Dm(dl (PX’PX/)"")’”O'

Thus, Pcrc((g/) 2 PCrc(ch',D-i-Dm(d,(px,pX/)-I-E),ﬂo)'
It follows that PCrc((gX',D-f-Dm(dl(px,pX/Hc),no) < Pcrc((gU,D)‘

By Lemma 543, pC, (Cx' DD, (dy(px g 1+)) S PCre(CX DD +eYino)

Thus’ pCrc(%X',D+Dm“(dl(px,pxl)+e)) < PCrc(cgU,D) o
Lemma 5.45. Let X be such that px(x) is rational Vx € . Let X' be arbitrary. Then, Ve > 0,
PG, (Cuy,prp,(dy(pxopy)te) S PCre(6x7 D) (5.159)

Proof. Recall the notation 7’ = nyn. Let ¢ =< ¢” >{°€ 6x’,p,n,- Consider a jump source-
code ¢ such that ¢, = c. Then, probability of excess distortion D is achievable by the jump
source-code ¢ when encoding the i.i.d. X’ source. Let ¢; > 0. From Lemma 5.27, by use of
Construction 5.2, it follows that there exists source-code ¢ for which probability of excess
distortion D+D,,,,,(d(px, py')+¢,) is achievable when encoding the uniform X source. g,/
can be thought of as a channel ¢’. Then, ¢’ € 6y DD (dy( oo e
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Denote €’ ={c’ | c € 6y p}, where ¢’ is constructed, as above, from c.

Note that ¢/ = ¢, =< 1" o q:"/ >®=< " oc” >P. Thus, if rate R is pseudo-universally
achievable for the set of channels 6’ by using a possibly random encoder-decoder sequence
< g",h" >, rate R is also pseudo-universally achievable for the set of channels €y, ,

by using the encoder-decoder sequence < g” o k™, b >%. It follows that pC, (¥’) <
Pcrc(ch',D,no)‘ By Lemma 5'43’ V€2 > 0’ Pcrc((gX’,D,nU) S pcrc((gX',D—ez)° Thus’ pCrc(':g')
< PCrc((gX’,D—fz)‘

Also, €' C 6y pyp, (di(px.pyyrer THUS, PC,(€)2 pC, (B pip, (dy(pxpyrte)

ThUS, Vf] > 0,62 > 0, pCrC(‘gX,,D-*fz) 2 PCr‘(cgU'D+Dmx(d1(PX’Px’)+‘l)). It fOllOWS tha,t
Ve >0, pC,(Cx'p) 2 PC,(Cu,p4D, . (dy(pxopy)+o)) O

Note 5.58. The reason for the introduction of jump channels which communicate i.i.d. X' source

is the following. Given a channel which communicates the uniform X source, we can only draw

a relation to it for jump channels with jump n,. This is because channels which communicate

uniform X source are defined only for block-lengths which are maltiples of ny. Then, by use of
Lemma 5.43, we relate the capacities of channels and jump channels which communicate i.i.d. X

source.

This ends this section. To re-capitulate, we defined the set of channels and jump channels
which pseudo-directly communicate the i.i.d. X source to within a distortion D and the set of
channels which pseudo-directly communicate the uniform X source to within a distortion D.
We proved various relations between the pseudo-universal capacities of these sets of channels.
We use these results along with the results from the previous section in the next section to
prove the main result: the equality of the pseudo-universal channel capacity of the set of
channels €y 1, and the rate-distortion function for the i.i.d. X source under the expected
and the probability of excess distortion criteria. As we shall see, we will crucially use the
relations between the rate-distortion functions for the i.i.d. and uniform X sources, and
also, the pseudo-universal channel capacities of the set of channels which pseudo-directly
communicate the i.i.d. X source to within a distortion level D and the set of channels which
pseudo-directly communicate the uniform X source to within a distortion level D.

B 5.6 Relation between pseudo-universal channel capacity and the rate-
distortion function: equality of the pseudo universal channel capacity
and the rate distortion function

In this section, we prove: pC, (6y p) = RE(D) = R§(D) = RE(D,inf) = RE(D, inf). To
this end, we first prove that R (D) > pC, (€yp)2 RZ(Q,inf). This proof is indepemflent
of all past results in this chapter. Then, we integrate this with the results from the previous
two sections relating rate-distortion functions for the i.i.d. X and uniform X sources and the
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results relating the pseudo-universal channel capacities of the set of channels which pseudo-
directly communicate the i.i.d. X source to within a distortion D and the set of channels
which pseudo-directly communicate the uniform X source to within a distortion D, in order
to prove the desired result.

W 5.6.1 Proof of R7(D)> pC, (6 ) > RE(D,inf)

Theorem 5.46. Let X be such that px(x) is rational Vx € X . Then, for D > 0,
R}(D)2 pC,(6y,p) > RE/(D, inf) (5.160)

Proof. This proof is independent of all past lemmas and theorems in this chapter, and the
proof of pC, (€y p) > R};J(D,inf) is essentially the same as Step 1 of Subsection 2.14.9.

This is followed by a proof of RZ(D) > pC,.(6yp)

This theorem and its proof is the main idea of this whole chapter; the rest are just mathematical
details which are necessary and have some ideas but are not the main idea.

First, we prove that pC, .(6y p) > R’;](D, inf). Most of the argument of Step 1 of Subsection
2.14.9 is reproduced here with the minor necessary changes.

This is done via parallel random-coding arguments for

o the pseudo-universal capacity of the set of channels €y ,, and

o the rate-distortion source-coding problem of finding the minimum rate needed to com-
press the uniform X source to within a distortion D under the inf probability of excess
distortion criterion.

The random coding arguments are similar, yet different from the ones used in the information
theory literature. We want to derive a connection between the above two problems in order
to prove the desired result, and we are not interested in simplified functional expressions for
the pseudo-universal capacity of the set of channels € 1, or simplified expressions for the
rate-distortion function R’l’,(D, inf).

The two problems:

o The channel-coding problem: The channel-coding problem is that of computing the pseudo
universal capacity of the set of channels €y,

o The source-coding problem: The source-coding problem that we consider is to derive
an upper bound on RZ(D,inf), the minimum rate needed to compress the uniform
X source to within a distortion level D under the inf-probability of excess distortion
criterion
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Block length: For both the channel coding and the source coding problems, let the block-
length be 7’. Towards the end of the argument we will take the limit 7’ — co. Recall that
n’ = ngyn is the set of all integers for which the uniform X source makes sense.

Codebook generation:

o Codebook for the channel-coding problem: Let communication be desired at rate R. Gen-
erate 21"R] sequences independently and uniformly from the set %", the set of all
sequences € X" which have empirical distribution precisely py.

This is t}le code book ¢ . Note that the codewords € %" . The encoder is denoted
by < E” >{°. Note that the encoder is random.

o Codebook for the source-coding problem: Let q be an empirical distribution (type) on ¥,
that is ¢ € P (%). Let q be an achievable type when the block-length is #’. In other
words, n’q(y) is an integer Yy € #. Let % q”' C %" denote the set of all sequences

with empirical distribution, precisely g. Generate 21"R! codewords independently and
uniformly from the set o?lq”'.

This is the code book #”. Note that the codewords € allq”’ c ¥". Note that the
codebook is random.

Joint typicality:

o Joint typicality for the channel coding problem: Sequences (4™ ,y™ ) € the channel input-
output space %" x H™ are said to be jointly typical if

1 / A /
?d" (#",9y")<D (5.161)

o Joint typicality for the source coding problem: Sequences (#”,y") € the source input -
. / . . . . .
source reconstruction space %" x %™ are said to be jointly typical if

1 / 7 7
—d"w",y")<D (5.162)

Note that the definition of joint-typicality for both the channel-coding and the source-coding
problems is the same.

Decoding:

o Decoding for the channel coding problem: Let the sequence y” be received. If there exists
unique codeword #” in the code book ¢ for which (#™,y™) are jointly typical,

/. . .
declare that #” is transmlttgd, else declare error. The decoder is denoted by F " Note
/.
that the encoder-decoder E” ,F* is random
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Note 5.59. This decoding rule can be thought of as a variant of minimum distance de-
coding

e Encoding for the source coding problem: Let the sequence " € %" needs to be source-

coded. If there exists some sequence y” m the code book £ for which (#”,y" ) are
jointly typical, encode #™ to one such y”, else declare error. Note that the encoder-
decoder is random

Note 5.60. Note that “unique” in the channel coding problem gets converted to “some” in the
source coding problem

Some notation:

e Notation for the channel coding problem: We will do the analysis assuming that a partic-
ular message is transmitted. The message set is

MY ={1,2,...,27R)} (5.163)

/ /. .
Assume that message m” € .4 is transmitted.

