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Abstract: In this thesis we will examine progressions in permutations. We
will analyze regular and circular permutations with progressions either mod-
ular or regular with rise one or two. We will calculate the number of permu-
tations on the numbers 0 through n − 1 containing x progressions. This is
based largely on work by Riordan [1] and Dymàček and Lambert [2].

1 Introduction

We seek to answer how many permutations have x progressions. Given a
permutation π = (a0, a1, . . . , an−1), a progression of rise r, distance d, and
length l in π is a sequence (ai, ai+d, . . . , ai+(l−1)d) for which

ai+jd − ai+(j−1)d = r

for 1 ≤ j ≤ l − 1. Hence, a progression is a sequence from our permutation
for which both the terms and the indices of the terms have a fixed difference
(not necessarily the same difference) between successive elements. If the
equality above is instead an equivalence modulo n, we call the progression
modular. We also consider progressions in circular permutations, in which
case the indices in our progression are considered modulo n. We denote by
Sr
d(n, x, l) the set of all permutations on 0 through n− 1 with x progressions

of rise r, distance d, and length l. If we consider modular progressions we
use S while C and C refer to circular permutations. We use a lower case
s or c to denote the cardinality of the given set, that is srd(n, x, l) is the
number of permutations on 0 through n− 1 having x progressions of rise r,
distance d, and length l. For the majority of this paper, we will be considering
progressions of length 3. Thus it will be common to omit the argument l from
our functions with the understanding that we consider l to be 3. If D and
R are sets of integers, then sRD(n, x) denotes the number of permutations on
0 through n− 1 having a total of x progressions which have a distance in D
and a rise in R.

2 History

Many authors have examined this problem in different forms. Most notably
and relevant to this work are Riordan [1] and Dymàček and Lambert [2].
Riordan calculated the number of permutations on 0 through n−1 containing
x progressions of rise and distance 1 with length 3. In our notation we have.
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Theorem 1 (Riordan) for n ≥ 3

s11(n, x) = δx,0n! +
n∑

k=1

(−1)k+x

(
k

x

) k−1∑
i=0

(
k − 1

i

)(
n− k − 1

k − 1

)
(n− 2k + i)!

where δx,0 is the Kronecker delta. Dymàček and Lambert calculated s±11 (n, 0),
s±11 (n, 0), c±11 (n, 0), and c±11 (n, 0) where ±1 represents the set {1,−1}.

3 Examples

The permutation (7, 1, 0, 2, 3, 4, 6, 5) has three progressions: (2, 3, 4) with r =
d = 1, (0, 3, 6) with r = 3 and d = 2, and (1, 3, 5) with r = 2 and d = 3.

The permutation (5, 4, 3, 6, 7, 0, 2, 1) has two progressions: (6, 7, 0) and
(5, 4, 3). These are both modular progressions.

The circular permutation (0, 2, 1, 3, 5, 4) has a total of 14 progressions.
Some of these are (2, 3, 4) and (4, 3, 2) which are reverses of each other.
Also (4, 0, 2) and (2, 0, 4) are progressions which are each other’s reverse.
Our definition also allows for the progressions (0, 3, 0), (3, 0, 3), and (1, 4, 1)
among others.

4 General Results

In this section we will develop some general results for relating various types
of permutations. First there is a very tight relation between straight per-
mutations with modular progressions and circular permutations with regular
progressions. For α and β permutations we write α ≡ β and read α is mod-
ularly equal to β provided there exists an integer k such that k + α = β.
Clearly this is an equivalence relation on permutations.

Let α = (a0, a1, . . . , an−1) and α−1 = β = (b0, b1, . . . , bn−1) where baj = j.

Then for k ∈ Z, α + k = (a0 + k, a1 + k, . . . , an−1 + k) and (α + k)−1 = γ =
(c0, c1, . . . , cn−1) with caj+k = j. We see then that γ and β are the same
circular permutation since they differ only by shifting the index by k. Then
the taking of inverses is a n-to-1 mapping from straight permutations to
circular permutations where α ≡ β if and only if α−1 = β−1.

Theorem 2 For sets of integers D and R,

sRD(n, x, l) = n · cDR(n, x, l)
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Proof Given a permutation π,
(
ai, ai+d, . . . , ai+(l−1)d

)
is a modular progres-

sion of rise r, distance d, and length l if and only if ai+jd = ai+ (j − 1)d+ r
for 1 ≤ j ≤ l if and only if bai+jd = i + jd for 0 ≤ j ≤ l in π−1 if and only
if
(
bai , bai+r, . . . , bai+(l−1)d

)
is a progression of rise d, distance r, and length l

in the circular permutation π−1. �

Note all equals above are equivalences modulo n, though if we take the
equality to be regular we get a process that switches the rise and distance
of regular progressions in straight permutations or modular progressions in
circular permutations. Thus we have some easy corollaries.

