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ABSTRACT

Interference alignment (IA) is a promising joint-transmission technology that essentially

enables the maximum achievable degrees-of-freedom (DoF) in K-user interference channels.

Fundamentally, wireless networks are interference-limited since the spectral efficiency of each

user in the network is degraded with the increase of users. IAbreaks through this barrier, that

is caused by the traditional interference management techniques, and promises large gains in

spectral efficiency and DoF, notably in interference limited environments.

This dissertation concentrates on overcoming the challenges as well as exploiting the

opportunities of IA inK-user multiple-input multiple-output (MIMO) interference channels.

In particular, we consider IA inK-user MIMO interference channels in three novel aspects.

In the first aspect, we develop a new IA solution by designing transmit precoding and

interference suppression matrices through a novel iterative algorithm based on Min-Maxing

strategy. Min-Maxing IA optimization problem is formulated such that each receiver maximizes

the power of the desired signal, whereas it preserves the minimum leakage interference as a

constraint. This optimization problem is solved by relaxing it into a standard semidefinite

programming form, and additionally its convergence is proved. Furthermore, we propose a

simplified Min-Maxing IA algorithm for rank-deficient interference channels to achieve the

targeted performance with less complexity. Our numerical results show that Min-Maxing IA

algorithm proffers significant sum-rate improvement inK-user MIMO interference channels

compared to the existing algorithms in the literature at high signal-to-noise ratio (SNR) regime.

Moreover, the simplified algorithm matches the optimal performance in the systems of rank-

deficient channels.

In the second aspect, we deal with the practical challenges of IA under realistic channels,

where IA is highly affected by the spatial correlation. Datasum-rate and symbol error-rate of

IA are dramatically degraded in real-world scenarios sincethe correlation between channels

decreases the SNR of the received signal after alignment. For this reason, an acceptable sum-

rate of IA in MIMO orthogonal frequency-division-multiplexing (MIMO-OFDM) interference



channels was obtained in the literature by modifying the locations of network nodes and the

separation between the antennas within each node in order tominimize the correlation between

channels. In this regard, we apply transmit antenna selection to MIMO-OFDM IA systems

either through bulk or per-subcarrier selection aiming at improving the sum-rate and/or error-

rate performance under real-world channel circumstances while keeping the minimum spatial

antenna separation of half-wavelengths. A constrained per-subcarrier antenna selection is

performed to avoid subcarrier imbalance across the antennas of each user that is caused by

per-subcarrier selection. Furthermore, we propose a sub-optimal antenna selection algorithm

to reduce the computational complexity of the exhaustive search. An experimental testbed of

MIMO-OFDM IA with antenna selection in indoor wireless network scenarios is implemented

to collect measured channels. The performance of antenna selection in MIMO IA systems

is evaluated using measured and deterministic channels, where antenna selection achieves

considerable improvements in sum-rate and error-rate under real-world channels.

Third aspect of this work is exploiting the opportunity of IAin resource management

problem in OFDM based MIMO cognitive radio systems that coexist with primary systems. We

propose to perform IA based resource allocation to improve the spectral efficiency of cognitive

systems without affecting the quality of service (QoS) of the primary system. IA plays a vital

role in the proposed algorithm enabling the secondary users(SUs) to cooperate and share the

available spectrum aiming at increasing the DoF of the cognitive system. Nevertheless, the

number of SUs that can share a given subcarrier is restrictedto the IA feasibility conditions,

where this limitation is considered in problem formulation. As the optimal solution for

resource allocation problem is mixed-integer, we propose atwo-phases efficient sub-optimal

algorithm to handle this problem. In the first phase, frequency-clustering with throughput

fairness consideration among SUs is performed to tackle theIA feasibility conditions, where

each subcarrier is assigned to a feasible number of SUs. In the second phase, the power is

allocated among subcarriers and SUs without violating the interference constraint to the primary

system. Simulation results show that IA with frequency-clustering achieves a significant sum-

rate increase compared to cognitive radio systems with orthogonal multiple access transmission

techniques.

The considered aspects with the corresponding achievements bring IA to have a powerful

role in the future wireless communication systems. The contributions lead to significant

improvements in the spectral efficiency of IA based wirelesssystems and the reliability of IA

under real-world channels.



ZUSAMMENFASSUNG

Interference Alignment (IA) ist eine vielversprechende kooperativeÜbertragungstechnik, die

die meisten Freiheitsgrade (engl. degrees-of-freedom, DoF) in Bezug auf Zeit, Frequenz und

Ort in einem Mehrnutzer̈Uberlagerungskanal bietet. Im Grunde sind Funksysteme Interferenz

begrenzt, da die Spektraleffizienz jedes einzelnen Nutzersmit zunehmender Nutzerzahl

sinkt. IA durchbricht die Schranke, die herkömmliches Interferenzmanagement errichtet

und verspricht große Steigerungen der Spektraleffizienz und der Freiheitsgrade, besonders in

Interferenzbegrenzter Umgebung.

Die vorliegende Dissertation betrachtet bisher noch unerforschte Möglichkeiten von IA in

Mehrnutzerszenarien für Mehrantennen- (MIMO) Kanäle sowie deren Anwendung in einem

kognitiven Kommunikationssystem.

Als erstes werden mit Hilfe eines effizienten iterativen Algorithmus, basierend auf der

Min-Maxing Strategie, senderseitige Vorkodierungs- und Interferenzunterdrückungs Matrizen

entwickelt. Das Min-Maxing Optimierungsproblem ist dadurch beschreiben, dass jeder

Empfänger seine gewünschte Signalleistung maximiert, während das Minimum der Leck-

Interferenz als Randbedingung beibehalten wird. Zur Lösung des Problems wird es in eine

semidefinite Form überführt, zusätzlich wird deren Konvergenz nachgewiesen. Des Weiteren

wird ein vereinfachter Algorithmus für nicht vollrangigeKanalmatrizen vorgeschlagen, um

die Rechenkomplexität zu verringern. Wie numerische Ergebnisse belegen, bedeutet die Min-

Maxing Strategie eine wesentliche Verbesserung des Systemdurchsatzes gegenüber den bisher

in der Literatur beschriebenen Algorithmen für Mehrnutzer MIMO Szenarien im hohen Signal-

Rausch-Verhältnis (engl. signal-to-noise ratio, SNR). Mehr noch, der vereinfachte Algorithmus

zeigt das optimale Verhalten in einem System mit nicht vollrangigen Kanalmatrizen.

Als zweites werden die IA Herausforderungen an Hand von realistischen/realen Kanälen

in der Praxis untersucht. Hierbei wird das System stark durch räumliche Korrelation

beeinträchtigt. Der Datendurchsatz sinkt und die Symbolfehlerrate steigt dramatisch unter

diesen Bedingungen, da korrelierte Kanäle den SNR des empfangenen Signals nach dem

Alignment verschlechtern. Aus diesem Grund wurde in der Literatur für IA in MIMO-



OFDM Überlagerungskanälen sowohl die Position der einzelnen Netzwerkknoten als auch

die Trennung zwischen den Antennen eines Knotens variiert,um so die Korrelierung der

verschiedenen Kanäle zu minimieren. Das vorgeschlagene MIMO-OFDM IA System wählt

unter mehreren Sendeantennen, entweder pro Unterträger oder für das komplette Signal, um

so die Symbolfehlerrate und/oder die gesamt Datenrate zu verbessern, während die räumliche

Trennung der Antennen auf die halbe Wellenlänge beschränkt bleiben soll. Bei der Auswahl pro

Unterträger ist darauf zu achten, dass die Antennen gleichmäßig ausgelastet werden. Um die

Rechenkomplexität für die vollständige Durchsuchung gering zu halten, wird ein suboptimaler

Auswahlalgorithmus verwendet. Mit Hilfe einer Innenraummessanordnung werden reale

Kanaldaten für die Simulationen gewonnen. Die Evaluierung des MIMO IA Systems mit

Antennenauswahl für deterministische und gemessene Kan¨ale hat eine Verbesserung bei der

Daten- und Fehlerrate unter realen Bedingungen ergeben.

Als drittes beschäftigt sich die vorliegende Arbeit mit den Möglichkeiten, die sich durch

MIMO IA Systeme für das Ressourcenmanagementproblem bei kognitiven Funksystemen

ergeben. In kognitiven Funksystemen müssen MIMO IA Systeme mit primären koexistieren.

Es wird eine IA basierte Ressourcenzuteilung vorgeschlagen, um so die spektrale Effizienz

des kognitiven Systems zu erhöhen ohne die Qualität (QoS)des primären Systems zu

beeinträchtigen. Der vorgeschlagenen IA Algorithmus sorgt dafür, dass die Zweitnutzer (engl.

secondary user, SU) untereinander kooperieren und sich daszur Verfügung stehende Spektrum

teilen, um so die DoF des kognitiven Systems zu erhöhen. DieAnzahl der SUs, die sich

eine Unterträgerfrequenz teilen, ist durch die IA Randbedingungen begrenzt. Die Suche

nach der optimalen Ressourcenverteilung stellt ein gemischt-ganzzahliges Problem dar, zu

dessen Lösung ein effizienter zweistufiger suboptimaler Algorithmus vorgeschlagen wird. Im

ersten Schritt wird durch Frequenzzusammenlegung (Clusterbildung), unter Berücksichtigung

einer fairen Durchsatzverteilung unter den SUs, die IA Anforderung erfüllt. Dazu wird jede

Unterträgerfrequenz einer praktikablen Anzahl an SUs zugeteilt. Im zweiten Schritt wird

die Sendeleistung für die einzelnen Unterträgerfrequenzen und SUs so festgelegt, dass die

Interferenzbedingungen des Primärsystems nicht verletzt werden. Die Simulationsergebnisse

für IA mit Frequenzzusammenlegung zeigen eine wesentliche Verbesserung der Datenrate

verglichen mit kognitiven Systemen, die auf orthogonalen Mehrfachzugriffsverfahren beruhen.

Die in dieser Arbeit betrachteten Punkte und erzielten Lösungen führen zu einer

wesentlichen Steigerung der spektralen Effizienz von IA Systemen und zeigen deren Zu-

verlässigkeit unter realen Bedingungen.
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1 INTRODUCTION

Right now, all over the world, mobile internet access is becoming wholly vital to provide flex-

ible working practices. Moreover, mobile networks expand to accommodate wide-range of

connected devices and corresponding services to achieve the Internet of Things (IoT) paradigm

[1–3]. IoT is a new revolution that provides a variety of things or objects - such as environ-

mental sensors, vehicles, medical devices, industrial equipment, surveillance cameras, etc. - to

interact and communicate with each other. Forecasts predict 100 billion devices to be connected

to the cloud by 2025, and all need to access and share data anywhere and anytime [4]. More-

over, it is forecasted that mobile data traffic reaches 18 exabytes (18 billion GB) per month by

2018 compared to 1.5 exabytes per month at the end of 2013 [5, 6]. Furthermore, total mobile

subscriptions are expected to grow from 6.8 billion at the beginning of 2014 to 9.2 billion by the

end of 2019. Additionally, mobile broadband subscriptionsare expected to account for more

than 80 percent of all mobile subscriptions, compared to around 30 percent in 2013 [6]. As

predicted, this massive demand for wireless communications will lead to an exponential growth

in network traffic.

In order to respond these ever-increasing demands, the future wireless communication sys-

tems have to support massive data-rate and high quality-of-service (QoS) by improving the

spectral efficiency and spectrum utilization. Interference, which is caused when multiple users

access simultaneously a common communication channel, is one of the most challenging phe-

nomena that limits the spectral efficiency of wireless communication systems. Hence, there is

a tremendous potential for efficient interference management to minimize interference effect

and greatly improve the capacity of wireless networks. Conventional interference management

strategies coordinate the users in a way that the channel access is orthogonalized. In orthog-

onal schemes such as time-division-multiple-access (TDMA) and frequency-division-multiple-

access (FDMA), the resources of the system are distributed among the users aiming at that

different interference signals are being orthogonal to that of the desired signal and also orthog-
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onal to each other. Although the orthogonal schemes are ableto avoid interference, they suffer

from low spectral efficiency since the maximum data-rate peruser is proportionally decreased

with increasing number of users. Other interference management approaches were proposed

like treating interference as noise or decoding a strong interference [7,8]. However, they suffer

from the complexity as well as the poor sum-rate at high signal-to-noise ratio (SNR) values [9].

Recently, a new sophisticated interference management technique, called interference align-

ment (IA), was proposed to optimally manage the interference in wireless systems [10].

1.1 Motivation and Scope

IA is a cooperative interference management technique thatefficiently utilizes the signaling

dimensions provided by the system resources such as time, frequency, antennas, or/and code

[11–15]. IA technique is employed by designing transmit precoding matrices that are able to

align interfering signals at each receiver in a lower-dimensional subspace, while the desired

signal is to be aligned in the other orthogonal subspace, termed interference-free subspace [10].

Cadambe and Jafar proved in [10] that IA can provide each userin aK-user interference channel

with half of the achievable rates for one user in an interference-free channel at high SNRs,

regardless of the number of users. Therefore, the sum-rate of the network grows linearly with

the number of users.

In this dissertation, we focus on IA through the spatial domain in K-user multiple-input

multiple-output (MIMO) interference channels [14]. TheK-user MIMO interference channel

is an information-theoretical terminology that denotes a network that consists ofK MIMO

transmitter-receiver pairs, where each transmitter sendsan independent stream of information

to its paired receiver. The basic idea of IA inK-user MIMO interference channels is to use

a combination of linear precoders at the transmitters and interference suppression decoders at

the receivers [16–19]. In this regard, the dissertation aims to construct and devise novel IA

algorithms within the following scopes:

1. Computing IA Solutions: IA closed-form solutions are properly well defined so far only

for limited scenarios such as 3-user MIMO interference channels with2 × d number of

antennas at each node andd data streams per user [17]. Therefore, iterative algorithmic

approaches were proposed as an alternative to achieve IA [19]. In the literature, many

iterative approaches were proposed as in [20–23]. However,robust data sum-rate perfor-

mance has not been achieved among the differentK-user MIMO interference channels
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by the previous approaches. Instead, we propose a more robust IA solution that improves

the sum-rate ofK-user MIMO interference channels.

2. Practical Reliability of IA in Real-World Environments: The ideal data sum-rate per-

formance of IA inK-user MIMO interference channels is achieved in the literature by

considering ideal independent channels. In reality, this assumption is generally impos-

sible to be observed since MIMO channels have considerable spatial correlation due to

the clustering of scatterers in the propagation environment [24]. Moreover, indoor envi-

ronments create challenging multipath propagation scenarios, which produce significant

correlated channels [25]. Unfortunately, it was stated in the literature that the perfor-

mance of MIMO IA interference channels is highly dependent on channel realizations,

where spatial correlation generally has an adverse effect on sum-rate and error-rate per-

formance. The correlation between channels degrades the SNR of the received signal

in the interference-free subspace after alignment [26]. Inthis context, we deal with the

problem by applying antenna selection aiming at increasingthe practical feasibility of

IA in K-user orthogonal frequency division multiplexing (OFDM) MIMO interference

channels under real-world circumstances.

3. IA in Cognitive Radio Systems: Cognitive radio is proposed to improve the spectrum

utilization by introducing a new licensing scheme which allows a group of users, non-

licensed, to access the vacant portion of the spectrum left by the licensed users without

affecting the QoS of the licensed system [27, 28]. In the literature, most of the resource

allocation problems of cognitive systems are performed based on FDMA multiple access

techniques, in which each frequency band or subcarrier can be accessed by one cognitive

user [29]. Moreover, IA in cognitive radio systems is rarelyaddressed, where IA based

resource management in multicarrier MIMO cognitive radio systems is not considered.

Additionally, large cognitive radio networks with a large number of users, which is a

challenge for IA, are not considered in the previous works. In this context, the opportunity

of IA as an effective interference management technique is exploited by performing IA

based resource management in order to improve the spectral efficiency of multicarrier

MIMO cognitive radio systems without affecting the QoS of the primary system.

As we can see from the above, studying IA in the scopes of this dissertation is highly attrac-

tive since the considered issues promise to achieve significant spectral efficiency in the future

communication systems.
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1.2 Dissertation Contributions and Organization

In this dissertation, we develop IA strategies and algorithms in order to improve the spectral ef-

ficiency of wireless communication systems. The main contributions and chapters organization

of this dissertation can be summarized as follows.

• Chapter 2: Background of Interference Alignment

This chapter presents some relevant background on the fundamentals of IA. We begin

by introducing the types of interference channels with moreconcentration onK-user

interference channels. We briefly discuss interference management techniques inK-user

interference channels. Then, IA is presented inK-user interference channels, where the

solutions of IA in addition to the feasibility of IA is described.

• Chapter 3: Iterative Interference Alignment Based on Min-Maxing Strategy

Chapter 3 proposes a new iterative IA solution based on Min-Maxing strategy in order

to improve the data sum-rate ofK-user MIMO interference channels, wherein the inter-

ference leakage is minimized and, simultaneously, the desired power is maximized. We

reformulate and relax Min-Maxing IA solution into a standard semidefinite programming

form. Moreover, the convergence of the proposed method is proven. We also propose

a simplified Min-Maxing IA solution for rank-deficient interference channels to achieve

the targeted performance with less complexity. Further, numerical results are presented

to evaluate the proposed schemes compared to other algorithms.

The contributions of this chapter originated one journal paper and one conference paper:

– M. El-Absi , M. El-Hadidy, T. Kaiser, ”A distributed Interference Alignment Algo-

rithm using Min-Maxing Strategy,”Transactions on Emerging Telecommunications

Technologies, doi: 10.1002/ett.2897, 2014.

– M. El-Absi , M. El-Hadidy, T. Kaiser, ”Min-Maxing Interference Alignment Algo-

rithm as a Semidefinite Programming Problem,”IEEE 14th Workshop on Signal Pro-

cessing Advances in Wireless Communications (SPAWC), June 2013, pp. 290–294.

• Chapter 4: Antenna Selection for MIMO-OFDM Interference Al ignment Systems

In this chapter, we apply transmit antenna selection to MIMO-OFDM IA systems either

through bulk or per-subcarrier selection, aiming at improving the data sum-rate and/or
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error-rate performance under real-world channel circumstances while keeping the min-

imum spatial antenna separation of 0.5 wavelengths. In order to avoid subcarrier im-

balance across the antennas of each user who is caused by per-subcarrier selection, a

constrained per-subcarrier antenna selection is operated. Furthermore, we propose a sub-

optimal antenna selection to reduce the computational complexity of the optimal antenna

selection algorithm. We implement MIMO-OFDM IA testbed to present an experimental

validation for IA with antenna selection in indoor wirelessnetwork scenarios. Further-

more, the experimental results are compared with deterministic channels that are synthe-

sized using hybrid EM ray-tracing models.

The contributions of this chapter originated two conference papers and one journal paper

(under second review at the time of this writing):

– M. El-Absi , S. Galih, M. Hoffmann, M. El-Hadidy, and T. Kaiser, ”Antenna Se-

lection for Reliable MIMO-OFDM Interference Alignment Systems: Measurement

Based Evaluation,”IEEE Transactions on Vehicular Technology, 2015.

– M. El-Absi , M. El-Hadidy, T. Kaiser, ”Reliability of MIMO-OFDM Interference

Alignment Systems with Antenna Selection under Real-WorldEnvironments,”IEEE

Proceedings of the 20th European Wireless Conference, 14-16 May 2014, pp.1-6.

– M. El-Absi , M. El-Hadidy, T. Kaiser, ”Antenna selection for interference alignment

based on subspace canonical correlation,”International Symposium on Communica-

tions and Information Technologies (ISCIT), 2012, pp. 423–427.

• Chapter 5: Interference Alignment Based Resource Management in Cognitive Ra-

dio Networks

This chapter performs IA based resource allocation in multicarrier MIMO cognitive ra-

dio systems in order to improve their spectral efficiency. IAbased problem formulation

enables the cognitive users to share the available spectrumas well as guarantees QoS of

the primary system. The resource allocation problem is formulated as a mixed-integer

optimization problem, where the optimal solution is generally prohibitive. Therefore, we

propose a two-phases efficient sub-optimal algorithm in order to reduce the computational

complexity of the optimal solution. In the first phase, frequency-clustering is performed

to schedule the subcarriers among the cognitive users, while the power is allocated among

the subcarriers and cognitive users in the second phase.
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The contributions of this chapter originated four conference papers and one journal paper

(under second review at the time of this writing):

– M. El-Absi , M. Shaat, F. Bader, and T. Kaiser, ”Interference Alignmentwith Fre-

quency Clustering for Efficient Resource Allocation in Cognitive Radio Networks,”

IEEE Transactions on Wireless Communications (Minor Revision round), May 2015.

– M. El-Absi , M. Shaat, F. Bader, and T. Kaiser, ”Interference Alignmentwith Fre-

quency Clustering for Efficient Resource Allocation in Cognitive Radio Networks,”

IEEE Global Communications Conf. (Globecom), 8-12 Dec. 2014.

– M. El-Absi , M. Shaat, F. Bader, and T. Kaiser, ”Power loading and spectral effi-

ciency comparison of MIMO OFDM/FBMC for interference alignment based cog-

nitive radio systems,”11th Int. Symp. Wireless Communication Systems (ISWCS),

Aug. 2014, pp. 480–485.

– M. El-Absi , T. Kaiser, ”Optimal Resource Allocation Based on Interference Align-

ment for OFDM and FBMC MIMO Cognitive Radio Systems,”Proceedings of

23rd European Conference on Networks and Communications (EuCNC), 23-25 June

2014, pp. 1–5.

– M. El-Absi , M. Shaat, F. Bader, T. Kaiser, ”Interference Alignment Based Resource

Management in MIMO Cognitive Radio Systems,”IEEE Proceedings of the 20th

European Wireless Conference, 14-16 May 2014, pp. 1-6.

• Chapter 6: Conclusions and Future Work

This chapter summarizes the main research challenges and highlights the achieved results.

Moreover, it gives constructive guidelines and recommendations for future extension to

this work.

For convenience, a schematic diagram showing the contributions within the chapters is

presented in Fig. 1.1.
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Figure 1.1: Schematic representation of the contributions and the chapters.
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2 BACKGROUND OF INTERFERENCEALIGNMENT

This chapter presents the background and the basics of IA inK-user MIMO interference chan-

nels that are required through the dissertation. An overview of K-user interference channels

is presented. Additionally, interference management techniques that are used for interference

channels are introduced. Afterwards, the basic concept of IA in K-user interference channels

is briefly illustrated, where IA inK-user SISO and MIMO interference channels are described.

Finally, IA solutions through closed-form and iterative methods are presented.

2.1 Introduction

Wireless communication systems often have multiple transmitters and receivers sharing the

same transmission medium, which causes mutual interference into each other [30–32]. There-

fore, the characterization of the capacity of multiuser systems is more difficult than single-user

systems, where multiuser systems are considered interference-limited since the spectral effi-

ciency of the system is restricted by the interference. Referring to information-theoretical ter-

minologies, multiuser channels are classified into different models such as broadcast channels,

multiple access channels and interference channels, as shown in Fig. 2.1 [33–37]. In broadcast

channels, one transmitter transmits multiple independentmessages to multiple independent re-

ceivers [33,34]. Therefore, the transmission from the transmitter to each receiver is considered

as an interference to other receivers. In multiple access channels, the situation is reversed,

where multiple independent transmitters send multiple independent information to a common

receiver [35, 36]. Accordingly, the communication from each transmitter to the common re-

ceiver interferes the communications of other transmitters. Whereas the interference channel

models the communication of a transmitter-receiver pair inthe presence of interference from

all other pairs, where each transmitter sends an independent stream of information to its paired

receiver causing interference to other receivers [37]. In the rest of this chapter, interference

channels are considered in more details.
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Figure 2.1: a) Broadcast channels, b) Multiple access channel, c)K-user interference channel.

2.2 Interference Channels

In the interference channel framework, each transmitter sends an independent stream of infor-

mation to its paired receiver. As the transmission medium isshared by a number of multiple

transmitter-receiver pairs, the communications between each transmitter and its corresponding

receiver interfere with the communications of other transmitter-receiver pairs [37]. This in-

terference is considered as a major limiting factor for the capacity of interference channels.

Characterizing the capacity region of interference channels is generally an open problem in

information theory [38–40]. It was shown that in Gaussian interference networks when the in-

terference is very strong, the capacity region would not be affected by interference [37,41]. This

can be achieved when each receiver can first decode the message of the unintended source and

subtract it from the received signal before decoding its ownmessage. The scheme was extended

to the ”strong interference”, and the capacity region was established in [8,42]. Moreover, some

outer bounds were further proposed for moderate and weak interference in [37, 43–45], where

the characterization of the capacity region is more challenging compared to the ”very strong

and strong interference scenario”. However, exact channelcapacity characterization in general

interference channels is still unknown.