Let the codeword corresponding to message m"/ be denoted by u:'/. Let the non-

transmitted codewords be denoted by #’ 1 4 2 ,u ln Al

/7

”

u ,

distribution on %" .
m

' is a realization of U’ ;”, 1<i<27Rl_q, By the random code book generation,

U ".'I 1 < i <21"Rl _1, has uniform distribution on %" .
By the random code book generatxon, the codewords are generated independently of

each other, and thus, U’ n , U" m ,1<i <2lRl 1 areall independent of each other as
random variables.

. . . / . ’ .
is a realization of U”. By the random code book generation, U” has uniform

The actlon of the channel ¢ € 6} 1, on the transmitted codeword #” produces an
output y”

y" is the reallzatlon of some random variable Y which is got by the action of the
channel ¢ on U’ 7. Note that Y will be different for different ¢ € Gy p- Assume
that some pamcular ¢ € 6y p happens, and Y™ is the corresponding channel output
random variable. Our argument will hold for all ¢ € 6y p,.

y" depends on u;’/

By the codebook generation, the codewords are generated independently of each other,

/

. / 7
and there is no dependence between y” and #’ 1w’y w7 . Thatis,y™,and Y”

27 R|_4
are independent of U’:’ ,1<i<2l7RI_q,
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o Notation for the source coding problem: We will do the analysis assuming that a particular
u" € U™ needs to be coded.

The source is the uniform X source. Thus, #
. . . . 7
uniform distribution on %” .

The codebook is

/. . - / 7
" is a realization of U” where U" has

LY =009V} (5.164)

For all 7, yt?’l is a realization of the random variable V,.”/. By the random codebook
generation, Vx.”' is the uniform distribution on the set %q”' c " of all sequences with
precise type q.

By the random code book generatlon, the codewords are generated independently of

each other, and thus, Vl” 1 < i < 2l"R] 4re independent of each other as random
variables.

Also, the codewords are of course, mdependent of the source sequence, and thus, #
and U" are independent of V” 1<i<2l Rl

Analysis:

o Error analysis for the channel coding problem: We analyze the probability of correct de-
coding.

We analyze the probability that a message is correctly received given that a particular
message is transmitted. Think of some probability distribution M” on the message
set M} 7' This probability distribution will 7ot matter for the calculation. In fact, the
calculatlon that we do can be done even if there is no probability distribution on the set
of messages. We calculate

Pr(/lfl”' =M”'|M"/ = mf") where mf’l € .//{"’ (5.165)

The code book generation is symmetric. For this reason, the above probability will be
independent of the particular message m” € My %,

From the decoding rule, it follows that for correct decoding, the following should hap-
pen:

1 / / /
-n—;d” (u”,9")<D (5.166)

1 / / 2 ’
—d" (W7 ,y")>D,1<i<2"Rl_1q (5.167)
n
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Thus, the event of correct decoding is:
1 ’ ’ ’ n' 1 / 4 /
{—,d” U, y")< D} A1 {_7d” U, y"y> D} (5.168)
n n

Error analysis for the source coding problem: We analyze the probability of error.

The analysis is done assuming that a particular sequence #” € %" needs to be source-
coded. As we shall see, this error is independent of the particular source sequence be-
cause of the same empirical distribution of the source sequences, the symmetric nature
of the code book construction, and permutation invariant distortion measure.

An error happens if there exists no y” in the code book £” such that (" ,y") are
jointly typical, that is, an error happens if

1 / 7/ /7 7/ /
?d” (#”,y")>DVy"” € £* (5.169)
The event of error is
’ 1
2ln'R] ’ / /
n2 {7{1" (u",Vi”)>D} (5.170)

Note 5.61. Note that in the channel coding problem, we analyze the probability of
correct decoding and in the source coding problem we analyze the probability of error

Calculation:

Calculation of probability of correct decoding for the channel coding problem:
The correct decoding event is:

{id"’(vf', Y")< D} N2 t-1 { %d”’(u’f’, Y”)> D} (5.171)
We wish to calculate the probability of the above event.
Pr <{ ﬁd”'(Uc"', Y")< D} N2 -1 { ﬁd"'(U'?,’ Y")> D})
—Pr ({%d"’(zjg’, Y”)< D}) +Pr (nf‘__";"’-l {id”'(U’:‘/, Y")> D}) _
Pr ({ &d"’(ug’, Y”)< D} ung - { %d”'(U’:’/, Y™ > D})
>(1~w,)+Pr <n§'=";“‘~1 ;:—,d"'(U’;", Y™)> D}) -1

, 1 ’
I"R] _ ’ /
=—wn/+Pr<ﬂf=l 1{7d" (U’:z,Y”)>D}>
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2l7'R|_1

1 ' ﬂl Y
=—wy,+ l—[ Pr ({yd” (Uli ,Y” )>D})
=1

(since U’ :’,,1 < i <2"RI_1, Y sre independent random variables)

[ 1, ’ ’ 2Rl
=—-co"/+ Pl‘({;l-;d" (U” ,Y” )>D})]

(where U” has the same distribution as U/ " and is independent of Y

/ 1 / / ’ ’ ’
=—wy+| D] Pyn'()’")Pr<7d"(U",Y”)>D|Y" =yn>
y”re?y"/

’ 1, V) / ’
=—cw,+ Z pynr(yn )Pr(;d” (U”,yn)>D|Y" :yn>
_y”/e&’l/"'
2[n'RJ_1

7 1 / 7 7
=—w,+ | D Py )Pr <;—,d” (U™,y")> D)

ynlegnl

(since U™ and Y™ are independent)
1 2[»'R]_1
>—cwy,+ | inf Pr ({—,d”/(U”’,y”’)>D}>
" ey’ n
Rate R is achievable if
. 2RI 4
—w, + [ inf ,Pr({—/d”/(U”/,y”’)>D}>:| —1lasn =00
yn ewr n

It is known that w,/ — 0 as n’ — oco. It follows that rate R is achievable if

2RI
1 / 4 7
Llinf ’Pr<{—,d"(U" ,y”)>D}>] —lasn’ — o0
ey n

o Calculation of probability of error for the source coding problem:

The error event is:

L/R]

1 ! / 7
Y, {7d” Ci% )>D}

- 2[n' R|_q

2[7:’11]_1

(5.172)

(5.173)

(5.174)

(5.175)
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We wish to calculate the probability of this event.

Pr (nf'_ R’{ d" (u" ,V")>D}) (5.176)

_zlﬁjpr« 4" (u" ,V")>D}> [r({&gjn’(un”vn’)>D}>]2WJ (5.177)

where V' is a random variable which is uniformly distributed on 0)/ 7" and is indepen-
dent of #” forall s € %™ .

The type 4 with which the codewords are generated can be chosen by us. For block-
length 7', we can choose the best possible achievable ¢ for which the above error prob
ability is the minimum. Let the set of all possible achievable types ¢ for block-length 7’
be denoted by 9. The least possible error probability is given by

1 2l#’R]
[ inf pr<{_,d"’(u"’,v"’) >D})] (5.178)
qeg” n

To show the above dependence of the distribution of V"' on ¢, we denote it by V"
Thus, the least possible error probability is

zlanJ
1 4 7/ /
inf m—({—,d" (" ,V”)>D}) (5.179)
qe9” n 9

Since we are using the inf-probability of excess distortion criterion, it follows that rate R is
achievable if

2[”,"RJ

l: inf Pr ({ —d"(u", )>D})j| — 0 for some 7 = nyn; for some n; — 0o
n;

qe%” i
(5.180)
Connection between channel coding and source coding:
It turns out that the main calculation we need to do in the channel coding problem is
1 / / !
inf /Pr({—,—d”(U” ,y”)>D}) (5.181)
Yy ey" n

and the main calculation we need to do in the source coding problem is

inf Pr ({ v, vr)> D}) (5.182)
n

qe@"/
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We will prove that the above two expressions are equal.

