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Structural Optimization of 3D Masonry Buildings

Emily Whiting Hijung Shin Robert Wang John Ochsendorf Frédo Durand

Massachusetts Institute of Technology
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Figure 1: We present a method to compute the gradient for the stability of a structure composed of rigid blocks, and demonstrate how we
enable the optimization of stable structures. For example: (a) A cable bridge structure originally infeasible. (b) Side view of the input model.
(c) Output feasible model. The horizontal arched walkway and cables are fixed, only the vertical arch is optimized. (d) An alternative feasible
output. The horizontal arch and cable joints are free to deform with the constraint that top faces (walking surface) remain horizontal.

Abstract

In the design of buildings, structural analysis is traditionally per-
formed after the aesthetic design has been determined and has lit-
tle influence on the overall form. In contrast, this paper presents
an approach to guide the form towards a shape that is more struc-
turally sound. Our work is centered on the study of how varia-
tions of the geometry might improve structural stability. We define
a new measure of structural soundness for masonry buildings as
well as cables, and derive its closed-form derivative with respect to
the displacement of all the vertices describing the geometry. We
start with a gradient descent tool which displaces each vertex along
the gradient. We then introduce displacement operators, imposing
constraints such as the preservation of orientation or thickness; or
setting additional objectives such as volume minimization.

Keywords: Statics, structural stability, architecture, optimization

1 Introduction

While computer graphics and computer-aided-design (CAD) have
dramatically broadened the range of shapes available for archi-
tectural design, structural considerations have often been ignored.
Structural analysis of a building is usually performed after the aes-
thetic design has been determined and has little influence on the
overall form. An architect designs the shape, which is passed to
structural engineers to make the building stable through the use of
appropriate material and reinforcement. Existing structural analy-
sis software, such as finite element analysis, is a powerful method
for analyzing a given structure, but does not directly suggest ways
to improve the geometry in order to reduce internal forces and re-
quired material. In contrast, we seek to propose modifications to the
geometry that enhance structural soundness. We focus on masonry
structures because their stability is the direct result of their geome-
try, but we argue that the central principle of sound masonry design
– minimization of non-axial forces – extends to other materials.

The input to our method is a building geometry described as a set
of blocks specified by their vertex coordinates. The central com-
ponent of our approach is the notion of a structural gradient, which

expresses, for each vertex, the displacement direction that maxi-
mally improves structural soundness. The gradients can be used in
a steepest-descent manner. Alternatively, constraints can be intro-
duced to modify the gradient direction, such as preservation of hor-
izontal and vertical directions, or constant thickness of blocks. Ob-
jectives can also be added such as volume minimization to reduce
material usage. We explore a number of gradient modifications and
show that they enable variations in structurally sound models.

We base our notion of structural soundness on static analysis
[Livesley 1978; Livesley 1992] and focus on masonry materials,
comprising stone and brick structures. Masonry is the dominant
material for traditional architecture and is also used in modern ar-
chitecture, especially in developing countries. In contrast to con-
temporary steel or reinforced concrete, traditional masonry relies
on forms which are inherently stable, because the material resists
only axial compressive forces [Allen and Zalewski 2009]. Though
we focus on the case of masonry, our approach can be used to
minimize non-axial forces in general. Even with materials that re-
sist tension, such as reinforced concrete or steel, a good structural
form with reduced non-axial force requires less material, leading
to cheaper, more environmentally-friendly, and robust buildings. In
addition, we extend our approach to enable the treatment of cables
as tension-only elements, using the same principles of static analy-
sis and resistance to axial forces.

The heart of our approach is to compute the gradient of a stability
metric with respect to geometry modification. First, we show that
previous expressions of masonry instability [Whiting et al. 2009] do
not lead to appropriate structural gradients because they are based
on forces rather than torque. We use a stability metric defined by a
quadratic program minimizing both tension and compression forces
and subject to feasibility constraints. We compute the gradient of
this metric with respect to all the vertex coordinates. To do this,
we transform active inequality constraints into equalities, resulting
in a linear system that we use to derive a closed-form expression
for the optimum. We then analytically derive the Jacobians of the
transformed feasibility constraints with respect to vertex coordi-
nates. Together with the closed form expression of the optimum,
this allows us to derive the final structural gradient.

We introduce geometry modification tools that leverage the gra-
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dient of stability. Each tool relies on a number of user-specified
constraints and objectives, such as the preservation of vertical or
horizontal directions or the minimization of material usage.

Contributions The following contributions are presented:

• We introduce a new stability metric that accurately quantifies
infeasibility of a structure by incorporating torque imbalance.

• We provide a closed form derivation of the gradient of stabil-
ity with respect to geometry modification.

• We describe a parameterization for geometry manipulation
that respects planarity of the block primitives.

• We present an extension to tension elements that enables the
inclusion of cable structures.

• We modify the gradient according to constraints and objec-
tives to enable the user-guided improvement of stability.

2 Related Work

Architectural Modeling Attar et al. [2009; 2010] apply physics
to generative design of architectural models, but do not address the
creation of structurally feasible forms. Schiftner and Balzer [2010]
use statics in mesh layouts, but applied at the initialization phase
rather than a constraint on the geometry. Optimization has been
used in architecture for modeling free-form surfaces that meet
fabrication criteria [Eigensatz et al. 2010; Pottmann et al. 2008;
Pottmann et al. 2007; Liu et al. 2006]. However, these examples do
not consider structural feasibility constraints. Most related to our
method, Whiting et al. [2009] integrate structural soundness with
procedural modeling, but are limited to low-dimensional parame-
terized models. Our approach addresses the creation and modifi-
cation of structurally-sound masonry structures defined as generic
quad-mesh models.