The concept of ”degrees-of-freedom (DoF)” was appeared as an approximation for the

behavior of the channel capacity when the SNR approaches to infinity [46,47], which is defined

as

d = lim
SNR→∞

R(SNR)
log2(SNR)

, (2.1)

whered is the DoF metric andR(SNR) is the sum-rate with respect to SNR. Equivalently,
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sum-rate can be expressed as

R(SNR) = d log2(SNR) + o(log2(SNR)), (2.2)

whereo(log2(SNR)) is a term that vanishes as SNR goes to infinity. Based on this definition,

DoF can be interpreted as the number of achievable independent data streams at each user.

Additionally, DoF is also known as the multiplexing gain or capacity pre-log factor as well

[48,49].

2.3 Interference Management inK-user Interference Channels

Multi-user wireless systems have to employ interference management in order to achieve a high

system capacity. Accordingly, interference management inK-user interference channels have

received much attention in order to propose approaches dealwith interference in shared medium.

These approaches can be categorized as follows [10]

• Treat interference as noise: This scheme ignores the structure of interference and simply

treats it as noise [7]. This scheme is optimal whenever the interference power is much

less than the desired signal power [50]. Therefore, it is considered one of the low complex

strategies.

• Interference decoding: Interference decoding is introduced when interference isstrong

or very strong and originates from a single source [8]. In this scheme, each receiver

first decodes the message of the unintended source and subtracts it from the received

signal before decoding the desired message. However, this approach is quite complex and

limits other users’ data-rates. Moreover, generalizing this method toK-user interference

channel is not straightforward in general.

• Orthogonalization: This approach is used when the interference is being strongas the

desired signal. In this approach, the transmissions of different users are orthogonalized in

a way that each transmitter-receiver pair has access to onlya portion of the available re-

sources. Traditional schemes based on user access orthogonalization are TDMA, FDMA

and code division multiple access (CDMA). Although this approach is widely used in

multiuser communication systems, the spectral efficiency of each pair degrades as the

number of users increases [51].
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Generally, the aforementioned interference management strategies may not be spectrally effi-

cient. Interference decoding and treating interference asnoise are limited for specific scenarios

and for a limited number of users (e.g. two-user scenario forinterference decoding approach).

Furthermore, they perform well only at low SNR regime, whilethe sum-rate saturates at high

SNRs. Orthogonal schemes exhibit the better sum-rate at medium and high SNR, since their

sum-rate is scaled linearly as a function of the SNR. However, the linear scaling is limited by

the fact that theK users have to share the resource [10]. As a result of that, each user only

gets1/K fraction of the resource and, hence, achieves1/K DoF. Although signal reception

at each receiver does not directly suffer from interference, this scheme is not optimal in terms

of spectral efficiency. This results from that the interference spans a large dimension of the

received signal space at each receiver. Accordingly, the capacity per user, i.e.kth user, in a

K-user interference channel that uses orthogonal schemes, is

Rk(SNR) =
1

K
log2(SNR) + o(log2(SNR)), (2.3)

and the total sum-rate of theK-user interference channel is

R(SNR) = log2(SNR) + o(log2(SNR)). (2.4)

As an example, consider such a 3-user interference channel,where each transmitter wishes

to communicate only with its corresponding receiver. Hence, each user receives two interfering

signals in addition to the desired signal. By assuming that all propagation delays are equal, the

interference is managed using TDMA as depicted in Fig. 2.2. In this example, each user can

transmit upon1/3 portion of the time dimension. At the receive side, the signals can be perfectly

separated. However, a fraction2/3 of the time dimension is spanned by the interference signals.

Therefore, if the dimensionality of the interference subspace is minimized, a larger interference-

free subspace would be left for desired transmission. In fact, this is the concept of ”Interference

Alignment (IA)” [10].

2.4 The Concept of Interference Alignment

IA is a cooperative interference management strategy that aligns interfering signals at each re-

ceiver in one subspace, while the desired signal is to be aligned in another orthogonal subspace,

termed interference-free subspace [10]. This alignment can exploit the available signaling di-
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Figure 2.2: An illustrative representation of TDMA concept for 3-user interference channel.
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Figure 2.3: An illustrative representation of IA concept for 3-user interference channel.

mensions in time [11, 12], frequency [13], space [11, 14], or/and code [15]. IA is employed

by designing transmit precoding matrices and receive decoding matrices that are able to distin-

guish between interference signals and desired signal at the receiver side. Cadambe and Jafar

proved in [10] that IA can optimally manage the interferenceaiming at providing theK users in

an interference channel with half of the achievable capacity of one user in an interference-free

channel at high SNRs, regardless of the number of users. Therefore, the capacity per user, i.e.

kth user, in aK-user interference channel is

Rk(SNR) =
1

2
log2(SNR) + o(log2(SNR)), (2.5)

and the total sum-rate of theK-user interference channel is

R(SNR) =
K

2
log2(SNR) + o(log2(SNR)). (2.6)
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This result is achieved in [10] when the channel coefficientschange in every time slot. The DoF

per user in (2.5) is1/2 and, hence, all users get half the communication resources.Consequently,

the total achievable DoF of theK-user interference channel isK/2. Unlike orthogonal schemes,

IA can achieve a linear increase of DoF with the number of users as seen in (2.6). Considering

the illustrated example in the previous section, if IA is used instead of TDMA, each user can

get a fraction1/2 of the time dimension as shown in Fig. 2.3, regardless of the number of users.

This means that the DoF per user is increased, and the total DoF of the system is3/2. It is clear

in this example that the interference subspace is reduced to1/2 portion of the time dimension.

In [10], two types of interference channel settings are evaluated: K-user single-input

single-output (SISO) interference channel with time varying channel coefficients and theK-

user MIMO interference channel with constant channel coefficients.

2.5 IA in K-user SISO Interference Channels

In this section, we will briefly review IA inK-user SISO interference channels. Two system

models are considered in this section: 1)K-user SISO interference channels with time exten-

sion, 2)K-user SISO multicarrier interference channels.

2.5.1 K-user SISO Interference Channels with Time Extension

We consider a 3-user SISO interference channel to reveal thebasic idea of IA in time-varying

SISO interference networks, where each node in the network is equipped with single antenna.

In this network, at each time slot there is not enough space dimension to apply IA because each

node has only one antenna. Therefore, the symbol extension is proposed in [10] to overcome

this limitation. We denote the symbol extension of the transmitted symbolxk from thekth

transmitter overτ time slots as

xk(t) = [xk(τ(t− 1) + 1) xk(τ(t− 1) + 2) . . . xk(τt)] , (2.7)

and the symbol extension of the received symbolyk at thekth receiver overτ time slots as

yk(t) = [yk(τ(t− 1) + 1) yk(τ(t− 1) + 2) . . . yk(τt)] . (2.8)

14



2.5. IA inK-user SISO Interference Channels

Thus, the received signal at thekth receiver can be expressed as

yk(t) = Hk1(t)x1(t) +Hk2(t)x2(t) +Hk3(t)x3(t) + zk(t), (2.9)

wherezk(t) represents the expansion of additive white Gaussian noise (AWGN) over τ time

symbols, andHkj(t) represents the diagonal extended channel matrix between thekth receiver

and thejth transmitter expressed as

Hkj(t) =




hkj(τ(t− 1) + 1) 0 · · · 0

0 hkj(τ(t− 1) + 2) · · · 0
...

...
. . .

...

0 0 · · · hkj(τt)



, (2.10)

wherehkj(t) is the channel coefficient between thekth receiver and thejth transmitter at timet.

Perfect global channel state information (CSI) is assumed to be known at all nodes. Moreover, it

is assumed that the channel coherence time is one, where channel gains remain constant within

one time slot, but change independently across different time slots.

IA aims to construct the precoding and decoding matrices in away that the interferences

from different transmitters are aligned together at each receiver within one-half of the total

received signal space, keeping the other half for the desired signal. It is found in [10] that,

using IA with symbol extension ofτ = 2m + 1 time slots, a 3-user SISO interference channel

can obtain3m + 1 DoF, wherem is a non-negative integer. Assume Transmitter1 encodes its

message intom + 1 independent data streamsxl1(t) and transmits them usingτ × 1 precoder

vectorsvl1, wherel = 1, 2, . . . , m+1. Therefore, the transmitted signals1(t) can be represented

as

ŝ1(t) =
m+1∑

l=1

xl1(t)v
l
1 = V1x1(t), (2.11)

whereV1 =
[
v1
1 v2

1 · · · vm+1
1

]
represents the(2m+1)×(m+1) precoding matrix. Similarly,

Transmitters2 and3 encode their messages intom independent data streams as

ŝ2(t) =
m∑

i=1

xi2(t)v
i
2 = V2x2(t) (2.12)

ŝ3(t) =

m∑

i=1

xi3(t)v
i
3 = V3x3(t). (2.13)
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Chapter 2. Background of Interference Alignment

Therefore, the received signal at thekth receiver can be represented as

yk(t) =

3∑

j=1

HkjVjxj(t) + zk(t). (2.14)

User 1 can achievem+1
2m+1

DoF using IA by aligning the interfering signals from Transmitter 2

and 3 in a subspace with dimension smaller thanm as follows

rank([H12V2 H13V3]) ≤ m, (2.15)

where rank(A) represents the rank of matrixA. This condition can be achieved by properly

designing the precoding matrices at transmitters2 and3 as follows

H12V2 = H13V3. (2.16)

m
2m+1

DoF can be obtained for User2 when interference subspace has a dimension not greater

thanm+ 1, which can be described as

rank([H21V1 H23V3]) ≤ m+ 1. (2.17)

The constraint in (2.17) can be satisfied when

H23V3 ≺ H21V1, (2.18)

whereE ≺ F denotes that the column space ofE is a subset of the column space ofF. Similarly

to User 2, User 3 requires that the interference subspace dimension should satisfy

rank([H31V1 H32V2]) ≤ m+ 1, (2.19)

and

H32V2 ≺ H31V1. (2.20)
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2.5. IA inK-user SISO Interference Channels

One of the solutions that can satisfy the previous equation sets is

V1 =
[
w T̂w · · · T̂mw

]
(2.21)

V2 = H−132 H31

[
w T̂w · · · T̂m−1w

]
(2.22)

V3 = H−123 H21

[
T̂w T̂2w · · · T̂mw

]
, (2.23)

whereA−1 denotes the inverse of matrixA. w is a(2m+1)× 1 vector that all its elements are

1, and

T̂ = H12H
−1
21 H23H

−1
32 H31H

−1
13 . (2.24)

To guarantee each receiver can decode its own message, it wasverified in [10] that the columns

of [H11V1 H12V2], [H22V2 H21V1], and[H33V3 H31V1] are linearly independent. There-

fore, the desired and interference subspaces can be almost surly separated.

As a conclusion, the pairs1, 2 and3 achieve DoF= 〈 m+1
2m+1

, m
2m+1

, m
2m+1
〉 per symbol, re-

spectively. Asymptotically, DoF= 〈1
2
, 1
2
, 1
2
〉 are achievable whenm→∞. In other words, each

pair can get half of the cake at high SNRs.

2.5.2 K-user Multicarrier Interference Channels

We consider another example forK-user SISO interference channels, which is theK-user mul-

ticarrier interference channel [23, 52, 53]. We assume thataK-user multicarrier interference

channel consisting ofN bands forK transmitters and receivers. Each node has a single an-

tenna, and each user transmitsd data streams.

The channel between thejth transmitter and thekth receiver is diagonal such that

Hkj =




hkj(0) 0 · · · 0

0 hkj(1) · · · 0
...

...
. . .

...

0 0 · · · hkj(N − 1)



, (2.25)

wherehkj(n) ∈ C is the frequency domain channel coefficient of bandn. The received signal

at receiverk is

yk = Uk
HHkkVkxk︸ ︷︷ ︸

Desired Signal

+
K∑

j=1,j 6=k

Uk
HHkjVjxj

︸ ︷︷ ︸
Interference Signals

+Uk
Hzk, (2.26)
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Chapter 2. Background of Interference Alignment

whereAH is the conjugate transpose (Hermitian) matrix of matrixA. Vk, Uk ∈ CN×d are the

precoder and interference suppression matrix for thekth user in the multicarrier interference

channel, respectively. Finding the decoders and precoderscan be proceeded as in Section 2.5.1.

2.6 IA in K-user MIMO Interference Channels

IA using time-extension requires a fast fading and large number of time slots in order to reach

the promised DoF. Therefore, this approach is considered impractical. In this context, alignment

in spatial dimension through MIMO system, which is the focusof the thesis, is more practical

than alignment in time or frequency dimensions [14]. The keyidea of IA in MIMO interfer-

ence channels is to use a combination of linear precoders at the transmitters and interference

suppression decoders at the receivers in order to align the interference signals at half of the spa-

tial subspaces at the receiver side. This increases the interference-free spatial dimension and,

consequentially, the DoF of the system [16–18].

Figure 2.4:K-user MIMO interference channel.

In this regards, we consider aK-user MIMO interference channel with IA (MIMO IA)

equipped withMT transmit antennas at each transmitter andMR receive antennas at each re-

ceiver as seen in Fig. 2.4. In this system, each user wishes totransmitd data streams to its

desired receiver causing interference to all the other receivers. This interference channel is ex-

pressed as(MR ×MT , d)
K. It is assumed that theK-user MIMO interference channel is static

during the transmission time. Accordingly, the transmitted signalŝk ∈ CMT×1 from thekth

18



2.6. IA inK-user MIMO Interference Channels

node is given by

ŝk = Vkxk, (2.27)

whereVk ∈ CMT×d is the precoding matrix applied at thekth user to the symbol vectorxk ∈

Cd×1. For practical purposes,Vk is considered orthonormal such that [19]

VH
kVk = Id, (2.28)

whereId denotes an identity matrix of dimensionsd × d. The discrete-time complex received

signal at thekth receiver̂yk ∈ CMR×1 is represented as

ŷk =
K∑

j=1

HkjVjxj + zk

= HkkVkxk +
K∑

j=1,j 6=k

HkjVjxj + zk,

(2.29)

whereHkj ∈ CMR×MT is the flat frequency domain channel matrix between thejth transmitter

and thekth receiver, andzk ∈ CMR×1 is the zero mean unit variance circularly symmetric

AWGN vector at thekth receiver. It is assumed in this work that the CSI is perfectlyknown

at each node. To reconstruct the transmitted signal at thekth receiver, the received signal is

decoded using an orthonormal linear interference suppression matrixUk ∈ CMR×d such that

UH
kUk = Id. (2.30)

The reconstructed datay at thekth receiver is defined as

yk = UH
kHkkVkxk︸ ︷︷ ︸

Desired Signal

+
K∑

j=1,j 6=k

UH
kHkjVjxj

︸ ︷︷ ︸
Interference Signals

+UH
k zk. (2.31)

The precoding matrices and interference suppression matrices are jointly designed to miti-

gate the interference term in (2.31). The role of precoding matrices is to align the interference

signals at the minimum subspace dimension at each receiver,while ensuring that the desired

signal at each receiver is linearly independent of the interference subspace [17]. In order to
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Chapter 2. Background of Interference Alignment

achieve that, the following two conditions have to be fulfilled

UH
kHkjVj = 0, ∀j 6= k and (2.32)

rank
(
UH
kHkkVk

)
= dk, ∀k ∈ {1, 2, · · · , K}. (2.33)

The condition in (2.32) ensures that all interference signals HkjVj are perfectly aligned into

NR − d dimensions for the interference subspace, while the secondcondition in (2.33) ensures

that the received desired signal has full-rank effective channel matrix ofd. The feasibility of

achieving MIMO IA conditions in (2.32) and (2.33) will be discussed in the following section.

The achieved sum-rate in bits per second per hertz ofK-user MIMO interference channels

using zero-forcing receivers is calculated as [26]

R =
K∑

k=1

log2

∣∣∣∣Id +
UH
kHkkVkSkV

H
kH

H
kkUk

σ2Id +UH
kQkUk

∣∣∣∣ , (2.34)

whereσ2 is the variance of the AWGN, andSk = E
[
xkx

H
k

]
∈ Rd×d is the input covariance

matrix of thekth user.Qk is the interference covariance matrix at thekth receiver, which can

be expressed as

Qk =
K∑

j=1,j 6=k

HkjVjSjV
H
j H

H
kj. (2.35)

Therefore, the transmitted power by thekth user isPk = Tr (Sk). If the IA feasibility conditions

in (2.32) and (2.33) are achieved, the interference can be completely eliminated at each receiver.

Assuming perfect IA is achieved, the received signal in (2.31) becomes

yk = UH
kHkkVkxk +UH

k zk, (2.36)

and, consequentially, the sum-rate is

R =

K∑

k=1

log2

∣∣∣∣Id +
1

σ2
UH
kHkkVkSkV

H
kH

H
kkUk

∣∣∣∣ . (2.37)

2.6.1 Feasibility of MIMO IA Systems

The feasibility of linear MIMO IA systems was investigated in [18], where the solvability of the

IA polynomial equation is analyzed based on algebraic geometry. The authors of [10] claimed
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that for randomly generated channel matrices, that lack anyspecial structure, the condition in

(2.33) is almost surly satisfied if the condition in (2.32) issatisfied. Therefore, finding the

feasibility of MIMO IA systems is mainly dependent on achieving the condition in (2.32) [18].

It is verified that IA is surely feasible if a system is proper [18,54]. Based on Bezout’s theorem,

MIMO IA system is considered proper if the number of equations is not larger than the number

of variables. The number of equations generated from (2.32)isNe = (K +1)d and the number

of variables equalsNv = MT +MR. Therefore, the interference channel(MR ×MT , d)
K is

feasible if and only if [18]

MT +MR − (K + 1)d ≥ 0. (2.38)

2.6.2 IA in K-user MIMO-OFDM Interference Channels

IA can be applied toK-user MIMO-OFDM interference channels independently on each sub-

carrier, thanks to the frequency orthogonality introducedby the multicarrier techniques. For

aK-user MIMO-OFDM IA system withMT transmit antennas,MR receive antennas andN

subcarriers, the transmittedd data streams over thenth subcarrierxnk ∈ Cd×1 is multiplied by

the precoding matrixVn
k ∈ CMT×d. Using this precoding over thenth subcarrier, the desired

data is aligned at its own receiver in the interference-freesubspace, while the interference sig-

nals from the other transmitters are aligned at the interference subspace [10, 17]. By assuming

perfect knowledge of the CSI at each node, the discrete-timecomplex received signal at thekth

receiver over thenth subcarrier is represented as

ynk = Un
k

HHn
kV

n
kx

n
k +

K∑

j=1,j 6=k

Un
k

HHn
kjV

n
j x

n
j +Un

k
Hznk , (2.39)

whereUn
k ∈ CMR×d is an orthonormal linear interference suppression matrix applied at the

kth receiver over thenth subcarrier,Hn
kj ∈ C

MR×MT denotes the channel frequency response

between thejth transmitter and thekth receiver over thenth subcarrier, andznk ∈ CMR×1 is

the zero mean unit variance circularly symmetric AWGN vector at thekth receiver over thenth

subcarrier.

In MIMO-OFDM IA systems, IA feasibility conditions in (2.32) and (2.33) should be

independently achieved upon each subcarrier. That is [26]

rank(Un
k

HHn
kkV

n
n) = d ∀k and ∀n, (2.40)
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and

Un
k

HHn
kjV

n
j = 0 ∀j 6= k and ∀n. (2.41)

Moreover, the sum-rate of MIMO-OFDM IA systems is calculated in terms of the achieved

sum-rate in bits per second per hertz averaged over all subcarriers as follows

R =
1

N

K∑

k=1

N∑

n=1

log2

∣∣∣∣Id +
Un
k

HHn
kkV

n
kS

n
kV

n
k

HHn
kk

HUn
k

σ2Id +Un
k

HQn
kU

n
k

∣∣∣∣ , (2.42)

whereQn
k is the interference covariance matrix at thekth receiver over thenth subcarrier, which

is

Qn
k =

K∑

j=1,j 6=k

Hn
kjV

n
j S

n
kV

n
j
HHn

kj
H. (2.43)

Snk = E
[
xnkx

n
k

H
]
∈ R

d×d is the input covariance matrix of thekth user over thenth subcarrier,

where the transmitted power by thekth user over thenth subcarrier isP n
k = Tr (Snk). If perfect

IA is achieved upon all subcarriers, the received signal in (2.39) becomes

ynk = Un
k

HHn
kV

n
kx

n
k +Un

k
Hznk , (2.44)

and, consequentially, the sum-rate is

R =
1

N

K∑

k=1

N∑

n=1

log2

∣∣∣∣Id +
1

σ2
Un
k

HHn
kkV

n
kS

n
kV

n
k

HHn
kk

HUk

∣∣∣∣ . (2.45)

Next, we overview the methods of designing MIMO IA precodersand decoders for feasible

systems.

2.7 Interference Alignment Solutions

Designing IA solution, the precoding matrices and interference suppression matrices, is consid-

ered essential to achieve the promised performance of IA. Recently, closed-form and iterative

methods have gained much of interest. In this section, we present an overview for closed-form

and iterative methods.
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2.7.1 Closed-Form Solution

Closed-form solution exists for limited scenarios ofK-user MIMO interference channels as

in [9, 10, 55]. In this section, a 3-user MIMO interference channel withMT = MR = M is

considered, where each user wishes to achieved = M
2

DoF. For the simplicity,M is assumed to

be even. The closed-form solution of such system can achieve3M
2

DoF without time extension

as presented in [10]. According to (2.31), the received signal at thekth receiver is

yk = UH
kHk1V1x1 +UH

kHk2V2x2 +UH
kHk3V3x3 +UH

k zk. (2.46)

In order to decode thed transmitted data streams at each receiver without interference, interfer-

ence signals from all unintended transmitters should be aligned intoM/2 dimensional subspace

leaving the other half free from interference. To this end, the following constraints should be

considered while designing the precodersV1, V2 andV3

span(H12V2) = span(H13V3) (2.47)

H21V1 = H23V3 (2.48)

H31V1 = H32V2, (2.49)

where span(A) represents the space spanned by the column vectors of matrixA. Since all the

channel matrices,Hkj ∀k, j ∈ {1, 2, 3}, are full-rank ofM , thus the above equations can be

reformulated as follows

span(V1) = span(EV1) (2.50)

V2 = (H32)
−1H31V1 (2.51)

V3 = (H23)
−1H21V1, (2.52)

where

E = (H31)
−1H32(H12)

−1H13(H23)
−1H21. (2.53)

Consequently, one possible design ofV1 can be as follows

V1 = [e1, e2, · · · , eM/2], (2.54)
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wheree1, e2, · · · , eM denoteM eigenvectors ofE. V2 andV3 can be designed by substituting

the value ofV1 in (2.51 and 2.52), respectively. Accordingly, the suppression matrices at the

receivers can be easily designed as follows

U1 = null([H12V2]
H) = null([H13V3]

H) (2.55)

U2 = null([H21V1]
H) = null([H23V3]

H) (2.56)

U3 = null([H31V1]
H) = null([H32V2]

H) (2.57)

where null(A) represents the null space of matrixA. So far, the precodersV1,V2 andV3

are designed in a away that guarantees the dimension of interference subspace isM/2, which

satisfies IA condition in (2.32). Then, in order to satisfy the second condition in (2.33) where

the desired signal subspace and the interference subspace should be linearly independent, the

following constraints should be satisfied

rank([H11V1 H12V2]) = M (2.58)

rank([H22V2 H21V1]) = M (2.59)

rank([H33V3 H31V1]) = M. (2.60)

The authors of [10] have shown that the above constraints aresatisfied with probability of1

when the condition in (2.32) is achieved. This solution requires a global channel knowledge at

all the nodes of the system.

2.7.2 Iterative Interference Alignment Solutions

Iterative IA has been suggested as an alternative to achieveIA solution in MIMO interference

channels because closed-form solution is still not feasible in general [19, 54]. Unlike closed-

form solutions, iterative IA approach requires only local channel knowledge, which is consid-

ered more practical to be realized. The concept of iterativeIA is different from other iterative

algorithms such as interference avoidance in [56] or iterative waterfilling in [57]. In iterative

waterfilling/interference avoidance algorithms, each transmitter tries to do the best for his own

receiver. Therefore, they follow a selfish approach. While in iterative IA, the nodes decide to

cooperate and follow an unselfish approach in order to improve the total sum-rate of the system.

As an example, each transmitter tries to minimize the interference he causes to other receivers.

The iterative approaches mainly depend on the channel reciprocity concept, where channel
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Figure 2.5:K-user MIMO interference channels with reciprocity.

conditions in one direction can be completely known from theother direction even there is a

non-negligible difference in their transmission time. However, if the difference is small relative

to the coherence time, the reciprocity can be a useful feature to utilize [58, 59]. The reciprocal

network is simply obtained by diverting the role of transmitters and receivers as seen in Fig. 2.5.

