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ABSTRACT

Interference alignment (lIA) is a promising joint-transsis technology that essentially
enables the maximum achievable degrees-of-freedom (DoK)-user interference channels.
Fundamentally, wireless networks are interference-thigince the spectral efficiency of each
user in the network is degraded with the increase of usersrdéaks through this barrier, that
is caused by the traditional interference management igebs, and promises large gains in

spectral efficiency and DoF, notably in interference limigavironments.

This dissertation concentrates on overcoming the chatleras well as exploiting the
opportunities of IA inK-user multiple-input multiple-output (MIMO) interfereacchannels.

In particular, we consider IA i -user MIMO interference channels in three novel aspects.

In the first aspect, we develop a new IA solution by designmagdmit precoding and
interference suppression matrices through a novel iteratigorithm based on Min-Maxing
strategy. Min-Maxing IA optimization problem is formulatsuch that each receiver maximizes
the power of the desired signal, whereas it preserves themmam leakage interference as a
constraint. This optimization problem is solved by relaxih into a standard semidefinite
programming form, and additionally its convergence is pobv Furthermore, we propose a
simplified Min-Maxing IA algorithm for rank-deficient intearence channels to achieve the
targeted performance with less complexity. Our numerieaults show that Min-Maxing 1A
algorithm proffers significant sum-rate improvementiiruser MIMO interference channels
compared to the existing algorithms in the literature ahlsgnal-to-noise ratio (SNR) regime.
Moreover, the simplified algorithm matches the optimal perfance in the systems of rank-

deficient channels.

In the second aspect, we deal with the practical challenfjes ender realistic channels,
where IA is highly affected by the spatial correlation. Datan-rate and symbol error-rate of
IA are dramatically degraded in real-world scenarios siteecorrelation between channels
decreases the SNR of the received signal after alignmemtthioreason, an acceptable sum-

rate of IA in MIMO orthogonal frequency-division-multipteng (MIMO-OFDM) interference



channels was obtained in the literature by modifying thafions of network nodes and the
separation between the antennas within each node in ord@ntmize the correlation between
channels. In this regard, we apply transmit antenna sele¢ti MIMO-OFDM IA systems
either through bulk or per-subcarrier selection aiminggbrioving the sum-rate and/or error-
rate performance under real-world channel circumstandete \weeping the minimum spatial
antenna separation of half-wavelengths. A constraineesyplecarrier antenna selection is
performed to avoid subcarrier imbalance across the andeohaach user that is caused by
per-subcarrier selection. Furthermore, we propose a ptibral antenna selection algorithm
to reduce the computational complexity of the exhaustiaecte An experimental testbed of
MIMO-OFDM IA with antenna selection in indoor wireless neitkk scenarios is implemented
to collect measured channels. The performance of anterleetise in MIMO IA systems

is evaluated using measured and deterministic channelsrendintenna selection achieves

considerable improvements in sum-rate and error-raterusdéworld channels.

Third aspect of this work is exploiting the opportunity of IA resource management
problem in OFDM based MIMO cognitive radio systems that ¢stexith primary systems. We
propose to perform IA based resource allocation to imprbeespectral efficiency of cognitive
systems without affecting the quality of service (QoS) @& nimary system. A plays a vital
role in the proposed algorithm enabling the secondary y§&Js) to cooperate and share the
available spectrum aiming at increasing the DoF of the dognsystem. Nevertheless, the
number of SUs that can share a given subcarrier is restriotélae 1A feasibility conditions,
where this limitation is considered in problem formulatiorAs the optimal solution for
resource allocation problem is mixed-integer, we proposg&mphases efficient sub-optimal
algorithm to handle this problem. In the first phase, fregyesiustering with throughput
fairness consideration among SUs is performed to tackléAHeasibility conditions, where
each subcarrier is assigned to a feasible number of SUs. elsg¢bond phase, the power is
allocated among subcarriers and SUs without violatingritexference constraint to the primary
system. Simulation results show that IA with frequencystduing achieves a significant sum-
rate increase compared to cognitive radio systems witlogahal multiple access transmission

techniques.

The considered aspects with the corresponding achieverbeng IA to have a powerful
role in the future wireless communication systems. The rdmutions lead to significant
improvements in the spectral efficiency of 1A based wirelggstems and the reliability of 1A

under real-world channels.



ZUSAMMENFASSUNG

Interference Alignment (IA) ist eine vielversprechendeperativeUbertragungstechnik, die
die meisten Freiheitsgrade (engl. degrees-of-freedonk) DoBezug auf Zeit, Frequenz und
Ort in einem Mehrnutzetberlagerungskanal bietet. Im Grunde sind Funksystenegférenz
begrenzt, da die Spektraleffizienz jedes einzelnen Nutm@tszunehmender Nutzerzahl
sinkt. 1A durchbricht die Schranke, die herkdbmmlichesetfégrenzmanagement errichtet
und verspricht grof3e Steigerungen der Spektraleffizienkzden Freiheitsgrade, besonders in

Interferenzbegrenzter Umgebung.

Die vorliegende Dissertation betrachtet bisher noch wngchte Moglichkeiten von 1A in
Mehrnutzerszenarien fur Mehrantennen- (MIMO) Kanalevisoderen Anwendung in einem

kognitiven Kommunikationssystem.

Als erstes werden mit Hilfe eines effizienten iterativen &ithmus, basierend auf der
Min-Maxing Strategie, senderseitige Vorkodierungs- umigiferenzunterdriickungs Matrizen
entwickelt. Das Min-Maxing Optimierungsproblem ist daclurbeschreiben, dass jeder
Empfanger seine gewiinschte Signalleistung maximieéhrend das Minimum der Leck-
Interferenz als Randbedingung beibehalten wird. Zur bgsdes Problems wird es in eine
semidefinite Form uberfuhrt, zusatzlich wird deren Kengenz nachgewiesen. Des Weiteren
wird ein vereinfachter Algorithmus fur nicht vollrangigéanalmatrizen vorgeschlagen, um
die Rechenkomplexitat zu verringern. Wie numerische Bmggse belegen, bedeutet die Min-
Maxing Strategie eine wesentliche Verbesserung des Sysiteimsatzes gegeniber den bisher
in der Literatur beschriebenen Algorithmen fur MehrnutZ@MO Szenarien im hohen Signal-
Rausch-Verhaltnis (engl. signal-to-noise ratio, SNR¢h¥inoch, der vereinfachte Algorithmus

zeigt das optimale Verhalten in einem System mit nicht @olgjigen Kanalmatrizen.

Als zweites werden die IA Herausforderungen an Hand vonsteadhen/realen Kanalen
in der Praxis untersucht. Hierbei wird das System stark l[dugumliche Korrelation
beeintrachtigt. Der Datendurchsatz sinkt und die Synahddfrrate steigt dramatisch unter
diesen Bedingungen, da korrelierte Kanale den SNR desamgehen Signals nach dem

Alignment verschlechtern. Aus diesem Grund wurde in deeraiur fur IA in MIMO-



OFDM Uberlagerungskanalen sowohl die Position der einzelnetzwerkknoten als auch
die Trennung zwischen den Antennen eines Knotens varient,so die Korrelierung der
verschiedenen Kanale zu minimieren. Das vorgeschlagdMOMOFDM IA System wahlt
unter mehreren Sendeantennen, entweder pro Untertrdgerfir das komplette Signal, um
so die Symbolfehlerrate und/oder die gesamt Datenrate rhessern, wahrend die raumliche
Trennung der Antennen auf die halbe Wellenlange beskhkigiben soll. Bei der Auswahl pro
Untertrager ist darauf zu achten, dass die Antennen gltea@ig ausgelastet werden. Um die
Rechenkomplexitat fur die vollstandige Durchsuchuegry zu halten, wird ein suboptimaler
Auswabhlalgorithmus verwendet. Mit Hilfe einer Innenraugssanordnung werden reale
Kanaldaten fur die Simulationen gewonnen. Die Evaluigrdes MIMO IA Systems mit
Antennenauswabhl fur deterministische und gemessenal&dradt eine Verbesserung bei der

Daten- und Fehlerrate unter realen Bedingungen ergeben.

Als drittes beschaftigt sich die vorliegende Arbeit minddoglichkeiten, die sich durch
MIMO IA Systeme fir das Ressourcenmanagementproblem ognikiven Funksystemen
ergeben. In kognitiven Funksystemen mussen MIMO IA Systemt primaren koexistieren.
Es wird eine IA basierte Ressourcenzuteilung vorgeschlagm so die spektrale Effizienz
des kognitiven Systems zu erhdhen ohne die Qualitat (QES) primaren Systems zu
beeintrachtigen. Der vorgeschlagenen IA Algorithmugsdafir, dass die Zweitnutzer (engl.
secondary user, SU) untereinander kooperieren und sichudag&erfiigung stehende Spektrum
teilen, um so die DoF des kognitiven Systems zu erhdhen. Abieahl der SUs, die sich
eine Untertragerfrequenz teilen, ist durch die IA Randhbgangen begrenzt. Die Suche
nach der optimalen Ressourcenverteilung stellt ein gdriganzzahliges Problem dar, zu
dessen Losung ein effizienter zweistufiger suboptimalgoAihmus vorgeschlagen wird. Im
ersten Schritt wird durch Frequenzzusammenlegung (Chiktang), unter Beriicksichtigung
einer fairen Durchsatzverteilung unter den SUs, die IA Adéoung erfullt. Dazu wird jede
Untertragerfrequenz einer praktikablen Anzahl an SUsetilj. Im zweiten Schritt wird
die Sendeleistung fur die einzelnen Untertragerfreqgaenund SUs so festgelegt, dass die
Interferenzbedingungen des Primarsystems nicht vésetrden. Die Simulationsergebnisse
fur 1A mit Frequenzzusammenlegung zeigen eine wesestlidbrbesserung der Datenrate

verglichen mit kognitiven Systemen, die auf orthogonaleshMachzugriffsverfahren beruhen.
Die in dieser Arbeit betrachteten Punkte und erzieltenubgen fuhren zu einer
wesentlichen Steigerung der spektralen Effizienz von IAt8Sysn und zeigen deren Zu-

verlassigkeit unter realen Bedingungen.
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1 ‘ INTRODUCTION

Right now, all over the world, mobile internet access is loeiog wholly vital to provide flex-
ible working practices. Moreover, mobile networks expaocatcommodate wide-range of
connected devices and corresponding services to achievetrnet of Things (loT) paradigm
[1-3]. 10T is a new revolution that provides a variety of tpgnor objects - such as environ-
mental sensors, vehicles, medical devices, industridpeggent, surveillance cameras, etc. - to
interact and communicate with each other. Forecasts prealichillion devices to be connected
to the cloud by 2025, and all need to access and share datdhargrand anytime [4]. More-
over, it is forecasted that mobile data traffic reaches 18ybes (18 billion GB) per month by
2018 compared to 1.5 exabytes per month at the end of 201B [Bu&hermore, total mobile
subscriptions are expected to grow from 6.8 billion at thgifn@ing of 2014 to 9.2 billion by the
end of 2019. Additionally, mobile broadband subscriptians expected to account for more
than 80 percent of all mobile subscriptions, compared toratd0 percent in 2013 [6]. As
predicted, this massive demand for wireless communicatithlead to an exponential growth

in network traffic.

In order to respond these ever-increasing demands, thefwiteless communication sys-
tems have to support massive data-rate and high qualisgnfice (QoS) by improving the
spectral efficiency and spectrum utilization. Interfenghich is caused when multiple users
access simultaneously a common communication channatgi®bthe most challenging phe-
nomena that limits the spectral efficiency of wireless comitation systems. Hence, there is
a tremendous potential for efficient interference managenmeminimize interference effect
and greatly improve the capacity of wireless networks. @otienal interference management
strategies coordinate the users in a way that the channesscg orthogonalized. In orthog-
onal schemes such as time-division-multiple-access (TD&® frequency-division-multiple-
access (FDMA), the resources of the system are distributezhg the users aiming at that

different interference signals are being orthogonal to ¢fighe desired signal and also orthog-
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onal to each other. Although the orthogonal schemes arg@lbhoid interference, they suffer
from low spectral efficiency since the maximum data-rateyser is proportionally decreased
with increasing number of users. Other interference manageé approaches were proposed
like treating interference as noise or decoding a stroregfietence [7, 8]. However, they suffer
from the complexity as well as the poor sum-rate at high digmaoise ratio (SNR) values [9].
Recently, a new sophisticated interference managemembitpee, called interference align-

ment (IA), was proposed to optimally manage the interfeeanavireless systems [10].

1.1 Motivation and Scope

IA is a cooperative interference management techniqueetfiatently utilizes the signaling
dimensions provided by the system resources such as tisgency, antennas, or/and code
[11-15]. IA technique is employed by designing transmitcping matrices that are able to
align interfering signals at each receiver in a lower-dimenal subspace, while the desired
signal is to be aligned in the other orthogonal subspacegeiinterference-free subspace [10].
Cadambe and Jafar proved in [10] that IA can provide eachinsgk -user interference channel
with half of the achievable rates for one user in an interfeeefree channel at high SNRs,
regardless of the number of users. Therefore, the sum-falte metwork grows linearly with

the number of users.

In this dissertation, we focus on IA through the spatial domia /A -user multiple-input
multiple-output (MIMO) interference channels [14]. Theuser MIMO interference channel
is an information-theoretical terminology that denoteseamork that consists of MIMO
transmitter-receiver pairs, where each transmitter sandadependent stream of information
to its paired receiver. The basic idea of IA in-user MIMO interference channels is to use
a combination of linear precoders at the transmitters atatfarence suppression decoders at
the receivers [16-19]. In this regard, the dissertationsaionconstruct and devise novel IA

algorithms within the following scopes:

1. Computing IA Solutions: IA closed-form solutions are properly well defined so faryonl
for limited scenarios such as 3-user MIMO interference aeswith2 x d number of
antennas at each node ahdata streams per user [17]. Therefore, iterative algoithm
approaches were proposed as an alternative to achieve JA [A%he literature, many
iterative approaches were proposed as in [20-23]. Howedaust data sum-rate perfor-

mance has not been achieved among the diffefeniser MIMO interference channels

2
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by the previous approaches. Instead, we propose a more tébadution that improves

the sum-rate of{-user MIMO interference channels.

2. Practical Reliability of IA in Real-World Environments: The ideal data sum-rate per-
formance of 1A inK-user MIMO interference channels is achieved in the litemaby
considering ideal independent channels. In reality, tegimption is generally impos-
sible to be observed since MIMO channels have consideralalitas correlation due to
the clustering of scatterers in the propagation envirorirf#2t. Moreover, indoor envi-
ronments create challenging multipath propagation se@narhich produce significant
correlated channels [25]. Unfortunately, it was statedhia literature that the perfor-
mance of MIMO 1A interference channels is highly dependemtbannel realizations,
where spatial correlation generally has an adverse effesum-rate and error-rate per-
formance. The correlation between channels degrades thRe @khe received signal
in the interference-free subspace after alignment [26his context, we deal with the
problem by applying antenna selection aiming at increaiiegpractical feasibility of
IA in K-user orthogonal frequency division multiplexing (OFDM)YMO interference

channels under real-world circumstances.

3. 1A in Cognitive Radio Systems: Cognitive radio is proposed to improve the spectrum
utilization by introducing a new licensing scheme whicloa# a group of users, non-
licensed, to access the vacant portion of the spectrum yetfido licensed users without
affecting the QoS of the licensed system [27, 28]. In thedilere, most of the resource
allocation problems of cognitive systems are performe@das FDMA multiple access
techniques, in which each frequency band or subcarrier eatbessed by one cognitive
user [29]. Moreover, IA in cognitive radio systems is raratidressed, where IA based
resource management in multicarrier MIMO cognitive radistems is not considered.
Additionally, large cognitive radio networks with a largember of users, which is a
challenge for IA, are not considered in the previous workghis context, the opportunity
of IA as an effective interference management techniquep#ed by performing IA
based resource management in order to improve the spefficedrecy of multicarrier
MIMO cognitive radio systems without affecting the QoS o firimary system.

As we can see from the above, studying IA in the scopes of iBsedation is highly attrac-
tive since the considered issues promise to achieve signifgpectral efficiency in the future

communication systems.
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1.2 Dissertation Contributions and Organization

In this dissertation, we develop IA strategies and algorglin order to improve the spectral ef-
ficiency of wireless communication systems. The main cbuations and chapters organization

of this dissertation can be summarized as follows.

» Chapter 2: Background of Interference Alignment
This chapter presents some relevant background on themaertals of IA. We begin
by introducing the types of interference channels with nmoecentration onk-user
interference channels. We briefly discuss interferenceaggament techniques ii-user
interference channels. Then, IA is presented&huser interference channels, where the

solutions of IA in addition to the feasibility of IA is desbed.

» Chapter 3: Iterative Interference Alignment Based on Min-Maxing Strategy

Chapter 3 proposes a new iterative IA solution based on MaxiNQ strategy in order
to improve the data sum-rate &f-user MIMO interference channels, wherein the inter-
ference leakage is minimized and, simultaneously, thee@giower is maximized. We
reformulate and relax Min-Maxing IA solution into a standiaemidefinite programming
form. Moreover, the convergence of the proposed methodogepr. We also propose
a simplified Min-Maxing IA solution for rank-deficient interence channels to achieve
the targeted performance with less complexity. Furthemenical results are presented

to evaluate the proposed schemes compared to other atgsrith

The contributions of this chapter originated one journgdgyaand one conference paper:

— M. El-Absi, M. El-Hadidy, T. Kaiser, "A distributed Interference Ahgnent Algo-
rithm using Min-Maxing Strategy,Transactions on Emerging Telecommunications
Technologies, doi: 10.1002/ett.2897, 2014.

— M. El-Absi, M. El-Hadidy, T. Kaiser, "Min-Maxing Interference Alignemt Algo-
rithm as a Semidefinite Programming Probler&EE 14th Workshop on Signal Pro-
cessing Advances in Wireless Communications (SPAWC), June 2013, pp. 290-294.

» Chapter 4: Antenna Selection for MIMO-OFDM Interference Al ignment Systems
In this chapter, we apply transmit antenna selection to MIRIEDM |A systems either

through bulk or per-subcarrier selection, aiming at impngthe data sum-rate and/or
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error-rate performance under real-world channel circamsts while keeping the min-
imum spatial antenna separation of 0.5 wavelengths. Inrdadavoid subcarrier im-
balance across the antennas of each user who is caused byljarrier selection, a
constrained per-subcarrier antenna selection is opergtethermore, we propose a sub-
optimal antenna selection to reduce the computational teityp of the optimal antenna
selection algorithm. We implement MIMO-OFDM |A testbed t@pent an experimental
validation for 1A with antenna selection in indoor wirelasstwork scenarios. Further-
more, the experimental results are compared with detestigrihannels that are synthe-

sized using hybrid EM ray-tracing models.

The contributions of this chapter originated two confeeepapers and one journal paper

(under second review at the time of this writing):

— M. El-Absi, S. Galih, M. Hoffmann, M. El-Hadidy, and T. Kaiser, "Antemise-
lection for Reliable MIMO-OFDM Interference Alignment Sgass: Measurement

Based Evaluation EEE Transactions on \ehicular Technology, 2015.

— M. El-Absi, M. El-Hadidy, T. Kaiser, "Reliability of MIMO-OFDM Interérence
Alignment Systems with Antenna Selection under Real-Weridironments,|EEE
Proceedings of the 20th European Wireless Conference, 14-16 May 2014, pp.1-6.

— M. El-Absi, M. El-Hadidy, T. Kaiser, "Antenna selection for interface alignment
based on subspace canonical correlatitmgrnational Symposium on Communica-
tions and Information Technologies (ISCIT), 2012, pp. 423—-427.

» Chapter 5: Interference Alignment Based Resource Managenm in Cognitive Ra-
dio Networks
This chapter performs IA based resource allocation in aritier MIMO cognitive ra-
dio systems in order to improve their spectral efficiency.bsed problem formulation
enables the cognitive users to share the available speetsumell as guarantees QoS of
the primary system. The resource allocation problem is iawed as a mixed-integer
optimization problem, where the optimal solution is geftgqarohibitive. Therefore, we
propose a two-phases efficient sub-optimal algorithm irotolreduce the computational
complexity of the optimal solution. In the first phase, freqay-clustering is performed
to schedule the subcarriers among the cognitive usersg Wialpower is allocated among

the subcarriers and cognitive users in the second phase.
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The contributions of this chapter originated four confeeepapers and one journal paper

(under second review at the time of this writing):

— M. El-Absi, M. Shaat, F. Bader, and T. Kaiser, "Interference Alignmeith Fre-
guency Clustering for Efficient Resource Allocation in Citiye Radio Networks,”

| EEE Transactionson Wireless Communications (Minor Revision round), May 2015.

— M. El-Absi, M. Shaat, F. Bader, and T. Kaiser, "Interference Alignmaith Fre-
quency Clustering for Efficient Resource Allocation in Citiye Radio Networks,”
|EEE Global Communications Conf. (Globecom), 8-12 Dec. 2014.

— M. El-Absi, M. Shaat, F. Bader, and T. Kaiser, "Power loading and sakeffi-
ciency comparison of MIMO OFDM/FBMC for interference aligent based cog-
nitive radio systems,11th Int. Symp. Wireless Communication Systems (IS\VCS),
Aug. 2014, pp. 480-485.

— M. El-Absi, T. Kaiser, "Optimal Resource Allocation Based on Intezfeze Align-
ment for OFDM and FBMC MIMO Cognitive Radio System$toceedings of
23rd European Conference on Networ ks and Communications (EuCNC), 23-25 June
2014, pp. 1-5.

— M. El-Absi, M. Shaat, F. Bader, T. Kaiser, "Interference Alignment&hResource
Management in MIMO Cognitive Radio System&7EE Proceedings of the 20th
European Wireless Conference, 14-16 May 2014, pp. 1-6.

» Chapter 6: Conclusions and Future Work
This chapter summarizes the main research challenges ginichits the achieved results.
Moreover, it gives constructive guidelines and recommegadsa for future extension to

this work.

For convenience, a schematic diagram showing the contrifmiwithin the chapters is

presented in Fig. 1.1.
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2 ‘ BACKGROUND OFINTERFERENCEALIGNMENT

This chapter presents the background and the basics of Ii&user MIMO interference chan-
nels that are required through the dissertation. An overak K-user interference channels

is presented. Additionally, interference managementriiegles that are used for interference
channels are introduced. Afterwards, the basic concepA @f IK-user interference channels

is briefly illustrated, where IA inf<-user SISO and MIMO interference channels are described.

Finally, 1A solutions through closed-form and iterativetimeds are presented.

2.1 Introduction

Wireless communication systems often have multiple traitera and receivers sharing the
same transmission medium, which causes mutual interfenenc each other [30-32]. There-
fore, the characterization of the capacity of multiuseteys is more difficult than single-user
systems, where multiuser systems are considered inteceiéenited since the spectral effi-
ciency of the system is restricted by the interference. Refgto information-theoretical ter-
minologies, multiuser channels are classified into difiereaodels such as broadcast channels,
multiple access channels and interference channels, asishd-ig. 2.1 [33—37]. In broadcast
channels, one transmitter transmits multiple independegtsages to multiple independent re-
ceivers [33, 34]. Therefore, the transmission from thegmaitter to each receiver is considered
as an interference to other receivers. In multiple acceasrails, the situation is reversed,
where multiple independent transmitters send multiplepshdent information to a common
receiver [35, 36]. Accordingly, the communication from ledansmitter to the common re-
ceiver interferes the communications of other transnstt&/hereas the interference channel
models the communication of a transmitter-receiver pathepresence of interference from
all other pairs, where each transmitter sends an indepéstteam of information to its paired
receiver causing interference to other receivers [37].hinrest of this chapter, interference

channels are considered in more details.
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Figure 2.1: a) Broadcast channels, b) Multiple access channél;-cser interference channel.