Optimization for Design Shape design is often formulated as a
numerical optimization. Delfour and Zolesio [2001] and Laporte
and Le Tallec [2003] provide the mathematical foundations for op-
timization problems over a geometric domain. A range of surface
modeling techniques incorporate geometry optimization [Gal et al.
2009; Kilian et al. 2008; Sorkine and Alexa 2007]. Most simi-
larly, Welch and Witkin [1992] solve a constrained variational opti-
mization for interactive modeling of free-form surfaces. Analogous
to our approach they formulate the surface energy as a quadratic
program, and incorporate user-controlled constraints such as fixed
points. Harada et al. [1995] optimize constrained layout designs
with physically based user interaction. Li et al. [2004] introduce
constraint editing for guided optimization in image segmentation
applications.

Structural Design Many commercial CAD modeling sys-
tems, such as CATIA (www.3ds.com/products/catia) and Revit
(usa.autodesk.com/revit-architecture), integrate finite element anal-
ysis into the modeling package to shorten the pipeline between
model creation and structural analysis. However, these systems do
not provide guidance on how to modify designs to improve stability.
The EifForm application [Shea 2000] integrates FEM with gener-
ative structural design methods, but differs from our technique by
use of a simulated annealing algorithm.

Allaire et al. [2004] describe structural optimization combining
shape derivatives with a level-set method, though their method is
based on elasticity rather than rigid material. Smith et al. [2002] de-
veloped automatic optimization of truss structures. In trusses only

axial forces are considered. Further, the solution space is typically
restricted to two levels of joints, compared to the arbitrary stack-
ing of blocks in masonry architecture. The Thrust Network Analy-
sis method for the design of 3D masonry vaults considers equilib-
rium of compression-only structures [Block and Ochsendorf 2007;
Vouga et al. 2012], however, the approach is specific to topologies
that can be projected onto a 2D plane, while we support arbitrary
topology and full 3D models.

Computer Graphics Applications Stability analysis has been
applied to a wide range of model subjects in computer graphics ap-
plications with the notion that physical realism translates to a more
realistic appearance. Shi et al. [2007] use static equilibrium as a
constraint for determining plausible character poses. Static analy-
sis has also been used in creating realistic tree structures [Hart et al.
2003]. Many geometric modeling applications integrate physical
constraints and simulation [Martin et al. 2010; Xu et al. 2009; Ter-
zopoulos and Fleischer 1988; Terzopoulos et al. 1987], but these
systems target realistic deformations rather than stability.

3 Background: Static Analysis

This section reviews the feasibility conditions for a structurally
sound masonry model, where the forces must satisfy static equi-
librium, friction constraints and be in compression. Next, for in-
feasible structures, we review the method introduced by Whiting et
al. [2009] for incorporating tension penalty forces. We later extend
our feasibility method to cables (Section 7).

3.1 Contact Forces

We model structures as assemblages of rigid blocks. We discretize
the force distributions at the interfaces between these blocks, po-
sitioning a 3D force fi at each vertex of the interface (Figure 2).
Each force fi is decomposed into three components with respect to
the local coordinate system of the interface: an axial component
f i
n perpendicular to the face, and two orthogonal in-plane friction

components, f i
u and f i

v , where u and v are two edges of the block
face. Friction forces on shared faces have opposite orientation.

fn fu

fv

i

i

i

f i

f i+1

f i+2

f i+3

Figure 2: Model of contact forces at interfaces between blocks
[Whiting et al. 2009].

3.2 Feasibility Conditions

Static Equilibrium Static equilibrium is enforced by setting net
force and net torque for each block equal to zero, which can be
expressed as a linear system [Livesley 1978]:

Aeq · f + w = 0 (1)

where w is a vector containing the weights of each block, f is the
vector of interface forces, and Aeq is the sparse matrix of coef-
ficients for the equilibrium equations (see supplemental material).
External loads can be added using the w vector.
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Compression Constraint Masonry material can resist extremely
high compression, but mortar between blocks can provide only lim-
ited tension. This can be approximated by a non-negativity con-
straint on the axial forces:

f i
n ≥ 0, ∀ i ∈ interface vertices (2)

Over the entire structure this is expressed as a linear system of in-
equality (lower bound) constraints:

Ilb · f ≥ 0

Friction Constraints We approximate friction constraints by
constraining tangential forces f i

u, f
i
v to be within a conservative

friction pyramid of the normal forces f i
n:

|f i
u|, |f i

v| ≤ αf i
n, ∀ i ∈ interface vertices (3)

where α is the coefficient of static friction with a typical value of
0.7. We express the combined friction constraint across the struc-
ture as a sparse linear system of inequalities:

Afr · f ≤ 0

3.3 Force Solution

As in Whiting et al. [2009], we solve for the forces of infeasible
structures by translating the conditions in (3.2) into a penalty for-
mulation that softens the compression constraint. Axial forces are
expressed in terms of compression and tension using the difference
of two nonnegative variables [Bertsimas and Tsitsiklis 1997]:

f i
n = f i+

n − f i−
n (4)

f i+
n , f i−

n ≥ 0

where f i+
n , f i−

n are the positive and negative parts of f i
n. Variable

f i−
n represents tension forces, and f i+

n represents compression.