This can be described using the left arrow notation as

←−yk =
←−
U

H

k

←−
Hkk
←−
Vk
←−x k +

K∑

j=1,j 6=k

←−
U

H

k

←−
Hkj
←−
Vj
←−x j +

←−
U

H

k
←−z k, (2.61)

where←−yk is the reconstructed data at thekth receiver in the reciprocal system,
←−
Uk ∈ CMT×d is

the orthonormal linear interference suppression matrix applied at thekth receiver, and
←−
Hkj =

HH
jk is the channel between thejth transmitter and thekth receiver in the reciprocal system.
←−
Vj ∈ C

MR×d is the orthonormal precoding matrix applied to the symbol vector←−x j ∈ C
d×1

that is transmitted from thejth node, and←−z k ∈ CMT×1 is the zero mean unit variance circularly

symmetric AWGN vector at thekth receiver.

Minimum leakage interference (MLI), maximum signal-to-interference-plus-noise-ratio

(Max-SINR), and maximum sum-rate (Max-SR) were proposed asiterative IA algorithms [19,

21]. These algorithms utilize wireless channels reciprocity to achieve IA with local channel

knowledge at each node. Next, these algorithms are described in more details.

25



Chapter 2. Background of Interference Alignment

MLI Algorithm

MLI is a distributed IA algorithm that iteratively adjusts its precoders and decoders over the re-

ciprocal network until convergence [19]. The objective of MLI algorithm is to minimize the total

leakage interference experienced by all receivers. MLI algorithm can perfectly align the leak-

age interference if the IA problem is feasible. However, MLIalgorithm achieves non-optimal

sum-rate performance since it discards the power of the desired signal in the useful subspace.

To design MLI precoders and decoders, each receiver computes its interference covariance ma-

trix and identifies the interference at each receiver. Assuming equal power allocation among

data streams whereP is the transmitted power by each user, the interference covariance matrix

is calculated at thekth receiver as

Qk =

K∑

j=1,j 6=k

P

d
HkjVjV

H
j H

H
kj, (2.62)

where the total leakage interference at thekth receiver is defined as

Lk = Tr
(
UH
kQkUk

)
. (2.63)

Afterwards, the interference suppression matrix is corresponding tod eigenvectors of the least

interference subspace as

Uk = νdmin (Qk) ∀k, (2.64)

whereνdmin (Qk) is thed columns that are corresponding to thed smallest eigenvalues of the

interference matrixQk. Accordingly, the total leakage interference of theK-user interference

channel is reduced [19]. Afterwards, the previous steps areperformed in the reciprocal network.

Hence, by reversing the roles of the transmitters and the receivers, the precoding matrices
←−
Vk

in the the reciprocal network are the decoders of the direct channelUk. Therefore,
←−
Uk can be

computed as
←−
Uk = νdmin

(←−
Qk

)
∀k, (2.65)

where
←−
Qk is

←−
Qk =

K∑

j=1,j 6=k

P

d

←−
Hkj
←−
Vj
←−
VH

j

←−
HH

kj. (2.66)

The adjustment of the precoders and decoders over the reciprocal network is iteratively repeated

until convergence. MLI method is detailed in Algorithm 2.1.
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Algorithm 2.1 MLI Iterative Interference Alignment

1: Initialize precodersV1,V2, ...,VK arbitrarily such thatVH
kVk = Id ∀k.

2: For each receiver, computeQk according to (2.62);

3: Compute decodersUk according to (2.64);

4: Exchange the roles of the precoders and decoders and set
←−
Vk = Uk;

5: For each receiver, compute
←−
Qk in the reverse channel according to (2.66);

6: Compute decoders
←−
Uk according to (2.65);

7: Reverse the communication link asVk =
←−
Uk;

8: Repeat the steps (2)-(7) until convergence.

Max-SINR Algorithm

The objective of Max-SINR algorithm is to maximize the SINR of each stream instead of mini-

mizing the leakage interference. Therefore, the precodersand decoders are adjusted iteratively

over the reciprocal network to maximize the SINR of each stream [19]. SINR of theith stream

at thekth receiver is defined as [19]

SINRki =
P

d

Uk(i)
HHkkVk(i)Vk(i)

HHH
kkUk(i)

Uk(i)HBkiUk(i)
∀i and∀k, (2.67)

whereVk(i) andUk(i) denote theith column of the precoding and decoding matrices of the

kth user, respectively. The matrixBik is the interference plus noise covariance matrix for the

considered stream at thekth receiver, which is defined as

Bki =
P

d

K∑

j=1

d∑

l=1

HkjVj(l)Vj(l)
HHH

kj −
P

d
HkkVk(i)Vk(i)

HHH
kk + IMR

∀i and∀k. (2.68)

The column vectors of the receiving interference suppression matrix that maximizes the SINR

of theith stream at thekth receiver are given by

Uk(i) =
B−1ki HkkVk(i)∥∥B−1ki HkkVk(i)

∥∥ . (2.69)

These steps of adjustment of the precoders and decoders overthe reciprocal network are itera-

tively repeated until convergence. This method is summarized in Algorithm 2.2.
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Algorithm 2.2 Max-SINR Iterative Interference Alignment

1: Initialize precodersV1,V2, ...,VK arbitrarily such thatVH
kVk = Id ∀k.

2: For each receiver and each stream, computeBki according to (2.68);

3: Compute theith column of thekth decoderUk(i) according to (2.69);

4: Exchange the roles of the precoders and decoders and set
←−
Vk = Uk;

5: For each receiver and each stream, compute
←−
Bki in the reverse channel;

6: Compute theith column of thekth decoder
←−
Uk(i);

7: Reverse the communication link asVk =
←−
Uk;

8: Repeat the steps (2)-(7) until convergence.

Max-SR Algorithm

In Max-SR algorithm, a gradient descent approach combined with MLI is used in order to move

the solution obtained at each step of MLI in the direction of increasing the sum-rate [21]. After

findingUk as in MLI algorithm, the gradient of the sum-rate with respect to Uk is calculated

as [21]

∇k R =

K∑

j=1

(
HjkC

−1
j Hjk − Tr

(
VH
kHjkC

−1
j HjkVk

))
Vk

+
∑

j 6=k

(
Tr
(
VH
kHjkC

−1

j HjkVk

)
−HjkC

−1

j Hjk

)
Vk,

(2.70)

where

Cj =

K∑

l=1

Qjl + σ2IMR

and

Cj =
∑

l 6=k

Qjl + σ2IMR
.

Afterwards, the Grassmann tangent space∇Ĝ
k R is obtained as

∇Ĝ
k R =

(
IMR
−UkU

H
k

)
∇k R. (2.71)

The solution is obtained at each step by moving the geodesic on the Grassmann manifold ac-

cording to

Uk =
(
UkF̂ (cosΣt) F̂H

)
+
(
Ĝ (sinΣt) F̂H

)
, (2.72)
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where∇Ĝ
k R = ĜΣF̂H is the compact singular value decomposition of the(MR × d) gradient

matrix. This approach is summarized in Algorithm 2.3.

Algorithm 2.3 Max-SR Iterative Interference Alignment

1: Initialize precodersV1,V2, ...,VK arbitrarily such thatVH
kVk = Id ∀k.

2: For each receiver, computeQk according to (2.62);

3: Compute decodersUk according to (2.64);

4: Compute the gradient of the sum-rate with respect toUk as in (2.70);

5: Obtain the Grassmann tangent space∇Ĝ
k R as in (2.71);

6: Find the modified decoderUk by moving the geodesic on the Grassmann manifold accord-

ing to (2.72);

7: Exchange the roles of the precoders and decoders and set
←−
Vk = Uk;

8: Perform the steps in (2)-(6) for the reverse link to find
←−
Uk;

9: Repeat the steps (2)-(7) until convergence.
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3 ITERATIVE INTERFERENCEALIGNMENT BASED

ON M IN-MAXING STRATEGY

Chapter 3 presents a new iterative IA algorithm based on Min-Maxing strategy aiming at im-

proving the sum-rate ofK-user MIMO interference channels. We formulate Min-MaxingIA

method by maximizing the power of the desired signal and, concurrently, minimizing the leak-

age interference. Min-Maxing method is handled by convex optimization after reformulating

and relaxing the optimization problem into a standard semidefinite programming approxima-

tion. Moreover, a simplified version of the optimal Min-Maxing method is proposed for rank-

deficient interference channels. The proposed scheme is evaluated by numerical simulation and

compared to the previous iterative IA algorithms. This chapter encompasses research published

in [60,61].

3.1 Introduction

Iterative algorithmic approaches are proposed as an alternative to find IA solutions inK-user

MIMO interference channels since closed-form solution forproper IA problems is still not feasi-

ble in general [19,54]. Moreover, iterative IA approach requires only local channel knowledge,

which is considered more practical to be realized. Recently, many iterative IA methods were

proposed in the literature [19–21, 62, 63]. In [19], MLI and Max-SINR were proposed as it-

erative IA algorithms, where both are described in Section 2.7.2. MLI and Max-SINR utilize

wireless channel reciprocity to achieve IA with local channel knowledge at each node. MLI

and Max-SINR iteratively adjust their precoders and decoders over the reciprocal network un-

til convergence. MLI algorithm can perfectly align the leakage interference if the IA problem

is feasible. Nevertheless, MLI algorithm achieves non-optimal sum-rate performance since it

discards the power of the desired signal in the useful subspace. On the other side, in spite of

Max-SINR can often achieve the best sum-rate performance ofall the proposed strategies in
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Chapter 3. Iterative Interference Alignment Based on Min-Maxing Strategy

most of the cases (not all cases), it loses some of its DoF at high SNRs and requires high im-

plementation complexity due to the non-orthogonal precoders and decoders that are generated

from this algorithm [62]. The authors of [21] proposed Max-SR iterative method in order to

maximize the sum-rate ofK-user interference channels by moving the precoders obtained at

each step of MLI procedure along the direction given by the gradient of the sum-rate. How-

ever, this method converges very slowly as well as the optimal sum-rate and the convergence

are not guaranteed [21]. Furthermore, two new approaches were proposed to modify the perfor-

mance of Max-SINR algorithm, where the authors of [64] proposed a new convergent version

of the Max-SINR algorithm and the authors of [65] presented two algorithms to jointly design

sub-streams instead of independently as max-SINR did.

Moreover, several studies used convex optimization approach to propose iterative IA meth-

ods [22, 53, 66–69]. In [22], IA problem is reformulated intoa relaxed convex of a rank con-

strained rank minimization (RCRM) problem, which improvesthe sum-rate performance when

the system is proper and infeasible. IA solution is found in [66, 67] based on minimum mean

square error (MMSE). Moreover, the authors of [53, 68] designed a linear transceiver based on

optimizing transmit covariance matrices for all transmitters and MMSE for all receivers. In [69],

maximization of the weighted sum-rate is addressed since itallows the system to cover all the

rate tuples on the Pareto-optimal rate region boundary. However, robust sum-rate performance

has not been achieved among the differentK-user MIMO interference channels by all the pre-

vious approaches.

In this chapter, we propose a new iterative IA algorithm forK-user MIMO interference

channels based on Min-Maxing strategy. Min-Maxing strategy tends to maximize the desired

character (power of the desired signal) and minimize the undesired one (leakage interference)

at the same time. Therefore, the proposed method maximizes the power of the desired signal

and keeps the minimum leakage interference, where those factors are the main effective fac-

tors affecting the sum-rate performance of IA systems. We formulate Min-Maxing iterative

IA as an optimization problem by maximizing the desired signal power while setting the min-

imum leakage interference obtained from MLI algorithm as a constraint. We approach such

a non-convex problem by reformulating and relaxing the costfunction and the constrains as

a standard semidefinite programming problem. This formulation can attain the minimum ag-

gregated interference from non-intended users and maximize the signal from the intended user

concurrently. We address the convergent of Min-Maxing IA method inK-user MIMO inter-

ference channels. Furthermore, a simplified Min-Maxing algorithm is proposed for the MIMO
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interference channels of rank-deficient channels with lesscomplexity. Min-Maxing algorithm is

extended to be applied for interference channels with diagonal structure asK-user multicarrier

interference channels.

This chapter is organized as follows: Section 3.2 formulates and solves the new iterative

IA algorithm. Section 3.3 presents the convergence proof ofthis method. Furthermore, the

simplified min-maxing algorithm is presented in this Section 3.4. Sum-rate simulation results

are illustrated and discussed for different interference channels in Section 3.5.

3.2 Min-Maxing Interference Alignment

In this section, we formulate IA problem based on Min-Maxingstrategy in a distributed way

in order to improve the sum-rate performance ofK-user MIMO interference channels. We

consider a(MR ×MT , d)
K interference channel, which was discussed briefly in Section 2.6.

Accordingly, the discrete-time complex received signal atthekth receiveryk ∈ CMR×1 is repre-

sented as

yk = UH
kHkkVkxk +

K∑

j=1,j 6=k

UH
kHkjVjxj +UH

k zk, (3.1)

Therefore, our aim is to design the matricesVk andUk for theK users in order to achieve the

goal of IA and improve the sum-rate of MIMO IA systems.

Basically, Min-Maxing IA algorithm maximizes the intendedsignal power, while it keeps

the minimum leakage interference at each receiver. In feasible IA systems, MLI technique

can typically align the leakage interference. However, MLIsum-rate performance is not opti-

mal since it does not consider the power of the desired signalin the interference-free subspace.

Therefore, in the proposed algorithm, we utilize MLI algorithm to find the minimum interfer-

ence leakage that can be achieved at the receiver side. This problem is formulated and solved

in Section 3.2, and described in Section 3.2.2.

3.2.1 Problem Formulation

We formulate Min-Maxing problem by maximizing the power of the desired signal in the

interference-free subspace at each receiver while we keep the minimum leakage interference

obtained by MLI algorithm. The interference leakage is obtained at each receiver as in MLI
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algorithm as follows

Uk = νdmin (Qk) ∀k, (3.2)

where

Qk =
K∑

j=1,j 6=k

P

d
HkjVjV

H

j H
H

kj. (3.3)

Hence, the minimum leakage interference can be computed as

Lkmin = Tr
(
UH
kQkUk

)
. (3.4)

After that, we can formulate these multiple requirements atthekth receiver in the following

trace maximization problem

P1 : arg max
Ūk

Tr
(
ŪH
kHkkVkV

H
kH

H
kkŪk

)
(3.5a)

s.t. : Tr
(
ŪH
kQkŪk

)
= Lkmin (3.5b)

ŪH
k Ūk = Id (3.5c)

Ūk ∈ C
MR×d, (3.5d)

whereUk is the re-designedUk in order to achieve the optimization goal in ProblemP1. This

optimization problem is non-convex because the constraint(3.5c) is a non-convex rank con-

straint. Therefore, we aim to reformulate ProblemP1 into a convex problem in the form of a

semidefinite programming problem. Let

Wk = HkkVkV
H
kH

H
kk,

whereWk ∈ CMR×MR is a positive semidefinite matrices(Wk � 0). ProblemP1 can be

re-written as

P2 : arg max
Ūk

Tr
(
ŪH
kWkkŪk

)
(3.6a)

s.t. : Tr
(
ŪH
kQkŪk

)
= Lkmin (3.6b)

ŪH
k Ūk = Id (3.6c)

Ūk ∈ C
MR×d. (3.6d)
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Then, we define

Zk = ŪkŪ
H
k , Zk ∈ C

MR×MR.

It was shown in [70] that the set ofΨ1 = {ŪkŪ
H
k : ŪH

k Ūk = Id} is the set of extreme points of

Ψ2 = {Zk : Zk = ZH
k ,Tr (Zk) = d, 0 � Z � I}. Let

Ψ1 = {ŪkŪ
H
k : ŪH

k Ūk = Id}

and

Ψ2 = {Zk : Zk = ZH
k ,Tr (Zk) = d, 0 � Z � I}.

Zk has a dimension ofMR byMR whereŪkŪ
H
k is a projection matrix of orderMR and rankd.

This means thatZk andIMR
− Zk are both positive semi-definite. Therefore,Ψ2 is the convex

hult of Ψ1, andΨ1 is the set of extreme points ofΨ2. The fact that any convex combination

of elements ofΨ1 lies in Ψ2 is immediate. Furthermore, since the spectral decomposition of

Zk has eigenvalues lying between 0 and 1 and their sum isd, it is clear that any element ofΨ2

with rank greater thand is not an extreme point. The only candidates for extreme points, then,

are those with rankd, i.e. the elements ofΨ1. But it is not possible that some rankd elements

are extreme points and others not, since the definition ofΨ2 does not in any way distinguishes

between different rankd elements. Since a compact convex set must have extreme points and

is the convex hull of its extreme points, the constraintΨ1 is stricter thanΨ2. According to

the fact thatTr
(
ŪH
kWkkŪk

)
= Tr

(
WkkŪkŪ

H
k

)
, constraints (3.6c) and (3.6d) can be relaxed

into Tr(Zk) = d and 0 � Zk � I, which are both convex. Therefore, maximizing the cost

function overŪkŪ
H
k ∈ Ψ1 is equivalent to maximizing it overZk ∈ Ψ2. When the cost function

is linear and subject toΨ2, the solution will be at one of the extreme points [71]. Consequently,

for linear cost functions, the optimization problems subject toΨ1 andΨ2 are exactly equivalent.

After including the above steps, problemP2 can be written as

P3 : arg max
Zk

Tr (WkZk) (3.7a)

s.t. : Tr (QkZk) ≤ Lkmin (3.7b)

Tr (Zk) = d (3.7c)

0 � Zk � I. (3.7d)
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The constrain (3.7d) can be written into a standard semidefinite programming form as


Zk 0

0 G


 � 0 (3.8a)

Zk +G = I, (3.8b)

whereG is a slack variable. Finally, the optimization problem has been formulated into a

standard semidefinite programming form.

From the matrixZk obtained by the semidefinite programming, we can recover theoutput

Ūk by eigen-decomposition, wherēUk is eigenvectors corresponding to thed largest eigen-

values of theZk. It is clear that Min-Maxing algorithm generates orthogonal precoders and

decoders.

3.2.2 Algorithm Description

Min-Maxing iterative algorithm alternates between the original and reciprocal networks in order

to update its precoders and interference suppression decoders according to ProblemP3. Algo-

rithm 3.1 describes the procedures of the algorithm where the following steps are performed:

• Step I: In the original network, each receiver solves the followingoptimization problem

P4 : arg max
Zk

Tr (WkZk) (3.9a)

s.t. : Tr (QkZk) ≤ Lkmin (3.9b)

Tr (Zk) = d (3.9c)

Zk 0

0 G


 � 0 (3.9d)

Zk +G = I, (3.9e)

After findingZk, Ūk can be extracted fromZk by eigen-decomposition as discussed in

the last section.

• Step II: In the reciprocal channel, the roles of the transmitters andthe receivers are ex-
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changed. Therefore,
←−
Vk = Ūk.

←−
Uk is computed in the reciprocal network as

←−
Uk = νdmin

(←−
Qk

)
∀k, (3.10)

where
←−
Qk =

K∑

j=1,j 6=k

P

d
Hkj
←−
Vj
←−
VH

j H
H

kj. (3.11)

Hence, the minimum leakage that is observed from MLI is

←−
L k

min = Tr
(←−
UH

k

←−
Qk
←−
Uk

)
. (3.12)

By defining
←−
Wk =

←−
Hkk

←−
Vk

←−
VH

k

←−
HH

kk, each receiver in the reciprocal network solves the

following optimization problem

P5 : arg max
←−
Z k

Tr
(←−
Wk
←−
Z k

)
(3.13a)

s.t. : Tr
(←−
Qk
←−
Z
)
≤
←−
L k

min (3.13b)

Tr
(←−
Z
)
= d (3.13c)



←−
Z 0

0 G


 � 0 (3.13d)

←−
Z +G = I, (3.13e)

After finding
←−
Z ,
←−
Ūk can be extracted from

←−
Z by eigen-decomposition.

Step I and II are repeated in this manner until the algorithm converges.

3.3 Convergence of Min-Maxing Algorithm

In the following, we prove that the convergence of Min-Maxing algorithm is guaranteed. It was

proven in [19] that computingUk according to step 3 and 8 in algorithm 3.1 minimizes the

leakage interference at each iteration. Therefore, it is stated for the givenVk of the userk at

iterationt+ 1 that

Lk(Uk(t+ 1),Vk(t)) ≤ Lk(Uk(t),Vk(t)).
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Algorithm 3.1 Min-Maxing Iterative Interference Alignment

1: Initialize precodersV1,V2, ...,VK arbitrarily such thatVH
kVk = Id ∀k.

2: For each receiver, computeQk according to (3.3);

3: Compute decodersUk according to (3.2);

4: CalculateLkmin according to (3.4);

5: OptimizeUk according to (3.9);

6: Exchange the roles of the precoders and decoders and set
←−
Vk = Uk;

7: For each receiver, compute
←−
Qk according to (3.11);

8: Compute decoders
←−
Uk according to (3.10);

9: Calculate
←−
L k
min;

10: Optimize
←−
Ūk according to (3.13);

11: Repeat the steps (2)-(10) until convergence.

Then,Uk is re-designed toUk in order to maximize the power of the desired signal while

keeping the minimum leakage interference. Therefore

Lk(Uk(t+ 1),Vk(t)) ≤ Lk(Uk(t),Vk(t)).

Likewise in the reciprocal channel, for the givenUk(t+1), Vk(t+1) is computed to minimize

the leakage interference. Then

←−
L k(Uk(t+ 1),Vk(t+ 1)) ≤

←−
L k(Uk(t+ 1),Vk(t)).

After that,Vk(t+ 1) is re-designed toVk(t+ 1) in order to maximize the power of the desired

signal while keeping the minimum leakage interference. Therefore

←−
L k(Uk(t+ 1),Vk(t+ 1)) ≤

←−
L k(Uk(t + 1),Vk(t)).

Since the total leakage interference is lower bounded by zero and because the total leakage

interference is minimized by each update for the decoders and precoders of the system at each

iteration, Min-Maxing algorithm is convergent.
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3.4 Simplified Min-Maxing Interference Alignment

For rank-deficient channels, we propose a simplified algorithm to solve the optimization prob-

lem P1 with less computational complexity. This simplified methodis sufficient whenMR

andMT are not symmetric, andd is smaller than the dimensionality of null(Qk), i.e c =

dim(null(Qk)). For this case, a simpler solution for problemP1 can be found.

By parameterizinḡUk to be as follows

Ūk = AkTk, (3.14)

whereAk = νcmin (Qk), AH
kAk = Ic, andTk ∈ Cc×d is an orthonormal matrix such that

TH
kTk = Id, ProblemP2 can be written as

P6 : arg max
Ūk

Tr
(
ŪH
kWkkŪk

)
(3.15a)

s.t. : Ūk = AkTk (3.15b)

TH
kTk = Id (3.15c)

Tk ∈ C
c×d. (3.15d)

ProblemP6 can be re-written by moving the constraint (3.15b) into the cost function (3.15a) to

be as

P7 : arg max
Tk

Tr
(
TH
kA

H
kWkkAkTk

)
(3.16a)

s.t. : TH
kTk = Id (3.16b)

Tk ∈ C
c×d. (3.16c)

ProblemP7 can be solved asTk = νcmax
(
AH
kWkkAk

)
[72].

In reciprocal network, the roles of the transmitters and thereceivers are exchanged.
←−
Ūk is

defined as
←−
Ūk =

←−
Ak
←−
T k. (3.17)
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Therefore, ProblemP7 is formulated as

P8 : arg max
←−
Tk

Tr
(←−
TH
k

←−
AH
k

←−
Wkk
←−
Ak
←−
T k

)
(3.18a)

s.t. :
←−
TH
k

←−
T k = Id (3.18b)

←−
T k ∈ C

c×d, (3.18c)

where
←−
Ak = ν

←−c
min

(←−
Qk

)
,
←−
AH
k

←−
Ak = I←−c , and←−c = dim

(
null(
←−
Qk)

)
. Hence,

←−
Tk is found as

ν
←−c
max

(←−
AH
k

←−
Wkk
←−
Ak

)
. The simplified algorithm is executed through the following

• Step I: In the original network, each receiver findsTk to beνcmax
(
AH
kWkkAk

)
. ThenŪk

can be extracted according to (3.14).

• Step II: In the reciprocal network, each receiver finds
←−
T k to be ν

←−c
max

(←−
AH
k

←−
Wkk
←−
Ak

)
.

Then
←−
Ūk can be extracted according to (3.17).

Step I and II are repeated in this manner until the algorithm converges. This algorithm is detailed

in Algorithm 3.2.

3.5 Simulation Results

In this section, we evaluate the performance of the proposedIA algorithm in comparison with

Max-SINR, MLI and Max-SR iterative IA techniques by means ofnumerical simulations in

K-user MIMO and multicarrier interference channels. Specifically, we choose Max-SINR tech-

nique since it has the best sum-rate of all previous techniques in most cases [62]. Besides, MLI

technique in some cases outperforms Max-SINR, and Max-SR offers better performance com-

pared to MLI and Max-SINR in other cases. Since Max-SR requires a large number of iterations

to converge, we consider different numbers of iterations inour simulation. The simulation has

been performed for 1000 channel realizations where each channel element is drawn from inde-

pendent and identically distributed real Gaussian distribution with zero mean and unit variance.