We will prove more generally, that

1 / 7/ 7/ 1 7 7 7 7
Pr<{-—,d” u”,y") >D}> =Pr<{—,d” (#” ,Vq”)> D}) , if " hastypeq (5.183)
n

n
Let 3" have type q.

First we prove for the channel coding problem that if y” and y" have the same type g, then
1 / / / 1 ! / /
Pr ({—;d" (U” ") > D}) = Pr ({—,d" " y"y> D}) (5.184)
n n

. /. . . . . . . . .
Since U" is the uniform distribution on %", it follows that it is sufficient to prove that the
cardinalities of the sets

/ 1 ! 7 / ! 1 4 4 /7
{u” t—=d" (u" ") >D} and {u" i =d” (4" ™) >D} (5.185)
n n

are equal

mn

. / / /. . / / / /
Since y” and y™ have the same type, ™" is a permutation of y” . Let " = " y” .

Denote the sets

! 1 7/ 7 /
%yn,é{u" t=d” (u",y”)>D} (5.186)
n
and
/ 1 / / /7
Qy’”, = {u" c=d” (4" ") >D} (5.187)
n

il

Let 4" € %y,,/. Since the distortion measure is permutation invariant, d (" u” , 7" y')
d” (u”,y"). Thus, n" u" € .%y,,,/. Hu £u™, 7% u” # n"u' . It follows that IQV,,A >
/. . ’
|8 ,|. y* and ¥ in the above argument can be interchanged. Thus, |8 | > |8 /] It
y” y’! y n
follows that |$y,,z| = |.%y,”, | Thus, it follows that

Pr <{;17d"/(U"',y”,) > D}) =Pr <{§d"’(v"’, y"y> D}) (5.188)

an, denotes the uniform random variable on the set of all sequences of all type 4. Let 144 be
independent of U". It follows, by use of 5.188 that

Pr ({&d"’(m’, y7)> D}) =Pr ({;:—,d”'(U”', vry> D}) (5.189)
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Next, we prove for the source-coding problem that if #™',4’” € %™ (in particular, they have
the same type), then

1 P _ 1 w1 o
Pr<{7d (» ,Vq )>D}> _Pr({;-;d (u ,Vq )>D}> (5.190)

. 7 . . . . . / . .
Since V) is the uniform distribution on the set of sequences Uy of type g, it follows that it
is sufficient to prove that the cardinalities of the sets

1 / / / | Y /
{y” :;;d" " ,y")> D} and {y” : ?d"l(um 7)) > D} (5.191)

are equal.

/

N A 7 / /. . / 7/ /
Since #” and #™ belong to the set %", u'* is a permutation of #” . Let 4’ = n" 4" .

Denote the sets
A P | ’ ’ ’
9“"/={y" : ';l—,d” (ﬂn ,y”)>D} (5192)
and
A n 1 n /,,/ n/
@“,n/ ={y": ;7d (7 ,y")>D (5.193)

Let y” € @y,,/. Since the distortion measure is permutation invariant, d” (7" #” , "y =
d*'(«",y"). Thus, pi”y"” € D - Ify* # 9, 2% y" # 1%y . It follows that 12wl 2>
12, 1. #” and 4’ in the above argument can be interchanged. Thus, 12,1212 .| It
follows that |9“,n,| = |@un/ | Thus, it follows that

1 / / / 1 ’ ’ ;
Pr ({-—,d" (u™, V") >D}> =Pr ({——,d" (", v >D}> (5.194)
n 9 n q

U” denotes the uniform random variable on %", Let U” be independent of Vq”/. It follows
from 5.194 that

1 / / ! 1 / / /
Pr ({—7d" ",V )>D}) =Pr({—,d" ', v >D}> (5.195)
n 9 n 1
From (5.190) and (5.195), it follows that if y” has type g,

Pr({;:-,d”'(U”/,y”/) >D}) =Pr ({;1711”/(“”,, Vq”') > D}) (5.196)
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It follows that
1 / 2 ' 1 7 7 7
inf Pr <{—,a’" ", y")> D}) = inf Pr ({—,d" ", V") > D}) (5.197)
/ ’ / q
y* e¥” n q€9” n

This proves what we had set out to prove in the connection between source and channel
coding.

Denote

N . 1 / ! / . 1 / ’ ’
F" 2 inf Pr({——,d”(U”,y")>D}>= inf Pr({—,d" (u”,V”)>D}) (5.198)
yn'e.g/n' n qeg"’ n 9

Pseudo-universal capacity of the channel set 6, 1, is < the rate-distortion function RE,(D,inf)

o Channel coding problem: From (5.174), it follows that rate R is achievable if
[1"”’]21",1”_1 —lasn’ =00 (5.199)
e Source coding problem: From (5.180), it follows that rate R is achievable if

’ l”;RJ
[F%]*" —0as n; — oo for some nlf = nyn;, for some n; = co (5.200)

If rate R is achievable for the channel-coding problem, so is any rate < R. Define:

a = sup{R|rate R is achievable for the channel coding problem

by use of the above random-coding method} (5.201)

Then,
n}i_r,noo(F i )zl”"m‘l <1VY R’ > a for some sequence 7; — oo (5.202)

Thus,
Tim (F 21 Z0for R > R’ (5.203)

Note that R” > R’ > a, but other than that, R’ and R” are arbitrary. It follows that rates <«
are achievable for the source coding problem.

Note that the above random-coding method is just one possible method to generate codes for
the channel coding problem. In general, it is possible that there exists another coding method
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which performs better than the above random-coding method, that is, for which rates > a are
achievable for the channel coding problem. Thus, what we can claim from the above argu-
ment is that rates < @ are achievable for the channel-coding problem. Thus, pC, . (6y p) > a.
Similarly, the above random-coding method is just one possible method to generate codes for
the source coding problem. In general, it is possible that there exists another coding method
which performs better than the above random-coding method, that is, for which rates < @
are achievable for the source-coding problem when we use the probability of excess distor-
tion criterion with the inf definition. That is, R’;,(D,inf) < a. Thus, pC, (6 p) > @ and
RZ(D,inf) <. In particular, pC, (6y p)> R’Z,(D,inf).

Definition 5.66 (). Note, from the above proof a is equal to the answer to the random-
coding argument described in the above proof for both the channel-coding problem of the
pseudo-universal capacity of the set of channels 6}, and the rate-distortion function for
compressing the uniform X source under the inf-probability of excess distortion criterion.
The answer to these random-coding arguments is then, our definition of .

Next, we prove that pC, (6y p) < R’;}(D). The main idea of the proof here is to think of the
transition probability corresponding to a “good” source-code as a “bad” channel.

Let s =< s" > be a rate RZ(D) + ¢ source-code which compresses the uniform X source,

U, to within a probability of excess distortion D. By Lemma 5.2, we can assume that s =<
s" >P=<e€”,f" > is deterministic. Thus, the cardinality of the image of /™ oe” is
< o’ [RZ(D)+€].

Consider the channel ¢, =< ¢” >P=< f " oe” >%. Then, ¢, € 6y p. Since the cardinality
of the image of £ oe” is < 2" [RHDM+] the capacity of ¢, < Rz(D)+e (this s quite intuitive;
however, a rigorous proof is proved below, after a few lines).

Such a channel c, exists for all ¢ > 0. Recall that ¢, € €y p. It follows that pC, (6y p) <
RE(D)+ € Ye > 0. It follows that #C,(6y,p) < RL(D).