The penalty formulation of (3.2) is a quadratic program:

f∗ = argminf
1

2
fT Hf (5)

s.t. Aeq · f = −w
Afr · f ≤ 0
Ilb · f ≥ 0

where H is a diagonal weighting matrix for the forces. In contrast
to Whiting et al. [2009], which weighted only tension forces, this
formulation places weights on all forces: H is full-rank with large
penalty weight on the tension forces and low weight on the remain-
ing forces (compression and friction). This is an intuitive method to
account for the indeterminacy of structures – while many possible
solutions of f may exist that satisfy the constraints, our formula-
tion searches within that space for a solution that simultaneously
minimizes tension and keeps overall force values low.

4 Measure of Infeasibility

We introduce a new torque-based formulation to measure closeness
to a feasible structure. Previous work by Whiting et al. [2009] based
feasibility on the magnitude of tension forces under static equilib-
rium. While their energy leads toward feasibility, it sometimes pro-
poses futile changes. We resolve this limitation by decomposing
penalty forces into torque and uniform forces.

Consider the example of a T shape in Figure 3(a) where the penalty
solution exhibits tension (in blue) on the right of the interface be-
tween the two blocks. The only property of the bottom block that
can improve equilibrium is to shift its left side until it reaches the
center of mass of the top block. The location of the right side of
this block is irrelevant around this configuration. However, when

(a) Infeasible T (b) Infeasible T w/
stretched base

(c) Gradients
neglecting torque

Figure 3: (a) Infeasible T-structure displaying locations of tension
forces (blue), compression forces (green) and self-weight of the top
block (black). (b) Stretching the base decreases tension forces but
does not improve stability of the structure. (c) Gradients produced
by the infeasibility metric of Whiting et al. [2009] push the bottom
block in opposing directions.

the right side of the bottom block is stretched further right, as in
Fig. 3(b), static analysis shows that the tension forces decrease in
magnitude. This is due to the increased torque arm – less force is
needed to balance the off-center load from the top block. Conse-
quently, in an optimization, gradients will indicate that the vertex
translation improves feasibility, which is not the case – rather, the
feasibility is unaffected since unbalanced torque remains the same.
The result leads to higher material usage. This is a general problem,
gradients produced through the energy of Whiting et al. [2009] con-
sistently try to enlarge interfaces in order to increase the torque arm.
Further, when the T block is constrained to retain the same dimen-
sions, the competing gradients from the left and right facets mostly
cancel each other (Fig. 3(c)), and the energy fails to reveal that the
best solution is to translate the whole block to the left.

= +

uniform torquetension forces

hinge edge

pi

fmin

di
}
}

fmin
fn - fmin

i- ftorque
i

Figure 4: On each block interface, tension forces are decomposed
into a uniform component (fmin ) and a torque component (f i

torque ).
Arrow length represents force magnitude. We measure torque infea-
sibility contributions from each vertex pi as f i

torquedi, where di is
the torque arm w.r.t. the hinge edge. The hinge sits along the ver-
tices of minimum tension.

We introduce a new infeasibility metric that incorporates the mag-
nitude of torque contribution from tension forces. We decompose
the tension forces on each interface into a uniform component and
a torque component, as pictured in Figure 4:

y = αyuniform + ytorque (6)

where α accounts for the differing units of uniform tension [N2]
and torque energy [(Nm)2], and should be set appropriately for
the scale of the model.
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4.1 Uniform-Tension Energy

We define the energy for the uniform tension component as:

yuniform =
1

2
fT Huniform f

where Huniform is a diagonal matrix that extracts the fmin compo-
nent at each block interface k:

yuniform =
1

2

∑
k

#vertsk ∗ (fmink )2 (7)

Note that uniform tension energy will only be non-zero if all joint
vertices are in tension.

4.2 Torque-Tension Energy

We define the energy for the torque component of tension forces as:

ytorque =
1

2
fT (I−Hmin)T Dtorque(I−Hmin)f (8)

Hmin is a sparse matrix used to subtract the uniform component
(fmin ) from all tension forces. Dtorque is a diagonal matrix with
each element di representing the torque arm of tension force f i−

n .
The torque arm is the distance from vertex i to the hinge edge,
where the hinge edge is defined as the line through the vertices at
minimum tension value (Fig. 4). In most cases two vertices are at
fmin such that the hinge is an edge of the interface polygon. When
a single vertex is at fmin , the hinge line is taken to be perpendicular
to the resultant tension force.

In the T example (Fig. 3) the change in torque energy is zero since
the tension force decreases but the torque arm increases.

5 Analytic Structural Gradient

Given an infeasible model, we demonstrate how to compute struc-
tural gradients ∇y(Ω) that inform how to modify the geometry in
a way that improves feasibility (Figure 5). In this section, we focus
on the derivation of a closed-form gradient in the neighborhood of
a solution of our quadratic program defining our structural infea-
sibility. We leave the parameterization of geometry general at this
point but we will show in the next section that a parameterization
that decouples displacements within the plane of an interface from
translations and rotations of this plane facilitate the task.

pi

pi’
∆pi improv.

estimate

direction of max
improvement

= 

= 

(a) (b)

Figure 5: (a) Yellow arrows indicate the gradient of feasibility,
parameterized on the model vertices pi. (b) The set of gradient
vectors for an infeasible T-model. In the modified geometry the
overall improvement in feasibility ≈

∑
i

∂y
∂pi

∆pi

Our method has the following steps:

i) Starting from the quadratic program in (5) we transform in-
equality constraints into equalities by considering active con-
straints at a local solution of f∗. This results in a QP with one
big constraint matrix of linear equations.

ii) Given that the resulting QP has only equality constraints, we
can derive a closed form expression for the force solution f∗.

iii) Using the closed-form force solution ii) of the quadratic pro-
gram (5), we derive an analytic gradient for the infeasibility
metric∇y(Ω) in terms of geometry.

