Tropodithietic acid (TDA)-producing Ruegeria mobilis strains of the Roseobacter clade have primar... more Tropodithietic acid (TDA)-producing Ruegeria mobilis strains of the Roseobacter clade have primarily been isolated from marine aquaculture and have probiotic potential due to inhibition of fish pathogens. We hypothesized that TDA producers with additional novel features are present in the oceanic environment. We isolated 42 TDA-producing R. mobilis strains during a global marine research cruise. While highly similar on the 16S ribosomal RNA gene level (99-100% identity), the strains separated into four sub-clusters in a multilocus sequence analysis. They were further differentiated to the strain level by average nucleotide identity using pairwise genome comparison. The four sub-clusters could not be associated with a specific environmental niche, however, correlated with the pattern of sub-typing using co-isolated phages, the number of prophages in the genomes and the distribution in ocean provinces. Major genomic differences within the sub-clusters include prophages and toxin-antitoxin systems. In general, the genome of R. mobilis revealed adaptation to a particle-associated life style and querying TARA ocean data confirmed that R. mobilis is more abundant in the particle-associated fraction than in the free-living fraction occurring in 40% and 6% of the samples, respectively. Our data and the TARA data, although lacking sufficient data from the polar regions, demonstrate that R. mobilis is a globally distributed marine bacterial species found primarily in the upper open oceans. It has preserved key phenotypic behaviors such as the production of TDA, but contains diverse sub-clusters, which could provide new capabilities for utilization in aquaculture.The ISME Journal advance online publication, 23 August 2016; doi:10.1038/ismej.2016.111.
Algal-bacteria interactions are crucial for aggregate formation and carbon cycling in aquatic sys... more Algal-bacteria interactions are crucial for aggregate formation and carbon cycling in aquatic systems. To understand the initiation of these interactions, we investigated bacterial chemotaxis within a bilateral model system. Marinobacter adhaerens HP15 has been demonstrated to attach to the diatom Thalassiosira weissflogii and induce transparent exopolymeric particle and aggregate formation. M. adhaerens possesses one polar flagellum and is highly motile. Bacterial cells were attracted to diatom cells as demonstrated by addition of diatom cell homogenate or diatom culture supernatant, respectively, in soft agar suggesting that chemotaxis might be important for the interaction of M. adhaerens with diatoms. Three distinct chemotaxis-associated gene clusters were identified in the genome sequence of M. adhaerens showing significant sequence similarities to those of Pseudomonas aeruginosa PAO1. Mutants in the genes cheA, cheB, chpA, and chpB, encoding for histidine kinases and methylesterases, respectively, and putatively involved in either flagellum-associated chemotaxis or pilus-mediated twitching motility were generated and phenotypically analyzed. Mutants ΔcheA and ΔcheB were found to be swimming-deficient, and all four mutants were impaired in biofilm formation on abiotic surfaces. Comparison of the HP15 wild-type and its chemotaxis mutants in co-cultures with the diatom revealed that the fraction of bacteria attaching to the diatom decreased significantly for mutants in comparison to the wild-type. Our results highlighted the importance of M. adhaerens chemotaxis in initiation of its interaction with the diatom. In-depth knowledge of these basic processes in interspecies interactions is pivotal to obtain a systematic understanding of organic matter flux and nutrient cycling in marine ecosystems.