CVX toolbox was used in the simulation [73].

3.5.1 Results ofK-user MIMO Interference Channels

In this part of simulations, three regimes are considered:
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Algorithm 3.2 Simplified Min-Maxing Interference Alignment

1: Initialize precodersV1,V2, ...,VK arbitrarily such thatVH
kVk = Id ∀k.

2: For each receiver, computeQk according to (3.3);

3: if c ≥ d then

4: FindAk = νcmin (Qk);

5: FindTk = νcmax
(
AH
kWkkAk

)
;

6: OptimizeUk = AkTk;

7: else if

8: Uk = νdmin (Qk);

9: end if

10: Exchange the roles of the precoders and decoders and set
←−
Vk = Uk;

11: For each receiver, compute
←−
Qk according to (3.11);

12: if ←−c ≥ d then

13: Find
←−
Ak = ν

←−c
min

(←−
Qk

)
;

14: Find
←−
Tk = ν

←−c
max

(←−
AH
k

←−
Wkk
←−
Ak

)
;

15: Optimize
←−
Uk =

←−
Ak
←−
T k;

16: else if

17:
←−
Uk = νdmin

(←−
Qk

)
;

18: end if

19: Repeat the steps (2)-(18) until convergence.

1. d < MT+MR

K+1
, where the unknowns are more than the equations in the IA conditions as:

(4× 8, d = 1, 2)3, (5× 2, 1)3 and(8× 8, 2)K=4,5 interference channels.

2. d = MT+MR

K+1
, where it is marginal proper as:(6 × 6, 3)3 and (5 × 3, 2)3 interference

channels.

3. d > MT+MR

K+1
improper systems as(5× 2, 2)3 interference channel.

Firstly, we present the sum-rate performance of iterative IA methods underd < MT+MR

K+1
regime.

Fig. 3.1 shows the sum-rate performance of the different iterative IA approaches for(4× 8, 2)3

interference channel. It is notable that Min-Maxing, MLI and Max-SINR mostly converge af-

ter 100 iterations, while Max-SR presents a significant poorsum-rate at this iteration number.

It is noted in this figure that Max-SINR loses some of its DoF athigh SNRs because it opti-

mizes SINR stream-by-stream without considering orthogonal precoder constraint [21], [22].
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Moreover, MLI performance is worse than Max-SINR even if it gives the minimum interfer-

ence leakage. However, Min-Maxing offers the best sum-rateperformance at high SNRs in this

case. Furthermore, the simplified Min-Maxing is presented in this figure with 100 iterations,

which gives very close performance to the optimal Min-Maxing method since the channel is

rank-deficient and, hence, the optimal solution can be foundusing Algorithm 3.2. Sum-rate per-

formance of Max-SR is going to be better when the number of iterations is increased to 1000,

but it is still worse than all other approaches. Although, Max-SR converges after 3000 iterations,

and it gives better sum-rate performance than MLI and Max-SINR at high SNRs, Min-Maxing

performance with 100 iterations introduces the best sum-rate, and it is slightly better at 3000

iterations. As a result of that, Min-Maxing, MLI and Max-SINR need significant fewer number

of iterations than Max-SR to achieve acceptable sum-rate performance in this regime. Addi-

tionally, Min-Maxing achieves the best sum-rate with 100 iterations compared to all simulated

methods at high SNRs. Therefore, we proceed the comparison in this regime using MLI and

Max-SINR with 100 iterations.
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Figure 3.1: MIMO IC: Sum-rate performance comparison for(4× 8, 2)3 system.

Fig. 3.2 presents the convergence behavior of the considered IA methods for(4 × 8, 2)3

interference channel when SNR=50 dB. Min-Maxing algorithmconverges fast as MLI method

to the best sum-rate value. While Max-SINR presents the fastest convergence, but the sum-rate

convergence value is lower than Min-Maxing method. WhereasMax-SR method converges

very slowly compared to the other methods.
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Figure 3.2: MIMO IC: Convergence behaviour comparison for(4× 8, 2)3 system at 50 dBm.

Fig. 3.3 compares the performance of the(4×8, 2)3 interference channel with the(4×8, 1)3

interference channel. As expected, withd = 2, the sum-rate is improved for all IA methods

since more data streams are sent. Max-SINR and Min-Maxing algorithm behaviors are identical,

and better than MLI algorithm.
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Figure 3.3: MIMO IC: Sum-rate performance comparison for(4× 8, d = 1, 2)3 system.
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Fig. 3.4 shows the sum-rate performance of(5 × 2, 1)3 interference channel, where Max-

SINR can achieve the optimal DoF because it optimizes the SINR only for one data stream.

In this case, Min-Maxing algorithm achieves the optimal sum-rate as max-SINR at high SNRs

while it exhibits a small loss sum-rate compared to Max-SINRalgorithm at low SNRs. Further-

more, both are better than MLI for all SNRs, where MLI can achieve the minimum leakage in-

terference. As the case in the previous interference channel, the simplified Min-Maxing method

approaches the optimal Min-Maxing sum-rate with the same number of iterations.
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Figure 3.4: MIMO IC: Sum-rate performance comparison for(5× 2, 1)3 system.

In Fig. 3.5 and Fig. 3.6, we compare Min-Maxing algorithm to MLI and Max-SINR using

(8 × 8, 2)4 and(8 × 8, 2)5 interference channels, respectively. For both systems, Max-SINR

technique outperforms both our proposed algorithm and MLI algorithm in terms of achievable

throughput at low SNRs, while our algorithm achieves the best performance compared to all

other techniques at high SNRs. In those interference channels, as seen in Fig. 3.5 and Fig. 3.6,

the simplified Min-Maxing method fails to approach the optimal method since the channel is

full-rank and Algorithm 3.2 is not efficient in this case.

We conclude ford < MT+MR

K+1
regime that although the systems in this regime have more

DoF to reach the optimal sum-rate, Max-SINR and MLI fail to achieve that. Whereas Min-

Maxing achieves the optimal sum-rate among these types of systems at high SNRs.
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Figure 3.5: MIMO IC: Sum-rate performance comparison for(8× 8, 2)4 system.
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Figure 3.6: MIMO IC: Sum-rate performance comparison for(8× 8, 2)5 system.

Next, we present the performance of Min-Maxing IA for marginal proper systems. Fig.

3.7 exhibits the sum-rate performance of the different iterative IA approaches for(6 × 6, 3)3

interference channel. In this regime, Min-Maxing, MLI and Max-SINR demand 500 iterations

to present acceptable sum-rate performances, while Max-SRfails to achieve that. As the number

of iterations increases, all the sum-rate performances areenhanced. At 3000 iterations, Min-
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Figure 3.7: MIMO IC: Sum-rate performance comparison for(6× 6, 3)3 system.
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Figure 3.8: MIMO IC: Sum-rate performance comparison for(5× 3, 2)3 system.

Maxing, Max-SR and MLI converge to the identical solution since the IA problem is tightly

proper in this regime. It is noted also that Min-Maxing givesalways the same performance as

MLI regardless of the number of iterations. We further proceed our comparison in this regime

with only 500 iterations using MLI and Max-SINR approaches,where Fig. 3.8 exhibits the

sum-rate performance of(5 × 3, 2)3 interference channel. The behavior in this system is the
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Figure 3.9: MIMO IC: Sum-rate performance comparison for(5× 2, 2)3 system.

same as(6× 6, 3)3 interference channel, where Max-SINR technique gives small improvement

compared to both our proposed algorithm and MLI approach with respect to the achievable sum-

rate at low SNRs, while our proposed algorithm exactly matches the sum-rate performance of

MLI, and both schemes are much better than Max-SINR technique at high SNRs. For marginal

proper systems, the simplified Min-Maxing algorithm presents the same performance as the

optimal Min-Maxing and MLI algorithms since there is only one solution is existed in this case,

which can be seen in Fig. 3.7.

In a case of improper systems, we show the sum-rate behavior of Min-Maxing algorithm

in such systems using(5 × 2, 2)3 interference channel as seen in Fig. 3.9. In this regime, the

unknowns are less than the equations for the IA conditions; therefore, the performance of Min-

Maxing algorithm matches MLI algorithm, and both achieve sum-rate performance better than

Max-SINR method. It is noted that Min-Maxing, MLI and Max-SINR reach the convergence

point after 100 iterations, while Max-SR requires 3000 iterations to converge, which is the same

as the previous systems. The simplified Min-Maxing approachgives the same solution as MLI

and optimal Min-Maxing approaches.

It is concluded from the simulation above that Min-Maxing method is the only method can

guarantee the best sum-rate performance among all the simulated interference channels at high

SNR values, while MLI, Max-SINR and Max-SR are incapable of achieving a robust sum-rate
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Figure 3.10: Bit error-rate performance comparison for(4× 8, 2)3 system.

performance at high SNRs for the different regimes.

In Fig. 3.10, we simulate the error-rate performance for theiterative IA methods. As ex-

pected, Max-SINR presents the best error-rate since SINR has the direct effect on the error rate

as seen in Fig.3.10. However, we note that Min-Maxing methodimproves the error-rate com-

pared to MLI method, which is an extra advantage achieved by Min-maxing method compared

to MLI.

3.5.2 Results ofK-user Multicarrier Interference Channels

We extend the evaluation of Min-Maxing IA in aK-user multicarrier interference channel (MC

IC) that is presented in Section 2.5.2. We considerK = 3 users multicarrier interference

channel, where each user transmitsd = 3 streams usingL = 7 and8 bands. For the first

interference channel withL = 7, 3 data streams are sent by each user. Therefore, 9 data

streams are transmitted over the 7 bands. Fig. 3.11 shows thesum-rate performance of the

multicarrier interference channel withL = 7. At high SNRs, Min-Maxing method outperforms

other methods in terms of sum-rate by more than 2 bits/s/Hz. Furthermore, Fig. 3.12 shows the

sum-rate performance ofL = 8 interference channel for the different IA techniques, where each

user sends 3 data streams. In this system, Min-Maxing methodalso exhibits the best sum-rate

performance at high SNRs. We conclude for diagonal channelsthat the conditions (2.32) and
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Figure 3.11: MC IC: Sum-rate performance comparison forL = 7,K = 3 andd = 3 system.
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Figure 3.12: MC IC: Sum-rate performance comparison forL = 8,K = 3 andd = 3 system.

(2.33) are non-trivial to be achieved [19], [74]. However, Min-Maxing through its formulation

considers doing the best for both conditions. Accordingly,it always achieves the best sum-rate

at high SNRs.

Our investigation for Min-Maxing IA performance proves that this scheme achieves a con-

siderable sum-rate improvement compared to the previous schemes.
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4 ANTENNA SELECTION FORMIMO-OFDM

INTERFERENCEALIGNMENT SYSTEMS

This chapter proposes to apply antenna selection to MIMO-OFDM IA interference channels

through bulk selection and per-subcarrier selection to effectively improve the practical relia-

bility of IA in real-world environments. Moreover, a constrained per-subcarrier selection is

developed to attain power balancing among the antennas of each node. Furthermore, a sub-

optimal antenna selection algorithm is proposed to reduce the computational complexity of the

optimal selection. MIMO-OFDM IA testbed is implemented to collect measured channels and

present a realistic performance evaluation for the proposed method. The contents of this chapter

have been partially published in references [75–77].

4.1 Introduction

The ideal sum-rate performance of MIMO IA interference channels is achieved in the literature

by considering independent channels from a continuous distribution, which is predictable un-

der sufficient rich scattered environments (e.g. [10,17–19,60] and references therein). In reality,

this assumption is generally impossible to be observed since MIMO channels have spatial corre-

lation due to the clustering of scatterers in the propagation environment [24]. Moreover, indoor

environments create challenging multipath propagation scenarios, which produce significant

correlated channels [25]. Unfortunately, it was claimed inthe literature that the performance

of MIMO IA interference channels is highly dependent on channel realizations, where spatial

correlation generally has an adverse effect on sum-rate anderror-rate performance since the

correlation between channels decreases the SNR of the received signal after alignment [26].

Recently, the performance of IA was evaluated experimentally in [26, 78–82]. In this re-

gard, MIMO-OFDM IA testbed was established in [26] to collect measured channels, where

the practical feasibility of MIMO IA in slowly time-varyingreal-world channels with no fre-
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quency or time extensions was evaluated. It was shown in thiswork that IA can achieve better

DoF as the channels are less correlated. In order to overcomethe effect of spatial correlation,

the authors modified the separation between the antennas within each node to be in average 2

wavelengths (2λ), which is considered not practical to be implemented in reality. In [78–80],

real-time MIMO IA testbeds were implemented to provide the actual performance of MIMO IA

in realistic scenarios. These works considered some practical issues that affect IA performance

such as spatial correlation, channel estimation errors andradio frequency (RF) impairments.

Consequently, these practical studies claimed that the performance of IA using the theoretical

channels are significantly overrated especially in indoor environments. Moreover, they con-

cluded that in the absence of other issues such as channel estimation errors and channel time-

variations, collinearity between the desired signal and interference subspaces causes significant

degradation in IA performance.

Antenna selection is a powerful technique for enhancing thecapacity and reliability of re-

ception compared to open loop MIMO techniques [83–86]. Antenna selection technique was

studied rarely in the literature to improve sum-rate and error-rate performance of IA [87, 88].

The authors of [87] suggested to apply different antenna selection criteria on single carrier

MIMO IA systems in order to improve the sum-rate of IA using linear receivers, while an an-

tenna selection criterion for maximum-likelihood receivers was considered in [88]. The authors

of [87] and [88] assessed their techniques using theoretical channels. In this framework, antenna

switching strategies were also suggested as in [89–91]. However, to the best of our knowledge,

MIMO-OFDM IA interference channels with antenna selectionhave not been considered.

Motivated by the potential of combining IA and antenna selection, we consider in this chap-

ter improving the practical feasibility of MIMO-OFDM IA systems in real-world environments

by means of antenna selection. Therefore, we propose to apply transmit antenna selection to

MIMO-OFDM IA systems either through bulk or per-subcarrierselection aiming at improving

the sum-rate and/or error-rate performance under real-world channel circumstances while keep-

ing the minimum spatial antenna separation of 0.5 wavelengths. Three selection criteria are

considered, where the first criterion is the maximum sum-rate (Max-SR), in which we aim to

improve the sum-rate of MIMO-OFDM IA systems. The second andthird criteria are respec-

tively the minimum error-rate (Min-ER) and minimum eigenvalue (Min-EG), in which we aim

to improve the quality of the reception. A constrained per-subcarrier selection is considered to

overcome the power imbalance between the antennas of each node by allocating the same num-

ber of subcarriers to all antennas with minimum rate loss. Moreover, we propose a sub-optimal
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antenna selection algorithm to avoid the exhaustive searchand reduce the computational com-

plexity. Inspired by providing realistic performance evaluation, MIMO-OFDM IA testbed with

antenna selection is established in order to collect measured channels.

In the following section, antenna selection approaches andMIMO-OFDM IA system model

with antenna selection are presented. Section 4.3 shows thethree transmit antenna selection

criteria for MIMO-OFDM IA systems. The constrained per-subcarrier antenna selection is dis-

cussed in Section 4.4. Further, the sub-optimal antenna selection is presented in Section 4.5

in order to reduce computational complexity. Section 4.6 shows system implementation and

simulation setup that are used in the performance evaluation. Finally, simulation results are

illustrated and discussed in Section 4.7.

4.2 MIMO-OFDM IA System Model with Antenna Selection

4.2.1 Antenna Selection

MIMO technique is originally proposed to improve the performance of wireless communication

systems in terms of diversity [92] and spatial multiplexing[46]. However, this improvement is

achieved at the price of complexity and thus cost [83]. In order to reduce the complexity and the

cost, antenna selection technique is proposed, where the best set of antennas out of the overall

available antennas are selected at the transmitting or/andreceiving side depending upon the

selection strategy and the available RF chains [83, 93–95].The low complexity comes through

reducing the number of RF chains, which is considerably cheaper than introducing complete

RF chains.

In this context, antenna selection can be employed to improve the capacity and reliability

of reception depending on the used selection criterion [83–86, 96]. The selection criteria can

be classified into two tracks: One is maximizing the capacityof the system; and the other is to

minimize the error-rate. Moreover, transmit antenna selection is very similar to receive antenna

selection except that little feedback is required for the case of transmit antenna selection [83].

Furthermore, antenna selection was proposed in the literature for point-to-point MIMO-OFDM

systems to be handled through bulk selection [97] or per-subcarrier selection [98], [99]. In bulk

selection, one transmit antenna subset is selected for all subcarriers at each transmit node. This

strategy is considered cost efficient since only the active antennas require RF chains. In per-

subcarrier selection strategy, each subcarrier at each transmit node has its own transmit antenna
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subset. Per-subcarrier selection has a remarkable performance gain especially in high frequency

selective channels, since the selection optimization is performed subcarrier-by-subcarrier [99].

Nevertheless, it requires more RF chains compared to bulk selection. Furthermore, it has the

disadvantage of creating power imbalance across the transmit antennas. This occurs if one

antenna is selected for a large number of subcarriers. As a result of that, the power amplifier

works in the saturation region leading to performance degradation [98].

Next, we present the system model of MIMO-OFDM IA system withantenna selection

through bulk and per-subcarrier selection.

4.2.2 System Model

A K-user MIMO-OFDM IA interference channel withMT transmit antennas,MR receive an-

tennas, andN subcarriers is considered as seen in Fig. 4.1, where each user wishes to achieved

DoF. The details of this interference channel was describedin Section 2.6.2.

Figure 4.1:K-user interference channel system model.

In antenna selection strategy, a subset of transmit antennasMs is selected out ofMT . De-

fine ψki to be theith subset of allA =
(
MT

Ms

)
possible combinations of the antennas at thekth

transmitter, whereψki can be described as

ψki = {Im}
M
m=1, {Im} ∈ {0, 1}; i = 1, 2, ...., A, (4.1)

whereIm is the indicator for themth transmit antenna. Therefore,Im is set to 1 if and only if

themth transmit antenna is active and 0 implies otherwise.
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In IA, all users cooperate in order to achieve antenna selection criterion goal. Hence, we

describe the indicator function for one possible subset of transmit antennas among all users,

i.e thesth subset, asγs = {ψki }
K
k=1, i ∈ {1, 2, .., A}. Therefore, the set that contains all

the possible combinationsS = AK of the transmit antennas among all users is written as

χ = {γ1, γ2, .., γS}.

In per-subcarrier selection, selection process is performed independently subcarrier-by-

subcarrier among all users to choose the subset that achieves the selection goal, which can

be described for thenth subcarrier as

γnopt = arg sel
γs∈χ

{
K∑

k=1

∆k,n
s , s = 1, 2, .., S

}
= {ψk,no }

K
k=1, (4.2)

where arg sel{} denotes the selection objective,∆k,n
s is the cost function of thekth user over

thenth subcarrier for theγs subset, andψk,no is the chosen set for thekth transmitter over the

nth subcarrier that achieves the selection criterion.

In bulk selection, the process is executed among all users and subcarriers cooperatively,

which can be formulated as

γopt = arg sel
γs∈χ

{
K∑

k=1

N∑

n=1

∆k,n
s , s = 1, 2, .., S

}
= {ψko}

K
k=1, (4.3)

whereψko is the chosen set for thekth transmitter over all the subcarriers that achieving the

selection criterion. For the further description, we mention here thatγnopt = γopt for all the

subcarriers in bulk selection.

As an example for transmit antenna selection in MIMO-OFDM IAsystems, consider 3

users each hasMT = 3 antennas to selectMS = 2 andMR = 2 receive antennas. Accord-

ingly, any user, i.e. thekth user, has the following possibilities of subsetsψk1 = {1, 1, 0}, ψk2 =

{1, 0, 1}, ψk3 = {0, 1, 1}. Hence, a possible subset among all users, i.e. thesth subset, can

be described asγs = {ψ1
1, ψ

2
3, ψ

3
2} = {{1, 1, 0}, {0, 1, 1}, {1, 0, 1}}. Moreover, the setχ

has 27 possible subsets from the transmit antennas among allusers. Assuming that the per-

subcarrier selection is performed using (4.2) over thenth subcarrier and, then, the criterion se-

lectsγnopt = {{1, 0, 1}, {1, 1, 0}, {1, 0, 1}}, this means that the selection criterion chooses at the

nth subcarrier the following subsets to communicate:ψ1,n
o = {1, 0, 1}, ψ2,n

o = {1, 1, 0}, ψ3,n
o =

{1, 0, 1}. Assuming again the bulk selection is executed through (4.3), and the output isγopt =

{{1, 0, 1}, {1, 1, 0}, {1, 0, 1}}. This means that the selection criterion chooses for all subcarrier
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the following subsets to communicate:ψ1
o = {1, 0, 1}, ψ

2
o = {1, 1, 0}, ψ

3
o = {1, 0, 1}.

After finding γnopt using antenna selection technique, the discrete-time complex received

signal over thenth subcarrier at thekth receiver after the fast Fourier transformation (FFT) is

represented as

ynk = Un
k

H[Hn
kk]ψk,n

o
Vn
kx

n
k +

K∑

j=1,j 6=k

Un
k

H[Hn
kj]ψj,n

o
Vn
j x

n
j +Un

k
Hznk , (4.4)

whereUn
k ∈ CMR×d is an orthonormal linear interference suppression matrix and [Hn

kj]ψj,n
o
∈

CMR×Ms denotes the channel frequency response of the selected antennas in the subsetψj,no .

Vn
k ∈ CMs×d is the orthonormal precoding matrix which is applied for thetransmitted data

xnk ∈ Cd×1 from thekth node at thenth subcarrier.

In this algorithm, uniform power allocation is assumed. Therefore, the sum-rate over the

nth subcarrier can be written as [26]

Rn(γnopt) =

K∑

k=1

log2

∣∣∣∣∣Id +
Un
k

H[Hn
kk]ψk,n

o
Vn
kV

n
k

H[Hn
kk]

H
ψk,n

o
Un
k

σ2Id +Un
k

HQn
kU

n
k

∣∣∣∣∣ , (4.5)

whereQn
k is the interference covariance matrix at thekth receiver over thenth subcarrier, which

is written as

Qn
k =

∑

k 6=j

Un
k

H[Hn
kj]ψj,n

o
Vn
jV

n
j

H[Hn
kj]

H
ψj,n

o
Un
k . (4.6)

Assuming perfect IA is achieved, the sum-rate becomes

Rn(γnopt) =

K∑

k=1

log2

∣∣∣∣Id +
1

σ2
Un
k

H[Hn
kk]ψk,n

o
Vn
kV

n
k

H[Hn
kk]

H
ψk,n

o
Un
k

∣∣∣∣ . (4.7)

Therefore, the achieved sum-rate in bits per second per hertz averaged over all subcarriers can

be expressed as

R(γopt) =
1

N

N∑

n=1

Rn. (4.8)

4.3 Antenna Selection Criteria for MIMO-OFDM IA Systems

The selection criteria can be categorized according to the goal of the selection into two groups:

sum-rate and error-rate based criteria. In this work, we consider linear receivers since they are
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more practical in spatial multiplexing systems. Without loss of generality and according to

the practical implementation feasibility, perfect IA is assumed in this work, which is a general

assumption for IA in practical implementation [26,78–80].

4.3.1 The Relation between IA Performance and Canonical Correlations

In IA systems, the decoding process is carried out dependingupon the components of the de-

sired signal that are projected into the interference-freesubspace. When the components of the

desired signal in the interference-free space increase, the SNR at the receiver correspondingly

increases, and the system error-rate and sum-rate performance consequentially are improved.

Therefore, IA performance is highly dependent on the principal angles between the received

signals and interference suppression matrices. The cosineof these principal angles is called

canonical correlation. As seen in Fig. 4.2, for the same received signal power, the power of

the decoded signals after the suppression matrix changes according to the principal angle. In

the case ofΘ1, the power of the decoded signal is larger than the case ofΘ2 even if the power

of HkkVk is equal sinceΘ1 < Θ2. As a result of that, the orthogonality between the channels

is extremely required to produce high-level of orthogonality between the desired subspace and

the interference subspace in order to reduce the loss of SNR after the alignment. Therefore,

high spatial correlation is translated into a large alignedsignal at interference subspaces and,

consequently, lower SNR after alignment [26].

Y

X

Desired signal 

subspace

Interference 

subspace

Null ([HkjVj])

U
ᵻ

kHkkVk

HkjVj

HkkVk

HkkVk

�1
2

Figure 4.2: IA and principal angles representation.