5.1 Closed Form Force Solution

The infeasibility metric of the structure Ω is formulated as a
quadratic program. Let the force vector f∗ be the global minimizer
for the tension forces, as given in Expression (5).

The set of active constraints is the set of constraints that are satisfied
as equalities at f∗. The active friction constraints are denoted by
Ãfr · f = 0, and contain the friction inequality constraints that
are satisfied exactly at their bound. The active lower bounds are
denoted by Ĩlb · f∗ = 0, which contains the axial forces from f∗ that
are exactly at zero.

We identify active constraints using the Lagrange multipliers re-
turned by the QP solver. In the neighborhood of the current solu-
tion, we assume that the constraints remain active and that no new
constraints intervene. This allows us to turn active constraints into
equalities and ignore the inactive ones. We then combine the active
constraints into a new set of equalities C ·f = b, which is a concate-
nation of the static equilibrium constraints and the active inequality
constraints.

C =

Aeq

Ãfr

Ĩlb

 , b =

−w
0
0


Given the active constraints at f∗, we can reformulate f∗ as:

f∗ = argminf
1

2
fT Hf (9)

s.t. C · f = b

which takes the form of an equality-constrained quadratic program.
Recall that H is a full-rank diagonal matrix with large penalty
weight on the tension forces and low weight on the remaining forces
(compression and friction). A benefit of adding weights to all forces
is that H is positive definite, which is necessary to derive a closed
form solution of f∗.

The new equality constrained QP in expression 9 can be re-written
as finding the minimum norm solution to a linear system [Bertsekas
1995]. The solution of this problem is obtained through the Moore-
Penrose pseudoinverse. The optimal solution in closed form is:

f∗ = H−1CT (CH−1CT )−1b (10)

It can be seen that f∗ as given above satisfies Cf = b as required.
Note that H must be positive definite, and the rows of C must be
linearly independent [Bertsekas 1995]. Since we know the struc-
ture of the constraint matrices Aeq and Afr , we remove linearly
dependent rows from C.

5.2 Energy Derivatives

The expression for the gradient of y(Ω), combining uniform and
torque tension energies, is given by:

∇y = α∇yuniform +∇ytorque (11)

= ∇
(

f∗T (αHuniform + Htorque)f∗
)

(12)
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The gradient∇f∗ is possible to evaluate analytically because of our
closed form expression for the force solution (Section 5.1). We
make the assumption that the set of active constraints stays fixed for
small displacements of the model geometry Ω. Matrices Huniform

and Hmin are constant since it is assumed the set of minimum-
tension vertices remain the same for differential movement. See the
supplemental material for a detailed derivation including constraint
gradients.

In section 6 we describe the components of our novel shape param-
eterization.

5.3 Hessian Approximation

In addition to computing the first-order gradient, we implement
the limited-memory Broyden-Fletcher-Goldfarb-Shanno method
(L-BFGS) for non-linear optimization [Fletcher 1987]. L-BFGS
searches for the minimum by approximating the Hessian matrix, us-
ing the first-order gradient. According to our experience, L-BFGS
converges to a stable solution with fewer iterations than using only
the first-order gradient directly (see Fig. 16), particularly for models
with higher complexity.

6 Shape Parameterization

To compute the gradient of infeasibility ∇y(Ω) we parameterize
Ω using a basis of vertex modifications. The fundamental con-
straint in choosing the parameterization is to maintain planarity of
the block faces. Although contact surfaces between blocks could be
represented as a triangular mesh with no planarity constraints, this
would break assumptions in structural behavior. Non-planar joint
geometry would eliminate the smooth friction surfaces and result
in interlocking block faces which are rare in masonry construction.

We use the following parameterization which accounts for five de-
grees of freedom: in-plane vertex translation, translation of the face
plane, and orientation of the face plane (See Figure 6). We assume

ueu

nen

θeu
^

^

^

in-plane translation normal translation normal rotation

Figure 6: Gradient parameterization. (Left) In-plane vertex trans-
lation. (Center) Face translation along normal. (Right) Face rota-
tion by way of rotation of the normal vector. Only the tetrahedrons
incident to the modified face are affected.

topology remains consistent under a differential change in the block
geometry: block adjacencies and the number of vertices in each
contact polygon remain the same. These assumptions are necessary
for the quadratic program (9) to be differentiable.

In-plane vertex translation The two in-plane orthogonal vec-
tors, êu and êv , are the basis for vertex translation on the face plane
(Figure 6, left). Vertex position, p, is given by

∆p = u êu, ∆p = v êv (13)

Using these parameters, the partial derivatives of the infeasibility
metric ∂y/∂uk,i and ∂y/∂vk,i are computed for each vertex i on
every block face k. If a vertex is shared by multiple faces, a deriva-
tive will be computed for each face independently. Figure 7(a)
shows the in-plane gradient for an asymmetrical T-model.