2.2 Interference Channels

In the interference channel framework, each transmittedsean independent stream of infor-
mation to its paired receiver. As the transmission mediushared by a number of multiple
transmitter-receiver pairs, the communications betweah ¢ransmitter and its corresponding
receiver interfere with the communications of other traittemreceiver pairs [37]. This in-
terference is considered as a major limiting factor for thpacity of interference channels.
Characterizing the capacity region of interference chenisegenerally an open problem in
information theory [38—40]. It was shown that in Gaussiaeriference networks when the in-
terference is very strong, the capacity region would notfteeted by interference [37,41]. This
can be achieved when each receiver can first decode the reexfdhg unintended source and
subtract it from the received signal before decoding its ovessage. The scheme was extended
to the "strong interference”, and the capacity region waaldished in [8,42]. Moreover, some
outer bounds were further proposed for moderate and weaen¢nce in [37,43-45], where
the characterization of the capacity region is more chgllem compared to the "very strong
and strong interference scenario”. However, exact chatapcity characterization in general
interference channels is still unknown.

The concept of "degrees-of-freedom (DoF)” was appearednaaparoximation for the
behavior of the channel capacity when the SNR approachesindy [46,47], which is defined

as
i R(SNR)

_ ST 2.1
SN0 10g,(SNR)’ (2.1)

whered is the DoF metric and?(SNR) is the sum-rate with respect to SNR. Equivalently,

10
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sum-rate can be expressed as
R(SNR) = d log,(SNR) + o(log,(SNR)), (2.2)

whereo(log,(SNR)) is a term that vanishes as SNR goes to infinity. Based on tfiisititen,
DoF can be interpreted as the number of achievable indepemid¢a streams at each user.
Additionally, DoF is also known as the multiplexing gain @apacity pre-log factor as well
[48,49].

2.3 Interference Management inK -user Interference Channels

Multi-user wireless systems have to employ interferenceagament in order to achieve a high
system capacity. Accordingly, interference managemenf-user interference channels have
received much attention in order to propose approacheswbahterference in shared medium.

These approaches can be categorized as follows [10]

 Treat interference as noise This scheme ignores the structure of interference andigimp
treats it as noise [7]. This scheme is optimal whenever ttexference power is much
less than the desired signal power [50]. Therefore, it isw@red one of the low complex

strategies.

* Interference decoding Interference decoding is introduced when interferenstrng
or very strong and originates from a single source [8]. Is #ttheme, each receiver
first decodes the message of the unintended source anddshbtréom the received
signal before decoding the desired message. Howevergbisach is quite complex and
limits other users’ data-rates. Moreover, generalizing tiethod tok -user interference

channel is not straightforward in general.

» Orthogonalization: This approach is used when the interference is being siasribe
desired signal. In this approach, the transmissions aédifft users are orthogonalized in
a way that each transmitter-receiver pair has access toaopdytion of the available re-
sources. Traditional schemes based on user access orttiagtion are TDMA, FDMA
and code division multiple access (CDMA). Although this eggeh is widely used in
multiuser communication systems, the spectral efficierfcgagh pair degrades as the
number of users increases [51].

11
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Generally, the aforementioned interference managemeategies may not be spectrally effi-
cient. Interference decoding and treating interferena®ése are limited for specific scenarios
and for a limited number of users (e.g. two-user scenarianterference decoding approach).
Furthermore, they perform well only at low SNR regime, wifiie sum-rate saturates at high
SNRs. Orthogonal schemes exhibit the better sum-rate aiumeshd high SNR, since their
sum-rate is scaled linearly as a function of the SNR. Howetherlinear scaling is limited by
the fact that thelX users have to share the resource [10]. As a result of that, @ser only
gets1/K fraction of the resource and, hence, achievgs DoF. Although signal reception
at each receiver does not directly suffer from interferetizs scheme is not optimal in terms
of spectral efficiency. This results from that the interfere spans a large dimension of the
received signal space at each receiver. Accordingly, thadaty per user, i.ek' user, in a

K-user interference channel that uses orthogonal scheses, i
Re(SNR) = %ogQ(SNR) + o(log,(SNR)), (2.3)
and the total sum-rate of thi€-user interference channel is
R(SNR) = l0g,(SNR) + o(log,(SNR)). (2.4)

As an example, consider such a 3-user interference chamneile each transmitter wishes
to communicate only with its corresponding receiver. Heeeeh user receives two interfering
signals in addition to the desired signal. By assuming tharapagation delays are equal, the
interference is managed using TDMA as depicted in Fig. 222his example, each user can
transmit upori /3 portion of the time dimension. Atthe receive side, the siginan be perfectly
separated. However, a fractiop3 of the time dimension is spanned by the interference signals
Therefore, if the dimensionality of the interference swazspis minimized, a larger interference-
free subspace would be left for desired transmission. I fiais is the concept of "Interference
Alignment (1A)” [10].

2.4 The Concept of Interference Alignment

IA is a cooperative interference management strategy thptsainterfering signals at each re-
ceiver in one subspace, while the desired signal is to baedigh another orthogonal subspace,

termed interference-free subspace [10]. This alignmemtexgloit the available signaling di-

12
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Figure 2.2: An illustrative representation of TDMA concept for 3-usetarference channel.
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Figure 2.3: An illustrative representation of IA concept for 3-usereirierence channel.

mensions in time [11, 12], frequency [13], space [11, 14Jammd code [15]. IA is employed
by designing transmit precoding matrices and receive degadatrices that are able to distin-
guish between interference signals and desired signakattteiver side. Cadambe and Jafar
proved in [10] that IA can optimally manage the interfereareing at providing the< users in

an interference channel with half of the achievable capaxdibne user in an interference-free
channel at high SNRs, regardless of the number of usersefdier the capacity per user, i.e.

k' user, in ai -user interference channel is
1
Rr(SNR) = alogQ(SNR) + o(log,(SNR)), (2.5)
and the total sum-rate of thi€-user interference channel is
K
R(SNR) = ElogQ(SNR) + 0(log,(SNR)). (2.6)
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This result is achieved in [10] when the channel coefficientnge in every time slot. The DoF
per userin (2.5)i$/2 and, hence, all users get half the communication resouGmessequently,
the total achievable DoF of th€-user interference channelis/2. Unlike orthogonal schemes,
IA can achieve a linear increase of DoF with the number ofsiasrseen in (2.6). Considering
the illustrated example in the previous section, if 1A isdigestead of TDMA, each user can
get a fractionl /2 of the time dimension as shown in Fig. 2.3, regardless of timlrer of users.
This means that the DoF per user is increased, and the toEabDihe system i8/2. It is clear

in this example that the interference subspace is reduce@tportion of the time dimension.

In [10], two types of interference channel settings are watald: K -user single-input
single-output (SISO) interference channel with time vagychannel coefficients and thé-

user MIMO interference channel with constant channel ctieffis.

2.5 1A In K-user SISO Interference Channels

In this section, we will briefly review IA inK-user SISO interference channels. Two system
models are considered in this section: Kljuser SISO interference channels with time exten-

sion, 2) K-user SISO multicarrier interference channels.

2.5.1 K-user SISO Interference Channels with Time Extension

We consider a 3-user SISO interference channel to revedasie idea of IA in time-varying
SISO interference networks, where each node in the netwgoekuipped with single antenna.
In this network, at each time slot there is not enough spavcermsion to apply IA because each
node has only one antenna. Therefore, the symbol extersimmoposed in [10] to overcome
this limitation. We denote the symbol extension of the traiti®d symbolz;, from the £

transmitter over time slots as
xp(t) = [zp(t(t = 1)+ 1) zp(r(t —1)+2) ... zx(1t)], (2.7)
and the symbol extension of the received symjait thek!" receiver over- time slots as

ye(t) = y(r(t = 1) +1) yp(r(t = 1) +2) ... y(7t)]. (2.8)
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Thus, the received signal at th& receiver can be expressed as
yi(t) = Hyr (8)x1 (1) + Ha(t)%2(t) + His(t)x3(t) + z1(1), (2.9)

wherez,(t) represents the expansion of additive white Gaussian n8l8&(N) over 7 time
symbols, and,;(¢) represents the diagonal extended channel matrix betweér'theceiver

and thej'" transmitter expressed as

[ (7(t — 1) + 1) 0 e 0
I 0 0 o g(Tt))

whereh,;(t) is the channel coefficient between tfé receiver and thg transmitter at time.
Perfect global channel state information (CSI) is assuroé&e known at all nodes. Moreover, it
is assumed that the channel coherence time is one, wherealgains remain constant within

one time slot, but change independently across differerd silots.

IA aims to construct the precoding and decoding matricesvimythat the interferences
from different transmitters are aligned together at eaceiver within one-half of the total
received signal space, keeping the other half for the disiignal. It is found in [10] that,
using IA with symbol extension of = 2m + 1 time slots, a 3-user SISO interference channel
can obtai3m + 1 DoF, wherem is a non-negative integer. Assume Transmittencodes its

message intan + 1 independent data streamS(t) and transmits them using x 1 precoder

vectorsvl, wherel = 1,2,...,m+1. Therefore, the transmitted signa(t) can be represented
as
m+1
Si1(t) = Z 2 (v = Vixy (1), (2.11)
=1
whereV, = [v} v} --- v{""'] represents th@m 1) x (m+1) precoding matrix. Similarly,

Transmitter® and3 encode their messages intoindependent data streams as

S(1) = > w(t)vs = Vaxalt) (2.12)

85(t) = D ah(t)v = Vixs(1). (2.13)
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Therefore, the received signal at thé receiver can be represented as
3
yi(t) =Y HyVix;(t) + z(t). (2.14)
j=1

User 1 can achievgjﬁl1 DoF using IA by aligning the interfering signals from Tranter 2

and 3 in a subspace with dimension smaller thaas follows
rank([H12V2 H13V3]) <m, (215)

where rankA) represents the rank of matriX. This condition can be achieved by properly

designing the precoding matrices at transmitteasd3 as follows
H12V2 = H13V3. (216)

s DOF can be obtained for Us@rwhen interference subspace has a dimension not greater

thanm + 1, which can be described as
rank([Hy; Vi Ho3V3]) <m + 1. (2.17)
The constraint in (2.17) can be satisfied when
Hy3Vs < Hy Vi, (2.18)

whereE < F denotes that the column spacdis a subset of the column spacetafSimilarly

to User 2, User 3 requires that the interference subspacendion should satisfy
rank([H31V1 H32V2]) <m+1, (219)

and
H3, Vo < H3 Vi (2.20)
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One of the solutions that can satisfy the previous equagtsis

VvV, = [w Tw --- me} (2.21)
V, = Hi'Hj [W Tw - Tmflw] (2.22)
Vi = HyHy |[fw Tw - Towl, (2.23)

whereA~! denotes the inverse of matrix. w is a(2m + 1) x 1 vector that all its elements are
1, and
T = H,H; 'HysH Hy H (2.24)

To guarantee each receiver can decode its own message vewi@ed in [10] that the columns
of [Hy1 V1 Hi5Vs), [Ho Vo Hy V], and[H33Vs Hjs V4] are linearly independent. There-

fore, the desired and interference subspaces can be alonlysssparated.

As a conclusion, the pairk 2 and3 achieve DoF= <2’fntrll, s 3y ) PEr symbol, re-

spectively. Asymptotically, DoE (%, %, %> are achievable whetn — oo. In other words, each

pair can get half of the cake at high SNRs.

2.5.2 K-user Multicarrier Interference Channels

We consider another example far-user SISO interference channels, which is fh@ser mul-
ticarrier interference channel [23,52,53]. We assume dhi@tuser multicarrier interference
channel consisting oV bands forK transmitters and receivers. Each node has a single an-

tenna, and each user transmitdata streams.

The channel between th&" transmitter and thé" receiver is diagonal such that

(7 (0) 0 - 0
Hy, = | ’”_( ) | _ , (2.25)
0 0 - (N -1

wherehy;(n) € C is the frequency domain channel coefficient of bandhe received signal
at receiverk is

K
yi = U Hy Vixy, + E UkHijVjSCj + UMz, (2.26)
—_—————
Desired Signal z:1=j7£k ,

TV
Interference Signals
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whereAHt is the conjugate transpose (Hermitian) matrix of ma&ixVv,, U, € CV*? are the
precoder and interference suppression matrix foriffieuser in the multicarrier interference

channel, respectively. Finding the decoders and precaderbe proceeded as in Section 2.5.1.

2.6 1A iIn K-user MIMO Interference Channels

IA using time-extension requires a fast fading and large lmemof time slots in order to reach
the promised DoF. Therefore, this approach is considerpdaatical. In this context, alignment
in spatial dimension through MIMO system, which is the foofithe thesis, is more practical
than alignment in time or frequency dimensions [14]. The ki®a of 1A in MIMO interfer-
ence channels is to use a combination of linear precodetgedtdansmitters and interference
suppression decoders at the receivers in order to aligmtbderence signals at half of the spa-
tial subspaces at the receiver side. This increases théeirgece-free spatial dimension and,

consequentially, the DoF of the system [16-18].

———» Transmission

------- » Interference
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~~~~~~
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Figure 2.4: K-user MIMO interference channel.

In this regards, we considerkuser MIMO interference channel with IA (MIMO 1A)
equipped withM transmit antennas at each transmitter ang receive antennas at each re-
ceiver as seen in Fig. 2.4. In this system, each user wisheariemitd data streams to its
desired receiver causing interference to all the othernvers This interference channel is ex-
pressed agMp x My, d)¥. Itis assumed that th&-user MIMO interference channel is static

during the transmission time. Accordingly, the transniitsignals, € CM7*! from the k"
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2.6. IA in K-user MIMO Interference Channels

node is given by

whereV, ¢ CMr*d s the precoding matrix applied at th€" user to the symbol vector;, €
C®1. For practical purposey],, is considered orthonormal such that [19]

Vv, =1, (2.28)

wherel,; denotes an identity matrix of dimensiosis< d. The discrete-time complex received
signal at thek'” receivery, € CM&x!1 is represented as

K
S’\k = Z ijVij —+ Z
j=1
K« (2.29)
= Hp, Vix, + Z Hy;V;x; + 2,
j=1,j#k
whereH,; € CMr*Mr js the flat frequency domain channel matrix betweenjthéransmitter
and thek' receiver, andz, € CM=*! is the zero mean unit variance circularly symmetric
AWGN vector at thek!” receiver. It is assumed in this work that the CSI is perfektipwn
at each node. To reconstruct the transmitted signal at‘theeceiver, the received signal is

decoded using an orthonormal linear interference supipressatrix U, € C*&*4 such that
utu, =1, (2.30)

The reconstructed dagaat thek!” receiver is defined as

K
vi = UHuVixg + ) UHVjz; + Utz (2.31)
—— _ ‘
Desired Signal Jj=Lj#k

J

~
Interference Signals

The precoding matrices and interference suppressionceatare jointly designed to miti-
gate the interference term in (2.31). The role of precodimdrites is to align the interference
signals at the minimum subspace dimension at each recemédg ensuring that the desired

signal at each receiver is linearly independent of the fatence subspace [17]. In order to
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Chapter 2. Background of Interference Alignment

achieve that, the following two conditions have to be fugfill

UlH,V, = 0, Vj#k and (2.32)
rank(UfHp Vi) = di, Vk€{1,2,---,K}. (2.33)

The condition in (2.32) ensures that all interference dgjih,;V; are perfectly aligned into
Ny — d dimensions for the interference subspace, while the secomdition in (2.33) ensures
that the received desired signal has full-rank effectivenctel matrix ofd. The feasibility of

achieving MIMO IA conditions in (2.32) and (2.33) will be disssed in the following section.

The achieved sum-rate in bits per second per herfZ-oiser MIMO interference channels

using zero-forcing receivers is calculated as [26]

UYH,,, V.S, VHHR U,

1
d + 0'21d + UngUk ’

K
R=">log,

k=1

(2.34)

wheres? is the variance of the AWGN, an8l, = E [xkx,*j] € R is the input covariance
matrix of thek® user. Q; is the interference covariance matrix at #ie receiver, which can
be expressed as B
Q.= Y H,V,;S,ViHY, (2.35)
J=1,j#k
Therefore, the transmitted power by thié user isP;, = Tr (S;). If the 1A feasibility conditions
in (2.32) and (2.33) are achieved, the interference can ilately eliminated at each receiver.

Assuming perfect IA is achieved, the received signal in{2t&comes
yi = UH Vix;, + Ullzy, (2.36)

and, consequentially, the sum-rate is

1
L+ ;U,’;‘HkakSkV',;'HZkUk : (2.37)

K
R=>log,
k=1

2.6.1 Feasibility of MIMO IA Systems

The feasibility of linear MIMO IA systems was investigated 18], where the solvability of the

IA polynomial equation is analyzed based on algebraic g&xym€he authors of [10] claimed
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2.6. IA in K-user MIMO Interference Channels

that for randomly generated channel matrices, that lacksaegial structure, the condition in
(2.33) is almost surly satisfied if the condition in (2.32)settisfied. Therefore, finding the
feasibility of MIMO IA systems is mainly dependent on achieythe condition in (2.32) [18].
It is verified that IA is surely feasible if a system is prop&B[54]. Based on Bezout’s theorem,
MIMO IA system is considered proper if the number of equatienot larger than the number
of variables. The number of equations generated from (2s3%) = (K + 1)d and the number
of variables equal®V, = My + My. Therefore, the interference chanély x My, d)X is
feasible if and only if [18]

Mp+ Mg — (K +1)d > 0. (2.38)

2.6.2 I|Ain K-user MIMO-OFDM Interference Channels

IA can be applied td<-user MIMO-OFDM interference channels independently orhesub-
carrier, thanks to the frequency orthogonality introdubgdhe multicarrier techniques. For
a K-user MIMO-OFDM IA system withM transmit antennas)/; receive antennas ard
subcarriers, the transmittetidata streams over the” subcarrierx? € C#! is multiplied by
the precoding matrivy € CMr*4, Using this precoding over the subcarrier, the desired
data is aligned at its own receiver in the interference-fn@@space, while the interference sig-
nals from the other transmitters are aligned at the interfeg subspace [10, 17]. By assuming
perfect knowledge of the CSI at each node, the discretedonmlex received signal at tié"

receiver over the!" subcarrier is represented as

K
yi = Up"HRVEx + ) UpMHR VIX) + Uptzg, (2.39)
j=1j#k
whereU? € CMrxd js an orthonormal linear interference suppression mappliad at the
k' receiver over thex!" subcarrierHj; € CMrxMr denotes the channel frequency response
between the' transmitter and thé'™ receiver over thex subcarrier, andy € CMrx! js
the zero mean unit variance circularly symmetric AWGN veeticthek!” receiver over the!"

subcarrier.

In MIMO-OFDM IA systems, IA feasibility conditions in (2.32and (2.33) should be

independently achieved upon each subcarrier. That is [26]

rank(U"H, V) =d  Vk and Vn, (2.40)
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and
UMHR VI =0  Vj#k and Vn. (2.41)

Moreover, the sum-rate of MIMO-OFDM IA systems is calcuthiieterms of the achieved

sume-rate in bits per second per hertz averaged over all sugrsaas follows

UrHy, VS Vit Hy, Uy
o2L, + UrtQpruy ’

1 K N
R:ﬁzzlo% I, +

n=

(2.42)

T
I
L

whereQy is the interference covariance matrix at ffiereceiver over the' subcarrier, which
is
K
n n ngny/nHyyn H
Qr= > H,VIsvIHY. (2.43)
j=15#k

Si = E [xpx}"] € R™?is the input covariance matrix of thié" user over the:’” subcarrier,
where the transmitted power by th& user over thex'" subcarrier isP = Tr (S}). If perfect

IA is achieved upon all subcarriers, the received signa2i@q) becomes
yi = URMHLVixg + Uiz, (2.44)

and, consequentially, the sum-rate is

1
Lo+ ;UZHHZkVZSZVZHHZkHUk : (2.45)

1 N
R:NZZIO%

K
k=1 n=1

Next, we overview the methods of designing MIMO IA precodansl decoders for feasible

systems.

2.7 Interference Alignment Solutions

Designing IA solution, the precoding matrices and intesfiee suppression matrices, is consid-
ered essential to achieve the promised performance of |8eRb, closed-form and iterative
methods have gained much of interest. In this section, weeptean overview for closed-form

and iterative methods.
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2.7.1 Closed-Form Solution

Closed-form solution exists for limited scenarios igfuser MIMO interference channels as
in [9, 10, 55]. In this section, a 3-user MIMO interferenceashel withAM = Mr = M is
considered, where each user wishes to achiextel‘g DoF. For the simplicity is assumed to
be even. The closed-form solution of such system can acﬁgé\,@oF without time extension

as presented in [10]. According to (2.31), the receivedalighthek'” receiver is
yi = UNH, Vix) + UfHp Voxy + UNH3 Viaxs + Ullz,. (2.46)

In order to decode thé transmitted data streams at each receiver without intarés, interfer-
ence signals from all unintended transmitters should lgmed into)/ /2 dimensional subspace
leaving the other half free from interference. To this e, following constraints should be
considered while designing the precod¥®rs V, andV;

spartH2Vy) = sparfH;Vs) (2.47)
H;1 Vi = HspV,, (2.49)

where spafA) represents the space spanned by the column vectors of mat®ince all the
channel matriced,; Vk,j € {1,2,3}, are full-rank of)/, thus the above equations can be
reformulated as follows

spartV,;) = spanEV,) (2.50)
Vo = (Hszp) 'HuV, (2.51)
Vi = (Hy) 'HyVy, (2.52)
where
E = (Hj;) '"Hao(Hyp) "Hy3(Haz)  'Hoy,. (2.53)

Consequently, one possible desigrvof can be as follows

V= [91, €9, - 7eM/2]7 (2.54)
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Chapter 2. Background of Interference Alignment

whereeq, es, - - - , e); denoteM eigenvectors oE. V, andV; can be designed by substituting
the value ofV; in (2.51 and 2.52), respectively. Accordingly, the suppi@s matrices at the
receivers can be easily designed as follows

U, = nUIl([H12V2]H) = nU”([H13V3]H) (255)
U, = nU”([Hglvl]H) = nU”([H23V3]H) (256)
U; = null([H3 V™) = null([Hs, Vo)) (2.57)

where nul{A) represents the null space of matéx So far, the precoder¥,, V, and V;
are designed in a away that guarantees the dimension ofeirgece subspace ¥ /2, which
satisfies IA condition in (2.32). Then, in order to satisfg $econd condition in (2.33) where
the desired signal subspace and the interference subdpawie e linearly independent, the

following constraints should be satisfied

rank([H11V1 H12V2]) - M (258)
rank([H22V2 H21V1]) = M (259)
rank([H33V3 H31V1]) = M. (260)

The authors of [10] have shown that the above constraintsatisfied with probability oft
when the condition in (2.32) is achieved. This solution reggia global channel knowledge at

all the nodes of the system.

2.7.2 lterative Interference Alignment Solutions

Iterative IA has been suggested as an alternative to achdeselution in MIMO interference
channels because closed-form solution is still not feadiblgeneral [19, 54]. Unlike closed-
form solutions, iterative IA approach requires only locadonel knowledge, which is consid-
ered more practical to be realized. The concept of iterafivis different from other iterative
algorithms such as interference avoidance in [56] or ikawaterfilling in [57]. In iterative
waterfilling/interference avoidance algorithms, eachgmaitter tries to do the best for his own
receiver. Therefore, they follow a selfish approach. Whilé@erative IA, the nodes decide to
cooperate and follow an unselfish approach in order to ingtiog total sum-rate of the system.