Corollary 3 For sets of integers D and R,

sRD(n, x, l) = sDR(n, x, l)

cRD(n, x, l) = cDR(n, x, l)

The following is another nice general result, but again we need a bit of
preparation. Suppose that k is relatively prime to n and

(
ai, ai+d, . . . , ai+(l−1)d

)
is a modular progression of rise r, distance d, and length l in a permutation
π of length n. Then ai+jd − ai+(j−1)d ≡ r mod n for 0 < j < l if and only
if kai+jd − kai+(j−1)d ≡ kr mod n for 0 < j < l, that is, if and only if(
kai, kai+d, . . . , kai+(l−1)d

)
is a progression of rise kr, distance d, and length

l in the permutation kπ. Then srd(n, x, l) = skrd (n, x, l) with the same being
true for c. Applying the previous theorem we also get crd(n, x, l) = crkd(n, x, l)
with the same being true for c.

Theorem 4 For r1 and r2 such that gcd(r1, n) = gcd(r2, n) and d1 and d2
such that gcd(d1, n) = gcd(d2, n) we have the following:

sr1d (n, x, l) = sr2d (n, x, l)

cr1d (n, x, l) = cr2d (n, x, l)

crd1(n, x, l) = crd2(n, x, l)

crd1(n, x, l) = crd2(n, x, l)

Proof There exists some k relatively prime to n such that kr1 ≡ r2 mod n.
So by the above theorem sr1d (n, x, l) = sr2d (n, x, l) with the same being true
for c. Similarly we see the last two equalities hold as well. �

These previous two theorems in combination allow us to relate a large
number of the quantities in which we are interested to each other.
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5 Two Cases: r = d = 1 and r = 2, d = 1

In this section we will develop formulas for s21(n, x), s11(n, x), s21(n, x), c11(n, x),
c21(n, x), c11(n, x), and c21(n, x). In all these cases we are considering progres-
sions to be of length three. Note also that even though we say we have
two cases, we really have seven things to calculate. Recall that s11(n, x) was
calculated by Riordan.

Our technique of proof is similar to Riordan, but we formulate it differ-
ently. Recall that for j > x,

j∑
k=x

(−1)k−x
(
j

k

)(
k

x

)
=

j∑
k=x

(−1)k−x
(
j

x

)(
j − x
k − x

)

=

(
j

x

) j∑
k=x

(−1)k−x
(
j − x
k − x

)

=

(
j

x

) j−x∑
k=0

(−1)k
(
j − x
k

)
= 0.

Using this we have,

n−4∑
k=0

(−1)k+x

(
k

x

) n−4∑
j=k

(
j

k

)
s21(n, j) =

n−4∑
k=x

(−1)k+x

(
k

x

) n−4∑
j=k

(
j

k

)
s21(n, j)

=
n−4∑
k=x

n−4∑
j=k

(−1)k+x

(
k

x

)(
j

k

)
s21(n, j)

=
n−4∑
j=x

s21(n, j)

j∑
k=x

(−1)k−x
(
j

k

)(
k

x

)
= s21(n, x).

Therefore, our goal is to find an expression for

n−4∑
j=k

(
j

k

)
s21(n, j)

that we can compute easily. Note that this is the number of permutations
having at least k progressions (a straight permutation can have at most
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n − 4 progressions of rise 2 and distance 1). We can also replace s21(n, j)
with s21(n, j) or c21(n, j). If we adjust the upper limit on the sum to n− 2 we
can swap in c11(n, j), and if the upper limit were n we could swap in s11(n, j),
c11(n, j), or c21(n, j).

Focusing on s21(n, x), the number of permutations that contain some pro-
gression is (n− 2)! since we can permute the elements of the progression as
one term. The number of permutations containing some two progressions is
either (n− 3)! or (n− 4)! depending on whether the progressions fit together
nicely like 024 and 246, or if they fit together poorly or not at like 024 and
468 or 024 and 135. For three progressions the our number of permutations
is either (n − 4)!, (n − 5)!, or (n − 6)! corresponding to the initial elements
of the progressions forming two, one, or no successions of rise 2 (a succession
of rise k is adjacent pair of the form (i, i+ k)). In general for k progressions
the number of permutations containing them is (n − 2k + i)! where i is the
number of successions in the initial elements when taken in rising order with
the evens separated from the odds. Now to aid our calculation we turn to
Riordan.