Further, we present the impact of the canonical correlations, which are the cosine of the

principal angles, on sum-rate of theK-user MIMO-OFDM IA system. The starting point for
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the derivation is (4.8). At high SNRs, (4.8) can be approximated as

R(γs) ≃
1

N

K∑

k=1

N∑

n=1

log2

∣∣∣∣
1

σ2
Un
k

H[Hn
kk]ψk,n

i
Vn
kV

n
k

H[Hn
kk]

H
ψk,n
i

Un
k

∣∣∣∣ . (4.9)

According to thin QR decomposition, we can write

Un
k = FUn

k
JUn

k
(4.10)

and

[Hn
kk]ψk,n

i
Vn
k = FV n

k
JV n

k
, (4.11)

whereFUn
k
, FV n

k
are orthonormalMR × d matrix andJUn

k
, JV n

k
ared× d upper triangle matrix.

Under the above factorization, (4.9) is written as

R(γs) =
1

N

K∑

k=1

N∑

n=1

log2

∣∣∣∣
1

σ2

(
FUn

k
JUn

k

)H (
FV n

k
JV n

k

) (
FV n

k
JV n

k

)H (
FUn

k
JUn

k

)∣∣∣∣ . (4.12)

SinceUn
k is a unitary matrix, this leads to

∣∣∣JUn
k
JH
Un
k

∣∣∣ = 1. Therefore, (4.12) can be simplified as

R(γs) =
1

N

K∑

k=1

N∑

n=1

log2

((
1

σ2

)2 ∣∣∣FH
Un
k
FV n

k

∣∣∣
∣∣∣FH

V n
k
FUn

k

∣∣∣
∣∣∣JV n

k
JH
V n
k

∣∣∣
)
. (4.13)

The canonical correlations are obtained as singular valuesof FH
V n
k
FUn

k
as follows [100]

FH
V n
k
FUn

k
= T̄n

k1Λ
(
T̄n
k2

)H
, (4.14)

whereT̄n
k1 andT̄n

k2 ared×d unitary matrices,Λ is d×d diagonal matrix equals diag(αn1 , .., α
n
d )

and (αn1 , ...., α
n
d) are the canonical correlations between the subspaceUn

k and the subspace

[Hn
kk]ψk,n

i
Vn
k .

Therefore, (4.13) can be written as

R(γs) =
1

N

K∑

k=1

N∑

n=1

log2

((
1

σ2

)2 ∣∣∣T̄n
k1Λ

(
T̄n
k2

)H
∣∣∣
∣∣∣T̄n

k2Λ
(
T̄n
k1

)H
∣∣∣
∣∣∣JV n

k
JH
V n
k

∣∣∣
)
. (4.15)
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Thereafter, (4.15) can be formulated

R(γs) =
1

N

K∑

k=1

N∑

n=1

log2

(
1

σ2

d∏

a=1

(
[αna ]ψk,n

i
× µa

(
[Hn

kk]ψk,n
i

Vn
k

)))2

, (4.16)

whereµa
(
[Hn

kk]ψk,n
i

Vn
k

)
is theath singular value of matrix

(
[Hn

kk]ψk,n
i

Vn
k

)
. It is clear that

as the canonical correlation increases, the desired signaland the interference spaces are less

aligned, and the received signal SNR and sum-rate of the system increase.

4.3.2 Maximum Sum-Rate Selection Criterion (Max-SR)

In Max-SR criterion, antenna selection is performed to maximize the sum-rate of MIMO-

OFDM IA systems. Max-SR through bulk selection can be formulated as

γopt = arg max
γs∈χ

R(γs). (4.17)

We mention again here thatγs andψki are the same for all subcarriers in bulk selection. Sum-rate

in (4.8) can be written as discussed in the previous section as

R(γs) =
1

N

K∑

k=1

N∑

n=1

log2

(
1

σ2

d∏

a=1

(
[αna ]ψk,n

i
× µa

(
[Hn

kk]ψk,n
i

Vn
k

)))2

. (4.18)

Therefore, (4.17) can be rewritten as

γopt = arg max
γs∈χ

Θ(γs), (4.19)

where

Θ(γs) =
K∑

k=1

N∑

n=1

(
d∏

a=1

(
[αna ]ψk,n

i
× µa

(
[Hn

kk]ψk,n
i

Vn
k

)))2

. (4.20)

In per-subcarrier selection, the selection is performed subcarrier-by-subcarrier as follows

γnopt = arg max
γs∈χ

Rn(γs) ∀n. (4.21)

Correspondingly, the selection can be reformulated into

γnopt = arg max
γs∈χ

Θn(γs) ∀n, (4.22)
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whereΘn(γns ) is defined as

Θn(γns ) =
K∑

k=1

(
d∏

a=1

(
[αna ]ψk,n

i
× µa

(
[Hn

kk]ψk,n
i

Vn
k

)))2

. (4.23)

Max-SR bulk selection and per-subcarrier selection are described generally in Algorithms

4.1 and 4.2, respectively.

Algorithm 4.1 Bulk transmit antenna selection

1: Findχ;

2: for s = 1 to S do

3: Chooseγs ∈ χ;

4: for n = 1 toN do

5: ComputeVn
k andUn

k ; ∀k that are related toγs;

6: end for

7: Compute the cost function of the selection criterion usingγs as in (4.20), (4.24), or

(4.26);

8: end for

9: Choose the setγopt that optimize the selection criterion as in (4.3). Then compute the

related codersVn
k andUn

k ∀n, where this set is used for all subcarriers.

4.3.3 Minimum Error-Rate Selection Criteria (Min-ER)

It was shown that maximizing the post processing SNR leads tominimization of the error-

rate [101], [102]. Therefore, it is aimed in this selection criterion to maximize the SNR of

the received signals by minimizing the lost energy of the received signal after alignment that

results from spatial collinearity between the desired signal and interference subspaces. This can

be achieved by selecting the subsets that have the maximum canonical correlation between the

desired received signal subspace and the interference-free subspace [75]. For bulk selection, the

optimization is

γopt = arg max
γs∈χ

K∑

k=1

N∑

n=1

(
d∏

a=1

[αna ]ψk,n
i

)2

, (4.24)
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while in per-subcarrier criterion, the selection is performed subcarrier-by-subcarrier as follows

γnopt = arg max
γs∈χ

K∑

k=1

(
d∏

a=1

[αna ]ψk,n
i

)2

. (4.25)

Min-ER bulk selection and per-subcarrier selection are described generally in Algorithms

4.1 and 4.2, respectively.

Algorithm 4.2 Per-subcarrier transmit antenna selection

1: for n = 1 toN do

2: Findχ;

3: for s = 1 to S do

4: Chooseγs ∈ χ;

5: ComputeVn
k andUn

k ; ∀k for γs ∈ χ;

6: Compute the cost function of the selection criterion usingγs as in (4.23), (4.25), or

(4.27);

7: end for

8: Choose the setγnopt that optimize the selection criterion as in (4.2). Then

compute the related codersVn
k andUn

k , where this set is used for only this

subcarrier.
9: end for

4.3.4 Minimum Eigenvalue Selection Criterion (Min-EG)

It was exposed that the postprocessing SNR of thekth user at thenth subcarrier is lower

bounded by minEig
(
Un
k

H[Hn
kk]ψk,n

i
Vn
k

)
, where minEig denotes the minimum eigenvalue of

(
Un
k

H[Hn
kk]ψk,n

i
Vn
k

)
[101], [102]. Therefore, error-rate lower bound is optimized for the whole

system when the antenna subset is selected through bulk selection as [87]

γopt = arg max
γs∈χ

K∑

k=1

N∑

n=1

minEig
(
Un
k

H[Hn
kk]ψk,n

i
Vn
k

)
. (4.26)

While in per-subcarrier selection, the optimization problem is reformulated for thenth subcar-

rier as follows

γnopt = arg max
γs∈χ

K∑

k=1

minEig
(
Un
k

H[Hn
kk]ψk,n

i
Vn
k

)
. (4.27)
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Min-EG bulk selection and per-subcarrier selection are described generally in Algorithms

4.1 and 4.2, respectively.

4.4 Transmit Antenna Selection with Power Balancing

While per-subcarrier selection strategy achieves more diversity gain than bulk selection does in

high frequency selective channels, per-subcarrier selection may cause power imbalance across

transmit antennas. This occurs if one antenna is loaded witha large number of subcarriers,

which leads the power amplifier to work in the saturation region causing performance degrada-

tion [98,99]. Therefore, constrained transmit antenna selection is proposed to achieve the power

balancing using the same methodology as in [103]. The constraint is to equally distribute the

power between transmit antennas by assigning the same number of subcarriers to each antenna.

This constraint can be reformulated as

N∑

n=1

{Ik,nm } ≤

⌈
N ×Ms

MT

⌉
∀m and ∀k, (4.28)

where⌈B⌉ denotes the smallest integer larger than or equal toB. SinceIm is the indicator to the

mth transmit antenna and it equals 1 when themth transmit antenna is active and 0 otherwise.

The summation in
∑N

n=1{I
k,n
m } counts the number of subcarriers that are allocated to themth

antenna at thekth transmitter.

A sequential reallocation method is used to achieve the constrained transmit antenna selec-

tion according to the following three steps:

1. In the first step, the unconstrained transmit antenna selection according to one of the

selection criteria is performed as in Algorithm 4.2.

2. Then, a repeatable reallocation process is executed for the antennas with overloaded sub-

carriers to antennas with underloaded subcarriers subjected to the constraint that no loss

is allowed in the selection rate.

3. If power balancing is achieved, per-subcarrier selection algorithm achieves power balanc-

ing without loss compared to the unconstrained selection. Otherwise, Step 2 is repeated in

a way that loss in the rate is allowed to complete the reallocation process for the remaining

overloaded antennas.

This approach is described in Algorithm 4.3.
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Algorithm 4.3 The constrained transmit antenna selection

1: Perform transmit antenna selection using a specific selection criterion without constrains to

obtain{ψk,no } ∀n and∀k.

2: for k = 1 toK do

3: Find overloaded antenna subsetΩ+ and underloaded antenna subsetΩ−.

4: for n = 1 toN do

5: while Ω+ 6= φ do

6: Reallocate the subcarriers from the antennas inΩ+ to the antennas inΩ− with-

out loss in the rate.
7: Modify Ω+ andΩ−

8: end while

9: end for

10: if Ω+ 6= φ then

11: for n = 1 toN do

12: while Ω+ 6= φ do

13: Reallocate the subcarriers from the antennas inΩ+ to the antennas inΩ−

with loss in the rate.
14: Modify Ω+ andΩ−

15: end while

16: end for

17: end if

18: end for

4.5 Sub-Optimal Antenna Selection Algorithm

The proposed antenna selection technique for MIMO-OFDM IA interference channels in the

previous sections is performed through exhaustive search over all possible combinations at the

transmitter sides in order to select the optimal antenna subsets for the transmitters. This optimal

solution requires a high computational complexity that grows withO
(
N
(
MT

Ms

)K)
. In order to

reduce this computational complexity, we propose a sub-optimal method to perform the selec-

tion process with less complexity. The proposed sub-optimal algorithm is based on a greedy

strategy, in which we do the selection process for each user independently after initializing

one antenna set for each user. The initial antenna set for a given user is the set that gives the

maximum Frobenius norm of the direct channel matrix. We further describe the sub-optimal
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method for bulk selection, which can be easily applied to per-subcarrier selection following

Algorithm 4.2. The description of the sub-optimal method can be commenced by initializing

the setA = {ψkini}
K
k=1 that contains all the initial sets, where selection of the initial sets can be

formulated in bulk selection for thekth user as follows

ψkini = arg max
ψk
i

{
N∑

n=1

∥∥∥[Hn
kk]ψk

i

∥∥∥
F
, i = 1, 2, .., A

}
; ∀k. (4.29)

Afterwards, the initial sets are modified sequentially for the users until all the initial sets inA

are modified. The sequential modification is performed for each user independently, e.g. the

kth user, by selecting the subset of antennas at each userψko that achieves the selection criterion

while the other antenna subsets of the otherK − 1 users are fixed. Then, we modify the initial

subset of this userψkini to beψko in the setA. This process is repeated for all users in order to

modify the initial antenna subsets. Hence, the computational complexity is reduced to be grown

with O
(
NK

(
MT

Ms

))
. Therefore, we c conclude that the vital role of the sub-optimal scheme is

to reduce the exponential growth of the complexity to lineargrowth.

Furthermore, the correlation between subcarriers can be utilized in order to reduce the

number of subcarriers that is considered in the selection process. The adjacent subcarriers may

face correlated fading, which means that if one subcarrier is considered for the selection process,

the chosen antenna set is also suitable for these correlatedsubcarriers. Therefore, the selection

process can be employed for one subcarrier that represents aspecific number of subcarriers.

Assuming that one subcarrier presents a group ofNs subcarriers, the computational complexity

becomesO
(
NK
Ns

(
MT

Ms

))
. This sub-optimal approach is summarized in Algorithm 4.4 for bulk

selection, which can be easily extended to per-subcarrier selection according to Algorithm 4.2.

4.6 System Implementation and Simulation Setups

We evaluate the sum-rate and error-rate performance of the antenna selection techniques in

MIMO-OFDM IA system using measured channels, deterministic channels and analytical chan-

nels. In our evaluation, measured and deterministic channels are obtained for an indoor envi-

ronment. In order to obtain measured channels, a basic MIMO-OFDM system testbed is imple-

mented considering channel estimation and carrier recovery. Whereas deterministic channels

are synthesized using 3-D ray-tracing, which can characterize the propagation channel with high

accuracy. It was verified that the static measurement environment can ensure the validity of the
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Algorithm 4.4 Sub-optimal bulk transmit antenna selection

1: Findψki ; ∀i and∀k;

2: Initialize the setA by findingψkini, ∀k according to (4.29);

3: ComputeVn
k andUn

k , ∀k according to the setA;

4: for k = 1 toK do

5: for i = 1 toA do

6: Modify thekth element in the setA to beψki ;

7: for n = 1:Ns:N do

8: ComputeVn
k andUn

k according to the setA;

9: end for

10: Compute the cost function of the selection criterion for thesetA as in (4.20), (4.24),

or (4.26);

11: end for

12: Find the setψko satisfies the selection criterion and fix thekth element inA to

beψko as in (4.3).
13: end for

results as claimed in [26]. Therefore, the measurements and3D ray-tracing are performed for a

static environment. It is worth mentioning that the deterministic channels are effective in offer-

ing an averaged performance for the environment by moving the nodes and extracting different

channel realizations, which is hardly to be accomplished bymeasured channels. The analytical

channels have been drawn from independent and identically distributed Gaussian distribution

with zero mean and unit variance, which represents a high selective and scattered environment.

Evaluating the proposed algorithms under different channel conditions provides a robust con-

clusion about the efficiency of antenna selection under the different circumstances.

A communication system at 2.4 GHz operating in the first floor of the electrical engineering

building of Duisburg-Essen University is considered. According to the hardware limitation, we

consider a three-users(K = 3) MIMO-OFDM IA system with 64 subcarriers(N = 64), where

the channel bandwidth is 1 MHz. 3 antennas at each transmitting node(MT = 3, Ms = 2)

and two antennas at each receiving node(MR = 2) are assumed, where each user transmits

d = 1 stream. The antennas within each node are placed at a distance ofλ/2 from each other as

seen in Fig. 4.3. The values of transmit power, subcarrier spacing, guard interval, and symbol

duration are set to 15 dBm, 15.625 kHz, 16 samples and 80µs, respectively. The closed-form

solution of IA is applied.
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Next, we present our hardware setup that is used to collect the measured channels. Then,

3D ray-tracing channel model is exhibited.

Figure 4.3: IA testbed setup: Demonstration of the antennas within one transmitting node.

4.6.1 Software Implementation and Hardware Setup

In this section, we present the MIMO-OFDM IA wireless network testbed that is used in this

work. The objective of the testbed is to assess antenna selection techniques in MIMO-OFDM

IA systems in a realistic scenario. In this scenario, transmitter-receiver pairs were placed at

distances ranging from 2 to 8m apart, where we avoid the line-of-sight scenario between

transmitter-receiver pairs during the measurements. It isworth mentioning that directional

antennas or multibeam antennas offer better diversity thanomnidirectional ones in the line-

of-sight scenarios, where beam selection can be performed as discussed in [104–106]. During

the measurements, clean channel at 2.4 GHz is used. Moreover, we ensure that there are no

moving objects in the surroundings in order to collect static channels. The measured channel

realizations are collected without moving the transmit nodes nor the receive nodes, where 100

channel realization are collected over different time slots.

Software Implementation

To realistically predict the performance of IA with antennaselection as stated in the objective

of the testbed implementation, we put emphasis on channel estimation implementation. Users

sequentially send OFDM preamble symbol as frequency-domain pilots that are known to all

receivers to satisfy time orthogonality of training among all users as seen in Fig. 4.4 [107].

Each OFDM symbol in our experiment consists of 40 data subcarriers, 24 zeros, and 16 samples
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as cyclic prefix for the guard interval. The preamble symbol contains similar arrangement

as the usual OFDM symbols, except that all of 40 data subcarriers in the preamble are the

known pseudo noise (PN) sequence used for training symbol-based channel estimation. In the

training symbol-based channel estimation, all subcarriers of an OFDM symbol are dedicated

for training. The PN sequence only contains +/-1 in even subcarriers and 0 in odd subcarriers.

One OFDM frame has one preamble symbol. For slowly varying channels, the channels for the

same subcarriers in one OFDM frame are assumed unchanged. From the preamble received at

the output of FFT block in the receiver, we can obtain the least-square estimate of the channel

frequency as was described in [108,109].

In this experiment, synchronization is required to compensate time and carrier frequency

offset between transmitters and receivers, which leads to the reduction of each OFDM symbol

amplitude in time domain, shifting of the phase and inter-carrier interference that ruins subcarri-

ers orthogonality. PN synchronization method is implemented to carry out time synchronization

and fine frequency offset synchronization between each transmit-receive pair using the same

methodology in [26,110,111].
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Figure 4.4: Illustration example for preamble and data example used in measurement.

Hardware Setup

In our hardware setup, universal software radio peripheral(USRP) units, GNU software, and

personal computers (PC) are mainly used. The setup consistsof 9 USRP N210 as transmitters

connected to one PC and 3 USRP B210 as receivers connected to another PC, where each trans-

mitting node requires 3 units of USRP N210 and each receivingnode needs one USRP B210.

USRP unit is the most common hardware used with GNU Radio to build a Software Defined

Radio (SDR) system. Each USRP N210 consists of two main sub-devices, a motherboard and

different daughterboards which can transmit and/or receive different frequency ranges. We used

SBX USRP daughterboards that provides up to 100 mW output, 40MHz of bandwidth and has

400 MHz-4400 MHz frequency range with Gigabit Ethernet interface. USRP B210 is fully in-
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tegrated single board USRP platform with frequency coverage from 70 MHz-6 GHz and has

universal serial bus (USB) 3.0 connectivity. The core component of each node is the PC which

allocates USRPs as the baseband hardware, configures and controls the baseband hardware as

well as RF front-end using the GNU Radio software. The hardware block diagram is illustrated

in Fig. 4.5.

For the aim of synchronization, an external function generator is used to generate a 10 MHz

clock and PPS signal to Ettus OctoClock, where this OctoClock can distribute the reference

signal for the USRPs. Moreover, the MIMO cable can also shareclock and PPS signals between

USRP N210 within the node.

Through measurements, we only record the channels that achieve successful date transmis-

sion by all receivers. Moreover, the received signals have high SNR values of an average 18

dB. This methodology of tight synchronization and high power transmission guarantees that our

measurements enclose only channel impairments and avoid the timing effects.
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Figure 4.5: Hardware block diagram.

4.6.2 3D Ray-Tracing Channel Modelling

It was verified that characterization of the propagation channel and extraction of the channel

parameters can be provided using 3D ray-tracing with high accuracy [112, 113]. Moreover, an

excellent agreement with measurements for narrowband and wideband wireless channels was

presented in the literature [113,114]. This model considers the spatial channel and the environ-

mental effects as path-loss, frequency dependence, reflections, transmissions and diffractions.

It considers as well the characteristics of the antennas as part of the effective channel such as
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directional gain, matching and polarization.

In our simulation, Wireless InSite is used as a 3D ray-tracing tool [115]. Unlike the mea-

sured channels, 1000 deterministic channel realizations are obtained by moving all nodes in this

lab randomly using Wireless InSite in order to obtain an averaged performance for the system.

The channel impulse response between thejth transmit antenna and thekth receive antenna at

thenth subcarrier is modeled as [116]

gnkj(t) =

PT∑

c=1

√
Pc.e

jθc .δc(t− τc), (4.30)

wherePc, θc andτc are the received power, phase angle, and time delay of thecth path respec-

tively. PT is the total number of pathes andδc(t) is the delta impulse function. The frequency

response between thejth transmit antenna and thekth receive antenna at thenth subcarrier can

be calculated as

hnkj =

PT∑

c=1

√
Pc.e

jθc.ej2πfnτc , (4.31)

wherefn is the carrier frequency of thenth subcarrier.

4.6.3 Channel Normalization

Before evaluating the sum-rate and error-rate performanceof MIMO-OFDM IA over the col-

lected channels, the channel matrices should be normalized[24,26,101,117].

The measured channels are normalized over the full data set.In order to obtain fair compar-

ison with the simulated Rayleigh channels, we normalize ourmeasurements to have elements

of unit variance as follows [26,117]

H̄n
kj(ω) =

√
MsMR

Hn
kj(ω)√

1
Ω

∑Ω
i=1 ‖H

n
kj(i)‖

2
F

, (4.32)

whereH̄kj(ω) is the normalized channel matrix, andΩ = 100 is the set of all measurements

collected.

In the deterministic channels, the received power changes according to transmitter and

receiver location. Therefore, the same normalization methodology is used in order to have
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elements of unit variance as follows [24,101]

H̄n
kj =

√
MsMR

Hn
kj√

‖Hn
kj‖

2
F

. (4.33)

4.7 Results and Discussions

In this section, we present the sum-rate and error-rate performance of the antenna selection

techniques for the MIMO-OFDM IA system. The results are presented corresponding to the

following three scenarios: Analytical channels, deterministic channels and measured channels.

Max-SR, Min-ER and Min-EG antenna selection criteria are considered in the simulation in-

cluding bulk selection and per-subcarrier selection. Moreover, constrained per-subcarrier and

sub-optimal antenna selection are investigated. For the purpose of comparison, the following

algorithms are considered in the simulation:

1. Bulk: This scenario denotes bulk antenna selection. The used selection criterion is added

between parenthesis. In deterministic and measured channels, the separation between the

antennas within the node isλ/2.

2. Per-Subcarrier: This scenario refers to use per-subcarrier antenna selection. The used

selection criterion is added between a parenthesis. In deterministic and measured chan-

nels, the separation between the antennas within the node isλ/2.

3. Constrained Per-Subcarrier: This scenario refers to use constrained per-subcarrier an-

tenna selection that is illustrated in Algorithm 4.3. The used selection criterion is added

between a parenthesis. In deterministic and measured channels, the separation between

the antennas within the node isλ/2.

4. No Selection (λ/2): This scenario shows the performance corresponding to the case

where no selection strategy is used. In this case, 2 transmitantennas are always chosen

at random. In deterministic and measured channels, the separation between the antennas

within the node isλ/2.

5. No Selection (2λ): This scenario shows the performance corresponding to the case where

only 2 transmit antennas exist at each transmit node and the separation between the an-

tennas within the node is 2λ.

70



4.7. Results and Discussions

6. TDMA: We use TDMA as an orthogonal transmission scheme, where no selection strat-

egy is used. In this case, 3 transmit antennas are always usedwith eigen beamforming.

Furthermore, two data streamsd = 2 are sent by each user in this case. In deterministic

and measured channels, the separation between the antennaswithin the node isλ/2.

7. TDMA with antenna selection: This scenario shows the performance corresponding

to the case where per-subcarrier antenna selection with eigen beamforming is used to

maximize the capacity of TDMA system. Furthermore, two datastreams are sent by each

user in this case. In deterministic and measured channels, the separation between the

antennas within the node isλ/2.

8. Max-SINR: In this scenario, full transmission is simulated, in which 3transmit anten-

nas are used for transmission as in [19]. In deterministic and measured channels, the

separation between the antennas within the node isλ/2.

9. Suboptimal: In this scenario, sup-optimal antenna selection is performed. The used

selection criterion is added between a parenthesis.
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Figure 4.6: Sum-rate comparison between different antenna selection strategies using analyti-

cal channels.
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4.7.1 Analytical Channels

The analytical channels have been drawn from independent and identically distributed Gaussian

distribution with zero mean and unit variance, which represent high selective and scattered envi-

ronments. Fig. 4.6 and Fig. 4.7 show the sum-rate and error-rate performance for the different

antenna selection techniques using analytical channels, respectively. In general, per-subcarrier

selection achieves high performance gain compared to bulk selection in terms of sum-rate and

error-rate since the subcarriers are uncorrelated and haveindependent fading. It can be seen

from Fig. 4.6 that Max-SR and Min-EG through per-subcarrierselection achieve the maxi-

mum sum-rate performance and result in approximately 1 bps/Hz gain compared to Min-ER.

