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Abstract 

The complexity of our daily life constantly increases. As a result, we are performing two 

or even more tasks simultaneously, we deal with complex demands and we make decisions 

in situations that are highly influenced by additional stimuli. At the same time, our society 

is rapidly aging and thus problems in handling these situations become more and more 

apparent.  

Therefore, the thesis at hand considers the influence of additional demands, task difficulty 

and the process of aging on cognitive task performance on a behavioral but also neurophys-

iological level. The three experiments comprised in the present thesis systematically inves-

tigate the performance of a broad variety of cognitive tasks from simple reaction time tasks 

to dichotomous choice and double inhibition tasks with additional mnemonic components, 

but also a more applied gambling task while simultaneously performing different motor 

demands. The neurophysiological results highlight a facilitating effect of additionally per-

formed motor demands. Regarding the behavioral findings, significant effects of the addi-

tional motor demands were identified only in the most complex cognitive task - the gam-

bling task of the third experiment. Here, participants showed a more disadvantageous be-

havior with increasing motor demands. Considering the influence of cognitive task diffi-

culty, the second experiment impressively highlights a linear increase in response time with 

increasing cognitive task difficulty / complexity. Furthermore, age-related differences in 

cognitive task performance were identified under both single- and dual-task conditions. 

The present results are discussed in the context of information processing, executive func-

tions, decision making and attention but also with regard to the process of aging. Based on 

the findings at hand, the increasing complexity of our daily life and thus the numerous 

aspects that affect our mind positively but also negatively, further studies should consider 

the present topics in a more applied context. 
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1. Introduction 

Today, we sit in bars with friends and drink a glass of wine but at the same time, we write 

emails, we call our partner, we surf on Facebook, we send pictures on WhatsApp or we 

post messages on twitter. This situation represents only one - out of numerous daily situa-

tions - in which we are simultaneously confronted with multiple demands. Based on tech-

nical innovations, social pressure but also our own expectations, the complexity of our daily 

life constantly increases. Although we are able to successfully decode complex images in 

100 ms (Rousselet, Thorpe, & Fabre-Thorpe, 2004), and store upwards of 109 bits of infor-

mation over our lifetime (Von Neumann, 1958) - which is more than 50,000 times the text 

contained in the US Library of Congress - processing multiple demands is severely capacity 

limited and adversely affected by numerous variables such as task difficulty or the process 

of aging. To get a better understanding of humans’ ability of handling these situations, as 

well as the associated interferences, numerous previous studies out of the field of dual-task 

investigated both cerebral processes (e.g. Herath, Klingberg, Young, Amunts, & Roland, 

2001; Jiang, 2004; Schubert & Szameitat, 2003; Sigman & Dehaene, 2008; Szameitat, 

Schubert, Müller, & Von Cramon, 2002) as well as humans’ behavior (e.g. Karatekin, 

Couperus, & Marcus, 2004; Sala, Baddeley, Papagno, & Spinnler, 1995), since over 100 

years (e.g. Solomon & Stein, 1896). Here, within standardized experiments, two assumed 

competitive tasks are presented and selected parameters (e.g. response-time, neural activ-

ity) are used to quantify the effect of simultaneously performing two or even more tasks, 

compared to single-task requirements or other dual-task situations.  

Within the present work, dual-task demands are systematically increased by primary and 

secondary task-difficulty. In this context, simple reaction tasks, basal but also more applied 

decision tasks are presented while participants are faced with additional motor demands. 

The first experiment combines basal decision tasks with different motor conditions. Using 

electrophysiological methods, this experiment primarily focus on the underlying mecha-

nisms. The second experiment investigates the effect of cognitive task difficulty from sim-

ple reaction tasks to dichotomous choice and double inhibition tasks with additional mne-

monic component from a behavioral point of view. Furthermore, the study aims to investi-

gate the effects of additional motor demands as well as the process of aging. In contrast to 

the first two studies - which comprise very basal decision-making tasks - the third experi-

ment investigates decision making on a more applied level. Here, participants are asked to 

perform a gambling task under different motor demands. 
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As it became obvious during the first paragraph, the present thesis comprises three major 

topics, highly relevant in this day and age: the effects of additional demands, task difficulty 

/ complexity and the process of aging. Along with the relevance of task difficulty / com-

plexity and additional demands, the necessity of investigating age-related differences is 

frequently discussed in scientific, political but also social contexts. Considering the pro-

portion of older adults - over the age of 65 years - of the entire population of Germany, the 

number increased from 15% in 1991, to 21.1% in 2015 and is constantly growing (Statista, 

2017). In this context, the increasing complexity of daily situations again plays a highly 

relevant role. While previous age-related studies pointed out the problem of talking while 

walking and thus the increasing risk of falling in the elderly (Lundin-Olsson, Nyberg, & 

Gustafson, 1997; Verghese et al., 2007), demands of everyday life - with wich older people 

had to deal with - are much higher. Here, a simple trip to the next capital state requires the 

ability of handling computational systems and technical innovations while simultaneously 

concentrate on the traffic (while driving a car) or keep the balance (while standing in the 

railway).  

Based on its relevance as well as previous findings, the present thesis address the following 

hypothesis, respectively: 

 

- Additional demands as well as increasing task difficulty are reflected in differences of 

the event-related potentials P2/200 & P3/300. 

- Additional demands as well as increased task difficulty lead to a reduction in cognitive 

task performance. 

- Dual-task cost increases during the process of aging. 

 

Before new evidence will be provided - across the three studies comprised in this thesis - 

previous findings as well as existing gaps in the research of relevant topics will be focused 

in detail during the theoretical background. 

 

2. Theoretical background 

The experiments comprised in the present work can be summarized under the topics of 

information processing, executive functions, decision making, dual-task and electroen-

cephalography. Therefore, the present chapter of the theoretical background delves into 

these subjects by considering relevant models, existing theories, behavioral results as well 
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as individual differences. Furthermore, each chapter includes previous findings of the un-

derlying mechanisms. Although the manuscript does not focus on an imaging level, these 

findings were supplemented to ensure a comprehensive insight into the topics. 

2.1. Information processing 

We are faced by millions of bits of sensory perceptions every day. Processing this infor-

mation is one of the major fields of interest in cognitive sciences. In 1958, Broadbent de-

scribed a first model named ‘filter model of attention’, which aimed to provide a better 

understanding of humans’ information processing. The model is based on the idea that the 

brain retains information in a temporary sensory storage. Furthermore, the author suggested 

that this information, will be lost unless it is selected/filtered via attentional processes 

(Birnboim, 2003). While Broadbent argued for an early process of filtering, later models 

proposed the opposite. For example, Deutsch and Deutsch (1963) suggested that the filter-

ing process occurred at some point in the memory search, decision and response stages, 

where all information is analyzed automatically not during the perception or feature extrac-

tion stage. In this context, another model was suggested by Treisman (1960). Within his 

experiments, participants were asked to ignore whatever they hear in one ear. The results 

showed an increased error rate only initially after changing the ear that should be ignored. 

Based on his findings, Treisman (1960, 1964) suggested that the filter has a limited capacity 

that could be allocated by the subject to the various input channels rather than acting as an 

all-or-none barrier. Furthermore, the author described information processing as being al-

located to various channels and thus attenuated to degrees controlled by the subject himself 

(Schneider & Shiffrin, 1977, for review). Within a further paradigm introduced by Stern-

berg, participants had to decide whether a probe digit was included in a set of characters 

(typically 1-6 in number). Performing the task, participants generally showed a linear in-

crease in reaction time to the probe digit with an increasing number of items in the memory 

set. Sternberg interpreted the results as a serial and exhaustive search through the memory 

set, which increased in time by increasing the number of items (Sternberg, 1966; Sternberg, 

1975).  

The most widely used model of information processing was introduced by Atkinson and 

Shiffrin (1968). Their ‘stage theory model’ comprises a cognitive path for transferring in-

formation from temporary to long-term memory storage (see also Figure 1). Furthermore, 

the authors proposed a division of human memory and information processing into 1) labile 

control processes and 2) learned or inherent structural components.  
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Figure 1 Stage theory model according to Atkinson & Shiffrin (1968). 

 

The first stage - named sensory register - is described as being temporally limited to several 

hundred milliseconds and divided into separate sections for each type of sensual perception. 

Each section transfers perceptions to a general short-term store, rather than a specific short-

term store (see also Lutz & Huitt, 2003). Although the authors argue that there is no possi-

bility to transfer information directly into the long-term store, it is additionally assumed 

that the process of transfer information into the short-term store is accompanied with scan-

ning related information in the long-term memory and feeding it into the short-term store. 

In order to transfer information successfully into the short-term store, attention and auto-

maticity play a major role. Short-term store as a second stage is also temporally limited. 

Along with receiving and holding input from the sensory register, this stage of information 

processing retrieves information from and encodes it into long-term memory. Therefore, 

the short-term store can be seen as a mediator between the sensory register and long-term 

store. In order to avoid a loss of information, the process of rehearsal becomes highly rel-

evant. Considering the capacity of short-term memory, previous studies suggested the tem-

poral limitation within 15-30 seconds for unrehearsed information as long as no other ac-

tion is taken simultaneously (Lutz & Huitt, 2003; for review). As part of the memory sys-

tem, the amount and form of information transferred into long-term store must be seen as 

a function of controlled processes (Atkinson & Shiffrin, 1968). Furthermore, the authors 

assume that the transfer itself is an unvarying feature of the system, which takes place even 

when the subjects are not trying to store material in long-term memory.  

Along with the ‘stage theory model’, further evidence for explaining information pro-

cessing in humans, is provided by numerous other models. For example, the ‘levels of pro-

cessing’ model (Craik & Lockhart, 1972) must be seen as one of the first alternatives to 

Atkinson and Shiffrin’s model. Within their articles, the authors postulated that the kind 

and the amount of elaboration are highly relevant for remembering information. Another 

theory was introduced by Paivio (Clark & Paivio, 1991; Paivio, 1971; Paivio, 1986). Within 
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his ‘dual coding theory’, the author suggested two distinct subsystems of cognition, namely 

a verbal and a non-verbal (imagery) system that work independently or cooperatively. In 

contrast to previous models, the ‘schema theory’ (Rumelhart, 1980) is based on the idea of 

multiple locations of information storage. Furthermore, the theory explains how infor-

mation is structured and how this structure influences incoming information.  

In addition to theoretical models of information processing neurophysiological findings 

provide evidence of changes in the activation pattern of underlying structures and the alpha 

rhythm (e.g. Klimesch, 1999), as well as the event-related brain potential P3/300 (e.g. 

Strayer & Kramer, 1990; Strayer, Wickens, & Braune, 1987). For example, Jiang and He 

(2006) measured brain activity while participants viewed neutral, fearful and scrambled 

faces, either visible or rendered invisible through inter-ocular suppression. Among others, 

the results showed activity in the right fusiform face area, the right superior temporal sulcus 

and the amygdala to visible faces. In the invisible conditions, activity in the right fusiform 

face area to both neutral and fearful faces was reduced, whereas the activity in the right 

superior temporal sulcus was robust to invisible fearful faces but not to neutral faces. Fur-

thermore, highly interesting findings come from split-brain experiments. Here, it is demon-

strated that the left hemisphere is more involved in processing verbal/analytic material, 

whereas the right hemisphere is more involved in processing visuo- spatial/synthetic mate-

rial (Sperry, 1982). While the field of electroencephalography will be focused in detail 

within a later chapter, the two studies conducted by Strayer (Strayer & Kramer, 1990; 

Strayer et al., 1987) should be mentioned in the present context. Within the first study, 

Strayer et al. (1987) examined the effects of aging on information processing. Using the 

Sternberg memory search task, participants showed an increased P3/300 latency with in-

creasing set size, as well as differences between positive and negative stimuli. Furthermore, 

the authors found a monotonic and marginally significant increase in latency from the 

youngest to the oldest group. Regarding the amplitude, there was a slight but non-signifi-

cant age-related decline at the parietal electrode, whereas the frontal electrode site revealed 

a monotonic increase in P3/300 amplitude from younger to older adults. Within the second 

study, Strayer and Kramer (1990) investigated the attentional demand of automatic and 

controlled processing. While the authors used the Sternberg task again, they paired it with 

a running memory task. Based on their results, Strayer and Kramer proposed the P3/300 as 

reflecting the obligatory allocation of attention to task-relevant events during automatic 

processing. Here, the authors once again demonstrated the necessity of attention and auto-

maticity within information processing. 

 



Theoretical background 

14 

  

2.1.1. Capacity limitations in information processing 

Despite the impressive complexity and processing power of the human brain, it is generally 

accepted that our brain cannot process every information with which it is confronted. This 

becomes apparent, not only in complex tasks like talking on a mobile phone while driving 

a car (e.g. Strayer & Drews, 2007), but also in simple tasks like selecting motor responses 

for two distinct sensory events (Dux, Ivanoff, Asplund, & Marois, 2006). Based on the 

theories stated above, these limitations can occur at different levels of information pro-

cessing. Furthermore, some researchers suggested the existence of different types of control 

systems (e.g. Atkinson, & Shiffrin, 1971). One of the most significant work in the context 

of capacity limitations was conducted by Miller (1956). Within his work, the author intro-

duced the ‘magical’ number seven (plus or minus two) as the number of bits or distinct 

information units that one can simultaneously track. Furthermore, Kilgard and Merzenich 

(1998) proposed that most neurons response maximally to repeated stimuli presented at 7-

12 pulses per second. Based on their results, the authors highlighted the repetition rate 

transfer function as one method for describing the response capacity of cortical neurons to 

successive inputs. While only a few neuroimaging studies focus on capacity limitations in 

information processing, further evidence comes from dual-task studies highlighting the lat-

eral frontal, prefrontal, dorsal premotor, anterior cingulate, and intra-parietal cortex as pu-

tative neural substrates for occuring interferences (e.g. Herath et al., 2001; Ivry, Franz, 

Kingstone, & Johnston, 1998; Jiang, 2004; Jiang, Saxe, & Kanwisher, 2004; Luck, 1998; 

Marois, Larson, Chung, & Shima, 2006; Osman & Moore, 1993; Pashler, 1994; Szameitat 

et al., 2002). Here, it is largely accepted that occurring interferences in simultaneously per-

forming two or even more tasks are based on a limited capacity for task-processing, which 

will be discussed in further detail in the dual-task chapter.  

 

2.1.2. Automatic versus controlled information processing 

Automatic processing is the result of extensive training on exactly the same task and not 

limited by short-term memory capacity. Furthermore, it is characterized as faster and al-

lows the parallel processing of two or even more requirements. Controlled processes as the 

counterpart are described as tightly capacity limited but balanced by the benefits derived 

from the ease with which they may be set up, altered and applied in novel situations for 

which automatic sequences have never been learned. Therefore, controlled processes are 

described as slow, serial and associated with a high amount of attention (Fisk & Schneider, 

1983; Schneider & Fisk, 1982; Schneider & Shiffrin, 1977; Shiffrin & Schneider, 1977). 
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According to the works conducted by the group of Schneider and Shiffrin, training enables 

the change of cognitive task execution. For example, Schneider, Domais and Shiffrin 

(1984) suggested that a novice reader needs a few seconds to decode each letter and reports 

a high error rate, whereas a competent reader can simultaneously decode 25 letters per 

second and consciously access the meaning of the word. Within their article, the authors 

introduced the idea of a four-stage process of transformation, from fully controlled to fully 

automatic processing. Furthermore, Schneider et al. (1984) proprosed that the assignment 

of processes to either automatic or controlled must be seen as oversimplified. Another the-

ory in this context was stated by Logan (1988). In accordance with Schneider and Shiffrin 

(1977) and Shiffrin and Schneider (1977), the author suggested that the degree of automa-

ticity rather than resource limitations moderates the effects of attention in information pro-

cessing. While the aspect of attention will be considered in further detail in the next sub-

chapter, the present sub-chapter will be completed with a brief look at neuropsychological 

as well as neurophysiological findings. For example, neuropsychological studies provide 

evidence of a differentiation between automatic and controlled processing by focusing on 

different populations such as brain lesions (Knight, 1991; Sirigu, Zalla, Pillon, Grafman, 

Agid, & Dubois, 1995a; Sirigu, Zalla, Pillon, Grafman, Dubois, & Agid, 1995b), frontal 

lobe damage (e.g. Shallice & Burgess; 1991), Aphasia (e.g. Milberg, Blumstein, Katz, 

Gershber, & Brown, 1995), Amnesia (e.g. Jacoby, 1991), Alzheimer’s disease (e.g. Ab-

benhuis, Raaijmakers, Raaujmakers, & Van Woerden, 1990; Chenery, Ingram, & Murdoch, 

1994), Parkinson’s disease (e.g. Henik, Singh, Beckley, & Rafal, 1993; Revonsuo, Portin, 

Koivikko, Rinne, & Rinne, 1993), and Multiple Sclerosis (e.g. Kujala, Portin, Revonsuo, 

& Ruutiainen, 1994) (Birnboim, 2003, for review). These findings are supplemented by 

neurophysiological findings reporting increased activity in the prefrontal and anterior cin-

gulate cortex during the performance of novel, more difficult tasks (associated with con-

trolled processing) compared to overlearned tasks (associated with automatic processing) 

(e.g. Birnboim, 2003; Büchel, Coull, & Friston, 1999; Frith, Friston, Liddle, & Frackowiak, 

1991; Jansma, Ramsey, De Zwart, Van Gelderen, & Duyn, 2007; Raichle et al., 1994). 

 

2.1.3. Attention and awareness in information processing 

Two aspects that need to be considered in the context of information processing are atten-

tion and awareness. Attention can selectively act at multiple stages of information pro-

cessing and is - among other contributors - responsible for occurring limitations in infor-
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mation processing (Kahneman, 1973). For example, Schneider and Shiffrin (1977) de-

scribed selective attention as being responsible for the fact that a sensory input can per-

ceived or remembered better in one compared to another. In this context, Brisson and Jo-

licoeur (2007) showed that the performance of one discrete task can delay attention capture 

by other stimuli for several hundred milliseconds. Focusing on visual information pro-

cessing, Müller, Gruber and Keil (2000) reported an increased spectral power in the elec-

troencephalogram when subjects attended a certain stimulus compared to ignoring the stim-

ulus. Furthermore, they revealed a shift in spectral gamma band power to the contralateral 

hemisphere related to the shift in subjects’ attention to one visual hemifield.  

 

2.1.4. Age-related differences in information processing 

Different people will process the same information in different ways. Investigating this 

hypothesis, Riding, Glass, Buttler and Pleydell-Pearce (1997) provided evidence of various 

individual cognitive styles by using electroencephalography while participants had to iden-

tify target words among a varied number of non-target words. In the past, numerous aspects 

such as genetic traits (e.g. Flavell, Miller, & Miller, 2002), gender (e.g. Darley & Smith, 

1995), age (e.g. Bryan & Luszcz, 1996) and intelligence (e.g. Sheppard & Vernon, 2008), 

but also neurological disorders, including brain injury (e.g. Zahn & Mirsky, 1999), multiple 

sclerosis (e.g. Archibald & Fisk, 2000;) and symptomatic HIV (Llorente et al., 1998) are 

frequently studied in the context of information processing. Thereby, the effect of aging is 

one of the most investigated aspects that has been examined for more than 100 years in this 

context (e.g. Galton, 1883). For example, Nettelbeck & Rabbitt (1992) highlighted the me-

diating role of information processing speed within the relationship of age and cognitive 

performance. 104 subjects ranging from 54 to 85 years performed four-choice-reaction 

time tasks, an inspection time and scores on a speed coding-substitution task. While the 

authors indicated an age-related decrease in free-recall performance by 22%, Bryan and 

Luszcz (1996) concluded that task-independent speed of information procession appears to 

mediate the relationship between age and free-recall performance. The role of information 

processing speed was also highlighted by Salthouse (Salthouse, 1991; Salthouse, Fristoe, 

& Rhee, 1996) and Verhaeghen and Salthouse (1997). The authors suggested that the speed 

of information processing mediates much of the age-related decline in working memory, 

fluid intelligence, spatial visualization and episodic memory. Furthermore, Salthouse and 

Ferrer-Caja (2003) and Finkel, Reynolds, McArdle and Pedersen (2007) demonstrated the 

relevance of age-related declining information processing speed as an important variable 
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that predates a decline of general cognitive functions (Salthouse & Ferrer-Caja, 2003; 

Finkel et al., 2007). Focusing on age-related differences in verbal fluency, previous studies 

have reported indifferent findings. While clear evidence of an age-related decline in verbal 

fluency comes from Bryan, Luszcz and Crawford (1997) and Hultsch, Hertzog, Small, 

McDonald-Miszczak and Dixon (1992) found no evidence of an age-related decline in ver-

bal fluency. Furthermore, Lindenberger, Mayr, & Kliegl (1993) and Salthouse (1993) re-

vealed moderate negative correlations between age and fluency performance.  

Regarding the type of stimuli, Hale, Myerson, Faust and Fristoe (1995) reported a reduced 

age-related decline in tasks, involving lexical information compared to non-lexical infor-

mation tasks. In the use of arithmetic tasks, findings vary according to the type of task. For 

example, paper-and-pencil tests revealed small to non-existent age differences (e.g. Geary, 

Salthouse, Chen, & Fan, 1996; Geary & Wiley, 1991; Schaie, 1996), whereas reaction time 

tasks indicated a deterioration with increasing age (e.g. Allen, Smith, Jerge, & Vires-Col-

lins, 1997; Salthouse & Coon, 1994; Siegler & Lemaire, 1997). Considering the effect of 

non-target stimuli, it is shown that an increasing number of non-target stimuli leads to in-

creasing interferences in both, letters and digits (Barber, 1981; Duncan, 1980). Regarding 

age-related effects, no differences in non-targets were reported when the target occupied a 

single, fixed position in a display (Farkas & Hoyer, 1980; Madden, 1983; Wright & Elias, 

1979). Furthermore, varying the position of the stimuli as well as presenting confusable 

targets and non-targets, Farkas and Hoyer (1980) showed a decrease in speed of perfor-

mance with increasing age. Investigating the role of stimulus size, Stark and Coslett (1993) 

identified faster responses to small letters in older participants, whereas younger partici-

pants responded equal with global and local letters. While Stark and Coslett (1993) aimed 

at investigating age-related differences in the ‘Navon effect’, a more recent study con-

ducted by Roux and Ceccaldi (2001) used a selective-attention task. Within their experi-

ment, the authors reported greater global interferences on local identification in older com-

pared to younger participants, but equal effects of attentional shifts on reaction time.  

Based on these findings, the question emerges whether age-related deficits in information 

processing can be ascribed to changes in anatomical and/or physiological processes. Here, 

Greenwood (2007) and Greenwood and Parasuraman (2010) provided evidence of both. A 

significant association between white matter integrity and a general factor of information 

processing speed for anisotropy and diffusivity, but not with general intelligence or 

memory were shown by Penke et al. (2010). Furthermore, Madden, Bennett and Song 

(2009) reported a relation between white matter integrity and the effects on perceptual 

speed. In agreement with O’Sullivan, Jones, Summers, Morris, Williams and Markus 

(2001), Madden et al. (2009) proposed that white matter integrity and speed of information 
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processing are especially prone to aging effects, and thus age-related cognitive decline may 

occur as a result of cortical disconnection, which is related to white matter pathways (see 

also Penke et al., 2010).  

 

In the present chapter, I have provided an overview of different models of information 

processing. Here, the ideas of filtering information (Broadbent, 1958), the limited capacity 

(Treisman, 1960, 1964) and the different stages (Atkinson & Shiffrin, 1968) or levels 

(Craik & Lockhart, 1972) of information processing were highlighted. The models were 

supplemented by more recent neurophysiological findings. Regarding the localization, a 

brief overview of split brain experiments demonstrated different hemispheric activity re-

garding the type of stimulus. Along with the location, Strayer and Kramer reported differ-

ences in latency and amplitude of event-related potentials, regarding the type of stimulus. 

The chapter of capacity limitations in information processing highlighted the ‘magical 

number seven’ introduced by Miller (1956), as well as the maximal capacity of most neu-

rons to respond to repeated stimuli at 7-12 pulses per seconds (Kilgard & Merzenich, 1998), 

respectively. While automatic and controlled processes were defined in the context of in-

formation processing, in the subsequent chapter the early statement of Logan (1988) should 

be highlighted again. Within his article, the author reported that the degree of automaticity 

rather than resource limitations moderates the effects of attention in information pro-

cessing. The aspect of attention as well as awareness has been focused in a further sub-

chapter. Here, the statement of Kahneman (1973) should be pointed out respectively. The 

author described that attention can selectively act at multiple stages of information pro-

cessing and must be seen as being responsible for occurring limitations. Completing this 

chapter with age-related aspects, the last sub-chapter described a decline in information 

processing speed with increasing age as an important variable that predates a decline of 

general cognitive functions. Furthermore, the relevance of stimulus type, the way of presen-

tation, and the stimulus size have been highlighted as dependent variables influencing in-

formation processing during the process of aging. 

