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Abstract

Surrogate models for computational simulations are inexpensive input-output approx-
imations that allow expensive analyses, such as the forward propagation of uncertainty
and Bayesian statistical inference, to be performed efficiently. When a simulation
output does not depend smoothly on its inputs, however, most existing surrogate
construction methodologies yield large errors and slow convergence rates. This the-
sis develops a new methodology for approximating simulation outputs that depend
discontinuously on input parameters. Our approach focuses on piecewise smooth
outputs and involves two stages: first, efficient detection and localization of disconti-
nuities in high-dimensional parameter spaces using polynomial annihilation, support
vector machine classification, and uncertainty sampling; second, approximation of the
output on each region using Gaussian process regression. The discontinuity detection
methodology is illustrated on examples of up to 11 dimensions, including algebraic
models and ODE systems, demonstrating improved scaling and efficiency over other
methods found in the literature. Finally, the complete surrogate construction ap-
proach is demonstrated on two physical models exhibiting canonical discontinuities:
shock formation in Burgers' equation and autoignition in hydrogen-oxygen combus-
tion.
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Chapter 1

Introduction

Uncertainty quantification (UQ) deals with characterizing the effect of uncertainty

arising in all aspects of computer simulation. There are two primary types of uncer-

tainty that exist [40]:

e Aleatory uncertainty deals with inherently random quantities that are incopo-

rated into a simulation.

e Epistemic uncertainty deals with quantities that could be measured if proper

instrumentation and efforts were expended on measuring them.

These uncertainties present themselves in simulations through various aspects includ-

ing parameter uncertainty, model inadequacy, residual variability, and observation

error, etc. [27]. Parameter uncertainty refers to the uncertainty regarding the pa-

rameters a simulation uses to describe some particular physics. Model inadequecy

refers to the errors introduced by using a simplified computer simulation to represent

a physical process. This uncertainty is present in every computational model be-

cause no useful model can incorporate the exact physics used in real world processes.

Residual variability refers to incorporating aleatory uncertainties into the simulation.

Finally, there are uncertainties introduced into the system when validating/calibrat-

ing the simulation to experimental data in the real world. The experimental data are

usually noisy measurements of some underyling property of interest.
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1.1 Dealing with uncertainty

Uncertainty propagation and inference are two common techniques used to charac-

terize and perhaps improve a simulation before using it to make predictions or to

guide decisions. Uncertainty propagation involves propagating the uncertainties in

model parameters according to their probability distributions in order to investigate

both the distribution of an output of interest as well as sensitivity to the parameters.

Contrasting with the forward propagation of uncertainty, another common problem

in UQ is using data to infer certain aspects or parameters of a model. This inference

is often performed in a Bayesian context in order to generate a distribution over pa-

rameter values. Both forward propagation and inference require potentially millions

of simulations to be performed and are thus infeasible when dealing with expensive

computer simulations. Surrogates for these computationally expensive models must

be employed to reduce their computational expense.

1.1.1 Role of surrogates

In order to simplify the analyses described above, surrogates are employed to repre-

sent the full models. These surrogates are a computationally efficient approximation

of the input to output relationship of a full complex model. They allow millions of

simulations to be performed in a reasonable amount of time and are a key enabling

technology for uncertainty propagation and inference. Two common types of surro-

gates employed for this UQ role are polynomial chaos expansions (PCE) [24][59][38]

and Gaussian process regression (GPR) [39] [42], also known as kriging [52] in the geo-

statistics community. PCE represents the model output as a spectral representation

using an orthogonal polynomial bases weighted by the distributions of the input. GP

represents a Gaussian, distribution over functions with a specified covariance kernel.

Full model evaluations are used as data to update the GP in to fit the model. The

mean function or the entire posterior may then be used for UQ procedures.

When utilizing surrogates for UQ applications there are two considerations to take

into account. The first consideration is whether the surrogate actually approximates

16



the full model in the L 2 sense. When dealing with surrogates one can consider a

hierarchy of surrogates, fi(x), f 2(x), ... , f,,(x) of increasing accuracy or fidelity. The

L2 error for surrogate n is given in Equation 1.1.

e J = If(X) - fn(x)|2 p(x)d(x) (1.1)

where f(x) is the true model, p(x) > 0 is a weight function on Rm . When the

surrogate converges in the L 2 sense, we have the error en -+ 0 as n -+ oo. In the

case of spectral approximations, n corresponds to how many bases are kept in the

expansion; whereas in the case of GP, n corresponds to the number of training points.

The second consideration is that the probability distribution that is dependent on

f(x) is approximated properly by the probability distribution that is dependent on

f.(x). This is a weaker requirement on the surrogate because in many cases multiple

functions can result in the same probability distributions. For forward propagation of

uncertainty, this requirement is automatically satisfied by the L 2 convergence of the

surrogate. Additionally, for PCE surrogates, sensitivity analysis of the system may

be performed with no extra expense outside surrogate construction [53] [16].

In the inference context a surrogate replaces the full model in the likelihood func-

tion of Bayes rule [34]. The goal is to construct a posterior distribution on some

parameters of interest 9, such that the posterior obtained with the surrogate con-

verges to the posterior obtained with the full model as the surrogate is refined. A

comparison of this posterior probability distribution can be done using several met-

rics. A proof stating that the KL divergence of the posterior using the full model (7r)

from the posterior using the surrogate (7rn) tends to zero as ||fn - fI I -+ 0 is given in

[33]. The KL divergence is given below:

DKL (7r I7rn) = 7r(6) log { 7r(O) } dO (1.2)

A proof for the convergence in the Hellinger distance can be found in [15] Section 1.2

elaborates on surrogate building methodology.

17



1.2 Types of surrogate models

Section 1.1.1 introduced incorporating surrogates into uncertainty analyses as a means

of increasing computational feasibility. This section introduces some specific surro-

gates and briefly speaks to issues prohibiting their use.

1.2.1 Spectral representations

Spectral representations are a broad range of surrogates of the form:

00

f(s) = fi'i() (1.3)

where f(s) is a full model evaluation at stochastic parameters (. fi are coefficients

corresponding to the i-th mode of the representation and T(() are the modes of the so-

lution and are a function of the stochastic parameters. In practice an approximation is

made by truncating the number of bases used for the expansion. A popular approach

for choosing bases when dealing with stochastic space is the generalized polynomial

chaos (gPC) [59] methodology. This is a Fourier-style representation where Wi(() are

orthogonal polynomials with respect to the measure of the random variable (:

E [Ti ((),7 Tj (()] = 6Jj (1.4)

and chosen based on the Askey-scheme of polynomials corresponding to the distribu-

tion of (. For example, Hermite polynomials are used when ( is Gaussian, Legendre

polynomials are used when ( is uniform, etc. [59]. The coefficients can be calculated

by projecting the function onto the bases:

fi = E [f(s), WTi( )] J f( )Ti( )7r( )d(, (1.5)

where ir( ) is the distribution of the random variable (. In practice the infinite series is

truncated to an order P, for implementation purposes resulting in an approximation,

fp, of the true model. This formulation is extended to multiple dimensions using

18



N
tensor products of 1D polynomials and total order expansions with terms.

(P)
N is the number of dimensions of f. The spectral convergence of the truncation

satisfies:

||f - fPII 2 p C fI (1.6)

where HP is the weighted Sobolev norm and p is the number of L 2 derivatives of f.

Therefore, if f is infinitely smooth, exponential convergence is obtained.

The coefficients fi can be determined by (intrusive) Galerkin methods, pseu-

dospectral projection methods, regression, or stochastic collocation [57]. The first

method involves a reformulation of the governing equations while the latter three

methods are non-intrusive and treat the deterministic model as a black box. Because

the focus of this work deals with non-intrusive methods, a discussion of the three

major methods are presented.

Pseudospectral projection methods evaluate the integral in Equation 1.5 using

Monte Carlo methods or quadrature points. In the MC approach coefficient i can be

computed with Equation 1.7.

Nmc

fi ~ [ ((g)@0( i), C; ~ 7r( (1.7)
i=1

Whereas in the quadrature approach the integral becomes:

Nquad

fi ~; E wj f ((;)7P ((g) (1.8)
j=1

Popular quadratures are Clenshaw-Curtis quadrature and Gaussian quadrature. An

n-point Gaussian quadrature rule can integrate exactly a polynomial of degree 2n -1.

Therefore, the number of function evaluations depends on the order of the expansion.

An extension to higher dimensions can be performed using tensor products of quadra-

ture rules. However, this reduces the scalability of this algorithm and dimension

adaptive tensor product quadrature [23] and Smolyak based sparse grid algorithms

are often used to determine relevant dimensions for refinement [6] [3]. polynomial re-
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gression does not attempt to perform the projection of the full model onto each basis

directly using the integral in Equation 1.5; rather the coefficients are determined by

solving the linear system:

f =_ 5 U)(1.9)

where f is a vector N x x1 of the function values at locations (, IQ is an N x xP matrix

where P is the maximum order of the basis used and N is the number of function

evaluations. Finally, nt are the P coefficients of the expansion. The locations ( can

be chosen with design of experiments or from previously available model evaluations.