However, all bulk selection criteria have a very close sum-rate to IA without antenna selection

because the subcarriers are uncorrelated and, hence, selecting one antenna subset suitable for all

subcarriers is impossible. It is notable that the multiplexing gain of IA systems with and with-

out antenna selection are identical, where the gain in per-subcarrier selection sum-rate curves is

mainly due to diversity gain. This is justifiable since the MIMO channels are independent, and

hence all antenna subset can achieve the maximum spatial multiplexing.
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Figure 4.7: Bit error-rate comparison between different antenna selection strategies using ana-

lytical channels.

As anticipated in the theory for independent channels, Fig.4.6 proves that IA sum-rate

achieves better DoF compared to orthogonal transmission techniques such as TDMA. Fig. 4.6
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exhibits that sum-rate of per-subcarrier selection surpasses Max-SINR sum-rate, while both ap-

proaches use the same hardware complexity (3 RF chains). It can be clearly observed from Fig.

4.8 that the constrained antenna selection, that is presented in algorithm 4.3, achieves mostly

the same sum-rate performance as the unconstrained one in this type of channels. Turning to

error-rate performance, Fig. 4.7 shows that Min-ER criterion through per-subcarrier selection

offers the minimum error-rate compared to the other criteria in this system, while Max-SR and

Min-EG have smaller performance loss compared to Min-ER. However, the behavior of se-

lection criteria in bulk selection is different because selection is decided depending on all the

independent subcarriers.
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Figure 4.8: Sum-rate performance of constrained per-subcarrier selection using analytical chan-

nels.

For high frequency selective scenarios, it can be concludedthat per-subcarrier selection

efficiently improves the sum-rate and error-rate of MIMO-OFDM IA systems compared to the

other IA approaches with power balancing among the different antennas. This evaluation is

suited to multiband ultra wide band (MB-UWB) systems because their bands are highly selec-

tive.
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4.7.2 Measured and Deterministic Channels

We consider in this part a realistic scenario in an indoor environment. We present the sum-

rate and error-rate performance of the measured and deterministic channels. We mention again

here that the measured channel realizations are collected for only one setup of transmitting and

receiving nodes, while the deterministic channel realizations are collected for random positions

of the transmitters and receivers in the considered environment. Therefore, the deterministic

channels can provide an averaged performance for the considered environment.
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Figure 4.9: Sum-rate comparison between different antenna selection strategies using deter-

ministic channels.

Fig. 4.9 exhibits the sum-rate performance for the different antenna selection techniques

using deterministic channels. In this scenario, Fig. 4.9 shows that TDMA sum-rate outper-

forms IA sum-rate without antenna selection in the regime below 28 dB, which means that

IA without antenna selection fails to achieve the promised theoretical result. The closelyλ/2

spaced antennas exhibit significant spatial correlation across antennas, which causes high SNR

loss after alignment. However, an appreciable sum-rate improvement can be observed by using

Max-SR and Min-EG antenna selection techniques compared toTDMA and IA without an-

tenna selection. Fig. 4.9 shows that Max-SR and Min-EG approaches based on per-subcarrier

selection achieve the best sum-rate performance. Furthermore, bulk selection successes to offer

better sum-rate than IA without antenna selection with small gain difference compared to per-
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subcarrier selection. The convergence performance between bulk and per-subcarrier selection

comes as a consequence of the correlation between the subcarriers that resulted from the used

bandwidth in generating the deterministic and measured channels. It is clear that antenna selec-

tion technique increases the DoF of IA systems in such channels since this technique improves

the multiplexing gain of MIMO channels, which is translatedinto the increase of the slope of

antenna selection curves. As claimed in [26], Fig. 4.9 showsthat increasing the separation be-

tween the antennas to2λ within each node can improve the performance of IA. However,with

Max-SR antenna selection technique, we achieve higher sum-rate performance with onlyλ/2

antenna separation. Moreover, Max-SR and Min-EG through bulk selection with 2 RF chains

exhibit better sum-rate performance and less hardware complexity than Max-SINR, which re-

quires more hardware complexity (3 RF chains). For more illustration, Fig. 4.10 introduces the

cumulative distribution function (CDF) of the sum-rate forall antenna selection approaches at

practical SNR value equals 12 dB. This figure states that antenna selection technique improves

the sum-rate distribution.

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sum−Rate [bits/sec/Hz]

C
D

F

 

 

No Selection
Bulk (Max−SR)
Bulk (Min−EG)
Bulk (Min−ER)
Per−Subcarrier (Max−SR)
Per−Subcarrier (Min−EG)
Per−Subcarrier (Min−ER)

Figure 4.10:Comparison of sum-rate distribution between different antenna selection strategies

using deterministic channels.

Fig. 4.11 presents the effect of applying the constrained per-subcarrier antenna selection

algorithm on sum-rate performance. The performance is degraded according to the limited

number of subcarriers on each antenna and the high correlation between subcarriers. For more

clarification, the average percentage of SNR loss per subcarrier after performing Algorithm 4.3
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Figure 4.11: Sum-rate performance of constrained per-subcarrier selection using deterministic

channels.

is presented in Fig. 4.12. We observe from this figure that theaverage SNR loss per-subcarrier

due to the reallocation process is 12%. Hence, the reallocation process cannot guarantee the

small rate loss. Therefore, antenna selection through per-subcarrier selection is not effective

when the subcarriers are highly correlated channels, sinceit causes either overloaded antennas

in the non-constrained case or performance degradation in the constrained case.

Fig. 4.13 shows the bit error-rate performance for the different antenna selection tech-

niques, where Min-ER based on per-subcarrier selection introduces the minimum error-rate

performance. By comparing antenna selection criteria thatare based on bulk selection, we ob-

serve that bulk selection improves the error-rate comparedto the no selection case. Therefore,

Min-ER and Min-EG criteria are able to improve the error-rate performance of MIMO-OFDM

IA systems.

Fig. 4.14 presents the sum-rate performance of measured channels using the Max-SR

antenna selection criterion through bulk selection. It canbe observed that TDMA sum-rate

outperforms IA sum-rate without antenna selection. However, IA with Max-SR bulk antenna

selection technique achieves a significant sum-rate improvement compared to TDMA and IA

without antenna selection. The identical behaviour for deterministic channels was presented

in Fig. 4.9. Therefore, we can conclude that 3D ray-tracing channels can characterize the

performance of measured channels. Further, we use the deterministic channels to evaluate the

76



4.7. Results and Discussions

0 10 20 30 40 50 60
0

2

4

6

8

10

12

14

16

Index of Subcarriers

S
N

R
 L

os
s 

P
er

 S
ub

ca
rr

ie
r 

(%
)

Figure 4.12: Averaged SNR loss per-subcarrier after applying constrained antenna selection of

Algorithm 4.3 using deterministic channels in MIMO-OFDM IAsystem.
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Figure 4.13: Bit error-rate comparison between different antenna selection strategies using

deterministic channels.

performance of antenna selection since we can obtain averaged performances.

It is concluded that bulk selection can significantly improve sum-rate and error-rate with

less complexity and without the need for power-balancing consideration when the subcarriers

are correlated.
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Figure 4.14: Sum-rate performance of measured channels using Max-SR bulk selection crite-

rion.
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Figure 4.15: Sum-rate for sub-optimal Max-SR bulk selection using deterministic channels.

4.7.3 Performance of The Sub-Optimal Antenna Selection

Fig. 4.15 shows the performance of the sub-optimal bulk antenna selection technique using

Max-SR selection criterion for differentNs values using deterministic channels. Generally,
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nels.

the sub-optimal algorithm achieves a very close performance to the exhaustive search method

with less computational complexity. Moreover, performingantenna selection for one subcarrier

every 20 subcarriers (Ns = 20) only causes a loss of 0.2 bps/Hz compared to the optimal

Max-SR bulk selection. As a worst case, if the antenna selection is executed only for one

subcarrier among all subcarriers (Ns = 64), approximately 0.6 bps/Hz is lost. However, the

sub-optimal algorithm withNs = 64 offers better sum-rate performance for MIMO-OFDM IA

system compared to IA system with no selection and2λ spaced antennas. Therefore, the sub-

optimal algorithm is considered efficient to perform antenna selection algorithm with minimal

computational complexity.

Fig. 4.16 presents the sub-optimal per-subcarrier selection using Max-SR selection crite-

rion for analytical channels whenNs = 1. It is noted that the sup-optimal algorithm achieves

a very close sum-rate to the optimal one, which proves the efficiency of the algorithm for all

kinds of channels. Therefore, we conclude that the sub-optimal algorithm is efficient under

all channel circumstances, and it opens the door for a hybridcombination between bulk and

per-subcarriers algorithm depending on the channel circumstances and subcarriers correlation.

Our evaluation concludes that antenna selection can play animportant role in enhancing

the practical feasibility of MIMO-OFDM IA systems under real-world channels.
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5 INTERFERENCEALIGNMENT BASED RESOURCE

MANAGEMENT IN COGNITIVE RADIO NETWORKS

In this chapter, we investigate the resource management problem in multicarrier MIMO cogni-

tive radio systems. We perform IA based resource allocationin order to improve the spectral

efficiency of cognitive radio systems without disturbing the primary system transmission. More-

over, we consider in problem formulation the power budget ofthe cognitive users as well as the

throughput fairness among the cognitive users. This problem is formulated as a mixed-integer

problem which has a high computational complexity. Therefore, an efficient sub-optimal algo-

rithm is proposed to reduce the computational complexity ofthe optimal problem through two

phases. The performance of the proposed technique is evaluated and compared to cognitive

radio systems with orthogonal multiple access transmission techniques. The contents of this

chapter have been partially published in references [118–122].

5.1 Introduction

The governmental agencies are currently using a static spectrum licensing model to regulate

the frequency allocation. By this model, the spectrum is divided into several bands that are

generally allocated exclusively to specific users or services. As conducted by practical measure-

ments, this model leads to inefficient utilization of the spectrum since it was shown by Federal

Communications Commission (FCC) that the actual spectrum usage varies between 15% and

85% based on location and time variations [123, 124]. This isconsidered as a reason for spec-

trum scarcity, which bounds the increasing demand for the frequency spectrum and, hence, the

rapid growth of communication services. Cognitive radio isproposed to overcome the spectrum

underutilization problem by introducing a new licensing scheme that allows a group of users

called non-licensed, secondary users (SUs), to access the vacant portion of the spectrum left

by the licensed users, also called primary users (PUs), without affecting the performance of the
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licensed system or inducing harmful interference to it [27,28].

To support and guarantee efficient spectrum sharing betweenthe primary and cognitive

networks, the cognitive radio system must possess cognitive capabilities to monitor the sur-

rounding environment and adopt its transmission aiming at restricting interference harming the

primary system. Therefore, cognitive radio is required to perform three main functions: spec-

trum sensing, spectrum analysis and spectrum decision. In spectrum sensing, the cognitive radio

monitors its radio environment to identify the unoccupied spectrum bands, captures their infor-

mation and then detects the spectrum holes that can be used for the cognitive radio transmission

in a particular time, frequency and location [123, 125]. Spectrum analysis function analyzes

the characteristics of the detected spectrum holes, the probability of the PU appearance and

the possible sensing errors in order to determine whether these holes are suitable for SUs op-

eration [126]. Whereas in spectrum decision, the appropriate band is selected and, then, the

cognitive radio has to optimize the available system resources in order to achieve the required

objective [126]. Once the operating spectrum band is decided, the communication can be per-

formed over this spectrum band. However, because the radio environment changes over time

and space, the cognitive radio should keep track of the changes of the radio environment. If the

current spectrum band in use becomes unavailable, searching for another available spectrum

band is performed to provide a continuous transmission.

Multicarrier transmission schemes, like OFDM and filter bank multicarrier (FBMC), of-

fer several advantages over the single carrier scheme in cognitive radio context. Multicarrier

schemes provide high spectral efficiency and robustness in selective fading channels. Addi-

tionally, they offer more flexibility in distributing the system resources among the different

users and subcarriers [127]. Furthermore, multicarrier systems have the ability to operate in

discontinues portions of the spectrum and have the capability to control the transmission pa-

rameters to avoid inducing severe interference to the PUs, which make it very attractive for the

cognitive radio applications. OFDM is the most common multicarrier technique that is con-

sidered by several communication standards including IEEE802.22 TV based cognitive radio

system [128]. However, OFDM has large frequency-domain sidelobes that cause high mutual

interference to the adjacent primary bands [128]. Additionally, the overall spectrum efficiency

of the OFDM system is reduced due to the use of the cyclic prefixthat is added to combat

the multipath propagation effect. From another side, FBMC can overcome the spectral leakage

problem by minimizing the sidelobes of each subcarrier, which leads to high efficiency in terms

of spectrum and interference. Furthermore, cyclic prefix isnot required any more in FBMC
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systems since the channels are designed in the frequency domain to have the required spectral

containment [128–130]. In this regards, combining MIMO technology with multicarrier trans-

mission can increase the diversity gain and accordingly thesystem data-rate. Thereby, MIMO

multicarrier systems have been considered recently as a promising candidate for cognitive radio

systems [29].

The resource allocation problem in the non-cognitive multicarrier MIMO systems was

widely considered in the literature (e.g. [131–134] and references therein). Using of the pre-

viously proposed algorithms for the non-cognitive scenarios is not always effective in the cogni-

tive radio scenarios because the limitation introduced by interference constraints to the cognitive

radio system should be taken into consideration. Therefore, consideration of the cognitive ra-

dio regulations in resource allocation problem was considered in [29,127,135–137]. Optimum

power allocation with beamforming is performed to maximizethe capacity without violating the

interference and power constraints in [29, 127]. A game theory based decentralized approach

was proposed in [135] to design a cognitive MIMO transceivers, which compete with each other

to maximize their date-rate. In [136], the DoF provided by the MIMO is utilized to construct

a cooperative paradigm that can be applied by the SUs to simultaneously relay the PUs traf-

fic and transmit their own traffic over the same accessed band.Nguyen and Krunz in [137]

reformulated the non-convex resource allocation optimization problem into a distributed non-

cooperative game, in which a set of precoding matrices is designed at each of the cognitive

radio nodes to maximize the capacity without affecting the primary system transmission.

Recently, IA as a means of effective interference management has received much of interest

in cognitive radio systems. In this context, IA was investigated in cognitive radio systems with

MIMO employment on both PUs and SUs in order to allow SUs to utilize both free and non-free

eigenmodes of PUs. This employment helps in removing the interference constraints from the

optimization problem since it assumes that the PUs cooperate with the SUs and can suppress

the received interference at the primary side [138–142]. In[138], the authors considered only

one MIMO SU link to coexist with one MIMO PU link aiming at thatthe SU achieves the same

transmission rate as of the PU. This work was extended in [139] by redesigning the decoding

matrix of the SU receiver in order to combat PU interference in a more effective manner, where

the SU is enabled to compute blindly the required CSI. Similarly, the work in [140] enables

one SU to share the unused eigenmodes of the PU considering the power and interference con-

straints. In the same way, the work in [141] considered MIMO employment at SUs and a PU

with frequency scheduling. In [142], the authors formulated the cooperative spectrum leasing
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with IA into a Stackelberg game, where the PU is the leader, and SUs are followers. This work

assumed feasible IA system, which is not always valid. The aforementioned works assumed

the existence of a certain level of coordination and cooperation between cognitive and primary

systems. Nevertheless, the cooperation between the primary and cognitive systems is not al-

ways guaranteed, and it requires a permission from the primary system to denote some of its

DoF to the SUs. Furthermore, to the best of the authors’ knowledge, overloaded cognitive radio

networks -where IA problems are infeasible- have not been considered in the literature. Addi-

tionally, because of the challenges associated with joint power and spectrum optimization, most

existing works on MIMO IA cognitive radio systems do not consider resource management over

the multicarrier systems (frequency dimension) as it is notfairly trivial.

In this chapter, IA with frequency-clustering is proposed in overloaded cognitive radio sys-

tems in order to improve the spectral efficiency of MIMO cognitive radio systems while protect-

ing the primary system performance. The tackled system model considers a practical scenario

by assuming that there is no coordination between the cognitive and the primary network. IA

based resource management problem in cognitive radio systems is formulated, where the using

of IA increases the DoF per SU by enabling the SUs to effectively share the available spectrum.

In the problem formulation, each subcarrier is assigned to afeasible number of SUs in order

to meet the IA feasibility conditions, where the fair distribution of the resources among the

different SUs is taken into account. Considering that thereis no coordination between the pri-

mary and the cognitive systems, the primary system should beprotected from receiving severe

induced interference from the cognitive radio systems by ensuring that the received interference

is below a prescribed limit. Accordingly, several interference constraints are added to the op-

timization problem. As the computational complexity of theoptimal scheme is quite high, the

paper further proposes an efficient sub-optimal resource allocation algorithm with two phases.

In the first phase, frequency-clustering method is employedin order to assign each subcarrier

to a feasible number of SUs with fairness consideration. Frequency-clustering operation con-

siders the interference channel qualities of the subcarriers as well as the generated interference

to PUs. In the second phase, the power is allocated among all subcarriers and SUs considering

the power budget of the SUs and the interference limits at thePUs.

The rest of this chapter is organized as follows. The system model is described and the

optimization problem is formulated in Section 5.2. Section5.3 presents the phase of frequency-

clustering with and without fairness consideration. The optimal and the sub-optimal power

allocation algorithm are introduced in Section 5.4. The computational complexity illustration
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is presented in Section 5.5. Finally, simulation setups andresults are discussed in Section 5.6.

5.2 IA Based Resource Management Problem Formulation

5.2.1 System Model

In this work, a secondary communication system withK SUs is considered, where each SU

has one transmitter withMT antennas in order to communicate with one receiver withMR

antennas. The assumed secondary system is co-located with aprimary system in the same

geographical area. The PUs are assumed to be equipped withMP antennas. The side-by-

side frequency distribution of active and non-active bandsis assumed as shown in Fig. 5.1.

The active primary system bands represent the portions of the spectrum already occupied by

the PUs while the non-active bands refer to the vacant bands that can be used by SUs.L

active PU bands (W1,W2, ...,WL) are assumed. Additionally, the non-active bands are divided

intoN equal subcarriers each with∆f bandwidth. The SUs are connected to a local gateway,

which works as a centralized controller and is in charge of the resource management task of the

network. Fig.5.2 shows an example of6 SUs, in which the transmission of the different SUs

causes interference to the PUs as well as to the other unintended SU receivers. The induced

interference should not exceed the prescribed limit of the allowable interference that can be

tolerated by each PU, i.e.I lth. The numbers above the arrows represent the frequency-clustering

that will be described later.

Figure 5.1: Frequency distribution of active and non-active bands.

In our model, the transmission on a given subcarrier is not restricted to one user at a given

time. Rather, different SUs are allowed to share the different subcarriers by employing IA. Ac-

cordingly, the interference between SUs is managed by generating different precoding matrices

based on MIMO IA technique [14, 16]. By considering a multicarrier technique, the frequency

orthogonality can be achieved between subcarriers, which enables the independent application
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Figure 5.2: Example of a cognitive radio network with6 SU pairs. Different numbers and

colors denote different subcarriers.

of IA on each subcarrier. Each SU transmitter sendsd data streams to its intended receiver. The

transmitted data streamxnk ∈ C
d×1 over thenth subcarrier is multiplied by the precoder matrix

Vn
k ∈ CMT×d. By assuming a perfect CSI of the SUs at each node, the discrete-time complex

received signal at thekth receiver over thenth subcarrier is represented as

ynk = Un
k

H

[
Hn
kV

n
kx

n
k +

K∑

j=1,j 6=k

Hn
kjV

n
j x

n
j + znk +

L∑

l=1

wn
l,k

]
, (5.1)

whereUn
k ∈ C

MR×d is an orthonormal linear interference suppression matrix applied at the

kth SU receiver,Hn
kj ∈ CMR×MT denotes the channel frequency response between thejth SU

transmitter and thekth SU receiver.Snk = E
[
xnkx

n
k

H
]
∈ R

d×d is the input covariance matrix

of the kth SU at thenth subcarrier and can be expressed asSnk = diag(Pk,n(1), .., Pk,n(d)),

wherePk,n(i) is the allocated power to theith data stream at thekth user over thenth subcarrier.

Therefore, the transmitted power by thekth SU user over thenth subcarrier isPk,n = Tr (Snk).

znk ∈ CMR×1 is the AWGN at thekth SU receiver with zero mean and variance ofσ2
AWGN .

wn
l,k ∈ RMT×1 is the interference signal introduced from thelth PU band over thenth subcarrier

to thekth SU with powerJnl,k, that can be expressed as [143]

Jnkl (Dn) =

MR∑

m=1

MP∑

i=1




Dn+∆f/2∫

Dn−∆f/2

∣∣gn,m,ikl

∣∣2 ψl
(
ejω
)
dω


 , (5.2)

whereDn represents the spectral distance between thenth cognitive radio subcarrier andlth PU

band.ψl (ejω) is the power spectral density (PSD) of thelth PU signal, andgn,m,ikl is the channel

gain between themth SU antenna at thekth SU receiver and theith antenna at thelth PU over
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thenth subcarrier.

Similarly, the interference introduced by thekth SU transmitter over thenth cognitive radio

subcarrier transmission to thelth PU receiver can be expressed as [143]

Inlk (Dn, Pk,n) =

MT∑

m=1

MP∑

i=1




Dn+Wl/2∫

Dn−Wl/2

∣∣gn,i,mlk

∣∣2 Pk,m,nΦn (f) df


 , (5.3)

wherePk,m,n denotes the power transmitted from themth transmit antenna of thekth SU over

subcarriern, andΦn is the PSD of thenth subcarrier. Eq. (5.3) can be reformulated into

Inlk (Dn, Pk,n) = Tr
(
Ωnl G

n
lkV

n
k S

n
kV

n
k

HGn
lk

H) , (5.4)

whereGn
lk ∈ CMp×MT denotes the channel gain between thekth SU transmitter and thelth PU

over thenth subcarrier, andΩnl is the interference factor of thenth subcarrier to thelth PU,

which is represented as

Ωnl =

Dn+Wl/2∫

Dn−Wl/2

Φn (f) df . (5.5)

It is also assumed that all the cognitive radio system has theperfect information of interference

channel gainsGn
lk. Practically, the cognitive radio system is able to obtain the information

through periodic sensing of pilot signal from the primary system by assuming the channel reci-

procity [144,145].

Assuming perfect IA is achieved, the received signal in (5.1) becomes

ynk = Un
k

HHn
kkV

n
kx

n
k +Un

k
H

[
znk +

L∑

l=1

wn
l,k

]
. (5.6)

The termUn
k

Hznk follows the distribution of AWGN with zero mean and varianceof σ2
AWGN .

Moreover, using the central limit theorem,
∑L

l=1w
n
l,k can be modeled as AWGN which is a

general assumption in this research area (e.g. [146] and references therein). Therefore, we can

describeσnk
2 = σ2

AWGN +
∑L

l=1 J
n
kl. Accordingly, the total sum-rate of the SUs over thenth

subcarrier is

Rn
T =

K∑

k=1

Rn
k (H

n
kk, S

n
k ) , (5.7)
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whereRn
k is the capacity of thekth SU user over thenth subcarrier and can be expressed as

Rn
k (H

n
kk,S

n
k) = log2

∣∣∣∣Id +
1

σnk
2U

n
k

HHn
kkV

n
kS

n
kV

n
k

HHn
kk

HUn
k

∣∣∣∣ . (5.8)

5.2.2 Problem Formulation

In resource management problem formulation, our objectiveis to maximize the total throughput

of the multicarrier MIMO cognitive radio system subject to the interference introduced to the

PUs and transmit power budget constraints. Moreover, the problem formulation guarantees the

fairness among the SUs by considering per-SU minimum throughput constraints. IA allows the

SUs to share the spectrum resources simultaneously, which increases the DoF of the cognitive

radio system. However, this advantage of using IA is restricted by IA feasibility conditions

in (2.40) and (2.41) since perfect IA can be attained up to a certain number of SUs̄K, where

K̄ = MT+MR

d
− 1. Therefore, the formulation of IA based resource allocation problem should

consider this limitation by scheduling onlȳK SUs to share a given subcarrier. Furthermore, the

interference from SUs to PUs should be considered in the formulation since no coordination is

assumed between the cognitive radio and the primary system.The problem can be formulated

as

P1 : max
Sn
k
,wn

k

N∑

n=1

K∑

k=1

wnkR
n
k (H

n
kk,S

n
k) (5.9a)

s.t. :
N∑

n=1

wnkTr (Snk) ≤ Pk ∀k (5.9b)

Snk ≥ 0, ∀n and ∀k (5.9c)

N∑

n=1

K∑

k=1

wnkΩ
n
l Tr
(
Gn
lkV

n
k S

n
kV

n
k

HGn
lk

H) ≤ I lth, ∀l (5.9d)

wnk ∈ {0, 1} ∀k, n (5.9e)

K∑

k=1

wnk = K̄ ∀n (5.9f)

N∑

n=1

wnkR
n
k (H

n
kk,S

n
k) ≥ Rmin , ∀k, (5.9g)

wherewnk is a binary variable that indicates whether thenth subcarrier is allocated to the

kth SU.wnk = 1 if and only if thenth subcarrier is allocated to thekth SU and zero implies
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otherwise. The constraint (5.9b) represents thekth SU total power constraint(Pk), while a

positive transmission power at each antenna is guaranteed by (5.9c). The constraint (5.9d)

ensures that the total interference induced by the SUs to thelth PU is below the prescribed

interference thresholdI lth. The equality condition
∑K

k=1w
n
k = K̄ in (5.9f) ensures that any

given subcarrier can be shared by onlyK̄ SU links. This constraint of (5.9f) accomplishes the

IA feasibility conditions and, consequentially, perfect IA can be achieved. The last constraint

in (5.9g) ensures that the fairness among the SUs is guaranteed by assuming that every SU has

a minimum instantaneous rate ofRmin.