Normal translation The gradient is computed w.r.t. translation
of a block face along the face normal ên (Figure 6, middle). All
vertices p on the face are moved together with the relation:

∆p = nên (14)

Using this parameter, the partial derivatives of the infeasibility met-
ric ∂y/∂nk are computed for each block face k. Figure 7(b) shows
the result of the normal-translation gradient for an asymmetrical T-
model.

Normal rotation Two angle parameters, θ and φ, are the basis
for rotation of the face plane. We set the center of rotation at the
centroid, c, of the block face. The derivatives of the face vertices
are

∆p = θêv × (p− c), ∆p = φêu × (p− c) (15)

Under the rotation parameters, the derivatives of the infeasibility
metric ∂y/∂θk and ∂y/∂φk are computed for each block face k
in the structure. We solve a pseudoinverse to find ∂θk/∂pi, which
takes into account that vertices are dependent under face rotation.

As discussed previously, Figure 7(c) shows how the orientation of
interfaces between blocks affects the stability. In the 2-block exam-
ple, rotating the interface toward a horizontal orientation reduces
the infeasibility due to friction failure.

(a) vertex gradients for 
      in-plane translation

(c) face gradients for
     face rotation

(b) face gradients for
      translation along normal

(d) improved geometry: vertices moved in direction of gradient

Figure 7: Parameterized gradients for infeasible 2-block examples.
(a-c) Gradients point in the direction of improved stability. (d) Sta-
ble output produced by moving the vertices along the gradient.

6.1 Gradient w.r.t. vertex position

Ultimately we want to know how the infeasibility of a structure
changes w.r.t. arbitrary changes in the geometry. Given the gradient
components from the above parameterization, we can compute the
derivative of the energy y with respect to a vertex position, pi. This
is expressed as the sum of all gradient components over all block

5
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faces that share the vertex:

∂y

∂pi

=
∑
k

∑
ω∈Wk,i

∂y

∂ω

∂ω

∂pi

, ∇y(Ω) =

[
∂y

∂p1

. . .
∂y

∂pN

]T
where Wk,i = {uk,i, vk,i, nk, θk, φk}. Recall that u and v
derivatives are computed for each vertex and n, θ and φ are com-
puted per face. The gradient of the infeasibility metric parameter-
ized by vertex positions pi is N × 3, where N is the number of
vertices in the structure.

Figure 5 shows the gradient of an unstable two-block T structure.
Our gradient computation takes into account two properties:

1. Mass: Imbalanced torque is reduced by widening the top
block on the right, and thinning the overhanging portion on
the left.

2. Joint Geometry: Increasing the width of the bottom block
decreases the overhang of the top block, thus improving in-
stability. Joint vertices are updated along with block geome-
try and are included in the gradient computations. Recall that
contact forces are positioned at joint vertices.

7 Tension Elements

Our approach based on quadratic programming can handle other
types of constraints such as those corresponding to tension-only
elements. In particular, we have implemented an extension to en-
able cables in architectural designs. Whereas the same principles of
static analysis and gradient computation apply, cables are different
from rigid blocks in several ways:

1. Cables can resist high tension, but fail under compression. We
model cables to be infinitely strong in tension, and penalize
compression forces.

2. There are no friction constraints. We model cables as in-
finitely thin elements that are firmly attached to each other
or to another block.

3. Cables can apply forces only along their axis. This means
that a structure can be infeasible not only due to the sign of
the required forces (i.e. compression on cables or tension on
blocks), but because of its limited degrees of actuation. For
example, Figure 8 shows a case where there is no configura-
tion of forces along the cable axis that achieves static equilib-
rium. In order to compute a measure of infeasibility for such
structures, we add virtual torques around the centroid of each
element and include them in the penalty function.

Figure 8: The tension force ft ap-
plied by the cable balances the
block weight, but creates unbal-
anced torque. Virtual torques are
added in directions t̂x, t̂y and t̂z
around the centroid of the block to
solve for static equilibrium. wblock

f  t

}cable

tz
^

ty
^

tx
^

p  0

The geometry of each cable is defined by its two end points
{p0, p1} which may be attached to an adjacent cable or to a point
on a block surface. The direction of the tension force, ft, is along
its axis (Fig. 8):

ft = ftêt, êt =
p0−p1
‖p0−p1‖

(16)

Analogously to blocks, we split ft into positive and negative com-
ponents, f+

t and f−t , except in cables we penalize f+
t . It is possible

to place an upper bound on ft, which should reflect the scale of the
structure as strength is relative to cross-sectional area.

Cable elements are assigned a weight, w = ρcLĝ, where L is the
length of the cable and ρc is the mass per unit length.

Structural Gradient For gradient computation, we parametrize
cables using the x, y, z coordinates of their end points. We consider
geometric changes but not topological changes such as detaching a
cable. The derivation for the gradient of cable geometry is given in
the supplemental material.

8 Gradient Modifications

Given the gradients of infeasibility w.r.t. the chosen parameteriza-
tions, we now show how to improve the stability of a structure while
preserving properties of its design. We frame the task as an opti-
mization problem that steps towards a more structurally feasible
design while allowing a user to specify constraints on the desired
shapes and range of acceptable changes.