Several options exist for solving this linear system depending upon N and P. If

N = P standard solution techniques for square systems can be used. If N > P then

the overdetermined system can be solved using least squares. For N < P sparsity

seeking algorithms have recently been utilized to improve efficiency and scaling of the

polynomial chaos approach [20]. These sparse approaches are extensions of the work

performed in the compressive sensing community. Recent work has demonstrated

that these methods can be very effective if f is truley sparse in T, meaning that few f6

are nonzero. Details on solutions of these equations with sparsity seeking algorithms

can be found in [9], [8], [10], [19], and [5]. These methods offer the potential benefit

of requiring fewer function evaluations to obtain comparable level of accuracies of the

other techniques mention hered.

Finally, stochastic collocation [58], or interpolation, is distinguished from the next

previous two methods by the fact that the surrogate exactly reproduces the true

function at the training data. It is performed using Lagrangian polynomials that are

determined by the data:
Np

fn()= ZfLi(() (1.10)

The Lagrangian polynomial Li is zero at all collocation points except the i-th collo-

cation point. The u; are the true function value at the i-th collocation point. When

using tensor product quadrature points these polynomials become equivalent to those

used in pseudospectral projection. Performance of this technique is maximized when

utilizing the same collocation grid as that for the quadrature in the pseudospectral

20



projection approach [21]. One disadvantage of using the stochastic collocation ap-

proach is that the entire interpolation grid must be stored.

1.2.2 Gaussian process regression

Another common surrogate employed for UQ purposes is the GPR model. In this

formulation we have a Gaussian distribution over functions:

IP(u) = K(p, E) (1.11)

where E is the covariance kernel. When training the GP using data from the full

model, the covariance matrix is evaluated at the points ($ obtained from the data

{($, yi)} where ( and y are the data point vector and the full model evaluation

vector respectively. New predictions at a point (, have a distribution give by:

P(*)= AN (E.- 1y, e., * - E -1E ) (1.12)

Et.,. is a scalar. Et,t. is N x 1 vector where N is the number of data points. Et

is a N x N matrix. For prediction either the mean of the GP can be used or a

fully Bayesian analysis may be performed by incorporating model uncertainty. The

evaluation of the mean at a new input requires the inversion of E which is an O(Na)

operation.

1.2.3 Outstanding issues with surrogates

Although surrogates and function approximation have a rich history of algorithms

and methods there are still open areas of research dealing with approximating higher

dimensional models as well as models exhibiting increasing complexity. The dimen-

sionality problems stem from the fact that exponentially increasing numbers of basis

functions and function evaluations are required for increasing dimension. The com-

plexity of the model, specifically discontinuities in the stochastic space, is another

issue for the methods mentioned above. These methods' convergence depends on

21
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X x

(a) PCE Gibbs (b) GP Gibbs

Figure 1-1: Gibbs oscillations obtained from using both a pseudospectral projection
PCE surrogate and a Gaussian process surrogate using 15 full function evaluations

smoothness and goes from exponential to algebraic convergence in the presence of

discontinuities. Approximating discontinuities with smooth global functions yields

Gibbs oscillations as shown in Figure 1-1. Figure 1-1 displays the severity of the

problem associated with building a surrogate for discontinuous function. Solving this

problem is the topic of this thesis.

1.2.4 This work

This thesis aims to deal with surrogates for models exhibiting discontinuities. Chap-

ter 2 provides a literature review of the current algorithms available for accomplishing

these tasks. A majority of the state of the art algorithms tackle this problem by de-

composing a domain containing a discontinuity into two or more smooth domains.

This methodology allows the smooth surrogates and approximation techniques dis-

cussed in section 1.2 to be effectively applied in these problems. This methodology

is used in this thesis, but executed in an efficient manner that takes advantage of

the regularity of discontinuities in the parameter space. Figure 1-2 displays a car-

toon of discontinuities exhibiting different levels of regularity in the parameter space.

The contributions of this thesis includes the development of an efficient discontinuity

detection algorithm to take advantage of fairly regular characteristics of the disconti-

22



X2  X2

Figure 1-2: A comparison of discontinuities exhibiting various levels of regularity in
the parameter space. The cartoon on the left requires function evaluations tracking
the discontinuity in order to approximate it accurately. The cartoon on the right
indicates a discontinuity that can be well approximated by few function evaluations.

Discontinuity Detection
and Domain Identification
Narrow Down Discontinuity

with Polynomial Annihilation
Y

Uncertainty Sam-
pling and Classification

Surrogate Construction on Each Domain

Figure 1-3: Algorithm Workflow

nuity in the parameter space. By utilizing smooth discontinuity approximation tools

such as support vector machines, as well as scalable algorithms based on the ac-

tive learning/uncertainty sampling paradigm, the algorithm developed is shown to

have improved scaling within dimension compared to existing techniques. The algo-

rithm performs this task by following three steps: efficient location of discontinuties

in multi-dimensional space, the generation of a classifying function, and finally the

construction of a surrogate on these two regions with the option to evaluate the full

model in the area neighboring the discontinuity. The overall workflow for the algo-

rithm is shown in Figure 1-3. The final result of the algorithm is a Gaussian process

representation of the full model:

Nreg nj

f(x) = Z I Zc ai Wi(x), (1.13)
j=1 i

where Neg is the number of regions the entire domain is decomposed into, n, is the

number of training samples in region j, and Ij is an indicator function. They are

23



defined as follows: { 1 if x is in region j.

0 if x is not in region j.

In other words, a GP is built on each region that the GP is decomposed into. Addi-

tionally, there is an option to evaluate the full model in regions near the discontinuity.

Chapter 3 describes the tools and techniques used as part of the discontinuity de-

tection. Chapter 4 will describe the novel algorithm for discontinuity detection, which

is the main focus of this thesis. Next, chapter 5 describes how function approxima-

tion is done on the subdomains resulting from discontinuity detection. Chapter 6

summarizes the main findings and provides future work.
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Chapter 2

Literature review of surrogates for

discontinuous functions

2.1 General methodologies

The algorithms described in this chapter are designed to approximate computation-

ally expensive simulations that exhibit strong nonlinearities and discontinuities in

high dimensional (0(10)) spaces. These nonlinearities and discontinuities may be

the result of bifurcations, tipping points, etc. of the physical system that a model

is simulating. In these situations, the response of the model in the different regions

separated by a discontinuity may correspond to different physical regimes or different

operating conditions that are strongly dependent on the input parameters. Conven-

tional approximation techniques, described in the previous chapter, using smooth

basis functions exhibit Gibbs phenomenon when encountering these discontinuities.

Therefore the usual exponential convergence of these techniques is drastically reduced.

The main methods introduced in this literature review utilize spectral methods

that are modified to deal with the discontinuities and extreme nonlinearities. The

modifications used to approximate these functions generally fall into three categories:

decomposing the parameter space into smaller elements on which to construct approx-

imations as in multi-element gPC [56], using a basis function capable of capturing

local effects [31] [30], or filtering the Gibbs phenomena [12]. The domain decompo-
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sition techniques themselves fall into several categories: those splitting a hypercube

domain into smaller hypercubes and those tracking the discontinuity through a vari-

ety of edge tracking methods in order to split the domain into two or more irregular

domains. Although successful in low dimensions, these techniques have exhibited

challenges associated with their application to higher dimensional problems.

2.1.1 Adaptive refinement

The adaptive refinement techniques discussed in this section will approach the approx-

imation problem by breaking up a domain containing a discontinuity into subdomains

containing smooth functions. This type of approach allows the approximation of the

entire discontinuous function to be broken into the approximation of many smooth

functions. The advantage here is that many methods exist for smooth approxima-

tion, for example as a linear combination of orthonormal functions or by Gaussian

processes. Examples of this approach are given in [56] and [1]. These adaptive re-

finement algorithms are defined by three aspects: refinement criteria, point selection,

and type of approximation. These three aspects are interconnected because the refine-

ment criteria and the point selection are often guided by the type of approximation

performed in each subdomain.

Two main methodologies for refinement guided by spectral approximations exist

in the literature. The first, by Wan and Karniadakis (2005), exists in the context

of intrusive gPC expansions. The criterion involves computing the decay rate of the

error of the approximation using the variance in a subdomain. If the decay rate is

large, then that subdomain is split into two subdomains. For example, assume we

have N subdomains and subdomain k has the expansion:

Np

Uk Uk,i(Fi (2.1)
i=1

with a local variance:
Np

-k = ,iE[ i] (2.2)
i=1
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The global mean and variance of the true function u are then approximately:

N

k=1
N

* = Z[ok + (k,o-- )2

k=1

where Jk is a factor that is dictated by the element size. Now the local decay rate of

the error of the gPC approximation in each element is defined as:

Np 1 +1 A,iE[VI]

T /k 2

A subdomain is furthur split into two if the following condition is met:

T1 Jk > 01, 0 < a< 1, (2.4)

where a and 01 is a limit on the size of the subdomains. This method has advantages

if the the function is actually extremely nonlinear rather than discontinuous, as the

regions required to approximate a discontinuity become increasingly small. However,

it still requires progressively smaller scale grids with equal amounts of function evalu-

ations on which to construct the PCE expansions. For these reasons this methodology

has not be shown to scale well with stochastic dimensions. For furthur information

consult [56].