As an example, each transmitter tries to minimize the iaterice he causes to other receivers.

The iterative approaches mainly depend on the channekoettip concept, where channel
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Figure 2.5: K-user MIMO interference channels with reciprocity.

conditions in one direction can be completely known from akiger direction even there is a
non-negligible difference in their transmission time. Hwar, if the difference is small relative
to the coherence time, the reciprocity can be a useful featuutilize [58,59]. The reciprocal
network is simply obtained by diverting the role of tranderi$ and receivers as seen in Fig. 2.5.

This can be described using the left arrow notation as

G- UL V,5+ Y U HLV S+ U0, %0 (2.61)

i=Lj#k

wherey;, is the reconstructed data at thé receiver in the reciprocal systetﬁk € CMrxdijs
the orthonormal linear interference suppression matrptiag at thek' receiver, an(ﬁkj =
HJHk is the channel between th#é" transmitter and th&'" receiver in the reciprocal system.
vj e CMrxd js the orthonormal precoding matrix applied to the symbaterek; € C**!
that is transmitted from thg” node, andz ;, € C*7*1 is the zero mean unit variance circularly
symmetric AWGN vector at thg'" receiver.

Minimum leakage interference (MLI), maximum signal-tddrference-plus-noise-ratio
(Max-SINR), and maximum sum-rate (Max-SR) were proposeiteaative 1A algorithms [19,
21]. These algorithms utilize wireless channels recigyo@ achieve IA with local channel

knowledge at each node. Next, these algorithms are deddribmore details.
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Chapter 2. Background of Interference Alignment

MLI Algorithm

MLI is a distributed IA algorithm that iteratively adjusts iprecoders and decoders over the re-
ciprocal network until convergence [19]. The objective dfiMIgorithm is to minimize the total
leakage interference experienced by all receivers. MLowtlgm can perfectly align the leak-
age interference if the 1A problem is feasible. However, Mldorithm achieves non-optimal
sum-rate performance since it discards the power of theatesignal in the useful subspace.
To design MLI precoders and decoders, each receiver comist@terference covariance ma-
trix and identifies the interference at each receiver. Assgraqual power allocation among
data streams whetre is the transmitted power by each user, the interferenceriemee matrix

is calculated at thé!" receiver as

K
P
J=L#k

where the total leakage interference at Mfereceiver is defined as
Ly = Tr (U7 Q,Uy) . (2.63)

Afterwards, the interference suppression matrix is cgaoading tod eigenvectors of the least
interference subspace as
U, =12, (Qx)  Vk, (2.64)

man

wherev?

¢ .. (Qg) is thed columns that are corresponding to themallest eigenvalues of the
interference matrixQ,. Accordingly, the total leakage interference of thieuser interference
channel is reduced [19]. Afterwards, the previous steppar®rmed in the reciprocal network.
Hence, by reversing the roles of the transmitters and thavexs, the precoding matricé_é;‘C

in the the reciprocal network are the decoders of the difeahoelU,. Therefore,ﬁk can be
computed as

T, = (@) vk, (2.65)

wherea,C IS
K
- P
Q= Y Eﬁﬁﬁ?ﬁ,ﬂj. (2.66)
j=1,j#k
The adjustment of the precoders and decoders over theaealpretwork is iteratively repeated

until convergence. MLI method is detailed in Algorithm 2.1.
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Algorithm 2.1 MLI Iterative Interference Alignment
1: Initialize precoderdV, V,, ..., V arbitrarily such thaN?Vk =1; Vk.

. For each receiver, compu@, according to (2.62);
: Compute decoder§g,, according to (2.64);

: Exchange the roles of the precoders and decoders ar%ksei Uy;

: Compute decoderﬁ;‘C according to (2.65);

2
3
4
5. For each receiver, compu<(§,C in the reverse channel according to (2.66);
6
7: Reverse the communication link &5, = %k;

8

: Repeat the steps (2)-(7) until convergence.

Max-SINR Algorithm

The objective of Max-SINR algorithm is to maximize the SINReach stream instead of mini-
mizing the leakage interference. Therefore, the precamlmisdecoders are adjusted iteratively
over the reciprocal network to maximize the SINR of eachastr§l9]. SINR of the®” stream

at thek!” receiver is defined as [19]

PUL() Hyu Vi (i) Vi ()M HE, U (0)

SINR;,; = : :
M U, (i)"B; Uy (i)

Vi andVk, (2.67)

where V(i) and U, (i) denote the" column of the precoding and decoding matrices of the
kt" user, respectively. The matrRR;;, is the interference plus noise covariance matrix for the
considered stream at thé" receiver, which is defined as

P

K d
> Y H,V;()V(OPHY, — —Hu V(i) V()" Hy, + Ty, Vi andVk. (2.68)
j=1 1=1

By = 7

SH v

The column vectors of the receiving interference suppoassiatrix that maximizes the SINR

of thei'" stream at th&!" receiver are given by

_ BEfHkak(i)
1B Hye Vi (@) ||

U, (7) (2.69)

These steps of adjustment of the precoders and decoderthevesciprocal network are itera-

tively repeated until convergence. This method is sumradnaz Algorithm 2.2.
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Algorithm 2.2 Max-SINR lterative Interference Alignment
1: Initialize precoderdV, V,, ..., V arbitrarily such thaN?Vk =1; Vk.

. For each receiver and each stream, compjteaccording to (2.68);
. Compute the' column of thek® decodeiUy (i) according to (2.69);
: Exchange the roles of the precoders and decoders ar%kseiﬁk;

: Compute the'” column of thek'" decoderﬁk(i);

2
3
4
5: For each receiver and each stream, comﬁlgein the reverse channel;
6
7: Reverse the communication link &5, = %k;

8

: Repeat the steps (2)-(7) until convergence.

Max-SR Algorithm

In Max-SR algorithm, a gradient descent approach combin#dMLI is used in order to move
the solution obtained at each step of MLI in the directiomaireasing the sum-rate [21]. After
finding Uy as in MLI algorithm, the gradient of the sum-rate with reggedU,, is calculated
as [21]

K
ViR=> (H;C; Hyy, — Tr (VIH,,.C; ' H, VL)) Vy
p (2.70)
—_1 ——1
+3 (Tr (V,';'ijcj ijvk) ~H,,C, ij) Vi,
J#k
where
K
Cj = Z le + O'QIMR
=1
and

£k
Afterwards, the Grassmann tangent spﬁ(géR is obtained as

V¢ R = (I, — U,UY) V. R. (2.71)

The solution is obtained at each step by moving the geodesibe Grassmann manifold ac-

cording to
U, = (ka‘ (cos Xt) FH> + (G (sin 33t) FH> : (2.72)
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Wherevf R = GXF" is the compact singular value decomposition of thé; x d) gradient

matrix. This approach is summarized in Algorithm 2.3.

Algorithm 2.3 Max-SR lIterative Interference Alignment

1:

2
3
4.
5
6

Initialize precoderd/, Vo, ..., V arbitrarily such thaN?Vk =1; Vk.

: For each receiver, compu€, according to (2.62);

: Compute decoderg,, according to (2.64);

Compute the gradient of the sum-rate with respeditaas in (2.70);

: Obtain the Grassmann tangent spﬂcg'eR asin (2.71);

. Find the modified decoddy, by moving the geodesic on the Grassmann manifold accord-

ing to (2.72);

: Exchange the roles of the precoders and decoders ar%ksei Uy;
. Perform the steps in (2)-(6) for the reverse link to fﬁ}j;

. Repeat the steps (2)-(7) until convergence.
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3 ‘ | TERATIVE INTERFERENCEALIGNMENT BASED
ON MIN-MAXING STRATEGY

Chapter 3 presents a new iterative IA algorithm based on Mixing strategy aiming at im-
proving the sum-rate ok’ -user MIMO interference channels. We formulate Min-MaxlAg
method by maximizing the power of the desired signal and¢ceoently, minimizing the leak-
age interference. Min-Maxing method is handled by convetinupation after reformulating
and relaxing the optimization problem into a standard sefimde programming approxima-
tion. Moreover, a simplified version of the optimal Min-Magi method is proposed for rank-
deficient interference channels. The proposed schemelisa¢®d by numerical simulation and
compared to the previous iterative IA algorithms. This dkapncompasses research published
in [60, 61].

3.1 Introduction

Iterative algorithmic approaches are proposed as an atteento find 1A solutions ink-user

MIMO interference channels since closed-form solutiorpi@per IA problems is still not feasi-
ble in general [19, 54]. Moreover, iterative I1A approachuiegs only local channel knowledge,
which is considered more practical to be realized. Recentgny iterative IA methods were
proposed in the literature [19-21, 62, 63]. In [19], MLI anda¥SINR were proposed as it-
erative IA algorithms, where both are described in Sectign22 MLI and Max-SINR utilize

wireless channel reciprocity to achieve IA with local chahknowledge at each node. MLI
and Max-SINR iteratively adjust their precoders and dec®deger the reciprocal network un-
til convergence. MLI algorithm can perfectly align the legk interference if the IA problem
is feasible. Nevertheless, MLI algorithm achieves norimoat sum-rate performance since it
discards the power of the desired signal in the useful sulesp@n the other side, in spite of

Max-SINR can often achieve the best sum-rate performanadl tiie proposed strategies in
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most of the cases (not all cases), it loses some of its DoFgat®INRs and requires high im-
plementation complexity due to the non-orthogonal precodad decoders that are generated
from this algorithm [62]. The authors of [21] proposed MaRR-Berative method in order to
maximize the sum-rate ak-user interference channels by moving the precoders aataan
each step of MLI procedure along the direction given by tredigmt of the sum-rate. How-
ever, this method converges very slowly as well as the optama-rate and the convergence
are not guaranteed [21]. Furthermore, two new approachespveposed to modify the perfor-
mance of Max-SINR algorithm, where the authors of [64] pgzba new convergent version
of the Max-SINR algorithm and the authors of [65] presenteal @algorithms to jointly design
sub-streams instead of independently as max-SINR did.

Moreover, several studies used convex optimization aghra@apropose iterative IA meth-
ods [22,53,66-69]. In [22], IA problem is reformulated irsaelaxed convex of a rank con-
strained rank minimization (RCRM) problem, which improvles sum-rate performance when
the system is proper and infeasible. IA solution is foundé@, p7] based on minimum mean
square error (MMSE). Moreover, the authors of [53, 68] destha linear transceiver based on
optimizing transmit covariance matrices for all transerstand MMSE for all receivers. In [69],
maximization of the weighted sum-rate is addressed sinakoivs the system to cover all the
rate tuples on the Pareto-optimal rate region boundary.eédew robust sum-rate performance
has not been achieved among the differEatiser MIMO interference channels by all the pre-
vious approaches.

In this chapter, we propose a new iterative 1A algorithm fouser MIMO interference
channels based on Min-Maxing strategy. Min-Maxing stratends to maximize the desired
character (power of the desired signal) and minimize theesimed one (leakage interference)
at the same time. Therefore, the proposed method maxinfiegsawer of the desired signal
and keeps the minimum leakage interference, where thosaerdaare the main effective fac-
tors affecting the sum-rate performance of 1A systems. Wmitate Min-Maxing iterative
IA as an optimization problem by maximizing the desired aigrgower while setting the min-
imum leakage interference obtained from MLI algorithm asoastraint. We approach such
a non-convex problem by reformulating and relaxing the éasttion and the constrains as
a standard semidefinite programming problem. This formardatan attain the minimum ag-
gregated interference from non-intended users and magithe signal from the intended user
concurrently. We address the convergent of Min-Maxing 1Atimod in K-user MIMO inter-

ference channels. Furthermore, a simplified Min-Maxing&thm is proposed for the MIMO
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interference channels of rank-deficient channels withdeagplexity. Min-Maxing algorithmis
extended to be applied for interference channels with diabstructure ag(-user multicarrier

interference channels.

This chapter is organized as follows: Section 3.2 formglated solves the new iterative
IA algorithm. Section 3.3 presents the convergence prodhisf method. Furthermore, the
simplified min-maxing algorithm is presented in this Setct®4. Sum-rate simulation results

are illustrated and discussed for different interferedwnaels in Section 3.5.

3.2 Min-Maxing Interference Alignment

In this section, we formulate IA problem based on Min-Maxstgategy in a distributed way
in order to improve the sum-rate performancelofuser MIMO interference channels. We
consider a My x My, d)" interference channel, which was discussed briefly in Sei6.
Accordingly, the discrete-time complex received signdhat:!” receivery, ¢ CM=*! is repre-
sented as
K
vi = UpHuVixe + Y UH,Vx; + Ullz, (3.1)
j=Lj#k

Therefore, our aim is to design the matridés andU,, for the K users in order to achieve the

goal of IA and improve the sum-rate of MIMO IA systems.

Basically, Min-Maxing IA algorithm maximizes the intendsdjnal power, while it keeps
the minimum leakage interference at each receiver. Inbega$h systems, MLI technique
can typically align the leakage interference. However, Muin-rate performance is not opti-
mal since it does not consider the power of the desired sigrithk interference-free subspace.
Therefore, in the proposed algorithm, we utilize MLI algon to find the minimum interfer-
ence leakage that can be achieved at the receiver side. tikem is formulated and solved

in Section 3.2, and described in Section 3.2.2.

3.2.1 Problem Formulation

We formulate Min-Maxing problem by maximizing the power dietdesired signal in the
interference-free subspace at each receiver while we keeminimum leakage interference

obtained by MLI algorithm. The interference leakage is ol#d at each receiver as in MLI
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algorithm as follows

Uy = v (Qu)  VE, (3.2)
where
“op
Q= Y EijVjV?HE. (3.3)
J=1j#k

Hence, the minimum leakage interference can be computed as
Liin = Tr (U Qi Uy) . (3.4)

After that, we can formulate these multiple requirementhet!” receiver in the following

trace maximization problem

P1: argmaxTr (U H, V,ViH}, Uy) (3.5a)
U,

s.t.: Tr(UFQUy) = L, (3.5b)

Ut =1, (3.5¢)

U, € CMrxd, (3.5d)

whereU,, is the re-designelll;, in order to achieve the optimization goal in Probléth. This
optimization problem is non-convex because the constf&8i5t) is a non-convex rank con-
straint. Therefore, we aim to reformulate Problém into a convex problem in the form of a

semidefinite programming problem. Let
W, = H,, V., VIHY,

where W, € CMr*Mr is a positive semidefinite matricé¥V, = 0). ProblemP1 can be

re-written as

P2 : argmaxTr (U W, Uy) (3.6a)
Uy

s.t.: Tr(U;QiUy) = Ly, (3.6b)

UhU, =1, (3.6C)

U, € CMrxd, (3.6d)
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Then, we define
7, = ﬁkﬁg, Z, € CMrxMg,

It was shown in [70] that the set d@f, = {U,UY : UHU, = 1,} is the set of extreme points of
Uy = {Zy, : Zy = ZH,Tr (Zy) = d,0 < Z < I}. Let

\111 = {ﬁkﬁz : ﬂgﬂk = Id}

and
Uy ={Z): 2, =70 Tr(Z;) =d,0<Z <T}.

Z;, has a dimension af/; by My whereU, U" is a projection matrix of orde#/; and rankd.
This means that, andl,,, — Z; are both positive semi-definite. Therefoxs, is the convex
hult of ¥, and W, is the set of extreme points df,. The fact that any convex combination
of elements of¥; lies in ¥, is immediate. Furthermore, since the spectral decompaosit

Z; has eigenvalues lying between 0 and 1 and their sufitds clear that any element df,
with rank greater thad is not an extreme point. The only candidates for extremetppihen,
are those with rank, i.e. the elements o¥,. But it is not possible that some radkelements
are extreme points and others not, since the definitioh,odoes not in any way distinguishes
between different ranK elements. Since a compact convex set must have extremes jaoicht

is the convex hull of its extreme points, the constraintis stricter than¥,. According to
the fact thatlr (UYW,,,Uy,) = Tr (W, U, UY), constraints (3.6¢) and (3.6d) can be relaxed
into Tr(Zx) = d and 0 < Z; = I, which are both convex. Therefore, maximizing the cost
function overU, UY € U, is equivalent to maximizing it ovef, € ¥,. When the cost function

is linear and subject t&,, the solution will be at one of the extreme points [71]. Cansntly,

for linear cost functions, the optimization problems sgbje ¥, andW, are exactly equivalent.

After including the above steps, problef2 can be written as

P3: argmaxTr (W,Zy) (3.7a)
Zy

st Tr(QuZy) < Lk, (3.7b)

Tr(Zy) =d (3.7¢)

0=<7Z; <L (3.7d)
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The constrain (3.7d) can be written into a standard semitkepnogramming form as

Z, O
0 G

=0 (3.83)

Z,+G =1, (3.8b)

where G is a slack variable. Finally, the optimization problem hae formulated into a
standard semidefinite programming form.

From the matriXZ,. obtained by the semidefinite programming, we can recoveouiygut
U, by eigen-decomposition, whefg,, is eigenvectors corresponding to tlidargest eigen-
values of theZ,. It is clear that Min-Maxing algorithm generates orthogomacoders and

decoders.

3.2.2 Algorithm Description

Min-Maxing iterative algorithm alternates between thgoral and reciprocal networks in order
to update its precoders and interference suppression decadcording to ProblerR3. Algo-

rithm 3.1 describes the procedures of the algorithm wherédahowing steps are performed:

» Sep l: In the original network, each receiver solves the followapgimization problem

P4 : argmaxTr (W,Z;) (3.9a)
Zy
sit.: Tr(QuZy) < Lk, (3.9b)
Tr(Zy) =d (3.9¢)
Z, O
>0 (3.9d)
0 G
Z, +G =1, (3.9€)

After finding Z;,, U, can be extracted frorid,, by eigen-decomposition as discussed in

the last section.

« Sep Il: In the reciprocal channel, the roles of the transmitterstaedeceivers are ex-
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changed. Therefor&k =U,. ﬁk is computed in the reciprocal network as

U=t (Qu) W, (3.10)
where

< X o p va H

Qk:j:;#kgﬂkj ;VIAHE, (3.11)

Hence, the minimum leakage that is observed from MLI is
— -
Lo =Tr (W%E) : (3.12)

By definingwk = ﬁkﬁﬁgﬁ;*k, each receiver in the reciprocal network solves the

following optimization problem

P5: argmaxTIr (W’“Ek> (3.13a)
%

st: Tr (6,2) <ok (3.13b)
Tr (E) —d (3.13¢)

7 0
=0 (3.13d)

0 G
Z4iG-=1, (3.13€)

- = : "
After finding % U can be extracted fror% by eigen-decomposition.

Step | and Il are repeated in this manner until the algoritbnverges.

3.3 Convergence of Min-Maxing Algorithm

In the following, we prove that the convergence of Min-Maxadgorithm is guaranteed. It was
proven in [19] that computindJ, according to step 3 and 8 in algorithm 3.1 minimizes the
leakage interference at each iteration. Therefore, itatedtfor the giverv, of the userk at

iterationt + 1 that

Lp(Up(t + 1), Vi(t) < Lp(Ug(t), Vi(t)).
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Algorithm 3.1 Min-Maxing Iterative Interference Alignment

1: Initialize precoderdV, V,, ..., V arbitrarily such thaN?Vk =1; Vk.
. For each receiver, compu€®, according to (3.3);
: Compute decoder§g,, according to (3.2);
: CalculateL”

2

3

4 - according to (3.4);

5: OptimizeU,, according to (3.9);

6: Exchange the roles of the precoders and decoders aﬁ?ﬂkseiﬁk;
7. For each receiver, compu<(§;‘c according to (3.11);

8: Compute decoder%,C according to (3.10);

9

<_
. k
: CalculateL .

—
10: Optimize U, according to (3.13);

11: Repeat the steps (2)-(10) until convergence.

Then, Uy, is re-designed tdJ;, in order to maximize the power of the desired signal while

keeping the minimum leakage interference. Therefore
Li(Uk(t 4+ 1), Vi(t)) < Li(Ug(t), Vi(1)).

Likewise in the reciprocal channel, for the givel (¢ + 1), V(¢ + 1) is computed to minimize
the leakage interference. Then

<—
L

To(Ou(t + 1), Valt + 1)) < To(@ut + 1), Vi(0)).

After that, V(¢ + 1) is re-designed t&/, (¢ + 1) in order to maximize the power of the desired
signal while keeping the minimum leakage interference.rétoee

<_
L

Th(Ou(t +1), Valt + 1)) < Th(Tult + 1), V(D).

Since the total leakage interference is lower bounded by aed because the total leakage
interference is minimized by each update for the decodedgeagcoders of the system at each

iteration, Min-Maxing algorithm is convergent.
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3.4 Simplified Min-Maxing Interference Alignment

For rank-deficient channels, we propose a simplified algorito solve the optimization prob-
lem P1 with less computational complexity. This simplified methedsufficient when)M
and My are not symmetric, and is smaller than the dimensionality of n(@;), i.e ¢ =

dim (null(Qy)). For this case, a simpler solution for problém can be found.

By parameterizindJ,, to be as follows
U = ATy, (3.14)

where A, = 15, (Qi), AHA, = 1, andT, € C*?is an orthonormal matrix such that

THT) = I, ProblemP2 can be written as

P6 : argmaxTr (U W, Uy) (3.15a)
Uy,
T, € C™%, (3.15d)

ProblemP6 can be re-written by moving the constraint (3.15b) into tbst éunction (3.15a) to

be as
P7: argmaxTr (T, AW A, Ty) (3.16a)
Tk
T € C™%, (3.16¢)

ProblemP7 can be solved dF;, = v¢

o (A,';'WkkAk) [72].
—
In reciprocal network, the roles of the transmitters andréoeivers are exchanget,, is
defined as

—
U, = A, Ty (3.17)
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Therefore, Problen®7 is formulated as

P8 : arg maxTr (%?X?Wkkxk%o (3.18a)
T

st: THT, = I, (3.18b)

Tk e ¢, (3.18¢)

<— —
whereA, = v ¢

man

(6k> K?Xk = I, andc = dim (null(ﬁk)). Hencef'f,C is found as

e (K?W,@KO The simplified algorithm is executed through the following

max

* Sep|: In the original network, each receiver fins to bev,,, (AW, Ay). ThenU,

ax

can be extracted according to (3.14).

* Sep Il: In the reciprocal network, each receiver fin&% to be V:S

ax

(R 5,).

-
ThenU can be extracted according to (3.17).

Step | and Il are repeated in this manner until the algoritbnverges. This algorithm is detailed
in Algorithm 3.2.

3.5 Simulation Results

In this section, we evaluate the performance of the propbSedigorithm in comparison with

Max-SINR, MLI and Max-SR iterative IA techniques by meansnoimerical simulations in

K-user MIMO and multicarrier interference channels. Spegify, we choose Max-SINR tech-
nique since it has the best sum-rate of all previous teclasiqumost cases [62]. Besides, MLI
technigue in some cases outperforms Max-SINR, and Max-&Rsdbetter performance com-
pared to MLl and Max-SINR in other cases. Since Max-SR reguarlarge number of iterations
to converge, we consider different numbers of iterationsunsimulation. The simulation has
been performed for 1000 channel realizations where eaaimethalement is drawn from inde-
pendent and identically distributed real Gaussian digtidim with zero mean and unit variance.