The optimization problem inP1 is a mixed-integer optimization problem, where the mixed-

integer nature comes from the integer constraint in (5.9e) that is used for SUs scheduling. More-

over, the minimum throughput constraints in (5.9g) increase the complexity of the problem since

the cognitive radio system may not be able to satisfy this minimum rate due to the limitation

introduced by the interference and power budget constraints as well as the channel qualities.

Therefore, the complexity of the optimal scheme is generally prohibitive as detailed in Section

5.5. To solve the resource allocation ProblemP1 efficiently with low computational complexity,

a two-phase sub-optimal algorithm is proposed. In the first phase, for overloaded secondary sys-

tems where the number of SUs doesn’t satisfy IA feasibility conditions, IA frequency-clustering

is performed in order to schedulēK SUs per subcarrier with fairness consideration. This phase

can guarantee feasible and perfect IA on each subcarrier [147, 148]. Afterwards, the available

power is distributed among users and subcarriers without violating the interference constraints

in the second phase. Moreover, the minimum throughput constraints in (5.9g) are relaxed by

minimizing the number SUs whose rates are below the minimum,i.e. reducing the outage prob-

ability of having SUs whose rates are below the minimum. In the sequel, detailed description

of the two phases is provided.

5.3 Phase I: Frequency-Clustering

This phase is required to be performed in the case of having anoverloaded cognitive radio

system, where the number of SUsK doesn’t satisfy the IA feasibility conditions. As perfect IA

cannot be obtained in this case, frequency-clustering algorithm is executed to cluster the SUs

into feasible groups from IA point of view. As an example for frequency-clustering, consider

that 6 SUs are operated withMR = MT = 2 andd = 1 overN = 4 subcarriers as seen in Fig.

5.2. This network is considered overloaded since it does notsatisfy the feasibility condition of
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MT +MR− (K +1)d ≥ 0. Therefore, IA frequency-clustering is performed, and theusers are

scheduled according to the numbers above the arrows in Fig.5.2. This means that SU1, SU2 and

SU4 are scheduled to use the first subcarrier while the second subcarrier is shared between SU2,

SU3 and SU6.

In this section, we propose an algorithm for frequency-clustering operation by consider-

ing not only their channel quality and per-user power budgetconstraints but considering also

the induced interference to the PU band. Moreover, fairnessamong the SUs is guaranteed by

assuming that every SU has a minimum instantaneous rate ofRmin.

5.3.1 Frequency-Clustering without Fairness Consideration

In this part, we consider frequency-clustering without fairness consideration. Two power distri-

butions are assumed in order to consider the power-limited regime as well as the interference-

limited regime. These power distributions only benefit the clustering operation, where the actual

power allocation is executed in the second phase. In the power-limited regime, the power allo-

cation among the subcarriers is mainly restricted by the SUspower budgets. In this case and

assuming that all the SUs are allocated to equal number of subcarriers, the power budget of each

SU is equally distributed among the subcarriers, where the allocated power for thekth user at

thenth subcarrier is expressed as

PUF
k,n =

KPk
K̄N

. (5.10)

In the interference-limited regime, the power allocation is mainly restricted by the interference

threshold of the primary system. Hence, we assume that the generated interference to the pri-

mary system, i.e.I lth, is equally distributed among the different subcarriers [146]. Consequently,

by using (5.4) and (5.5), the maximum power,PD
k,n, that can be allocated to thenth subcarrier

at thekth SU is

PD
k,n =

dI lth
NK̄Ωnl Tr

(
Vn
k

HGn
lk

HGn
lkV

n
k

) . (5.11)

The description of the clustering phase can be commenced by definingA andN to be

the sets that contain all the non-assigned subcarriers and assigned subcarriers, respectively. Fur-

thermore,B denotes the set of all SUs andC = {c(1), .., c(AC)} to be the sets of all possible

clustering combinations whereAC refers to the number of clusters whilec(i) ∈ C refers to the

group of SUs inside theith cluster. Each cluster has̄K SUs and, hence,C can be formed by

generating all the possible combinations ofK̄ users from SUs in the setB. Each cluster must
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5.3. Phase I: Frequency-Clustering

Algorithm 5.1 IA Frequency-Clustering without Fairness Consideration

1: Initialize A = {1, 2, · · · , N}, B = {1, 2, · · · , K} andN = ∅.

2: FindC fromB.

3: n = A(1); (the first element inA).

4: while A is not emptydo

5: for all c(i) ∈ C do

6: for all k ∈ c(i) do

7: FindVn
k andUn

k .

8: EvaluatePUF
k,n andPD

k,n using (5.10) and (5.11), respectively.

9: Let P F
k,n = min

(
PD
k,n, P

UF
k,n

)
.

10: end for

11: EvaluateRn
T =

∑
k∈c(i)R

n
k

(
Hn
kk, P

F
k,n

)
.

12: end for

13: Find the setc∗n = max
c(i)

∑
k∈c(i)R

n
k

(
Hn
kk, P

F
k,n

)
, setwnk = 1 ∀k ∈ c(i).

14: Moven fromA toN and Setn = n+ 1.

15: end while

satisfy thatc(i) 6= c(j) ∀(i 6= j).

For each subcarrier, the cluster that has the maximum sum-rate after performing IA is se-

lected considering the power-limited and interference-limited regimes. For a specific subcarrier,

we determine to which regime a given SU is restricted. IfPD
k,n exceedsPUF

k,n , i.e. PD
k,n ≥ PUF

k,n ,

then the power allocation for the SU is power-limited and, hence, the allocated powerP F
k,n is

fixed toPUF
k,n . Otherwise, the power allocation is interference-limited, and the allocated power

P F
k,n is fixed toPD

k,n. Hence, the considered allocated power in clustering operation can be

expressed as

P F
k,n = min

(
PD
k,n, P

UF
k,n

)
. (5.12)

Accordingly, for thenth subcarrier, the cluster selection process can be formulated mathemati-

cally to selectc∗n as

c∗n = max
c(i)

∑

k∈c(i)

Rn
k

(
Hn
kk, P

F
k,n

)
. (5.13)

The users inside this cluster are the only allowed SUs in the system to transmit over that subcar-

rier.

The criterion of clustering is now illustrated in (5.12) and(5.13). Follows, the selection
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mechanism is described. The subcarriers are sequentially assigned to clusters. Initially, all

the possible cluster combinationsC are generated using the SUs in the setB. To allocate a

given subcarrier, the algorithm evaluates the allocated powerP F
k,n using (5.12). Afterwards, the

subcarrier is allocated to the clusterc∗n that achieves the maximum sum-rate according to (5.13),

and then this subcarrier is moved to the setN . The scheme is repeated until the allocation of

all subcarriers in order to find the selected clusters for allsubcarriers,X = {c∗1, .., c
∗
N}. The

clustering procedures are summarized in Algorithm 5.1.

5.3.2 Frequency-Clustering with Fairness Consideration

With fairness consideration, the mechanism of Algorithm 5.1 is modified in order to consider the

fairness among SUs. Update the definition ofB to be the set that contains all SUs whose rates

are belowRmin, and defineU to be the set of SUs whose rates are greater thanRmin. Moreover,

we define∆ = {∆1, ..,∆K} to be the instantaneous rates for all SUs. In this method, (5.12)

and (5.13) are used for frequency-clustering. The algorithm starts by sequentially allocating

the subcarriers that are located next to the PU band and moving towards the distant ones since

the subcarriers close to the PU bands will potentially use low transmit power even that they

have good channel conditions. Keeping those subcarriers tothe end of the assignment in the

frequency clustering algorithm will make them suffer not only from the transmission power

limitation but also from the low diversity in choosing the users from the set of users whose

instantaneous rate below the minimum. The subcarriers are assigned sequentially to clusters.

Initially, the possible cluster combinations are generated using the SUs in the setB, where

B is assumed to contain all SUs at the beginning. Throughout the allocation of the different

subcarriers, if the rate of thekth SU becomes more than the minimum required rateRmin, the

user will be moved form the setB to the setU . If the minimum rate constraints are satisfied

for all the users, i.e.B is empty, the subcarrier can be allocated to one of the clusters that are

generated from SUs in the setU , which will contain all SUs at this moment. To allocate a

given subcarrier, the algorithm initially forms all cluster combinations of the SUs in the setB

and evaluates the allocated powerP F
k,n using (5.12). Afterwards, the subcarrier is allocated to

the clusterc∗n, that achieves the maximum sum-rate according to (5.13), and this subcarrier is

moved toN . Then, the instantaneous rates∆ of the SUs inc∗n is updated, and the SUs whose

rates are greater that the minimum required rateRmin are moved form the setB to the setU . The

scheme is repeated until the allocation of all subcarriers among the clusters,X = {c∗1, .., c
∗
N}.

The clustering procedures are summarized in Algorithm 5.2.
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Algorithm 5.2 IA Frequency-Clustering with Fairness Consideration

1: Initialize A = {1, 2, · · · , N}, B = {1, 2, · · · , K},N = ∅, U = ∅ and∆ = {0, 0, .., 0}.

2: while A is not emptydo

3: FindC from B.

4: n = A(1); (the first element inA).

5: for all c(i) ∈ C do

6: for all k ∈ c(i) do

7: FindVn
k andUn

k .

8: EvaluatePUF
k,n andPD

k,n using (5.10) and (5.11), respectively.

9: Let P F
k,n = min

(
PD
k,n, P

UF
k,n

)
.

10: end for

11: EvaluateRn
T =

∑
k∈c(i)R

n
k

(
Hn
kk, P

F
k,n

)
.

12: end for

13: Find the setc∗n = max
c(i)

∑
k∈c(i)R

n
k

(
Hn
kk, P

F
k,n

)
, setwnk = 1 ∀k ∈ c(i).

14: Update the instantaneous rates∆ for the SUs∀k ∈ c∗n.

15: If ∆k ≥ Rmin, move SUk from B toU . If B is empty, setB = {1, 2, · · · , K}.

16: Moven fromA toN and Setn = n+ 1

17: end while

5.4 Phase II: Power Allocation Algorithm

By performing the frequency-clustering phase, the subcarriers are allocated to the different

clusters. Therefore, the subcarrier indicatorswnk are already determined from the previous phase.

Therefore, the power allocation problem can be formulated as follows

P2 : max
Sn
k

N∑

n=1

∑

k∈c∗n

Rn
k (H

n
kk,S

n
k) (5.14a)

s.t. :
N∑

n=1

Tr (Snk) ≤ Pk ∀k (5.14b)

Snk ≥ 0, ∀n and ∀k (5.14c)

N∑

n=1

∑

k∈c∗n

Ωnl Tr
(
Gn
lkV

n
k S

n
kV

n
k

HGn
lk

H) ≤ I lth, ∀l (5.14d)
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SinceUn
k

HHn
kkV

n
k is considered as the effective channel and has a rank ofd, the sum rate in

(5.8) can be formulated using spectral decomposition into

Rn
k (H

n
kk, Pk,n(i)) =

d∑

i=1

log2

(
1 +

Pk,n(i)ν
2
i

(
Un
k

HHn
kkV

n
k

)

σnk
2

)
, (5.15)

whereνi
(
Un
k

HHn
kkV

n
k

)
is theith eigenvalue ofUn

k
HHn

kkV
n
k . Further, we denoteνi

(
Un
k

HHn
kkV

n
k

)

asνnk,i. Therefore, the power allocation problem can be formulatedas follows

P3 : max
Pk,n(i)

N∑

n=1

∑

k∈c∗n

d∑

i=1

log2

(
1 +

Pk,n(i)ν
n
k,i

σnk
2

)
(5.16a)

s.t. :
N∑

n=1

d∑

i=1

Pk,n(i) ≤ Pk ∀k (5.16b)

Pk,n(i) ≥ 0, ∀n and ∀k (5.16c)

N∑

n=1

∑

k∈c∗n

d∑

i=1

Ωnl Pk,n(i)ḡ
n
k (i) ≤ I lth, ∀l, (5.16d)

whereḡnk (i) is theith element in the diagonal of matrix̄Gn
k = Vn

k
HGn

lk
HGn

lkV
n
k .

In this context, the optimal power allocation is presented in the next part. Then, an efficient

sub-optimal power allocation algorithm is proposed to reduce the computational complexity of

the optimal one.

5.4.1 Optimal Power Allocation

In this part, the optimal power allocation is found. Since ProblemP3 is convex, the Lagrangian

can be written as

L = −
N∑

n=1

∑

k∈c∗n

d∑

i=1

log2

(
1 +

1

σnk
2Pk,n(i)ν

n
k,i

)
+

K∑

k=1

βk

(
N∑

n=1

d∑

i=1

Pk,n(i)− Pk

)
(5.17)

+
L∑

l=1

ηl




N∑

n=1

∑

k∈c∗n

d∑

i=1

Ωnl Pk,n(i)ḡ
n
k (i)− I

l
th


−

N∑

n=1

K∑

k=1

d∑

i=1

Pk,n(i)ϑ
n
k ,
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whereβk, ηl and ϑnk are the non-negative Lagrange multipliers. The Karush-Kuhn-Tucker

(KKT) conditions can be described as follows

P n
k ≥ 0; βk ≥ 0; ηl ≥ 0; ϑnk ≥ 0 (5.18a)

βk

(
N∑

n=1

d∑

i=1

Pk,n(i)− Pk

)
= 0, ∀k (5.18b)

ηl




N∑

n=1

∑

k∈c∗n

d∑

i=1

Ωnl Pk,n(i)ḡ
n
k (i)− I

l
th


 = 0, ∀l (5.18c)

∂L

∂Pk,n(i)
=

−1
σn
k
2

νn
k,i

+ Pk,n(i)
+

K∑

k=1

βk +
L∑

l=1

ηlΩnl ḡ
n
k (i)− ϑ

n
k = 0. (5.18d)

After rearranging (5.18d), we get

Pk,n(i) =




1
L∑
l=1

ηlΩnl ḡ
n
k (i) +

K∑
k=1

βk

−
σnk

2

νnk,i




+

, (5.19)

The optimal solution of ProblemP3 requires high computational complexity that grows ex-

ponentially with the number of subcarriers. Therefore, thesub-optimal power allocation is

proposed in the next part.

5.4.2 Sub-Optimal Power Allocation Algorithm

In this part, the sub-optimal power allocation is describedthrough four steps, where this method

allocates the power in a novel way by dividing ProblemP3 into two sub-problems: power

allocation problem considering only interference constraint and, then, a cap-limited waterfilling

problem considering only the power budget of SUs. In order tomake the analysis more clear

and without loss of generality, we assume that each SU sends one data stream to its intended

receiver. Accordingly,̄gnk = Vn
k

HGn
lk

HGn
lkV

n
k . Moreover, the sum rate in (5.8) can be written

as

Rn
k = log2

(
1 +

1

σnk
2Pk,nh̄

n
k

)
, (5.20)

whereh̄nk , Un
k

HHn
kkV

n
kV

n
k

HHn
kk

HUn
k . Accordingly, the power can be allocated to SUs and

subcarriers as stated in the following stages.
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Step 1: In the first step, the maximum powerPmax
k,n that can be allocated to thekth user over the

nth subcarrier is determined by ignoring the per-SU power constraints and considering

only the interference constraints. Therefore, by considering only thelth PU interference

constraint, the problem is reduced to

P4 : max
P̂k,n

N∑

n=1

∑

k∈c∗n

log2

(
1 +

1

σnk
2 P̂k,nh̄

n
k

)
(5.21a)

s.t. :
N∑

n=1

∑

k∈c∗n

Ωnl P̂k,nḡ
n
k ≤ I lth (5.21b)

P̂k,n ≥ 0, ∀n and ∀k, (5.21c)

where( ·̂ ) represents the variables that are optimized under the interference constraint

only. By solvingP4 ; ∀l ∈ {1, 2, · · · , L}, we obtain

P̂ l
k,n =

[
1

α̂lΩnl ḡ
n
k

−
σnk

2

h̄nk

]+
, (5.22)

where the Lagrange multiplier̂αl is evaluated using (5.22) and (5.21b) as

α̂l =

∣∣N K̄
∣∣

I lth +
N∑
n=1

∑
k∈c∗n

Ωn
l
σn
k
2ḡn

k

h̄n
k

. (5.23)

By solvingP4 for every interference constraint,Pmax
k,n is evaluated as

Pmax
k,n = min

{
P̂ l
k,n

}L
l=1

. (5.24)

By applying this formula, one can guarantee that the interference introduced to the PU

bands is below the maximum limit. This step is expressed graphically in Fig. 5.3.a.

Step 2: Second step tests the per-SU power constraints using the maximum powerPmax
k,n . If the

relation
∑N

n=1 P
max
k,n 6 Pk is satisfied for all SUs, the optimal solution of the optimization

problemP3 is determined to beP k,n = Pmax
k,n which is equal to the maximum power that

can be allocated to each subcarrier. Otherwise, proceed to the next steps.

Step 3: In the third step, the power budgetPk for each SU is distributed among its allocated

subcarriers subject to be lower that or equal to the power upper-bound of each user at
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each subcarrierPmax
k,n . The problem is formulated as a cap-limited waterfilling problem as

follows [149]

P5 : max
P̃k,n

N∑

n=1

∑

k∈c∗n

log2

(
1 +

1

σnk
2 P̃k,nh̄

n
k

)
(5.25a)

s.t. :
N∑

n=1

P̃k,n ≤ Pk (5.25b)

0 ≤ P̃k,n ≤ Pmax
k,n , (5.25c)

whereP̃k,n is the allocated power by solving problemP5. This problem can be solved

efficiently using a successive application of the conventional waterfilling concept. As a

starting point, the waterfilling solution is found as [150]

P̃WF
k,n =

[
ζ −

σnk
2

h̄nk

]+
, (5.26)

whereP̃WF
k,n is the allocated power by waterfilling solution for thekth user at thenth sub-

carrier, andζ is the waterfilling level. Thereafter, if the power allocated by waterfilling

solutionP̃WF
k,n is greater thanPmax

k,n , the power is readjusted toPmax
k,n and the already allo-

cated power is subtracted from the total power budget. Then,successive waterfilling is

performed over the users and subcarriers that did not exceedthe maximum powerPmax
k,n

in the last step until reaching the iteration in whichP̃k,n doesn’t exceedPmax
k,n for any user

and subcarrier. This step is described graphically in Fig. 5.3.b.

Step 4: In the last step, the allocated power per subcarrierP̃k,n found by solvingP5 is less

than or equalPmax
k,n . Therefore, some of the allocated powerP̃k,n doesn’t not reach the

maximum allowed power. Consequently, the system loses someof the allowed power

resources as the interference constraint is not satisfied with equality which decreases the

capacity of cognitive radio system. Therefore, some power can be moved from one sub-

carrier to another in order to enhance system throughput. This can be achieved by updat-

ing the maximum power that can be allocated to each subcarrier Pmax
k,n depending on the

residual interferenceI lR, which can be calculated as follows

I lR = I lth −
N∑

n=1

∑

k∈c∗n

P̃k,nΩ
n
l ḡ

n
k . (5.27)
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Assuming thatBl is the set of subcarriers that reach the maximum allowed power, i.e.

P̃k,n = Pmax
k,n ; ∀n ∈ Bl, then,Pmax

k,n ; ∀n ∈ Bl can be updated by applying the equations

(5.22)-(5.24) on the subcarriers in the setBl with the updated interference constraints,

which can be evaluated as

I ′lth = I lR +
∑

n∈Bl

∑

k∈c∗n

P̃k,nΩ
n
l ḡ

n
k . (5.28)

Finally, the procedures of the cap-limited waterfilling that were used to solve problemP4

is re-performed to find the final solutionP k,n = P̃k,n. At this point, the solutionP
n

k is

approaching the optimal solution and satisfying the interference constraints with equality

as well as guaranteeing that the total power budget constraints are satisfied. Fig. 5.3.c

summarizes the procedures of this step graphically.

The flowcharts of the proposed power allocation algorithm isgiven in Fig. 5.4 and described in

Algorithm 5.3.

Algorithm 5.3 Sub-Optimal Power Allocation Algorithm

1: ∀l ∈ {1, · · · , L}, Find P̂k,n(l) using (5.22) and (5.23).

2: ∀n and∀k, EvaluatePmax
k,n = min

{
P̂k,n(l)

}L
l=1

.

3: if
∑N

n=1 P
max
k,n 6 Pk; ∀k then

4: Let P k,n = Pmax
k,n and stop the algorithm.

5: end if

6: ∀n and∀k, Execute the cap-limited waterfilling under the per-user constraintPk and the

maximum power that can be allocated to each subcarrierPmax
k,n and find the setBl where

P̃k,n = Pmax
k,n .

7: Evaluate the residual interferenceI lR using (5.27) and the updated interference constraints

I ′lth using (5.28).

8: Perform Steps (1-2) to updatePmax
k,n .

9: ∀n and∀k, Execute the cap-limited waterfilling under the per-user constraintPk and the

updated maximum power that can be allocated to each subcarrierPmax
k,n and setP k,n = P̃k,n.
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Figure 5.3: Graphical representation of the proposed power allocationalgorithm.

5.5 Computational Complexity Analysis

In this section, we present the computational analysis of the optimal solution and the pro-

posed algorithm. In terms of complexity, the optimal solution that is formulated in Problem

P1 needs to iterate

(
K

K̄

)N

times to exhaust all the cluster combinations of SUs, where the

power allocation of ProblemP3 is performed and IA solution is computed for each combi-

nation. The complexity of IA solution is dependent on the algorithm that is used to find IA

solution. As an example, minimum leakage interference (MLI) method requires a complexity

of K̄.T. [O (M3
T ) +O (M3

R)] + K̄.T.
[
2
(
K̄ − 1

)
(O (MRM

2
T ) +O (MTM

2
R))
]
, whereT is the

number of iterations in the reciprocity channel [151]. Manyresearch work in the literature tack-

led the problem of designing low complexity solutions for IAas in [20,152,153] and references

therein. The design of such solutions is out of the scope of this paper. Therefore, we denote

the complexity of finding IA solution byΥ. Accordingly, the computational complexity of the
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initialize
l = 1

∀n, Find P̂k,n(l) us-
ing (5.22) and (5.23)

Is l < L?

l = l + 1

∀n and∀k, SetPmax
k,n =

min
{
P̂k,n(l)

}L
l=1

Are power
constraints
fulfilled for
all users?

End

∀n and∀k, Execute the cap-
limited waterfilling of Prob-
lem P3 and find the setBl

EvaluateI lR using (5.27)

UpdateI ′lth using (5.28)

yes

no

yes

no

Figure 5.4: Flowchart of the sub-optimal power loading algorithm
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optimal scheme is

O



(
K

K̄

)N

·
(
Υ+

(
K̄dN

)3)

 ,

whereK̄dN is the number of the variables that needed to be optimized using the interior point

optimization technique.

Since the complexity of the optimal scheme is very hard to afford, the sub-optimal approach

is proposed through two phases as discussed before. In the frequency-clustering algorithm, a

maximum of

(
K

K̄

)
IA solutions are found for every subcarrier. Accordingly, the complexity of

frequency-clustering phase is

O

((
K

K̄

)
·N ·Υ

)
.

Referring to the sub-optimal power allocation in Algorithm5.3, step 1 has a waterfilling

like computational complexity ofO
(
K̄dN log

(
K̄dN

))
[154,155]. Step 1 should be performed

for L interference constraints, hence the complexity of step 1 isO
(
LK̄dN log

(
K̄dN

))
≤

O
(
KLK̄dN log

(
K̄dN

))
. Steps 6 and 9 in the algorithm execute the cap-limited waterfilling

for all SUs with a complexity ofO
(
K̄dN log

(
K̄dN

))
. Accordingly, the complexity of steps

6 and 9 isO
(
KK̄dN log

(
K̄dN

))
≤ O

(
KLK̄dN log

(
K̄dN

))
. Step 8 has a complexity of

O (|Bl| log |Bl|) ≤ O
(
KLK̄dN log

(
K̄dN

))
considering all SUs. As a result of that and con-

sidering the previous steps, the computational complexityof the sub-optimal power allocation

algorithm is lower thanO
(
KLK̄dN log

(
K̄dN

))
.