The second methodology based on spectral expansions is developed by Archibald

et al. (2009). This methodology utilizes a different refinement criteria which is based

on the ideas of polynomial annihilation (PA) developed in [2]. Polynomial annihilation

is thoroughly described in Chapter 3, but the methodology estimates the error in

progressively higher order polynomial approximations at a test point. If the error

does not decay, then one obtains the estimate of the jump, or size of the discontinuity

at the test point. The main innovation of [1] involves applying the PA method

axially on a gPC surrogate of the solution. Figure 2-1 obtained from [1] displays a

one dimensional example. Figure 2-1 (a) shows the Gibbs oscillation as a result of
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Figure 2-1: Polynomial Annihilation running on a gPC expansion from Archibald et
al. (2009)

approximating the solid discontinuous function using smooth polnyomials. Archibald

then takes advantage of these oscillations by performing PA to annihilate 2nd, 3rd, 4th

and 5th order polynomials. Subfigures (b)-(e) show the approximations of the size of

the discontinuity as a function of the x-axis. Finally, using a MinMod limiter combines

these approximations to correctly show a single jump at x=0 of size, [f](0) = -2.

This scheme has several clear advantages such as the ability to approximate the

full model using standard gPC techniques, thus allowing an efficient evaluation of

the jump function throughout the whole grid. However, one disadvantage is that the

initial PCE is required to be fairly accurate in the areas far from the discontinuity.

This need not be the case as Gibbs oscillations often propagate through the domain.

Once a discontinuity is detected, the domain is then split and piecewise continuous

gPC bases are used in each subdomain. The result of this adaptation on a linear

discontinuity is shown below in Figure 2-2.

A common characteristic of these refinement techniques, evident in Figure 2-2, is

that the density of the grid increases as the discontinuity is refined. This characteristic
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Figure 2-2: Adaptive Refinement Grid by Archibald et al. (2009)

appears regardless of the discontinuity shape in the parameter space. This method

can lead to inefficiencies because the discontinuity can potentially be described by

far fewer full model evaluations. However, the PA technique provides an attractive

and efficient way of locating and evaluating the size of a discontinuity and will be an

important tool in the algorithm described in Chapter 4.

2.1.2 Edge tracking

An efficient algorithm for discontinuity detection has been developed by Jakeman et

al. (2011). The algorithm focuses specifically on the search for a discontinuity rather

than the approximation of the true model. Therefore, effort is spent on efficiently lo-

cating the discontinuity and then progressively adding points along the discontinuity

using PA as an indicator. This procedure is adaptive, utilizing a divide an conquer

approach, and performs PA axially. For a detailed description of the implementation

refer to [25]. The points along the discontinuity are then labeled using the approxi-

mation to the discontinuity size obtained by PA. Finally, new model evaluations are

classified using a nearest neighbor approach. An example of this tracking is given in

Figure 2-3. In this example, the discontinuity is a circle with radius 0.55 centered

at the origin. The increasing density characteristic of the adaptive refinement is re-

placed by a clustering of points along the discontinuity, with almost no points in the

middle of either region. This technique exhibits improved scaling compared to the

adaptive refinement methods discussed in the previous section; however, it also scales

poorly with dimension because the points required to track the discontinuity increase
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Figure 2-3: Edge Tracking Grid by Jakeman (2011)

exponentially. Finally, the method does not solve the approximation issue, and must

be coupled with another approximation method.

2.1.3 Local basis functions

In contrast to domain decomposition methods, methods relying on local basis func-

tions deal with discontinuities by using specially tailored bases. These types of tech-

niques, for example utilizing wavelets [37] [17], have been extensively used in the

image processing community [28]. Images often have sharp edges that are accurately

represented with a wavelet basis. However, high dimensional discontinuities require

specially tailored wavelets to the stochastic dimensions. The description of one di-

mensional multi-resolution analysis below follows the explanation given in [30]. First

the order of polynomials is defined using N = 0,1,... and the resolution levels are

defined using k = 0, 1, 2,...,. The space of piecewise-continuous polynomials, VbO, is

defined according to

VN* - {f : the restriction of f to the interval (2 kl, 2 k(j ± 1)) (2.5)

is a polynomial of degree < Ni, for 1 = 0,.,2 - 1}, (2.6)

and

VN*O {f vanishes outside the interval [0, 1]} (2.7)

Now, the multi-wavelet subspace WNO, k = 0,1,2,... is defined as the orthogonal

complement of VfO in VN 1 .

In order to setup the multi-wavelet subspace, an the orthonormal basis of piecewise
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polynomials , {40,b1, ... ,4No-, is constructed for WNO. Now the space WNo, whose

dimension is (N0 + 1)2k, is spanned by multiwavelets, O which are truncated and

dilated version of @i. They are given by:

(X) = 2k/ 2 p (2k -Xl), j 0, ..., N0 andl = 0 ,..., 2k - 1, (2.8)

with support Supp($k') = [2~kl, 2 ~k( + 1)] A basis for Vk is created using rescaled

orthonormal Legendre polynomials of degree i, defined over [-1,1]:

Oi(x) = Li,(2x-1), i=0,1, ..., No (2.9)

Now the space VNo is defined analogously to Equation 2.8. Using this machinery an

approximation fNoNr of a function f(x) E L 2 ([0, 1]) is constructed by projecting f(x)

onto VNO
Nr

2 Nr - 1 No 2 Nr- 1 No

No,Nr _ p~f 0,rfX) (X E E FNr r
fN0~Nrpif i(ifx)~~) fL ~f r5,r (X) (2.10)

1=0 i=O 1=0 i=0

In terms of multi-wavelets the expansion can be written as:

2 Nr-1 2 k- 1  No

f No,Nr X)=pNo fX]kkfNONrx)NOf~x] z (zdf 7(x) (2.11)
k=0 1=0 i=0

and the coefficients df1 are given by:

df) = - PNO (2.12)

The ability to expand the function f in terms of these locally supported bases

allows for local phenomena to be adequately captured and errors to be localized.

This has two advantages over expressing the function as a spectral representation of

global bases. The first advantage is that MW may be utilized to adaptively increase

resolution levels near localized phenomena. The second advantage is that resulting

errors are localized as compared to using global bases where local errors cause global
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changes in the approximation. Additionally, LeMeitre et al. (2004) demonstrated that

coupling these localized expansions with a domain decomposition algorithm based

on the multi-wavelets yields an effective adaptation technique which reduces CPU

time and allows improved scaling. This technique becomes similar to the domain

decomposition techniques outlined in 2.1.1 with the exception that a multi-wavelet

expansion is implemented on each regime.

2.1.4 Filtering

The final prominent methodology for dealing with discontinuities in the literature is

based on the observation that discontinuities cause a slow decay of the coefficients

of a spectral expansions. Chantrasmi et. al (2009) [12] effectively uses the smeared

and oscillating results of using global expansions to filter the coefficients and create a

single smooth approximation of the discontinuity. This technique builds global Pad6-

Legendre polynomials based on quadrature points and employs a filter to remove

oscillations. The advantage of this method is that existing global polynomials which

capture the smoothly varying portions of the function may be utilized. While these

methods have been shown to be fairly effective, scaling to more than two or three

dimensions has not been demonstrated. Moreover, filtering a global approximation of

a truly discontinuous function may yield an undesirably large degree of smoothing.

2.2 Summary

Domain decomposition techniques based on adaptive grids show promise for high

dimensional applications because they take advantage of the exponential convergence

for smooth functions for surrogates on the various subdomains. These techniques were

utilized not only with global PCEs, but proven effective when utilizing multi-wavelet

expansions in the subdomains. However, these techniques have only been showcased

on fairly low dimension problems because traditional methods of determining the

expansions need a hybercube domain in order to accurately calculate their coefficients

using projection. Discontinuities that break up the domain into irregular shapes
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involve many high resolution hypercubes in order to accurately capture the area

along the discontinuity, dramatically increasing the computational expense.

Domain decomposition techniques based on edge tracking detect discontinuities

more efficiently and separate the problems of discontinuity detection and surrogate

construction. However, current methods for edge tracking generally scale exponen-

tially with dimension because they involve putting a uniformly spaced grid of points

around the discontinuity. These edge tracking methods provide the inspiration for

the algorithm described in chapter 4. In chapter 4, a method that takes advantage

of smooth discontinuities in the parameter space is described. In fact, this method

defaults to edge-tracking if the discontinuity itself contains localized features.

Finally, the Pad6-Legendre techniques offer a way to utilize global functions for the

approximation of discontinuous functions through a filtering process. These methods

have shown to be fairly effective; however, not thoroughly tested in higher dimen-

sional problems. Higher dimensional problems may cause too much smoothing and a

greating computational expense.

Overall, the domain decomposition strategy is an opportunity for an extension of

efficient approximations of discontinuities to higher dimensions. This strategy forms

a backbone of the major contributions in this thesis.
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Chapter 3

Discontinuity detection tools

The novel discontinuity detection algorithm described in Chapter 4 is built upon the

foundations of several different tools common in the machine learning community.

These tools will be used to address two problems related to approximating high

dimensional discontinuous functions. The first problem is determining an efficient way

of parameterizing the discontinuity and the second problem is determining where to

evaluate the expensive model in order to best inform the location of the discontinuity.