 

2.2. Executive functions 

Choosing the examples of hitting a baseball and operating a motor vehicle, Brown, Collier 

and Night (2013) described the relevance of coordinating and integrating perceptual, motor 

and decision-making processes in daily situations. Along with its relevance, these processes 
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are directly linked to higher cognitive functions, called executive functions. These func-

tions are generally conceptualized as cognitive processes, responsible for monitoring, reg-

ulating and coordinating the execution of goal-directed behavior (Alvarez & Emory, 2006; 

Baddeley & Hitch, 1974; Balota, Law, & Zevin, 2000; Braver, Gray, & Burgess, 2007; 

Diamond, 2006; Engle & Kane, 2004; Hasher & Zacks, 1988; Jacoby, Bishara, Hessels, & 

Toth, 2005; Logan, 2003; Miller & Cohen, 2001; Miyake, Friedman, Emerson, Witzki, 

Howerter, & Wager, 2000; Posner & DiGirolamo, 1998; Royall & Mahurin, 1996; Shallice 

& Burgess, 1993; Stuss & Alexander, 2000; Zelazo & Müller, 2002), but the underlying 

construct and its definition remains complex and unclear. This becomes obvious in the 

diversity of terms used for designating executive functions (Dores, Carvalho, Barbosa, 

Martins, De Sousa, & Castro-Caldas, 2014; Pennington, 1997; Salthouse et al., 2003; Stuss 

& Benson, 1984; Stuss & Benson, 1986). Although there is no general agreement on how 

to best define or conceptualize executive functions, they are considered as key mechanisms 

in many models of normal and abnormal cognition, such as cognitive development (e.g. 

Lyon & Krasnegor, 1996; Zelazo, Carter, Reznick, & Frye, 1997), age-related decline in 

cognitive abilities (e.g. Hasher, Zacks, & May, 1999; Lowe & Rabbitt, 1997), and disorders 

such as attention-deficit/hyperactivity disorder (Barkley, 1997), autism (Russell, 1997), 

Schizophrenia (Frith, 1992) and substance use problems (Garavan & Stout, 2005). While 

executive functions play a central role in neuropsychological theories of behavior control 

(Ferrier, 1886; Luria, 1973; Stuss & Knight, 2002), early findings describe these processes 

in the way of hierarchical models of the brain (e.g. Luria 1970; MacLean, 1955), as well as 

a central integrative factor and abstraction (Halstead, 1948; Pikas, 1966). A more recent 

approach was developed by Zelazo et al. (1997) but influenced by Luria’s idea of an inter-

active functional system (Luria, 1973). The authors conceptualized executive functions as 

a complex function - or macrostructure - including executive sub-functions that work to-

gether to accomplish higher-order functions of solving problems. Considering theories of 

cognitive control, authors typically include an executive component responsible for direct-

ing thoughts and coordinating goal-directed behavior (Baddeley & Hitch, 1974; Balota et 

al., 2000; Banich, 2009; Braver et al., 2007; Brown, Johnson, Sohl, & Dumas, 2015; Engle 

& Kane, 2004; Hasher & Zacks, 1988; Jacoby et al., 2005; Logan, 2003; Miyake et al., 

2000; Phillips, 1997; Posner & DiGirolamo, 1998; Royall & Mahurin, 1996; Shallice & 

Burgess, 1993). Focusing on the components of executive functions, Packwood, Hodgetts 

and Tremblay (2011) reviewed 60 of the most frequently cited articles and identified 68 

different functions summarized under the umbrella term of executive functions. These 

higher-order mental operations involve planning, judgment, decision making, suppression 
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of irrelevant information, monitoring and control of behavior, resisting distractions, rea-

soning, working memory, dual-tasking, inhibition of prepotent responses, self-regulation, 

sequencing of behavior, planning, flexibility, shifting or switching and control of attention, 

among others, as well as the regulation of other cognitive processes, such as language, 

perception and memory (e.g. Baddeley, 1996; Banich, 2009; Brown et al., 2013; Eslinger, 

1996; Fournier, Larigauderie, & Gaonac’h, 2004; Fuster, 2000; Jurado & Rosselli, 2007; 

Koechlin & Summerfield, 2007; Logan, 1985; Miyake et al., 2000; Shimamura, 2000; 

Strauss, Sherman, & Spreen, 2006; Stuss & Alexander, 2000; Stuss & Benson, 1986; Waltz 

et al., 1999). Furthermore, Brown et al. (2013) described the processes of coordination, 

sequencing and integration, as well as scheduling plans and actions as involved in executive 

functions. Additionally, some investigators suggested that performing complex locomotor 

tasks such as gait is strongly related with executive functions (Ble et al., 2005; Cocchini, 

Della Sala, Logie, Pagani, Sac7co, & Spinnler, 2004; Hausdorff, Yogev, Springer, Simon, 

& Giladi, 2005; Persad et al., 1995; Sheridan, Solomont, Kowall, & Hausdorff, 2003; 

Springer, Giladi, Peretz, Yogev, Simon, & Hausdorff, 2006). In a more general way, Lezak 

(1982, 1987) described the components of executive functions as the skills to formulate 

goals, plan strategies and self-evaluate one’s behavior. Furthermore, executive functions 

are discussed as conscious and controlled processes that guide thoughts and actions (Bad-

deley, 1992; Logan, 1985; Norman & Shallice, 1986; Phillips, 1997). Furthermore, Elliott 

(2003) summarized the components of executive functions as a set of cognitive processes, 

encompassing a wide variety of controlled abilities. Based on previous findings, Bouaz-

zaoui, Angel, Fay, Taconnat, Charlotte and Isingrini (2014) came up with the idea that these 

components could be viewed as supporting the generation of memory strategy processes, 

such as focusing and maintaining attention on abstract representations (Bouazzaoui et al., 

2010; Bryan, Luszcz, & Pointer, 1999; Moscovitch & Winocur, 1992; Shimamura, 1995; 

Taconnat et al., 2006; Taconnat, Clarys, Vanneste, Bouazzaoui, & Isingrini, 2007; Tacon-

nat et al., 2009). Summarizing the underlying processes to formulate higher-order compo-

nents, Lezak (1995), Spreen and Strauss (1998) as well as Jurado and Rosselli (2007) in-

troduced four components of executive functions. While Lezak (1995) and Spreen and 

Strauss (1998) highlighted the functions of volition, planning, purposive action and effec-

tive performance, Jurado and Rosselli (2007) reported goal formation, planning, carrying 

out goal-directed plans and effective performance as the four major components. By con-

trast, the most commonly used and replicated factor model of the executive system refer-

enced response inhibition (inhibition), working memory and set-shifting (shifting) (Jurado 

& Rosselli, 2007; Lehto, Juujärvi, Kooistra, & Pulkkinen, 2003; Logan, 1985; Miyake et 

al., 2000). While other components such as dual-tasking (e.g. Logie, Cocchini, Delia Sala, 
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& Baddeley, 2004; Salthouse, Atkinson, & Berish, 2003) and resisting proactive interfer-

ence (Friedman & Miyake, 2004) have also been addressed, the three components of inhi-

bition, working memory and shifting have dominated recent executive function research. 

Using structural equation modeling, Miyake et al. (2000) - for example - postulated that 

executive functions are best characterized as comprising the three following processes: 

 

- Inhibition, as a basic executive control process that includes suppressing dominant, au-

tomatic responses and resisting distractions. 

- Working memory, entails keeping track of old and new information, replacing appro-

priate information that is no longer current or relevant with newer, updated information. 

- Shifting, which involves shifting attention back and forth between multiple tasks or 

cognitive operations. 

 

A similar notion was highlighted in an impressive article by Packwood et al. (2011). Within 

a multi-perspective approach to the conceptualization of executive functions, the authors 

created a model based on existing executive function literature that summarized the aspects 

of executive functions under the main terms of inhibition, set-shifting, working memory, 

planning, and fluency. Regarding the aims of the present work, the following chapter high-

lights the three executive functions described by Miyake et al. (2000). 

 

2.2.1. Inhibition 

Inhibition is described as the ability that enables us to overcome automatic and experienced 

behavior by controlling one’s attention, behavior, thoughts, and emotions (Diamond, 2013; 

Shallice & Burgess, 1993). Deficits in this function are frequently described in clinical 

contexts such as attention deficits / hyperactivity disorder (Barkley, 1997, Sergeant, Geurts, 

& Oosterlaan, 2002), Tourette syndrome (Peterson et al., 1998), obsessive-compulsive dis-

order (Enright & Beech, 1993), or disinhibition syndrome (Shulman, 1997).  

At present, the go-/nogo task is the most frequently used paradigm for quantifying inhibi-

tion (Donders,1969). Within the task, participants had to react to a certain stimulus (e.g. 

letters) and inhibit to another stimulus (e.g. numbers). In the past, the go-/nogo task was 

used in numerous different settings. In visual paradigms, researchers used pictures, objects, 

letters, numbers, etc. (Thorpe, Fize, & Marlot, 1996), whereas auditory paradigms com-

prised single tones, voices, noises etc. (e.g. Miller, Franz, & Ulrich, 1999). Furthermore, 
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the paradigm has been used in behavioral (Verbruggen & Logan, 2008), electrophysiolog-

ical (Bokura, Yamaguchi & Kobayashi, 2001), as well as imaging studies (e.g. Simmonds, 

Pekar, & Mostofsky, 2008). After completing five experiments of the go-/nogo task, Ver-

bruggen and Logan (2008) proposed that automatic and controlled inhibition can work to-

gether to guide goal-directed behavior. Within electrophysiological studies, the go-/nogo 

task is a famous paradigm used for investigating event-related potentials, especially the 

P3/300 (e.g. Eimer, 1993; Enriquez-Geppert, Konrad, Pantev, & Huster, 2010; Jodo & In-

oue, 1990). Therefore, within the chapter of Electroencephalography, I will return to this 

point by focusing on the cited studies in more detail. Considering the activated structures 

in performing inhibition tasks, early non-human studies highlighted the relevance of the 

dorsolateral prefrontal cortex (Butters, Butter, Rosen, & Stein, 1973; Iversen & Mishkin, 

1970; Sasaki, Gemba, & Tsujimoto, 1989). Further evidence comes from human studies, 

demonstrating a network comprising the supplementary motor area (Humberstone et al., 

1997; Kawashima et al., 1996), dorsal and ventral frontal regions (Casey et al., 1997a; 

Kawashima et al., 1996; Konishi, Nakajima, Uchida, Sekihara, & Miyashita, 1998; Tsu-

jimoto, Ogawa, Nishikawa, Tsukada, Kakiuchi, & Sasaki, 1997), the cingulate cortex (Ca-

sey et al., 1997b) as well as the occipital and parietal lobe (Butters et al., 1973; Casey et 

al., 1997b; Humberstone et al., 1997) associated with response inhibition (see Simmonds 

et al., 2008 for a review). The role of dorso-lateral prefrontal cortex as a common mecha-

nism in inhibition was investigated by Konishi, Nakjima, Uchida, Kikyo, Kameyama and 

Miyashita (1999). Six healthy people aged 20-31 performed a go-/nogo task as well as the 

‘Wisconsin Card Sorting Test’ while being scanned in a functional magnetic resonance 

imaging. The results confirmed the involvement of the posterior part of the right inferior 

frontal sulcus in response inhibition. The relevance of right hemispheric dominance was 

highlighted by Garavan, Ross and Stein (1999) and Konishi et al. (1999). Along with the 

right hemispheric dominance, the authors reported correlations between ventral / doral ar-

eas and the function of inhibition. Furthermore, highest prefrontal activity was found in the 

middle and inferior frontal gyri. A further study conducted by Garavan, Ross Murphy, 

Roche and Stein (2002) investigated ten female subjects (mean age 30, range 19-45 years) 

with the go-/ no go task and additional functional magnetic resonance imaging as well as 

electroencephalography. The authors reported an increased activity in the right prefrontal 

and parietal cortex associated with stimulus inhibition. An additional activity in cingulate 

regions was indicated with increasing difficulty of the inhibition tasks. Furthermore, 

Braver, Barch, Gray, Molfese and Snyder (2001) reported inhibition-related activity in the 

sub-regions of the anterior cingulate cortex as well as the right prefrontal and parietal cortex 

by using three different tasks (go-/nogo task, oddball, two-alternative forced-choice). 
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Within their meta-analysis, Braver et al. (2001) indicated a similar pattern of activity in 

simple and complex go-/nogo tasks comprising the right dorsolateral prefrontal and inferior 

parietal circuits. Considering the inhibition of motor responses, De Zubicaray, Andrew, 

Zelaya, Williams and Dumanoir (2000) investigated eight healthy people (mean age 27 ± 

3.16 years). In their study, participants were asked to respond or inhibit to 337 larger and 

smaller circles, which were presented within 5.6 minutes. The participants showed in-

creased activity in the orbital and medial frontal regions while inhibiting motor responses. 

Further activity was revealed in the right mid-dorsolateral prefrontal cortex and regions 

immediately caudal to it. Additional evidence for the underlying mechanisms of motor re-

sponse inhibition comes from early findings reporting impairments in patients with anterior 

cortical lesions (Drewe, 1975; Luria, 1966).  

To provide an overview of the underlying mechanisms, reported to be involved in response 

inhibition, Figure 2 visualizes the structures, summarized in this sub-chapter. 

 

 

Figure 2 Underlying structures of inhibition. 

 

In comparison of the function of inhibition and working memory, previous studies have 

reported similarities in activated structures (Casey et al., 1997b; Pennington, 1994; Gara-

van et al., 1999). Jonides, Smith, Marshuetz, Koeppe and Reuter-Lorenz (1998) for exam-

ple indicated increased activity in the left prefrontal cortex within simultaneously perform-

ing a verbal working memory task and an inhibition task.  
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2.2.2. Working memory 

Working memory can be characterized as the ‘desktop of the brain’ (Logie, 1999). Further-

more, cognitive psychologists as well as neuropsychologists describe working memory as 

a system responsible for maintaining and manipulating information for a short period, 

which is indispensable for complex tasks such as reading, understanding and arguing (Bad-

deley, 1992; Miyake & Shah, 1999). First described by Miller et al. (1960), Baddeley and 

Hitch (1974) used the term working memory to distinguish their three-component model 

from the previous models of short-term memory. To date, Baddeley and Hitch’s (1974) 

model is the most common one describing the term working memory. The original model 

of the authors is based on the idea of a system responsible for control attention (Baddeley 

& Hitch, 1974). Furthermore, it comprises a central executive that coordinates the two sub-

sidiary storage systems, namely the phonological loop and the visuo-spatial sketchpad 

(Baddeley, 1998) (see also Figure 3). 

 

 

Figure 3 Baddeley & Hitch’s original model of working memory (Baddeley & Hitch, 1974). 

 

The central executive is described as the ‘boss’ of the whole system, representing a supe-

rior control system, albeit which does not store any information by itself (Baddeley, 2003). 

Furthermore, it is responsible for controlling the execution within the working memory 

system and thus it is included in numerous processes such as directing attention, maintain-

ing task goals as well as decision making and memory retrieval (McCabe, Roediger, 

McDaniel, Balota, & Hambrick, 2010). On the one hand, the central executive is named 

the most important component, while on the other hand it is the least understood compo-

nent. However, various non-human (Goldman-Rakic, Cools, & Srivastava, 1996; Petrides 

& Baddeley, 1996) as well as human studies (Shallice, Burgess, & Robertson, 1996; 

Passingham, Weinberger, & Petrides, 1996) provide empirical evidence of a central exec-

utive, which is also included in other models in this context (Cowan, 1999; Engle, Tuholki, 

& Laughlin & Conway, 1999; Norman & Shallice, 1986; O’Reilly, Braver, & Cohen, 

1999).  

 

Central 

executive

Visuospatial 
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The phonological loop represents the first subsidiary system, responsible for storage and 

manipulation of verbal information and it plays an important role in primary speech acqui-

sition as well as learning a second language (Cheung, 1996; Ellis, 1996). Baddeley & Hitch 

(1974) suggested that the phonological loop comprises two components, namely the pho-

nological store and an articulatory rehearsal component. Furthermore, it is assumed that 

the content of the phonological store decays after a period of about two seconds, unless 

refreshed by rehearsal (Baddeley & Hitch 1974; Baddeley, 2001). In this context, the fol-

lowing three effects tend to appear: 

 

- The phonological similarity effect describes the fact that the difficulty of storing se-

quences of words or letters increases with increasing similarity in its pronunciation 

(Conrad & Hull, 1964). This phenomenon was also reported by using unrelated letters 

(Conrad, 1964; Conrad & Hull, 1964) as well as unrelated words (Baddeley, 1966a). 

Interestingly, it becomes less relevant within the shift to long-term memory (Baddeley, 

1996b). While the phenomenon also appears in high error rates of over 50%, it is as-

sumed that alternative strategies like semantic or visual coding might play an additional 

role (Larsen & Baddeley, 2003; Neath, Farley, & Surprenant, 2003). 

-  The fact that the memory span is much worse for longer compared to shorter words is 

sub-sumed in the word length effect (Cowan & Kail, 1996) and is shown to be similarly 

robust as the phonological similarity effect (Logie, Della Sala, Laiacona, Chalmers, & 

Wynn, 1996). Increasing the word length from one to five syllables, Baddeley, Thomson 

and Buchman (1975) - for example - reported a direct decrease in memory span. Brown 

and Hulme (1995) and Neath and Nairne (1995) suggested that the difficulty of repeat-

ing longer words is based on the fact that more components had to be memorized and 

thus more errors can occur. Another approach describes the word length effect by the 

delay during the output and less by the probe itself (Cowan et al., 2003; Dosher & Ma, 

1998; Lovatt & Avons, 2001). Considering the underlying mechanisms, Rypma, Prab-

hakaran, Desmond, Glover and Gabrieli (1999) revealed increased activity in the dorso-

lateral prefrontal cortex when participants had to memorize six, compared to three num-

bers. By contrast, Cowan et al. (2003) suggested that there are no differences in remem-

bering shorter and longer words.  

- Within the irrelevant speech effect, it is assumed that the presentation of concurrent or 

subsequent irrelevant material affects the direct repetition of the primary material 

(Colle, 1980; Salame & Baddeley, 1982; Jones & Macken, 1993; Neath, 2000).  
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The visuo-spatial sketchpad represents the second subsidiary system, which stores and 

manipulates visual and spatial information (Baddeley, 1998; Logie, 1995). Associated with 

non-verbal intelligence, the sketchpad must be seen as highly relevant in numerous fields, 

such as architecture and technology (Purcell & Gero, 1998; Verstijnen, van Leeuwen, 

Goldschmidt, Hamel, & Hennessey, 1998). While previous studies suggested a differenti-

ation between visual and spatial memory (Courtney, Ungerleider, Keil, & Haxby, 1996; 

Courtney, Petit, Maisog, Ungerleider, & Haxby, 1998; Hecker & Mapperson, 1997; Logie 

& Pearson, 1997; Smith, Jonides, Koeppe, Awh, Schumacher, & Minoshima, 1995; Tresch, 

Sinnamon, & Seamon, 1993), others indicated a double dissociation (Haxby, Ungerleider, 

Horwitz, Rapoport, & Grady, 1995; Smith et al., 1995; Smith, Jonides, & Koeppe, 1996). 

Similar to the phonological loop, the capacity of the sketchpad is also limited. Here, Bad-

deley (2003) discussed the limit by three to four objects, which can be stored simultane-

ously, dependent on the characteristics of the components. Memorizing sentences, Logie 

(1986) reported that the participants remembered eight sentences with spatial linked infor-

mation and six without. While the phonological loop showed a dominance in the left hem-

isphere, the visuo-spatial sketchpad showed greater activity in the right hemisphere (Della 

Sala, Gray, Baddeley, Allamano, & Wilson, 1999; De Renzi & Nichelli, 1975; Hanley, 

Young, & Pearson, 1991).  

 

Although the original model (Baddeley & Hitch, 1974) has already been used in numerous 

fields of cognitive science such as the general cognitive psychology (Hitch & Logie, 1996), 

computer-based modelling (Burgess & Hitch, 1992), as well as imaging studies (Smith & 

Jonides, 1996), in 2000 Baddeley postulated some limitations, referring to articulatory sup-

pression and the transfer of information between codes. Based on the limitations, the author 

postulated two topics (Baddeley, 2000): the first addressed the kind of possible integrations 

of different components of working memory, all of which use different codes; and the sec-

ond comprises the relationship between working memory and long-term memory. In order 

to take these aspects into account, Baddeley (2000) amplified the existing model by using 

an additional component, called the ‘episodic buffer’ (see also Figure 4). 
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Figure 4 Amplified model of working memory (Baddeley, 2000). 

 

The episodic buffer is described as temporal storage with limited capacity, capable of in-

tegrating information from different sources and controlled by the central executive (Bad-

deley, 2000; Baddeley, Allen, & Hitch, 2010). Furthermore, its relevance in merging mul-

timodal information within speech processing was highlighted by Rönnberg, Rudner and 

Foo (2007). Similar to the episodic buffer Lehnert and Zimmer (2006) suggested a common 

storage for spatial representation of auditory and visual information.  

 

Although the model conducted by Baddeley has been cited in a vast number of studies for 

more than 40 years, I recommend breaking away from the black-box models of the 1970s 

and rather creating models based on recent neuroscientific findings. Here, Constantinidis 

and Klingberg (2016) - for example - introduced three models of working memory: one 

based on non-human-primate studies, one computational model and one based on human 

studies. Before considering the approach of the authors in more detail, I will shed light on 

single previous studies, which investigating the activated structures of working memory 

(additionally summarized in Figure 5). One of the first studies in this context was conducted 

by Petrides, Alivisatos, Meyer and Evans (1993a), who reported a bilateral activity in the 

middle dorsolateral prefrontal and frontopolar cortex as well as posterior cortical regions 

in performing verbal working memory tasks. A further study by the research group 

(Petrides, Alivisatos, Evans, & Meyer, 1993b) confirmed the results of a bilateral activity 

in the middle dorsolateral prefrontal cortex, as well as the anterior cingulate and posterior-

parietal cortex. The relevance of the dorsolateral prefrontal cortex was also confirmed by 

D’Esposito, Postle, Ballard and Lease (1999). Previously, Fuster (1989) assumed that this 
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area is able to integrate events separated in time and application as well as storing repre-

sentative knowledge to generate a motor response. The postulated bilateral activity was 

also confirmed by Cohen, Forman, Braver, Casey, Servan-Schreiber and Noll (1994). In 

their study, participants were asked to perform a ‘n-back task’ while being scanned by 

functional magnetic resonance imaging. The results showed an additional activity in the 

middle, inferior and frontal regions. Furthermore, Goldman-Rakic (1998) suggested that 

working memory is related to regions in the prefrontal cortex that interact with posterior 

regions as a multimodal and area-specific network. In addition, activity in the prefrontal 

cortex is also reported to be related to the difficulty of working memory tasks (Braver, 

Cohen, Nystrom, Jonides, Smith, & Noll, 1997; Bunge, Klingberg, Jacobsen, & Gabrieli, 

2000; D’Esposito, Aguirre, Zarahn, Ballard, Shin, & Lease, 1998; Rypma et al., 1999). 

Focusing on working memory tasks without demanding executive processes, D’Esposito 

et al. (1998) and Owen (1997) reported increased activity in the ventral prefrontal cortex, 

whereas a manipulation of information was associated with activity in the middle dorsolat-

eral prefrontal cortex (D’Esposito et al., 1998; Owen, 1997). Within their meta-analysis, 

Wager and Smith (2003) suggest an allocation of working memory to the following cortical 

regions:  

 

- Association between frontal cortex and the kind of execution. Furthermore, executive 

demands are reliable to the activity in the frontal cortex. 

- Association between superior frontal cortex and working memory tasks including the 

sequential updating and prioritization of information. 

- Association between inferior frontal cortex and manipulating information within work-

ing memory. Furthermore, additional processes like mental operations, cognitive flexi-

bility and inhibition also seem to play a highly significant role in inferior frontal cortex 

activity. 

- Association between frontal cortex lateralization and executive demands 

- Association between bilateral activity and verbal storage, whereas spatial storage was 

associated with increased right hemispheric activity. 