It remains to prove that the capacity of ¢, < R’;J(D) + ¢. Note that we have defined capacity
with the maximal block error probability criterion
sup Pr(M™ #M” |M" =m")—>0asn’ — o0 (5.204)
m" e ™
Note also, that the maximal block error probability criterion is a stronger criterion than the
average block error probability criterion

PHM™ #M")— 0as n’ — co, where M" is uniform (5.205)

Let rate R be achievable with a possibly random channel-code < Eé”,Fo”’ >2° over the channel
¢, under the maximal block error probability criterion. Then, rate R is also achievable over
the channel ¢, by using the same channel code < E*, F"”’ > under the average block error
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probability criterion. For the average block error probability criterion, if rate R is achievable
by using a random-code, rate R is also achievable by use of a deterministic code. Thus, rate R
be achievable over the channel ¢, under the average block error probability criterion by use
of a deterministic channel code < egl, f;,”/ >%. An exercise in [CK97] tells that there exists
a way of throwing away half the codewords such the maximal block error probability is less
than or equal to twice the average block error probability for each block length. Let £ > 0.
It follows that there exists a deterministic source code < e’ j'1 > such that rate R — £is
achievable over the channel ¢, under the ma.xnmal block error probability criterion by use
of the deterministic source code < e}’ fl >%°. Now, cardinality of the image of f " oe" is

< 27 [RG (DYl and another way of thmkmg about this is that when the block-length is 7/, the
output space of the channel ¢ has cardinality < 2" '[RG DY, Wnth the deterministic code
<el, f1 >2°, it follows that the cardinality of the image of e} oc "o f " s < 27 [RG(DMe] 1
R — & were greater than R? v(D)+ ¢, it follows that some message m” " will not have an image
inef " oc” "o i # and the maxima.l block error probability will be 1. Thus, R—& < RY (D) +e.

& > 0 is arbitrary. It follows that rates > R (D) + ¢ would lead to a maximal block error
probability of 1 over the channel c,. Thus, the capacnty of the channel ¢, < RE(D) +e¢. It
follows, as we said above, that pC, (‘€U D)< RE v(D)-

Thus, we have proved that RY (D)= pC,(6yp) 2 R? (D, inf). This completes the proof.
O

Next, we go on to prove one of the main theorems of this chapter: the equality of the pseudo-
universal capacity and the rate-distortion functions.

W 5.6.2 Proof of pC, (%xp) = R5(D) = RE(D) = R%(D,inf) = RE(D, inf)
First, we prove that pC, (6y p) =R (D) RP (D, inf)
Theorem 5.47. pC, (6yp) =RI£,(D) =R’Z,(D,inf)

Proof By Theorem 5.46, RY (D)2 pC, (€, D) >RP (D, inf). By Theorem 5.37, RP y(D>inf) =
(D) It follows that pC,c(‘KU p)=RE(D)= (D inf). This completes the proof O

Note 5.62. 'We have defined the rate-distortion function with both the liminf and the limsup
definitions. Most literature defines the rate-distortion function with the limsup definition.
One of the reasons why we have defined the rate-distortion function with both the liminf
and the limsup definitions is for the sake of completeness. Another reason why we have
defined the rate-distortion function with the liminf definition is because the tabular proof
in Theorem 5.46 Works only with the liminf definition: we do not know, how to prove
?C,(6yp) =R (D without involving the definition of R? (Dsinf) . Then, we use the
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equality of the rate-distortion functions RY(D) and RE (D, inf) proved in Theorem 5.37 to
prove Theorem 5.47.

Finally, we prove the desired result: pC, (€ D= Rf( (D)= R§(D) = Rf{(D, inf) = R;}(D, inf).
This is done by taking limits along X, — X where X, are random-variables which satisfy
px,(x)is rational Vx € &', and X is arbitrary.

Theorem 5.48. Let X be an arbitrary random variable on & . For D € (0, 00). ?2C,(6xp)=
R3(D)= RE(D)=RE(D,inf) = RE(D, inf),

Proof. Let X,,1 < n < oo be a collection of random variables on & such that py (x) is
rational Vx € &'. Let X,, — X in distribution. That is, Vx € &, nl_l_'rgo px (x)= pX(x):' U, is
the uniform X, source. Let ¢, > 0 and ¢, — Oas #n — co. Define 8, = D, (d,(px, px ) +
¢,,)- First we prove that for D € (0, 00), "

lim R)E(”(D +8,)=1C,(6xp) (5.206)

n—o0

From Lemmas 5.44 and 5.45, it follows that
Pcrc(cgUn,D+8,,) < Pcrc(ch,D) < PCrc(cgU”,D—é‘n) (5'207)

By Theorem 5.47, it follows that
Rf, (D+38,)< pC,(6xp) SR}, (D-3,) (5.208)

Rest of the proof of (5.206) follows exactly as in Lemma 5.39 by replacing RE(D) with
?C,(6x p) in the steps (5.134).

The proof of this theorem, now, follows by use of Lemma 5.39 and Lemma 5.41. O

We use Theorem 5.48 to prove the main result of this chapter: an operational proof of the
optimality of digital communication for the problem of pseudo-universal communication
with a fidelity criterion.

B 5.7 An operational view of the optimality of digital communication for
pseudo-universal communication with a fidelity criterion, and a dis-
cussion of the operational nature of the proof

By using Theorem 5.48, in almost exactly the same way as Step 2 in Section 2.15, we will
prove, in this section, the optimality of digital communication for pseudo-universal commu-
nication with a fidelity criterion. Because of all the machinery developed in this chapter, the
proof will be operational.

As stated in Subsection 5.1.1,
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e We use pseudo-universal achievability instead of universal achievability in our proofs.
We are quite sure that the proof can be carried out even for universal achievability but
I have not carried it out. For the reader unhappy with this explanation, the reader can
think of this as an operational view point on the optimality of digital communication
for a fully known channel because for a fully known channel, pseudo-universal and uni-
versal achievability are the same as argued in Subsection 5.1.1. Similarly, instead of uni-
versal communication with a fidelity criterion over a partially known channel k € &/,
we will be using pseudo-universal communication with a fidelity criterion over a par-
tially known channel: we do not enforce uniformity in the rate at which the probability
of excess distortion — 0 as block-length — co over the particular channel £ € /. Gen-
eralization to proving results universal instead of pseudo-universal results operationally
is discussed in Section 5.9.

e We do not take into account resource consumption in the system when constructing the
digital architecture. We are quite sure that a few more arguments can be made to take
into account the resource consumption in the system but I have not carried out these
steps. For the reader unhappy with this explanation, the reader should think of it as the
way things are done in the usual information theory literature in the discrete case where
resource consumption is not considered at all. I should add that I do not agree with this
approach in the literature because resource consumption is a very important issue, and
when proving optimality of digital communication, one should prove that it can be
done with the same or lesser resource consumption as compared to other architectures;
in our case in this chapter, I quite strongly believe that it can be done; just that I have
not done it. This is commented on vaguely in Section 5.10

With the above constraints, we will carry out the proof of optimality of digital communica-
tion for pseudo-universal communication with a fidelity criterion (in other words, an oper-
ational view of the pseudo-universal source-channel separation theorem for rate-distortion;
the proof is carried out for the 1.i.d. X source; of course, essentially the same proof can be
carried out for the uniform X source:

In Subsection 5.7.1, we make a formal definition of what it means for a partially known
channel to be capable of pseudo-universally communicating a random source to within a
certain distortion level. In Sub-section 5.7.2, we state the pseudo-universal source-channel
separation theorem for rate-distortion. The operational proof will crucially use Theorem
5.48 and the fact that its proof is operational and by use of this theorem, the final step of the
operational proof is carried out in Subsection 5.7.3. This is followed by a discussion of the
operational nature of the proof in Subsection 5.7.4.
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W 5.7.1 Capability of a partially known channel to pseudo-universally com-
municate a random source to within a certain distortion level

Let k € .« be a partially known channel with input space .# and output space @ as described
in Subsection 2.5.2.

First, we describe the point-to-point communication system which communicates i.i.d. X
source over a channel & € ./. Recall the action of a a point-to-point communication system
in described in Subsection 2.6.6.

The input to the encoder is the i.i.d. X source. Thus, when the block-length is 7, the input is
the i.i.d. X sequence of length 7, X”. The composition of the encoder, channel, and decoder,
produce an output sequence Y. This results in a joint random variable X” Y on the input-
output space & x ¥ and the corresponding probability distribution pyny» on 7" x H".
Note that when we are talking about a partially known channel pyny» will vary depending
on the particular kb € /.

Definition 5.67 (A partially known channel which is capable of pseudo-universally commu-
nicating i.i.d. X source to within a distortion level D). The partially known channel & € .o/
is said to be capable of communicating i.i.d. X source to within a distortion D if there exists
an encoder-decoder pair < e”, f” >%° independent of the particular £ € ./ such that under
the joint distribution pyny» as described above,

1
Pxryn <—d”(X",Y”)>D>—»Oasn—>ooVkE.d (5.209)
n

The reader should compare this definition with the definition of a partially known channel
which is capable of universally communicating i.i.d. X source to within a distortion level D
in Definition 2.25: there is no w =< w” >% sequence in the definition anymore which was
introduced to enforce the uniformity over the partially known channel # € ./ in the rate
at which the probability of excess distortion — 0 as 7 — co. Now, we do not ask for this

uniformity.