Theorem 5 (Riordan) The number of combinations of 0 through n − 1
such that each combination in rising order has i successions of rise 1 is

fi(n, k) =

(
k − 1

i

)(
n− k + 1

k − i

)
.

Let gi(p, q, k) be the number of combinations of k numbers taken from the
first p evens and the first q odds such that in total the number of successions
of rise two in evens taken in order plus the number of successions of rise two
in the odds taken in rising order is i. Clearly when p = dn

2
e and q = bn

2
c, g is

the quantity we seek above. Note we are picking a total of k things. Of these
l are even numbers and k − l are odd. In total there are i successions. Of
these j come from the evens and i− j from the odds. Clearly the number of
combinations of p evens taken l at a time that have j successions is fj(p, l).
Multiplying this by the fi−j(q, k − l) ways to pick the odds will give us our
total number of ways to pick our elements. Now all we have to do is sum
over all the ways of distributing our picks and our successions between the
evens and odds. That is,

gi(p, q, k) =
i∑

j=0

k∑
l=0

fj(p, l)fi−j(q, k − l).
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n/x 0 1 2 3 4 5 6 7
3 6
4 24
5 114 6
6 674 44 2
7 4714 294 30 2
8 37754 2272 276 16 2
9 340404 20006 2236 216 16 2
10 3412176 193896 20354 2200 156 16 2
11 37631268 2056012 206696 20738 1908 160 16 2

Table 1: s21(n, x)

This formula breaks down in the case i = k = 0 in which case g0(p, q, 0) = 0.
Now we let

b(n, k) =
k−1∑
i=0

gi

(⌈
n− 4

2

⌉
,

⌊
n− 4

2

⌋
, k

)
(n− 2k + i)!

Then we can conveniently summarize our result by

Theorem 6 For n ≥ 3 and x ≥ 0,

s21(n, x) = δx,0n! +
n−4∑
k=1

(−1)k+x

(
k

x

)
b(n, k).

Now to calculate c11(n, x) we can mirror Riordan almost perfectly except
the number of permutations that have a certain selection of k progressions
is (n − 2k + i − 1)!. Where as usual i is the number of successions of rise 1
in the starting elements of the progressions taken in order. Letting

a◦(n, k) =
k−1∑
i=0

fi(n− 2, k)(n− 2k + i− 1)!

we have

Theorem 7 For n ≥ 3 and x ≥ 0,

c11(n, x) = δx,0(n− 1)! +
n−2∑
k=1

(−1)k+x

(
k

x

)
a◦(n, k).
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n/x 0 1 2 3 4 5 6 7 8 9
3 1 1
4 5 0 1
5 20 3 0 1
6 102 14 3 0 1
7 627 72 17 3 0 1
8 4461 468 87 20 3 0 1
9 36155 3453 582 103 23 3 0 1
10 328849 28782 4395 704 120 26 3 0 1
11 3317272 267831 37257 5435 834 138 29 3 0 1

Table 2: c11(n, x)

We now turn our attention to c21(n, x). This case mirrors the calculation
of s21(n, x) with similar modifications as were made to calculate c11(n, x). That
is, we replace (n− 2k + i)! with (n− 2k + i− 1)!. Then letting

b◦(n, k) =
k−1∑
i=0

gi

(⌈
n− 4

2

⌉
,

⌊
n− 4

2

⌋
, k

)
(n− 2k + i− 1)!

we get

Theorem 8 For n ≥ 3 and x ≥ 0,

c21(n, x) = δx,0(n− 1)! +
n−4∑
k=1

(−1)k+x

(
k

x

)
b◦(n, x).

The case for s11(n, x) becomes somewhat more complicated. Here we
have a total of n different progressions. However they cannot all appear si-
multaneously in a single permutation. The identity permutation has n − 2
progressions. Note that this is the maximum. However, using our previ-
ous argument, if we looked for a permutation with the progressions 012,
123,. . .,(n−2)(n−1)0, then we would conclude that there are (n−2(n−1)+
(n − 2))! = 0! = 1 of them where now i counts modular successions. This
however is wrong. There are no permutations that fit this qualification.