CVX toolbox was used in the simulation [73].

3.5.1 Results ofK-user MIMO Interference Channels

In this part of simulations, three regimes are considered:
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Algorithm 3.2 Simplified Min-Maxing Interference Alignment

1: Initialize precoderdV, V,, ..., V arbitrarily such thaN?Vk =1; Vk.
2: For each receiver, compu€, according to (3.3);

3: if ¢ > dthen

4. Find Ay =15, (Qk);

5. FindT, =15, (AfWiAL);

6: OptimizeU, = A, T};

7: else if

8 Uk = v, (Qi);

9: end if

10: Exchange the roles of the precoders and decoders at%;;seiﬁk;
11: For each receiver, compu<(§;‘c according to (3.11);

12: if & > d then

13 Find A = %, (Qo));

14: Find %k T (K,‘;‘W%X,C),

15: Optimize%k = Kka

16: else if

17: %k = Vflm-n <ak>,

18: end if

19: Repeat the steps (2)-(18) until convergence.

1. d < ¥ztte where the unknowns are more than the equations in the |Aitonsl as:

(4 x8,d=1,2)3 (5x2,1)*and(8 x 8,2)K=%5 interference channels.

2. d = M2z where it is marginal proper agf x 6,3)% and (5 x 3,2)? interference

channels.

3.d> MTKtr]‘fR improper systems a$ x 2,2)? interference channel.

Mr+Mp
K+1

Fig. 3.1 shows the sum-rate performance of the differerdtitee IA approaches foi x 8, 2)3

Firstly, we present the sum-rate performance of iterativenethods unded < regime.

interference channel. It is notable that Min-Maxing, MLIdaax-SINR mostly converge af-
ter 100 iterations, while Max-SR presents a significant maon-rate at this iteration number.
It is noted in this figure that Max-SINR loses some of its Dofhigh SNRs because it opti-

mizes SINR stream-by-stream without considering orthegy@necoder constraint [21], [22].
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Moreover, MLI performance is worse than Max-SINR even ifiiteg the minimum interfer-
ence leakage. However, Min-Maxing offers the best sumpattrmance at high SNRs in this
case. Furthermore, the simplified Min-Maxing is presentethis figure with 100 iterations,
which gives very close performance to the optimal Min-Maxmethod since the channel is
rank-deficient and, hence, the optimal solution can be fausmg Algorithm 3.2. Sum-rate per-
formance of Max-SR is going to be better when the number odtiens is increased to 1000,
but it is still worse than all other approaches. AlthoughxM&R converges after 3000 iterations,
and it gives better sum-rate performance than MLI and MaxFsat high SNRs, Min-Maxing
performance with 100 iterations introduces the best sum-end it is slightly better at 3000
iterations. As a result of that, Min-Maxing, MLI and Max-3R\heed significant fewer number
of iterations than Max-SR to achieve acceptable sum-rat®meance in this regime. Addi-
tionally, Min-Maxing achieves the best sum-rate with 1@dations compared to all simulated
methods at high SNRs. Therefore, we proceed the compaiistinsi regime using MLI and

Max-SINR with 100 iterations.

80 T T

—e— MLI (3000 iterations)

—e— Max-SINR (3000 iterations)
70r| —e— Max—SR (3000 iterations)
—e— Min—-Maxing (3000 iterations)
—&— Max—-SR (1000 iterations)
—B— MLI (100 iterations)

—&— Max-SINR (100 iterations)
—&— Max—SR (100 iterations)
—B— Min—Maxing (100 iterations)
- &~ simplified Min-Maxing (100 iterations)

(o))
o
T

al
o
T
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o
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Figure 3.1: MIMO IC: Sum-rate performance comparison fdrx 8, 2)3 system.

Fig. 3.2 presents the convergence behavior of the consid&renethods for(4 x 8,2)3
interference channel when SNR=50 dB. Min-Maxing algorittmnverges fast as MLI method
to the best sum-rate value. While Max-SINR presents thesasbnvergence, but the sum-rate
convergence value is lower than Min-Maxing method. Wheidag-SR method converges

very slowly compared to the other methods.
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Figure 3.2: MIMO IC: Convergence behaviour comparison fdrx 8, 2)3 system at 50 dBm.

Fig. 3.3 compares the performance of the 8, 2)? interference channel with tHe x 8, 1)3
interference channel. As expected, with= 2, the sum-rate is improved for all IA methods
since more data streams are sent. Max-SINR and Min-Maxgai#hm behaviors are identical,

and better than MLI algorithm.
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Figure 3.3: MIMO IC: Sum-rate performance comparison fdrx 8,d = 1,2)3 system.
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Fig. 3.4 shows the sum-rate performancdfk 2, 1)3 interference channel, where Max-
SINR can achieve the optimal DoF because it optimizes thdRSdNly for one data stream.
In this case, Min-Maxing algorithm achieves the optimal state as max-SINR at high SNRs
while it exhibits a small loss sum-rate compared to Max-Skgorithm at low SNRs. Further-
more, both are better than MLI for all SNRs, where MLI can agkithe minimum leakage in-
terference. As the case in the previous interference chaheesimplified Min-Maxing method

approaches the optimal Min-Maxing sum-rate with the sanmbmar of iterations.

40
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Figure 3.4: MIMO IC: Sum-rate performance comparison férx 2, 1) system.

In Fig. 3.5 and Fig. 3.6, we compare Min-Maxing algorithm thNMnd Max-SINR using
(8 x 8,2)* and (8 x 8,2)° interference channels, respectively. For both systems-SIBR
technigue outperforms both our proposed algorithm and Mgdrithm in terms of achievable
throughput at low SNRs, while our algorithm achieves the pesformance compared to all
other techniques at high SNRs. In those interference chgrageseen in Fig. 3.5 and Fig. 3.6,
the simplified Min-Maxing method fails to approach the o@lmethod since the channel is
full-rank and Algorithm 3.2 is not efficient in this case.

We conclude forl < #ztn regime that although the systems in this regime have more
DoF to reach the optimal sum-rate, Max-SINR and MLI fail tdhi@we that. Whereas Min-

Maxing achieves the optimal sum-rate among these typesstésg at high SNRs.
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Figure 3.6: MIMO IC: Sum-rate performance comparison {8rx 8, 2)° system.

Next, we present the performance of Min-Maxing IA for maejiproper systems. Fig.

3.7 exhibits the sum-rate performance of the differentifee 1A approaches fof6 x 6, 3)3

interference channel. In this regime, Min-Maxing, MLI anéh¥SINR demand 500 iterations

to present acceptable sum-rate performances, while Mai&isRo achieve that. As the number

of iterations increases, all the sum-rate performancegminanced. At 3000 iterations, Min-
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Figure 3.7: MIMO IC: Sum-rate performance comparison férx 6, 3)® system.
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Figure 3.8: MIMO IC: Sum-rate performance comparison férx 3, 2)3 system.

Maxing, Max-SR and MLI converge to the identical solutioncs the IA problem is tightly
proper in this regime. It is noted also that Min-Maxing giaways the same performance as
MLI regardless of the number of iterations. We further pexteur comparison in this regime
with only 500 iterations using MLI and Max-SINR approachesere Fig. 3.8 exhibits the

sum-rate performance 66 x 3,2)? interference channel. The behavior in this system is the
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Figure 3.9: MIMO IC: Sum-rate performance comparison férx 2,2)3 system.

same ag6 x 6, 3)? interference channel, where Max-SINR technique giveslimatovement
compared to both our proposed algorithm and MLI approach regpect to the achievable sum-
rate at low SNRs, while our proposed algorithm exactly megdine sum-rate performance of
MLI, and both schemes are much better than Max-SINR tecleragjihigh SNRs. For marginal
proper systems, the simplified Min-Maxing algorithm praseihe same performance as the
optimal Min-Maxing and MLI algorithms since there is onlyesolution is existed in this case,
which can be seen in Fig. 3.7.

In a case of improper systems, we show the sum-rate behaiédimeMaxing algorithm
in such systems using x 2,2)? interference channel as seen in Fig. 3.9. In this regime, the
unknowns are less than the equations for the IA conditidresgfore, the performance of Min-
Maxing algorithm matches MLI algorithm, and both achievensate performance better than
Max-SINR method. It is noted that Min-Maxing, MLI and MaxMBR reach the convergence
point after 100 iterations, while Max-SR requires 300Cat®&ms to converge, which is the same
as the previous systems. The simplified Min-Maxing apprageés the same solution as MLI
and optimal Min-Maxing approaches.

It is concluded from the simulation above that Min-Maxingthwal is the only method can
guarantee the best sum-rate performance among all theagaduhterference channels at high

SNR values, while MLI, Max-SINR and Max-SR are incapabledfiaving a robust sum-rate
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Figure 3.10: Bit error-rate performance comparison fdrx 8,2)3 system.

performance at high SNRs for the different regimes.

In Fig. 3.10, we simulate the error-rate performance foriti@tive 1A methods. As ex-
pected, Max-SINR presents the best error-rate since SiSRheedirect effect on the error rate
as seen in Fig.3.10. However, we note that Min-Maxing methgaloves the error-rate com-
pared to MLI method, which is an extra advantage achieved inyrivaxing method compared
to MLI.

3.5.2 Results ofK-user Multicarrier Interference Channels

We extend the evaluation of Min-Maxing IA inf&-user multicarrier interference channel (MC
IC) that is presented in Section 2.5.2. We consifler= 3 users multicarrier interference
channel, where each user transmits= 3 streams using. = 7 and8 bands. For the first
interference channel witlh, = 7, 3 data streams are sent by each user. Therefore, 9 data
streams are transmitted over the 7 bands. Fig. 3.11 showsutherate performance of the
multicarrier interference channel with= 7. At high SNRs, Min-Maxing method outperforms
other methods in terms of sum-rate by more than 2 bits/s/HzhErmore, Fig. 3.12 shows the
sum-rate performance éf = 8 interference channel for the different IA techniques, velesich

user sends 3 data streams. In this system, Min-Maxing mettsadexhibits the best sum-rate

performance at high SNRs. We conclude for diagonal charthatghe conditions (2.32) and
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Figure 3.11: MC IC: Sum-rate performance comparison foe 7, K = 3 andd = 3 system.

80

70+ —— Max—SINR B
—— MLI
—— Min—Maxing ¢
60 B

W
(=]
T

1

w
=]
T

50 1

Sum-—Rate [bits/sec/Hz]
N
S
T
|

49
20f : 43 |

47
101 : 46 1]

48 49 50 51

0 I I I I I I
0 10 20 30 40 50 60 70

SNR [dB]

Figure 3.12: MC IC: Sum-rate performance comparison for 8, K = 3 andd = 3 system.

(2.33) are non-trivial to be achieved [19], [74]. HoweveinM/Aaxing through its formulation
considers doing the best for both conditions. Accordinigiglways achieves the best sum-rate
at high SNRs.

Our investigation for Min-Maxing IA performance provestlias scheme achieves a con-

siderable sum-rate improvement compared to the previdwenses.
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4 ‘ ANTENNA SELECTION FORMIMO-OFDM
INTERFERENCEALIGNMENT SYSTEMS

This chapter proposes to apply antenna selection to MIM@I®@HRA interference channels
through bulk selection and per-subcarrier selection tectiffely improve the practical relia-
bility of 1A in real-world environments. Moreover, a coraitned per-subcarrier selection is
developed to attain power balancing among the antennascbf e@de. Furthermore, a sub-
optimal antenna selection algorithm is proposed to redoeedmputational complexity of the
optimal selection. MIMO-OFDM |IA testbed is implemented talect measured channels and
present a realistic performance evaluation for the praphasethod. The contents of this chapter

have been partially published in references [75-77].

4.1 Introduction

The ideal sum-rate performance of MIMO IA interference afea is achieved in the literature
by considering independent channels from a continuouslalision, which is predictable un-
der sufficient rich scattered environments (e.g. [10,176QRand references therein). In reality,
this assumption is generally impossible to be observe@$HtO channels have spatial corre-
lation due to the clustering of scatterers in the propagaitvironment [24]. Moreover, indoor
environments create challenging multipath propagati@nacdos, which produce significant
correlated channels [25]. Unfortunately, it was claimedhe literature that the performance
of MIMO IA interference channels is highly dependent on alelirealizations, where spatial
correlation generally has an adverse effect on sum-rateeenod-rate performance since the

correlation between channels decreases the SNR of theedcggnal after alignment [26].

Recently, the performance of IA was evaluated experimbnital[26, 78—-82]. In this re-
gard, MIMO-OFDM IA testbed was established in [26] to colleweasured channels, where

the practical feasibility of MIMO 1A in slowly time-varyingeal-world channels with no fre-
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qguency or time extensions was evaluated. It was shown itbiik that IA can achieve better
DoF as the channels are less correlated. In order to overtuweneffect of spatial correlation,
the authors modified the separation between the antennlaisiwach node to be in average 2
wavelengths (), which is considered not practical to be implemented ititsean [78-80],
real-time MIMO IA testbeds were implemented to provide tbeial performance of MIMO IA
in realistic scenarios. These works considered some pahitsues that affect IA performance
such as spatial correlation, channel estimation errorsrad frequency (RF) impairments.
Consequently, these practical studies claimed that thifenpeance of IA using the theoretical
channels are significantly overrated especially in indosirenments. Moreover, they con-
cluded that in the absence of other issues such as chanmeatsh errors and channel time-
variations, collinearity between the desired signal anerfarence subspaces causes significant

degradation in IA performance.

Antenna selection is a powerful technique for enhancing#pacity and reliability of re-
ception compared to open loop MIMO techniques [83—86]. Angeselection technique was
studied rarely in the literature to improve sum-rate andrerate performance of 1A [87, 88].
The authors of [87] suggested to apply different antennactieh criteria on single carrier
MIMO IA systems in order to improve the sum-rate of IA usingdar receivers, while an an-
tenna selection criterion for maximume-likelihood reces/@as considered in [88]. The authors
of [87] and [88] assessed their techniques using theotetieanels. In this framework, antenna
switching strategies were also suggested as in [89-91].eMeryto the best of our knowledge,

MIMO-OFDM IA interference channels with antenna selectiave not been considered.

Motivated by the potential of combining IA and antenna sib&g we consider in this chap-
ter improving the practical feasibility of MIMO-OFDM IA sysms in real-world environments
by means of antenna selection. Therefore, we propose ty #jgplsmit antenna selection to
MIMO-OFDM IA systems either through bulk or per-subcarigetection aiming at improving
the sum-rate and/or error-rate performance under reddwbannel circumstances while keep-
ing the minimum spatial antenna separation of 0.5 wavelengThree selection criteria are
considered, where the first criterion is the maximum sure-(@tax-SR), in which we aim to
improve the sum-rate of MIMO-OFDM IA systems. The second #midl criteria are respec-
tively the minimum error-rate (Min-ER) and minimum eigelma(Min-EG), in which we aim
to improve the quality of the reception. A constrained pdsesirrier selection is considered to
overcome the power imbalance between the antennas of edetbga@llocating the same num-

ber of subcarriers to all antennas with minimum rate losstedeer, we propose a sub-optimal
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antenna selection algorithm to avoid the exhaustive semmdhreduce the computational com-
plexity. Inspired by providing realistic performance axaion, MIMO-OFDM IA testbed with

antenna selection is established in order to collect medsthrannels.

In the following section, antenna selection approached#iMiD-OFDM IA system model
with antenna selection are presented. Section 4.3 showhtbe transmit antenna selection
criteria for MIMO-OFDM I|A systems. The constrained per-satyier antenna selection is dis-
cussed in Section 4.4. Further, the sub-optimal antenregtsmh is presented in Section 4.5
in order to reduce computational complexity. Section 4.éwshsystem implementation and
simulation setup that are used in the performance evatuaftanally, simulation results are

illustrated and discussed in Section 4.7.

4.2 MIMO-OFDM IA System Model with Antenna Selection

4.2.1 Antenna Selection

MIMO technique is originally proposed to improve the perfi@nce of wireless communication
systems in terms of diversity [92] and spatial multiplexjadg]. However, this improvement is

achieved at the price of complexity and thus cost [83]. Ireotd reduce the complexity and the
cost, antenna selection technique is proposed, where #tesdteof antennas out of the overall
available antennas are selected at the transmitting orkcelving side depending upon the
selection strategy and the available RF chains [83, 93131d.low complexity comes through

reducing the number of RF chains, which is considerably plethan introducing complete

RF chains.

In this context, antenna selection can be employed to ingptioe capacity and reliability
of reception depending on the used selection criterion8396]. The selection criteria can
be classified into two tracks: One is maximizing the capaaitthe system; and the other is to
minimize the error-rate. Moreover, transmit antenna sielecs very similar to receive antenna
selection except that little feedback is required for theecaf transmit antenna selection [83].
Furthermore, antenna selection was proposed in the liier&dr point-to-point MIMO-OFDM
systems to be handled through bulk selection [97] or pecauler selection [98], [99]. In bulk
selection, one transmit antenna subset is selected fautadbsriers at each transmit node. This
strategy is considered cost efficient since only the actinteranas require RF chains. In per-

subcarrier selection strategy, each subcarrier at eacbntianode has its own transmit antenna
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subset. Per-subcarrier selection has a remarkable perfmargain especially in high frequency
selective channels, since the selection optimization ifopeed subcarrier-by-subcarrier [99].
Nevertheless, it requires more RF chains compared to bildktsen. Furthermore, it has the
disadvantage of creating power imbalance across the titastennas. This occurs if one
antenna is selected for a large number of subcarriers. Asudt ie&f that, the power amplifier

works in the saturation region leading to performance d#ggran [98].

Next, we present the system model of MIMO-OFDM IA system watitenna selection

through bulk and per-subcarrier selection.

4.2.2 System Model

A K-user MIMO-OFDM IA interference channel with/; transmit antennas\/r receive an-
tennas, and\ subcarriers is considered as seen in Fig. 4.1, where eachvisbes to achieve

DoF. The details of this interference channel was desciih&kction 2.6.2.
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Figure 4.1: K-user interference channel system model.

In antenna selection strategy, a subset of transmit argevipnas selected out of/r. De-
fine ¢} to be thei' subset of all4 = (") possible combinations of the antennas at#tte

transmitter, where)* can be described as

oF = {1, }M {I,} €{0,1};i=1,2,...., A, (4.1)

m=1

wherel,, is the indicator for then!" transmit antenna. Thereforg,, is set to 1 if and only if

them! transmit antenna is active and 0 implies otherwise.
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In IA, all users cooperate in order to achieve antenna setectiterion goal. Hence, we
describe the indicator function for one possible subsetafamit antennas among all users,
i.e the s subset, asy, = {YF} i € {1,2,..,A}. Therefore, the set that contains all
the possible combinations = AX of the transmit antennas among all users is written as
X = {71,725}

In per-subcarrier selection, selection process is peddrindependently subcarrier-by-
subcarrier among all users to choose the subset that ashiegeselection goal, which can

be described for the!* subcarrier as

K

Yoo = arg sel{z APn s =12, S} = {YbmyE (4.2)
Vs €X k=1

where arg sdl} denotes the selection objectivaf" is the cost function of thé' user over

then' subcarrier for they, subset, and)*™ is the chosen set for thg" transmitter over the

n'* subcarrier that achieves the selection criterion.

In bulk selection, the process is executed among all usetsabcarriers cooperatively,

which can be formulated as

K N

Yopt = a@rg sel{z Abnos =12, S} = {YFyE 4.3)
VEX k=1 n=1

where* is the chosen set for the" transmitter over all the subcarriers that achieving the

selection criterion. For the further description, we menthere thatyg,, = ~opt for all the

subcarriers in bulk selection.

As an example for transmit antenna selection in MIMO-OFDMdystems, consider 3
users each ha&/r = 3 antennas to seled/y = 2 and M = 2 receive antennas. Accord-
ingly, any user, i.e. thé' user, has the following possibilities of subsets= {1,1,0}, 95 =
{1,0,1},4% = {0,1,1}. Hence, a possible subset among all users, i.e.stheubset, can
be described as, = {v{,v¢3, v3} = {{1,1,0},{0,1,1},{1,0,1}}. Moreover, the sek
has 27 possible subsets from the transmit antennas amonogeai. Assuming that the per-
subcarrier selection is performed using (4.2) overnttiesubcarrier and, then, the criterion se-
lectsyg = {{1,0,1},{1,1,0},{1,0,1}}, this means that the selection criterion chooses at the
n'" subcarrier the following subsets to communicatg? = {1,0,1}, 92" = {1,1,0},>" =
{1,0,1}. Assuming again the bulk selection is executed through,(ar&l the output isep: =
{{1,0,1},{1,1,0},{1,0,1}}. This means that the selection criterion chooses for attauler
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the following subsets to communicate! = {1,0,1},v42 = {1,1,0},v3 = {1,0,1}.
After finding g, Using antenna selection technique, the discrete-time leoxmipceived
signal over thex* subcarrier at thé'" receiver after the fast Fourier transformation (FFT) is

represented as

= UM HG] o ViR + Z UM HY ] g0 Vi) + Uity (4.4)
J=Ll3#k
whereU} € CMrx4 js an orthonormal linear interference suppression matrk(Blj; ] .. €
CMrxMs denotes the channel frequency response of the selectethasté the subset?”.
Vi e CM:xd s the orthonormal precoding matrix which is applied for trensmitted data

€ C4*1 from thek' node at thex subcarrier.

In this algorithm, uniform power allocation is assumed. rEfiere, the sum-rate over the
n!" subcarrier can be written as [26]
nH n ny/nHETn n
Uy [Hkk]qp(’}”"vkvk [Hkk]zgmUk
oI, + Up"QruUy ’

fYopt Z Iogz I, + (4-5)

whereQ? is the interference covariance matrix at #iereceiver over the!" subcarrier, which

is written as
Qr=> UMHy], ViV H] ! Dy U (4.6)
k#j
Assuming perfect IA is achieved, the sum-rate becomes
"(Vopt) = Z log, |1s+ — U"H[Hﬁk] £ VEVERHE ] UG (4.7)

Therefore, the achieved sum-rate in bits per second per aeeraged over all subcarriers can

be expressed as

'70pt Z R". (4.8)

4.3 Antenna Selection Criteria for MIMO-OFDM IA Systems

The selection criteria can be categorized according to tla¢ @f the selection into two groups:

sum-rate and error-rate based criteria. In this work, wesictan linear receivers since they are
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more practical in spatial multiplexing systems. Withousdmf generality and according to
the practical implementation feasibility, perfect IA issased in this work, which is a general

assumption for 1A in practical implementation [26, 78—80].

4.3.1 The Relation between IA Performance and Canonical Coelations

In 1A systems, the decoding process is carried out depengiog the components of the de-
sired signal that are projected into the interference-$idespace. When the components of the
desired signal in the interference-free space increaseéSNR at the receiver correspondingly
increases, and the system error-rate and sum-rate perfoentnsequentially are improved.
Therefore, IA performance is highly dependent on the ppalcangles between the received
signals and interference suppression matrices. The cositieese principal angles is called
canonical correlation. As seen in Fig. 4.2, for the sameivedesignal power, the power of
the decoded signals after the suppression matrix changesdatg to the principal angle. In
the case 0B, the power of the decoded signal is larger than the cas® @ven if the power

of H,, V. is equal sinc&®; < O,. As a result of that, the orthogonality between the channels
is extremely required to produce high-level of orthogaydietween the desired subspace and
the interference subspace in order to reduce the loss of StdRthe alignment. Therefore,
high spatial correlation is translated into a large aligegphal at interference subspaces and,

consequently, lower SNR after alignment [26].

y 4

Interference
subspace

»

Desired signal
subspace
o

.

ijV' °

Null ([ijV]])

Figure 4.2: IA and principal angles representation.