 

Updating working memory based on incoming information was investigated by Salmon et 

al. (1996). Using a phonological short-term memory task as well as a working memory task 

both resulted in cerebral metabolism differences. While the phonological short-term 

memory task led to an increase in activity of the lower left supramarginal gyrus and pre-

motor area, the working memory task confirmed the assumed relevance of the mid-dorso-

lateral prefrontal cortex. A predominantly right activity occurred in the inferior parietal 
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region during the working memory task. Furthermore, the results highlighted the im-

portance of the superior occipital gyrus in the visual short-term memory. Considering the 

underlying mechanisms of the episodic buffer, a general relation with the right middle tem-

poral lobe is assumed (Rudner, Foo, Rönnberg, & Lunner, 2007; Rudner & Rönnberg, 

2006; Rudner & Rönnberg, 2008). Furthermore, Berlingeri et al. (2008) suggested an as-

sociation between the left anterior hippocampus and the episodic buffer. Their results were 

based on a study examining two groups of people, one with Alzheimer’s disease and one 

with healthy control.  

 

 

Figure 5 Underlying structures of the working memory. 

 

As mentioned above, Constantinidis and Klingberg (2016) introduced three models. Re-

garding the human working memory model, the authors reported an association between 

working memory and a wide range of areas across the brain dependent on the type of stim-

ulus. On the other hand, the authors revealed common activity particularly in a fronto-

parietal network during the performance of different working memory tasks. While Con-

stantinidis and Klingberg (2016) investigated only visuo-spatial working memory tasks, 

Figure 5 includes both verbal and visuo-spatial working memory tasks.  

 

2.2.3. Shifting / Set-shifting 

Shifting back and forth between multiple tasks, operations or mental sets is becoming in-

creasingly relevant in the modern society (Monsell, 1996). We call friends while answering 

e-mails and looking after our children; we work on the computer, while searching the desk 

for a document and having lunch. These are only two out of numerous daily situations in 

which the ability to switch or shift between different sets becomes highly relevant. Thereby, 

the task-switching paradigm was introduced by Jersild (1927), who investigated students 

working through a list of items, either repeating one task or alternating between two. After 

nearly 50 years, Biederman (1972) revived Jersild’s paradigm by using discrete reaction-
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time measurements. Along with Biederman’s work and some other pioneering studies (e.g. 

Biederman, 1973; Shaffer, 1965; Sudevan & Taylor, 1987), task switching became more 

popular during the mid 1990s. Until now, the paradigm has been used in a more sophisti-

cated way by asking participants to change from using one task set - defined as a series of 

procedural rules governing the performance - to another (Aron, 2008; Monsell, 2003). In 

this context, Kiesel et al. (2010) summarized that individuals are slower and make more 

errors on trials that require switching between the performances of two simple tasks com-

pared to its single performance. Furthermore, the switch cost is commonly used for meas-

uring the ability of task switching and it is computed by subtracting the average reaction 

time of non-switch trials from the average reaction time of switching trials (Aron, 2008). 

While a higher switch frequency leads to a lower switch cost (Mayr, Diedrichsen, Ivry & 

Keele, 2006; Monsell & Mizon 2006), Kray and Lindenberger (2000) further differentiated 

between ‘general’ and ‘specific’ switch cost. Here, the authors defined ‘general’ switch 

cost as the difference between reaction times on trials with switch blocks and reaction times 

on trials with homogeneous blocks that do not contain switching, whereas ‘specific’ switch 

cost is described as the difference between reaction time on the switch trial and reaction 

time on repeat trials during switch blocks. Considering the relationship between shifting 

and the central executive, it is assumed that the ability to shift between tasks or mental sets 

must be seen as highly dependent on the function of executive control (Monsell, 2003; 

Norman & Shallice, 1986). Additional evidence comes from dual-task experiments that 

identified increasing impairments in task-switching performance with increasing demand 

on the executive control component (e.g. Baddeley, Chincotta, & Adlam, 2001a). By con-

trast, some investigators reported a lack of relation between working memory / executive 

control and task switching (Allport, Styles, & Hsieh, 1994; Oberauer, Süß, Wilhelm & 

Wittman, 2003; Oberauer, Süß, Schulze, Wilhelm, & Wittmann, 2000; Wylie & Allport, 

2000). Investigating the relation between inhibition and switching, Philipp and Koch 

(2006) reported, a larger task-set inhibition under high switch probability conditions com-

pared to low switch probability conditions. Based on their results, the authors suggested 

that the balance of activation and inhibition in task switching is affected by the occurrence 

of task repetitions. 

Focusing on the underlying mechanisms of shifting / set-shifting, early patient studies sug-

gested an association between frontal lobe impairments and shifting between mental sets 

(Luria, 1966; Stuss, & Benson, 1986). In this context, Aron (2007) summarized that pa-

tients with right inferior frontal cortex lesions showed an increased switching cost. Further-

more, Nachev, Wydell, O’Neill, Husain and Kennard (2007) and Floden and Stuss (2006) 

revealed impairments in stopping one response and performing another in a patient with 
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pre-supplementary motor area damage. Their findings were confirmed by a non-human 

study conducted by Isoda and Hikosaka (2007). Here, the authors reported an increased 

activity of the pre-supplementary motor area associated with switch trials in monkeys. 

Along with clinical and non-human trials, various imaging studies provide evidence of the 

neural mechanisms responsible for the ability to shift. Monsell (2003) reported an increased 

activity in medial and lateral regions of the prefrontal cortex as well as in the parietal lobe, 

the cerebellum, and other subcortical regions in performing switching tasks. Further studies 

revealed increased activity in the dorsolateral prefrontal cortex and posterior-parietal areas 

(Dove, Pollmann, Schubert, Wiggins, & von Cramon, 2000; Garavan, Ross, Li, & Stein, 

2000; Kimberg, Aguirre, & D’Esposito, 2000; Sohn, Ursu, Anderson, Stenger, & Carter, 

2000). Meyer et al. (1998) and MacDonald, Cohen, Stenger and Carter (2000) highlighted 

the left dorsolateral prefrontal cortex in task switching. Differentiating between shifting of 

visual attention and more executive oriented shifts, Posner and Raichle (1994) showed that 

shifting visual attention might be regulated primarily by the parietal lobes and the mid-

brain, whereas more executive-oriented shifts may be regulated primarily by the frontal 

lobes, including the anterior cingulate. Along with frontal lobe structures, Moulden, Picton, 

Meiran, Stuss, Riera and Valdes-Sosa (1998) indicated occipital and parietal regions in-

volved in shifting between two tasks by using event-related potentials. Additionally, Syl-

vester et al. (2003) reported increased activity in the parietal and occipital lobe, preferen-

tially involved in switching of attention between mental counts. The findings based on im-

aging studies are additionally summarized in Figure 6. 

 

 

Figure 6 Underlying structures of shifting / set-shifting. 
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2.2.4. Age-related differences in executive functions 

Impairments in executive functions are frequently reported in brain injuries, such as lesions 

or trauma (e.g. Varney & Menefee, 1993), mental illness (e.g. Galdi, 1993) and pathologi-

cal disturbances in the brain metabolism such as Alzheimer's disease or phenylketonuria 

(e.g. Welsh, Pennington, Ozonoff, Rouse, & McCabe, 1990; Lafleche & Albert, 1995) as 

well as in healthy older adults (e.g. Brennan, Welsh, & Fisher, 1997; Royall, Palmer, Chi-

odo, & Polk, 2004). Growing evidence of impaired executive functions in healthy elderly 

subjects comes from various neuropsychological studies reporting inter alia difficulties in 

problem-solving (including flexible thinking and cognitive shifting), impaired response in-

hibition, and impaired creative thinking (Dorfman, 1998, for review). In this context, Bren-

nan et al. (1997) investigated three age groups (group one: mean 65 years; group two: mean 

75 years; group three: mean 19 years), by using the ‘Tower of Hanoi’. Similar findings 

were identified for group one and three, whereas group two significantly differed. Further-

more, with increasing complexity (4-disk) young adults showed superior performance on 

average, compared to young elderly or older elderly participants. These results were con-

firmed by Rönnlund, Lövdén and Nilsson (2001), within a larger sample size of N = 2,798, 

ranging from 35 to 85 years. Another task that is frequently used for investigating age-

related differences in executive functions is represented by the Wisconsin Card Sorting 

Test. For example, Mejia, Pineda, Alvarez & Ardila (1998) reported age-related differences 

within a sample size of 60 participants with a mean age of 69.66 years.  

Considering age-related differences in working memory, Craik (1994) reported a decline 

across the adult lifespan. Furthermore, Park et al. (1996) and Park, Lautenschlager, Hed-

den, Davidson, Smith and Smith (2002) revealed a linear life-long decline with little or no 

evidence of accelerated decline in the later decades. Focusing on perceptual speed and 

working memory, Park et al. (1996) investigated 301 participants ranging from 20 to 90 

years. The results indicated that both processing speed and working memory depend on 

age-associated changes as well as the type of memory task. A further study conducted by 

Park et al. (2002) focused short-term, working, and long-term memory in 345 adults (rang-

ing from 20 to 92 years). Using tasks of visuo-spatial and verbal working memory, an age-

related decline in memory processes was shown continuously across the adult life span. 

Age-related differences in the ability to inhibit were first examined by Comalli, Wapner 

and Werner (1962). Investigating 235 people ranging from 7 to 80 years, the authors re-

ported an u-shaped curve in which the magnitude of the effect increased among the elderly. 

In a later study, Williams, Ponesse, Schachar, Logan and Tannock (1999) used the stop-

signal procedure to investigate age-related differences in a group ranging from 6 to 81 years 
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(N = 275). Although the results failed to confirm a u-shaped curve of age-related changes, 

the authors reported an age-related speeding of go-signal reaction time throughout child-

hood, followed by a marked slowing throughout adulthood.  

Focusing on age-related differences in shifting / set-shifting, Lezak (1995) reported that 

elderly do not necessarily reach the level of ‘dysfunction’, but rather show increased diffi-

culties. A u-shaped function for switching cost with larger costs found for young children 

and older adults (N = 152 ranging from 7 to 82 years) was identified by Cepeda, Kramer 

and Gonzalez de Sather (2001). Within three experiments Meiran, Gotler and Perlman 

(2001) revealed an increased switching cost with increasing age. Furthermore, the authors 

discussed their results in relation to the underlying neural mechanisms, especially the pre-

frontal cortex. Numerous other authors have also discussed a frontal deterioration respon-

sible for impairments in executive functions of the elderly (e.g. Gunning-Dixon & Raz, 

2003; Burke & Barnes, 2006). Furthermore, MacPherson, Phillips and Della Sala (2002) 

differentiated between dorsolateral prefrontal and ventromedial prefrontal dysfunction. 

Participants (N = 90 ranging from 20 to 80 years) completed three executive function tasks, 

dependent on dorsolateral prefrontal dysfunction, and three tasks of emotion and social 

decision making, dependent on ventromedial prefrontal dysfunction. The participants 

showed an age-related effect in all dorsolateral prefrontal dysfunction tasks but not in tasks 

dependent on ventromedial prefrontal dysfunction. Age-associated differences in white 

matter (e.g. Ylikoski, Erkinjuntti, Raininko, Sarna, Sulkava, & Tilvis, 1995, Head et al., 

2004) were also associated with a decline in executive functions (Gunning-Dixon & Raz, 

2003, for review). Along with white matter associations, Buckner (2004) demonstrated a 

relationship between changes in gray matter and a decline in performance on executive 

functions. 

 

With a glance back to the present chapter, it should be noted that executive functions are a 

highly complex construct of functions responsible for monitoring, regulating and coordi-

nating the execution of goal-directed behavior. Although there is an increased need for 

further research in the field of executive functions, the three main processes of inhibition, 

working memory and shifting are frequently investigated in previous studies. Here, the 

present chapter has highlighted the most frequently-used paradigms such as the go-/nogo 

task in the context of inhibition, as well as also models such as Baddeleys’ model of work-

ing memory. Behavioral aspects of the main processes of executive functions were supple-

mented in terms of the underlying mechanism. Here, numerous studies proposed that it is 

probably unrealistic to expect a precise one-to-one correspondence between executive 

functions and discrete neuroanatomical structures (e.g. Anderson, Damasio, Jones, & 
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Tranel, 1991; Mountain & Snow, 1993; Reitan & Wolfson, 1994, 1995; Shallice & Bur-

gess, 1991). Based on previous studies, I suggest that the frontal lobe - and particularly the 

prefrontal cortex - must be seen as an important substrate for executive functions. 

 

2.3. Decision making 

Generally known as a process of choosing between desirable alternatives based on their 

relative value of consequences (e.g. Balleine, 2007; Edwards, 1954; Fond et al., 2013), 

Benjamin Franklin described the way of making decisions as follows: 

 

‘…my way is, to divide half a sheet of paper by a line into two columns, writing over the 

one pro, and over the other con. Then during three or four days’ consideration I put down 

under the different heads short hints of the different motives that at different times occur to 

me for or against the measure. When I have thus got them all together in one view, I en-

deavor to estimate their respective weights; and where I find two, one on each side, that 

seem equal, I strike them both out: If I find a reason pro equal to some two reasons con, I 

strike out the three. If I judge some two reasons con equal to some three reasons pro, I 

strike out the five; and thus proceeding I find at length where the balance lies; and if after 

a day or two of farther consideration nothing new that is of importance occurs on either 

side, I come to a determination accordingly.’ [Letter to Joseph Priestley, London, Septem-

ber 19, 1772] 

 

Today, we make decisions 100 to 1,000 times per day or even more in complex scientific, 

technical, economical, and leadership situations, as well as almost every situation of daily 

living. While Benjamin Franklin reflected upon his own process of decision making, the 

present chapter starts by reviewing three of the most common theories / perspectives in this 

context: the dual-theory, the somatic-marker hypothesis and the differentiation between 

decision making under objective and ambiguous risk (see Figure 7). 
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Figure 7 Theories of decision making. 

 

Becoming increasingly popular due to Kahneman’s bestseller ‘Thinking Fast and Slow’, 

the dual-theory offers a basic differentiation between deliberative and intuitive strategies 

of decision making (e.g. Kahneman, 2003; Epstein, Pacini, Denes-Raj, & Heier, 1996; Ev-

ans, 2003). While the idea of two distinct kinds of reasoning has been described as long as 

philosophers and psychologists have written about the nature of human thoughts (Evans, 

2003), today the two systems are described as implicit and explicit (Evans & Over, 1996; 

Reber, 1993), impulsive and reflective (Bechara, 2005) or system one and system two (Sta-

novich, 1999; Stanovich & West, 2000). Therbey, system one could be seen as rapid, par-

allel and automatic in nature and thus described as intuitive, whereas system two is char-

acterized by being slow, sequential in nature and making use of the central working 

memory (Baddeley, 2000; Oaksford & Chater, 2001). In addition, system two permits ab-

stract hypothetical thinking that cannot be achieved by system one (Baddeley, 2000; Evans, 

2003). Furthermore, Bechara, Damasio, Tranel and Damasio (1997) postulated that deci-

sions are often influenced by impulsive strategies of system one. These biases may be ex-

perienced as ‘hunches, guesses, or gut feelings’ associated with liking or disliking a deci-

sion option (Bechara et al., 1997). In recent literature, dual-process models have been crit-

icized for the strict separation of the systems, for potential theoretically wrong conclusions 

and being considered as unsatisfactory (Evans & Stanovich, 2013, for review). From a neu-

robiological perspective, there is strong evidence that the brain indeed has particular areas 

processing emotional impulses and particular areas processing cognitive reflections (Be-

chara, 2005). However, this evidence would also not support a strict separation of the sys-

tems, but rather an interaction between them (Schiebener & Brand, 2015). 
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A neurobiological perspective was introduced by Damasio, Everitt and Bishop (1996). The 

somatic marker hypothesis based on the assumption that making advantageous decisions 

in real life is linked to emotional mechanisms. Therefore, the somatic marker specifies a 

number of structures and operations required for the normal operation of decision making 

(Bechara & Damasio, 2005). Caused by the different understandings of emotions, Damasio 

et al. (1996) used the term ‘somatic’ to refer the collection of body-related responses that 

hallmark an emotion. Furthermore, Bechara and Damasio proposed that the ventromedial 

prefrontal cortex regulates signals from the body, to support decision making in situations 

of complexity and uncertainty (e.g. Bechara, Damasio, & Damasio, 2000a; Bechara, 

Tranel, & Damasio, 2000b; Damasio et al., 1996). Another brain area discussed by the 

authors comprises the amygdala. While the ventromedial prefrontal cortex is described as 

being necessary to trigger somatic states from secondary inducers, the amygdala is linked 

to primary inducers. The primary inducers can be understood as innate or learned stimuli 

that generate pleasurable or aversive states, whereas secondary inducers are thoughts and 

memories induced by the recall or imagination of an emotional event (Dunn, Dalgleish, & 

Lawrence, 2006, for review). A further aspect in the somatic marker hypothesis is the dif-

ferentiation between the ‘body loop’ and the ‘as-if loop’. The ‘body loop’ reflects actions 

of the body proper, whereas the ‘as-if loop’ is associated with the brain’s representation of 

the action expected to take place in the body (Bechara & Damasio, 2005; Dunn et al., 2006). 

Most empirical evidence for the somatic marker hypothesis comes from the Iowa Gambling 

Task. This experimental paradigm was designed to measure decision making in terms of 

how it factors ambiguity or uncertainty (Bechara, Damasio, Damasio, & Anderson, 1994; 

Bechara, Tranel, Damasio & Damasio, 1996; Dunn et al., 2006, for review). Using the Iowa 

Gambling Task, Turnbull, Evans, Bunce, Carzolio and O’Connor (2005) reported some 

synergies to the dual-theory indicated by an intuitive experiential mode, similar to system 

one in the dual-theory. 

 

Another approach which considering real-life decision making, is proposed in numerous 

neuropsychological studies differentiating risky decision making into either ambiguous or 

objective risk (Bechara, 2004; Bechara & Damasio, 2005; Brand, Labudda, & Mar-

kowitsch, 2006; Damasio, 1994; Epstein & Wang, 1994; Knight, 1921; Schiebener & 

Brand, 2015; Schiebener, Wegmann, Pawlikowski, & Brand, 2012; Volz & Gigerenzer, 

2012). Decision making under ambiguity, describes decisions without explicit information 

about the potential outcome and the possible consequences, whereas objective decisions 

are characterized by providing explicit rules for positive and negative outcomes, their 

amounts, and probabilities of occurrence. Based on the model of decision making under 
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ambiguity (Bechara et al., 1997) (Figure 8), Brand et al. (2006) suggested an alternative 

explanation for decision making under objective risk (Figure 9). 

 

 

Figure 8 The model of decisions under ambiguity (Bechara et al., 1997). 

 

 

Figure 9 The original model of decision making under objective risk (Brand et al., 2006). 

 

Although the two models look quite similar, there are some differences: in contrast to Be-

chara et al. (1997), Brand et al. (2006) - for example - proposed a possibility to decide 

based on rational or cognitive strategies alone. While the relationship between executive 

functions and decision making is not particularly considered in the model of Bechara et al. 

(1997), Brand et al. (2006) highlighted the directing role of executive functions in decision 

making under objective risk. In accordance with dual process theories (Evans 2003; Kahne-

man 2003; Reyna 2004), both models suggest two ways of decision making that can be 

triggered in parallel: a cognitive and an emotional way. Here, the emotional way is reported 
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to be influenced by previously chosen options, as suggested in the somatic marker hypoth-

esis. Furthermore, the cognitive way triggers the process of decision making by using strat-

egies of rethinking and probabilities and thus it is strongly associated with long-term 

memory.  

 

In 2015, the model of Brand et al. (2006) was revised by Schiebener and Brand (2015) 

following the idea of two interacting systems. The authors suggested that during decision 

making under objective risk both the impulsive and the reflective system are active, alt-

hough in most cases one of them is triggered as the leading processing mode. If it is the 

impulsive system, individuals go by immediate feelings (intuitions, impulses, urge for re-

ward, fear of punishment) constituting a liking / disliking of options. Here, feedback about 

consequences can trigger immediate reward and punishment reactions and thus can lead to 

the development of somatic markers. If the reflective system guides the decision-making 

process, individuals use cognitive control (extract information, deliberate on options, plan, 

strategize and monitor behavior). In this context, feedback can be used to check and mon-

itor the success of a current decision-making strategy and revise the strategy (Brand, Laier, 

Pawlikowski, & Markowitsch, 2009a). Whether a decision is made more impulsively or 

reflectively depends on the relative power of the two systems of a certain individual in a 

particular situation. For example, if the impulsive system has the upper hand, decisions 

probably become more spontaneous and riskier. If the reflective system has the upper hand, 

decisions can become more thought out, planned and guided by ratio considerations 

(Schiebener & Brand, 2015). Which of the two processing systems become the leading one 

is affected by several individual and environmental aspects, as well as the situation itself. 

Thereby, impulsive individuals and people in stressful situations seem to be prone to being 

guided by the impulsive system. Furthermore, people with better executive functions or 

after the induction of bad mood seem to be more frequently guided by the reflective system 

(Epstein et al., 1996; Kahneman & Tversky, 1979; Schiebener & Brand, 2015).  

While one of the next sub-chapters will focus on the underlying mechanisms of decision 

making in further detail, I conclude the present deliberations by providing a brief overview 

of the suggested mechanisms underlying decision making under ambiguity and objective 

risk. On the one hand, the prefrontal cortex as well as the fronto striatal loops are described 

as playing a highly significant role in both ambiguous and objective decision making under 

risk. On the other hand, Brand et al. (2006) suggested, that decision making under objective 

risk depends on the ventromedial prefrontal cortex, whereas decision making under ambi-

guity seems to be more strongly related to the limbic loop and the orbital or ventromedial 

part of the prefrontal cortex.  
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2.3.1. Measuring humans’ decision making 

In the past, many researchers have tried to quantify the process of decision making, by 

using various tests and assessments. This sub-chapter aims to provide an overview of some 

of the most commonly-used ones.  

Within the Iowa Gambling Task (Bechara et al., 1994) - which is classified as measuring 

decision making under ambiguity - participants have to make a series of choices, altogether 

100 times from four decks of cards. While the decks have different characteristics regarding 

gains and losses, the actual computerized version did not differ from the originally admin-

istered, using decks of paper cards (Bechara et al. 2000b; Bowman, Evans, & Turnbull, 

2005). The Iowa Gambling Task is reported to specifically activate the ventromedial pre-

frontal cortex (Bechara et al., 1994), which is confirmed by numerous lesion studies (An-

derson, Bechara, Damasio, Tranel, & Damasio, 1999; Bechara, 2003; Bechara, Damasio, 

Tranel, & Anderson, 1998; Bechara & Damasio, 2002; Bechara et al., 2000b; Buelow & 

Suhr, 2009; Fellows, 2004) as well as functional neuroimaging studies (Adinoff et al. 2003; 

Bolla et al. 2003; Ernst et al. 2002; Tucker, Potenza, Beauvais, Browndyke, Gottschalk, & 

Kosten, 2004; Windmann et al., 2006). By contrast, Fellows and Farah (2005) showed im-

pairments in the Iowa Gambling Task among individuals with both ventromedial and 

dorsolateral prefrontal cortex lesions. Along with the findings of the prefrontal regions, 

individuals with amygdala damage also showed impairments in the Iowa Gambling Task 

(Bechara, Damasio, Damasio, & Lee, 1999; Brand, Grabenhorst, Starcke, Van-

dekerckhove, & Markowitsch, 2007b; Brand, Recknor, Grabenhorst, & Bechara, 2007b), 

although no effects were reported in people with occipital or temporal lobe damage (Be-

chara, 2004). During recent years, the Iowa Gambling Task has been used in a wide range 

of patient groups. Impaired performance has been reported - inter alia - among patients 

with orbitofrontal/ventromedial prefrontal cortex lesions (e.g. Manes, Sahakian, Clark, 

Rogers, Antoun, Atiken & Robbins, 2002), frontal dysfunctions due to substance addiction 

(e.g. Bechara & Martin, 2004), schizophrenia (e.g. Shurman, Horan, & Nuechterlein, 

2005), obsessive compulsive disorder (e.g. Cavedini, Riboldi, D’Annucci, Belotti, Cisima, 

& Bellodi, 2002), attention-deficit/hyperactivity disorder (e.g. Malloy-Diniz, Fuentes, 

Leite, Correa, & Bechara, 2007), pathological gambling (e.g. Linnet, Røjskjær, Nygaard, 

& Maher, 2006), anorexia nervosa (e.g. Cavedini et al., 2004), Parkinson’s and Hunting-

ton’s disease (e.g. Thiel, Hilker, Kessler, Habedank, Herholz, & Heiss, 2003), chronic pain 

(e.g. Apkarian et al., 2004) and HIV positive substance-dependent males (Hardy, Hinkin, 

Castellon, Levine, & Lam, 2006). 
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The Game of Dice Task was developed to measure decision making under objective risk. 