A similar definition can be made for the uniform X source which we omit because our main
goal is to prove results for the i.i.d. X source; uniform X source is a good intuitive as well as
a good mathematical tool towards that goal.

B 5.7.2 A statement of the pseudo-universal source-channel separation the-
orem for rate-distortion

Assuming random-coding is permitted, in order to communicate the i.i.d. X source pseudo-
universally over a partially known channel to within a particular distortion level, it is suffi-
cient to consider source-channel separation based architectures, that is, architectures which
first code (compress) the i.i.d. X source to within the particular distortion level, followed
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by pseudo-universal reliable communication over the partially known channel. There is suf-
ficiency in the sense if there exists some architecture to communicate the random source to
within the required distortion level, pseudo-universally over the partially known channel,
there exists a separation architecture which accomplishes the same thing.

The same result holds for the uniform X source.

W 5.7.3 The final step of the operational proof of the pseudo-universal
source-channel separation theorem for rate-distortion for the i.i.d.
X source

Let & € &/ be a partially known channel which is capable of pseudo-universally communi-
cating the i.i.d. X source to within a distortion level D. This is accomplished with the help
of an encoder-decoder < e”, f” >%°. Denote the set of channels

Cy2i{<e’okof" > |ke .} (5.210)

Note that € is a subset of 6y . It follows by Theorem 5.48 that the pseudo-universal
capacity of the set of channels €y j, is > the rate-distortion function RE(D).

It now follows that by source-compression followed by pseudo-universal reliable communi-
cation, the i.i.d. X source can be communicated universally and reliably over the partially
known channel £ to within a distortion D. A rough argument is the following: Take the
iid. X source. Compress it using a sourceencoder < e >7° to within a probability of
excess distortion D. The output is a rate RY (D) message source. This rate R%(D) message
source can now be communicated pseudo-umversally and reliably over the channel set 6
by using a channel encoder-decoder < E”,F” >{°. Finally, the output of the channel decoder
is source decoded using a source decoder < £ >‘1’o End-to-end, the i.i.d. X source is pseudo-
umversally communicated to within a distortion D over the channel set 6 ¢~ It follows that
by using a source<code < e”, /" >° and using a channel code < e 0 E”,F” o f" >, the
i.i.d. X source can be commumcated pseudo-universally to within a d1stort1on level D over
the partially known channel £, digitally.

A rigorous argument for the above source-coding followed by channel coding is the following:

We said above that the pseudo-universal capacity of the channel set €, is > RE(D). Assume

that the pseudo-universal capacity is strictly > R% (D). Let the universal capacity be RE(D)+
8,8 >0.

Let ¢ = — By the definition of R%(D), it follows that there exists a rate R? % (D) + € source-
code < e” »f" >3 which compresses the i.i.d. X source to within a probablhty of excess
distortion D.

Let the block-length be 7.

The action of e” on X” produces an output random variable Mz on the set .#y, where the
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set MJ is
={1,2,...,2l7ExDH (5.211)

Since the pseudo-universal capacity of the channel set 6, is strictly greater than R” v (D)+e€
by assumption, the message M ]'(’ can be pseudo-universally and reliably commumcated over
the partially known channel % in the limit as 7 — co. Finally, the source is re-constructed by
using the source decoder /.

It follows that end-to-end, in this separation based architecture, in the limit as 7 — oo, the
iid. X source is communicated pseudo-universally to within a distortion level D over the
channel set €, and hence, over the partially known channel &.

Note that we assumed that the pseudo-universal capacity of the channel set €, is strictly
> R¥(D), whereas it only follows that the pseudo-universal capacity of the channel set Cy
is>RP % (D). It is unclear what will happen if the capacity of the partially known channel  is
premsely RE (D). This “tension” of what happens if the capacity is precisely R” % (D) is usual
in mformauon theory.

This completes the argument, and thus, rigorously proves the pseudo-universal source-channel
separation theorem for rate-distortion when the source is i.i.d. and the distortion metric is

additive.

Note 5.63. In order the prove the pseudo-universal source-channel separation theorem for
rate-distortion we have only used the fact that the pseudo-universal capacxty of the channel
set Gy p is > RE v (D). We proved in Theorem 5.48 that the universal capacity of the channel
set €x p is in fact, precisely RY (D). We will use this precise equality to discuss connections
between source and channel codmg and to gnve the idea of an alternate proof of the rate-
distortion theorem for certain i.i.d. X sources in Section 5.8.

In the next subsection, we comment on the operational nature of the proof of the pseudo-
universal source-channel separation theorem for rate-distortion.

B 5.7.4 Discussion: Operational nature of our proof of the pseudo-universal
source-channel separation theorem for rate-distortion, and a com-
parison with Shannon'’s proof

Our proof of the pseudo-universal source-channel separation theorem for rate-distortion is
operational in the sense that it uses only the definitions of channel capacity as the maxi-
mum rate of reliable communication and the rate-distortion function as the minimum rate
needed to compress a source to within a certain distortion level. We do not use functional
simplifications, for example, mutual information expressions for the channel capacity or the
rate-distortion function in the proof.

The proof consists of two steps:
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1. Step 1: If there exists some scheme in order to communicate the i.i.d. X source pseudo-
universally over the partially known channel & to within a distortion D under the
probability of excess distortion criterion, then the pseudo-universal capacity of & is
> RE(D). One main step in this proof is the proof of Theorem 5.48, which says, in
part, that the pseudo-universal capacity of the set of channels € p, is equal to the rate-
distortion function for the i.i.d. X source. The whole chapter before the proof of The-
orem 5.48 is devoted to proving this theorem rigorously and operationally. This whole
big proof is operational in the sense that we only use the definitions of source-codes,
channel-codes and the operational meanings of rate-distortion function and channel ca-
pacities. We do not rely on mathematical functional simplifications. This main idea
of the proof is Theorem 5.46, random-coding arguments carried out in parallel for the
source-coding and channel-coding problems where we can “see” that the answers to the
two problems is the same without doing much functional simplifications: this is what
makes it operational. Mathematically, the main idea is (5.183) which is the same equa-
tion as (2.66) and is reproduced below:

1 / / 7 1 7 7 7 7
Pr ({—;d" (u” ,y")>D}> =Pr <{—7d" (u” ,Vq” )>D}> , if y” hastype g
n n
(5.212)

2. Step 2: If the pseudo-universal capacity of a partially known channel & is > R? (D),
then pseudo-universal communication of the ii.d. X source to within a proba)f)ility
of excess distortion D can be accomplished over the channel & by source compression
followed by pseudo-universal reliable communication. Clearly this proof is operational
in that we need to know only the operational meaning of R% (D) as the rate at which
we can compress the i.i.d. X source to within a distortion D and we only need to know
the definition of pseudo-universal capacity as the maximum achievable rate at which
pseudo-universal reliable communication is possible over the partially known channel

k

I would like to further comment on the operational nature of the proof of Theorem 5.48.
First note, that the concept of an operational proof is 7ot a precise concept. The question of
pseudo-universal capacity of the set of channels 6y p, when posed in mathematical language,
is an infinite dimensional optimization program. Similarly, the rate-distortion problem of the
minimum rate needed to compress a source to within a certain distortion level is an infinite
dimensional optimization program. We need to prove that the answers to both these infinite
dimensional optimization programs is the same. A “truly operational” proof will just prove
this without any steps. However, no proof can be without any steps; otherwise, the result
would be trivial. The main step that we go through is the parallel random-coding argument
where we prove that pC, (6 p) > RZ(D, inf). We do go through some steps where we use
a random-coding argument and make coding schemes for both the channel coding and the
source coding problems. We believe that none of these steps make the proof non-operational;
however, this is a concept which we cannot make precise.
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We would like to compare our proof with that of Shannon, which we believe is non opera-
tional. Shannon’s proof, again, goes in two steps:

1. Achievability, which is the same as our Step 2: This proof is exactly the same as ours
(rather, we should say that our proof is exactly the same as Shannon’s!), and is opera-
tional

2. Converse, which is the same as our Step 1 (though as we discussed in Subsection 2.14.10,
we view it as achievability) : This proof is different from ours. Shannon’s proof relies
heavily on the information-theoretic definitions of channel capacity as 2 maximum mu-
tual information and the rate-distortion function as a minimum-mutual information:
these mutual information expressions are simplified finite dimensional optimization
programs corresponding to the original infinite dimensional optimization programs.