Further, we present the impact of the canonical correlafiarhich are the cosine of the

principal angles, on sum-rate of tihé-user MIMO-OFDM I|A system. The starting point for
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the derivation is (4.8). At high SNRs, (4.8) can be approtedas

UM [H,) e VEVERHE ), U (4.9)

1 L& 1
OE ZZ'O% =
n=1
According to thin QR decomposition, we can write
Uy =FyrJdyp (4.10)

and
[Hy]yon Vi = Fypdyp, (4.11)
whereFUg, Fy. are orthonormal/ x d matrix andJUg, Jyr ared x d upper triangle matrix.

Under the above factorization, (4.9) is written as

| KX
%) = NZZ'OQQ (Fupdup)" (Frpdvg) (B Jvp)” (Fupdug) |-

k=1 n=1

(4.12)

= 1. Therefore, (4.12) can be simplified as

) . (4.13)

The canonical correlations are obtained as singular vaiUEgknFUg as follows [100]

SinceU} is a unitary matrix, this leads quI?JHg

Fy.Fun

H

L 1\2
R(vs) = N ZZ log, ((;) ‘FHngk,”
k=

TN T \H
FU.Fup = TiA (T),) (4.14)

whereT?, andT?, ared x d unitary matricesA is d x d diagonal matrix equals digg?, .., ")
and (a7, ...., ) are the canonical correlations between the subspicand the subspace
[HZk]wf’" Vi

Therefore, (4.13) can be written as

R(y) = %fi log, ((ai) TA (Ti)"| [T (T2) "] |30 95,

) . (4.15)
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Thereafter, (4.15) can be formulated
K

R =5 3 log, (Ui IT (laz],60 % o ([sz]wf’nvz))) . (a18)

k=1 n=1 a=1

where ([sz]w,nV@ is the o™ singular value of matrix([Hgk]w,nV,Q) It is clear that
as the canonical correlation increases, the desired sagiththe interference spaces are less

aligned, and the received signal SNR and sum-rate of themsyisicrease.

4.3.2 Maximum Sum-Rate Selection Criterion (Max-SR)

In Max-SR criterion, antenna selection is performed to mez@ the sum-rate of MIMO-
OFDM IA systems. Max-SR through bulk selection can be foated as

Yopt = ArgMaxr(vs). (4.17)

Vs €X

We mention again here that and«* are the same for all subcarriers in bulk selection. Sum-rate

in (4.8) can be written as discussed in the previous section a

R = % 33 log, (Ui II ([oz)yn 1 ([sz]wgnvz))) . (418)

Therefore, (4.17) can be rewritten as

Yopt = AIg max®<f>/s)7 (419)

where P )
SCOEDIDY (H ({0 ([Hzm,nvz))) . (4.20)

In per-subcarrier selection, the selection is performdxtatrier-by-subcarrier as follows

Vopt = Arg Maxnr”(v;) Vn. (4.21)

YsE€EX

Correspondingly, the selection can be reformulated into

Yopt = ArQ maxo” (v;) Vn, (4.22)

YsEX
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where©"(47) is defined as

SIS (H (o] o 10 ([sz]w;,wz)» . (4.23)

Max-SR bulk selection and per-subcarrier selection arerde=d generally in Algorithms

4.1 and 4.2, respectively.

Algorithm 4.1 Bulk transmit antenna selection
1: Find x;

2: fors=1toS do

3: Choosey; € x;

4 forn=1to N do

5: ComputeV} andU}; Vk that are related tg;;

6 end for

7 Compute the cost function of the selection criterion usin@s in (4.20), (4.24), or
(4.26);

8: end for

9: Choose the set,,; that optimize the selection criterion as in (4.3). Then cataghe

related codery’} andUj} Vn, where this set is used for all subcarriers.

4.3.3 Minimum Error-Rate Selection Criteria (Min-ER)

It was shown that maximizing the post processing SNR leadsitomization of the error-
rate [101], [102]. Therefore, it is aimed in this selectiaiterion to maximize the SNR of
the received signals by minimizing the lost energy of theenezd signal after alignment that
results from spatial collinearity between the desiredalignd interference subspaces. This can
be achieved by selecting the subsets that have the maximuonical correlation between the
desired received signal subspace and the interfereneesditespace [75]. For bulk selection, the
optimization is

K N d 2
o argma3 "3~ ([Tt ) (822

V€X' k=1 n=1
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while in per-subcarrier criterion, the selection is penfed subcarrier-by-subcarrier as follows

K [ d 2
Yoy = Argmax y _ < [a;‘]w,n> . (4.25)

Vs €EX k=1 =1

Min-ER bulk selection and per-subcarrier selection aredesd generally in Algorithms

4.1 and 4.2, respectively.

Algorithm 4.2 Per-subcarrier transmit antenna selection
1: for n=1to N do

2 Find x;

3 for s=1to S do

4: Choosey;, € x;

5 ComputeV} andU}; VE for v, € x;

6 Compute the cost function of the selection criterion usings in (4.23), (4.25), or
(4.27);

7. end for

8: Choose the set;, that optimize the selection criterion as in (4.2). Then

compute the related codekg} and U}, where this set is used for only this

subcarrier.
9: end for

4.3.4 Minimum Eigenvalue Selection Criterion (Min-EG)

It was exposed that the postprocessing SNR of Atfeuser at then subcarrier is lower

bounded by minEi{UgH[sz]w,an) where minEig denotes the minimum eigenvalue of

(UZH[HQ,C]M,”V@ [101], [102]. Therefore, error-rate lower bound is optigdZor the whole

system when the antenna subset is selected through butkiselas [87]

K N
Yopt = Arg maxz Z minEig (UZH [sz]wf,nv,?) . (4.26)

V€X' k=1 n=1

While in per-subcarrier selection, the optimization pesblis reformulated for the! subcar-

rier as follows
K

Yo = argmax » ~ minEig (UZH[HZk]wf,"VZ) : (4.27)

VEX =1
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Min-EG bulk selection and per-subcarrier selection aredesd generally in Algorithms

4.1 and 4.2, respectively.

4.4 Transmit Antenna Selection with Power Balancing

While per-subcarrier selection strategy achieves morerslity gain than bulk selection does in
high frequency selective channels, per-subcarrier seteatay cause power imbalance across
transmit antennas. This occurs if one antenna is loaded avitige number of subcarriers,
which leads the power amplifier to work in the saturationeagiausing performance degrada-
tion [98,99]. Therefore, constrained transmit antennacsien is proposed to achieve the power
balancing using the same methodology as in [103]. The cainstis to equally distribute the
power between transmit antennas by assigning the same nofrdaécarriers to each antenna.

This constraint can be reformulated as

N
> A1y < [Nﬂjiﬂq vm and Vk, (4.28)
n=1 T

where[ B denotes the smallestinteger larger than or equBl.t8incel,, is the indicator to the
m* transmit antenna and it equals 1 when thé transmit antenna is active and 0 otherwise.
The summation iy {I%"} counts the number of subcarriers that are allocated tanthe

antenna at thé!” transmitter.

A sequential reallocation method is used to achieve thetmned transmit antenna selec-

tion according to the following three steps:

1. In the first step, the unconstrained transmit antennats@heaccording to one of the

selection criteria is performed as in Algorithm 4.2.

2. Then, a repeatable reallocation process is executetdarttennas with overloaded sub-
carriers to antennas with underloaded subcarriers s@ojéctthe constraint that no loss

is allowed in the selection rate.

3. If power balancing is achieved, per-subcarrier selaaigorithm achieves power balanc-
ing without loss compared to the unconstrained selectithe@ise, Step 2 is repeated in
away that loss in the rate is allowed to complete the redil@ecg@rocess for the remaining

overloaded antennas.

This approach is described in Algorithm 4.3.
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Algorithm 4.3 The constrained transmit antenna selection

1: Perform transmit antenna selection using a specific selectiterion without constrains to

obtain{y*"} Vn andVvk.

2. for k=1to K do
3 Find overloaded antenna sub$ket and underloaded antenna suli3et
4: forn=1to N do
5 while Q, # ¢ do
6 Reallocate the subcarriers from the antenndg,irto the antennas ift _ with-
out loss in the rate.
7. Modify Q, and$2_
8: end while
9 end for
10: if Q, # ¢then
11: forn=1to N do
12: while 2, # ¢ do
13: Reallocate the subcarriers from the antennds,irto the antennas ift
with loss in the rate.
14: Modify €2, and(2_
15: end while
16: end for
17: end if
18: end for

4.5 Sub-Optimal Antenna Selection Algorithm

The proposed antenna selection technique for MIMO-OFDMr iteiference channels in the

previous sections is performed through exhaustive searehadl possible combinations at the

transmitter sides in order to select the optimal antennaetslor the transmitters. This optimal

solution requires a high computational complexity thatggavith O (N(MT)K>. In order to

M,

reduce this computational complexity, we propose a subv@bimethod to perform the selec-

tion process with less complexity. The proposed sub-optaigorithm is based on a greedy

strategy, in which we do the selection process for each uskapendently after initializing

one antenna set for each user. The initial antenna set forea giser is the set that gives the

maximum Frobenius norm of the direct channel matrix. Wehkertdescribe the sub-optimal
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method for bulk selection, which can be easily applied toqudrcarrier selection following
Algorithm 4.2. The description of the sub-optimal method &&@ commenced by initializing
the setd = {¢*

formulated in bulk selection for the” user as follows

k
k. —arg max{z H Hy )y

K | that contains all the initial sets, where selection of thtdhsets can be

ini

Q= 1,2,..,A}; Vk. (4.29)

Afterwards, the initial sets are modified sequentially fog tisers until all the initial sets id

are modified. The sequential modification is performed faheaser independently, e.g. the
k" user, by selecting the subset of antennas at each/{jsbat achieves the selection criterion
while the other antenna subsets of the otiier 1 users are fixed. Then, we modify the initial

subset of this usep? . to bew)* in the setA. This process is repeated for all users in order to

modify the initial antenna subsets. Hence, the computaticomplexity is reduced to be grown
with O (NK(%T)) Therefore, we ¢ conclude that the vital role of the subroptischeme is

to reduce the exponential growth of the complexity to lingramwth.

Furthermore, the correlation between subcarriers can ibeedtin order to reduce the
number of subcarriers that is considered in the selectioogss. The adjacent subcarriers may
face correlated fading, which means that if one subcasieomnsidered for the selection process,
the chosen antenna set is also suitable for these correlabearriers. Therefore, the selection
process can be employed for one subcarrier that represessc#dic number of subcarriers.
Assuming that one subcarrier presents a group afubcarriers, the computational complexity
becomes?) ( N (ﬂ”fﬂ) This sub-optimal approach is summarized in Algorithm 4#dkulk
selection, which can be easily extended to per-subcaelecton according to Algorithm 4.2.

4.6 System Implementation and Simulation Setups

We evaluate the sum-rate and error-rate performance ofriteniaa selection techniques in
MIMO-OFDM IA system using measured channels, determindtannels and analytical chan-
nels. In our evaluation, measured and deterministic cHarare obtained for an indoor envi-
ronment. In order to obtain measured channels, a basic MOFDM system testbed is imple-
mented considering channel estimation and carrier regowdthereas deterministic channels
are synthesized using 3-D ray-tracing, which can chariaetére propagation channel with high

accuracy. It was verified that the static measurement emviemt can ensure the validity of the
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Algorithm 4.4 Sub-optimal bulk transmit antenna selection
1: Findyf; Vi andvk;
2: Initialize the set4 by findingv% ., Vk according to (4.29);

ing?

3: ComputeV} andU}, Vk according to the sed,;
4: for k=1to K do
5: fori=1to Ado

6 Modify the £ element in the setl to bey¥;
7 for n = 1:N,:N do
8: ComputeV} andUj} according to the set;
9 end for
10: Compute the cost function of the selection criterion forseeA4 as in (4.20), (4.24),
or (4.26);
11: end for
12: Find the set)” satisfies the selection criterion and fix thé element in4 to
bey* asin (4.3).
13: end for

results as claimed in [26]. Therefore, the measurement8Brrdy-tracing are performed for a
static environment. It is worth mentioning that the deteristic channels are effective in offer-
ing an averaged performance for the environment by moviagtddes and extracting different
channel realizations, which is hardly to be accomplishethbgsured channels. The analytical
channels have been drawn from independent and identicaliytaited Gaussian distribution
with zero mean and unit variance, which represents a higltet and scattered environment.
Evaluating the proposed algorithms under different chhooeditions provides a robust con-

clusion about the efficiency of antenna selection under iffereint circumstances.

A communication system at 2.4 GHz operating in the first flddhe electrical engineering
building of Duisburg-Essen University is considered. Acitiog to the hardware limitation, we
consider a three-usef& = 3) MIMO-OFDM IA system with 64 subcarriersV = 64), where
the channel bandwidth is 1 MHz. 3 antennas at each tranemitiode(M; = 3, M, = 2)
and two antennas at each receiving nod&; = 2) are assumed, where each user transmits
d = 1 stream. The antennas within each node are placed at a distdh¢2 from each other as
seen in Fig. 4.3. The values of transmit power, subcarriacisg, guard interval, and symbol
duration are set to 15 dBm, 15.625 kHz, 16 samples ands3@espectively. The closed-form

solution of 1A is applied.
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Next, we present our hardware setup that is used to collean#asured channels. Then,

3D ray-tracing channel model is exhibited.

Figure 4.3: IA testbed setup: Demonstration of the antennas within mrestnitting node.

4.6.1 Software Implementation and Hardware Setup

In this section, we present the MIMO-OFDM IA wireless netlwoestbed that is used in this
work. The objective of the testbed is to assess antennaiseléechniques in MIMO-OFDM

IA systems in a realistic scenario. In this scenario, tratiemreceiver pairs were placed at
distances ranging from 2 to & apart, where we avoid the line-of-sight scenario between
transmitter-receiver pairs during the measurements. Wwdgh mentioning that directional
antennas or multibeam antennas offer better diversity tdmanidirectional ones in the line-
of-sight scenarios, where beam selection can be perforsmédeaussed in [104-106]. During
the measurements, clean channel at 2.4 GHz is used. Morewwemsure that there are no
moving objects in the surroundings in order to collect statiannels. The measured channel
realizations are collected without moving the transmitesdor the receive nodes, where 100

channel realization are collected over different timesslot

Software Implementation

To realistically predict the performance of 1A with antersedection as stated in the objective
of the testbed implementation, we put emphasis on chantiglasn implementation. Users
sequentially send OFDM preamble symbol as frequency-dompiéots that are known to all

receivers to satisfy time orthogonality of training amonigusers as seen in Fig. 4.4 [107].

Each OFDM symbol in our experiment consists of 40 data suigcay 24 zeros, and 16 samples
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as cyclic prefix for the guard interval. The preamble symhmitains similar arrangement
as the usual OFDM symbols, except that all of 40 data sulecarm the preamble are the
known pseudo noise (PN) sequence used for training synmds#ebchannel estimation. In the
training symbol-based channel estimation, all subcaraéran OFDM symbol are dedicated
for training. The PN sequence only contains +/-1 in even aui®rs and 0 in odd subcarriers.
One OFDM frame has one preamble symbol. For slowly varyiramokls, the channels for the
same subcarriers in one OFDM frame are assumed unchanged.tlre preamble received at
the output of FFT block in the receiver, we can obtain thetlegsare estimate of the channel

frequency as was described in [108, 109].

In this experiment, synchronization is required to compém$éime and carrier frequency
offset between transmitters and receivers, which leadsagodduction of each OFDM symbol
amplitude in time domain, shifting of the phase and interieainterference that ruins subcarri-
ers orthogonality. PN synchronization method is impleradnd carry out time synchronization
and fine frequency offset synchronization between eactstnédrreceive pair using the same
methodology in [26,110,111].

PN
Data

PN
Data

User3 !User2 ! Userl

PN
Data

Time

Figure 4.4: lllustration example for preamble and data example usedgasurement.

Hardware Setup

In our hardware setup, universal software radio periph@/8RP) units, GNU software, and
personal computers (PC) are mainly used. The setup con$i8t6dSRP N210 as transmitters
connected to one PC and 3 USRP B210 as receivers connecisotbh@aPC, where each trans-
mitting node requires 3 units of USRP N210 and each receinodge needs one USRP B210.
USRP unit is the most common hardware used with GNU Radio ild buSoftware Defined
Radio (SDR) system. Each USRP N210 consists of two main sulzel, a motherboard and
different daughterboards which can transmit and/or recgifferent frequency ranges. We used
SBX USRP daughterboards that provides up to 100 mW outpW¥]H® of bandwidth and has
400 MHz-4400 MHz frequency range with Gigabit Ethernetifatee. USRP B210 is fully in-
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tegrated single board USRP platform with frequency coverfagm 70 MHz-6 GHz and has
universal serial bus (USB) 3.0 connectivity. The core congmi of each node is the PC which
allocates USRPs as the baseband hardware, configures anolstime baseband hardware as
well as RF front-end using the GNU Radio software. The hardwéock diagram is illustrated
in Fig. 4.5.

For the aim of synchronization, an external function getogiia used to generate a 10 MHz
clock and PPS signal to Ettus OctoClock, where this OctdCtan distribute the reference
signal for the USRPs. Moreover, the MIMO cable can also stlack and PPS signals between
USRP N210 within the node.

Through measurements, we only record the channels tha\achiiccessful date transmis-
sion by all receivers. Moreover, the received signals hagk BNR values of an average 18
dB. This methodology of tight synchronization and high potv@nsmission guarantees that our

measurements enclose only channel impairments and awtdriing effects.

- E User 1 (RX
e i
.Yser2 (TX)

-i—mjf User 2 (RX
—y-

_?_m_‘l’ : % User3!RX|

Figure 4.5: Hardware block diagram.

4.6.2 3D Ray-Tracing Channel Modelling

It was verified that characterization of the propagatiomaeh and extraction of the channel
parameters can be provided using 3D ray-tracing with higluacy [112, 113]. Moreover, an
excellent agreement with measurements for narrowband &heband wireless channels was
presented in the literature [113, 114]. This model consitlee spatial channel and the environ-
mental effects as path-loss, frequency dependence, reflectransmissions and diffractions.

It considers as well the characteristics of the antennasdpthe effective channel such as
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directional gain, matching and polarization.

In our simulation, Wireless InSite is used as a 3D ray-trgd¢ool [115]. Unlike the mea-
sured channels, 1000 deterministic channel realizatienslatained by moving all nodes in this
lab randomly using Wireless InSite in order to obtain an aged performance for the system.
The channel impulse response betweenjthéransmit antenna and thé" receive antenna at

then' subcarrier is modeled as [116]

Pr
g (t) =D VP 50t — 70), (4.30)
c=1

whereP., 6, andr, are the received power, phase angle, and time delay of'thmth respec-
tively. Pr is the total number of pathes andt) is the delta impulse function. The frequency
response between th& transmit antenna and tié" receive antenna at thé" subcarrier can

be calculated as

PT
b= /Pl eI (4.31)
c=1

wheref, is the carrier frequency of thé” subcarrier.

4.6.3 Channel Normalization

Before evaluating the sum-rate and error-rate performahd4/MO-OFDM IA over the col-
lected channels, the channel matrices should be normdiZed6, 101,117].

The measured channels are normalized over the full daténsstder to obtain fair compar-
ison with the simulated Rayleigh channels, we normalizeroeasurements to have elements
of unit variance as follows [26,117]

HZ]'(“))
Q PN
NSO

(4.32)

I:IZ]((U) = \/ MsMR

whereHy;(w) is the normalized channel matrix, afid= 100 is the set of all measurements

collected.

In the deterministic channels, the received power changesrding to transmitter and

receiver location. Therefore, the same normalization ouktfogy is used in order to have
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elements of unit variance as follows [24,101]

H = /M.M Hi 4.33
kj — S Rﬁ- ( . )
[ H; (1%

4.7 Results and Discussions

In this section, we present the sum-rate and error-rateopeance of the antenna selection
techniques for the MIMO-OFDM IA system. The results are pntésd corresponding to the
following three scenarios: Analytical channels, deteiistio channels and measured channels.
Max-SR, Min-ER and Min-EG antenna selection criteria aresttered in the simulation in-
cluding bulk selection and per-subcarrier selection. Mweg, constrained per-subcarrier and
sub-optimal antenna selection are investigated. For thgose of comparison, the following

algorithms are considered in the simulation:

1. Bulk: This scenario denotes bulk antenna selection. The usextiseleriterion is added
between parenthesis. In deterministic and measured clsatime separation between the

antennas within the node }g/2.

2. Per-Subcarrier: This scenario refers to use per-subcarrier antenna satectine used
selection criterion is added between a parenthesis. Inrdetistic and measured chan-

nels, the separation between the antennas within the noge.is

3. Constrained Per-Subcarrier: This scenario refers to use constrained per-subcarrier an-
tenna selection that is illustrated in Algorithm 4.3. Thediselection criterion is added
between a parenthesis. In deterministic and measured elsaiine separation between

the antennas within the node)Xg2.

4. No Selection §/2): This scenario shows the performance corresponding to the ca
where no selection strategy is used. In this case, 2 trarsitennas are always chosen
at random. In deterministic and measured channels, theaepabetween the antennas
within the node is\/2.

5. No Selection (2): This scenario shows the performance corresponding to Seevehere
only 2 transmit antennas exist at each transmit node andefperation between the an-

tennas within the node is\2
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6. TDMA: We use TDMA as an orthogonal transmission scheme, wherelectisa strat-
egy is used. In this case, 3 transmit antennas are alwayswigedigen beamforming.
Furthermore, two data streanis= 2 are sent by each user in this case. In deterministic

and measured channels, the separation between the antétiringhe node is\ /2.

7. TDMA with antenna selection: This scenario shows the performance corresponding
to the case where per-subcarrier antenna selection wigndigamforming is used to
maximize the capacity of TDMA system. Furthermore, two dditaams are sent by each
user in this case. In deterministic and measured chanrssdparation between the

antennas within the node J}g/2.

8. Max-SINR: In this scenario, full transmission is simulated, in whicktr&smit anten-
nas are used for transmission as in [19]. In deterministet measured channels, the

separation between the antennas within the nodéls

9. Suboptimal: In this scenario, sup-optimal antenna selection is perokrmThe used

selection criterion is added between a parenthesis.
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Figure 4.6: Sum-rate comparison between different antenna seledtiategies using analyti-
cal channels.
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4.7.1 Analytical Channels

The analytical channels have been drawn from independentlantically distributed Gaussian
distribution with zero mean and unit variance, which représigh selective and scattered envi-
ronments. Fig. 4.6 and Fig. 4.7 show the sum-rate and eaterperformance for the different
antenna selection techniques using analytical chanrespectively. In general, per-subcarrier
selection achieves high performance gain compared to lel#ictson in terms of sum-rate and
error-rate since the subcarriers are uncorrelated andihdependent fading. It can be seen
from Fig. 4.6 that Max-SR and Min-EG through per-subcarselection achieve the maxi-
mum sum-rate performance and result in approximately 1Hmpghain compared to Min-ER.
However, all bulk selection criteria have a very close sae-to 1A without antenna selection
because the subcarriers are uncorrelated and, henceirgptate antenna subset suitable for all
subcarriers is impossible. It is notable that the multipigxgain of 1A systems with and with-
out antenna selection are identical, where the gain in plecagrier selection sum-rate curves is
mainly due to diversity gain. This is justifiable since theNMD channels are independent, and

hence all antenna subset can achieve the maximum spati@blexihg.
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Figure 4.7: Bit error-rate comparison between different antenna selestrategies using ana-
lytical channels.