Marine chemical ecology comprises the study of the production and interaction of bioactive molecu... more Marine chemical ecology comprises the study of the production and interaction of bioactive molecules affecting organism behavior and function. Here we focus on bioactive compounds and interactions associated with phytoplankton, particularly bloom-forming diatoms, prymnesiophytes and dinoflagellates. Planktonic bioactive metabolites are structurally and functionally diverse and some may have multiple simultaneous functions including roles in chemical defense (antipredator, allelopathic and antibacterial compounds), and/or cell-to-cell signaling (e.g., polyunsaturated aldehydes (PUAs) of diatoms). Among inducible chemical defenses in response to grazing, there is high species-specific variability in the effects on grazers, ranging from severe physical incapacitation and/or death to no apparent physiological response, depending on predator susceptibility and detoxification capability. Most bioactive compounds are present in very low concentrations, in both the producing organism and the surrounding aqueous medium. Furthermore, bioactivity may be subject to synergistic interactions with other natural and anthropogenic environmental toxicants. Most, if not all phycotoxins are classic secondary metabolites, but many other bioactive metabolites are simple molecules derived from primary metabolism (e.g., PUAs in diatoms, dimethylsulfoniopropionate (DMSP) in prymnesiophytes). Producing cells do not seem to suffer physiological impact due to their synthesis. Functional genome sequence data and gene expression analysis will provide insights into regulatory and metabolic pathways in producer organisms, as well as identification of mechanisms of action in target organisms. Understanding chemical ecological responses to environmental triggers and chemically-mediated species interactions will help define crucial chemical and molecular processes that help maintain biodiversity and ecosystem functionality.
Diatom aggregation is substantial for organic carbon flux from the photic zone to deeper waters. ... more Diatom aggregation is substantial for organic carbon flux from the photic zone to deeper waters. Many heterotrophic bacteria ubiquitously found in diverse marine environments interact with marine algae and thus impact organic matter and energy cycling in the ocean. In particular, Marinobacter adhaerens HP15 induces aggregate formation while interacting with the diatom, Thalassiosira weissflogii. To study this effect at the molecular level, a genetic tool system was developed for strain HP15. The antibiotic susceptibility spectrum of this organism was determined and electroporation and conjugation protocols were established. Among various plasmids of different incompatibility groups, only two were shown to replicate in M. adhaerens. 1.4×10(-3) transconjugants per recipient were obtained for a broad-host-range vector. Electroporation efficiency corresponded to 1.1×10(5)CFU per μg of DNA. Transposon and gene-specific mutageneses were conducted for flagellum biosynthetic genes. Mutant phenotypes were confirmed by swimming assay and microscopy. Successful expression of two reporter genes in strain HP15 revealed useful tools for gene expression analyses, which will allow studying diverse bacteria-algae interactions at the molecular level and hence to gain a mechanistic understanding of micro-scale processes underlying ocean basin-scale processes. This study is the first report for the genetic manipulation of a Marinobacter species which specifically interacts with marine diatoms and serves as model to additionally analyze various previously reported Marinobacter-algae interactions in depth.
Marinobacter adhaerens HP15 is the type strain of a newly identified marine species, which is phy... more Marinobacter adhaerens HP15 is the type strain of a newly identified marine species, which is phylogenetically related to M. flavimaris, M. algicola, and M. aquaeolei. It is of special interest for research on marine aggregate formation because it showed specific attachment to diatom cells. In vitro it led to exopolymer formation and aggregation of these algal cells to form marine snow particles. M. adhaerens HP15 is a free-living, motile, rod-shaped, Gram-negative gammaproteobacterium, which was originally isolated from marine particles sampled in the German Wadden Sea. M. adhaerens HP15 grows heterotrophically on various media, is easy to access genetically, and serves as a model organism to investigate the cellular and molecular interactions with the diatom Thalassiosira weissflogii. Here we describe the complete and annotated genome sequence of M. adhaerens HP15 as well as some details on flagella-associated genes. M. adhaerens HP15 possesses three replicons; the chromosome comprises 4,422,725 bp and codes for 4,180 protein-coding genes, 51 tRNAs and three rRNA operons, while the two circular plasmids are ~187 kb and ~42 kb in size and contain 178 and 52 protein-coding genes, respectively.
Abstract A Gram-negative, motile, rod-shaped bacterial strain, HP15 T, was isolated from aggregat... more Abstract A Gram-negative, motile, rod-shaped bacterial strain, HP15 T, was isolated from aggregates taken from surface waters of the German Wadden Sea (German Bight). Of 82 marine isolates, HP15 T was chosen for further study because of its high potential to induce production of transparent exopolymeric particles and aggregate formation while interacting with the diatom Thalassiosira weissflogii. HP15 T grew optimally at 34–38 C and pH 7.0–8.5, and was able to tolerate salt concentrations of 0.5–20%(w/v) NaCl.