Three methods are used to answer these questions.

The first tool, polynomial annihilation, is used to to label the region that a func-

tion evaluation belongs. This is the same polynomial annihilation method used in the

domain decomposition schemes described in the previous section, and is described in

section 3.1. The second tool is used to create a classifier in order to determine to

which region new function evaluations belong. Support vector machines (SVM)s are

used to create the classifier and a vital aspect of the functional approximation of

discontinuities in the approximation algorithm developed in Chapter 4. For this rea-

son, their foundations are described in section 3.2. The SVM optimization statement,

performance measures, and algorithms are also described.

The final tool, uncertainty sampling (US) is one that is able to guide an adap-

tive sampling scheme in order to efficiently use full model evaluations to locate the

discontinuity. US is a subset of active learning. Section 3.3 describes a technique

that allows new function evaluations to be placed where the current guess for the
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location of the discontinuity is most uncertain. This methodology allows an effective

refinement of the discontinuity to be performed in high dimensions.

3.1 Polynomial annihilation

Polynomial annihilation is used in order to measure the size of a discontinuity or

region of rapid change in a function. This measurement is vital in order to determine

to which region new model evaluations belong. Following [2], a description of one-

dimensional polynomial annihilation is given here. The motivation is to construct

an approximation to the jump function by removing sucessive orders of polynomials.

The jump function is defined below:

[f](x) = f (x+) - f(x-). (3.1)

Where

f(x-) = lim f(x - A), (3.2)
A-40

f(x+) = lim f(x + A). (3.3)A-+O

Therefore, when the function is dicontinuous at x then [f] (x) is non-zero and it is zero

in all other instances. The main result of polynomial annihilation is the approximation

Lmf of the jump function. This approximation has the following form:

Lmf (X) = 1 c (x)f (xj. (3.4)
q(x)ES

The coefficients (c3) are calculated by solving the system of equations:

S Cj (X)Pi (Xj) -P m()W, i O,.0.M. (3.5)
X3ES.

m is the order of desired annihilation, pi are a polynomial or monomial basis, and S2

is a stencil of the m+1 nearest points at which a function evaluation has taken place.
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An analytic solution for c, is given in Equation 3.6

c() = m = 0,...,m (3.6)

f l(x 3 - Xi)
i=o
iii

The normalization factor is:

qm (x) = cj (x). (3.7)

S: is the set of {x3 } where x3 > x. Finally the accuracy of this approximation is

given below:

Lmf(x) {[f](() + O(h(x)) if x_1 X (, , x ,

O(hmin(m'k)(X)) if f E Ck(I.) for k > 0

I, is the smallest interval of points {xj} that contains the set S. h(x) is defined as

the largest difference between neighboring points in the stencil S.:

h(x) = max {xi - x_1| : Xi- 1 ,Xj E S} (3.8)

The proof is given in [2] and is based on the residual of the Taylor series expansion

around the point at which the jump function is being evaluated. Using the fact that

the coefficients for the PA scheme satisfy Equation 3.5 the jump function approxima-

tion can be expressed as,

|Lmf (x)|= cj (x) Rm-i1f (xj). ,(3.9)
qm(x)ES

where Rm 1 f(xj) is the difference between f(xj) and the Taylor series expansion of

x3 around point x. If a jump (or extreme nonlinearity) exists at a particular point,

a low order expansion around the point will not approximate the function well; the

residual will be large and indicate the jump.
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An analysis of the function y(z) = tanh(ax) allows the development of some

insight into polynomial annihilation. The first scenario depicted in Figure 3-1 deals

with evaluating the jump function in a relatively constant part of the curve at x =

-0.5 with various points.

-0.5 0

(a)

Figure 3-1: Taylor

0.5

1.5

0.5 |-

0

-0.5 |-

-1

-1.5 -0.5

Series of hyperbolic tangent

Plot 1 Results Plot 2 Results

Points Residual Points Residual

-0.2 3.58e-2 0.5 2.OOeO

-0.7 -6.00e-5 -0.7 -6.00e-5

-0.9 -4.71 e-5 -0.9 -4.72e-5

L2f(x) 0.0360 L2f(x) 2.00

Table 3.1: Annihilating the zeroth and first order polynomials adequately captures
an extreme nonlinearity surrounded by relatively constant regions

The second scenario depicted in Figure 3-1 indicates evaluating the jump function

in between two neighboring function evaluations that are located on either side of a

large functional change. In this scenario the jump function approximation accurately

captures the size of this change as seen in Table 3.1.
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In order to avoid misdiagnosing a steep slope as a discontinuity (due to low m) or

oscillations as a discontinuity (due to high m) the minmod limiter approach similar to

that in computational fluid dynamics is used. The jump function is evaluated using

a set, M, of several annihilation orders:{ in Lmf(x) if Lmf(x) > 0 for all m E M,
mEM

MM (Lmf(x)) max Lmf(x) if Lmf(x) < 0 for all m E M,
mEM

0 otherwise.

In other words, all the various orders of polynomial annihilation approximations must

agree in order for a jump function to be indicated at a test point.

3.2 Support vector machines

3.2.1 Formulation

After determining a mechanism for labeling points with polynomial annihilation,

SVMs [7] [48] [55] are used to build a representation of the discontinuity existing

in the full model. The support vector machine formulation stems from solving a

Tikhonov regularization problem with hinge-loss. Suppose that we obtain the data

D {(xi, yi)}, the goal is to find a function f' such that:

f- = argmin V(f(xi), y) + A|f| (3.10)

where V(f(xi), yi) max (0, 1 - yf (xi)) and C is the reproducing kernel Hilbert

space on which our classifier f is defined [47] [18] . Setting a new variable C 1 y;
and reformulating the optimization statement results in:

argming1 n C V(f(xi), Yi) + ||f||2 (3.11)
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This formulation makes it clear that C acts as a penalty on errors. In the sense that

if C is large, the loss function will be weighted and the classifier will try to fit all

of the data. If C is small then the regularization will be larger and errors will be

penalized less. This formulation is non-differentiable because V is non-differentiable

when yif 2 = 1. Therefore, the problem is reformulated in terms of slack variables:

n A 1
argmin CZ$ + -c T Kc

cERn, ERn

n

subject to ( > 1-yi K(i,xj) i= 1,...,n
j=1

In order to solve this constrained

are formed. The Lagrangian is

N

L,(c, (, a, p) = C ( + cTKc
i=1

problem, the Lagrangian and then dual formulations

-a i {Yi - Z(1
(3.12)

with KKT conditions,

OLP

Oci
OLP

O(i

( (;i 0,

a{ yi(ZcK(xi,x)) - 1+i
j=1

P4dj

= ci - ayi= 0

- C-ai - pi =0,

ai 0, i 0

= 0

= 0

40

(320O i=1, ...,n

cjK (xi, zy) -1+ (i



Transforming this into the dual problem results in a quadratic programming problem

with linear equality and inequality constraints:

N N

maximize a - aciayiy 3K(xi,xj)
i=1 i,j=1

subject to 0 < a < C

>aiyi = 0
i

This dual formulation can be solved for a, with standard quadratic programming

tools or with specialized algorithms such as the Sequential Minimal Optimization

(SMO) algorithm [41] [26]. These specialized algorithms take advantage of the fact

that only a few ac are non-zero. Specifically those os which correspond to support

vectors xi that are most informative in determing the discontinuity. After solving for

the ai, the classification of a new point can be evaluated as:

N

ff'(x) = ZcaiK(xzi,x). (3.13)

The classifier has the property that:

fR 1  (3.14)
< 0 if xER 2

where R 1 and R 2 are two regions separated by the zero level set of the classifier.

3.2.2 Stability and convergence

The goal of a useful solution is its generalization to inputs where there is no data.

Following [55], the generalization properties of learning algorithms to new data is

based upon expected risk of an algorithm defined as :

I[fs] = E(x,) [V(f, (T), y) = f V,(f(x), y)-r(x, y)dxdy (3.15)
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This quantity is unobtainable because the distribution r(x, y) is unknown. Therefore

an empirical risk is defined as:

Is[f,] = Z V(fs(Xi, yi)) (3.16)
i=1

The goal of our algorithm is then to obtain a tight generalization bound:

P[I[fs] - Is[fs] > E] 6 (3.17)

If we can show that the emperical risk is small, then we can show that the probability

that the expected risk is small as well. In order to determine this generalization bound

a procedure based on stability in [4] is followed. The concept of stability maintains

that an algorithm is #-stable if the solution does not change much with varying data

sets.