As anticipated in the theory for independent channels, Bi@. proves that IA sum-rate

achieves better DoF compared to orthogonal transmissabmigues such as TDMA. Fig. 4.6
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exhibits that sum-rate of per-subcarrier selection sugmblax-SINR sum-rate, while both ap-
proaches use the same hardware complexity (3 RF chainghn lte clearly observed from Fig.
4.8 that the constrained antenna selection, that is predemtalgorithm 4.3, achieves mostly
the same sum-rate performance as the unconstrained onis iyggh of channels. Turning to

error-rate performance, Fig. 4.7 shows that Min-ER ctethrough per-subcarrier selection
offers the minimum error-rate compared to the other catarithis system, while Max-SR and

Min-EG have smaller performance loss compared to Min-ERwvél@r, the behavior of se-
lection criteria in bulk selection is different becauseestibn is decided depending on all the

independent subcatrriers.

45

—v— Per—Subcarrier (Max-SR)
401 —vy— Per-Subcarrier (Min-ER)
~© - Constrained Per-Subcarrier (Max—SR)
— % — Constrained Per—Subcarrier (Min—-ER
—x— TDMA

—e— No Selection

Sum-Rate [bits/sec/Hz]

0 5 10 15 20 25 30 35 40
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Figure 4.8: Sum-rate performance of constrained per-subcarrierts@bagcsing analytical chan-
nels.

For high frequency selective scenarios, it can be conclukadper-subcarrier selection
efficiently improves the sum-rate and error-rate of MIMOEDW |IA systems compared to the
other 1A approaches with power balancing among the diffeagstennas. This evaluation is
suited to multiband ultra wide band (MB-UWB) systems beeabh®ir bands are highly selec-

tive.
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4.7.2 Measured and Deterministic Channels

We consider in this part a realistic scenario in an indootirenment. We present the sum-
rate and error-rate performance of the measured and deistimchannels. We mention again
here that the measured channel realizations are colleat@ohly one setup of transmitting and
receiving nodes, while the deterministic channel reabretare collected for random positions
of the transmitters and receivers in the considered emwient. Therefore, the deterministic

channels can provide an averaged performance for the @esdiénvironment.

40 I I
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Figure 4.9: Sum-rate comparison between different antenna selectiategies using deter-
ministic channels.

Fig. 4.9 exhibits the sum-rate performance for the diffeerienna selection techniques
using deterministic channels. In this scenario, Fig. 4@8nshthat TDMA sum-rate outper-
forms IA sum-rate without antenna selection in the regimewe8 dB, which means that
IA without antenna selection fails to achieve the promidesbtetical result. The closely/2
spaced antennas exhibit significant spatial correlatioosacantennas, which causes high SNR
loss after alignment. However, an appreciable sum-ratedugment can be observed by using
Max-SR and Min-EG antenna selection techniques comparddidA and IA without an-
tenna selection. Fig. 4.9 shows that Max-SR and Min-EG apgves based on per-subcarrier
selection achieve the best sum-rate performance. Furtrertoulk selection successes to offer

better sum-rate than IA without antenna selection with sgeih difference compared to per-
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subcarrier selection. The convergence performance bating& and per-subcarrier selection
comes as a consequence of the correlation between the satxtrat resulted from the used
bandwidth in generating the deterministic and measuredrefia. It is clear that antenna selec-
tion technique increases the DoF of IA systems in such chasimee this technique improves
the multiplexing gain of MIMO channels, which is translaiatb the increase of the slope of
antenna selection curves. As claimed in [26], Fig. 4.9 shinasincreasing the separation be-
tween the antennas f\ within each node can improve the performance of IA. Howewéh
Max-SR antenna selection technique, we achieve higherratarperformance with only/2
antenna separation. Moreover, Max-SR and Min-EG throudk delection with 2 RF chains
exhibit better sum-rate performance and less hardware lesatpthan Max-SINR, which re-
quires more hardware complexity (3 RF chains). For morstitation, Fig. 4.10 introduces the
cumulative distribution function (CDF) of the sum-rate &f antenna selection approaches at
practical SNR value equals 12 dB. This figure states thahaateelection technique improves
the sum-rate distribution.
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Figure 4.10: Comparison of sum-rate distribution between differenéant selection strategies
using deterministic channels.

Fig. 4.11 presents the effect of applying the constraineepbcarrier antenna selection
algorithm on sum-rate performance. The performance isadiegl according to the limited
number of subcarriers on each antenna and the high coorla¢tween subcarriers. For more

clarification, the average percentage of SNR loss per subcafter performing Algorithm 4.3
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Figure 4.11: Sum-rate performance of constrained per-subcarrierts@hegsing deterministic
channels.

Is presented in Fig. 4.12. We observe from this figure thadttegage SNR loss per-subcarrier
due to the reallocation process is 12%. Hence, the realbwcatocess cannot guarantee the
small rate loss. Therefore, antenna selection througtsyecarrier selection is not effective

when the subcarriers are highly correlated channels, simegises either overloaded antennas

in the non-constrained case or performance degradatidreiodnstrained case.

Fig. 4.13 shows the bit error-rate performance for the obffié antenna selection tech-
nigues, where Min-ER based on per-subcarrier selectiondotes the minimum error-rate
performance. By comparing antenna selection criteriaah@abased on bulk selection, we ob-
serve that bulk selection improves the error-rate comptardéide no selection case. Therefore,
Min-ER and Min-EG criteria are able to improve the erroerperformance of MIMO-OFDM

IA systems.

Fig. 4.14 presents the sum-rate performance of measurethelsausing the Max-SR
antenna selection criterion through bulk selection. It banobserved that TDMA sum-rate
outperforms IA sum-rate without antenna selection. Howeewith Max-SR bulk antenna
selection technique achieves a significant sum-rate ingon@nt compared to TDMA and 1A
without antenna selection. The identical behaviour foedatnistic channels was presented
in Fig. 4.9. Therefore, we can conclude that 3D ray-tracihgnnels can characterize the

performance of measured channels. Further, we use therdetstic channels to evaluate the
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Figure 4.12: Averaged SNR loss per-subcarrier after applying constthantenna selection of
Algorithm 4.3 using deterministic channels in MIMO-OFDM Bystem.
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Figure 4.13: Bit error-rate comparison between different antenna selestrategies using
deterministic channels.
performance of antenna selection since we can obtain as@@eformances.

It is concluded that bulk selection can significantly imp@um-rate and error-rate with
less complexity and without the need for power-balancingsateration when the subcarriers

are correlated.
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Figure 4.14: Sum-rate performance of measured channels using Max-3&sbldction crite-
rion.
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Figure 4.15: Sum-rate for sub-optimal Max-SR bulk selection using deteistic channels.

4.7.3 Performance of The Sub-Optimal Antenna Selection

Fig. 4.15 shows the performance of the sub-optimal bulkrardeselection technique using

Max-SR selection criterion for differenV, values using deterministic channels. Generally,
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Figure 4.16: Sum-rate for sub-optimal Max-SR per-subcarrier seleatiging analytical chan-
nels.

the sub-optimal algorithm achieves a very close performmdaadhe exhaustive search method
with less computational complexity. Moreover, performargenna selection for one subcarrier
every 20 subcarriers\N; = 20) only causes a loss of 0.2 bps/Hz compared to the optimal
Max-SR bulk selection. As a worst case, if the antenna seledcs executed only for one
subcarrier among all subcarriertd ( = 64), approximately 0.6 bps/Hz is lost. However, the
sub-optimal algorithm withV, = 64 offers better sum-rate performance for MIMO-OFDM IA
system compared to IA system with no selection ahkdpaced antennas. Therefore, the sub-
optimal algorithm is considered efficient to perform angselection algorithm with minimal

computational complexity.

Fig. 4.16 presents the sub-optimal per-subcarrier selectsing Max-SR selection crite-
rion for analytical channels wheN, = 1. It is noted that the sup-optimal algorithm achieves
a very close sum-rate to the optimal one, which proves theiefity of the algorithm for all
kinds of channels. Therefore, we conclude that the subv@btalgorithm is efficient under
all channel circumstances, and it opens the door for a hydmdbination between bulk and

per-subcarriers algorithm depending on the channel cistances and subcarriers correlation.

Our evaluation concludes that antenna selection can plajmpartant role in enhancing

the practical feasibility of MIMO-OFDM IA systems under tegorld channels.
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5 ‘ INTERFERENCEALIGNMENT BASED RESOURCE
MANAGEMENT IN COGNITIVE RADIO NETWORKS

In this chapter, we investigate the resource managemehblgonan multicarrier MIMO cogni-
tive radio systems. We perform IA based resource allocatimrder to improve the spectral
efficiency of cognitive radio systems without disturbing firimary system transmission. More-
over, we consider in problem formulation the power budgehefcognitive users as well as the
throughput fairness among the cognitive users. This prolideformulated as a mixed-integer
problem which has a high computational complexity. Thenefan efficient sub-optimal algo-
rithm is proposed to reduce the computational complexitthefoptimal problem through two
phases. The performance of the proposed technique is ésdlaad compared to cognitive
radio systems with orthogonal multiple access transmissohniques. The contents of this

chapter have been partially published in references [123}-1

5.1 Introduction

The governmental agencies are currently using a statidrsjpedicensing model to regulate
the frequency allocation. By this model, the spectrum isdaiet into several bands that are
generally allocated exclusively to specific users or ses/iéds conducted by practical measure-
ments, this model leads to inefficient utilization of the &pem since it was shown by Federal
Communications Commission (FCC) that the actual spectrsagei varies between 15% and
85% based on location and time variations [123, 124]. Theoissidered as a reason for spec-
trum scarcity, which bounds the increasing demand for tbguency spectrum and, hence, the
rapid growth of communication services. Cognitive radiprigposed to overcome the spectrum
underutilization problem by introducing a new licensingpesme that allows a group of users
called non-licensed, secondary users (SUs), to accessatamtvportion of the spectrum left

by the licensed users, also called primary users (PUs)pwithffecting the performance of the
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licensed system or inducing harmful interference to it P8,

To support and guarantee efficient spectrum sharing betéfeeprimary and cognitive
networks, the cognitive radio system must possess cogri@pabilities to monitor the sur-
rounding environment and adopt its transmission aimingsiticting interference harming the
primary system. Therefore, cognitive radio is required@édqm three main functions: spec-
trum sensing, spectrum analysis and spectrum decisiopeltsim sensing, the cognitive radio
monitors its radio environment to identify the unoccupipddrum bands, captures their infor-
mation and then detects the spectrum holes that can be usbe fwognitive radio transmission
in a particular time, frequency and location [123, 125]. @pen analysis function analyzes
the characteristics of the detected spectrum holes, theaprity of the PU appearance and
the possible sensing errors in order to determine whetlesetholes are suitable for SUs op-
eration [126]. Whereas in spectrum decision, the apprtgpband is selected and, then, the
cognitive radio has to optimize the available system resesim order to achieve the required
objective [126]. Once the operating spectrum band is decihee communication can be per-
formed over this spectrum band. However, because the ragicoement changes over time
and space, the cognitive radio should keep track of the @sobthe radio environment. If the
current spectrum band in use becomes unavailable, segrfdriranother available spectrum

band is performed to provide a continuous transmission.

Multicarrier transmission schemes, like OFDM and filter bamulticarrier (FBMC), of-
fer several advantages over the single carrier scheme mitoagradio context. Multicarrier
schemes provide high spectral efficiency and robustnesslatts/e fading channels. Addi-
tionally, they offer more flexibility in distributing the syem resources among the different
users and subcarriers [127]. Furthermore, multicarristesyis have the ability to operate in
discontinues portions of the spectrum and have the capatwlicontrol the transmission pa-
rameters to avoid inducing severe interference to the Pbghamake it very attractive for the
cognitive radio applications. OFDM is the most common nealtrier technique that is con-
sidered by several communication standards including IBEE22 TV based cognitive radio
system [128]. However, OFDM has large frequency-domaigalslies that cause high mutual
interference to the adjacent primary bands [128]. Adddlbnthe overall spectrum efficiency
of the OFDM system is reduced due to the use of the cyclic pthéx is added to combat
the multipath propagation effect. From another side, FBM@ avercome the spectral leakage
problem by minimizing the sidelobes of each subcarriercWheads to high efficiency in terms

of spectrum and interference. Furthermore, cyclic prefirasrequired any more in FBMC
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systems since the channels are designed in the frequen@imtorhave the required spectral
containment [128-130]. In this regards, combining MIMOhtealogy with multicarrier trans-

mission can increase the diversity gain and accordinglyyséem data-rate. Thereby, MIMO
multicarrier systems have been considered recently asaigirg candidate for cognitive radio
systems [29].

The resource allocation problem in the non-cognitive meahtier MIMO systems was
widely considered in the literature (e.g. [131-134] ancmefices therein). Using of the pre-
viously proposed algorithms for the non-cognitive sceygis not always effective in the cogni-
tive radio scenarios because the limitation introduceadhtgrierence constraints to the cognitive
radio system should be taken into consideration. Thergtmesideration of the cognitive ra-
dio regulations in resource allocation problem was comsien [29, 127,135-137]. Optimum
power allocation with beamforming is performed to maxinttze capacity without violating the
interference and power constraints in [29,127]. A gamergheéased decentralized approach
was proposed in [135] to design a cognitive MIMO transceyethich compete with each other
to maximize their date-rate. In [136], the DoF provided by MIMO is utilized to construct
a cooperative paradigm that can be applied by the SUs to sinedusly relay the PUs traf-
fic and transmit their own traffic over the same accessed balgdlyen and Krunz in [137]
reformulated the non-convex resource allocation optitironaproblem into a distributed non-
cooperative game, in which a set of precoding matrices igyded at each of the cognitive

radio nodes to maximize the capacity without affecting thepry system transmission.

Recently, IA as a means of effective interference managehasreceived much of interest
in cognitive radio systems. In this context, IA was inveatayl in cognitive radio systems with
MIMO employment on both PUs and SUs in order to allow SUs tlizetboth free and non-free
eigenmodes of PUs. This employment helps in removing ttegference constraints from the
optimization problem since it assumes that the PUs coopevih the SUs and can suppress
the received interference at the primary side [138-142]188], the authors considered only
one MIMO SU link to coexist with one MIMO PU link aiming at théte SU achieves the same
transmission rate as of the PU. This work was extended in][ig9edesigning the decoding
matrix of the SU receiver in order to combat PU interferemca more effective manner, where
the SU is enabled to compute blindly the required CSI. Sityildhe work in [140] enables
one SU to share the unused eigenmodes of the PU consideempgwer and interference con-
straints. In the same way, the work in [141] considered MIM@p®yment at SUs and a PU

with frequency scheduling. In [142], the authors formulltiee cooperative spectrum leasing
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with 1A into a Stackelberg game, where the PU is the leadet,Sius are followers. This work
assumed feasible IA system, which is not always valid. Tloeeahentioned works assumed
the existence of a certain level of coordination and codpmrdetween cognitive and primary
systems. Nevertheless, the cooperation between the pgriamal cognitive systems is not al-
ways guaranteed, and it requires a permission from the pyisystem to denote some of its
DoF to the SUs. Furthermore, to the best of the authors’ kedgé, overloaded cognitive radio
networks -where IA problems are infeasible- have not beesidered in the literature. Addi-
tionally, because of the challenges associated with janigy and spectrum optimization, most
existing works on MIMO IA cognitive radio systems do not cioles resource management over

the multicarrier systems (frequency dimension) as it isfaiolty trivial.

In this chapter, I1A with frequency-clustering is propose@verloaded cognitive radio sys-
tems in order to improve the spectral efficiency of MIMO cdiyei radio systems while protect-
ing the primary system performance. The tackled system huadsiders a practical scenario
by assuming that there is no coordination between the aegranhd the primary network. 1A
based resource management problem in cognitive radiomsgsseformulated, where the using
of IA increases the DoF per SU by enabling the SUs to effelgtisieare the available spectrum.
In the problem formulation, each subcarrier is assignedfeaaible number of SUs in order
to meet the IA feasibility conditions, where the fair dibtrtion of the resources among the
different SUs is taken into account. Considering that there coordination between the pri-
mary and the cognitive systems, the primary system shoupddiected from receiving severe
induced interference from the cognitive radio systems Isyigng that the received interference
is below a prescribed limit. Accordingly, several integiece constraints are added to the op-
timization problem. As the computational complexity of th@imal scheme is quite high, the
paper further proposes an efficient sub-optimal resoutoeadlon algorithm with two phases.
In the first phase, frequency-clustering method is emplogextder to assign each subcarrier
to a feasible number of SUs with fairness considerationqui@acy-clustering operation con-
siders the interference channel qualities of the subcaraie well as the generated interference
to PUs. In the second phase, the power is allocated amonghaldgiers and SUs considering
the power budget of the SUs and the interference limits aPthe.

The rest of this chapter is organized as follows. The systadeahis described and the
optimization problem is formulated in Section 5.2. SectoB presents the phase of frequency-
clustering with and without fairness consideration. Thérogl and the sub-optimal power

allocation algorithm are introduced in Section 5.4. The patational complexity illustration
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is presented in Section 5.5. Finally, simulation setupsrasdlts are discussed in Section 5.6.

5.2 1A Based Resource Management Problem Formulation

5.2.1 System Model

In this work, a secondary communication system withSUs is considered, where each SU
has one transmitter with/; antennas in order to communicate with one receiver With
antennas. The assumed secondary system is co-located witmary system in the same
geographical area. The PUs are assumed to be equippedWythntennas. The side-by-
side frequency distribution of active and non-active baisdgssumed as shown in Fig. 5.1.
The active primary system bands represent the portionseo$plectrum already occupied by
the PUs while the non-active bands refer to the vacant bdmaiscen be used by SUsL
active PU bandsit, Ws, ..., W;) are assumed. Additionally, the non-active bands are éd/id
into N equal subcarriers each withf bandwidth. The SUs are connected to a local gateway,
which works as a centralized controller and is in charge efésource management task of the
network. Fig.5.2 shows an example®BUs, in which the transmission of the different SUs
causes interference to the PUs as well as to the other udede8U receivers. The induced
interference should not exceed the prescribed limit of flk@vable interference that can be
tolerated by each PU, i.€},. The numbers above the arrows represent the frequenciechg

that will be described later.

W W,
>

—> Af <«—
‘ ‘ THITHHTITHHH‘
Non-Active Active Non-Active Active Non-Active
band PU; band band PU; band band
{III | L 1| e | | | | | Freauency

N

-

»
>

Figure 5.1: Frequency distribution of active and non-active bands.

In our model, the transmission on a given subcarrier is reiticted to one user at a given
time. Rather, different SUs are allowed to share the diffesebcarriers by employing IA. Ac-
cordingly, the interference between SUs is managed by géngudifferent precoding matrices
based on MIMO IA technique [14, 16]. By considering a multrea technique, the frequency

orthogonality can be achieved between subcarriers, wiables the independent application
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——p Transmission g B Lo
% Interference ,SU1 ¢

Figure 5.2: Example of a cognitive radio network with SU pairs. Different numbers and
colors denote different subcarriers.

of IA on each subcarrier. Each SU transmitter sehdata streams to its intended receiver. The
transmitted data strearj € C?*! over then' subcarrier is multiplied by the precoder matrix
Vi e CMrxd By assuming a perfect CSI of the SUs at each node, the distine¢ complex
received signal at the’" receiver over the'" subcarrier is represented as

K L
ye=UM [Hpvixp + Y HEVIXD +20+ Y wiy |, (5.1)
j=1.j#k =1
where U € CMrxd js an orthonormal linear interference suppression mapplied at the
kth SU receiverHy; € CMrxMr denotes the channel frequency response betweeji’tigt
transmitter and thé' SU receiver.S} = E [xpx}"] € R¥ is the input covariance matrix
of the ¥ SU at then'™ subcarrier and can be expressedSgs= diag(P;..(1), .., Px.n(d)),
whereP; (i) is the allocated power to th& data stream at thié” user over the:’ subcarrier.
Therefore, the transmitted power by th&é SU user over the' subcarrier isP;,,, = Tr (S}).
zi € CMrxljs the AWGN at thek™ SU receiver with zero mean and varianceo8f; . -
wi, € RM1is the interference signal introduced from tHePU band over the'" subcarrier

to thek SU with power.J’,, that can be expressed as [143]

Mp Mp Dn+Af/2
n,m,i|2 jw
Jiy (Dn) = Z Z / IS ’ Wy (ej ) dw |, (5.2)
m=1i=1 \p, 7\ r/o

whereDn represents the spectral distance between'theognitive radio subcarrier aritt PU
band.y; (/) is the power spectral density (PSD) of tHePU signal, an@,fl’m’i is the channel

gain between the:'” SU antenna at the* SU receiver and thé" antenna at thé” PU over
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thent" subcarrier.

Similarly, the interference introduced by thé SU transmitter over the'” cognitive radio

subcarrier transmission to tfé PU receiver can be expressed as [143]

]\/IT Dn+Wl/2
n,i,m|2 n
I (Dn, Pe) = ZZ / 5™ Prmn®™ () df || (5.3)
m=1 =1 Dn—W;/2

whereP, ..., denotes the power transmitted from #hé" transmit antenna of the’” SU over

subcarriem, and®” is the PSD of theu'" subcarrier. Eq. (5.3) can be reformulated into
L (Dn, Pyy) = Tr () G VESE VNG (5.4)

whereG, € CM»*Mr denotes the channel gain between AHeSU transmitter and th&" PU
over then'™ subcarrier, and); is the interference factor of the" subcarrier to thé?" PU,

which is represented as
Dn-l—Wl/Q

o= [ ewa. (5.5)
Dn—W;/2
It is also assumed that all the cognitive radio system hapehfect information of interference
channel gaingj,.. Practically, the cognitive radio system is able to obt&i@ information
through periodic sensing of pilot signal from the primargtgyn by assuming the channel reci-
procity [144,145].

Assuming perfect IA is achieved, the received signal in)(belcomes

yi = U HR, Vixg + UL"

L

zZp+ ) w;k] . (5.6)
=1

The termUp"z} follows the distribution of AWGN with zero mean and variarafes?, -

Moreover, using the central limit theorerElL:1 w;;, can be modeled as AWGN which is a

general assumption in this research area (e.g. [146] arcerefes therein). Therefore, we can

describes}? = o%wan + Sor, Ji. Accordingly, the total sum-rate of the SUs over e

subcarrier is
K

Ry =Y Ry (Hp,, Sy, (5.7)
k=1

87



Chapter 5. Interference Alignment Based Resource Managiam€ognitive Radio Networks

whereR? is the capacity of thé'" SU user over the'" subcarrier and can be expressed as

n n n 1 n n n n n n n
Ry (Hyy, Sy) = log, |14 + WUkHHkkkakaHHkkHUk . (5.8)

O

5.2.2 Problem Formulation

In resource management problem formulation, our objedit@maximize the total throughput
of the multicarrier MIMO cognitive radio system subject teetinterference introduced to the
PUs and transmit power budget constraints. Moreover, thiel@m formulation guarantees the
fairness among the SUs by considering per-SU minimum thrpugconstraints. 1A allows the
SUs to share the spectrum resources simultaneously, wintcbases the DoF of the cognitive
radio system. However, this advantage of using IA is rasiidy IA feasibility conditions

in (2.40) and (2.41) since perfect IA can be attained up tormicenumber of SUs, where

K = MrtMe _ 1 Therefore, the formulation of IA based resource allogaticoblem should
consider this limitation by scheduling only SUs to share a given subcarrier. Furthermore, the
interference from SUs to PUs should be considered in thedtation since no coordination is

assumed between the cognitive radio and the primary systamproblem can be formulated

as
N K
P1: max wy Ry (HY,., S? 5.9a
Sz,wg;; R R (HEy., SE) (5.9a)
N
s.t.: wpTr(SY) < Py Vk (5.9b)
n=1
Sk >0, Vn and Vk (5.9¢)
N K
SO wpTr (G VESEVIRGRT) < 1, W (5.9d)
n=1 k=1
wl::L € {07 1} Vk7n (596)
K
> wp =K V¥n (5.99
k=1
N
> " wp Ry (Hyy, S}) > Roin , VE, (5.99)

n=1

wherew? is a binary variable that indicates whether th& subcarrier is allocated to the

k" SU. w2 = 1 if and only if then' subcarrier is allocated to thg" SU and zero implies
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otherwise. The constraint (5.9b) represents ifteSU total power constraint?), while a
positive transmission power at each antenna is guarante€d.@c). The constraint (5.9d)
ensures that the total interference induced by the SUs td’theU is below the prescribed
interference thresholdl,. The equality conditiory " , wp = K in (5.9f) ensures that any
given subcarrier can be shared by oAlySU links. This constraint of (5.9f) accomplishes the
IA feasibility conditions and, consequentially, perfedtdan be achieved. The last constraint
in (5.99) ensures that the fairness among the SUs is guarhhbteassuming that every SU has

a minimum instantaneous rate Bf,in.