Lemma 9 There is no permutation that contains k modular progressions of
rise and distance 1 with i modular successions of rise 1 in the initial elements
of the k progressions when n− 2k + i ≤ 0.
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n/x 0 1 2 3 4 5 6 7 8
3 2
4 6
5 22 2
6 109 10 1
7 657 55 7 1
8 4625 356 54 4 1
9 37186 2723 362 44 4 1
10 336336 23300 2837 368 34 4 1
11 3379058 220997 25408 2967 330 35 4 1
12 37328103 2308564 249736 26964 3100 292 36 4 1

Table 3: c21(n, x)

Proof Let us consider k modular progressions with i modular successions
of rise 1 in the initial elements of the k progressions. The span, s, of the
progressions is the length of the shortest sequence that can contain all k
progressions. A block of progressions are those progressions whose initial
terms form successions of rise 1. Note that the span of a block is two more
than the number of progressions in the block.

Let b be the number of blocks that the k progressions form. Note that
b = k − i and two blocks can overlap in at most one element. Ordering the
blocks by the smallest initial value of the progression in the block, let kj be
the number of progressions in the jth block and so the span of the jth block
is kj + 2. The span s of the k progressions is not

∑
(kj + 2) since blocks can

overlap in one position. With b blocks there are at most b− 1 overlaps and
so

s ≥
b∑

j=1

(kj + 2)− (b− 1) = k + 2b− b+ 1 = k + (k − i) + 1 = 2k − i+ 1.

If n− 2k + i ≤ 0, then n ≤ 2k − i < s, a contradiction. �

Thus we define a weight function which will replace the factorial in our
formula.

w(m) =

{
0 : m ≤ 0

m! : otherwise
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We now seek the number of combinations of the numbers 0 through n − 1
taken k at a time that have i modular successions when taken in order and
circularized (if we did not circularize we could not account for the good
matching of (n − 2)(n − 1)0 and 012). We will call this number gi(n, k).
Note that when we choose our k integers they will form successive blocks
with a block of length l having l − 1 successions. Thus we know that if
we have i successions then we must have k − i blocks. Thus the question
becomes how many ways are there to split the numbers 0 through n − 1
into k − i blocks when we write them circularly. Note that the number of
compositions of n items into k parts where each part has to have at least one
item is

(
n−1
k−1

)
. We will denote this p(n, k). Note that we have a composition

of the k chosen numbers into k − i parts and the n − k unchosen numbers
into k − i parts. However we cannot simply take the product of p(k, k − i)
and p(n − k, k − i) since this would assume that 0 is at the beginning of a
block of chosen elements. However this is one case. Another case is that 0
is at the beginning of a block of unchosen elements. In which case we again
have p(k, k − i)p(n − k, k − i). If 0 is chosen but not at the beginning of a
block, then we form a composition consisting of k − i + 1 parts where the
part at the end meets up with the part at the beginning. Then there are
p(k, k − i + 1)p(n − k, k − i) ways to do this. If 0 is not chosen and not at
the beginning of a block we split the unchosen elements into k − i+ 1 parts
giving us p(k, k− i)p(n− k, k− i+ 1) combinations that fit this description.
Then we have

f i(n, k) = 2p(k, k − i)p(n− k, k − i) + p(k, k − i+ 1)p(n− k, k − i) +

p(k, k − i)p(n− k, k − i+ 1)

with boundary conditions that f 0(n, 0) = fn(n, n) = 1. Now, as before, we
define

a(n, k) =
k−1∑
i=0

f i(n, k)w(n− 2k + i)

giving us

Theorem 10 For n ≥ 3 and x ≥ 0,

s11(n, x) = δx,0n! +
n∑

k=1

(−1)k+x

(
k

x

)
a(n, k).
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We do not include a table for these values since by our general theorems it
suffices to multiply the elements in the table for c11(n, x) by their row number.

Turning our attention to s21(n, x), the situation becomes again more com-
plicated. Note though, if n is odd we can multiply by the inverse of 2 modulo
n to reduce to the r = d = 1 case. Because of this we only need to consider
the case when n is even. Determining which combinations of progressions are
unallowed becomes more difficult. We cannot have “wrap around” progres-
sions in either evens or odds. That is there are no permutations containing
024, 246, . . ., n02 or any other combination of progressions that cover either
the evens or the odds. We then cannot have either too many progressions
in either the evens or odds. We define a more complicated weight function
than before.

w2(p, q, j, j
′, l, l′) =

{
0 : p− 2l + j ≤ 0 or q − 2l′ + j′ ≤ 0

(p+ q − 2(l + l′) + j + j′)! : otherwise

Where p is the total number of even progressions taken l at a time and
forming j successions of rise 2 in their initial elements. The variables q, l′,
and j′ refer to the odd progressions. Clearly we are going to have to apply
this weight function at a different point in our function where we still have
the information about number of even and odd progressions. Like s21(n, x) we
will sum over all the different ways to distribute our picks and progressions
between the evens and odds. We define

gi(p, q, k) =

{
w(p+ q − 2k + i)f i(p+ q, k) : p+ q is odd∑i

j=0

∑k
l=0w2(p, q, j, i− j, l, k − l)f j(p, l)f i−j(q, k − l) : otherwise

This then is the number of permutations consisting of p even elements and q
odd that have at least k progressions forming i successions of rise 2 in their
initial elements. We then let

b(n, k) =
k−1∑
i=0

gi

(⌈n
2

⌉
,
⌊n

2

⌋
, k
)
.