Theorem 3.2.1. Let S denote a training set, Si,Z denote a training set obtained

by replacing the i-th example in S with a new point z = (x, y). An algorithm A is

/-stable if

V(S, z) E Zn+1, Vi, Sup2EZ |V(f,, z') - V(fy,, < # (3.18)

C

If an algorithm is 3 stable then one can derive the generalization bounds using

McDiarmid's Inequality:

Theorem 3.2.2. Let V1, ..., V be random variables. If a function F mapping V1 , ...,V

to R satisfies

sup.,, |F(v1 ,..., v.) - F(vi, ... , Vi_1, V , vi+1, ... , V)| ci (3.19)

then McDiarmid's inequality [35] is:

P (I|F(v1, ... , vn) - E [F (v1, .. ,V)]| > E) :5 2 exp - E 2 (3.20)
i=1 ci
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C

The generalization bounds when 3 = for some k become

P[II[fs] - Is[fs]I > # + e] 2exp (-2(k +fM)2), (3.21)

or that with probability 1 - 6

I[fs] Is[fs] + - + 2(k + M) 2 log(2/6) (3.22)
n n

Here we see the convergence with # is 0 (#) + 0 1). In these equations M is the

upper bound on the loss. The analysis in [44] indicates that # and M for SVMs are

L 2 K2

\An

M = L E'+ Co,

where L = 1 is the Lipschitz constant for the Tikhonov problem with hinge loss

(SVM) and , bounds the kernel:

supxE xK(x, x) < ,2 < oo (3.23)

This analysis shows several theoretical features corresponding to SVMs. The first

feature is that the bound on the loss scales like 0 (1) with fixed A. An extraordi-

narily large A will require a large amount of data in order to improve the bound. This

is synonomous with the fact that the A is a regularization parameter which weighs

against the data in order to prevent overfitting. Secondly, if A is too small, no gen-

eralization bounds can be stated because fs will simply overfit and be perfect on all

the data no matter how much data is obtained.
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3.2.3 Implementation

Implementation of the SVM involves selecting a kernel. The most common kernels

are:

" Polynomial: K(x, y) = (x -y + I)P

" Gaussian: K(x,y) = exp {-||x - yJ2/2. 2}

" Sigmoid: K(x, y) = tanh(Kx - y - 6)

In addition to the above kernels, any function that satisfies Mercer's condition is a

valid kernel [36]. Each of the above kernels has parameters that must be tuned by

the data or set a-priori. For example, in the polynomial kernel the order, p, and

the width of the radial basis function o- in the Gaussian kernel. In addition to the

kernel dependent parameters, the regularization parameter C, or A, must be tuned

as well. These are often tuned using K-fold cross-validation or leave-one-out cross

validation. The computational cost of one optimization using the SMO algorithm is

problem dependent but can be from O(N) to O(N 2 ) [41]. The entire procedure is

performed various times for cross validation and thus is dependent on the methods

for cross validation as well. In this thesis, the implementaion of SVMs used is found

in [11].

Cross validation

K-fold cross validation and leave-one-out cross validation are two of the most popular

techniques to select the regularization parameter for the Tikhonov regularization

problem [29] [51]. K-fold cross validation works by randomly partitioning the available

data into k data sets and training the SVM on k - 1 data sets followed by testing

on the remining data set. This procedure is repeated k times, eventually leaving out

every subset. The error may then be averaged among the k classifiers. This complete

procedure is performed using various regularization parameters. An optimizer may

be wrapped around the whole system in order to select a good regularizer.
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Figure 3-2: Regression example with empty circles indicating data points, thin black
line indicating a fit with a weak regularization constant, and thick black line indicating
the solution to the optimization problem with the same regularization constant but
weak convergence tolerance.

A special case of K-fold cross validation is leave-one-out cross validation (LOOCV).

In this procedure, cross-validation is performed on every training datum. This method

for determining tuning parameters is computationally expensive and often unafford-

able in practical situations. For this reason, the most common cross-validation pro-

cedures are 10- or 5-fold validation.

One method to avoid selecting a regularization term C in the Tikhonov problem

is to stop the optimization solving the dual problem before it converges [60]. An

example for the case of regression is shown in Figure 3-2 from [43]. Here, it is seen

that a weak convergence tolerance on the optimizer plays the same role as a stronger

regularization parameter.

3.3 Uncertainty sampling and active learning

Active learning [13] [46] [50] and specifically uncertainty sampling [32] are commonly

used methods in the learning community when labeling data points according to their

region is an expensive process. They have been used in text classification where one

has a library of documents, but classifying the documents involves the expensive

task of a human reading the document. In order to efficiently perform the labeling

of the documents, the human is required to only read those documents which a
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classifier is uncertain about [54] [49]. Following the labeling of this new data point,

a new classifier is built. The situation with building surrogates for complex models

is different as there is no library of model evaluations. We are free to evaluate the

model wherever we want; however, each evaluation is still expensive.

In these situations US is used to adaptively add data points to a data set and

retrain a classifier after each addition. The data points are added where the previous

classifier is most uncertain of the class of the point. In the context of SVMs this

region corresponds to the zero level-set of the classifier. Furthur details regarding the

implementation of an US algorithm are given in Chapter 4.
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Chapter 4

Discontinuity detection algorithm

4.1 Overall methodology

This chapter describes a discontinuity detection algorithm that takes advantage of

any regularity exhibited by a discontinuity in model outputs, avoids the creation

of structured grids and rectangular subdomains, and incorporates guided random

sampling to improve scaling. The regularity of the discontinuity is exploited by cre-

ating a smooth approximation of the boundary between domains using support vector

machines (SVM). This approximation allows for a more efficient description of the

discontinuity than a nearest neighbor approach used in the edge tracking and adap-

tive refinement schemes available in the literature. Additionally, SVMs are robust

and in practice do not over-fit the data.

In order to build support vector machines, one must have a means of labeling

data points on either side of the discontinuity based on the region they belong to.

For this purpose a polynomial annihilation scheme based on [25] is used. This scheme

allows the determination of the discontinuity size and subsequently allows the labeling

of new model evaluations based on their function value. Finally, refinement of the

discontinuity is performed using uncertainty sampling by optimizing randomly chosen

points in the full domain to the subspace spanned by the zero level-set of the classifier.

These three techniques form an algorithm that is shown to be more efficient than those

found in the literature. Additionally, the algorithm is shown to default to an edge
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tracking scheme in the cases where the discontinuity is irregular.

Several innovations have been made for the construction of this algorithm. The

first innovation is the addition of an off-axial tolerance parameter when utilizing an

axial based PA grid refinement technique such as in [2]. By allowing a wider range

of points to be considered axial, the discontinuity may be refined in a more efficient

manner. The second innovation is the use of optimization methods to drive randomly

sampled points onto the zero level-set of the classifier. This optimization allows

uncertainty sampling to proceed by providing a mechanism by which to sample the

approximate boundary between regions.

4.2 Initializing with polynomial annihilation

The purpose of an initialization phase of the discontinuity detection algorithm is to

provide a mechanism for labeling future data points near either side of a discontinuity

based upon their function value. The initialization procedure is built on the basis

of a divide and conquer approach guided by repeated application of one dimensional

PA. The details of point selection and refinement are given in subsequent sections.

The inputs and outputs of the initialization phase are provided in Table 4.1, and they

allow the reader to understand what kind of information can be obtained from the

discontinuity detection as well as the information required to perform it.

Inputs Outputs

Initial Grid Sparse set of points

Off-Axial Tolerance, tol Function values at the sparse set

Edge Point Tolerance, 6 Locations of edge points

Maximum PA order Jump function values at edge points

Desired number of edge points

Table 4.1: Input/Outputs of the Discontinuity Detection Algorithm.

In the description of the algorithm that follows, the following five sets of points
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are used repeatedly:

1. Set S = {xi s.t f(xi) has been evaluated.}

2. Set M = {xi added to S in the last iteration.}

3. Set E {Edge Points}

4. Set A {Semi-axial points in direction j w.r.t point yi}. This set is a subset

of S.

Now that the syntax is established, the selection of grid points for running PA at a

given test point is described.

4.2.1 Stencil point selection

The core of the divide and conquer approach for PA will require creating a jump

approximation at various test points based on a grid of already evaluated data points.

Assuming that a grid of function evaluations exists, in order to select a stencil to use

polynomial annihilation, the set of available points, set S, is first narrowed down to a

set of semi-axial points, A. Semi-axial points are those that lie within a pre-defined

off-axial tolerance. These points are considered axial for the purposes of applying the

polynomial annihilation algorithm. This approximation is used to reduce the number

of function evaluations necessary to evaluate the jump function. Intuitively, the off-

axial tolerance indicates an accepted minimum resolution level of the discontinuity.

Figure 4-1 displays a typical scenario from which the field of axial points is chosen.

The pink circle, referred to as POI, is the point to be tested for discontinuity, and

the arrows denoted "+" and "-" refer to the relative directions of surrounding points.

For the purposes of polynomial annihilation, at least one point in each direction is

necessary. The boxes refer to all available points in the sparse grid. The horizontal

direction is the axial direction in which PA is applied. The vertical direction refers

to all non-axial directions. Two lightly shaded grey lines bound the region inside the

accepted tolerance for points to be considered semi-axial. Only those boxes within

the tolerance lines may be considered for the axial point selections, and those selected

49



Algorithm 1 Refinement Initialization

1: Input: Add initial points x to T and S and evaluate f(x).
2: Add and evaluate all boundary points corresponding to points in T to S.
3: Copy points in T to M. Clear T.
4: for all Mi do
5: for each dimension j do
6: Refine1D(S,Mij,edgeuim)
7: if |El edgeim then
8: break
9: end if

10: end for
11: end for

Algorithm 2 RefinelD

1: Input: S, T, direction, j, edgeuim
2: if |El edgelumn then
3: break
4: end if
5: Spawn two points from T in direction j at w

Midi and Mid2-
6: Evaluate Jump Function at each Midi.
7: if Jump function exists for point Midi then
8: if Midi is an edge point then
9: Add Midi to E.