Within the task, participants are provided with explicit information about the potential con-

sequences of different options and their subsequent probabilities (Brand, Fujiwara, Bor-

sutzky, Kalbe, Kesler, & Markowitsch, 2005). In contrast to the Iowa Gambling Task - 

which is predominantly attributed to either natural or heuristic, or simply to system one 

(Epstein et al., 1996; Evans, 2003; Kahneman, 2003; Kahneman & Frederick, 2007) - de-

cisions in the Game of Dice Task are mostly referred to the rational-analytical system (or 

system two). While more detailed information about the task will be provided within the 

methods of the third experiment, the following paragraph reviews existing findings in the 

context of the Game of Dice Task.  

The reported relevance of executive functions in decision making under objective risk are 

based inter alia on the numerous findings made in the context of the Game of Dice Task 

(Brand et al., 2005; Brand et al., 2007b; Brand, Roth-Bauer, Driessen, & Markowitsch, 

2008; Brand et al., 2009a; Euteneuer et al., 2009; Schiebener, Zamarian, Delazen, & Brand, 

2011; Schiebener et al., 2012; Schiebener, Wegmann, Pawlikowski & Brand, 2013; 

Schiebener, Wegmann, Gathmann, Laier, Pawlikowski, & Brand, 2014). Here, Brand et al. 

(2007b), Brand et al. (2009a) as well as Schiebener et al. (2011) showed that poorer deci-

sions in the Game of Dice Task are associated with lower executive functioning. Further-

more, Schiebener et al. (2012) reported the influence of subjects’ executive functions on 

decision-making behavior in the context of anchor effects. The authors revealed larger ef-

fects of a simultaneously-presented anchors (a fictitious top 10 list) on the performance of 

the Game of Dice Task among people with lower, compared to higher levels of executive 

functions. Investigating the influence of general control, concept formation and monitoring 

on Game of Dice Task performance, Schiebener et al. (2014) found that general control 

plays a key role in decision making under objective risk. Along with healthy subjects, nu-

merous studies of the Game of Dice Task have focused on patients with schizophrenia 

(Fond et al., 2013; Lee et al., 2007), Urbach-Wiethe (Brand et al., 2007a), bulimia nervosa 

(Brand, Franke Sievert, Jacoby, Markowitsch, & Tuschen-Caffier, 2007c), Korsakoff’s 

syndrome (Brand, Pawlikowski, Labudda, Laier, von Rothkirch, & Markowitsch, 2009b), 

attention-deficit/hyperactivity disorder (Drechsler, Rizzo, & Steinhauser, 2008) as well as 

neurodegenerative diseases (Gleichgerrcht, Ibáñez, Roca, Torralva, & Manes, 2010). Fur-

thermore, the relevance of executive functions in performing the Game of Dice Task also 

becomes obvious in the context of patients. For example, Brand et al. (2008) showed a 

higher risk-taking behavior in the Game of Dice Task with reduced executive functions 

among patients with opiate dependency. Furthermore, Euteneuer et al. (2009) demonstrated 

a correlation between executive dysfunctions and the Game of Dice Task, but not with Iowa 
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Gambling Task performance among patients with Parkinson’s disease. Combining the 

Game of Dice Task and a 2-back task, Gathmann, Schiebener, Wolf and Brand (2015) 

demonstrated the relevance of concept formation and monitoring in simultaneous decision 

making under objective risk and performing a working memory task. Furthermore, 

Schiebener et al. (2013) reported that people with high abilities in working memory and 

executive functions do not need advice to make frequent advantageous decisions, whereas 

those with lower abilities benefit from the advices. Another correlation often reported in 

the context of the Game of Dice Task is logical reasoning / intelligence (Brand et al., 2009a; 

Brand & Schiebener, 2013). Here, Brand et al. (2009a) discussed the influence of intelli-

gence and strategy application in performing the Game of Dice Task with and without 

feedback. Furthermore, participants’ intelligence and strategy application is found to influ-

ence the effects of feedback in performing the Game of Dice Task (Brand et al., 2009a; 

Schiebener et al., 2011).  

The behavioral studies of the Game of Dice Task are supplemented by neuroimaging find-

ings reporting a relationship between strategic components and the dorsolateral prefrontal 

cortex in a modified version of the Game of Dice Task (Labudda, Woermann, Mertens, 

Pohlmann-Eden, Markowitsch, & Brand, 2008). Furthermore, Labudda et al. (2008) re-

vealed a pattern comprising the prefrontal cortex, posterior-parietal lobe, anterior cingulate 

and right lingual gyrus related to the integration of information about probabilities and in-

centives. This pattern is assumed to be activated due to the involvement of executive func-

tions, conflict detection mechanisms and arithmetic operations. Focusing on age-related 

differences, Brand and Schiebener (2013) investigated the interactions of aging and cogni-

tive functions in the context of performing the Game of Dice Task. A large sample size of 

538 participants - ranging from 18 to 80 years - were asked to perform the Game of Dice 

Task, the Iowa Gambling Task as well as tasks measuring logical thinking and executive 

functions. Regarding the Game of Dice Task, older participants with good executive func-

tioning performed well, whereas older participants with impaired executive functions made 

more risky choices. Therefore, the authors concluded that age and cognitive functions act 

in concert of predicting decision-making performance. Regarding gender-related influ-

ences, the same study (Brand & Schiebener, 2013) revealed no effects, which is in accord-

ance with Starcke, Wolf, Markowitsch and Brand (2008). However, Starcke et al. (2008) 

focused on examining whether decision making could be affected by anticipatory stress. In 

this context, the authors reported that participants under stress scored significantly lower 

than the comparison group, while the performance of the Game of Dice Task was nega-

tively correlated with an increased level of cortisol. Pabst, Brand and Wolf (2013a) speci-

fied the influence of stress regarding the temporal development. Participants performed the 
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Game of Dice Task 5, 18, or 28 min after the application of the Trier Social Stress Test. 

The results indicated an improvement in decision making among the 5 and 18 min stress 

groups, while the 28 min stress group showed a more risky decision behavior compared to 

controls. Based on their findings, the authors concluded that a moderate increase in cate-

cholamine enhances decision-making performance, whereas elevated cortisol concentra-

tions may negatively affect decision making. The relevance of individuals’ cortisol re-

sponse in the context of decision making was also highlighted by Starcke, Polzer, Wolf, 

and Brand (2011a). Focusing on moral decision making, the authors revealed a positive 

correlation between cortisol responses and egoistic decision making in emotional dilem-

mas. A broader study was conducted by Gathmann et al. (2014a). The authors asked their 

participants to perform the Game of Dice Task with and without an additional working 

memory task (2-back task). Furthermore, participants received either the Trier Social Stress 

Test (stress group) or the placebo Trier Social Stress Test (control group). Using a 7-tesla 

magnetic resonance imaging, the stress group showed a greater increase in neural activity 

in the anterior prefrontal cortex when performing the 2-back task simultaneously with the 

Game of Dice Task compared to its single performance. While the anterior prefrontal cor-

tex is associated with parallel processing, the authors concluded that stress seems to trigger 

a switch from serial to parallel processing in demanding dual-tasking situations. Another 

study conducted by Gathmann, Pawlikowski, Schöler and Brand (2014b), investigated the 

effects of performing the Game of Dice Task and an additional 2-back task with affective 

pictures (positive, negative and neutral pictures). People who performed the additional 2-

back task with affective pictures (especially positive pictures) showed more disadvanta-

geous decisions in the Game of Dice Task compared to those who performed the 2-back 

task with neutral pictures or simply performed the Game of Dice Task without an additional 

executive task. These results impressively demonstrate the interaction between executive 

functions and emotional processing in predicting decision making under objective risk.  

Assessing individuals’ willingness to place already-accumulated reinforcement at risk, out-

side a learning context, the Cambridge Gambling Task is also classified as measuring de-

cision making under risk (Rogers et al., 1999a). In contrast to the Game of Dice Task, the 

task differentiates between the single components of a decision and thus measures risk-

taking, the quality of decision making, deliberation time, risk adjustment, delay aversion 

and overall proportion bet (Deakin, Aitken, Robbins & Sahakian, 2004; Rogers et al., 

1999a; Rogers et al., 1999b). Performing the Cambridge Gambling Task, participants had 

to guess whether a yellow token was hidden in a red or blue box. Subsequently, the partic-

ipants were asked to stake a proportion (i.e., 5%, 25%, 50%, 75%, or 95%) of their points 

on that decision (Clark, Bechara, Damasio, Aitken, Sahakian, & Robbins, 2008). While the 
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Game of Dice Task showed no gender differences (Starcke et al., 2008), the Cambridge 

Gambling Task revealed differences between men and women, albeit only in risk adjust-

ment (van den Bos, Homberg & de Visser, 2013). In the context of stress and decision 

making, Porcelli and Delgado (2009) observed a stress related affection of risk-taking be-

havior in a modified Cambridge Gambling Task. Given that decision-makers fell back on 

automatized reactions to risk under the influence of disruptive stress, the authors high-

lighted the consistency with dual-process approaches. In the past, the Cambridge Gambling 

Task was reported to be sensitive to many pathological states including attention-deficit/hy-

peractivity disorder (DeVito et al., 2008), borderline personality disorder (Bazanis et al., 

2002), Huntington’s disease (Watkins, Rogers, Lawrence, Sahakian, Rosser, & Robbins, 

2000) as well as age-related differences (Deakin et al., 2004). Further evidence from patient 

studies, highlights the relevance of frontal areas in performing the Cambridge Gambling 

Task (e.g. Clark et al., 2008). Additionally, the role of the ventro-medial prefrontal cortex 

and insular regions in this context was highlighted by the authors.  

While the Iowa Gambling Task, the Game of Dice Task, and the Cambridge Gambling task 

are most commonly used in decision-making studies, many other tests / assessments have 

been previously reported in this context. In order to ensure a better understanding of the 

neurophysiological findings reported in the next sub-chapter, Table 1 summarizes further 

paradigms with their classification to either decision making under risk, ambiguity, uncer-

tainty or others and provides a brief characterization and some key findings. 

 

Table 1 Tests for quantifying decision making. 

          

Assessments 

 

References Classified Aims/Description/ 

Characteristics  

Few results 

Columbia 
Card Task 

Figner & Voelki, 2004; 
Figner et al., 2009;  

Figner & Weber, 2011 

Decision making 
under objective 

risk 

Development changes 
and individual differ-

ences in healthy individ-

uals across the life span 
and in populations such 

as substance users 

Adolescents showed 
more risky behavior 

than adults 

Balloon Ana-

logue Risk 
Task 

Lejuez et al., 2002;  

Lighthall et al., 2009 

Decision mak-

ing under objec-
tive risk 

Participants are pre-

sented with a balloon 
and offered the chance to 

earn money by pumping 

the balloon up by click-
ing a button 

Gender differences 

as well as the influ-
ence of stress are re-

ported 

Cups Task Levin & Hart, 2003; 

Levin et al., 2007; 

Weller et al., 2011; 
Levin et al., 2014; 

Decision mak-

ing under objec-

tive risk 

Designed to provide a 

simple and direct way of 

depicting probability by 
merely counting the 

number of cups from 

which to choose in risky 
decision-making  

Children showed 

higher risk-taking 

behavior in the gain 
domain than adults 

The Ultima-

tum Game 

Güth et al., 1982; 

Sanfey et al., 2003 

Economic deci-

sion making 

Illustrates limitations of 

standard economical de-
cisions by giving partici-

pants the opportunity to 

split money or not 

Unfair offers elicited 

activity in brain ar-
eas related to both 

emotion and cogni-

tion 
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Probability 
Associated 

Gambling 

Zamarian et al., 2007; 
Sinz et al., 2008; 

Zamarian et al., 2008 

Decision mak-
ing under objec-

tive risk 

Requires participants to 
assess the probability of 

the possible gains and 

losses, and to flexibly 
adapt their decision strat-

egy to changes in the de-

cision situation. 

Patients with Alz-
heimer disease 

showed less advan-

tageous behavior 

Risky Gains 

Task 

Reske et al., 2015 Decision mak-

ing under objec-

tive risk 

In two subsequent gam-

bles on 96 trials, partici-

pants could gamble the 
safe option (cash in 20 

cents) for double or 

nothing, to gain 40 or, in 
the potential second 

gamble, 80 cents 

(“risky” decisions). 

Differences in acti-

vated structures be-

tween occasional 
stimulant users and 

healthy controls dur-

ing task perfor-
mance 

Wheel of For-

tune Task 

Haffke & Hübner, 2014; 

Ernst et al., 2004 

Decision mak-

ing under objec-
tive risk 

Participants had to de-

cide whether they 
wanted to play the lot-

tery with the higher win-

ning probability or the 
one with the higher po-

tential gain 

Performing without 

feedback, led to de-
cisions with higher 

winning probability, 

and ignoring the po-
tential gains 

Lane Risk 

Taking Task 

Lane & Cherek, 2000;  

Lane et al., 2005 

Decision mak-

ing under objec-

tive risk 

The task presented dis-

crete trials in which the 

subject was forced to 
choose between two re-

sponse options, labeled 

C and A on the response 
panel 

Participants with a 

high-risk history 

showed more often 
risky decisions, had 

lower overall earn-

ings, and were more 
likely to persist in 

making risky re-

sponses following a 
single gain on the 

risky option 

Rogers Deci-
sion-Making 

Task 

Rogers et al., 1999b;  
Fishbein et al., 2005 

Decision mak-
ing under objec-

tive risk 

Participants were told 
that the computer had 

hidden a yellow token 

inside one of the red or 
blue boxes (six in total 

with different distribu-

tion) and that they had to 
decide whether this to-

ken was hidden inside a 

red or a blue box 

Drug abusers 
showed greater risk 

taking and height-

ened sensitivity to 
rewards than control 

subjects 

Two-choice 

prediction 

task 

Paulus, 1997; 

Paulus et al., 2003a 

Decision mak-

ing under uncer-

tainty 

Participants had to pre-

dict whether a car will be 

shown on the left or right 
side of the computer 

screen 

Participants showed 

an increase in re-

sponse switching as 
a function of error 

rate 

Balls in a bot-
tle task 

Phillips & Edwards, 1966; 
Blackwood et al., 2004 

Decision mak-
ing under uncer-

tainty 

Participants are asked to 
imagine two bottles con-

taining balls of two dif-

ferent colors in varying 
proportions. They had to 

guess from which bottle 

a particular sequence of 
balls is likely to have 

been drawn 

  

Jumping to 

Conclusion 
Task 

Esslinger et al., 2013;  

Demanuele et al., 2015 

Decision mak-

ing under ambi-
guity 

Participants view fish of 

two colors jumping and 
had to decide from 

which of two lakes, con-

taining fixed ratios of 
each type of fish, they 

were coming 

Probabilistic reason-

ing and executive 
functions share neu-

ral substrates 

Speed-Accu-
racy Trade-Of 

Task 

Ivanoff et al., 2008 Perceptual deci-
sions 

A cue instructed partici-
pants to heed the speed 

or accuracy of their deci-

sions at the onset of a 
block of seven trials 

Tradeoff in perfor-
mance between re-

sponse speed and 

accuracy 
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2.3.2. Decision making and its underlying mechanisms 

While numerous previous neuroimaging studies of decision making have addressed dis-

ease-related differences, this chapter predominantly concentrates on findings based on 

healthy participants. Although Bolla et al. (2003) focused on the effects of cocaine abuse, 

healthy controls showed an increased right orbitofrontal cortex activity in performing the 

Iowa Gambling Task. Based on a group comparison, the authors concluded that orbitofron-

tal activity reflects differences in the anticipation of reward, whereas activity in the dorso-

lateral prefrontal and medial prefrontal cortex is anticipated with planning and working 

memory. Another study conducted by Bolla, Eldreth, Matochik and Cadet (2005) investi-

gated the effects of abstinent of substance abuse (marijuana) on decision making under 

ambiguity. Healthy controls showed a decision-related activity of the right dorsolateral pre-

frontal cortex, right lateral orbitofrontal cortex, and left cerebellum. The relevance of the 

dorsolateral prefrontal cortex in decision making under ambiguity was confirmed by De-

manuele, Kirsch, Esslinger, Zink, Meyer-Lindenberg and Durstewitz (2015), using the 

Jumping to Conclusion Task. Furthermore, the authors reported that the dorsolateral pre-

frontal cortex as well as the anterior cingulate cortex contributed more to the decision-

making phase, whereas the orbitofrontal cortex must be seen as being more involved in 

choice evaluation and uncertainty feedback. The involvement of the orbitofrontal cortex in 

decisions under ambiguity was also reported by Hsu, Bhatt, Adolphs, Tranel and Camerer 

(2005). While playing a card game with missing relevant information (decision under am-

biguity), participants showed a positive correlation with the amygdala and a negative cor-

relation with the striatal system. Performing the Iowa Gambling Task, participants in the 

study conducted by Li, Lu, D’argembeau, Ng and Bechara (2010) showed increased activ-

ity in both dorsolateral as well as orbitofrontal structures. Further activity was reported in 

the insula, the posterior cingulate cortex, the ventromedial prefrontal cortex, the ventral 

striatum, and the anterior cingulate. Along with a sole representation of the activated struc-

tures, the authors attributed single aspects of the decision process. Therefore, the dorsolat-

eral prefrontal cortex was attributed to working memory, the insula and posterior cingulate 

cortex to the representation of emotional states, the mesial orbitofrontal and ventromedial 

prefrontal cortex to coupling working memory and the representation of emotional states. 

Furthermore, the ventral striatum and anterior cingulate to implement behavioral decisions. 

A single activation of the medial frontal gyrus in performing the Iowa Gambling Task was 

revealed by Fukui, Murai, Fukuyama, Hayashi and Hanakawa (2005). Furthermore, they 

reported a significant inter-individual correlation between the task performance and the 

magnitude of brain activity during task performance. The anterior cingulate cortex seems 
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to play a highly relevant role in decision making under objective risk (e.g. Labudda, Brand, 

Mertens, Ollech, Markowitsch, & Woermann, 2010), uncertainty (e.g. Paulus, Feinstein, 

Simmons, & Stein, 2004) and ambiguity (e.g. Demanuele et al., 2015). In decision making 

under objective risk, increased activity of the anterior cingulate cortex was also reported 

by Ernst et al. (2002). Using a computerized card game, the authors revealed further activity 

in the orbital and dorsolateral prefrontal cortex, the insula, the inferior parietal cortex and 

the cerebellum. Furthermore, the authors reported an association of guessing with left sen-

sory-motor areas and the amygdala, whereas informed decision making activated areas that 

subserve memory and motor control. Within a further study, Ernst et al. (2004) reported 

neural activity of single components of decision making using the wheel of fortune task. 

Within the selection phase, participants showed predominantly recruited regions involved 

in visuo-spatial attention (occipito-parietal pathway). Conflict monitoring was associated 

with anterior cingulate activity, manipulation of quantities with parietal cortex activity and 

preparation for action with activity in premotor areas. Additionally, the anticipation phase 

was related to regions engaged in reward processes (ventral striatum). Another study re-

vealing increased activity in the anterior cingulate cortex during decision making under 

objective risk was conducted by Cohen, Heller and Ranganath (2005). While participants 

chose one out of two options in attempt to win money, increased activity in the anterior 

cingulate and orbitofrontal cortex was associated with high-risk decisions. Furthermore, 

the authors reported connectivity patterns inter alia in the amygdala and nucleus accum-

bens. As already described in the context of the Game of Dice Task, Labudda et al. (2010) 

revealed increased activity in the lateral prefrontal, anterior cingulate cortex and parietal 

lobe when integrating relevant information in the decision process. Focusing on the role of 

the insula in decision making, Xue, Lu, Levin and Bechara (2010) confirmed the findings 

of increased activity in the anterior cingulate cortex. Furthermore, the authors demonstrated 

a correlation of insular activity with individuals’ personality trait of urgency. Along with 

the anterior cingulate, which seems to be generally activated in decision making, the ven-

tromedial part of the prefrontal cortex - which is mentioned as being specifically activated 

in decisions under objective risk (Brand et al., 2006) - should be focused in detail. Consid-

ering patients with ventromedial prefrontal cortex lesions, Clark et al. (2008) reported an 

increased betting of the odds. Based on their findings, the authors highlighted the role of 

the ventromedial prefrontal cortex as well as the insular regions in decision making under 

objective risk. Along with the dorsal and ventral striatum, the anterior cingulate and orbito-

frontal cortex, dopaminergic mid-brain regions and the ventrolateral prefrontal cortex, 

Tom, Fox, Trepel and Poldrack (2007) reported an association between the ventromedial 
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and the anticipation and receipt of monetary rewards. In their study, participants had to 

decide whether to accept or reject gambles that offered a 50/50 chance.  

Implicated in disparate cognitive, affective, and regulatory functions, including interocep-

tive awareness, emotional responses, and empathic processes (Menon & Uddin, 2010), the 

insula is another structure that is frequently reported to be activated in decision making 

under objective risk (Paulus, Rogalsky, Simmons, Feinstein, & Stein et al., 2003b; 

Preuschoff, Quartz, & Bossaerts, 2008). For example, Paulus et al. (2003b) revealed three 

main findings: first, participants showed greater right insula activity in ‘risky’ versus ‘safe’ 

choices; second, the relation of the degree of insula activity was related to the probability 

of selecting a ‘safe’ response following a punished response; and third, the degree of insula 

activity correlated with subjects’ degree of harm avoidance and neuroticism. While Paulus 

et al. (2003b) used the Risky-Gains task, participants in the study conducted by Preuschoff 

et al. (2008) had to guess whether a second card would be higher or lower than the previous 

one. In their study, the authors revealed a correlation between early-onset activity in the 

insula and risk prediction error. Another subcortical structure, frequently reported in deci-

sion making under objective risk, is the striatum. More specifically, the ventral striatum is 

reported to be associated with reward (Ernst et al., 2004; Fliessbach et al., 2007 Tom et al., 

2007; Wilbertz et al., 2012), whereas the dorsal part of the striatum is attributed to action 

selection and initiation through the integration of sensorimotor, cognitive, and motiva-

tional/emotional information in decision making under objective risk (Balleine, Delgado, 

& Hikosaka, 2007; Wilbertz et al., 2012).  

Aiming to provide a brief overview of the relevant structures within the process of decision 

making, I additionally highlight the underlying mechanisms in Figure 10. 

 

 

Figure 10 Underlying structures of decision making. 
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Furthermore, the assignment of respective structures to the different kinds of decisions are 

additionally summarized in Table 2. Here, the terminologies are used from the respective 

studies.  

 

Table 2 Underlying structures of decision making. 

[assigned to objective risk, uncertainty, ambiguity, or others] 

          

Activated structures Objective risk Uncertainty Ambiguity Others 

Prefrontal cortex  30)    

Medial prefrontal cortex  23), 25), 27), 28)    

Lateral prefrontal cortex 17)   36) 

Right lateral prefrontal cortex  24)    

Inferior prefrontal cortex  21)    

Right inferior prefrontal cortex 1)     

Dorsolateral prefrontal cortex 2), 11) 20), 23) 35) 37) 

Right dorsolateral prefrontal cortex 8), 14)  32)   

Medial part of lateral prefrontal cortex 15)     

Ventromedial prefrontal cortex 10), 12)     

Right orbitofrontal prefrontal cortex 1)     

Orbital prefrontal cortex 2)     

Orbital gyrus 1)     

Orbitofrontal cortex 7) 20), 23), 24), 25) 34)   

Right orbitofrontal cortex   31)   

Right lateral orbitofrontal cortex   32)   

Medial orbitofrontal cortex 19)     

Paracingulate orbitolateral cortex 5)     

Right posterior orbitolateral cortex 5)     

Anterior part of the middle frontal gyrus 1)     

Anterior portion of the inferior frontal gyrus 1)     

Anterior cingulate cortex 2), 4), 7), 17), 18) 20), 21), 23), 27) 35)   

Right cingulate gyrus 11)     

Anterior cingulate gyrus 11)     

Dorsal anterior cingulate gyrus    38) 

Pregenual anterior cingulate cortex 5)     

Frontal cortex 9)     

Inferior frontal cortex 6)     

Medial frontal cortex 6) 30)    

Medial frontal gyrus   33)   

Premotor cortex  22)    

Limbisches System  26)    

Caudatus  29)    

Amygdala   34)   

Right Thalamus 2)     

Striatum 16)  34)   

Ventral Striatum 4), 10), 19)     

Dorsal Striatum 19)     

Insula 2), 12), 13), 18) 28)    

Insula right 3)     

Anterior Insula    37) 

Nucleus accumbens caudate 6)     

Temporal cortex  23)    

Superior temporal gyrus 6)     

Middle temporal gyrus 6)     

Fronto-parietal system  26)    

Parietal cortex 4), 17) 20), 29), 30)    

Right parietal cortex  23)    

Posterior parietal lobe 11) 21)    

Inferior parietal cortex 2) 22)    
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Occipito-parietal pathways 4)     

Occipital cortex 6)     

Medial occipital cortex  22)    

Cerebellum    22)    

Cerebellum left 2)   32)   

 

1) Rogers et al. (1999b): Computerized risk-taking task; 2) Ernst et al. (2002): Risk-taking task; 3) Paulus et al. (2003b): 
Risky-Gains task; 4) Ernst et al. (2004): Wheel of fortune task; 5) Rogers et al. (2004): Decision-game (choosing be-

tween two simple gambles); 6) Matthews et al. (2004): Lane Risk Taking Task; 7) Cohen et al. (2005): Binary choice 

task in attempt to win money; 8) Ersche et al. (2005): Cambridge Risk Task; 9) Fishbein et al. (2005): Rogers decision-
making task; 10) Tom et al. (2007): Gamble offers 50/50 chance of gaining or losing; 11) Labudda et al. (2008): Game 

of Dice Task (without feedback); 12) Clark et al. (2008): Cambridge Gamble Task; 13) Preuschoff et al. (2008): Card 

game (people had to decide whether the second card would be higher or lower than the first); 14) Rao et al. (2008): Bal-
loon Analog Risk Task; 15) Xue et al. (2009): Computerized version of the Cups task; 16) Hsu et al. (2009): 120 self-

paced trials (choosing between two simple gambles); 17) Labudda et al. (2010): Game of Dice Task; 18) Xue et al. 