8.1 Snapping To Gradient

The first type of constraint is to modify vertex positions in the direc-
tion of the computed gradient. At each vertex in the structure, we
compute a displacement vector ∆p that combines all contributions
from in-plane movement, face translation and face rotation. We de-
fine an optimization that solves for vertex positions best matching
the desired gradient vector while maintaining planarity constraints
of the block faces and coincidence constraints of contiguous blocks.

p∗ = argmin
p

‖p− p0 + ∆p‖2

s.t. faces remain planar
block interfaces remain coincident

Under the assumption of quad-faced blocks, we adopt a planarity
constraint that enforces the angles of each face to sum to 2π [Liu
et al. 2006]:

fplanar(p) =
∑
F

‖φ1
F + . . .+ φ4

F − 2π‖2

Our coincidence constraint ensures that each pair of coincident
faces (F,G) ∈ C between two adjoining blocks remains con-
nected:

fcoin(p) =
∑

(F,G)∈C

∑
j∈1...4

‖ênF (pj
G − p1

F )‖2

Due to the nonlinearity of these constraints, we enforce them using
a penalty function technique.

p∗ = argmin
p
‖p− p0 + ∆p‖2 + λ1fplanar(p) + λ2fcoin(p)

We use a Gauss-Newton iteration approach to solve for the best
vertex positions satisfying our constraints. Characteristic to penalty
techniques, the constraints are satisfied within a set tolerance. In
practice we set this tolerance to 5 × 10−3, which can be modified
with trade-offs between accuracy and performance.

Though the penalty function is not convex, in practice we begin
in a state that is close to satisfying planarity and coincidence con-
straints. The original vertex positions p0 satisfy the constraints by
construction. We can control the difficulty of the optimization by
reducing the size of the displacement ∆p to ensure a valid solution.
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(a) unconstrained (b) constrain thickness

(c) constrain vertices (d) constrain vertices
+ orientation

stable results

unstable input 
with gradients

Figure 9: The user may explore possible designs with improved
stability by modifying constraints on the gradient. The initial arch
is unstable, yellow arrows indicate gradients for improving feasi-
bility. (a) Feasible unconstrained result. (b) Feasible output with
constrained thickness. (c) The arch blocks are fixed resulting in
thicker and slightly tapered column blocks. (d) In addition to con-
strained arch vertices, the column blocks have fixed orientation.

8.2 Constraints

While the full gradient provides useful information on how a struc-
ture can be optimally modified to improve feasibility, a user may
be interested in incorporating constraints that express design intent.
Our system features a set of high-level constraints, such as block
thickness or floor orientation which allow design variations. We
describe how these controls can be implemented by modifying the
gradient with low-level constraints on point positions and face nor-
mals.

Fix block thickness This is achieved by constraining the dis-
tance between two opposing faces (F,G) of a block to be constant.

fthickness(p) =
∑

(F,G)

∑
j=1...4

∥∥∥th(F,G, j, p)− th(F,G, j, p0)
∥∥∥2

where th(F,G, j, p) = ênF · (pj
F − pj

G). In Figure 9(b) the arch
has constrained thickness, resulting in a catenary-like output.

Fix vertices This is implemented by setting gradients of unaf-
fected vertices to zero and pinning them to a specific location in the
optimization. Alternatively, we can remove these vertices from the
optimization altogether. In Figure 9(c) the arches are kept constant,
only column vertices are modified.

fpoint(p) =
∑

(i,p′)

∥∥∥pi − p′
∥∥∥2

Fix face orientation We fix horizontal floors and vertical walls
by zeroing rotational gradients and constraining a face to have a
specific normal vector. For example, in Figure 9(d) all column
block faces are orientation-constrained to maintain vertical faces.

fnormal(p) =
∑

(F, ˆenF
)

∑
j=2...4

∣∣∣∣∣ênF ·
pj
F − p1

F

‖pj
F − p1

F ‖

∣∣∣∣∣
2

Fix block volume To constrain volume, we divide each block i
into five tetrahedra Ti,j and constrain the sum of the volumes of the
five tets to remain constant. vT (p) is the volume of the tetrahedron
T given vertex positions p.

fvolume(p) =
∑
i

∥∥∥ ∑
j=1...5

vTi,j (p)− vTi,j (p0)
∥∥∥2

Additionally, we can achieve other design constraints through com-
bination of the penalty functions. For example, restricting a block
to rigid translation (Figure 13(b)) involves applying a thickness and
orientation constraint to each pair of opposing faces.

(a) Infeasible input (b) Infeasible input
displaying
resultant forces

(c) Infeasible input
displaying tension
faces (blue)

(d) Feasible output
constrained to rigid
translation

(e) Feasible output
displaying
resultant forces

(f) Alternate feasible
output with 5%
factor of safety

(g) Unstable input falls after release (h) Stable output

Figure 10: (a-c) Input: unstable stack of 8 identical blocks. Top
and bottom blocks are fixed (red vertices), the remaining blocks are
constrained to rigid translation. (d,e) Stable structure after multi-
ple iterations. Resultant forces lie inside block interfaces. (f) Alter-
nate solution with small safety factor by shrinking interfaces 5%.
(g,h) Physical models. Hinge point at failure corresponds to inter-
face with greatest tension (intensity of blue shading in (c)).

8.3 Objective Functions

In addition to constraints on the gradient direction, the user may
incorporate other design criteria by setting custom objective func-
tions. We demonstrate this capability with a volume minimization
example. The new multi-objective function becomes a weighted
combination of the infeasibility metric g and the total volume v.