The optimization problem i#1 is a mixed-integer optimization problem, where the mixed-
integer nature comes from the integer constraint in (5te8)is used for SUs scheduling. More-
over, the minimum throughput constraints in (5.99g) incegag complexity of the problem since
the cognitive radio system may not be able to satisfy thismum rate due to the limitation
introduced by the interference and power budget conssraistwell as the channel qualities.
Therefore, the complexity of the optimal scheme is genggibhibitive as detailed in Section
5.5. To solve the resource allocation ProblBinefficiently with low computational complexity,

a two-phase sub-optimal algorithm is proposed. In the flissp, for overloaded secondary sys-
tems where the number of SUs doesn't satisfy IA feasibiliyditions, IA frequency-clustering

is performed in order to schedulé SUs per subcarrier with fairness consideration. This phase
can guarantee feasible and perfect 1A on each subcarriér [48]. Afterwards, the available
power is distributed among users and subcarriers withaltimng the interference constraints
in the second phase. Moreover, the minimum throughput caings in (5.99) are relaxed by
minimizing the number SUs whose rates are below the minimemreducing the outage prob-
ability of having SUs whose rates are below the minimum. Bgbquel, detailed description

of the two phases is provided.

5.3 Phase I: Frequency-Clustering

This phase is required to be performed in the case of havingvarioaded cognitive radio
system, where the number of Ssdoesn’t satisfy the IA feasibility conditions. As perfeét |
cannot be obtained in this case, frequency-clusteringriéihgo is executed to cluster the SUs
into feasible groups from IA point of view. As an example foequency-clustering, consider
that 6 SUs are operated witi; = My = 2 andd = 1 over N = 4 subcarriers as seen in Fig.

5.2. This network is considered overloaded since it doesaiidfy the feasibility condition of
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My + Mgp — (K +1)d > 0. Therefore, IA frequency-clustering is performed, andubers are
scheduled according to the numbers above the arrows in.Eigrbis means that SUSU, and
SU, are scheduled to use the first subcarrier while the secorcheidyr is shared between SU
SU; and SU.

In this section, we propose an algorithm for frequency4elisg operation by consider-
ing not only their channel quality and per-user power buageistraints but considering also
the induced interference to the PU band. Moreover, fairaessng the SUs is guaranteed by

assuming that every SU has a minimum instantaneous rdtg,Qf

5.3.1 Frequency-Clustering without Fairness Consideratin

In this part, we consider frequency-clustering withoutrfass consideration. Two power distri-
butions are assumed in order to consider the power-limggahre as well as the interference-
limited regime. These power distributions only benefit thistering operation, where the actual
power allocation is executed in the second phase. In the plawiged regime, the power allo-
cation among the subcarriers is mainly restricted by the gweer budgets. In this case and
assuming that all the SUs are allocated to equal number cbsuérs, the power budget of each
SU is equally distributed among the subcarriers, where itbeaed power for thé'" user at
then!” subcarrier is expressed as

UF __
Pk,n_

N (5.10)
In the interference-limited regime, the power allocatiemiainly restricted by the interference
threshold of the primary system. Hence, we assume that thergged interference to the pri-
mary system, i.el, , is equally distributed among the different subcarrieds|1 Consequently,
by using (5.4) and (5.5), the maximum powé)f,fn, that can be allocated to th&" subcarrier

at thek SU is
D d]éh

PP — .
B NKQRT (VRGP Gy V)

(5.11)

The description of the clustering phase can be commenceefiryirg .A and A\ to be
the sets that contain all the non-assigned subcarrierssaigheed subcarriers, respectively. Fur-
thermore 3 denotes the set of all SUs add= {¢(1),..,¢(Ac¢)} to be the sets of all possible
clustering combinations whet. refers to the number of clusters whil&) € C refers to the
group of SUs inside thé” cluster. Each cluster has SUs and, hence] can be formed by

generating all the possible combinationsiofusers from SUs in the sé&. Each cluster must
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Algorithm 5.1 1A Frequency-Clustering without Fairness Consideration
1: Initialize A= {1,2,--- ,N},B={1,2,--- , K} andN = 0.
2: FindC from B.
3: n = A(1); (the first element ind).
4: while A is not emptydo

5: forall ¢(i) € C do

6: forall k € (i) do
7: Find V} andUy.
8: EvaluateP and P, using (5.10) and (5.11), respectively.
9: Let Plfn = min (Pkl?n, ng)
10: end for
11: EvaluateRy = >, .y Br (Hpy, B,)-

12: end for

13:  Findthe set’ = max > ke B (Hyy, PE,), setwy = 1Yk € c(i).
14: Moven from A to N and Set» = n + 1.

15: end while

satisfy thatc(i) # c(j) V(i # 7).

For each subcarrier, the cluster that has the maximum sterafter performing IA is se-
lected considering the power-limited and interferenodtkd regimes. For a specific subcarrier,
we determine to which regime a given SU is restricted?lf, exceedsP'r’, i.e. P, > PF,
then the power allocation for the SU is power-limited andydes the allocated powd?,fn IS
fixed to P{\". Otherwise, the power allocation is interference-limjtadd the allocated power
P,fn is fixed to P,fn. Hence, the considered allocated power in clustering dparaan be
expressed as

P, =min (P, PIY). (5.12)

Accordingly, for then!” subcarrier, the cluster selection process can be forntlrasghemati-
cally to select as
¢, =max » Ry (Hp, PL,). (5.13)

O e

The users inside this cluster are the only allowed SUs inykiem to transmit over that subcar-

rier.

The criterion of clustering is now illustrated in (5.12) aftd13). Follows, the selection
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mechanism is described. The subcarriers are sequentsdlgreed to clusters. Initially, all
the possible cluster combinatiodsare generated using the SUs in the BetTo allocate a
given subcarrier, the algorithm evaluates the aIIocatevsz@,fn using (5.12). Afterwards, the
subcarrier is allocated to the clustérthat achieves the maximum sum-rate according to (5.13),
and then this subcarrier is moved to the Aét The scheme is repeated until the allocation of
all subcarriers in order to find the selected clusters fosalticarriersX = {c},..,cy}. The

clustering procedures are summarized in Algorithm 5.1.

5.3.2 Frequency-Clustering with Fairness Consideration

With fairness consideration, the mechanism of Algorithiis modified in order to consider the
fairness among SUs. Update the definitior3ofo be the set that contains all SUs whose rates
are belowR,,;,,, and definé/ to be the set of SUs whose rates are greater if)ap. Moreover,
we defineA = {A;,.., Ak} to be the instantaneous rates for all SUs. In this method?2]}5.
and (5.13) are used for frequency-clustering. The algarisitarts by sequentially allocating
the subcarriers that are located next to the PU band and gnésivards the distant ones since
the subcarriers close to the PU bands will potentially usettansmit power even that they
have good channel conditions. Keeping those subcarrietsetend of the assignment in the
frequency clustering algorithm will make them suffer notyoftom the transmission power
limitation but also from the low diversity in choosing theeus from the set of users whose
instantaneous rate below the minimum. The subcarrierssmigreed sequentially to clusters.
Initially, the possible cluster combinations are genetatsing the SUs in the séf, where

B is assumed to contain all SUs at the beginning. ThroughaugHtocation of the different
subcarriers, if the rate of theé" SU becomes more than the minimum required ratg,, the
user will be moved form the sé to the set/. If the minimum rate constraints are satisfied
for all the users, i.eB is empty, the subcarrier can be allocated to one of the chifitat are
generated from SUs in the sit which will contain all SUs at this moment. To allocate a
given subcarrier, the algorithm initially forms all clusombinations of the SUs in the sBt
and evaluates the allocated pomléffn using (5.12). Afterwards, the subcarrier is allocated to
the clusterc;, that achieves the maximum sum-rate according to (5.18)tl@s subcarrier is
moved to\. Then, the instantaneous rat&of the SUs inc} is updated, and the SUs whose
rates are greater that the minimum required f3tg, are moved form the sétto the sel/. The
scheme is repeated until the allocation of all subcarriereray the clustersY = {cj, .., cy }.

The clustering procedures are summarized in Algorithm 5.2.
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Algorithm 5.2 1A Frequency-Clustering with Fairness Consideration
1: Initialize A= {1,2,--- ,N},B={1,2,--- K}, N =0,U = ) andA = {0,0, ..,0}.
2: while A is not emptydo
3 Find C from B.

4 n = A(1); (the first element ir4).

5: for all ¢(i) € C do

6: forall k € (i) do

7: Find V} andUy.

8: EvaluateP and P, using (5.10) and (5.11), respectively.
9: Let Plfn = min (Pkl?n, ng)
10: end for
11: EvaluateRy = >, .y B (Hpy, B,)-

12: end for

13:  Findthe set’ = max > keen B (Hyy, PE,), setwy = 1Yk € c(i).

14: Update the instantaneous rat®gor the SUsVE € ¢..

15: If Ay > Rynin, move SUK from BtolU. If Bisempty, seB ={1,2,---, K}.
16: Moven from Ato N and Seth = n + 1

17: end while

5.4 Phase II: Power Allocation Algorithm

By performing the frequency-clustering phase, the suierariare allocated to the different
clusters. Therefore, the subcarrier indicatofsare already determined from the previous phase.

Therefore, the power allocation problem can be formulatefbows

N
P2:max» > Ry (Hp,,Sp) (5.14a)
Sk n=1 kecj,
N
st ) Tr(sy) < B, Vk (5.14b)
n=1
Sk >0, Vn and Vk (5.14c¢)
N
DY QT (GRVESIVINGEY) < 1, I (5.14d)
n=1 kec},
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SinceU™"HY, V1 is considered as the effective channel and has a rank thfe sum rate in

(5.8) can be formulated using spectral decomposition into

O

Pyon(i)v? (UM HE, V
RY (HZ,., Pon(i) Zlog2 <1+ e (6)04 (n’; kk k>>, (5.15)

wherey; (U™ HY, V7) is thei'" eigenvalue o} "HY, V1. Further, we denote, (Up"HY, V})

asvy ;. Therefore, the power allocation problem can be formulatefbllows

P3: e Z > Z log, (1 + k(¢ )V’“> (5.16a)

n=1 kecj}, i=1

s.t.: ZZPM ) < P, Vk (5.16b)

n=1 i=1

P;m(i) >0, Vn andVk (5.16c¢)

ZZZQZ Pyn(0)gi (i) < Iy, Y, (5.16d)

n=1 ke&c}, 1=1

whereg? (i) is thei’” element in the diagonal of matr@? = ViHGr"Gr v,
In this context, the optimal power allocation is presenteithe next part. Then, an efficient

sub-optimal power allocation algorithm is proposed to wedilhe computational complexity of
the optimal one.

5.4.1 Optimal Power Allocation

In this part, the optimal power allocation is found. Sincelifem P3 is convex, the Lagrangian
can be written as

K N d
Z > Z log, <1 + —5 Poali)vp ) +) B (Z Z Ppon(i) — Pk> (5.17)

n=1 kec}, i=1

Z ZZZQ Pen@)gi () = Ih | = D237 Peali)y,

= n=1 kec}, i=1 n=1 k=1 i=1
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where 3;, n' and 97 are the non-negative Lagrange multipliers. The KarushrKTicker

(KKT) conditions can be described as follows

Pl >0; 8, >0; 0 >0; 9p >0 (5.18a)
N d

By (Z > Penli) - Pk> =0, Vk (5.18b)
n=1 i=1
N d

(DD Pn(i)gr() — I, | =0, VI (5.18c)

n=1 kec} =1

n

oL
~ = — +) B+ Y 7'rg( = 0. (5.18d)
aphn(l) % + Pkm( Z k Z L Ik

After rearranging (5.18d), we get

+

. 1 n2
Py (i) = -—1 > (5.19)

L K n

;nl97§z<i) + k; B M

The optimal solution of Problen#3 requires high computational complexity that grows ex-
ponentially with the number of subcarriers. Therefore, $hb-optimal power allocation is

proposed in the next part.

5.4.2 Sub-Optimal Power Allocation Algorithm

In this part, the sub-optimal power allocation is descritredugh four steps, where this method
allocates the power in a novel way by dividing Probléta into two sub-problems: power
allocation problem considering only interference constrand, then, a cap-limited waterfilling
problem considering only the power budget of SUs. In orden&ke the analysis more clear
and without loss of generality, we assume that each SU sem@lglata stream to its intended
receiver. Accordinglygy = VPGP "GP VT, Moreover, the sum rate in (5.8) can be written

as
1 _
Ok

whereh} = UMMHE, ViVeHHR, FU7. Accordingly, the power can be allocated to SUs and

subcarriers as stated in the following stages.
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Step 1: In the first step, the maximum powey"> that can be allocated to thé" user over the
n'* subcarrier is determined by ignoring the per-SU power cairds and considering
only the interference constraints. Therefore, by considesnly thel’* PU interference

constraint, the problem is reduced to

P4 max22|092 (1+ P,mh”) (5.21a)

Pkn

n=1 kec},
N
sty Y O Pagr <1, (5.21b)
n=1 kecj,
P.n, >0, Vn andVk, (5.21c)

where (™) represents the variables that are optimized under thefenégice constraint
only. By solvingP4 ;Vi € {1,2,---, L}, we obtain

Bl 1 ap? !
P, = 5.22
o {&lﬂm i ] ’ 22
where the Lagrange multiplié¥ is evaluated using (5.22) and (5.21b) as
NK
al = } | . (5.23)
o+ s ¥ A
n=1kec},
By solving P4 for every interference constraint,”>* is evaluated as
o~ L
P™* — min {P,in} . (5.24)
’ ’ =1

By applying this formula, one can guarantee that the interfee introduced to the PU
bands is below the maximum limit. This step is expressedtgcafly in Fig. 5.3.a.

Step 2: Second step tests the per-SU power constraints using thenuaspowerP"2*. If the
relationZiLV:1 B < Py is satisfied for all SUs, the optimal solution of the optintiaa
problemP3 is determined to b#,, ,, = P which is equal to the maximum power that

can be allocated to each subcarrier. Otherwise, proceée toeixt steps.

Step 3: In the third step, the power budgg} for each SU is distributed among its allocated
subcarriers subject to be lower that or equal to the poweemrppund of each user at
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each subcarrieP"?. The problem is formulated as a cap-limited waterfillingtgemm as
follows [149]

N
1 ~ -
P max Y0 S log, (14 i) (5.250)
Plen n=1 kecj, Tk
N o~
st: Y Pun< P (5.25b)
n=1
0< Py < P (5.25¢)

where]gk,n is the allocated power by solving probleRb. This problem can be solved
efficiently using a successive application of the converaiavaterfilling concept. As a

starting point, the waterfilling solution is found as [150]

~ on2]t

Bl = { - fﬂ , (5.26)
WhereJB,“z’}’nF is the allocated power by waterfilling solution for thé user at thex sub-
carrier, and{ is the waterfilling level. Thereatter, if the power allochtgy waterfilling
solution ﬁ,;"’rf is greater tharP"?, the power is readjusted 872 and the already allo-
cated power is subtracted from the total power budget. Thacgessive waterfilling is
performed over the users and subcarriers that did not exbeethaximum power;">
in the last step until reaching the iteration in whiélqn doesn't exceed"** for any user
and subcatrrier. This step is described graphically in Fig.lb

Step 4: In the last step, the allocated power per subcalﬂgx found by solvingP5 is less
than or equal’"?*. Therefore, some of the allocated povxfécfn doesn’t not reach the
maximum allowed power. Consequently, the system loses sdrttee allowed power
resources as the interference constraint is not satisfigdeguality which decreases the
capacity of cognitive radio system. Therefore, some powarke moved from one sub-
carrier to another in order to enhance system throughpus. Cém be achieved by updat-
ing the maximum power that can be allocated to each subcdifig* depending on the

residual interferencél,, which can be calculated as follows

N
In=1,-> "> P.g. (5.27)

n=1 kec},
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Assuming thatB, is the set of subcarriers that reach the maximum allowed pavee
ﬁk,n = PP Vn € By, then, Pl Vn € B; can be updated by applying the equations
(5.22)-(5.24) on the subcarriers in the gatwith the updated interference constraints,

which can be evaluated as

I =Th+ > > Pa.gr (5.28)

neB) kecy,

Finally, the procedures of the cap-limited waterfillingtthere used to solve problefu
is re-performed to find the final solutiaf,,, = P,,. At this point, the solutiorP, is
approaching the optimal solution and satisfying the imt@mice constraints with equality
as well as guaranteeing that the total power budget conttrare satisfied. Fig. 5.3.c

summarizes the procedures of this step graphically.

The flowcharts of the proposed power allocation algorithgiven in Fig. 5.4 and described in
Algorithm 5.3.

Algorithm 5.3 Sub-Optimal Power Allocation Algorithm

vl e {1,---, L}, Find P,,,(l) using (5.22) and (5.23).
Vn andvk, EvaluateP,"> = min {ﬁk,n(l)};.
if SN | P Py Vk then
Let Py, = P"®and stop the algorithm.
end if
Vn andVk, Execute the cap-limited waterfilling under the per-userst@int P, and the
maximum power that can be allocated to each subcaHjgi and find the set3; where

D _ pmax
Pk7n — Pk,n .

: Evaluate the residual interferenép using (5.27) and the updated interference constraints

Il using (5.28).

: Perform Steps (1-2) to updatg’:™.

. Vn andVk, Execute the cap-limited waterfilling under the per-userstint P, and the

updated maximum power that can be allocated to each subcB[if* and setP,,, = 15,%.
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Figure 5.3: Graphical representation of the proposed power allocatigorithm.

5.5 Computational Complexity Analysis

In this section, we present the computational analysis efaptimal solution and the pro-

posed algorithm. In terms of complexity, the optimal sauatthat is formulated in Problem
N

P1 needs to iterat g times to exhaust all the cluster combinations of SUs, whiege t
power allocation of Problen®3 is performed and IA solution is computed for each combi-
nation. The complexity of IA solution is dependent on theoalipm that is used to find 1A
solution. As an example, minimum leakage interference (Mbéthod requires a complexity
of K.T.[O (M}) + O (M) + K.T. [2 (K — 1) (O (MgM3) + O (MrM%))], whereT is the
number of iterations in the reciprocity channel [151]. Maeagearch work in the literature tack-
led the problem of designing low complexity solutions fordéin [20,152,153] and references
therein. The design of such solutions is out of the scopeisfghper. Therefore, we denote

the complexity of finding IA solution by'. Accordingly, the computational complexity of the
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Figure 5.4: Flowchart of the sub-optimal power loading algorithm
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optimal scheme is
N
K - 3
0 <K> (14 (Kan)’) |

where K dN is the number of the variables that needed to be optimizedube interior point

optimization technique.

Since the complexity of the optimal scheme is very hard tordffthe sub-optimal approach

is proposed through two phases as discussed before. Ineitpgeincy-clustering algorithm, a

maximum of & IA solutions are found for every subcarrier. Accordinghg tomplexity of

o<<g>.N.T).

Referring to the sub-optimal power allocation in Algoritfn8, step 1 has a waterfilling
like computational complexity ab (K'dN log (KdN)) [154,155]. Step 1 should be performed
for L interference constraints, hence the complexity of step @ (A dN log (KdN)) <
O (KLKdNlog (KdN)). Steps 6 and 9 in the algorithm execute the cap-limited ititey
for all SUs with a complexity of? (KdN log (KdN)). Accordingly, the complexity of steps
6 and 9 isO (KKdNlog (KdN)) < O (KLKdN log (KdN)). Step 8 has a complexity of
O (|B)|log|B|) < O (KLKdN log (KdN)) considering all SUs. As a result of that and con-
sidering the previous steps, the computational complefithe sub-optimal power allocation
algorithm is lower that© (K LK dN log (KdN)).

frequency-clustering phase is

Correspondently, the complexity of the proposed sub-agtresource allocation algorithm
through the two phases is lower th@r‘( (i) -N-YT + KLKdN log (f(dN)) , Which is much

lower than the computational complexity of the optimal $iolo.

5.6 Simulation Setup and Results

In our simulation, we investigate the performance of |A loh®source management algorithms
in MIMO cognitive radio systems. Two active PU bands are assiwithiV; = W, = 10
MHz, wherel}, = I7,. Moreover, the non active band is located between the abavels
and has 10 MHz of bandwidth. It is assumed that the cognitideorsystem ha#& SUs with
My = Mpr = 2 antennas at each SU node and a single antenna at each PU iedeloSed-
form solution of IA is applied. The value of noise variant is assumed to b&)~. Channel

realizations have been drawn from independent and idéigtaiatributed Gaussian distribution
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with zero mean and unit variance. All the results have beersged ovet000 iterations. CVX
toolbox is used to obtain the optimal solution of the optiatian problems [73]. Obtaining
the optimal solution of Problen®1, which is N P-hard problem, is very hard even for small
number of subcarriers and users. For the purpose of perfm@neomparison, the following
algorithms are considered in the simulation:

1. 1A Optimal : This scheme is used when the cognitive radio system iskfieasivhere
K = 3. Therefore, frequency-clustering is not required. In ttase, optimal power

distribution is performed as in (5.19).

2. IA Suboptimal: This scheme is used when the cognitive radio system istfieasvhere
K = 3. Hence, frequency-clustering is not required. In this casd-optimal power

distribution using Algorithm 5.3 is performed.

3. IA FC+Optimal : This scheme is used when the cognitive radio system is aaeeld,
where K > 3. In this case, frequency-clustering using Algorithm 5.1 éime optimal
power distribution as in (5.19) are performed. The word &8s is added between a
parenthesis when frequency-clustering with fairness idenation is considered using
Algorithm 5.2.

4. 1A FC+Suboptimal: This scheme is used when the cognitive radio system isaaeeld,
where K > 3. In this case, frequency-clustering using Algorithm 5.4 &ime power
allocation based on Algorithm 5.3 are performed. The woridnéas is added between
a parenthesis when frequency-clustering with fairnessidenation is considered using
Algorithm 5.2.

5. IA RandFC+Optimal : This scheme is used when the cognitive radio system is over-
loaded, wherd{ > 3. In this case, random frequency-clustering and the optpoaler

distribution are performed.