Tropodithietic acid (TDA)-producing Ruegeria mobilis strains of the Roseobacter clade have primar... more Tropodithietic acid (TDA)-producing Ruegeria mobilis strains of the Roseobacter clade have primarily been isolated from marine aquaculture and have probiotic potential due to inhibition of fish pathogens. We hypothesized that TDA producers with additional novel features are present in the oceanic environment. We isolated 42 TDA-producing R. mobilis strains during a global marine research cruise. While highly similar on the 16S ribosomal RNA gene level (99-100% identity), the strains separated into four sub-clusters in a multilocus sequence analysis. They were further differentiated to the strain level by average nucleotide identity using pairwise genome comparison. The four sub-clusters could not be associated with a specific environmental niche, however, correlated with the pattern of sub-typing using co-isolated phages, the number of prophages in the genomes and the distribution in ocean provinces. Major genomic differences within the sub-clusters include prophages and toxin-antitoxin systems. In general, the genome of R. mobilis revealed adaptation to a particle-associated life style and querying TARA ocean data confirmed that R. mobilis is more abundant in the particle-associated fraction than in the free-living fraction occurring in 40% and 6% of the samples, respectively. Our data and the TARA data, although lacking sufficient data from the polar regions, demonstrate that R. mobilis is a globally distributed marine bacterial species found primarily in the upper open oceans. It has preserved key phenotypic behaviors such as the production of TDA, but contains diverse sub-clusters, which could provide new capabilities for utilization in aquaculture.The ISME Journal advance online publication, 23 August 2016; doi:10.1038/ismej.2016.111.
Algal-bacteria interactions are crucial for aggregate formation and carbon cycling in aquatic sys... more Algal-bacteria interactions are crucial for aggregate formation and carbon cycling in aquatic systems. To understand the initiation of these interactions, we investigated bacterial chemotaxis within a bilateral model system. Marinobacter adhaerens HP15 has been demonstrated to attach to the diatom Thalassiosira weissflogii and induce transparent exopolymeric particle and aggregate formation. M. adhaerens possesses one polar flagellum and is highly motile. Bacterial cells were attracted to diatom cells as demonstrated by addition of diatom cell homogenate or diatom culture supernatant, respectively, in soft agar suggesting that chemotaxis might be important for the interaction of M. adhaerens with diatoms. Three distinct chemotaxis-associated gene clusters were identified in the genome sequence of M. adhaerens showing significant sequence similarities to those of Pseudomonas aeruginosa PAO1. Mutants in the genes cheA, cheB, chpA, and chpB, encoding for histidine kinases and methylesterases, respectively, and putatively involved in either flagellum-associated chemotaxis or pilus-mediated twitching motility were generated and phenotypically analyzed. Mutants ΔcheA and ΔcheB were found to be swimming-deficient, and all four mutants were impaired in biofilm formation on abiotic surfaces. Comparison of the HP15 wild-type and its chemotaxis mutants in co-cultures with the diatom revealed that the fraction of bacteria attaching to the diatom decreased significantly for mutants in comparison to the wild-type. Our results highlighted the importance of M. adhaerens chemotaxis in initiation of its interaction with the diatom. In-depth knowledge of these basic processes in interspecies interactions is pivotal to obtain a systematic understanding of organic matter flux and nutrient cycling in marine ecosystems.
Marine chemical ecology comprises the study of the production and interaction of bioactive molecu... more Marine chemical ecology comprises the study of the production and interaction of bioactive molecules affecting organism behavior and function. Here we focus on bioactive compounds and interactions associated with phytoplankton, particularly bloom-forming diatoms, prymnesiophytes and dinoflagellates. Planktonic bioactive metabolites are structurally and functionally diverse and some may have multiple simultaneous functions including roles in chemical defense (antipredator, allelopathic and antibacterial compounds), and/or cell-to-cell signaling (e.g., polyunsaturated aldehydes (PUAs) of diatoms). Among inducible chemical defenses in response to grazing, there is high species-specific variability in the effects on grazers, ranging from severe physical incapacitation and/or death to no apparent physiological response, depending on predator susceptibility and detoxification capability. Most bioactive compounds are present in very low concentrations, in both the producing organism and the surrounding aqueous medium. Furthermore, bioactivity may be subject to synergistic interactions with other natural and anthropogenic environmental toxicants. Most, if not all phycotoxins are classic secondary metabolites, but many other bioactive metabolites are simple molecules derived from primary metabolism (e.g., PUAs in diatoms, dimethylsulfoniopropionate (DMSP) in prymnesiophytes). Producing cells do not seem to suffer physiological impact due to their synthesis. Functional genome sequence data and gene expression analysis will provide insights into regulatory and metabolic pathways in producer organisms, as well as identification of mechanisms of action in target organisms. Understanding chemical ecological responses to environmental triggers and chemically-mediated species interactions will help define crucial chemical and molecular processes that help maintain biodiversity and ecosystem functionality.