Correspondently, the complexity of the proposed sub-optimal resource allocation algorithm

through the two phases is lower thanO
((

K

K̄

)
·N ·Υ+KLK̄dN log

(
K̄dN

))
, which is much

lower than the computational complexity of the optimal solution.

5.6 Simulation Setup and Results

In our simulation, we investigate the performance of IA based resource management algorithms

in MIMO cognitive radio systems. Two active PU bands are assumed withW1 = W2 = 10

MHz, whereI1th = I2th. Moreover, the non active band is located between the activebands

and has 10 MHz of bandwidth. It is assumed that the cognitive radio system hasK SUs with

MT = MR = 2 antennas at each SU node and a single antenna at each PU node. The closed-

form solution of IA is applied. The value of noise varianceσnk
2 is assumed to be10−6. Channel

realizations have been drawn from independent and identically distributed Gaussian distribution
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with zero mean and unit variance. All the results have been averaged over1000 iterations. CVX

toolbox is used to obtain the optimal solution of the optimization problems [73]. Obtaining

the optimal solution of ProblemP1, which isNP -hard problem, is very hard even for small

number of subcarriers and users. For the purpose of performance comparison, the following

algorithms are considered in the simulation:

1. IA Optimal : This scheme is used when the cognitive radio system is feasible, where

K = 3. Therefore, frequency-clustering is not required. In thiscase, optimal power

distribution is performed as in (5.19).

2. IA Suboptimal : This scheme is used when the cognitive radio system is feasible, where

K = 3. Hence, frequency-clustering is not required. In this case, sub-optimal power

distribution using Algorithm 5.3 is performed.

3. IA FC+Optimal : This scheme is used when the cognitive radio system is overloaded,

whereK > 3. In this case, frequency-clustering using Algorithm 5.1 and the optimal

power distribution as in (5.19) are performed. The word Fairness is added between a

parenthesis when frequency-clustering with fairness consideration is considered using

Algorithm 5.2.

4. IA FC+Suboptimal : This scheme is used when the cognitive radio system is overloaded,

whereK > 3. In this case, frequency-clustering using Algorithm 5.1 and the power

allocation based on Algorithm 5.3 are performed. The word Fairness is added between

a parenthesis when frequency-clustering with fairness consideration is considered using

Algorithm 5.2.

5. IA RandFC+Optimal : This scheme is used when the cognitive radio system is over-

loaded, whereK > 3. In this case, random frequency-clustering and the optimalpower

distribution are performed.

6. CR-FDMA : In this scheme, the different radio resources are distributed optimally using

FDMA multiple access technique as in [29].

In our simulation, OFDM and FBMC physical layers are considered. Next, a short description

of them is given.
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Figure 5.5: Block diagrams of OFDM and FBMC systems.

5.6.1 OFDM Physical Layer

A general block diagram of an OFDM system can be found in Fig. 5.5. Firstly, the bits are

mapped into complex symbols. Then, the time domain samples of an OFDM symbol are gener-

ated using the inverse discrete Fourier transform (IDFT). After that, the cyclic prefix is added to

form the transmitted signal. Assume thatΦn is the PSD of thenth subcarrier. In OFDM system

with rectangular pulse of lengthTs = N + C, whereC is the length of the cyclic prefix,Φn(f)

can be written as follows

Φn(f) = P n

(
Ts + 2

Ts−1∑

r=1

(Ts − r) cos (2πfr)

)
. (5.29)

whereP n is the total transmit power emitted by thenth subcarrier.

5.6.2 FBMC Physical Layer

In FBMC, the transmultiplexer configuration is adopted using the synthesis filter bank at the

transmitter side and the analysis filter banks at the receiver side as described in Fig. 5.5

[128,129]. In FBMC systems, the use of critically sampled filter banks is problematic, since the

aliasing effects would make it difficult to compensate imperfections of the channel by process-

ing the sub-channel signals while the FBMC with the offset quadrature amplitude modulation

(OQAM) OQAM/FBMC symbols can be formed by modulating each subcarrier with a stag-

gered QAM. The basic idea of FBMC is to transmit real-valued symbols instead of transmitting

complex valued ones. Due to this time staggering of the in-phase and quadrature components

of the symbols, orthogonality is achieved between adjacentsubcarriers.

The synthesized signal burst is therefore a composite of multiple subchannel signals. Each

signal consists of a linear combination of time-shifted (bymultiples ofTs/2) and overlapping
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impulse responses of the prototype filter, weighted by the respective symbol values [129]. Note

that each sub-carrier is modulated with an OQAM. OQAM inserts a shift of half the symbol

period between the real and the imaginary part of the complexdata symbol [129].

In FBMC systems, if the prototype filter with coefficientsb [i] with i = 0, · · · , Y − 1

is used, whereY = QfN andQf is overlapping factor which represents the length of each

polyphase components and under the assumption of the even symmetry of prototype coefficients

around the
(
QfN

2

)th
coefficient with zero coefficient in the beginning, the FBMC PSD can be

expressed asΦn (f) = |Bn (f)|
2, where|Bn (f)| is the frequency response of the prototype

filter and can be written as [129]

|Bn (f)| = b [Y /2] + 2

Y
2
−1∑

r=1

b [(Y /2)− r] cos (2πfr) . (5.30)

5.6.3 Results and Discussions

The simulation results are divided into three cases: In the first case, a feasible MIMO-OFDM

cognitive radio system withK = 3 SUs is assumed while an overloaded system is assumed in

the second case withK = 12 SUs. The third case compares the performance of the OFDM and

FBMC physical layers systems.

Case I: Feasible MIMO-OFDM cognitive radio system

In this case, a MIMO-OFDM based cognitive radio system withK = 3 SUs andN = 64 is

assumed. In this case, frequency-clustering is not required since the cognitive radio system

achieves IA feasibility conditions.

Fig. 5.6 presents the average sum-rate against the interference thresholds when the per-SU

power budget is set to bePk = 15 dBm. In general, for all scenarios, the average sum-rate

increases as the interference threshold levels increase since each SU has more flexibility to allo-

cate more power on its subcarriers. It can be observed thatIA Optimal algorithm achieves higher

sum-rate gain compared toCR-FDMA algorithm since IA benefits from the available DoF bet-

ter than FDMA. It is further shown thatIA Suboptimal algorithm presents very close sum-rate

performance to theIA optimal with less complexity, which reveals the efficiency of the sub-

optimal power allocation algorithm. Furthermore, the sum-rate gap between IA based resource

allocation algorithms andCR-FDMA increases with the increase of interference threshold until
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Figure 5.6: Achieved sum-rate vs. allowed interference threshold whenK = 3, Pk = 15 dBm

andN = 64.

a certain interference threshold value. After this value, the gap remains constant as the cognitive

radio system behaves like a non-cognitive radio system where the interference constraint has no

effect on the optimization problem.

Fig. 5.7 plots the instantaneous data rate for a given user over time for IA Optimal and

IA Suboptimal algorithms compared toCR-FDMA whenI1th = I2th = −30 dBm andPk = 15

dBm. It is noted from the figure that the instantaneous rates fluctuate along the time. InCR-

FDMA, the high values mean that this user is assigned a larger number of subcarriers compared

to others, while low values mean that other users have greater number of subcarriers causing

the deep rate. However, IA based resource allocation allowsthe 3 SUs to share all the available

subcarriers, which leads to better instantaneous rate compared toCR-FDMA. The fluctuations

in IA curves are due to the channel quality. Assuming that ourrate target per SU isRmin =

200 bits per OFDM symbol, It is noted thatIA Optimal andIA Suboptimal algorithms keep the

instantaneous rate mostly above our target.

Fig. 5.8 presents the outage sum-rate probability of the different algorithms whenPk =

10 dBm, where the minimum rate for each SU is set to beRmin = 160 bits per OFDM symbol.

Generally, outage probability decreases as the interference constraint increases since the abil-

ity of the algorithms to give the minimum instantaneous ratefor the different users increases.

Furthermore, the outage probability ofIA optimal scheme is very close toIA Optimal one, and
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Figure 5.7: Achieved instantaneous rate whenK = 3, Pk = 15 dBm, I1th = I2th = −30 dBm

andN = 64.
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Figure 5.8: Outage probability versus interference thresholds,K = 3, Pk = 10 dBm,N = 64

andRmin = 160 bits/symbol.

both are much lower than that ofCR-FDMA algorithm. It is clearly observed from Fig. 5.7 and

Fig. 5.8 that IA based algorithms are able to achieve a high-level of fairness among the different
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users since all the SUs share the available subcarriers.

Case II: Overloaded MIMO-OFDM cognitive radio system

In this case, a MIMO-OFDM based cognitive radio system is considered withK = 12 SUs and

N = 128. Since this system is overloaded, frequency-clustering phase should be performed

before power allocation phase. For fairness consideration, the minimum rate for each SU is set

to beRmin = 150 bits per OFDM symbol.
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Figure 5.9: Achieved sum-rate versus allowed interference threshold whenK = 12, Pk = 0

dBm andN = 128.

We first show the impact of the interference threshold on the average sum-rate when the

per-SU power budget is set to bePk = 0 dBm, as shown in Fig. 5.9. In general, for all

resource allocation methods, the average sum rate increases as the interference threshold levels

increase since each SU has more flexibility to allocate more power on its subcarriers. It can be

observed also thatIA FC+Suboptimal algorithm strictly matches the corresponding curves ofIA

FC+Optimal, which reveals the efficiency of the sub-optimal algorithm.It can be observed that

IA FC+Optimal andIA FC+Suboptimal algorithms achieves higher sum rate in compared with

CR-FDMA algorithm. Furthermore, the sum rate increases with the increase of interference

threshold until a certain interference threshold value. After this value, the sum rate remains

constant as the cognitive radio behaves like a non-cognitive radio system where the interference
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constraint has no effect on the optimization problem. In lowinterference threshold values,

the algorithms with fairness perform very close to those without fairness consideration as the

fairness constraint can not be achieved with this low interference threshold value. Accordingly,

the algorithm acts as there is no fairness constraint. Aftera certain interference constraint

value (-20 dBm in the figure), the fairness constraint can be satisfied for the users. The loss

in the sum rate is because of the activation of the fairness constraint. It is noted in this figure

that frequency-clustering is very important for performing IA in overloaded networks sinceIA

RandFC+Optimal presents very bad performance compared to all the other considered curves.
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Figure 5.10: Achieved sum-rate versus per-SU power budget whenK = 12, I1th = I2th = −20

dBm andN = 128.

The average sum-rate versus per-SU power constraint is presented in Fig. 5.10 where

I1th = I2th = −20 dBm. The sum-rate of the cognitive radio systems increases as the per-SU

power budget increases up to certain power value, afterwards the sum-rate remains constant

because the cognitive radio system reaches to the maximum power that can be allocated under

the interference threshold. The sum-rate of IA based resource allocation algorithms presents

better performance thanCR-FDMA curve, and the gap between them increases with the increase

of the power constraints, which shows the efficiency of IA in utilizing the available resources.

The behavior of the algorithms in this figure can be describedaccording to three regions

1. WhenPk < −18 dBm: IA FC+Optimal with and without fairness present the best sum-
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rate performance among the algorithms. It is noted that the sub-optimal power allocation

curves,IA FC+Suboptimal with and without fairness, cause small sum-rate loss compared

to the optimal ones. This regime is considered very confined.

2. When−18 < Pk < 0 dBm: IA FC+Optimal and IA FC+Suboptimal curves are very

close. In this regime, the algorithms with fairness performvery close to those without

fairness consideration as the fairness constraint can not be achieved with this low power

budget value. Accordingly, the algorithm acts as there is nofairness constraint.

3. WhenPk > 0 dBm: In this regime,IA FC+Optimal andIA FC+Suboptimal curves are

very close. It is noted in this regime that the curves of fairness consideration present

small sum-rate loss compared to the non-fairness curves since the fairness constraint can

be satisfied for the users.

In all the three cases, the behavior ofIA RandFC+Optimal algorithm is very poor since frequency-

clustering is performed randomly. This reveals the importance of using frequency-clustering

algorithms.
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Figure 5.11: Outage probability versus interference thresholds, whenK = 12, Pk = 0 dBm,

N = 128 andRmin = 150 bits/symbol.

Fig. 5.11 presents the outage probability of the different algorithms against the interference

threshold when the per-SU power budget is set to bePk = 0 dBm andRmin = 150 bits/symbol.
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Generally, the outage probability decreases with the increase of interference constraint as the

algorithms become more able to support the instantaneous rate for the different users. Further-

more, the outage probability ofIA FC+Suboptimal scheme is very close toIA FC+Optimal one,

and both are much lower than that ofCR-FDMA scheme. It is clearly observed from this figure

that IA based resource allocation algorithms are able to achieve a high-level of fairness among

the different users. The best outage probability is achieved, as expected, by the algorithms of

fairness consideration. Again,IA RandFC+Optimal exhibits the worst performance compared

to all simulated curves.
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Figure 5.12: Achieved instantaneous rate whenK = 12, Pk = 0 dBm,I1th = I2th = −10 dBm,

N = 128 andRmin = 150 bits/symbol.

Fig. 5.12 plots the instantaneous rate for a given user over time whenI1th = I2th = −10

dBm,Pk = 0 dBm andRmin = 150 bits per OFDM symbol. It is noted from the figure that the

instantaneous rate fluctuates along the time. The high values mean that this user is assigned a

larger number of subcarriers compared to others, while low values mean that other users have

greater number of subcarriers causing the deep rate. Therefore, IA based resource allocation

exhibits better instantaneous rate compared toCR-FDMA algorithm since the fluctuations of

CR-FDMA algorithm is stronger and changes dramatically, which causes deep rate degradation

at some time samples. Moreover,IA FC+Optimal scheme with fairness consideration presents

smooth instantaneous rate compared to others, which means that the users get fair allocation of
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the subcarriers. Clearly,IA FC+Optimal method with fairness always achieves better rate than

the minimum unlike the other compared methods.
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Figure 5.13:Achieved sum-rate versus number of SUs whenN = 128 for different interference

threshold and per-SU power values.

Fig. 5.13 presents the average sum-rate versus the number ofSUs for different interference

threshold and per-SU power values. Generally, the sum-rateincreases with the number of SUs

due to the increase of the multiuser diversity. Moreover, IAbased resource allocation algorithms

exploit much more gain from the increase of the multiuser diversity thanCR-FDMA scheme

since IA based resource allocation algorithms allow the users to share the available resources.

It is noted from this figure thatCR-FDMA scheme is more restricted to the interference limit,

where increasing the per-SU power from 0 dBm to 10 dBm atI1th = I2th = −30 dBm slightly

improves the sum-rate while increasing the interference limit from -30 dBm to -20 dBm at

Pk = 0 dBm improves the sum-rate much more than modifying the powerbudget. However,

the situation in IA curves is different, where the system benefits more from increasing the per-

SU power budget.

Case III: Comparison between OFDM and FBMC physical Layers

In this part, we compare between OFDM and FBMC physical layers in MIMO cognitive radio

systems. Note that in all the figures, theFBMC simulated results are denoted bydashcurves,
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Figure 5.14: Achieved sum-rate ofIA Optimal versus power budget and interference threshold

for OFDM and FBMC based physical layers whenK = 3, I1th = I2th andN = 64.

while theOFDM simulated results are denoted bysolid curves.

Fig. 5.14a and Fig. 5.14b present the average sum-rate ofIA Optimal against the inter-

ference thresholds and power budget constrains for OFDM andFBMC physical layers, respec-

tively, whenK = 3 andN = 64. It is noted for the two physical layers cases that by fixing one

of the constraints, the achieved capacity increases with the other up. This can be verified by the

increase of the cognitive radio system ability to allocate more transmission powers for all users

on the subcarriers. However, FBMC based cognitive radio achieves higher sum-rate compared

to OFDM based cognitive radio at fixed interference and powervalues. This results from the

small sidelobes of FBMC systems and the spectrum efficiency loss in OFDM due to the use of

the cyclic prefix.

Fig. 5.15 presents the impact of interference threshold on the sum-rate when OFDM and

FBMC physical layers are used in feasible cognitive radio systems withK = 3, Pk = 15 dBm

andN = 64. In general, as the interference threshold levels increase, the restrictions on power

allocation decrease and, consequentially, the sum-rate ofcognitive radio systems increases. It

can be observed that the interference constraint has more effect on the performance of OFDM

systems rather than FBMC systems due to the sidelobes of eachcase. Therefore, FBMC based

IA algorithms achieve higher sum-rate gain compared to OFDMbased IA algorithms. When the

interference constraint is flexible as in non cognitive-like environment, both physical layers have

identical performance. The same conclusion can be extracted from Fig. 5.16 for an overloaded

system withK = 9, Pk = 0 dBm andN = 128.
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Figure 5.15: Achieved sum-rate versus allowed interference threshold for OFDM and FBMC

based physical layers whenK = 3, Pk = 15 dBm andN = 64.

Figure 5.16: Achieved sum-rate versus allowed interference threshold for OFDM and FBMC

based physical whenK = 9, Pk = 0 dBm andN = 128.

The presented performance evaluation proves that IA based resource management has an

essential responsibility in increasing the spectral efficiency of multicarrier MIMO cognitive

radio systems.

113





6 CONCLUSIONS AND FUTURE WORK

In this chapter, we summarize the conclusions that we have achieved throughout the thesis in

addition to future work tracks.

6.1 Conclusions

In this dissertation, we deal with three important aspects that are related to IA inK-user MIMO

interference channels in order to improve the spectral efficiency of wireless communications.

In the first aspect, we design the precoders and decoders of IAusing Min-Maxing strategy in

order to improve the spectral efficiency ofK-user MIMO interference channels. Increasing the

practical feasibility of MIMO IA systems under real-world environments is the target of the

second aspect. The third aspect exploits IA as a base of resource allocation in MIMO cognitive

radio systems aiming at increasing their spectral efficiency.

In Chapter 3, we focus on designing IA matrices that improve the sum-rate performance

of generalK-user MIMO interference channels by proposing a new distributed algorithm using

Min-Maxing strategy. The proposed algorithm is formulatedas a novel optimization problem

that aims at maximizing the power of the desired signal whilekeeping the minimum leakage in-

terference obtained from MLI method. Min-Maxing method is handled by convex optimization

after reformulating and relaxing the optimization probleminto a standard semidefinite program-

ming approximation. Furthermore, the convergence of this method is established, and a sim-

plified version of the optimal Min-Maxing method is proposedfor rank-deficient interference

channels. The proposed algorithm is extended toK-user multicarrier interference channels. We

evaluate the proposed scheme by numerical simulation underthree types ofK-user MIMO in-

terference channels: proper, marginal proper, and improper interference channels. Unlike the

other algorithms, simulation results show that Min-Maxingtechnique achieves the best sum-

rate performance compared to the other approaches at high SNR values in various interference

channels, and it has a very close performance to the best sum-rate performance at low SNR
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regime. The simplified technique presents identical sum-rate performance to the optimal one

when the interference channel is rank-deficient with less complexity.

In Chapter 4, we consider improving the practical feasibility of IA under realistic chan-

nels. We propose to apply transmit antenna selection in MIMO-OFDM IA interference chan-

nels through bulk selection and per-subcarrier selection.Three selection criteria are considered:

Max-SR, Min-ER, and Min-EG. Max-SR criterion is used to improve the sum-rate performance

while Min-ER and Min-EG are used to enhance the error-rate performance. To overcome the

power unbalancing that occurs in per-subcarrier selection, a constrained per-subcarrier selection

is developed to attain power balancing among the antennas ofeach node. Furthermore, a sub-

optimal antenna selection algorithm is proposed to reduce the computational complexity of the

optimal selection. The sub-optimal algorithm reduces the complexity fromO
(
N
(
MT

Ms

)K)
re-

quired in the exhaustive search toO
(
NK

(
MT

Ms

))
. In order to examine the proposed technique

under real circumstances, we implement IA testbed to collect measured channels. Moreover,

deterministic channels, that are extracted from ray-tracing, are also used in performance evalu-

ation. In deterministic and measured channels, antenna separation within each node is fixed to

λ/2 in all cases. The following results are outlined:

• In analytical channels (independent channels and subcarriers), IA without antenna selec-

tion exhibits the promised results in the literature, whereit surpasses the performance

of TDMA multiple access technique and achieves the ideal DoFs. Moreover, our results

state that unconstrained and constrained per-subcarrier selection matches each other, and

both achieve high gain in sum-rate and error-rate performances compared to IA without

antenna selection. However, bulk selection does not provide performance improvement

when it is used for this type of channels since the subcarriers have independent fading

and, therefore, it is impossible to select one antenna set suitable for all subcarriers.

• In measured and deterministic channels, IA fails to present the ideal results due to the

spatial correlation between channels, where TDMA outperforms IA in this kind of chan-

nels. We show that the sum-rate of MIMO-OFDM IA with bulk antenna selection and

λ/2 separation of antennas within each node outperforms sum-rate of the system with-

out antenna selection and 2λ separated antennas. Furthermore, the sub-optimal algorithm

achieves close performance to bulk selection with less complexity even the selection is

performed only for one subcarrier. It is noted that constrained per-subcarrier selection

causes a high rate loss compared to the unconstrained per-subcarrier selection due to the
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high correlation between channels in indoor environments.Therefore, bulk selection is

more suitable to be used in such channels.

We conclude that antenna selection can improve the performance of MIMO-OFDM IA systems,

and, hence, increases the practical feasibility of IA systems.

In Chapter 5, we deal with IA in MIMO cognitive radio systems that are coexisted with pri-

mary systems. We perform efficient resource allocation in overloaded MIMO cognitive radio

systems based on IA without affecting the QoS of the primary system. Moreover, we con-

sider in problem formulation the power budget of the SUs as well as the throughput fairness

among the SUs. This problem is formulated as a mixed-integerproblem which has a high

computational complexity. Therefore, an efficient sub-optimal algorithm is proposed to reduce

the computational complexity of the optimal problem through two phases. In the first phase,

frequency-clustering is performed to overcome IA feasibility conditions where one group of

a feasible number of SUs is assigned to each subcarrier considering channel quality, per-user

power budget, and the induced interference to the PU bands. Frequency-clustering phase con-

siders achieving a high degree of fairness among the SUs. In the second phase, the power is

distributed among subcarriers considering the induced interference limits. Sub-optimal power

allocation algorithm is also proposed to reduce the complexity of the optimal power allocation.

Performing resource allocation using frequency-clustering and the sub-optimal power alloca-

tion reduces the complexity fromO





K

K̄




N

·
(
Ψ+

(
K̄dN

)3)

 required in the optimal resource

allocation scheme toO
((

K

K̄

)
·N ·Υ+KLK̄dN log

(
K̄dN

))
. The following results are out-

lined:

• IA based resource management achieves a considerable increase in the spectral efficiency

of MIMO cognitive radio systems compared to orthogonal multiple access techniques.

• The sup-optimal power allocation algorithm successes to present close performance to

the optimal power allocation algorithm with fewer computational complexity.

• In feasible cognitive radio scenarios, outage probability and instantaneous rate curves re-

veal that IA can achieve a high degree of fairness among the SUs since IA allows the SUs

to share the available resources in the system, where all SUscommunicate simultaneously

using the same resources.

• In overloaded cognitive radio scenarios, frequency-clustering is a necessity to achieve
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IA feasibility conditions on subcarriers. By comparing theachieved sum-rate of the

frequency-clustering with and without applying the fairness constraints, it is noted that

the frequency-clustering with fairness can maintain the fairness between the SUs with

small sum-rate loss compared to the scheme without fairnessconsideration. This result is

also observed from the outage probability curves.

• FBMC physical layer achieves higher performance than OFDMsince FBMC has small

sidelobes and OFDM requires cyclic prefix insertion.

We conclude that IA based resource management is a novel technique that is able to achieve a

considerable spectral efficiency improvement in MIMO cognitive radio systems.

6.2 Future Work

In this section, we present some important future research directions on IA in the following

listed points.

• K-user interference channels are only considered through this dissertation. Recent works

on IA in cellular systems have appeared as in [156,157]. Therefore, extension to cellular

systems is a promising future direction for this work, whereconsidering the effect of

cellular system complexities such as scheduling and interference is a challenge.

• Through this work, the global CSI is assumed to be perfectlyknown, where it is an unre-

alistic assumption. Recently, some research works were done in order to evaluate IA sys-

tems with imperfect CSI. In [158], the performance of IA withimperfect channel knowl-

edge was studied. Moreover, blind IA schemes without both the CSI at the transmitters

and the receivers were studied in [159]. In [160], the authors analyzed the performance

of IA with CSI feedback using a limited number of bits. Thus, more investigation for

the proposed schemes in this dissertation with imperfect/partial CSI will be an interesting

topic for future investigation.

• In chapter 5, the resource management is performed in a centralized way. Distributed

resource allocation algorithm is of great interest to be observed in the future. Moreover,

considering energy-efficiency resource allocation is a possible extension to the proposed

algorithm.
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