6. CR-FDMA: In this scheme, the different radio resources are didedboptimally using

FDMA multiple access technique as in [29].

In our simulation, OFDM and FBMC physical layers are consede Next, a short description
of them is given.
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Figure 5.5: Block diagrams of OFDM and FBMC systems.

5.6.1 OFDM Physical Layer

A general block diagram of an OFDM system can be found in Fi§. Firstly, the bits are

mapped into complex symbols. Then, the time domain sampkes @FDM symbol are gener-
ated using the inverse discrete Fourier transform (IDFTie&hat, the cyclic prefix is added to
form the transmitted signal. Assume tlg#t is the PSD of thex! subcarrier. In OFDM system
with rectangular pulse of length, = N + C, whereC'is the length of the cyclic prefixp™(f)

can be written as follows
Ts—1
o™ (f) = P" (TS +2 Z (Ts — ) cos (27Tf7“)> : (5.29)
r=1
whereP™ is the total transmit power emitted by th& subcarrier.

5.6.2 FBMC Physical Layer

In FBMC, the transmultiplexer configuration is adopted gdiine synthesis filter bank at the
transmitter side and the analysis filter banks at the receivke as described in Fig. 5.5
[128,129]. In FBMC systems, the use of critically sample@fibanks is problematic, since the
aliasing effects would make it difficult to compensate inigetions of the channel by process-
ing the sub-channel signals while the FBMC with the offseddpature amplitude modulation
(OQAM) OQAM/FBMC symbols can be formed by modulating eacbcarrier with a stag-
gered QAM. The basic idea of FBMC is to transmit real-valugaisols instead of transmitting
complex valued ones. Due to this time staggering of the @msprand quadrature components

of the symbols, orthogonality is achieved between adjasgintarriers.

The synthesized signal burst is therefore a composite dipleisubchannel signals. Each

signal consists of a linear combination of time-shifted (hwltiples of 7, /2) and overlapping
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impulse responses of the prototype filter, weighted by tBpeetive symbol values [129]. Note
that each sub-carrier is modulated with an OQAM. OQAM irsershift of half the symbol
period between the real and the imaginary part of the congdéx symbol [129].

In FBMC systems, if the prototype filter with coefficieni$i| with i = 0,--- Y — 1
is used, wher&” = Q;N and(; is overlapping factor which represents the length of each
polyphase components and under the assumption of the ewvenetyy of prototype coefficients
around the(@)th coefficient with zero coefficient in the beginning, the FBMSDPcan be
expressed aé” (f) = |B, (f)|°, where|B, (f)] is the frequency response of the prototype

filter and can be written as [129]

Y

|B, (f)| =blY/2] + 22: [(Y/2) —r]cos (2nfr). (5.30)

5.6.3 Results and Discussions

The simulation results are divided into three cases: In tisedase, a feasible MIMO-OFDM
cognitive radio system witll’ = 3 SUs is assumed while an overloaded system is assumed in
the second case withl = 12 SUs. The third case compares the performance of the OFDM and

FBMC physical layers systems.

Case I: Feasible MIMO-OFDM cognitive radio system

In this case, a MIMO-OFDM based cognitive radio system with= 3 SUs andN = 64 is
assumed. In this case, frequency-clustering is not redjgiece the cognitive radio system

achieves IA feasibility conditions.

Fig. 5.6 presents the average sum-rate against the irgedethresholds when the per-SU
power budget is set to b8, = 15 dBm. In general, for all scenarios, the average sum-rate
increases as the interference threshold levels increase sach SU has more flexibility to allo-
cate more power on its subcarriers. It can be observedAr@ptimal algorithm achieves higher
sum-rate gain compared @R-FDMA algorithm since IA benefits from the available DoF bet-
ter than FDMA. It is further shown thaf Suboptimal algorithm presents very close sum-rate
performance to théA optimal with less complexity, which reveals the efficiency of the sub
optimal power allocation algorithm. Furthermore, the state gap between IA based resource

allocation algorithms an@R-FDMA increases with the increase of interference threshold unti
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Figure 5.6: Achieved sum-rate vs. allowed interference threshold wkiea 3, P, = 15 dBm
andN = 64.

a certain interference threshold value. After this valbhe gap remains constant as the cognitive
radio system behaves like a non-cognitive radio systemeunerinterference constraint has no

effect on the optimization problem.

Fig. 5.7 plots the instantaneous data rate for a given usartowne forlA Optimal and
|A Suboptimal algorithms compared t6R-FDMA when [}, = I3 = —30 dBm andP;, = 15
dBm. It is noted from the figure that the instantaneous ratesuate along the time. I1GR-
FDMA, the high values mean that this user is assigned a largererushbubcarriers compared
to others, while low values mean that other users have graataber of subcarriers causing
the deep rate. However, IA based resource allocation allioa/8 SUs to share all the available
subcarriers, which leads to better instantaneous rate a@dpoCR-FDMA. The fluctuations
in IA curves are due to the channel quality. Assuming thatrate target per SU i®,,,;, =
200 bits per OFDM symbol, It is noted thia& Optimal andlA Suboptimal algorithms keep the
instantaneous rate mostly above our target.

Fig. 5.8 presents the outage sum-rate probability of thierdifit algorithms wher, =
10 dBm, where the minimum rate for each SU is set td?hg, = 160 bits per OFDM symbol.
Generally, outage probability decreases as the interferennstraint increases since the abil-
ity of the algorithms to give the minimum instantaneous fatethe different users increases.

Furthermore, the outage probability I#f optimal scheme is very close 1@ Optimal one, and
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Figure 5.7: Achieved instantaneous rate whéh= 3, P, = 15 dBm, I}, = I2 = —30 dBm
andN = 64.
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Figure 5.8: Outage probability versus interference threshokds: 3, P, = 10 dBm, N = 64
andR,,;, = 160 bits/symbol.

both are much lower than that GR-FDMA algorithm. It is clearly observed from Fig. 5.7 and

Fig. 5.8 that IA based algorithms are able to achieve a hegbtof fairness among the different
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users since all the SUs share the available subcarriers.

Case II: Overloaded MIMO-OFDM cognitive radio system

In this case, a MIMO-OFDM based cognitive radio system issatgred withK = 12 SUs and
N = 128. Since this system is overloaded, frequency-clusteriragelshould be performed
before power allocation phase. For fairness considerat@minimum rate for each SU is set
to beR,,;, = 150 bits per OFDM symbol.

20 T T T T T T T T T

18t %= i

16 = .

=

B
T
1

[uN
N
T

<

[y
o
T

Sum-Rate [bits/sec/Hz]

———TA FC+Optimal
=———TIA FC+Suboptimal
——1IA FC+Optimal (Fairness)
= p = IA FC+Suboptimal (Fairness) |
—3—IA RandFC+Optimal
—6— CR-FDMA

2 I I I I I I I I I
-40 -35 -30 -25 -20 -15 -10 -5 0 5 10

1, = I3, (dBm)

Figure 5.9: Achieved sum-rate versus allowed interference threshblen® = 12, P, = 0
dBm andN = 128.

We first show the impact of the interference threshold on tlezame sum-rate when the
per-SU power budget is set to @& = 0 dBm, as shown in Fig. 5.9. In general, for all
resource allocation methods, the average sum rate insraaghe interference threshold levels
increase since each SU has more flexibility to allocate moveep on its subcarriers. It can be
observed also th&f FC+ Suboptimal algorithm strictly matches the corresponding curvelgtof
FC+Optimal, which reveals the efficiency of the sub-optimal algorithhtan be observed that
A FC+Optimal andlA FC+ Suboptimal algorithms achieves higher sum rate in compared with
CR-FDMA algorithm. Furthermore, the sum rate increases with theease of interference
threshold until a certain interference threshold valueteAthis value, the sum rate remains

constant as the cognitive radio behaves like a non-cogmagio system where the interference
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constraint has no effect on the optimization problem. In ioterference threshold values,
the algorithms with fairness perform very close to thoséaut fairness consideration as the
fairness constraint can not be achieved with this low ieterfice threshold value. Accordingly,
the algorithm acts as there is no fairness constraint. Adfteertain interference constraint
value (-20 dBm in the figure), the fairness constraint canatesfeed for the users. The loss
in the sum rate is because of the activation of the fairnesstaaint. It is noted in this figure
that frequency-clustering is very important for performid in overloaded networks sindé&

RandFC+ Optimal presents very bad performance compared to all the otherdsryed curves.

25 T T T T T T T
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= p = IA FC+Suboptimal (Fairness)

v T
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Figure 5.10: Achieved sum-rate versus per-SU power budget wiiea 12, I}, = I3 = —20
dBm andN = 128.

The average sum-rate versus per-SU power constraint iemezsin Fig. 5.10 where
I, = I} = —20 dBm. The sum-rate of the cognitive radio systems increasekeaper-SU
power budget increases up to certain power value, aftesmdel sum-rate remains constant
because the cognitive radio system reaches to the maximumrbat can be allocated under
the interference threshold. The sum-rate of IA based resoailtocation algorithms presents
better performance tha®R-FDMA curve, and the gap between them increases with the increase
of the power constraints, which shows the efficiency of IA filizing the available resources.

The behavior of the algorithms in this figure can be descrdmabrding to three regions
1. WhenP, < —18 dBm: IA FC+Optimal with and without fairness present the best sum-
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rate performance among the algorithms. It is noted thatubeoptimal power allocation
curves ] A FC+ Suboptimal with and without fairness, cause small sum-rate loss coatpar

to the optimal ones. This regime is considered very confined.

2. When—18 < P, < 0 dBm: IA FC+Optimal andIA FC+Suboptimal curves are very
close. In this regime, the algorithms with fairness perfaeny close to those without
fairness consideration as the fairness constraint canenathbieved with this low power

budget value. Accordingly, the algorithm acts as there ifairaess constraint.

3. WhenP, > 0 dBm: In this regime]A FC+Optimal andlA FC+ Suboptimal curves are
very close. It is noted in this regime that the curves of fassconsideration present
small sum-rate loss compared to the non-fairness curves #ie fairness constraint can

be satisfied for the users.

In all the three cases, the behaviotARandFC+ Optimal algorithm is very poor since frequency-
clustering is performed randomly. This reveals the impuaréaof using frequency-clustering

algorithms.
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Figure 5.11: Outage probability versus interference thresholds, wkiea 12, P, = 0 dBm,
N =128 andR,,.;,, = 150 bits/symbol.

Fig. 5.11 presents the outage probability of the differégnd@athms against the interference
threshold when the per-SU power budget is set t&’pe- 0 dBm andR,,,;,, = 150 bits/symbol.
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Generally, the outage probability decreases with the aszef interference constraint as the
algorithms become more able to support the instantanetaiforathe different users. Further-
more, the outage probability d& FC+ Suboptimal scheme is very close té FC+Optimal one,
and both are much lower than that@R-FDMA scheme. It is clearly observed from this figure
that IA based resource allocation algorithms are able teeaela high-level of fairness among
the different users. The best outage probability is aclieas expected, by the algorithms of

fairness consideration. Agailhj RandFC+ Optimal exhibits the worst performance compared
to all simulated curves.

260

I I I
+ —4—IA FC+Optimal
2401 ——6—IA FC+Optimal (Fairness)
—e— CR-FDMA

220 +
200 1
)
<
é 18
= 160 D
; ‘ ? I3
~a
£ 140} $ -l- $ . -
<]
51
=
g
E 120 > S
~ 1004 > 3

>
80 ?
C
60 &
C
40 I I I I I I I I I
10 20 30 40 50 60 70 80 90 100

Index Sample

Figure 5.12: Achieved instantaneous rate whah= 12, P, = 0 dBm, I}, = I3 = —10 dBm,
N =128 andR,,.;,, = 150 bits/symbol.

Fig. 5.12 plots the instantaneous rate for a given user aver whenl}, = I = —10
dBm, P, = 0 dBm andR,,;,, = 150 bits per OFDM symbol. It is noted from the figure that the
instantaneous rate fluctuates along the time. The high sahean that this user is assigned a
larger number of subcarriers compared to others, while lalwes mean that other users have
greater number of subcarriers causing the deep rate. TherdA based resource allocation
exhibits better instantaneous rate compare@ReFDMA algorithm since the fluctuations of
CR-FDMA algorithm is stronger and changes dramatically, which esudgeep rate degradation
at some time samples. Moreoviek FC+Optimal scheme with fairness consideration presents
smooth instantaneous rate compared to others, which mieaithé users get fair allocation of
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the subcarriers. ClearlyA FC+Optimal method with fairness always achieves better rate than

the minimum unlike the other compared methods.
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Figure 5.13: Achieved sum-rate versus number of SUs wher- 128 for different interference
threshold and per-SU power values.

Fig. 5.13 presents the average sum-rate versus the num®elsdbr different interference
threshold and per-SU power values. Generally, the suminateases with the number of SUs
due to the increase of the multiuser diversity. Moreoveh#ed resource allocation algorithms
exploit much more gain from the increase of the multiuseeriity thanCR-FDMA scheme
since IA based resource allocation algorithms allow theuseshare the available resources.
It is noted from this figure tha€R-FDMA scheme is more restricted to the interference limit,
where increasing the per-SU power from 0 dBm to 10 dBmi}at= 72, = —30 dBm slightly
improves the sum-rate while increasing the interferenest irom -30 dBm to -20 dBm at
P, = 0 dBm improves the sum-rate much more than modifying the pdweget. However,
the situation in 1A curves is different, where the systemd§gs more from increasing the per-

SU power budget.

Case lll: Comparison between OFDM and FBMC physical Layers

In this part, we compare between OFDM and FBMC physical eyeMIMO cognitive radio

systems. Note that in all the figures, tRBMC simulated results are denoted @gsh curves,
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Figure 5.14: Achieved sum-rate dfA Optimal versus power budget and interference threshold
for OFDM and FBMC based physical layers wh&n= 3, I, = I3 andN = 64.

while theOFDM simulated results are denoted $ylid curves.

Fig. 5.14a and Fig. 5.14b present the average sum-rat& Optimal against the inter-
ference thresholds and power budget constrains for OFDM-&MC physical layers, respec-
tively, whenK = 3 andN = 64. Itis noted for the two physical layers cases that by fixing on
of the constraints, the achieved capacity increases watbtiner up. This can be verified by the
increase of the cognitive radio system ability to allocateetransmission powers for all users
on the subcarriers. However, FBMC based cognitive radieesel higher sum-rate compared
to OFDM based cognitive radio at fixed interference and povaéres. This results from the
small sidelobes of FBMC systems and the spectrum efficiesg&yih OFDM due to the use of

the cyclic prefix.

Fig. 5.15 presents the impact of interference thresholchersum-rate when OFDM and
FBMC physical layers are used in feasible cognitive radgteays withK = 3, P, = 15 dBm
andN = 64. In general, as the interference threshold levels incrg¢hseestrictions on power
allocation decrease and, consequentially, the sum-rategfitive radio systems increases. It
can be observed that the interference constraint has nfext eh the performance of OFDM
systems rather than FBMC systems due to the sidelobes ofcaaeh Therefore, FBMC based
IA algorithms achieve higher sum-rate gain compared to OFakEd IA algorithms. When the
interference constraint is flexible as in non cognitivesi@avironment, both physical layers have
identical performance. The same conclusion can be extréicm Fig. 5.16 for an overloaded
system withK' = 9, P, = 0 dBm andN = 128.
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Figure 5.15: Achieved sum-rate versus allowed interference threstwl®+DM and FBMC
based physical layers whét = 3, P, = 15 dBm andN = 64.
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Figure 5.16: Achieved sum-rate versus allowed interference threshawl®©+DM and FBMC
based physical wheR = 9, P, = 0 dBm andN = 128.

The presented performance evaluation proves that 1A bassdirce management has an
essential responsibility in increasing the spectral &fficy of multicarrier MIMO cognitive

radio systems.
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6 ‘ CONCLUSIONS AND FUTURE WORK

In this chapter, we summarize the conclusions that we hawewssd throughout the thesis in

addition to future work tracks.

6.1 Conclusions

In this dissertation, we deal with three important aspdwsare related to IA id-user MIMO
interference channels in order to improve the spectralieffay of wireless communications.
In the first aspect, we design the precoders and decoders wditly Min-Maxing strategy in
order to improve the spectral efficiency Btuser MIMO interference channels. Increasing the
practical feasibility of MIMO IA systems under real-worlengronments is the target of the
second aspect. The third aspect exploits IA as a base ofreesallocation in MIMO cognitive

radio systems aiming at increasing their spectral effigienc

In Chapter 3, we focus on designing IA matrices that imprévedum-rate performance
of generalK-user MIMO interference channels by proposing a new disteith algorithm using
Min-Maxing strategy. The proposed algorithm is formulageda novel optimization problem
that aims at maximizing the power of the desired signal wkeleping the minimum leakage in-
terference obtained from MLI method. Min-Maxing method @ntled by convex optimization
after reformulating and relaxing the optimization probleno a standard semidefinite program-
ming approximation. Furthermore, the convergence of threshiod is established, and a sim-
plified version of the optimal Min-Maxing method is propoded rank-deficient interference
channels. The proposed algorithm is extendel toser multicarrier interference channels. We
evaluate the proposed scheme by numerical simulation uhose types of<-user MIMO in-
terference channels: proper, marginal proper, and improperference channels. Unlike the
other algorithms, simulation results show that Min-Maxieghnique achieves the best sum-
rate performance compared to the other approaches at highw8Nes in various interference

channels, and it has a very close performance to the bestratenperformance at low SNR
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regime. The simplified technique presents identical suimparformance to the optimal one

when the interference channel is rank-deficient with lesspiexity.

In Chapter 4, we consider improving the practical feadipitif IA under realistic chan-
nels. We propose to apply transmit antenna selection in VHOEDM IA interference chan-
nels through bulk selection and per-subcarrier seleclibnee selection criteria are considered:
Max-SR, Min-ER, and Min-EG. Max-SR criterion is used to iroye the sum-rate performance
while Min-ER and Min-EG are used to enhance the error-ratopaance. To overcome the
power unbalancing that occurs in per-subcarrier selecticonstrained per-subcarrier selection
is developed to attain power balancing among the antenneaobf node. Furthermore, a sub-
optimal antenna selection algorithm is proposed to redoeedmputational complexity of the
optimal selection. The sub-optimal algorithm reduces tramgexity fromQO (N(%T)K> re-
quired in the exhaustive search(tb(NK(]]‘éf)). In order to examine the proposed technique
under real circumstances, we implement IA testbed to doftexasured channels. Moreover,
deterministic channels, that are extracted from ray-tigacare also used in performance evalu-
ation. In deterministic and measured channels, antenraaaémn within each node is fixed to

A/2in all cases. The following results are outlined:

« In analytical channels (independent channels and subrgrlA without antenna selec-
tion exhibits the promised results in the literature, whiérgurpasses the performance
of TDMA multiple access technique and achieves the idealdD®foreover, our results
state that unconstrained and constrained per-subcagtemt®n matches each other, and
both achieve high gain in sum-rate and error-rate perfooesuigompared to 1A without
antenna selection. However, bulk selection does not peop&tformance improvement
when it is used for this type of channels since the subcarhave independent fading

and, therefore, it is impossible to select one antenna gebseifor all subcarriers.

* In measured and deterministic channels, IA fails to preti®nideal results due to the
spatial correlation between channels, where TDMA outpar®lA in this kind of chan-
nels. We show that the sum-rate of MIMO-OFDM IA with bulk amt@ selection and
A/2 separation of antennas within each node outperforms stemsfahe system with-
out antenna selection and 8eparated antennas. Furthermore, the sub-optimal dlgorit
achieves close performance to bulk selection with less texitp even the selection is
performed only for one subcarrier. It is noted that conetrdiper-subcarrier selection

causes a high rate loss compared to the unconstrained Ipeairsier selection due to the
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high correlation between channels in indoor environmentgerefore, bulk selection is

more suitable to be used in such channels.

We conclude that antenna selection can improve the perfaenaf MIMO-OFDM IA systems,

and, hence, increases the practical feasibility of IA syste

In Chapter 5, we deal with IA in MIMO cognitive radio systerhgt are coexisted with pri-
mary systems. We perform efficient resource allocation erloaded MIMO cognitive radio
systems based on IA without affecting the QoS of the primastesn. Moreover, we con-
sider in problem formulation the power budget of the SUs al$ agethe throughput fairness
among the SUs. This problem is formulated as a mixed-intpgaislem which has a high
computational complexity. Therefore, an efficient subkopt algorithm is proposed to reduce
the computational complexity of the optimal problem thrbugio phases. In the first phase,
frequency-clustering is performed to overcome IA feagipitonditions where one group of
a feasible number of SUs is assigned to each subcarrierd=yirgy channel quality, per-user
power budget, and the induced interference to the PU bandguéncy-clustering phase con-
siders achieving a high degree of fairness among the SUselsdcond phase, the power is
distributed among subcarriers considering the induceztfertence limits. Sub-optimal power
allocation algorithm is also proposed to reduce the coniyiex the optimal power allocation.

Performing resource allocation using frequency-clusteand the sub-optimal power alloca-

N
: : K _ L .
tion reduces the complexity from ([_() - (\If - (KdN)3) required in the optimal resource

allocation scheme t® ((i) -N-Y + KLKdN log (f(dN)). The following results are out-

lined:

* |A based resource management achieves a consideral#asedn the spectral efficiency

of MIMO cognitive radio systems compared to orthogonal ipldtaccess techniques.

* The sup-optimal power allocation algorithm successes¢ggnt close performance to

the optimal power allocation algorithm with fewer compuidaal complexity.

* In feasible cognitive radio scenarios, outage probatslitd instantaneous rate curves re-
veal that IA can achieve a high degree of fairness among tlses8ide 1A allows the SUs
to share the available resources in the system, where akk&tsunicate simultaneously

using the same resources.
* In overloaded cognitive radio scenarios, frequencyteliisg is a necessity to achieve
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IA feasibility conditions on subcarriers. By comparing thehieved sum-rate of the
frequency-clustering with and without applying the fasaeonstraints, it is noted that
the frequency-clustering with fairness can maintain thenéss between the SUs with
small sum-rate loss compared to the scheme without faicwssderation. This result is

also observed from the outage probability curves.

* FBMC physical layer achieves higher performance than OFide FBMC has small

sidelobes and OFDM requires cyclic prefix insertion.

We conclude that IA based resource management is a noveligeehthat is able to achieve a

considerable spectral efficiency improvement in MIMO cadigriradio systems.

6.2 Future Work

In this section, we present some important future reseairefctobns on IA in the following

listed points.

» K-user interference channels are only considered througdigsertation. Recent works
on IA in cellular systems have appeared as in [156, 157]. 8fbeg, extension to cellular
systems is a promising future direction for this work, wheoasidering the effect of

cellular system complexities such as scheduling and extentce is a challenge.

» Through this work, the global CSl is assumed to be perfdaitywn, where it is an unre-
alistic assumption. Recently, some research works were ofoorder to evaluate 1A sys-
tems with imperfect CSI. In [158], the performance of IA withperfect channel knowl-
edge was studied. Moreover, blind IA schemes without bo¢hGBI at the transmitters
and the receivers were studied in [159]. In [160], the aglzoralyzed the performance
of IA with CSI feedback using a limited number of bits. Thuspmn investigation for
the proposed schemes in this dissertation with imperfaig CSI will be an interesting

topic for future investigation.

* In chapter 5, the resource management is performed in aatieetl way. Distributed
resource allocation algorithm is of great interest to besoled in the future. Moreover,
considering energy-efficiency resource allocation is ajds extension to the proposed

algorithm.
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