10: if |El edgeim then
11: break
12: end if
13: else
14: Add Midi to S.
15: Add boundary parents of Midi to S.
16: Add Midi to Tnew.
17: for each dimension j do
18: Refine1D(S,Tew,j,edgeujm)
19: end for
20: end if
21: end if

hich to evaluate the jump function,
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Algorithm 1 Refinement Initialization

1: Input: Add initial points x to T and S and evaluate f(x).
2: Add and evaluate all boundary points corresponding to points in T to S.
3: Copy points in T to M. Clear T.
4: for all Mi do
5: for each dimension j do
6: Refine1D(S,Mi,j,edgeim)
7: if |E| > edgeim then
8: break
9: end if

10: end for
11: end for

Algorithm 2 RefinelD

1: Input: S, T, direction, j, edgeum
2: if |El edge umn then
3: break
4: end if
5: Spawn two points from T in direction j at w

Midi and Mid2.
6: Evaluate Jump Function at each Midi.
7: if Jump function exists for point Midi then
8: if Midi is an edge point then
9: Add Midi to E.

10: if |El edgeujm then
11: break
12: end if
13: else
14: Add Midi to S.
15: Add boundary parents of Midi to S.
16: Add Mid, to Tne..
17: for each dimension j do
18: Refine 1D(S,Tw,j,edgeuim)
19: end for
20: end if
21: end if

hich to evaluate the jump function,
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Figure 4-2: PA refinement algorithm applied to several discontinuities. The labels
are created using the labeling procedure described in section 4.2.3.

points indicate locations at which the jump function is an estimate for the size of

the discontinuity. The red points axe then used in a labeling algorithm to label their

surrounding function evaluations as residing in either region 1 or region 2.

4.2.3 Labeling

Now that a procedure for estimating the size of the discontinuity using PA has been

described, these estimates must be used for labeling function evaluations resulting

from discontinuity detection. The labeling methodology employed for determining

which regions function evaluations from the PA procedure lie is dependent on function

evaluations neighboring the edge points. Grid points within tol of the edge points are
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Figure 4-3: Labeling Algorithm: Circles are locations where the function have been
evaluated. Squares are the location of the edge point. Blue circles are points that are
labeled as class 1 and red circles are points that are labeled as class 2.

the only ones labeled and sent to the classifier. For each edge point, the algorithm

finds a subset of grid points located within tol. Out of this subset, the grid point with

the largest function value is found and labeled class 1. Then the function values at

the other grid points in the subset are compared to the large function value using the

value of the jump function at the local edge point. If the difference is less than the

jump function then the point is labeled class 1; otherwise, it is labeled class 2. There

is an implicit assumption in this algorithm that local large values are always of the

same class and there is no cross over along the discontinuity. Figure 4-3 illustrates

an example of this process.

4.3 Uncertainty sampling implementation

In order to improve the scalability and resolution of the discontinuity detection algo-

rithm, an active learning technique based on evaluating points which the classifier is

least sure of is used. This active learning technique offers a scalability improvement

over higher resolution PA because of the ability to evaluate the model at points which

are most informative for modifying the classifier. However, these points are sampled

randomly along the classifier instead of optimizing such that the classified changes

most because such a technique is computationally infeasible. These additional points
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are chosen based on their proximity to the classifying surface. Each iteration of active

learning proceeds by selecting a random point that is closest to the classifier. This

point is then labeled by comparing its function value to the function values of the

near edge points obtained from the PA scheme. Once the new point is labeled, a

new classifier is built and the procedure is repeated. In practice no cross validation

is performed for two reasons: the computational expense of performing cross vali-

dation at every iteration of US is too great, especially when the data set contains

thousands of data points and because the algorithm is found to be fairly robust to

the regularization parameter. A schematic of the procedure is shown below:

Train Classifier

Pick a point closest to

the classifying surface.

I
Evaluate and label

the new point.

4.3.1 Generating new data points

A new function evaluation is obtained by sampling a point in the full domain and

then driving it to the classifier by minimizing the squared classifier function:

Ns, 2

g(x) = aKi/(x) (4.1)
i=1

Gradient and non-gradient based algorithms have been used and result in similar

performance. This optimization problem is not a quadratic program and may have

local minimum. In practice, a clustering of points in local minima has not prevented

the eventual refinement of the discontinuity. Additionally, low discrepancy points

along the discontinuity are obtained by forcing new function evaluations to occur
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Figure 4-4: Uncertainty Sampling Labeling algorithm: A new test point (green) is
classified based on a comparison of its function value to its nearest neighbors in region
1 and region 2.

farther than a minimum distance away from its nearest neighbors. Finally, because of

the Lipschitz and nearest neighbor tolerances described in section 4.3.2, this algorithm

defaults to edge tracking if performed for a sufficiently large number of iterations.

4.3.2 Labeling new data points

The procedure for labeling points near the discontinuity obtained from active learning

are not labeled using the procedure described above. The reason being that there may

not be jump approximations near to the new point. The procedure to label new points

is similar with the exception that the nearest points to the the unclassified point in

each region are located. In order to perform this procedure a Lipschitz constant must

be specified for the model. The Lipschitz constant L is defined as:

if(x1) - f(x2)1 <; L~x 1 - X21. (4.2)

In other words, L is the maximum that a function can change given a change in

location. In practice, this involves specifying a trust region from the nearest neighbors

of an unclassified point to the unclassified point. If the unclassified point is not within

the trust region of both nearest neighbors in each classes, then the unclassified point

cannot be reliably classified and is ignored. The labeling procedure is depicted in

Figure 4-4. Skipping the evaluation of new data points achieved through US means

that new function evaluations will appear within a certain distance from previously
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labeled points. However, as uncertainty sampling progresses, the entire discontinuity

will be explored. This procedure provides a method for reliably labeling new function

evaluations while no accurate approximation for the discontinuity exists. In practice

if one believes that the size of discontinuity is far greater than the variability within

each region, L, the viable labeling region may span the entire domain. Whereas if

one believes there may be a lot of variability in the size of the discontinuity, the trust

region around the labeled points will be smaller. The accurate approximation for the

discontinuity is obtained only after the final iteration of uncertainty sampling.

4.3.3 Examples of US

Figures 4-5 and 4-6 show the application of US to several different discontinuities.

The equations for the discontinuities are:

X2 = 0.3 + 0.4sin(27rx 1 ) + x 1

2= 0.3 + 0.4sin(7rx 1 )

X2= 0.3 + 0.4sin(7rxi) + x 1

Gaussian kernels are used for the SVM, with 1/2o-2 = 0.5 and with C = 10-. Plots

of the distribution of positively labeled points, negatively labeled points, and the

current guess for the discontinuity are shown at various iterations of US. The first

column contains a discontinuity that contains oscillations and requires the largest

number of function evaluations in order to accurately create a classifier. An interesting

characteristic of Gaussian kernels is visible in subfigures 4-5 (c) and (e) in that the

SVM actually separates the space into several regions. However, this problem is

resolved in subfigure (g) as the discontinuity is properly refined.

The second column contains a discontinuity that is almost linear, and it requires

the fewest number of function evaluations to accurately capture. The third column

contains a discontinuity that is fairly linear in a large region but contains a tail

near the lower left hand corner. The US algorithm effectively locates this tail and

accurately creates an approximation for the discontinuity.
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Figure 4-5: Uncertainty sampling is performed on two different discontinuities
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(a) Initial classifier and labeled points obtained
from PA for the third test function
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(c) Test function 3 after 15 iters. (d) Test function 3 after 20 iters.

Figure 4-6: Uncertainty sampling is performed on a third discontinuities
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4.4 Results

Now that the algorithm has been fully described, results on several test problems are

presented. The results presented illustrate the advantages of this method in terms of

scaling to higher dimensions than those demonstrated in the literature. Section 4.4.1

demonstrates the scaling of the algorithm on a variable dimension test problem and

section 4.4.2 compares this algorithm to several test problems found in the literature.

4.4.1 Dimension scaling

Consider a function f(x), where x = (X 1 , ... , XD) and x E [-1, 1]D:

S2 + 10 if XD > :D- 13

f) 2 10 = 1 X (4.3)
- 10 otherwise

This equation is a quadratic with a cubic discontinuity. In Figure 4-7 uncertainty

sampling is performed by adding 10 function evaluations each iteration until 99%

of 100000 randomly sampled points in the entire domain are classified correctly. A

Gaussian kernel is used with 1/sigma2 = 1/D, and C = le -4. Uncertainty sampling

is initially fed by a grid obtained from running PA until no new function evaluations

can be added (due to tolerance levels). The trust region for labeling points obtained

in US is taken to be an arbitrarily high number (1e6) because the variability in each

subdomain is not as great as the size of the discontinuity. Figure 4-7 clearly indicates

that the bottle-neck in this algorithm is polynomial annihilation. The performance of

PA until a grid tolerance is reached is an expensive exponentially scaling algorithm.