The following is an outline of Shannon’s proof. Shannon’s proof required the channel
k to be fully known and used the expected distortion criterion instead of the probabil-
ity of excess distortion criterion. Let the channel % be a discrete memoryless channel.
Denote the discrete memoryless channel & by p;.

We will not be entirely precise: see [Sha59] for the precise details. The converse consists
of two steps:

H(X"|Y")> H(X")-nC! [c’ 2 n}ax]([; O)] (5.213)

This says that since the source X” communicated over a discrete memoryless chan-
nel, the entropy of the source at the output cannot fall by “too much”. “Too much”
is quantified by the information-theoretic capacity C’ of the discrete memoryless
channel. The proof of this step uses the definitions of entropy, mutual information,
information theoretic capacity, and inequalities concerning entropy and mutual in-

formation.
[ ]
H(X"|Y")< H(X")-nR'(D) |RL(D)Z inf IX;Y)| (.214)
~ Px
Ed(X,Y)<D

This says that since the source X” has been communicated to within a distortion
D under the expected distortion criterion over the channel (by using some architec-
ture which does not matter), the entropy of the source should have fallen by atleast
a particular amount, and this particular amount is quantified by the information-
theoretic rate-distortion function R} (D), which was defined in the above equation
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and has also been defined in Definition 2.30. This is proved by using information-
theoretic inequalities concerning entropy and mutual information and the convex-
ity of the R(D) function.

These two steps imply that
c!'>RL(D) (5.215)

Finally, one invokes the fact that for a discrete memoryless channel, the information-
theoretic capacity is the same as operational capacity, and the information-theoretic
rate-distortion function for an i.i.d. source is the same as the operational rate-distortion
function, and this proves that the capacity of the channel & is greater than or equal to
the rate-distortion function RZ(D).

Shannon’s proof of the converse is a brilliant proof but I have never had much intuition for
it, mainly because it goes through first proving the equality of the information theoretic rate-
distortion function and the information-theoretic channel capacity, and then invoking the
equality of the rate-distortion function and the information-theoretic rate-distortion func-
tion, and the equality of channel capacity and the information-theoretic channel capacity. In
this sense, it is not operational.

Our proof, which relies only on the operational meanings and uses a random-coding achiev-
ability argument, we believe, lends much more insight into the nature of separation, for
which, as we said, in Subsection 2.14.10, that the fundamental mathematical reason is (5.183)
which is reproduced below:

1 i ! 7 1 / / 7 /
Pr <{_,d" (U",y" )>D}> =Pr<{—,d" (4" ,Vq”)>D}) , if y” hastypeq (5.216)
n n

W 5.8 Connections between source and channel coding and an alternate
proof of the source-channel separation theorem for rate-distortion for
those i.i.d. X sources for which py(x) is rational Vx € &

In this section, we discuss connections between source and channel coding that come out of
our work and related to this, we give another proof of the rate-distortion theorem for those
i.i.d. X sources for which py(x) is rational Vx € &', which we believe is more insightful than
the original proof of Shannon [Sha59].

W 5.8.1 Connections between source and channel coding

The connection between source and channel coding was discussed in Subsection 2.14.10. We
discuss is further, here. The discussion will be high-level.
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We discuss these connections for the uniform X source. Recall that the uniform X source is
defined only for those X for which py(x) is rational Vx € &'. On the level of ideas, the proof
of pC, (6yp)= RZ(D) has the following steps:
o Step O: Prove that RZ(D) = RZ(D,inf).: This is proved by using the operational mean-
ings of source codes and the two rate-distortion functions

o Step 1: Prove that RY (D, inf) < 2 < pC, (6 p): We make random coding arguments
for both the channel coding problem and rate-distortion source-coding problems: the
channel-coding problem is the pseudo-universal capacity of the set of channels Cup
and the rate-distortion problem is the minimum rate needed compress the uniform X
source to within a distortion level D under the inf-probability of excess distortion cri-
terion. We note that the answers to both these random-coding arguments is @. Since
the random-coding scheme is just one possible scheme for pseudo-universal communi-
cation over the set of channels €y, p,, it is potentially possible that a scheme exists which
performs better than the random-coding scheme, that is, a scheme for which rates > @
might be achievable for the channel coding problem . Thus, ?C,(6y,p) > a. Similarly,
the random-coding scheme is just one possible scheme for compression of the uniform
X source to within a distortion level D under the inf-probability of excess distortion
criterion, and it is potentially possible that a scheme exists which performs better than
the random-coding scheme, that is, a scheme for which rates o are achievable for the
source-coding problem. Thus, RZ(D,inf) <a.

Thus, RY(D,inf) < a < ?C,(6yp)

e Step 2: Prove that pC, (6 p) < RPU(D): This is done by noting that the transition
probability corresponding to a “good source-code” for the problem of compressing the
uniform X source to within a distortion D under the probability of excess distortion
criterion. is a “bad channel” for the purpose of reliable communication. The transition
probability corresponding to this “good source code”, when thought as a channel has
capacity R’Z,(D), and hence, the infimum capacity of the channel class < Ry (D).

From these steps, it follows that R’;,(D) = a = pC,(€yp) Inparticular, pC, (€y p) =
RE(D).
U

If one notes the parallel tabular argument for the channel-coding and source-coding prob-
lems, there is a kind of “duality” in the two arguments. These are random coding arguments,
and one can, at least to some extent, interpret this as a covering-packing connection, maybe
a random-coding covering-packing connection. The proofs here shed light on connection
between the two problems. It should be possible to make this connection/duality precise;
however, we do not know, how to. As we stated in Subsection 2.14.10, the precise mathemat-
ical reason for this duality is (5.183), which is reproduced below:

1 / 7/ / 1 7/ / ’ ’
Pr({—,d" (U”,y" )>D}) =DPr ({—,d” (w” ,Vq” )>D}> , if y” hastypeq (5.217)
n n
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W 5.8.2 An alternate proof of the rate-distortion theorem for those i.i.d. X
sources for which py(x) is rational Vxe ¥

The original rate-distortion theorem of Shannon [Sha59], stated as Theorem 2.1 in this thesis,
says that a simplified expression for RZ (D) is R% (D), where R% (D) is defined in Definition
2.30, and this definition is reproduced below

R (D)= inf I(X;Y) (5.218)

{rix + e yev I’x(x)PY|x(J’|’° )<D}

We give an alternate proof that a expression for R% (D) is R%.(D) for those i.i.d. X sources for
which py(x) is rational Vx € & which goes through the channel-codmg problem and which,
I believe is more insightful than the original proof of Shannon for reasons which will follow.
Of course, since we have proved the equallty of R%(D) and RE 5 (D), this will also prove that
a simplified expression for R% (D) is R%(D).