Theorem 11 For n ≥ 3 and x ≥ 0,

s21(n, x) = δx,0n! +
n∑

k=1

(−1)k+x

(
k

x

)
b(n, k).
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n/x 0 1 2 3 4 5 6 7
3 3 3
4 24 0
5 100 15 0 5
6 594 108 18 0
7 4389 504 119 21 0 7
8 35744 3520 960 64 32 0
9 325395 31077 5238 927 207 27 0 9
10 3288600 288300 42050 8800 900 100 50 0

Table 4: s21(n, x)

Next on our list is c11(n, x). Here no combination of progressions is disal-
lowed. However when n = k = i our regular weight formula would say that
there are (n − 2n + n − 1)! = (−1)! = 0 permutations of this type. This
however is incorrect. There is one permutation that has all n progressions.
These n progressions form n successions. This permutation is the singular
circular identity. Then our weight function is

w◦(i, n, k) =

{
1 : i = k = n

(n− 2k + i− 1)! : otherwise

Also note that our f ’s will be precisely the same as for s11(n, x). If

a◦(n, k) =
k∑

i=0

w(i, n, k)f i(n, k),

then we have

Theorem 12 For n ≥ 3 and x ≥ 0,

c11(n, x) = δx,0(n− 1)! +
n∑

k=0

(−1)k+x

(
k

x

)
a◦(n, k).

Finally we have c21(n, x). Note first that if n is odd we can again reduce to
c11(n, x). We will then concentrate on n even. This precisely mirrors the case
of s21 except that our weight function now refers to circular permutations so
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n/x 0 1 2 3 4 5 6 7 8 9 10
3 1 0 0 1
4 5 0 0 0 1
5 18 5 0 0 0 1
6 95 18 6 0 0 0 1
7 600 84 28 7 0 0 0 1
8 4307 568 116 40 8 0 0 0 1
9 35168 4122 810 156 54 9 0 0 0 1
10 321609 33910 5975 1100 205 70 10 0 0 0 1

Table 5: c11(n, x)

we will need to reduce the factorial by 1. Then

w◦2(p, q, j, j
′, l,′ l) =

{
0 : p− 2l + j ≤ 0 or q − 2l′ + j′ ≤ 0

(p+ q − 2(l + l′) + j + j′ − 1)! : otherwise

where the arguments are the same as defined in w2. Then we also have

g◦i (p, q, k) =

{
w◦(i, n, k)f i(n, k) : p+ q is odd∑i

j=0

∑k
l=0w

◦
2(p, q, j, i− j, l, k − l)f j(p, l)f i−j(q, k − l) : otherwise

and

b
◦
(n, k) =

k−1∑
i=1

g◦i

(⌈n
2

⌉
,
⌊n

2

⌋
, k
)
.

Using these we have

Theorem 13 For n ≥ 3 and x ≥ 0,

c21(n, x) = δx,0(n− 1)! +
n∑

k=1

(−1)k+x

(
k

x

)
b
◦
(n, k).

Note that by our general theorems we also get r = 1 and d = 2 for each
of our functions.

6 Conclusion

Clearly there is almost an unlimited number of questions you could still ask
on this subject. One of the most interesting is whether or not there is a
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n/x 0 1 2 3 4 5 6 7 8
3 1 0 0 1
4 6 0 0 0
5 18 5 0 0 0 1
6 93 18 9 0 0 0
7 600 84 28 7 0 0 0 1
8 4320 512 192 0 16 0 0 0
10 321630 34000 5625 1400 200 0 25 0
12 36199458 3178656 457524 66168 13014 1656 288 0 36

Table 6: c21(n, x)

polynomial time algorithm for calculating how many permutations have no
progressions of any rise or distance. It is unlikely that the techniques used in
this thesis will be able to be pushed much further. Many of the arguments
relied on considering odds and evens separately. If you wanted to analyze
r = 3 you would likely need three cases. Generating functions seem like they
might be a profitable line of attack. Also it is possible that these techniques
could be pushed to calculate the r = d = 2 case.
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