(2010): Modified Cups Task; 19) Wilbertz et al. (2012): Game of Dice Task & Delay discounting; 20) Paulus et al. 
(2003a): Two-choice prediction task; 21) Paulus et al. (2003c): Two-choice predicition task;  22) Blackwood et al. 

(2004): Balls in a bottle task; Personality survey task; 23) Critchley et al. (2001): Two-choice decision-making task; 24) 
Elliott et al. (1999): Simple card-playing task; 25) O'Doherty et al. (2003): Choice reversal task; 26) Paulus et al. 

(2001): Two-choice prediction task; 27) Paulus et al. (2004): Two-choice predicition task; 28) Paulus et al. (2005): 

Rock Paper Scissors computer game; 29) Verney et al. (2003): Two choice prediction task; 30) Yarkoni et al. (2005): 
Selecting from 1 of 2 decks; 31) Bolla et al. (2003): Iowa Gambling task; 32) Bolla et al. (2005): Iowa Gambling task; 

33) Fukui et al. (2005): Iowa Gambling task; 34) Hsu et al. (2005): Betting on one of the two options; 35) Demanuele et 

al. (2015): Jumping to Conclusions task; 36) Ivanoff et al. (2008): SAT-task; 37) Sanfey et al. (2003): Ultimatum Game; 
38) Bush et al. (2002): Reward-based decision making 

 

2.3.3. Age-related differences in decision making 

The particular relevance of considering age-related differences in decision making is based 

inter alia on the increasing age of our world population, especially in most industrialized 

countries and the important that choices older adults still have to make. Here, biological, 

emotional and social changes are discussed as being responsible for the differences in de-

cision making among the elderly (Denburg, Recknor, Bechara, & Tranel, 2006). Early find-

ings indicated avoidance strategies and a transfer of responsibility with increasing risk of 

decisions in older adults (Deber, Kraetschmer, & Irvine, 1996; Wallach & Kogan, 1961). 

The question concerning the extent to wich risk-taking changes during the process of aging, 

was addressed in a meta-analysis by Mata, Josef, Samanez-Larkin and Hertwig (2011). 

Based on 29 studies, the authors highlighted the relevance of task characteristics as well as 

the process of learning in decision making among older adults. Another review, conducted 

by Wiesiolek, Foss and Diniz (2014) summarized nine studies investigating decision mak-

ing and aging using the Iowa Gambling Task. Here, the authors concluded that there is no 

consensus about age-related differences in decision making, but rather an agreement con-

cerning deficits of the elderly in learning and a tendency towards fewer advantageous 

choices. Considering the two studies with the largest sample size included in their review 

(Fein, McGillivray, & Finn, 2007; Wood, Busemeyer, Koling, Cox, & Davis 2005), the 

lack of consensus in this context becomes obvious. On the one hand, Wood and colleagues 
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(2005) revealed equal performance throughout the task among both younger (n: 88, age: 

22.14±4.47) and older participants (n: 67, age: 77.30±4.61), whereas differences between 

the two groups were identified in the strategies used by the participants. By contrast, Fein 

et al. (2007) reported less advantageous decision making among older adults (n: 52, age: 

73.7±7.4) compared to their younger counterparts (n: 112, age: 37.8±10.8). Furthermore, a 

great number of the older participants showed an ‘impaired’ performance of the Iowa Gam-

bling Task. This is in accordance with one of the most commonly cited studies in this con-

text (Denburg, Tranel, & Bechara, 2005). Here, older adults (56 – 85 years) made generally 

less advantageous decisions compared to a sample of younger adults (26 – 55 years). Fur-

thermore, half of the older participants performed the Iowa Gambling Task in a manner 

reminiscent of neurological patients with damage to the ventromedial prefrontal cortex. 

Support for the findings reported by Wood et al. (2005) come from Carvalho, de Oliveira 

Cardoso, Shneider-Bakos, Kristensen and Fonseca (2012). While older participants (n: 40, 

age: 67.4±5.02) performed equally in the Iowa Gambling Task, compared to the younger 

ones (n: 40, age: 25.5±4.7), the authors reported significant differences in the learning 

curve of the two age groups. In addition to the studies summarized in the review by 

Wiesiolek et al. (2014), further studies of the Iowa Gambling Task need to be considered 

in this context. For example, Kovalchik, Camerer, Grether, Plott and Allman (2005) exam-

ined different aspects of decision making in a sample of older adults (n: 50, age: 70-95) 

and younger students (n: 51, age: 18-36). The results indicated similar decision behavior 

across the two groups. In a series of three studies, Denburg et al. (2007) investigated the 

hypothesis that some seemingly normal older persons have deficits in reasoning and deci-

sion making. The authors found that more than one third of the older adults performed 

disadvantageously on the Iowa Gambling Task. In a more recent study conducted by Bauer, 

Timpe, Edmonds, Bechara, Tranel and Denburg (2013), 265 healthy participants ranging 

from 23 to 88 years performed two versions of the Iowa Gambling Task. The authors re-

ported a significant negative correlation between age and task performance in version one, 

which requires choosing lower immediate reward, but not in the version two, which re-

quires higher immediate punishment. Furthermore, older participants showed a signifi-

cantly higher rate of impaired performance in version one, compared to version two. An 

inverted u-shaped function of Iowa Gambling Task performance was reported across the 

life span from 5 to 89 years, by Beitz, Salthouse and Davis (2014). The authors reported 

distinct deficits in children and older adults, as well as a change in decision-making strate-

gies after childhood from erratic behavior to more consistent strategies that promote the 

expected value of deck choices. Similar findings come from Weller, Levin, & Denburg 
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(2011), who reported an inverted u-shaped course expected value sensitivity in risky 

choices increasing from childhood to adulthood, followed by a decrease among the elderly. 

As already reported in the context of the Game of Dice Task, Brand and Schiebener (2013) 

indicated age-related differences in a large sample size of 538 participants, ranging from 

18 to 80 years. In a more recent study, Schiebener and Brand (2017) highlighted the role 

of cognitive abilities as a mediator of age-related differences in both the Iowa Gambling 

Task and Game of Dice Task. Thereby, effects of aging in the performance of the Game of 

Dice Task were only indicated in the last 60 trials. Additional findings from the Cambridge 

Gambling Task revealed reduced risk-taking behavior with increasing age (Deakin et al., 

2004). Furthermore, older participants showed longer deliberation times, poorer decision 

making and reduced risk-taking, but no significant changes in delay aversion. By contrast, 

Zamarian, Sinz, Bonatti, Gamboz, & Delazer (2008) found no differences in task perfor-

mance between younger and older adults. Within the probability-associated gambling task 

(decision making under risky conditions), Zamarian et al. (2008) also reported similar task 

performance among younger and older adults. The authors argued that the missing differ-

ences are based on the relatively low emotional impact of the task. Thereby, the emotional 

impact playing key role in decision making among the elderly is discussed in numerous 

further studies (e.g. Carstensen, Fung, & Charles, 2003; Carstensen, Isaacowitz, & Charles, 

1999; Mather & Johnson, 2000). For example, Carstensen et al. (2003) reported an associ-

ation between increasing motivation to derive emotional meaning from life and a reduced 

motivation to expand one’s horizons. Furthermore, the authors suggested that the differ-

ences are responsible for the changes in social and environmental choices. Within the study 

conducted by Mather and Johnson (2000), the authors gave their participants two option 

choices and asked them to review how they felt about their decisions. Older adults (64-83 

years) attributed significantly more positive and fewer negative features to their chosen 

options. Another aspect used for explaining the occurrence or absence of age-related dif-

ferences in decision making concerns the applied learning strategies. Especially studies that 

failed to identify any age-related differences in decision making reported different learning 

strategies in the elderly (Lamar & Resnick, 2004; MacPherson et al., 2002; Wood et al., 

2005). Based on numerous previous works, Beitz et al. (2014) summarized that there is 

consistent evidence suggesting that some learning-related improvement occurs between 

childhood and adulthood, which declines among older adults. In this context, Kovalchik 

and Allman (2006) highlighted the role of reversal learning in older adults’ performance of 

the Iowa Gambling Task. Furthermore, Denburg et al. (2005) reported that older adults had 

generally flatter learning curves compared to younger adults, which might be responsible 

for more advantageous decisions over time.  
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As reported in the previous chapter concerning executive functions as well as the sub-chap-

ter of decision making, previous works suggested a relationship between age-related dif-

ferences in executive functions and decision making (e.g. Brand et al., 2009a; Schiebener 

et al., 2011; Schiebener et al., 2012). While Finucane and colleagues (Finucane & Lees, 

2005; Finucane, Mertz, Slovic, & Schmidt, 2005) highlighted that age-related difficulties 

in decision making are strongly related to a decrease in general cognitive abilities, such as 

executive functions, memory and speed of information processing, others specify the role 

of poor executive functions in the elderly regarding a tendency to search for less infor-

mation compared with young adults before making a decision (Mather, 2006, for review). 

The relevance of the ventromedial prefrontal cortex as well as the striatum in decision mak-

ing - as mentioned in the previous sub-chapter - becomes even more evident during the 

process of aging. For example, Samanez-Larkin, Gibbs, Khanna, Nielsen, Carstensen and 

Knutson (2007) reported an age-related reduction in striatal activity during loss anticipa-

tion, but intact activity during gain anticipation. A relationship between increasing varia-

bility in the striatum and increasing age was reported in a further study by Samanez-Larkin, 

Kuhnen, Yoo and Knutson (2010) in the context of financial decisions. Furthermore, Ep-

pinger, Schuck, Nystrom and Cohen (2013) demonstrated reduced ventromedial prefrontal 

activity during reward learning in the elderly, compared to younger controls. Using the 

Iowa Gambling Task, Rogalsky, Vidal, Li and Damasio (2012) reported that older adults 

engaged the right ventromedial prefrontal cortex during task performance relative to the 

control task. An age-related increase of ventromedial prefrontal cortex and the striatum 

activity as well as a more advantageous decision were identified by Halfmann, Hedgcock, 

Kable and Denburg (2016), using the Iowa Gambling Task. Similar findings come from 

Halfmann, Hedgcock, Bechara and Denburg (2014), in whose study older adults also 

showed a more advantageous behavior in the Iowa Gambling Task as well as increased 

activity in the prefrontal cortex. Using a two-choice prediction paradigm in conjunction 

with functional magnetic resonance imaging, Hosseini, Rostami, Yomogida, Takahashi, 

Tsukiura and Kawashima (2010) reported a network of brain regions activated in healthy 

older adults similar to younger controls. In contrast to others, the authors reported no in-

crease in brain activity, but an age-related decrease in activity of the right inferior parietal 

lobule. A risky-gains task was performed by twelve younger (age 29.9±6.2 years) and nine 

older men (age 65.2±4.2 years) in the study of Lee, Leung, Fox, Gao, & Chan (2008), while 

scanning their brain with a functional magnetic resonance imaging. The authors reported 

contralateral prefrontal activity particularly in the orbitofrontal cortex as well as increased 

activity in the right insula of older adults compared to the younger ones. In this context, the 

influence of the dopaminergic and serotoninergic brain system also needs to be considered. 
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While Mohr, Li and Heekeren (2010) assumed a relationship based on the findings of de-

cision making and neurotransmitter as well as aging and neurotransmitter, direct evidence 

comes from Chowdhury et al. (2013) (see also Shohamy & Wimmer, 2013). Here, the au-

thors used L-Dopa to increase dopamine levels in the brain of healthy older participants. 

The results demonstrated an increased task-based learning rate and task performance as 

well as activity in the striatum after L-Dopa application. Furthermore, Samanez-Larkin, 

Mata, Radu, Ballard, Carstensen and McClure (2011) showed that older adults with weaker 

correlations between activity of regions associated with the mesolimbic dopamine system 

and expected value make less optimal decisions. 

 

Summarizing the present chapter, first I reviewed three of the most common theories in the 

context of decision making, namly the dual-theory, the somatic marker hypothesis and the 

differentiation between objective and ambiguous risk. Highlighting their characteristics, it 

becomes obvious that some aspects strongly overlap or supplement each other. Considering 

the emerging paradigms, I supplemented the description of the Iowa Gambling Task, the 

Game of Dice Task, and the Cambridge Gamblich Task by listing further paradigms, their 

classification as well as a brief description. In this context, particular attention was paid to 

the Game of Dice Task. Along with general aspects, the relationship with executive func-

tions, the underlying mechanisms as well as also the influence of diseases, the process of 

aging, stress, the effects of simultaneously performing an additional task as well as the 

relevance of emotional aspects was highlighted.  

Regarding the underlying neural mechanisms, it can be summarized that the anterior cin-

gulate cortex plays a general role in decision making, whereas the ventromedial part of the 

prefrontal cortex is specifically activated in decision making under objective risk. Further 

studies have highlighted the different neural structures related to different phases of deci-

sion making. Here, the ventral striatum - for example - is associated with reward and the 

dorsal striatum with action selection and initiation. The ventromedial prefrontal cortex 

again becomes apparent during the process of aging. Considering age-related studies of 

decision making, previous studies have reported controversial findings. However, there is 

a consensus that learning strategies seem to play a highly relevant role in decision making 

among older adults. Nonetheless, again executive functions and cognitive abilities are also 

reported as key aspects in explaining individuals’ decision making.  
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2.4. Dual-task 

Humans’ ability to perform two or even more tasks simultaneously, as well as occurring 

interferences have been considered for more than 100 years in a vast number of studies 

among numerous fields of interest (e.g. Solomon & Stein, 1896). On the one hand, it is 

generally assumed that the combination of less-demanding stimuli leads to less interfer-

ences. On the other hand, previous studies have reported that well-practiced but relatively 

complex tasks such as shadowing spoken language while playing the piano (Allport, An-

tonis, & Reynolds, 1972), writing dictated words while reading a novel (Hirst, Spelke, 

Reaves, Caharack, & Neisser, 1980) or shadowing a text while typewriting (Shaffer, 1975) 

can also be performed without or less interferences. Within the present chapter, I will pro-

vide a better understanding of the term dual-task by providing an overview of existing the-

ories as well as behavioral and neurophysiological findings.  

The most common theories of dual-task include the capacity-sharing theory, the bottleneck 

theory as well as theories of crosstalk (Figure 11) (Pashler, 1994, for a review).  

 

 

Figure 11 Most common theories of dual-task. 

[Capacity-sharing: sharing processing capacity among tasks; Bottleneck: parallel processing might be impossible; Cross-

talk: interferences depend on the content of information of performed tasks]. 

 

Before focusing on the stated theories of dual-task, two terms, that are inevitable in this 

context, should be introduced, namely: the so-called ‘Psychological Refractory Period’ and 

the ‘Stimulus Onset Asynchrony’. 

The ‘Psychological Refractory Period’ describes a phenomenon that becomes present as 

soon as two demands occur within a short. Considering the second demand, the arising 

delay in execution (because the first demand is not already completed) is based on the 

psychological refractory period. First results showed a delay in response time of the second 

demand, by using an inter-stimulus interval of 0.2 seconds or less (Telford, 1931; Davis, 
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1956). In addition to Telford (1931) and Davis (1956) - who used two visual stimuli - Davis 

(1957) replicated the results by combining a visual and an auditory stimulus. While the 

psychological refractory period represents the time interval in which a further demand can-

not be processed (indicated due to the delay of demand two), the ‘Stimulus Onset Asyn-

chrony’ describes the time between two stimuli and thus is directly linked to the psycho-

logical refractory period (see also Figure 12). 

 

 

Figure 12 Effects of different stimulus onset asynchrony on response time. 

[Case one represents a shorter response time in the second demand (A2), due to a longer stimulus onset asynchrony be-

tween stimulus A1 and stimulus A2. Case two describes the opposite and thus illustrates again the relationship between 

these two components as well as the influence of stimulus onset asynchrony on the response time of the second demand / 

stimuli (A2)]. 

 

In varying the stimulus onset asynchrony, it has been found that a decrease leads to an 

increased response time of the second task (psychological refractory period-effect) (Kahne-

man, 1973), whereas the effect on the first task is much smaller (Smith, 1969) and some-

times essentially absent (Pashler & Johnston, 1989, Pasher, 1994). While the stimulus onset 

asynchrony is used in numerous fields of research (for example, in priming paradigms, see 

Perea & Gotor, 1997), for the present context the study conducted by Glass et al. (2000) 

should be focused in greater detail. Within two sub-studies, the authors investigated one 

group with younger adults (aged 18-26 years) and one with older adults (aged 60-70 years). 

Experiment one comprised two tasks (task one: one or two tones; task two: written numbers 

from one to eight) in which participants had to respond manually. The second experiment 

was equal to the first one, although the difficulty of the first task was increased by addi-

tional tones. Across both experiments, the two groups differed in the strategy to coordinate 

the tasks, the process-specific delay as well as the common delay, which was characterized 

by the psychological refractory period. Representing an own field of research, both the 

psychological refractory period as well as the stimulus onset asynchrony were only super-

ficially attended in the present chapter, but will be considered again within the theories of 

dual-task.  
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As stated at the beginning of this chapter, dual-task theories generally aim to provide an 

explanation for the occurring interferences in simultaneously performing two tasks. In this 

context, the theory of capacity-sharing might be the most frequently used, describing the 

distribution of processing capacity to existing demands. Based on the assumption that the 

human system has a finite amount of processing capacity, occurring interferences are at-

tributed to this aspect (Kahneman, 1973; Navon & Gopher, 1979; Tombu & Jolicœur, 

2002). While Norman and Bobrow (1975) coined this assumption with the term ‘re-

sources’, previous articles described it in terms of capacity, attention, effort, etc. (Kahne-

man, 1973; Kerr, 1973; Moray, 1967; Navon & Gopher, 1979; Posner & Boies, 1971; 

Shiffrin, 1976). Regarding the amount of resources available for processing the secondary 

demand, the complexity of the primary task is also reported to play an important role. In 

this context, Navon and Gopher (1979) summarized the parameter, characteristics of a task, 

underlying environmental factors and characteristics of the person under the term ‘subject-

task parameter’ and defined it as influencing the successful execution of the tasks. To gain 

a better understanding of the idea of a finite amount of processing capacity responsible for 

the occurring interferences in simultaneous task performances, numerous have been pub-

lished (Allport et al., 1972; Broadbent, 1971; Kahneman, 1973, Keele, 1973; Moray, 1967; 

Norman & Bobrow, 1975; Posner & Boies, 1971). On the one hand, it is suggested that one 

mental resource is responsible for limitations in task execution (e.g. Kahneman, 1973). On 

the other hand, there are some pleadings for the existence of multiple resources (Allport et 

al., 1972; Navon & Gopher, 1979) (Figure 13).  

 

 

Figure 13 Modified description of Navon & Gopher (1979). 

 

Although there are different assumptions within the capacity-sharing theory, it can be noted 

that a simultaneous processing of different demands is commonly assumed. 
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In contrast to capacity-sharing theories, bottleneck models (e.g. Pashler & Johnston, 1989) 

assume that it is impossible to process two or more tasks at the same time. First described 

by Welford (1952) in the context of the psychological refractory period, it is assumed that 

a ‘bottleneck’ occurs when two tasks need a single mechanism at the same time (Pashler, 

1993; Pashler, 1994). Therefore, bottleneck models suggest structural limitations rather 

than strategic choices (Pashler, 1994). During recent years, numerous studies have com-

pared the two approaches of capacity-sharing and bottleneck. Within their article ‘Uncork-

ing the Central Cognitive Bottleneck’, Schumacher et al. (2001) postulated that a perfect 

temporal distribution and thus a simultaneous processing in dual-task settings (within basal 

choice-reaction tasks) is generally possible. The authors combined auditory-verbal and vis-

ual-manual tasks and increased the difficulty due to the number of applied items as well as 

the extent of stimulus onset asynchrony. The results demonstrated the ability of participants 

to divide capacity on applied tasks. Furthermore, the fact that occurring interferences can 

be modulated by instructions regarding the task prioritization was highlighted. Another 

study recommending the theories of capacity-sharing was conducted by Tombu and Jo-

licœur (2002). Here, the authors combined auditory-manual and visual-manual tasks with 

different stimulus onset asynchrony as well as a varied order of stimuli. Differences in the 

performance of task one were shown with the increasing task complexity of task two. Based 

on their findings, the authors suggested that the allocation of capacity occurred gradually. 

By contrast, Ruthruff, Pashler and Hazeltine (2003) postulated a structural, central bottle-

neck within the simultaneous execution of two tasks.  

In addition to the capacity-sharing theories and the bottleneck models, the theories of cross-

talk should be additionally considered. Here, it is generally assumed that the amount of 

interferences depends on the similarity of simultaneously-performed tasks (Navon & Mil-

ler, 1987). For example, Navon and Miller (1987) showed that situations in which the dis-

tractor of one task is similar to the target category of a second task lead to higher interfer-

ences compared to situations with clear differences in the content. A more recent study 

conducted by Koch (2009) investigated the effects of a non-speeded visual task (different 

objects) and an auditory-manual reaction-time task combination. During the presentation 

of the objects, group one was instructed to focus on the left-right orientation of the pre-

sented object, while participants in group two were introduced to identify specific objects. 

In combination with the ‘high and low tone task’, the results showed higher cross-talk 

among the group that was instructed to focus on the left-right orientation compared to the 

object identification group. Based on their results, the authors suggested stronger cross-talk 

in compatible vs. incompatible trials. 
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Comparing the different theories, there is no consensus regarding what best describes hu-

mans’ information processing and occurring load in performing two tasks simultaneously. 

To gain a further insight into the current understanding of humans’ ability to perform two 

tasks simultaneously, the next sub-chapter will provide an overview of previous findings 

in both behavioral and neurophysiological settings. 

 

2.4.1. Behavioral findings 

The present sub-chapter of behavioral findings is divided into the combination of two cog-

nitive tasks (cognitive x cognitive) and the combination of a motor and a cognitive task 

(cognitive x motor).  

 

Cognitive x cognitive  

 

Combining two cognitive tasks is commonly used in a broad variety of research questions. 

For example, Baddeley, Lewis, Eldridge, and Thomson (1984) and Baddeley (1996), 

demonstrated a reduced task performance in combining two working memory tasks. Fur-

thermore, Phillips, Tunstall and Channon (2007) investigated the role of working memory 

in dynamic social cue decoding tasks. Within two experiments, the authors combined the 

Interpersonal Perception Task and the Profile of Non-verbal Sensitivity with the attention-

ally-loading 0-back task and the working memory loading 2-back task. The results demon-

strated a demand on working memory only in the Profile of Non-verbal Sensitivity but not 

in the Interpersonal Perception Task. Furthermore, Hegarty, Shah and Miyake (2000) ex-

amined the influence of different secondary executive tasks on the performance of three 

psychometric visuo-spatial tasks. The results showed a decrement in performance with in-

creasing task demand on the executive mechanism. The effects of concurrent working 

memory load on stroop task performance were investigated by Kim, Kim and Chun (2005). 