∇y(Ω) = ∇g(Ω) + γ∇v(Ω)

where γ is a weighting on the volume minimization. The derivative
of v w.r.t. each parameterization is identical to that used for weight
in the w vector without the constant term for density (see supple-
mental material). Figure 11 shows an example of this objective
applied to a structure of stacked blocks.

7
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(a) Input (b) without volume
minimization

(c) with volume
minimization

Figure 11: Variations based on volume minimization. In (b,c) the
constraints are face orientation and vertical thickness (horizontal
stretching is permitted): (a) Infeasible input, weight = 160 units.
(b) Feasible output, weight = 174 units. (c) Feasible output with
volume minimization, weight = 127 units, initial γ0 = 0.5.

9 Results

Modeling Stable Structures We show example structures with
visualizations of the computed infeasibility gradients, and various
ways in which the user might modify the structure.

Figure 9 shows a variety of outputs for an infeasible model of an
arch balanced on two columns. We compare results from uncon-
strained optimization, constant thickness and fixing arch vertices.

Figures 10 and 11 show various results for an unstable stack of
blocks. In Figure 10 the constraints include rigid translation using
a combination of thickness and orientation constraints. We show
visualizations of the resultant forces at each interface, illustrating
that resultants lie within the joints for the feasible result. We also
apply a small factor of safety by shrinking the effective interfaces
between blocks. Figure 11 applies only orientation constraints and
vertical thickness, so that the blocks can stretch horizontally. An
alternative design using volume minimization is provided.

(a) Infeasible input (b) Feasible output (unconstr.)

(c) Alternative feasible output
(with thickness constraints)

(d) Second feasible output in context

Figure 12: (a) Starting from an unstable shell structure, modifying
the geometry according to the gradients paired with user-controlled
objectives can lead to two possible structurally-sound solutions: (b)
A thickened profile to support the bulging shape. (c) A shifted arch
shape with user-constraints on block thickness.

In Figure 12(a) the shell is infeasible due to a bulging shape over the
support region. Result 12(b) shows an output from unconstrained
optimization where the profile is significantly thickened. In 12(c),
the thickness of the shell is constrained, resulting in a modified

(a) Unstable input (b) Feasible output
(constrained)

(c) Example building

Figure 13: (a) An infeasible building with columns supporting
a system of slabs (y0 = 7.65 × 105). (b) Stable output with
fixed floors and rigidity constraints on the base columns (y∗ =
8.6 × 10−7). (c) Another stable multi-level design with a strong
overhang.

shape closer to a traditional arch.

In Figure 13, the unstable input model consists of three slabs and
a series of columns. The result in Figure 13(b) has constraints
on slabs orientation, and rigid translation of the base columns.
There is noticeable thinning and shortening of the slabs to reduce
weight. Columns on the over-hanging portion are thinned while the
left-hand column is thickened for counter-balance. The slabs and
columns were fixed part-way through the design when a minimum
preferred thickness was reached. The base columns are translated
to the center of the floorplan so that the resultant load of the upper
levels falls within their support region. Figure 14 shows a partial
torus with doors, which is made stable through geometry changes
following the gradient.

(a) (b) (c)

Figure 14: (a) An infeasible half-torus model with cut out entrance-
ways. Yellow arrows represent the gradient. (b) Faces in tension
colored in blue. (c) The improved structure changes the curvature
at the base blocks. Red blocks were constrained in thickness.

The starting shape in Figure 15 is a barrel vault with flying but-
tresses. With a constraint to maintain volume, the result changes the
buttress tapering, as well as modifying the curvature of the arches.

Implementation We use the IBM CPLEX quadratic program
solver. Intel MKL is used for nonlinear optimization of block pla-
narity under user constraints. In section 5.2 it is known that solv-
ing the normal equations x = AT (AAT )−1b explicitly is prone
to numerical errors [Trefethen and Bau 1997]. For improved nu-
merical stability we use QR decomposition to compute the inverse
E−1 = (CH−1CT )−1.

Performance Our formulation for analytic gradients provides a
significant performance improvement over finite differencing tech-
niques, which is necessary for interactive applications. See Table 1
for results and comparison. Performance times for finite differenc-
ing are equivalent to the time for solving the quadratic program (§4)
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(a) infeasible input (b) fixed vertices + volume constr.

(c) unconstrained (d) thickness constrained

Figure 15: (a) An infeasible barrel vault with flying buttresses.
(b) Improved structure with walls and buttress blocks volume-
constrained and arch vertices fixed (red). (c,d) Dominant changes
are in the shape of the arched ceiling when unconstrained or thick-
ness constrained.

multiplied by the number of components in the gradient vector∇y.
Times for analytic gradients include the time for computing par-
tial derivatives (§5) added to the time for computing planar vertex
offsets (§8.1). While computing the analytic derivatives takes some
time, it is orders of magnitude faster than running the quadratic pro-
gram solver multiple times as in the finite differencing approach.