First, let us look at Shannon’s argument for the i.i.d. X source, more details of which can be
found in [Sha59]:

In a nut-shell, ShannonOs proof goes as follows: by using the same random coding argu-
ment, it is proved that R% (D) < . Then one does a computation for @ and proves that it is
equal to RL(D). This, then, proves that R%(D) < R%.(D). The proof of RL(D) < RE(D)
uses mformatnon-theoretlc inequalities and propertles of mutual information. The functxonal
form of R;(D) is thus used crucially in ShannonOs proof: one has to compute @ = R, x(D)
only then is the proof complete. Unlike Shannon, our proof of converse does not use
information-theoretic inequalities or properties of mutual information, but rather, rests on
connections between our channel coding problem and the rate-distortion problem. Follow-
ing is a summary of the steps:

1. Prove RE % (D) £ a (random-coding argument)

2. Compute @ = R (D) (mathematical computation)

3. Thus, RE(D) < RY(D)

4. Prove Ry(D)>R! (D) (information theoretic inequalities)

5. Thus, RE(D)=RL/(D)

Next, we look at our argument of the proof of the rate-distortion theorem for those sources X
for which py(x) is rational Vx € . Recall that U is the uniform X Source corresponding to
X. Some of these steps are the same as the ones of the previous subsection. The steps are:

1. Prove that R? y(D,inf) <a < pC, (6y p) (random-coding arguments)
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2. Prove that pC, (6 p) < RE,(D) (the transition probability corresponding to a “good”
source-code is a “bad” cha.nnel)

3. Prove that R? v(D) = S(D,inf) (definition of rate-distortion functions and particular
source code constructlons)

4. Thus, R? y(D)=a

5. Prove that Rf,(D) R%(D) = RE(D) (definitions of rate-distortion functions and par-
ticular code constructxons)

6. Thus, RE(D)=RE(D)=R?, y(D)= RE o(D)=«a
7. Prove that @ = R’ (D) (mathematical calculation using the method of types)

8. Thus, RE (D)= RE(D)=RE(D) =R (D) =RL(D)

We consider our argument more basic than Shannon’s argument for reason that a mathemati-
cal calculation is carried out in the last step in our proof as opposed to in Shannon’s proof. In
our proof, the proof until Step 6 which says, R:.(D) =R (D) = R? (D)= RE y(D) = a should
be considered operational, where the operamonal meaning of @ is that it is the answer to the
random-coding argument. It is only in Step 7 that we make a calculation for @ and prove
that it is indeed the information-theoretic rate-distortion function R% (D), and this leads to
a proof of the rate-distortion theorem. Step 7 is essentially the finally step in the argument.
Shannon’s proof relies much more crucially on the fact that an expression for @ is R (D): it
is needed in Step 2. The converse part in Shannon’s proof which proves that RE YD) < RI v (D)
in Step 4 relies very crucially on the expression for R’ s (D)- Shannon’s proof thus hasa much
more crucial dependence on a = Rf\,(D) as compared to our proof where this calculation
is needed in the last step. Of course, since the statement of the rate-distortion theorem is a
statement about a simplified expression for the rate-distortion function, a calculation has to
be made at some step: in our proof, this calculation is made in the last step.

Also note that we prove that R? /(D) is equal to a, the answer to the random-coding argument,
without explicitly calculating the answer to the random-coding argument: for this reason, as
we said above, this proof is operational. This is unlike Shannon in the sense that Shannon also
proves that R% (D) = a, the answer to the random-coding argument but the proof requires
an explicit calculauon of the answer to the random-coding argument. The operational nature
of our proof that the rate-distortion function is equal to the random-coding argument suggests a
fundamental relationship between the two quantities.

Note that our proof holds only for those X for which py(x) is rational Yx € &'. We would
like to believe that it should be possible to generalize this proof for arbitrary X'; however, we
are unsure.
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W 5.9 How do we operationally prove the optimality of digital communica-
tion for universal communication with a fidelity criterion instead of
for pseudo-universal communication with a fidelity criterion?

In this chapter, we have proved operationally, the optimality of digital communication for
pseudo-universal communication with a fidelity criterion.

The question arises: can we similarly provide an operational proof of the optimality of digital
communication for universal communication with a fidelity criterion?

Let k € .o/y be a partially known channel which is capable of universally (note, universally,
not pseudo-universally) communicating the i.i.d. X source to within a distortion D. Then,
we can define the set of channels 6, as in (2.94) which is reproduced below:

cef{<em ok of" >P k=<k" > A} 2 G, (5.219)

The notation has changed from (2.94), where we used the notation €, instead of € oy} NOW,
we will be dealing with i.i.d. X and uniform X sources together and for that reason, we need
a notation to distinguish between the set ./ and a corresponding set .&/;; which will come
later.

The set of channels €, should be thought of as a set of channels which directly (note, directly,
not pseudo-directly) communicates the i.i.d. X source to within a distortion D.

We need to carry out proofs for the set of channels €, instead of the set of channels €y p,.
In order to do that, we will require the introduction of another set of channels €, for
some / € «f;, where / is a partially known channel which is capable of communicating the
uniform X source to within a distortion D. The set of channels €, directly (note, directly
not pseudo-directly) communicates the uniform X source to within a distortion D.

The main idea of the operational proof is Theorem 5.46 and its proof essentially hold for
the set of channels 6, and using universal capacity instead of pseudo-universal capacity:
this was the way did things in the idea-level proof in Section 2.14. What we need is some
arguments to relate the universal capacities of channels €, and €, : of course, there has
to be some relation between the set of channels .7y and the set of channels .7}, to do this.

Mainly, this should require changes in Subsection 5.5.4. Of course, whole of Section 5.5
would need to be re-done; however, the main lemmas which would need re-statement and
would need to be re-proved with universal capacity instead of pseudo-universal capacity are
those of Subsection 5.5.4.

We have not carried out these steps; however, we believe they can be carried out.
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W 5.10 How do we take into account resource consumption when prov-
ing the pseudo-universal source-channel separation theorem for rate-
distortion, operationally?

When proving the pseudo-universal source-channel separation theorem for rate-distortion
operationally, we did not take into account, resource consumption in the system, unlike
what we did in Chapter 2. This is something that we believe can be done by taking into
account the interplay between how the channels with the uniform X and the i.i.d. X source
inter-play with each other and how the resource consumption is affected in the arguments in
this inter-play. This is vague, but we will leave this here.

B 5.11 Comments and recapitulation

In this chapter, we proved the optimality of digital communication for pseudo-uinversal com-
munication with a fidelity criterion, operationally. By an operational proof, we mean that the
proof uses only the operational meanings of channel capacity as the maximum rate of reliable
communication and the rate-distortion function as the minimum rate needed to compress
a source to within a certain distortion level, that is, uses only the meanings of channel ca-
pacity and rate-distortion function as infinite dimensional optimization programs, and not
functional simplifications like finite dimensional mutual-information expressions for them.
I believe that this operational proof sheds more insight into the nature of separation than
the original proof of Shannon which uses equalities and inequalities concerning entropy and
mutual information for proving the converse.

An operational proof of universal source-channel separation for rate-distortion for permu-
tation invariant distortion metrics for the uniform X source was provided in Section 2.14,
under the technical assumption RZ(D) = R’{,(D,inf). In this chapter we proved R‘Z(D) =
R’;}(D,inf) operationally for additive distortion metrics. We believe that this completes the
operational story for universal source-channel separation for rate-distortion.

However, the traditional information theory literature uses the i.i.d. X source. For the sake
of partial completeness, we proved a pseudo-universal source-channel separation theorem for
rate-distortion for the ii.d. X source. Pseudo-universality differs from universality in that
we do not require a uniformity in the rate at which the probability of excess distortion — 0
as the block-length — oo over the partially known channel k € .«/.

The proof also sheds light on the connections between source-coding and channel-coding.
We also provide an alternate proof of the rate-distortion theorem for those i.i.d. X sources
for which py(x) s rational Vx € & which uses functional simplification as the last step, and I
believe, is more insightful than the original proof of Shannon. As a part of this proof, we also
prove that the rate-distortion function is equal to the answer to the random-coding argument
for the source-coding problem, without doing a calculation, either for the rate-distortion
function or the answer to the answer to the random-coding argument for the source-coding
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problem. This is thus an operational proof, and suggests that there might be a fundamen-
tal relationship between the rate-distortion function and the answer to the random-coding
argument for the source-coding problem.

The proof of R (D) = R? (D, inf) has required the assumption of additive distortion metric.
We conjecture tﬁar an operational proof can also be provided for many permutation invariant
distortion metrics true. Similarly, the rigorous proof of the pseudo-universal source-channel
separation for rate-distortion for the i.i.d. X source has required the assumption of additive
distortion metric. We conjecture that an operational proof can be provided for many permu-

tation invariant distortion measures, too.

We also conjecture that the results can be generalized operationally, to more general sources,
for example, many stationary ergodic sources.

Finally, we emphasize that we have proved the optimality of digital communication for
pseudo-universal communication with a fidelity criterion and not for universal communica-
tion with a fidelity criterion. Also, we have not taken into account the resource consumption
in the system. We believe that these steps can be carried out.

M 5.12 In the next chapter ...