Within three experiments, the authors showed that concurrent working memory load does 

not always impair executive control. In this context, the content of the working memory 

task and the task-relevant information seem to play a highly relevant role. In a previous 

dual-task study, the stroop task was also used by Kahneman and Chajczyk (1983), who 

demonstrated a reduced stroop effect by presenting additional distractors in the display. 

Measuring eye movements, van Gelder, Lebedev, Liu and Tsui (1995) found an improve-

ment of eye-tracking performance in combination with an auditory listening task, but no 
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differences in combination with a distraction task. The results were confirmed by Kath-

mann, Hochrein and Uwer (1999), who showed a reduced pursuit error rate when attention 

was divided between two tasks. Here, the authors combined a visual-tracking task (moving 

target with constant or unpredictably varying velocity) with an auditory discrimination 

tasks. Participants in the study conducted by Karatekin et al. (2004) had to perform an 

auditory digit span and a simple visual response time task. Focused on both behavioral and 

pupillary measures, the authors reported a weak increase in task-evoked pupillary re-

sponses under the dual-task compared to the single-task condition. Additionally, an in-

crease in reaction time was revealed in the dual-task setting. Another study that combined 

two cognitive demanding tasks was conducted by Shallice et al. (1985). Combining a read-

ing and a listening task in which independent streams of random words were presented at 

rapid rates, the authors demonstrated only minor single- to dual-task decrements. 

The effects of decision making under dual-task conditions hold specific interest for the 

present context. As reported in the previous chapter, studies in this context have revealed 

interferences in additionally using cognitively demanding (Gathmann et al., 2014a,b; Gath-

mann et al., 2015; Pabst, Schoofs, Pawlikowski, Brand, & Wolf, 2013b; Starcke, Paw-

likowski, Wolf, Altstötter-Gleich, & Brand, 2011b; Verbruggen, Adams, & Chambers, 

2012). For example, in addition to aforementioned studies, Starcke et al. (2011b) revealed 

less advantageous decision behavior in simultaneously performing a high executive load 

task (2-back) compared to single decision making. Using a secondary task that induced 

cautious motor responding, Verbruggen et al. (2012) demonstrated a decline in gambling 

behavior. Furthermore, Pabst et al. (2013b) used the Trier Social Stress Test to induce stress 

and asked participants to subsequently perform a decision-making task either as a single-

task or in combination with a 2-back task. Stressed participants showed similar decision-

making behavior under dual-task conditions than non-stressed participants under single-

task conditions. Another study that used the same paradigm in combination with magnetic 

resonance imaging revealed no significant differences in task performance (Gathmann et 

al., 2014a). In contrast to the behavioral findings, neuro-imaging data showed increased 

activity in the anterior prefrontal cortex when stressed participants performed the 2-back 

task simultaneously with the decision task compared to single-task performance.  

Before considering the task combination of motor and cognitive tasks, a brief excursion to 

the cognitive involvement in motor demands seems inevitable. Therefore, the following 

section summarizes findings regarding the underlying mechanisms of various motor de-

mands as well as existing approaches. 
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Cognitive involvement in motor demands 

 

Considering the role of cognitive mechanisms in motor demands, the work conducted by 

Hauert (1986), plays a central role. In contrast to previous theories, the author introduced 

the approach that motor functions represent cognitive functions (Hauert, 1986). Further-

more, Georgopoulos, Crutcher, & Schwartz (1989) disproved the assumption that the motor 

cortex merely represents a first motoneuron. Here, the authors suggested that the motor 

cortex must rather be seen as a fundamental junction in processing cognitive information, 

related to motor functions. To date, this assumption has been confirmed by numerous non-

human (Alexander & Crutcher, 1990a; Alexander & Crutcher, 1990b; Ashe et al., 1993; 

Carpenter, Georgopoulos, & Pellizzer, 1999; Kettner, Marcario, & Clark-Phelps, 1996; 

Pellizzer, Sargent, & Georgopoulos, 1995; Riehle, Kornblum, & Requin, 1997; Shen & 

Alexander, 1997; Smyrnis, Taira, Ashe, & Georgopoulos, 1992; Wise, Moody, Blomstrom, 

& Mitz, 1998; Zhang, Riehle, Requin, & Kornblum, 1997) and human studies using elec-

troencephalography (Beisteiner, Höllinger, Lininger, Lang, & Berthoz, 1995), magne-

toencephalography (Lang, Cheyne, Höllinger, Gerschlager, & Lindinger, 1996), positron 

emission tomography (Honda, Deiber, Ibáñez, Pascual-Leone, Zhuang, & Hallett, 1998), 

functional magnetic resonance imaging (Karni et al., 1998; Lotze et al., 1999; Tagaris et 

al., 1998; Ungerleider, 1995) as well as transcranial magnetic stimulation (Chen, Gerloff, 

Hallett, & Cogen, 1997; Classen, Liepert, Wise, Hallett, & Cohen, 1998; Gerloff, Corwell, 

Chen, Hallett, & Cohen, 1998). 

Along with the relevance of the motor cortex, numerous previous studies have reported an 

involvement of cortical regions in both continuous and sequential movements; for example, 

in grasping and holding movements (Agashe, Paek, Zhang, & Contreras-Vidal, 2015; Alah-

madi et al., 2015; Gevins, Schaffer, Doyle, Cutillo, Tannehill, & Bressler, 1983; Grol et 

al., 2007; Park et al., 2015; Pavlova, Hedberg, Ponten, Gantelius, Valero-Cuevas, & 

Forssberg, 2015) as well as sequences of bimanual movements (Andres, Mima, Schulman, 

Dichgans, Hallett, & Gerloff, 1999; Debaere, Wenderoth, Sunaert, Van Hecke & Swinnen, 

2004; Gerloff & Andres, 2002; Nair, Purcott, Fuchs, Steinberg, & Kelso, 2003). Consider-

ing the underlying mechanisms of finger movements, Rao et al. (1993) and Salmelin, Forss, 

Knuutila and Hari (1995) revealed differences in cortical activity by varying the time and 

complexity of the movements. Similar findings were shown by Toma et al. (2002), who 

reported an increased activity in bilateral sensorimotor and supplementary motor area with 

increasing speed of motion. In the context of grasping and holding, Gevins et al. (1983) 

investigated the occurring differences between a move and non-move task by using elec-
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troencephalography. Considering the P300, the authors reported stronger correlations be-

tween occipital and central electrodes as well as occipital and frontal electrodes in the move 

compared to non-move task. In a functional magnetic resonance imaging study, conducted 

by Grol et al. (2007), the authors disproved the assumption of a specific cerebral conjunc-

tion for grasping objects. Furthermore, they reported an increased inter-regional coupling 

within the dorsomedial circuits in grasping large objects, whereas grasping small objects 

increased the effective connectivity of a mainly dorsolateral circuit. Regarding the recog-

nition and correction of errors in performing movements, previous clinical studies high-

lighted the relevance of the posterior-parietal cortex. For example, Gréa et al. (2002) 

showed that patients with an injury of the posterior-parietal cortex were able to plan move-

ments of grasping stationary objects, but were unable to correct their movements as soon 

as an unexpected change in the position of the object occurred. This is in accordance with 

previous transcranial magnetic stimulation studies (Desmurget, Epstein, Turner, Prablanc, 

Alexander, & Grafton, 1999). Additionally, the relevance of the posterior-parietal cortex 

within feedback processes of motor functions was discussed by Buneo and Andersen 

(2006). While participants in the study conducted by Grol et al. (2007) had to move the 

object after grasping, Agashe et al. (2015) asked their participants to grip different objects 

exclusively. Using electroencephalography, the authors showed an early involvement of 

contralateral fronto-central areas, followed by a later activation of central electrodes over 

primary sensorimotor cortical areas. Alahmadi et al. (2015) investigated the effects of five 

different grasping tasks (firm grasping, repeated grasping, etc.). The results demonstrated 

inter alia increased activity in sensory areas in more difficult tasks. Neural representation 

of tactile information was investigated by Pavlova et al. (2015). In their study, participants 

had to compress an unstable spring between the thumb and index finger under two condi-

tions: condition one comprised the blocking of digital nerves by local anesthesia, whereas 

in condition two participants were asked to perform the task under ‘normal’ circumstances. 

Comparing the two conditions, the authors revealed a maintenance of overall activity as 

well as an increase in activity in the dorsal premotor cortex after blocking the nerve. Fur-

thermore, Park et al. (2015) investigated the question concerning which motor cortical re-

gion best predicts imagined movement. Using two kinds of tasks (grasp and rotation tasks) 

under both real and imagined conditions, the authors revealed the most predictive infor-

mation about the distinction between executed movement and imagined movement in the 

primary motor cortex. On the other hand, the supplementary motor area keeps the most 

predictive information for imagined movements. Another study in this context was con-

ducted by Nair et al. (2003), who asked their participants to execute a ‘finger to thumb’ 

opposition task unimanually (left and right hand separately) and bimanually (both hands 
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sequencing together). Participants showed an intricate network comprising the sensorimo-

tor cortex, supplementary motor area, superior parietal lobe and cerebellum active under 

the execute condition. Nair et al. (2003) reported large absence of cerebellar activity under 

imagination. Within their review, Gerloff and Andres (2002) reported evidence of an ex-

tended cortical network involved in bimanual motor activities, which comprises the bilat-

eral primary sensorimotor cortex (SM1), supplementary motor area, cingulate motor area, 

dorsal premotor cortex and posterior-parietal cortex. While grasping or holding are gener-

ally classified as ‘simple’ motor tasks, Hesse and Deubel (2011) as well as McBride, Boy, 

Husain and Sumner (2012) highlighted the complexity of this kind of tasks by reporting 

the necessity of including sensory, motor and cognitive systems for its successful perfor-

mance. In this context, Georgopoulos (2000) described ‘non-cognitive’ movements as 

those that are not explicitly planned or instructed in their execution, such as the arm swing 

while walking. Thereby, walking itself must be seen as highly complex for the sensory and 

cognitive system (Al-Yaha, Dawes, Smith, Dennis, Howells, & Cockburn, 2011; Sheridan 

& Hausdorff, 2007). The involvement of higher cognitive control in walking was previ-

ously reported by numerous imaging studies in real (Harada, Miyai, Suzuki, & Kubota, 

2009; Miyai et al., 2001; Suzuki et al., 2004), imagined (Bakker, De Lange, Helmich, 

Scheeringa, Bloem, & Toni, 2008; Iseki, Hanakawa, Shinozaki, Nankaku, & Fukuyama, 

2008; Jahn, Deutschländer, Stephan, Strupp, Wiesmann, & Brandt, 2004; Malouin, Rich-

ards, Jackson, Dumas, & Doyon, 2003), and simulated walking conditions (Francis et al., 

2009; Huda et al., 2008; Sahyoun, Floyer-Lea, Johansen-Berg, & Matthews, 2004). Based 

on the present excursion, occurring interferences in simultaneously performing a cognitive 

and a motor task become more understandable, as will be shown in the next sub-chapter. 

 

Cognitive x motor 

 

Within an early study, Abernethy (1988) postulated that dual-task paradigms additionally 

enable the quantification of the relative cognitive demand of motor functions. The present 

chapter sheds light on both primary and secondary task-performance in dual-task studies 

that implemented gait or postural control. Combining memory tasks with sitting and tan-

dem stance, Kerr, Condon and McDonald (1985) demonstrated a decrease in spatial but not 

non-spatial memory task-performance under the tandem stance condition. Furthermore, 

balance was not interrupted by the spatial nor the non-spatial task. By contrast, Dault, Frank 

and Allard (2001a) reported a decrease in postural sway during different working memory 

tasks, regardless of the task type or difficulty. The authors confirmed their results in a sec-

ond study, in which both standing and cognitive task difficulty were varied (Dault, Geurts, 
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Mulder, & Duysens, 2001b). Participants in the study conducted by Ramenzoni, Riley, 

Shockley and Chiu (2007) performed three different working memory tasks while standing 

bipedal. The results showed a reduced postural sway variability during rehearsal and in-

creased variability during encoding. Using a spatial and non-spatial memory task, Maylor, 

Allison and Wing (2001) reported only marginal effects in cognitive task performance 

while standing compared to sitting. Furthermore, Mitra (2003) asked their participants to 

stand feet closed and simultaneously perform a conjunction search task. The results showed 

a faster performance of the cognitive task in closed stance compared to normal standing 

(feet at a comfortable angle). Aiming to provide a better understanding of improving bal-

ance performance, by using additional cognitive tasks, Swan, Otani, Loubert, Sheffert and 

Dunbar (2004) asked their participants to perform spatial and non-spatial memory tasks 

(similar to Kerr et al., 1985) under the following four sensory conditions: eyes open with 

force plate fixed, eyes closed with force plate fixed, eyes open with force plate sway-refer-

enced, and eyes closed with force plate sway-referenced. The results demonstrated a de-

crease in postural sway in the most difficult balancing task while simultaneously perform-

ing a memory task in both spatial and non-spatial memory conditions.  

In order to increase the difficulty of motor demands, other studies have used perturbation 

or dynamic platforms. For example, Shumway-Cook and Woollacott (2000) applied six 

different sensory conditions from a firm surface with eyes open to a sway-referenced sur-

face, optokinetic stimulation. In combination with a choice-reaction time auditory task, 

young participants showed no effects in any of the sensory conditions while additionally 

performing the secondary task. The work conducted by Riley, Baker, Schmit and Weaver 

(2005) holds particular interest to the present context. Here, the authors applied a short-

term memory task both visually and auditory while participants stood on a rigid or compli-

ant surface. The results showed that the spatiotemporal profile of postural sway was af-

fected by both conditions, but to a greater degree by the auditory one. No differences be-

tween visual and auditory were reported by Hunter and Hoffman (2001), but a greater var-

iability of the center of pressure in the non-cognitive condition. In the study conducted by 

Vuillerme, Nougier and Teasdale (2000), participants were asked to verbally responsd to 

visual and auditory stimuli while standing on a force platform. The results indicated a re-

duced displacement of the center of pressure while concurrently performing a reaction-time 

task. Furthermore, there was no effect of the difficulty of the task, nor any differences be-

tween the types of stimuli. The effect of articulation under dual-task circumstances has 

been investigated by Yardley, Gardner, Leadbetter and Lavie (1999) and Dault, Yardley 

and Frank (2003). Both studies combined a spoken mental task with different postural de-

mands. Focusing on articulation and attention, Yardley et al. (1999) found a significant 
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increase in sway based on articulation, whereas no effect of attention was observed (in the 

unstable surface condition). Similar was reported by Dault et al. (2003). Along with a gen-

eral increase of sway frequency and decrease of sway amplitude under dual-task conditions, 

articulation resulted in a more pronounced increase of sway compared to non-articulation 

tasks. The influence of attention on the dynamical structure of postural sway was further 

examined by Donker, Roerdink, Greven and Beek (2007). The authors asked their partici 

pants to stand upright with eyes open, eyes closed, eyes open while performing a cognitive 

task and eyes closed while performing a cognitive task. The results showed that standing 

with eyes closed leads to a significant increase of the center of pressure regularity. Further-

more, performing an additional cognitive task while standing with eyes closed leads to 

greater irregularity and lesser variability. Four conditions of varied attentional demands 

were used by Pellecchia (2003). While standing on a compliant surface, participants proved 

to be mostly influenced by the most difficult cognitive task, although the additional perfor-

mance of all cognitive tasks resulted in differences of postural control. In the study con-

ducted by Siu and Woollacott (2007), participants stood with feet together and were asked 

to prioritize the standing task or an additionally-performed visual spatial memory task. The 

authors demonstrated effects of prioritization in the cognitive but not in the postural control 

task. The influence of different instructions on simultaneously performing a motor and 

cognitive task was investigated by Mitra and Fraizer (2004). While most previous studies 

asked to focus on either a minimization of their sway or to take up stance and perform the 

cognitive task, Mitra and Fraizer (2004) additionally used the instruction of focusing on 

both tasks equally. Along with an increased error rate with increasing cognitive demand, 

participants performed the cognitive task faster under search-only instructions, which re-

versed significantly under combined instructions.  

Along with postural control studies, gait is a commonly-used motor component in dual-

task settings. Focusing on both standing and walking, Lajoie, Teasdale, Bard and Fleury 

(1993) reported significantly greater attentional cost for walking than standing under dual-

task conditions. Furthermore, reaction time increased in the single-support phase compared 

to the double-support phase. Similar findings were reported by Ebersbach, Dimitrijevic and 

Poewe (1995), who investigated the effects of simultaneously performing a memory-reten-

tion task and a fine motor task on walking performance. Here, Ebersbach et al. (1995) re-

ported an increase in double-support time in additionally performing a memory-retention 

task as well as a fine motor task. Furthermore, the authors found a decrease in cognitive 

task performance during gait. In the study conducted by Woollacott and Shumway-Cook 

(2002), participants were asked to walk a 10-meter conductive walkway under single-task 

and four dual-task conditions. However, finger tapping was the only secondary task that 



Theoretical background 

65 

  

produced a significant decrease in stride time, whereas double-support time was signifi-

cantly affected by both fine motor tasks and memory tasks. Furthermore, a greater reduc-

tion in recall performance of the digit span task was reported for gait compared to a quiet 

stance. Considering the variation of walking speed, Dennis et al. (2009) demonstrated a 

higher error rate in the cognitive task with increased walking speed. While Dubost, 

Annweiler, Aminian, Najafi, Herrmann and Beauchet (2008) reported no effects of a verbal 

fluency task on stride velocity, Beauchet, Dubost, Herrmann and Kressig (2005a) demon-

strated a decline in gait speed and the ability to enumerate numbers in an arithmetic task 

while walking. Combining different cognitive tasks with sitting, walking with preferred 

speed and walking under slow speed conditions, Patel, Lamar and Bhatt (2014) reported 

the lowest motor cost in the visuo-motor task and the highest for the stroop task under 

walking with a preferred speed. Considering the cognitive task-performance, the cost was 

highest for the visuo-motor task and lowest for the stroop task. Walking with slow speed 

resulted in increased motor cost and reduced cognitive cost only for the stroop task. Similar 

to the postural control study conducted by Mitra and Fraizer (2004), Kelly, Eusterbrock 

and Shumway-Cook (2013) again focused on different instructions. In walking under sim-

ple usual-base conditions with the instructions of equal focus and cognitive focus, partici-

pants showed no differences, whereas the instructions of walking focus and cognitive task 

prioritization resulted in different task performance. In the narrow base walking, the au-

thors reported similar findings for the equal-focus and walking-focus instructions, but dif-

ferences for the cognitive-focus instructions. Based on their findings, Kelly et al. (2013) 

highlighted the dynamic and flexible character of task prioritization. 

 

2.4.2. Neurophysiological findings 

The present chapter reviews literature investigating the underlying structures of performing 

two tasks simultaneously, independent of the kind of tasks. Principally, the findings can be 

classified based on the following pattern: 1) increased activity under dual- compared to 

single-task conditions; 2) no differences in the activity of the underlying structures; and 3) 

decreased activity in dual- compared to single-task conditions (Figure 14).  
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Figure 14 Previous findings of dual-task related neural activity. 

 

Studies reporting similar activity in single- compared to dual-task conditions consistently 

combined an auditory and a visual task. Here, Klingberg (1998) used two different working 

memory tasks, whereas Adcock, Constable, Gore and Goldman-Rakic (2000) combined an 

auditory noun task and a visual space or face task. Furthermore, Sigman and Dahaene 

(2008) combined different tones (auditory) and numbers (visually) with an inter-stimulus 

interval of 300ms. Considering studies reporting a decrease of neuronal activity in dual- 

compared to single-task conditions, both a specific (Goldberg et al., 1998; Just, Carpenter, 

Keller, Emery, Zajac, & Thulborn, 2001; Just, Keller, & Cynkar, 2008) as well as a general 

(Jaeggi et al., 2003) decrease have been reported.  

The category of increased activity in dual- compared to single-task conditions comprises 

20 studies with different task settings. While some of these studies compared single- and 

dual-task conditions, others investigated only the dual-task condition itself. Nevertheless, 

I assume that summarizing all structures reported to show increased activity under dual-

task conditions might manifest a common pattern in dual-task performance (Figure 15).  
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Figure 15 Underlying structures of dual-task. 

 

Considering the underlying mechanisms, a large variance of the activated structures be-

comes apparent. This might not be surprising because the dual-task paradigm does not 

comprise two clearly-defined tasks. However, more importantly there is no cortical struc-

ture, commonly active in dual-task situation, although the prefrontal cortex has been shown 

to be activated dominantly.  

Considering the investigated tasks within the reviewed studies, most researchers have con-

centrated on the combination of two cognitive tasks, whereas only small evidence comes 

from the additional performance of a motor task. The two studies that included a motor 

component combined self-paced tapping and a visual letter-counting task. Using functional 

magnetic resonance imaging, Wu, Liu, Hallett, Zheng and Chan (2013) identified increased 

activity in the precuneus and the cerebellum under dual-task conditions, whereas Wu and 

Hallet (2008) reported an additional activity only in structures of the precuneus. Herath et 

al. (2001) investigated dual-task related activity by using a somatosensory task. Here, the 

authors applied blunt, painless stimuli, while participants had to respond manually by 

pressing a button. The serial performance (stimulus onset asynchrony ranging from 200-

1200ms) with an additional cognitive task (application of different lights) resulted in in-

creased activity in the right inferior frontal gyrus only under small stimulus onset asyn-

chrony conditions. Jiang (2004) combined two cognitive tasks with a manual response. In 

accordance with Herath et al. (2001), the authors reported increased activity in the right 

inferior frontal gyrus only under small stimulus onset asynchrony. Furthermore, the author 

reported increased activity in the frontal operculum. While Jiang (2004) and Herath et al. 

(2001) showed a right handed increase of activity in the inferior frontal gyrus, both Marois 

et al. (2006) and Hsieh et al. (2009) revealed a bilateral increase in the inferior frontal gyrus. 

In addition, Marois et al. (2006) found increased activity in the dorsal premotor cortex, 

whereas Hsieh et al. (2009) identified a dual-task related increase of activity in the follow-

ing structures: anterior insula, orbitofrontal cortex, lateral prefrontal cortex, supplementary 
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motor cortex, anterior and posterior cingulate gyrus, right superior parietal lobe, right intra-

parietal sulcus, right precuneus and right cuneus. In their study, participants had to watch 

a video of driving a car while answering different questions. Furthermore, they combined 

the conversation task with the additional presentation of red circles or ring tones (answering 

manually). The relevance of the frontal lobe in dual-task situations was additionally con-

firmed by Erickson et al. (2005), who identified increased activity in the anterior cingulate 

cortex and the prefrontal cortex. Furthermore, the authors reported increased activity in the 

parietal lobe (inferior parietal lobe and superior parietal lobe) as well as subcortical areas 

under dual-task conditions. Increased activity in the prefrontal cortex was also reported by 

D’Esposito, Detre, Alsop, Shin, Atlas and Grossman (1995). In their study, the authors 

combined a verbal and a spatial passive working memory task. Increased activity in the left 

prefrontal cortex was shown by Bunge et al. (2000) and Loose, Kaufmann, Auer and Lange 

(2003). While Bunge et al. (2000) used a paradigm consisted of two working memory tasks, 

Loose et al. (2003) combined different tones (frequency of 450 and 1070 Hz) and different 

symbols (circles and crosses). Along with these findings, numerous studies have reported 

a dual-task related increase of activity in specific structures within the prefrontal cortex 

(Dux et al., 2006; Koechlin, Basso, Pietrini, Panzer, & Grafman, 1999; Smith, Geva, 

Jonides, Miller, Reuter-Lorenz, & Koeppe, 2001; Szameitat, Lepsien, von Cramon, Sterr, 

& Schubert, 2006). For example, Dux et al. (2006) demonstrated increased activity in the 

posterior lateral prefrontal cortex as well as the superior medial frontal cortex, which is 

reported as highly relevant in both motor and cognitive control (Nachev, Kennard, & Hu-

sain, 2008; Picard & Strick, 2001; Rushworth, Walton, Kennerley, & Bannerman, 2004). 

The authors used a serial presentation (SOA: 300, 1100, and 1900ms) of eight different 

tones and eight circles with different colors. While people had to respond manually in the 

auditory task, they gave their answer verbally in the visual task (Dux et al., 2006). Analyz-

ing an online letter-matching task under four conditions - control, delay, dual-task and 

branching - Koechlin et al. (1999) suggested that the fronto-polar prefrontal cortex selec-

tively mediates humans’ ability to hold a primary goal in mind, while exploring and pro-

cessing a secondary goal. Smith et al. (2001) reported a dual-task related increase in left 

dorsolateral prefrontal cortex activity, albeit only among younger adults. In their study, 

participants had to evaluate words or equations in terms of, whether they are right or wrong. 