Table 2 provides results for the optional user constraints (8.2). On
top of planarity constraints, additional user constraints do not affect
performance of each iteration significantly.

model blocks length(∇y) gradient finite diff.
arch (Fig. 9) 12 792 0.41 s 127 s

stack (Fig. 10) 8 528 0.36 s 84.5 s
shell (Fig. 12) 24 1584 1.19 s 269 s
torus (Fig. 14) 232 15312 80.6 s 8.37×103 s
torus (Fig. 14) 400 26400 138.6 s 2.28×104 s
torus (Fig. 14) 576 38016 720.6 s 4.95×104 s

Table 1: Performance results for computing the analytic structural
gradient with comparisons to finite differencing.

model w/o constr. w/ constr. # constraints
arch (Fig. 9) 0.08 s 0.09 s 14 (t, o)

stack (Fig. 10) 0.09 s 0.12 s 70 (t, v, o)
shell (Fig. 12) 0.60 s 0.73 s 6 (t)
shell (Fig. 12) 0.60 s 0.75 s 12 (t)

Table 2: Performance of gradient modifications: timings for pla-
narity constraints with and without optional user constraints. Ad-
ditions include block thickness (t), fixed vertices (v), and face ori-
entation (o).

Convergence Our method typically takes only a few iterations
to converge to a feasible structure. Using a stopping criteria of 1%

of the initial infeasibility measure, the arch (Fig. 9(b-d)) and shell
(Fig. 12(b,c)) took≤ 4 iterations. The cable bridge (Fig. 1(c,d)) re-
quired 10 iterations. The stacked block model (Fig. 10(d)) required
40 iterations but is a difficult case where only a small range of block
configurations is feasible.

The plot in Figure 16 shows the progress of the infeasibility metric
for the unconstrained arch (Fig. 9(a)). At each iteration the value of
infeasibility decreases, and converges toward y(Ω) = 0 (feasibility
condition) after a small number of gradient steps.
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Figure 16: Infeasibility vs. Iteration for the unconstrained arch
(Fig. 9(a)). The model converges to a feasible solution (y ≈ 0) in a
small number of iterations, which is improved further by L-BFGS.

Validation The computation of analytic gradients involves a num-
ber of challenges such as appropriate parameterization and turning
inequality constraints into equalities. We validated correctness us-
ing finite differences. In the 2-block T model of Figure 7, we com-
pared the change in constraint matrices ∆Aeq and ∆w with the an-
alytic result (∆Aeq)analytic = Σi(∂Aeq/∂pi)∆pi over selected
vertices i. Varying groups of vertices were tested with shifts along
x, y, z axes. In all cases the error was below 1%. In the 2-block
model of Figure 7(c), we measured the energy change from a small
shift in the angle of the interface. The result of a forward finite
difference was accurate to 2.3% of the analytic value for∇y.

The infeasibility metric introduced by Whiting et al. [2009] sys-
tematically leads to artificial thickening of blocks to increase the
torque arm. Our new energy tackles this and leads to stable designs
that are thinner. Comparisons of material use are given in Table
3. Using each feasibility metric, we applied gradient descent until
convergence to a feasible structure, then measured weight increase
of the result. Measurements were taken for a specified set of blocks
affected by the optimization.

model weight increase part modifiednew energy [Whiting‘09]
T (Fig. 7) 105 % 129 % bottom block

arch (Fig. 9) 9.9 % 31.1 % 6 column blocks
stack (Fig. 10) 148 % 189 % bottom block
shell (Fig. 12) 256 % 367 % bottom left 3 rows
slabs (Fig. 13) 180 % 500 % 3 base columns

buttress (Fig. 15) 34.5 % 66.7 % buttress blocks

Table 3: Comparison in material use for our torque-based energy
vs. [Whiting et al. 2009]. Weight increase is measured for the spec-
ified blocks after convergence to a feasible structure. Vertices other
than the part modified were fixed. An exception was the arch struc-
ture which was unconstrained in order to reach feasibility.

Limitations Planarity and user constraints may compete with the
displacement vector ∆p and in some cases may have the effect of
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new energy

[Whiting ‘09] 
energy

Figure 17: Comparison in gradients between our torque-based en-
ergy (top), and the infeasibility metric of Whiting et al. [2009] (bot-
tom). Gradients are shown for the input infeasible structure.

pushing vertices away from the gradient direction. In this case ∆p
may decrease the feasibility of the structure.

The gradient ∇y(Ω) is dependent on the choice of active con-
straints by the QP solver. Recall the assumption that active con-
straints remain active in the neighborhood of the current solution for
f∗Ω. As a consequence, if the normal force at a vertex i is zero (i.e.
lower bounds on f i+

n , f i−
n are both active), then the partial deriva-

tives ∂f i−
n /∂ω and ∂f i+

n /∂ω will also be zero. Structures are typi-
cally hyperstatic, meaning the solution satisfying static equilibrium
is non-unique. Our quadratic energy function favors solutions dis-
tributing small tension forces over the structure, rather than clump-
ing large tension forces in few locations.

Forces in typical structures have large ranging magnitude,
e.g. blocks at the base carry the force of the entire building. Very
large compression forces could overpower small tension forces,
preventing the gradient from eliminating tension in the structure.
We experimented with re-weighting forces at each interface accord-
ing to expected compression magnitudes, but found that alternative
strategies such as better step-size selection and L-BFGS were more
effective for convergence.

Our method improves the feasibility of a structure within possible
continuous changes in the geometry. There is no guarantee that a
feasible solution exists.

10 Conclusions

We have introduced a technique that can guide the design of struc-
turally stable buildings using new structural gradients. We have de-
rived equations for the gradient of structural feasibility as a function
of geometry and demonstrated accuracy compared to finite differ-
ence. The gradient can then be modified according to user con-
straints and objective, and applied to the current design, yielding a
more sound configuration.
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