In order to reduce this computational expense, PA is only performed until a 15 labeled

points are obtained. The results are displayed in Figure 4-8. Once the fixed number

of edge points is obtained, US is performed as before. Since this algorithm is random,

it is performed 100 times and the mean results are shown. The variance of the results

becomes indistinguishable from the mean at higher dimensions, thus the variability

in total number of function evaluations is not great. In this scenario the scaling of

the algorithm appears to be several orders of magnitude improved. This suggests the
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the new point

Figure 4-9: Best discontinuity detection algorithm configuration.

best way to perform discontinuity detection is given in Figure 4-9.

4.4.2 Examples and comparisons with other algorithms

Genetic Toggle Switch

A popular example of a bifurcating ode is the genetic toggle switch [22]. This ode is

described below:

du ai -U (4.4)
=t 1 + v

dv
dt

a2
= -v

1+
(4.5)

(4.6)W (1 + [IPTG]|K)7

For this example, < p >= (a 1,a 2, a1, K) are random variables that are uniformly dis-

tributed around their nominal values (p,,) = (156.25,15.6,2.0015,2.9618 x 10-1).

The variable of interest y is distributed in the range [-1, 1]4 and (p) = (p,,, - ay)

where o = 0.1. 7 is set to 1, [IPTG] is set to 4.0 x 10-, and # is set to 2.5, in the
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same manner as in [25] and [1]. The results are shown in the table below:

Learning Edge Tracking [25] Adaptive Refin. [1]

Model Evals 1500 (avg) 31,379 91,250

For this simulation a Gaussian kernel is used, C = 104, and 15 edge points

are sought. The trust region for US labeling is set to an arbitrarily high number.

The model evaluation average is given for the learning algorithm described in this

chapter because as it is a random algorithm, it is performed 100 times to describe

performance. The performance of the present algorithm is much improved over the

techniques found in the literature. In this particular example, this improvement is due

to the fact that for a 1% classification error, the discontinuity may be described using

a hyperplane as in [1]. Hyperplanes need very few points to be well approximated.

Discontinuity in subspace of full domain

Another extension of this algorithm can be demonstrated in the case where a dis-

continuity only exists in a subspace of the total dimension of the problem. Here we

consider a 20 dimensional problem containing 3D sphere centered at the origin that

has a radius of 0.125. The equation for this function is provided below:

3

1 if ZX2<r 2

f(x)=

-1 else

For this example, the classification error will be evaluated at 1000 uniformly random

points located within a distance of 0.125 of the discontinuity. This region is difficult to

approximate well because if 1000 uniformly random points were generated in the full

20 dimensional domain, the classification error would be excessively low. In order to

make a comparison of this algorithm to [25], US is performed until a 93% classification

error is achieved. The same algorithm settings as the previous example are used in

this example, with the exception that only one edge point in each dimension is sought,
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starting with a grid of one point at the origin. The edge tracking results indicated

O(104) required function evaluations. The learning algorithm presented here required

6 labeled points from PA and - 300 US sampling iterations. Again, this improvement

is due to the fact that a circle is a very regular discontinuity shape, and a Gaussian

kernel SVM can approximate it quite easily.

4.5 Outstanding issues

The most prevalent outstanding issue regarding the algorithm presented is a stopping

criteria. The first issue is a stopping criteria for PA in the form of a specification of

the number of edge points. Some knowledge of the variability of the function on either

side of the discontinuity may aid in setting this parameter. For example if it is known

that the variability of the functions in the region separated by the discontinuity is

low, one needs only to search for an edge point in each direction. If no edge point

in a direction is found, then no refinement must occur in that direction. If an edge

point is found, then a valid jump approximation is available for the entire domain. If

however, there is a large variability in the function in each region, more edge points

are necessary. No rigorous method is available for determining the precise number

necessary.

For US, a stopping criteria based upon the SVM classifier contains several draw-

backs. For example, if one uses a stopping criteria where US stops if the SVM classifier

is not changing with iteration, one cannot reliably know that this occurs just because

US sampling points are not sampling the correct regime of error. In practice, this

issue becomes less important as often one simply wants to obtain the best surrogate

possible in a given amount of time. Chapter 5 will discuss this approach, but it is

based on feeding PA an initial grid with function evaluations spread throughout the

domain, and running PA and US until more function evaluations are unaffordable.

In addition to stopping criteria, a remaining issue is a rigorous evaluation of the

performance of this algorithm as a function of geometric complexity. Some initial re-

sults shown in this section indicated that complex geometries require large numbers
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of function evaluations. Finally, an extension to more than one discontinuity must

be pursued. One major issue in applying the presented algorithm to several disconti-

nuities separating several domains is the development of a robust labeling scheme so

that US may take place.
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Chapter 5

Function Approximation

5.1 Methodology

Chapter 4 described an efficient method for locating discontinuities. The second half

of the approximation problem involves building a surrogate for the computational

model on each region of smooth behavior, separated by the discontinuity. The ap-

proximatoin method should be able to do the following:

e handle complex domain geometry

* employ model evaluations on random sets of points.

The first requirement stems from the fact that the subdomains separated by discon-

tinuity need not be rectangular. Thus spectral methods are not the best fit for this

problem. The reason spectral methods have issues is that they assume the input

parameters are independent. Under the independence assumption, one can easily

construct orthogonal polynomials based on the probability measure of the underlying

variables. In the dependent case these polynomials would no longer be orthogonal

and thus any methodology used to calculate the coefficients of the expansion will be ill

conditioned. The authors in [45] have employed Rosenblatt mappings in these situa-

tions in order to transform the dependent variables into independent variables. These

mappings have not been shown to scale well with dimension. Additionally, care must

be taken to make sure these mappings themselves are not excessively nonlinear (high
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order) and that they do not introduce new discontinuities. The method described

in this chapter avoids these issues by using the GP regression mean function as the

surrogate. This method does not suffer from ill conditioning because the surrogate

is represented as a sum of radial basis functions. The radial basis functions do not

require special treatment on irregular domains.

The second requirement stems from the fact that the resulting function evaluations

resulting from discontinuity detection do notlie on a structured grid, but rather are

concentrated along the discontinuity itself. In order to reduce the computational

cost of building a surrogate, one would like to utilize these function evaluations.

This requirement reduces the applicable approximation technology to regression or

interpolation based methods. Again, GP regression fits this requirement and is thus

used for approximation.

5.1.1 Background

The surrogate for the full model is a GP regression mean estimate in each subdomain.

For the implementation of GPs, we use a squared exponential covariance kernel with

a different correlation length (li) for each dimension. Additionally, we perform a max-

imum likelihood estimation for the parameters of the kernel including the correlation

lengths and signal variance, f. A nugget with a value of on = 10-' is used to enhance

the conditioning of the covariance matrix. The squared exponential kernel is given

as:
D

-x- - x')2
k(x, ') = of exp *? ± io(x,x'). (5.1)

The prior mean function (see equation 1.11) is chosen to be a polynomial series:

P

p)= Zai,<i(x) (5.2)
i=1

ai are determined the pseudospectral projection algorithm based on [14]. The order of

the spectral approximation is low in order to obtain a smoothed out approximation

of the true function instead of one that exhibits high frequency oscillations. Now
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that the GP approximation method is described, Section 5.1.2 describes how GPs

are utilized within the discontinuity detection framework.

5.1.2 Implementation

The implementation of GPs for approximation follows from the decomposition ap-

proach taken for discontinuity detection. Surrogates are built for each region sep-

arated from the discontinuity. The SVM classifier provides a method to gauge the

confidence that a certain point lies in a certain region based on the classifier function.

This characteristic is utilized by only constructing surrogates a certain distance away

from the discontinuity. In the regions immediately bordering the discontinuity, the

full model is evaluated. This technique follows from the thought that creating an

accurate surrogate next to the discontinuity is extraordinarily expensive as often the

approximation of the discontinuity will not be fully accurate. If surrogates are built

in the regions immediately neighboring the discontinuity and their training points are

wrongly classified, the surrogate will be inaccurate. Rather than expending a large

computational effort on refining this area of the surrogate, the full model should sim-

ply be evaluated when necessary. As the dimension increases, the volume around the

discontinuity progressively becomes a smaller fraction of the total volume and thus

this methodology actually improves in efficiency. The final surrogate is of the form:

Nreg nj

f(x) =[ Z I(x)Zai 'Fij (x), (5.3)
j=1 i

where Neg is the number of regions the entire domain is decomposed into, nj is the

number of training samples in region j, and Ij is an indicator function. aij is the

coefficient of the ith basis in the jth domain and Wij is the ith basis in the jth domain.