In addition, a memory task was simultaneously presented, in which participants had to 

memorize words and recite them later. Increased activity in the lateral prefrontal cortex was 

reported by Szameitat et al. (2006), who explained their results with the temporal coordi-

nation of the dual-task performance. Furthermore, Szameitat et al. (2006) identified a spe-

cific increase in right frontal gyrus activity, which was already reported by Herath et al. 



Theoretical background 

69 

  

(2001), Jiang (2004) and Marois et al. (2006). A third structure identified by the authors 

comprises the left inferior frontal sulcus. This was also reported by Schubert and Szameitat, 

(2003) and Collette et al. (2005) (bilateral). In this context, Schubert and Szameitat (2003) 

suggested the left inferior frontal sulcus as a key structure in performing dual-task. Fur-

thermore, Collette et al. (2005) described a dual-task related increase in anterior prefrontal 

cortex as well as posterior middle frontal gyrus activity. Considering the characteristic of 

the tasks, both studies combined a visual and an auditory task but differed in the way of 

presentation: while Schubert and Szameitat (2003) presented the stimuli in a serial way 

(SOA: 125 and 200ms), Collette et al. (2005) presented the stimuli simultaneously. Sza-

meitat et al. (2002) and Low, Leaver, Kramer, Fabiani and Gratton (2005), identified in-

creased activity in the posterior middle frontal cortex. While Szameitat et al. (2002) used 

functional magnetic resonance imaging; Low et al. (2009) used an event-related optical 

signal. Combining a visual and auditory task, participants in the study of Szameitat et al. 

(2002) had to react directly to a stimulus, whereas those in the study of Low et al. (2009) 

had to count specific tones and reflect them at the end. In the visual task, Szameitat et al. 

(2002) presented quadrates with different colors, while Low et al. (2009) used series of 

letters. Furthermore, Low et al. (2009) presented the stimuli in a simultaneous way, 

whereas Szameitat et al. (2002) combined the stimuli with a stimulus onset asynchrony of 

50, 125 and 200ms. Along with the increased posterior middle frontal gyrus activity, Sza-

meitat et al. (2002) identified increased activity in the inferior frontal sulcus and the intra-

parietal sulcus. Regarding the dual-task related increase in inferior frontal sulcus, the find-

ings are in accordance with Stelzel, Schumacher, Schubert and Mark (2006). Here, the 

dual-task paradigm comprised a visual (localization of signals) and an auditory task setting 

(distinguishing between tones with different frequency), where participants had to response 

either manually or verbally.  

While most of the reported studies combined a visual and an auditory task, Dreher and 

Grafman (2003) used only visual task combinations. In their study, participants had to de-

cide whether the presented letter is a vowel or a consonant, as well as further determining 

the location of its presentation. The results indicated increased activity in the anterior cin-

gulate cortex in performing two tasks simultaneously. Furthermore, the lateral prefrontal 

cortex as well as the intra-parietal sulcus region showed increased activity under task-

switching conditions. Additionally, Szameitat et al. (2006) described increased activity in 

the lateral prefrontal cortex in a visual / visual dual-task setting, Here, the stimuli were 

presented with a stimulus onset asynchrony of 200ms. Among the studies, reporting in-

creased activity in dual- compared to single-task conditions, all studies except Wu et al. 

(2013) and Wu and Hallet (2008), who reported increased activity in frontal structures. 



Theoretical background 

70 

  

Therefore, it can be assumed that the frontal lobe plays a significant role in dual-task per-

formance, independent of the type of stimulus, kind of response, way of presentation or 

temporal combination (either with or without a delay). 

 

2.4.3. Age-related differences in dual-task performance 

During the previous sub-chapters, it became apparent that the amount of interferences in 

simultaneously performing two or even more tasks depends on numerous factors. One as-

pect frequently discussed in the past address the effects of aging. (Beurskens & Bock, 2012; 

Riby, Perfect, & Stollery, 2004; Verhaeghen, Steitz, Sliwinski, & Cerella, 2003). In gen-

eral, there is inconsistency concerning whether the process of aging is associated with in-

creased dual-task costs (e.g. Baddeley, Baddeley, Bucks, & Wilcock, 2001b; Logie et al., 

2004; Nyberg, Nilsson, Olofsson, & Bäckman, 1997). One explanation for this incon-

sistency comes from Riby et al. (2004), who suggested that the methodological variation 

in dual-task studies is responsible for the phenomenon. Furthermore, the characterization 

of simultaneously-performed tasks - as supposed by Lindenberger, Marsiske, & Baltes 

(2000) - seems to play a highly relevant role. In this context, Verhaeghen and Basak (2005) 

highlighted simple and choice-reaction time tasks, working memory tasks, tests of episodic 

memory, tests of spatial and reasoning abilities, mental rotation, and visual search perfor-

mance as being sensitive to measuring age-related differences.  

Findings have supported the idea of increased age-related dual-task cost with increasing 

task difficulty / complexity, summarized in the complexity hypothesis (e.g. Hartley & Lit-

tle, 1999; Mattay et al., 2002; McDowd & Craik, 1988; Salthouse, Rogan, & Prill, 1984; 

Wright, 1981). On the other hand, studies have proposed greater age-related differences in 

performing simple tasks (Crossley & Hiscock, 1992; Korteling, 1991). In contrast to the 

assumption of a mediation of task difficulty / complexity on age-related dual-task costs, in 

their meta-analysis Verhaeghen et al. (2003) suggested an independency of these variables. 

Focusing on age-related differences of dual-task costs in simultaneously performing two 

cognitive tasks, Jennings, Brock and Nebes (1990) combined an arithmetic task with an 

additional monitoring task. The authors reported that older participants were less well pre-

pared for rapidly presented stimuli compared to younger participants. Interesting findings 

in the context of task difficulty / complexity come from Vaportzis, Georgiou-Karistianis 

and Stout (2013), who combined simple and complex reaction-time tasks with digit tasks. 

The results indicated that older adults performed significantly slower, but as accurately as 

younger adults in the simple choice-reaction time task, whereas a reversed pattern was 
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shown in the more complex choice response time task. Here, older adults were significantly 

less accurate, but as fast as younger adults. Based on their findings, the authors suggested 

different age-related strategies depending on complexity and difficulty. Different modali-

ties in stimulus presentation were focused in an early study by Baron and Mattila (1989). 

Here, both groups reported a decrease under dual-task compared to single-task conditions, 

but older participants performed much worse under single- and dual-task. Another early 

study combining the two modalities of auditory and visual presentation, was introduced by 

McDowd and Craik (1988). In order to additionally manipulate task difficulty, the authors 

created four different task combinations from a simple / simple to a difficult / difficult task 

combination. The results showed a general age-related slowing, as well as a further deteri-

oration under the most difficult dual-task condition, as assumed in the complexity hypoth-

esis. Switching rapidly between an auditory and a visual task, Hawkins, Kramer and Ca-

paldi (1992) reported greater dual-task cost among older adults compared to younger 

adults. Task switching was also investigated by Kray and Lindenberger (2000) in a sample 

size of 118 adults aged from 20 to 80 years. Based on their findings of significantly greater 

age-related increments in general vs. specific switch costs, the authors suggested that the 

coordination of two alternating task sets is more negatively affected during the process of 

aging than the switching itself. Using a semantic and an episodic dual-task paradigm, Riby 

et al. (2004) reported age-related differences only in episodic but not in semantic dual-task 

paradigms. Kemper, Schmalzried, Herman, Leedahl and Mohankumar (2009) used a digital 

pursuit rotor task, whereby young adults experienced greater dual-task costs to tracking, 

fluency and grammatical complexity than older adults. Furthermore, older adults were able 

to preserve their tracking performance by speaking more slowly. Again, the results indi-

cated that the strategies used in executing dual-task situations differ between younger and 

older adults. While numerous findings of age-related differences in dual-task performance 

are based on the combination of two cognitive tasks, many more have focused on the sim-

ultaneous performance of motor and cognitive tasks. This may be caused by the increasing 

risk of falling / accidents among older adults in performing a motor and a cognitive task 

simultaneously (e.g. Beauchet, Dubost, Herrmann, Rabilloud, Gonthier, & Kressig, 2005b; 

Kressig, Herrmann, Grandjean, Michel, & Beauchet, 2008; Lundin-Olsson et al., 1997; 

Verghese et al., 2002). Within their review, Schaefer and Schumacher (2011) reported 

greater dual-task decrements in the elderly in both cognitive and motor tasks. Furthermore, 

the authors reported a task prioritization of motor compared to cognitive tasks. Aiming to 

gain a better understanding of both age and task effects in simultaneously performing cog-

nitive and motor tasks, Srygley, Mirelman, Herman, Giladi and Hausdorff (2009) combined 
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three different cognitive tasks with a sitting and walking condition. In contrast to the hy-

pothesis that older adults prioritize the performance of motor tasks compared to cognitive 

tasks, the authors found an age-related decline in walking performance while simultane-

ously performing 3 and 7 subtractions as well as phoneme monitoring, whereas content 

recall enhanced. An age-related increase in the dual-task cost of both domains was previ-

ously reported by Lindenberger et al. (2000). In their study, 47 young (aged 20-30 years), 

45 middle-aged (aged 40-50 years) and 48 old (aged 60-70 years) participants encoded 

word lists while sitting, standing, or walking on two narrow tracks with different path com-

plexity. A decline in both domains was also reported by Sparrow, Begg and Parker (2006). 

In their study, participants had to walk with their preferred walking speed and simultane-

ously perform a reaction-time task. While reaction time decreased in both groups under 

dual-task conditions, younger people showed a significantly faster walking speed under 

single- and dual-task conditions. Along with reaction-time tasks, numerous studies have 

investigated the effects of performing memory tasks while executing different motor tasks. 

In this context, Li, Lindenberger, Freund and Baltes (2001) asked their participants to per-

form a memory task while simply walking or completing an obstacle course. With increas-

ing difficulty of the walking task (obstacle course) older adults’ memory performance de-

clined, which is in accordance with the already-stated assumption of a task prioritization. 

Focusing on the effects of additionally performing a working memory task, Lövdén, 

Schaefer, Pohlmeyer and Lindenberger (2008) combined different n-back tasks with sim-

ultaneous treadmill walking. While both groups reported lower stride-to-stride variability 

in dual- compared to single-task conditions, stride time and length variability decreased 

with the increasing difficulty of the working memory task among younger but not among 

older participants. Based on the general assumption that walking while talking adversely 

affects gait performance and increases the risk of falling among the elderly, Plummer 

D’Amato, Altmann and Reilly (2011) combined a spontaneous speech task as well as an 

auditory stroop task with normal walking. Under the dual-task condition, older people 

showed a significant decrease in walking performance under both cognitive tasks. A pre-

vious study conducted by Siu, Lugade, Chou, van Donkelaar and Woollacott (2008) also 

used an auditory stroop test, although rather than simply involving walking conditions, 

participants had to complete an obstacle course. Focusing on both domains, cognitive at-

tention in the stroop task diminished in all participants under dual- compared to single-task 

conditions, whereas gait performance declined only among the older group. No age-related 

effects were found by Springer et al. (2006), who combined normal walking with three 

different cognitive tasks (listening to and remembering a simple text, listening to and re-
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membering a complex text and serial subtracting of 7). In order to investigate spatial navi-

gation, some studies have used virtual environments in the context of age-related differ-

ences of dual-task walking. For example, Lövdén, Schellenbach, Grossman-Hutter, Krüger 

and Lindenberger (2005) asked their participants to navigate through a virtual museum with 

and without using a handrail. Older adults reported reduced path-finding performance, as 

well as increased body sway while walking under cognitive load compared to single walk-

ing. Furthermore, navigation increased among older participants by using the handrail. An-

other virtual reality study was conducted by Neider, Gaspar, McCarley, Crowell, Kaczmar-

ski and Kramer (2011). In their study, participants had to cross simulated streets of varying 

difficulty either undistracted, simultaneously listening to music or simultaneously convers-

ing on a cell phone. Increasing the difficulty of the crossing task led to an increase in dual-

task impairments among older adults but not among the younger ones. Furthermore, older 

adults took longer to initiate their crossing, and showed more problems in completing the 

street crossing while using a cell phone compared to listening to the music.  

Normal standing is a seemingly effortless task for younger adults but also detrimentally 

affected in older adults when combined with a secondary task (e.g. Brauer, Woollacott, & 

Shumway-Cook, 2001; Brown et al., 1999; Shumway-Cook & Woollacott, 2000). One as-

pect frequently investigated in this context is the effect of simultaneously performing work-

ing memory tasks. For example, Doumas, Smolders and Krampe (2008) combined an n-

back task with three different postural control tasks. Based on their findings, the authors 

suggested a development in resource allocation with increasing age to compensate declines 

in sensorimotor and cognitive processes. Combining a dynamic postural control task and a 

n-back task, Doumas, Rapp and Krampe (2009) showed greater dual-task costs in both 

tasks among older adults and higher costs in the memory component among younger adults. 

Another study using an additional working memory task was conducted by Rapp, Krampe 

and Baltes (2006). The authors indicated that older adults maintained a high level of func-

tioning in postural control, whereas working memory task performance decreased. In ac-

cordance with Fuller (2000), these two studies again highlighted the relevance of task pri-

oritization among older adults. Along with two different 2-back working memory tasks, 

Huxhold, Schmiedek and Lindenberger (2006) additionally combined a two-choice reac-

tion time task with sitting (single-task) and standing (dual-task). The authors indicated an 

increased center of pressure displacement among older adults with increasing cognitive 

task difficulty under dual-task conditions, compared to younger controls. In their review, 

Woollacott and Shumway-Cook (2002) highlighted the relevance of increasing attentional 

resources for maintaining both postural control and gait among older adults. Attentional 
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requirements for postural control and walking were also focused in an experimental para-

digm by Lajoie, Teasdale, Bard and Fleury (1996). A relatively small sample size of eight 

young and eight older participants performed a verbal response task while sitting, standing, 

and walking. Both age groups showed a decline in reaction times as well as a decrease in 

walking speed. Furthermore, Hauer, Pfisterer, Weber, Wezler, Kliegel and Oster (2003) 

suggested that reduced dual-task performance in people with cognitive impairments is 

caused by a decline in attentional resources.  

In addition to walking and postural control, ample evidence comes from the field of fine 

motor tasks, which should also be considered in this context. For example, Crossley and 

Hiscock (1992) combined a simple tapping task with a concurrent cognitive load. Within 

three age groups, older adults showed larger decrements compared to younger and middle-

aged adults. Similarly, Kemper, Herman and Lian (2003) reported an age-related decline 

in combining finger tapping with a speech production task. Within two experiments, Fraser, 

Li and Penhune (2010) asked their participants to execute a sequential tapping task while 

simultaneously performing a semantic judgment task (experiment 1) and a mental arithme-

tic task (experiment 2). Under easier conditions, older adults showed a decrease in speed 

and accuracy of sequential tapping compared to younger adults, whereas age-related dif-

ferences in the more difficult conditions were only found in the accuracy of dual-task per-

formance.  

For a further understanding of age-related differences in dual-task performance, the present 

subchapter ends with a brief review of studies, focusing on neurophysiological mecha-

nisms. On the one hand, studies have reported increased activity in the prefrontal cortex of 

older adults (Harada et al., 2009; Heuninckx, Wenderoth, Debaere, Peeters, & Swinnen, 

2005; Heuninckx, Wenderoth, & Swinnen, 2008). On the other hand, findings have indi-

cated an age-related decline in frontal (Park & Reuter-Lorenz, 2009; Raz et al., 2005), and 

especially prefrontal activity (Gunning-Dixon & Raz, 2003; Raz et al.,1997; West, 1996). 

By contrast, van Impe, Coxon, Goble, Wenderoth and Swinnen (2011) revealed an age-

related increase in BOLD responses of a fronto-parietal network under single-, but not un-

der dual-task conditions. Beurskens, Helmich, Rein and Bock (2014) again highlighed the 

relevance of the kind of tasks. In their study, participants were asked to walk on a treadmill 

while completing either visual or verbal-memory demands. Using functional Near-Infra-

red-Spectroscopy, the authors reported a decrease in prefrontal activity among the elderly, 

albeit only in the visual but not in the verbal-memory condition. Explaining the incon-

sistency of age-related over and under activity, Reuter-Lorenz and Lustig (2005) inter-

preted underactivity as circuitry dysfunction, region-specific atrophy or poor strategy use, 
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thus being categorized as impairment, whereas overactivity is assumed to act as both com-

pensation and impairment. 

 

The present chapter has shed light on humans’ ability to simultaneously perform two or 

even more tasks, from different perspectives. I started by highlighting the most common 

theories. Here, capacity sharing theories suggest a possibility of sharing processing capac-

ity among tasks, whereas bottleneck theories discuss the impossibility of parallel pro-

cessing. Additionally, cross-talk theories - which state a dependency of interferences and 

the content of combined tasks - were described. Within the chapter of behavioral findings, 

cognitive x cognitive task combinations and cognitive x motor task combinations were dis-

cussed. While most studies have reported a decline in dual- compared to single-task per-

formance, some have highlighted a facilitation of primary task performance in facing par-

ticipants with a secondary task. Supplementing the behavioral findings with neurophysio-

logical insights, three different patterns became apparent: increased activity, decreased ac-

tivity and no differences. Predominantly reporting increased activity, the activity in the 

underlying structures showed a high inconsistency with a common activity in the prefrontal 

cortex. During the sub-chapters, it became obvious that the amount of interferences in dual-

task situations depends on numerous factors but is adversely affected by the process of 

aging. Here, findings have demonstrated differences in activity in the underlying mecha-

nisms, but - more relevant for this group of people - a decline in performing dual-task 

situations.  

Thus far, the chapters of executive functions, decision making, and dual-task have addi-

tionally highlighted the underlying mechanisms by focusing on studies with functional 

Magnetic Resonance Imaging or Positron Emission Tomography, respectively. Given that 

the first experiment mainly focused on electroencephalographic data, this topic will be con-

sidered in further detail during the next and last chapter. 

 

2.5. Electroencephalography 

Hans Berger first recorded electrical activity from the human scalp in 1924. This progress 

was based on the findings of brain electrical activity by Caton, who presented his findings 

at the 43rd Annual Meeting of the British Medical Association in 1875. Since its develop-

ment, the electroencephalogram has become a widely-used tool in numerous fields of in-

terest, such as sleep (Armitage & Hoffmann, 2001), language (Weiss & Mueller, 2003), 
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memory (Klimesch, 1999), attention (Klimesch, Doppelmayr, Russegger, Pachinger, & 

Schwaiger, 1998), and lesions (Wyllie et al., 2007). 

Normal waveforms of the electroencephalogram (like many others) are described by their 

frequency, amplitude and location (Stern & Engel, 2004). While Berger’s observations re-

vealed the basic rhythms of alpha and beta (Berger, 1929; Rösler, 1986 for review), today 

five rhythms are traditionally used to classify the electroencephalogram (alpha, beta, theta, 

gamma, and delta) and can be described as follows: 

 

- Gamma (35 Hz upwards) 

- Beta (13 - 35 Hz)  

- Alpha (8 - 13 Hz)  

- Theta (4 - 8 Hz) 

- Delta (1 - 4 Hz)  

 

The alpha rhythm - also known as the Berger rhythm - is most commonly investigated. 

Traditionally described as ‘idling rhythm’ and emphasized in the 8-13 Hz band, the rhythm 

is focused in cognitive (Hanslmayr, Sauseng, Doppelmayr, Schabus, & Klimesch, 2005; 

Klimesch, Doppelmayr, Schimke, & Pachinger, 1996; Klimesch, Schimke, & Pfurtscheller, 

1993), sensorimotor (Baumeister, Reinecke, Liesen, & Weiss, 2008; Bazanova, Mernaya, 

& Shtark, 2009; Sauseng, Klimesch, Gerloff, & Hummel, 2009), psycho-emotional (Af-

tanas & Golosheikin, 2003; Cacioppo, 2004) and physiological topics (Cooray, Nilsson, 

Wahlin, Laukka, Brismar, & Brismar, 2011; Kiyatkin, 2010; Kiyatkin & Lenoir, 2011) 

(Bazanova & Vernon, 2014, for review). The term ‘idling rhythm’ is based on the findings 

of blocked alpha activity by opening the eyes (Schürmann & Başar, 2001), as well as in-

creased alpha power in 8-12 Hz in posterior electrodes when eyes are closed (Treder, Bah-

ramisharif, Schmidt, Van Gerven, & Blankertz, 2011) and in 9-11 Hz (Niedermeyer, 2004) 

/ 11-13 Hz (Sterman & Egner, 2006) when limbs are at rest (Bazanova & Vernon, 2014). 

By contrast, other studies have described the alpha rhythm as reflecting the possible active 

inhibition of task-irrelevant brain circuits, rather than simple ‘idling’ (Busch & Herrmann, 

2003; Cooper, Croft, Dominey, Burgess, & Gruzelier, 2003; Herrmann, Senkowski, & 

Röttger, 2004; Jensen, Gelfand, Kounios, & Lisman, 2002; Klimesch, Doppelmayr, 

Schwaiger, Auinger, & Winkler, 1999; Klimesch, Doppelmayr, Roehm, Pöllhuber, & 

Stadler, 2000; Klimesch, Sauseng, & Hanslmayr, 2007; Sauseng et al., 2005). While nu-

merous previous studies have reported the phenomenon of visual-induced alpha blocking 

or alpha desynchronization primarily seen over the parieto-occipital cortex (Barry, Clarke, 
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Johnstone, Magee, & Rushby, 2007; Klimesch, 1997), comparable results have been ob-

served in the somatosensory system, by movements or tactile stimuli (called mu rhythm) 

(Chatrian 1976; Chatrian, Petersen & Lazarte, 1959; Kuhlman, 1978; Niedermeyer, 1993; 

Pfurtscheller, Neuper, Andrew, & Edlinger, 1997) and in the auditory system by acoustic 

stimuli (Niedermeyer, 1993; Tiihonen, Hari, Kajola, Karhu, Ahlfors, & Tissari, 1991). 

Within cognitive processes the alpha rhythm plays an important role in a variety of cogni-

tive processes, including memory (Başar, 2004; Doppelmayr, Klimesch, Hödlmoser, 

Sauseng, & Gruber, 2005; Klimesch et al., 1993; Klimesch, 1996; Klimesch, Doppelmayr, 

Pachinger, & Ripper, 1997), attention and perception (Başar, 2004; Cooper et al., 2003; 

Ray & Cole, 1985), intelligence (Başar, 2006; Doppelmayr et al., 2005; Jaušovec & 

Jaušovec, 2000) and information processing (Bornkessel, Fiebach, Friederici, & Schlesew-

sky, 2004; Klimesch et al., 1993). Considering the process of memorization, Klimesch 

(1996) and Başar, Başar-Eroğlu, Röschke and Schütt (1989) reported a strong correlation 

between alpha activity and working memory. A working memory task was also used by 

Jensen et al. (2002), who demonstrated a linear increase of alpha activity with increasing 

memory load. The results reported by Sauseng et al. (2005) provide evidence of increasing 

alpha power at prefrontal but decreasing power at occipital electrodes during the perfor-

mance of a working memory task. The authors suggested that the results should not be 

interpreted in terms of ‘idling’ or ‘global’ inhibition, but they may reveal a tight functional 

coupling between prefrontal cortical areas (Sauseng et al., 2005). On the one hand, 

Klimesch et al. (1999) interpreted increased alpha amplitudes during a highly-demanding 

working memory task in terms of the active inhibition of neural circuits subserving long-

term memory. On the other hand, Klimesch (1999) emphasized that upper alpha oscilla-

tions in thalamo-cortical feedback loops reflect search and retrieval processes in (semantic) 

long-term memory. Furthermore, the author reported significantly higher alpha frequency 

in good memory performers compared to bad performers. Along with working memory 

and in contrast to early findings (e.g. Oswald & Roth, 1974; Vogel, Broverman, & Klaiber, 

1968), subsequent studies reported evidence of a relation between alpha rhythm and the 

general level of intelligence (Anokhin & Vogel, 1996; Başar, 2006; Doppelmayr et al., 

2005; Giannitraoani, 1985; Juolasmaa, Toivakka, Outakoski, Sotaniemi, Tienari, & Hirve-

noja, 1986. Neubauer, Freudenthaler, & Pfurtscheller, 1995). While Gasser, Von Lucadou-

Müller, Verleger and Bächer (1983) found a positive correlation between alpha rhythm and 

intelligence only among a group of mildly-retarded children, but not among a group of 

healthy children, Giannitraoani (1985) reported a correlation between alpha rhythm and 

full scale QI among a sample of normal 11 to 13 year-old children. In addition to Juolasmaa 



Theoretical background 

78 

  

et al. (1986) - who reported correlations mainly with verbal and memory subtests of intel-

ligence test scores - Anokhin and Vogel (1996) found correlations with alpha activity and 

Raven's Standard Progressive Matrices as well as verbal abilities factors derived from the 

verbal subtests of Amthauer's Intelligence Structure Test (IST) and Horn's LPS test of men-

tal performance. Furthermore, Doppelmayr et al. (2005) reported a significantly larger up-

per alpha desynchronization in more intelligent compared to less intelligent subjects. Cor-

relations with alpha rhythm are also frequently described in the field of attention (Busch, 

Duois, & VanRullen, 2009; Busch & Herrmann, 2003; Gola, Magnuski, Szumska, & 

Wróbel, 2013; Grimault, Robitaille, Grova, Lina, Dubarry, & Jolicœur, 2009; Händel, 

Haarmeier, & Jensen, 2011; Haenschel et al., 2009; Jokisch & Jensen, 2007; Leiberg, 

Lutzenberger, & Kaiser, 2006; Mathewson, Fabiani, Gratton, Beck, & Lleras, 2010; 

Mathewson, Gratton, Fabiani, Beck, & Ro, 2009; Ray & Cole, 1985; VanRullen, Busch, 

Drewes, & Dubois, 2011). For example, Händel et al. (2011) showed a higher contralateral 

alpha power to the unattended side, compared to the attended side. In addition, a highly 

interested point is listed in the review conducted by Ward (2003). While the author sepa-

rated attention as being closely related to alpha and gamma rhythms, and memory to theta 

and gamma rhythms, previous fundamental findings suggested that the processes of 

memory and attention are inseparable (Baddeley, 1996; Başar & Güntekin, 2012; Des-

imone, 1996; Fuster, 1995; Fuster, 1997; Goldman-Rakic, 1996). Regarding the process of 

aging, an increasing alpha peak was revealed from childhood to early adulthood (Bazanova, 

2008; Niedermeyer & da Silva, 2005; Stroganova, Orekhova, & Posikera, 1999), whereas 

a decrease was indicated after the age of 40 years (Bazanova & Vernon 2014; Clark et al., 

2004; Köpruner, Pfurtscheller, & Auer, 1984; Osaka, Osaka, Koyama, Okusa, & Kakigi, 

1999).  