In the next chapter, we recapitulate this thesis and discuss research directions which come out
of this thesis.
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Chapter 6

Conclusion: Recapitulation and research
directions

A thesis is never finished, it is deserted.
-Told to me by Patrick Kreidl, who was probably told this by someone else!

M 6.1 In this chapter ...

In this chapter, we recapitulate what we have done in this thesis, and discuss research direc-
tions which come out of this thesis.

B 6.2 Recapitulation
This thesis has two flavors:

1. Proving the optimality of communication in certain communication scenarios in the
sense of optimality of source-channel separation theorem as stated in Reason 1c in Chap-
ter 1

2. An operational view of rate-distortion theory

One contribution of this thesis is that we proved the optimality of digital communication
in the sense of reason 1c in certain communication scenarios. A digital system is one where
there is a finite interface (usually, a binary interface) between the source and the channel
(point-to-point setting) or between the various sources and the medium (multi-user setting).
Digital communication systems are defined precisely in Chapter 1. Optimality of digital
communication is in the sense of reason 1c of Chapter 1.

In Chapter 2 we proved the optimality of digital communication in the point-to-point setting:
a user wants to communicate a random source to another user over a channel. The channel is
assumed to be only partially known in the sense that it might come from a family of transition
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probabilities. In other words, the setting is universal over the channel. We prove the following
high-level statement, which is called the universal source-channel separation theorem for rate-
distortion:

Assuming random-coding is permitted, in order to communicate a random source univer-
sally over a partially known channel to within a particular distortion level, it is sufficient to
consider source-channel separation based architectures, that is, architectures which first code
(compress) the random-source to within the particular distortion level, followed by univer-
sal reliable communication over the partially known channel. There is sufficiency in the
sense if there exists some architecture to communicate the random source to within a certain
distortion universally over the partially known, and which consumes certain amount of sys-
tem resources like energy and bandwidth, then there exists a separation based architecture to
universally communicate the random source to within the same distortion universally over
the partially known channel, and which consumes the same or lesser system resources as the
original architecture.

In order to prove precise results, we assume that the distortion measure is additive. We sketch
an outline of how the results can be generalized to permutation invariant distortion meau-
res. Precise assumptions for both the high-level outline and rigorous proofs can be found in
Chapter 2. In proving the result, we assume that the source statistics are known. In Chapter
2, we also conjecture that this result can be generalized to the case when the source statistics
are not known.

The universal source-channel separation theorem for rate-distortion is generalized to the
multi-user scenario in Chapter 3, in the unicast setting. By unicast setting, we mean that
the sources that various users want to communicate to each other are independent of each
other. Thus, if user ; wants to communicate source X, jj to user J» the sources X; j are all in-
dependent of each other. We prove the optimality of digital communication by proving that
it is sufficient to consider architectures where each user compresses its sources to within the
corresponding distortion levels and the compressed binary random sources are universally,
reliably communicated over the partially known medium.

Chapter 4 discusses partial applicability of the results of the universal source-channel separa-
tion theorem for rate-distortion in the multi-user scenario to the wireless scenario. Two of
the assumptions which are suspect are:

o The voice signals of various users are independent of each other. As discussed in Chapter
4, this assumptions is true pairwise, but the voice signals of the two users talking to each
other are not independent of each other. We still assume that the distortion measure is
permutation invariant.

e Distortion measure is permutation invariant: it is unclear, if this is the case for voice

Further discussion of the features of the wireless problem and assumptions that we make are
discussed in Chapter 4. With the above assumptions, it follows that restricting attention to
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digital architectures is optimal for wireless communication, as discussed in Chapter 4.

As discussed in Chapter 1, there are various other factors which should determine which
technology is used, and whether, a particular technological should be implemented in the
first place or not. The only factor that we have tried to understand in the thesis beyond
Chapter 1 is Reason 1c.

The other contribution of this thesis is an operational view of rate-distortion theory. By an
operational view of rate-distortion theory, we mean a proof of the separation theorem which
uses only the definition of channel capacity as the maximum rate of reliable communication
and the rate-distortion function as the minimum rate needed to compress a source to within
a certain distortion level. The proof, unlike Shannon’s proof, does not use the definition of
channel capacity as a maximum mutual information or the rate-distortion function as a min-
imum mutual information. We believe that our proof offers more insight into the nature of
separation than Shannon’s. This process is carried out on a high-level for the communication
of the uniform X source in Section 2.14. A rigorous proof for the communication of the
ii.d. X source is the subject of Chapter 5. This also leads to connections between source
and channel coding, and an alternate proof of the rate-distortion theorem for those i.i.d. X
sources for which py(x) is rational Vx € &'.

B 6.3 Research directions

There are various research directions which come out of this thesis, some of which have been
discussed in previous sections:

1. Section 4.3 discusses a two user abstraction of what happens when the sources are cor-
related. In general, separation does not hold. However, it would be interesting if one
could get results for how good does the performance of separation based schemes ap-
proach the performance of a general analog scheme, possibly in the spirit of [TCDS].
Also, the problem makes sense not just for two users, but for N users where user i wants
to communicate source X;; to user j to within a distortion D;; under a metric d;;, and

Y if?
the distribution of the sources X; j»1<i,j <N may be arbitrary

2. Various research directions come out of Chapter 2, some of which are discussed in Sec-
tion 2.19:

(a) We have proved the universal source-channel separation theorem for rate-distortion
where universality is over the channel. We believe, as stated briefly in Section 2.19
that the result should be generalizable to universality over the source, that is, the
source statistics are unknown.

(b) Carry out a proof for arbitrary stationary ergodic sources evolving in continuous
time, in the methodology of Section 2.14 and discussed further in Section 2.16.
Section 2.14 carried out the proof (except for the equality of R{, under various



234

CHAPTER 6. CONCLUSION: RECAPITULATION AND RESEARCH DIRECTIONS

3.

definitions), and the full rigorous proof for the i.i.d. X source was carried out in
Chapter 5. The operational proof in Chapter 5 is fairly technical and involved; we
wonder if we are missing something and the proof can be simpler.

(c) To research, whether universal source-channel separation holds for sub-additive dis-
tortion measures, as it does in [Han10] when the setting is not universal.

We have used the probability of excess distortion criterion instead of the expected dis-
tortion criterion. As we have said in Chapter 2, universal source-channel separation
does not hold with the expected distortion criterion. The example in Chapter 2 has a
highly non-ergodic channel. Amos Lapidoth pointed out to us, in a note, that universal
separation would hold with the expected distortion criterion for memoryless channels.
He also provided us with a proof which should possibly be generalizable to indecompos-
able channels. The proof used the standard information theory machinery of mutual
informations.

We would like to take another route (if possible). The question is: if the expected dis-
tortion criterion holds, then does that imply that the probability of excess distortion
criterion holds? A mathematical way of formulating this is the following: Let £ € ./ be
a partially known channel such that each k € & satisfies some ergodicity requirements.
Suppose the set of channels & is capable of communicating i.i.d. X source to within a
distortion D with error w =< w” >°, w” — 0 as n — oo under the expected distortion
criterion. That is, there exist encoder-decoder < e”, f* > such that end to end

1
E [—d”(X", Y")] <w'Vke.d ©.1)
n

Then, is & also capable of communicating i.i.d. X source to within a distortion D with
some other error &’ =< w’ >P°, w” — 0 as n — oo under the expected distortion
criterion? That is, do there exist encoder decoder < €, /" >%° such that end to end

1
Pr(—d”(X",Y")>D) <w”Veked? 6.2)
n

If this were the case, we would have reduced the problem with the expected distortion
criterion to the problem with the probability of excess distortion criterion. One way to
go about this would be to first assume that the set k consists of just one channel. In that
case, our guess is that this is true. Then, one would want to carry out the procedure for
a more general /.

W 6.4 One final thought ...

Finally, I would like to add, to tie up with Chapter 1, that what is really needed is a more
holistic view, a more human view of the problem, than just a mathematical or engineering
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understanding of whether separation is optimal or not. Without a human perspective, any
technological or mathematical advances / understanding will only bring more negative con-
sequences and misery to this world.

JTarT SeTar T
guafeEmar T s T+
. .
-gfagas ¢ .99

Above, across or back again,
wherever one goes in the world;
let one carefully scrutinize,
the rise and fall of compounded things.
- Itivuttaka 4.111
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