Diatom aggregation is substantial for organic carbon flux from the photic zone to deeper waters. ... more Diatom aggregation is substantial for organic carbon flux from the photic zone to deeper waters. Many heterotrophic bacteria ubiquitously found in diverse marine environments interact with marine algae and thus impact organic matter and energy cycling in the ocean. In particular, Marinobacter adhaerens HP15 induces aggregate formation while interacting with the diatom, Thalassiosira weissflogii. To study this effect at the molecular level, a genetic tool system was developed for strain HP15. The antibiotic susceptibility spectrum of this organism was determined and electroporation and conjugation protocols were established. Among various plasmids of different incompatibility groups, only two were shown to replicate in M. adhaerens. 1.4×10(-3) transconjugants per recipient were obtained for a broad-host-range vector. Electroporation efficiency corresponded to 1.1×10(5)CFU per μg of DNA. Transposon and gene-specific mutageneses were conducted for flagellum biosynthetic genes. Mutant phenotypes were confirmed by swimming assay and microscopy. Successful expression of two reporter genes in strain HP15 revealed useful tools for gene expression analyses, which will allow studying diverse bacteria-algae interactions at the molecular level and hence to gain a mechanistic understanding of micro-scale processes underlying ocean basin-scale processes. This study is the first report for the genetic manipulation of a Marinobacter species which specifically interacts with marine diatoms and serves as model to additionally analyze various previously reported Marinobacter-algae interactions in depth.
Marinobacter adhaerens HP15 is the type strain of a newly identified marine species, which is phy... more Marinobacter adhaerens HP15 is the type strain of a newly identified marine species, which is phylogenetically related to M. flavimaris, M. algicola, and M. aquaeolei. It is of special interest for research on marine aggregate formation because it showed specific attachment to diatom cells. In vitro it led to exopolymer formation and aggregation of these algal cells to form marine snow particles. M. adhaerens HP15 is a free-living, motile, rod-shaped, Gram-negative gammaproteobacterium, which was originally isolated from marine particles sampled in the German Wadden Sea. M. adhaerens HP15 grows heterotrophically on various media, is easy to access genetically, and serves as a model organism to investigate the cellular and molecular interactions with the diatom Thalassiosira weissflogii. Here we describe the complete and annotated genome sequence of M. adhaerens HP15 as well as some details on flagella-associated genes. M. adhaerens HP15 possesses three replicons; the chromosome comprises 4,422,725 bp and codes for 4,180 protein-coding genes, 51 tRNAs and three rRNA operons, while the two circular plasmids are ~187 kb and ~42 kb in size and contain 178 and 52 protein-coding genes, respectively.
Abstract A Gram-negative, motile, rod-shaped bacterial strain, HP15 T, was isolated from aggregat... more Abstract A Gram-negative, motile, rod-shaped bacterial strain, HP15 T, was isolated from aggregates taken from surface waters of the German Wadden Sea (German Bight). Of 82 marine isolates, HP15 T was chosen for further study because of its high potential to induce production of transparent exopolymeric particles and aggregate formation while interacting with the diatom Thalassiosira weissflogii. HP15 T grew optimally at 34–38 C and pH 7.0–8.5, and was able to tolerate salt concentrations of 0.5–20%(w/v) NaCl.
Uploads
Papers by Eva Sonnenschein (Kaeppel)