However, when region j has a border which is the zero level set of the classifier, the

full model is used for the evaluation of points.
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5.1.3 Training point selection

When constructing the GP approximation, the function evaluations used for discon-

tinuity detection will be reused for approximation construction. In order to retain

accuracy in regions far away from this discontinuity, a Latin Hypercube (LHS) or

Quasi-Monte Carlo (QMC) sampling scheme is used as the input to discontinuity

detection. Not only does this provide a good coverage of the entire volume, but it

offers many training points with which to start polynomial annihilation. In addition

to the Latin Hypercube samples, a quadrature grid is initially laid out in order to

generate a prior mean function using pseudospectral projection. Pseudospectral pro-

jection onto a low order basis (2-3) allows the mean function to be a smoothed out

version of the discontinuous function. Specifically, the regions near the discontinuity

will be smoothed out. However, these regions are exactly those in which function

evaluations are concentrated during the US sampling process. Therefore, the GP

surrogate retains the accuracy of the smooth approximation in regions away from the

discontinuity, and increases the accuracy in regions near the discontinuity because of

the distribution of the training data obtained from discontinuity detection.

5.2 Results

Two applications of this methodology are presented. The first application is on Burg-

ers equation with uncertain initial conditions. This application contains a disconti-

nuity that is of variable size ranging from 2 to 0.4. The second application is on a

chemical kinetics problem with uncertain initial state variables.

5.2.1 Burgers' equation

The Burgers' equation under consideration is given below:

&u + (u2 \ sin2X\

Ut Ox 2 (X 2

Uncertain IC: u(x, 0) = # sin x, #~U(0, 1). BC: u(0, t) = u(7r, t) = 0.
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For the approximation a quadratic prior mean function is used and a total of 114

evaluations are necessary to construct the approximation. The results of the approxi-

mation are shown in Figure 5-1 and the GP variance and point-wise errors are shown

in Figure 5-2. The surrogate is evaluated in 93% of the total area and this area is

shown in Figure 5-3. The two solid black lines surround the discontinuity and pro-

vide boundaries for each surrogate. The function evaluations used for discontinuity

detection and approximation are also shown. The blue dots indicate all the func-

tion evaluations that occurred and those surrounded by squares are used to construct

the approximation. For reference, the blue dots surrounded by a circle are those

that were labeled through the US process. These points are all clustered around the

discontinuity.

From the variance of the GP and the error of the GP plots we can see that the

high error regions are not always represented by a high variance region. In fact, the

region with highest variance does not correspond to the region with highest error.

Overall, only 114 evaluations are necessary to achieve a 1.9% error in 93% of the area

and the resulting surrogate does not contain spurious oscillations .

5.2.2 Combustion problem

Finally, a 3-dimensional combustion problem is presented here. A homogeneous 0-D

H 2 - 02 reaction model [61] with nine species and nineteen reactions is used. A

surrogate is created with with the initial temperature, initial pressure, stoichiometric

ratio as input parameters. The input parameters span over the following range:

" Tinit= [1000, 1400]K

* Pinit = [0.5, 1.5]bar

* <bstoich = [0.5,1.5]

A surrogate is created for the temperature at 8 x 10-5 seconds into the reaction. The

surrogate uses a second order prior mean function (7 function evaluations), 105 initial

QMC function evaluations, 10 edge point tolerance for PA, and 100 US iterations.
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Figure 5-1: Surrogate for Burgers equation

70



0.8
3

0.6

0.4 2.5

0.2
2

0

-0.2

-0.41

-0.6
0.5

-0.8

1 -0.5 0 0.5 1
(a) GP variance

1 0.12

0.8

0.6

0.4

0.2

0 oo

-0.2
0.04

-0.4

-0.6

-102-0.8

-1 -0.5 0 0.5 1
x

(b) Absolute Error, 1.9% L2 error

Figure 5-2: GP variance and absolute error of Burgers surrogate

71

x Iit



0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1 -0.5

(a) Classifier, middle

0 0.5 1
x

region is 7% of the total ar

U
U

a

a

a
U

U

~
U

U

t

0 0

Points Labeled "+" in US
Points Labeled "-" in US
Data used by "+" region GP
Data used by "-" region GP
Function Evaluation Performed

-0.5 0

I

. .

'" U

0.5 1

(b) 114 total Function Evaluations

Figure 5-3: Burgers equation classifier and full model evaluations

72

I

40

-20

-40

.60

ea

U

U
U

U

1

0.8

0.4

0.2

0

-0.4

-0. 
1

-1 1

0
0O
O0

I



X 10,
-Full Model
--- 4 Region Surrogate

5 -Global Surrogate

4-

63--

2-

1

-20 -1000 0 1000 2000 3000 4000 5000
T

Figure 5-4: Output temperature pdf using a discontinuous surrogate and a global
surrogate

For labeling in edge detection, a trust region of size 0.125 is used. 307 total function

evaluations are necessary for surrogate construction. Once the surrogate is obtained,

the region near the discontinuity where the full model is evaluated is set to be 2.5%

of the total volume. For comparison with a global surrogate, a pseudospectral PCE is

built using [141, with 339 function evaluations. The resulting error for the discontin-

uous surrogate is 6% and for the global surrogate is 14% measured on 10' full model

evaluations.

In addition to creating the surrogate, uncertainty is propagated through the model

to obtain distributions on the output temperature, assuming the input distributions

are uniform. The output temperature is bimodal indicating whether or not ignition

has taken place. The comparison in output probability distributions may be found

in Figure 5-4.

This example has shown the utility of the discontinuous surrogate in practical

applications involving complex model response. The global surrogate approach in the

kinetics problem is wholly inappropriate and the discontinuous approach provides an

efficient and accurate way to propagate uncertainty. The global surrogate smooths

out the entire function and the second mode (due to non-ignition) is not visible in
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the resulting approximation. The domain decomposition and interpolation approach

locates the discontinuity and accurately builds an approximation for each region. As

a result, both modes are evident in the output.

5.3 Outstanding issues

While the techniques discussed in this chapter have been successfully applied to the

examples presented, several issues remain. The primary issue is how to best split

the domain using the available function evaluations and classifier as guides. Sev-

eral options exist including partitioning each region into subregions bounded by the

contours of the surrogate. This type of partitioning would increase the efficiency of

surrogate evaluation. However, the classifier contours may not be the best boundaries

for subregions as they really do not take into account the underlying model.

Additionally, and perhaps more pressing, is the question of the distribution of

the function evaluations among the various sub-algorithms that make up the entire

method. In the experience of the author, US has been shown to be more effective

than PA at refining the discontinuity and thus more function evaluations should be

saved for US. Alternatively, if there is significant variability in the regions separated

by the surrogate, more function evaluations may be necessary in the initial QMC

point set.
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Chapter 6

Conclusion

6.1 Summary

This thesis has described a framework aimed at computing surrogates for models

exhibiting discontinuities. The overall guiding methodology for constructing this

algorithm is two-fold: take advantage of discontinuity smoothness in the parameter

space and reduce the excessive expense of accurately approximating the region near

the discontinuity by building surrogates a minimum distance away from classifier

boundary.

After the tools used for the methodology were described in chapter 3, the scaling

potential of the discontinuity detection algorithm was displayed in chapter 4. In

particular, the scaling results indicated that an edge tracking grid along the entire

discontinuity is not necessary and SVM approximations are effective at representing

boundaries between regions. The superior performance of discontinuity detection was

shown against the state of the art domain decomposition and edge tracking schemes.

In regards to surrogate construction, GPs were shown to be effective at approxi-

mating the true model in regions away from the discontinuity. These methods are ge-

ometry independent and require low-discrepancy points to be effective. The method-

ology was applied to Burgers' equation and a chemical kinetics equation. Burgers'

equation contains a shock and the methodology approximated 93% of the region to

2% error. Additionally, the approach has been shown to be effective for chemical
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kinetics models where a discontinuity occurs due to ignition of the reaction. The

approach described in this thesis was shown to accurately capture the bimodality

exhibited due to this discontinuity.

6.2 Contributions

The contribution of this thesis has been the creation of a flexible algorithm for creating

surrogates for discontinuous models. Though the motivation for surrogate creation

has been presented as uncertainty quantification, these surrogate are generally appli-

cable whenever computational expense must be reduced. The algorithm presented

is more efficient than those in the literature because of its ability to take advantage

of the regularity of a discontinuity. Additionally, the algorithm becomes an edge

tracking scheme in the scenario that discontinuity regularity does not exist.

6.3 Outstanding issues

There are remaining issues pertaining to the general use of the algorithm. The primary

issue remaining is the difficulty in selecting the required number of labeled function

evaluations desired after polynomial annihilation. This choice is particularly difficult

to make if the variability of the function in each region is substantial with respect to

the size of the discontinuity. If this is not the case then obtaining one edge point in

each dimension of the discontinuity suffices.

The second major issue with discontinuity detection is a lack of stopping criteria or

error estimate for uncertainty sampling. The author does not have a solution to this

issue, but its concern diminishes when one can only afford to run a certain number

of iterations. However, even when one decides how many function evaluations are

affordable, the decision as to how to spread them between US points and initial PA

points is still unclear.
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6.4 Future directions

Besides working on the issues described above, one extension of the algorithm pre-

sented here is the generalization of the methodology to multiple discontinuities sepa-

rating multiple regions. Support vector machines for multi-class problems exist and

would transfer well to this new scenario. The difficulty involved in dealing with mul-

tiple regions is the labeling of function evaluations for PA and US. This becomes

difficult because it is no longer possible to characterize a function as belonging to a

region with high values or low values. Another extension to the above framework can

involve an adaptive approach where one alternates between discontinuity detection

and surrogate construction in order to work towards some sort of convergence.
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