Comparing alpha and beta activity, Papanicolaou, Loring, Deutsch and Eisenberg (1986) 

and Butler and Glass (1987) showed an inverse relationship (Schier, 2000). Ray and Cole 

(1985) suggested that alpha activity reflects external events (e.g. sensory information), 

whereas beta activity reflects internal events (e.g. mental manipulation task). Furthermore, 

beta activity is mostly studied in the relation with sensorimotor behavior (Gola et al., 2013, 

for review). Emphasized in the 12-30 Hz band, previous studies have reported a relation 

between beta rhythm and the preparation or execution of voluntary movements (Alegre, 

Labarga, Gurtubay, Iriarte, Malanda, & Artieda, 2002; Jasper & Penfield, 1949; Neuper & 

Pfurtscheller, 2001; Pfurtscheller & Berghold, 1989; Pfurtscheller & Da Silva, 1999; 

Pfurtscheller, Neuper, Pichler-Zalaudek, Edlinger, & da Silva, 2000; Stančák, Feige, Lück-

ing, & Kristeva-Feige, 2000). Here, Kühn et al. (2004), Androulidakis, Doyle, Yarrow, 
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Litvak, Gilbertson and Brown (2007), and Zhang, Chen, Bressler and Ding (2008) dis-

cussed an influence on beta activity in voluntary suppressing movements. The localization 

of beta activity is mainly found across the primary motor cortex (Müller, Neuper, Rupp, 

Keinrath, Gerner, & Pfurtscheller, 2003; Salenius, Schnitzler, Salmelin, Jousmäki, & Hari, 

1997; Salmelin, Hámáaláinen, Kajola, & Hari, 1995; Salmelin & Hari, 1994). Furthermore, 

Townsend and Johnson (1979) and Belyavin and Wright (1987) reported a correlation be-

tween accuracy levels in a visual vigilance task and beta rhythm in occipito-parietal brain 

areas. These results are confirmed by further human (e.g. Kamiński, Brzezicka, Gola, & 

Wróbel, 2012) and non-human studies (e.g. Buschman & Miller, 2007). Age-related dif-

ferences in beta rhythm were investigated by Gola, Kamiński, Brzezicka and Wróbel 

(2012). In their study, the authors found that among older adults, beta rhythm over occipital 

regions correlated with decreased performance.  

The gamma rhythm - which has been frequently investigated during recent years - is em-

phasized over 35 Hz. Considering the gamma rhythm, non-human studies have demon-

strated correlations with visual stimuli (Eckhorn, Frien, Bauer, Woelbern, & Kehr, 1993; 

Singer, 1993), attention (Singer, 1993) and cognitive functions (Fries, Roelfsema, Engel, 

König, & Singer, 1997; Murthy & Fetz, 1996; Roelfsema, König, Engel, Sireteanu, & 

Singer, 1994; Roelfsema, Engel, König, & Singer, 1997; Stopfer, Bhagavan, Smith, & Lau-

rent, 1997). Furthermore, in their review Engel and Singer (2001) summarized a relation-

ship between gamma rhythm and visual, auditory, somatosensory, olfactory, motor and 

memory modalities in a wide range of animal species. Along with animal models, gamma 

rhythm has also become a topic of intense interest in humans. Here, findings have demon-

strated a relation between gamma rhythm and word processing (Eulitz, Maess, Pantev, 

Friederici, Feige, & Elbert, 1996; Lutzenberger, Pulvermüller, & Birbaumer, 1994; Pulver-

müller, Lutzenberger, Preil, & Birbaumer, 1995), classical conditioning paradigm (Miltner, 

Braun, Arnold, Witte, & Taub, 1999), memory tasks (Tallon-Baudry, Bertrand, Delpuech, 

& Pernier, 1997, Tallon-Baudry, Bertrand, Peronnet, & Pernier, 1998; Tallon-Baudry & 

Bertrand, 1999), working memory (Tallon-Baudry et al., 1998), sensory-motor processing 

(Aoki, Fetz, Shupe, Lettich, & Ojemann, 1999), auditory discrimination (Joliot, Ribary, & 

Llinas, 1994), somatosensory discrimination (Sauve et al., 1998), the formation of percepts 

and memory (Pantev, 1995; Singer, 1990; Singer & Gray, 1995), linguistic processing (Pul-

vermüller et al., 1995), learning (Miltner et al., 1999) and other behavioral and perceptual 

functions (Llinas & Ribary, 1993; Tiitinen, Sinkkonen, Reinikainen, Alho, Lavikainen, & 

Näätänen, 1993). For example, Haenschel, Baldeweg, Croft, Whittington and Gruzelier 

(2000) reported a correlation between gamma rhythm and response to novel auditory stim-

uli, which is in accordance with previous findings of gamma rhythm in the auditory cortex 
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(Jokeit & Makeig, 1994; Tallon-Baudry & Bertrand, 1999). In order to test short-term 

memory, Burgess and Ali (2002) used the Sternberg task with random figures and number 

words. The authors found increased power in both theta and gamma rhythm. Furthermore, 

a widespread gamma activity was demonstrated during mental activity by Fitzgibbon, 

Pope, Mackenzie, Clark and Willoughby (2004). In order to investigate hemispherical dif-

ferences, Müller, Keil, Gruber and Elbert (1999) showed enhanced gamma power at the 

right frontal electrodes, regardless of the particular valence. In addition, the importance of 

the gamma rhythm in considering motor processes has been highlighted by numerous pre-

vious studies (Cheyne, Bells, Ferrari, Gaetz, & Bostan, 2008; Crone, Miglioretti, Gordon, 

& Lesser, 1998; Darvas, Scherer, Ojemann, Rao, Miller, & Sorensen, 2010; Donner, Siegel, 

Fries, & Engel, 2009; Joundi, Jenkinson, Brittain, Aziz, & Brown, 2012; Miller et al., 2007; 

Muthukumaraswamy, 2010; Petersen, Willerslev-Olsen, Conway, & Nielsen, 2012; 

Pfurtscheller, Graimann, Huiggins, Levine, & Schuh, 2003; Seeber, Scherer, Wagner, 

Solis-Escalante, & Müller-Putz, 2014; Wagner, Solis-Escalante, Grieshofer, Neuper, Mül-

ler-Putz, & Scherer, 2012; Wagner, Solis-Escalante, Scherer, Neuper, & Müller-Putz, 

2014). While the different rhythms focus on a period of time, event-related potentials rep-

resent the direct result of a specific sensory, cognitive or motor event. Richard Caton 

(1842–1926) who first described event-related potentials observed that ‘feeble currents of 

varying direction pass through the multiplier when the electrodes are placed on two points 

of the external surface’. Furthermore, event-related potentials reflect the summed activity 

of postsynaptic potentials produced when a large number of similarly-oriented cortical py-

ramidal neurons (in the order of thousands or millions) fire in synchrony while processing 

information (Peterson, Schroeder, & Arezzo, 1995). Event-related potentials comprise nu-

merous positive and negative voltage deflections and therefore described by a letter (N/P) 

indicating polarity (negative/positive), followed by a number indicating either the latency 

in milliseconds or the component's ordinal position in the waveform. The most common 

event-related potentials can be summarized as follows (see also Sur & Sinha, 2009): 

 

Event-related potentials: Elicited by: 

P50:  sensory gating 

N1/N100:  unexpected stimulus 

P2/P200: sensation-seeking 

N2/N200:  

N2a/Mismatch negativity:  automatic process during odd stimulus 

N2b: changes in physical property of the stimulus 

N2c: classification of disparate stimuli 
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P3/P300: stimulus information  

N3/N300:  semantic congruity and expectancy 

N4:  semantic incongruity 

N6:  language processing 

 

Based on the aim of the first experiment, I will especially focus on the P3/300 and the 

P2/200 components during the following paragraph. 

The P3/300 - which occurs at approximately 300ms (250-800ms) or as the third positive 

peak after a stimulus (Pritchard, 1981; Ritter, Vaughan, & Costa, 1968; Smith, Donchin, 

Cohen, & Starr, 1970; Sutton, Braren, Zubin, & John, 1965, Sutton, Tueting, Zubin, & 

John, 1967) - is currently the most-investigated event-related potential. For example, early 

studies reported a P3/300 in the application of two kinds of stimuli, which differed in the 

sensory modality (e.g. Sutton et al., 1965). In this context, the peak amplitude of the P3/300 

was mostly located over the parietal region (e.g. Picton, 1992; Pritchard, 1981; Vaughan & 

Ritter, 1970). By contrast, Johnson (1993) and Paller (1994) suggested a multiple generator 

over different areas, rather than a unitary potential. Based on its characterization, the 

P3/300 could be further described by its subcomponent P3a / ‘novelty P3’ and P3b / ‘target 

P3’ (Kok, 2001). The novelty P3 describes a component that occurs during new, non-target 

stimuli (mostly associated in the context of unintended changes of attention) (Friedman & 

Simpson, 1994; Spencer, Dien, & Donchin, 1999). Characterized by a longer latency and 

a more posterior-parietal localization, the P3b is associated with stimulus evaluation in 

tasks that require some form of action, like a covert or overt response (Donchin, Kramer, 

& Wickens, 1986a; Kok, 2001). 

Considering the general P3/300, both the latency and the amplitude play a highly relevant 

role. The latency is associated with the period of perception (Donchin, 1981) and the diffi-

culty of categorization of a stimulus (Coles, Smid, Scheffers, & Otten, 1995; Courchesne, 

Hillyard, & Courchesne, 1977; Kutas, McCarthy, & Donchin, 1977). Furthermore, Hoff-

man, Houck, MacMillan, Simons and Oatman (1985) suggested a relation between latency 

and the time needed to encode or memorize a stimulus. This includes the clarity of stimuli 

(Magliero, Bashore, Coles, & Donchin, 1984; McCarthy & Donchin, 1981) and the number 

of items stored in short-term memory (Adam & Collins, 1978; Brookhuis et al., 1981; Ford, 

Roth, Mohs, Hopkins, & Kopell, 1979; Gomer, Spicuzza, & O’Donnell, 1976). By contrast, 

variables on the level of response - such as the compatibility of stimulus-response or the 

period of motor response - have little or no influence on P3/300 latency (Donchin, 1981; 

Hoffman et al., 1985). Therefore, the P3/300 is able to classify stimuli independent of the 



Theoretical background 

82 

  

process of response (Donchin & Coles, 1988; Duncan-Johnson & Donchin, 1982). Addi-

tional evidence comes from Ila and Polich (1999) using a stroop task. Their results indi-

cated differences in response time but not in the P3/300 latency. Based on these findings, 

the authors suggested that the behavioral differences are based on the process of response. 

While the latency is described as reflecting the timing of mental processes, the amplitude 

is mostly related to the intensity of the performance (Donchin et al., 1986a; Donchin, Karis, 

Bashore, Coles, & Gratton, 1986b; Kok, 1990; Polich & Kok, 1995). In this context, it is 

assumed that the amplitude represents the demand on the central perceptual resource, re-

spectively the amount of resources dedicated for a task (Kramer & Spinks, 1991; Kramer 

& Strayer, 1988; Wickens, Kramer, Vanasse, & Donchin, 1983). Nash and Fernandez 

(1996) investigated the relation between attention-related resources and somatosensory 

event-related potentials (N140 and P300). In accordance with previous findings (Donchin 

et al., 1986b; Isreal, Wickens, Chesney, & Donchin, 1980a; Kramer, Wickens, & Donchin, 

1985; Sirevaag, Kramer, Coles, & Donchin, 1989; Wickens et al., 1983; Strayer & Kramer, 

1990), the authors reported that the P3/300 can serve as an index of the distribution of 

attention in competing concurrent tasks. Furthermore, Nash and Fernandez (1996) con-

firmed the assumptions of differences between event-related potentials and behavioral data 

(Brookhuis et al., 1981; Ford et al., 1979; Ford, Mohs, Pfefferbaum, & Kopell, 1982; 

Gomer et al., 1976; Kramer & Strayer, 1988; Mecklinger, Kramer, Strayer, 1992; Pelosi, 

Hayward, & Blumhardt, 1995; Rösler et al., 1986; Verleger, 1997). Previous findings have 

suggested that the amount of information transmitted during the application of a stimulus 

is also represented in the P3/300 amplitude (Johnson, 1986; Johnson, 1988; Kok, 1986; 

Kok, 1997; Parasuraman & Beatty, 1980; Ruchkin & Sutton, 1978; Scheffers & Johnson, 

1994; Sutton et al., 1965; Sutton et al., 1967). Within this context, the aspect of attention - 

which is closely linked to automated and controlled processes (already discussed in the 

previous chapters) - need to be additionally considered. For example, Hillyard, Hink, 

Schwent and Picton (1973) concluded that only stimuli that pass through a selection process 

(and thus require attention) are reflected within the P3/300. This phenomenon was also 

shown when participants had to switch their attention to another fast-presented stimulus in 

the same task (Hillyard, 1981; Hillyard & Kutas, 1983; Hillyard, Picton, & Regan, 1978) 

or when people’s attention drifted away (Johnson, 1988). By contrast, Duncan-Johnson and 

Donchin (1977) and Squires, Squires and Hillyard (1975) found no differences in the am-

plitude of P3/300 when participants were instructed to ignore stimuli actively. Investigating 

the assumption that only controlled tasks require attention, Hoffman et al. (1985) also 

demonstrated differences in P3/300 amplitude in automated processes of recognition. 

Therefore, the authors concluded that highly automated processes also require resources of 
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attention. Additionally, Mangun and Hillyard (1990) showed that the higher level of pro-

cessing used in visual attention tasks is reflected in the amplitude of the P3/300. In their 

experiment, subjects had to pay attention exclusively to either the left or the right field 

stimuli or divide attention in different proportions between the two fields. 

Studying the P3/300, the so-called oddball paradigm has become one of the most fre-

quently-used paradigms during recent years. First described by Ritter and Vaughan (1969), 

it comprises the presentation of sequences of repetitive audio/visual stimuli, which are in-

frequently interrupted by a deviant stimulus. Here, participants are instructed to react / re-

spond to the deviant stimuli. Early findings in non-human studies - for example, by Glover, 

Onofrj, Ghilardi and Bodis-Wollner (1986) - reported a P3/300 in cynomolgus monkeys. 

By investigating epileptic patients with electrodes chronically implanted in the medial tem-

poral lobe and other intracranial locations as well as monkeys with epidural, transcortical, 

and medial temporal lobe electrodes, Paller, McCarthy, Roessler, Allison and Wood (1992) 

reported a similar pattern of event-related potentials between humans and non-humans us-

ing an auditory and visual oddball paradigm. Debener, Makeig, Delorme and Engel (2005) 

investigated the effects of unique, novel environmental sounds compared to traditional in-

frequent tones. The authors revealed two independent component clusters that accounted 

for portions of the novelty P3 and P3b by using the unique, novel environmental sounds. 

Furthermore, Işoğlu-alkaç, Kedzior, Karamürsel and Ermutlu (2007) combined an audi-

tory-oddball paradigm with passive visual stimulation. Along with a fronto-central location 

of the P3/300, the authors reported significant larger amplitudes and latencies compared to 

the ‘classic’ oddball paradigm. Investigating learning effects, numerous studies have re-

ported a decrease in P3/300 amplitude and an increase in latency in repeatedly practicing 

oddball tasks (Kenemans, Verbaten, Melis, & Slangen, 1992; Lammers & Badia, 1989; 

Polich, 1989; Wesensten, Badia, & Harsh, 1990). 

Along with the oddball paradigm, the P3/300 is frequently discussed in the context of sim-

ultaneously performing two tasks. In previous dual-task studies it has been shown that the 

P3/300 reveals a mechanism of limited capacity and perceived central resources, which are 

assigned to the task. In an early study, Wickens, Isreal and Donchin (1977) used a visual-

tracking task as a primary task and an auditory-oddball task as a secondary task. Task dif-

ficulty was increased by increasing the possible dimensions of the visual-tracking task. The 

amplitude of P3/P300 was measured on the auditory-oddball stimuli. The results showed a 

decrease in P3/300 amplitude in the dual-task condition compared to the single-oddball 

task, while there were no differences during the increase of primary task difficulty. Addi-

tional evidence comes from Isreal, Chesney, Wickens and Donchin (1980b), who also in-

creased the task difficulty of the primary-tracking task. The authors found an increase in 
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response time in the oddball task with increasing task difficulty but no differences in P3/300 

amplitude. Effects of dual- vs. single-taskperformance were identified in both P3/300 am-

plitude as well as response time. A possible explanation was reported by Donchin (1981), 

Donchin et al. (1986b) and Kramer and Spinks (1991). Within their experiments, the au-

thors revealed effects in varying perception-related resources but not in manipulating re-

sponse-related resources. In contrast to others, Wickens et al. (1983) found a decreased 

P3/300 amplitude with increasing the task difficulty of the primary task. The authors sug-

gested that the tasks compete for a limited capacity and therefore the P3/300 reflects the 

amount of resources available for the second task. This is in accordance with results re-

ported by Sirevaag et al. (1989). Using relative long inter-stimulus intervals of one second 

and more, the authors demonstrated a reciprocity of concurrent primary and secondary 

tasks within different modalities. Combining a visual and an auditory stimulus with a stim-

ulus onset asynchrony of 400ms, Nash and Fernandez (1996) reported a distinct P3/300 for 

the auditory stimulus, whereas the visual stimulus revealed a reduced P3/300. Polich (1987) 

demonstrated no interaction between task difficulty and variation of the inter-stimulus in-

terval. Focusing on the role of a limited processing capacity in performing two tasks sim-

ultaneously, Hoffman et al. (1985) showed an influence of the distribution of attention on 

the response time and error rate. Furthermore, the authors reported a reduced amplitude 

and increased latency in P3/300 under dual- compared to single-task conditions. Investi-

gating the manipulation of stimulus sequence (of the primary-stimuli), Kramer, Wickens 

and Donchin (1983) demonstrated a decrease in P3/300 amplitude of the secondary stimuli. 

Cognitive demands and fatigue during the execution of two different motor tasks were an-

alyzed by Schubert, Johannes, Koch, Wieringa, Dengler and Münte (1998). In their study, 

participants performed an auditory discrimination task as well as different motor tasks (1. 

required precision and considerable muscle force, 2. required precision but only minimal 

muscle force). The results showed a reduced P3b amplitude during the force session, indi-

cating that the force task placed a higher demand on cognitive resources. Combining a 

flight simulator task with an auditory-oddball task, Kramer, Sirevaag and Braune (1987) 

reported a decrease in P3/300 amplitude in the secondary task, with increasing task diffi-

culty of the simulator task. Similar findings were reported by Strayer and Drews (2007). In 

their study, participants were asked to perform a driving simulation task while using a mo-

bile phone. In presenting additional stimuli, the P3/300 amplitude decreased in the dual-

task driving condition compared to single-task driving (without using a mobile phone). 

Gramann, Gwin, Bigdely-Shamlo, Ferris and Makeig (2010) used a mobile ‘brain/body 

imaging’ system, which allows recording high-density electroencephalographic activity 

and body movements. Here, participants had to perform a visual oddball response task 
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while standing or walking on a treadmill. The results showed no influence of gait on P3/300 

amplitude. However, findings of the P3/300 based on dual and oddball paradigms sug-

gested that the amplitude of the P3/300 in a dual-task / oddball setting is influenced by the 

difficulty of the primary task, albeit only when the primary task is manipulated in the per-

ception-related central domain (Isreal et al., 1980a,b; Kramer et al., 1983; Kramer et al., 

1987; Kramer & Strayer, 1988; Sirevaag et al., 1989; Wickens et al., 1977; Wickens et al., 

1983).  

Another highly relevant event-related potential in the present context, is the P2 or P200, 

which occurs approximately 150-240 ms after a stimulus. The P2/200 has been discussed 

in the context of attention (e.g. Maeno, Gjini, Iramina, Eto, & Ueno, 2004), resource allo-

cation (Campbell & Sharma, 2015; Sugimoto & Katayama, 2013), type of stimulus (e.g. 

Shahin, Roberts, Pantev, Trainor, & Ross, 2005), probability (e.g. Roth, Ford, Lewis, & 

Kopell, 1976), memory (e.g. Dunn, Dunn, Languis, & Andrews, 1998; Lefebvre, 

Marchand, Eskes, & Connolly, 2005) and language (e.g. Tonnquist-Uhlen, 1996). Consid-

ering the underlying mechanisms of the P2/200, previous studies have revealed several 

distinct generators comprising at least the anterior auditory cortex, the supra-temporal au-

ditory cortex, the bilateral temporo-parietal cortex and the mesencephalic reticular activat-

ing system (Näätänen & Winkler, 1999; Ponton, Eggermont, Kwong, & Don, 2000; Ross 

& Tremblay, 2009; Tonnquist-Uhlén, 1996; Verkindt, Bertrand, Thevenet, & Pernier, 

1994). Similar to the P3/300, attention plays a highly significant role in the amplitude of 

the P2/200. For example, Maeno et al. (2004), demonstrated changes in parietal and frontal 

regions at P2/200, related to the amount of attention paid to the stimuli. Motor and sen-

sorimotor processing was also investigated in the context of the P2/200 (but see Huang & 

Hwang, 2013; Huang, Zhao, & Hwang, 2014; Sibley, Mochizuki, Frank, & McIlroy, 2010). 

For example, Sibley et al. (2010) showed no differences in the P2/200 as a function of 

increasing postural demand. In their study, the participants had to react to perturbations 

while standing at ground level and on an elevated platform (160cm). Participants in the 

study conducted by Huang and Hwang (2013) had to perform two stance conditions (bi-

pedal and unipedal stance) under static and dynamic force-matching maneuvers. Here, the 

authors reported differences in the P2/200 between the two conditions, with a smaller 

P2/200 shown in the right parietal cortex for the dynamic force matching. Another study 

conducted by Huang et al. (2014) investigated neural control of a postural-supra-postural 

procedure when postural focus strategy varied. Comparing visual internal and visual exter-

nal focus, the authors demonstrated an increase in P2/200 around the bilateral fronto-central 

and ipsilateral temporal areas in the visual external focus condition. 
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Within the present chapter, the different kind of rhythms of the electroencephalogram have 

been highlighted. Special attention has been paid to the alpha rhythm, which was discussed 

in the context of numerous cognitive processes, including memory, attention and percep-

tion, intelligence and information processing. The second half of the chapter focused on 

event-related potentials, especially the P3/300 and the P2/200. Considering the latency of 

the P3/300, a dependency with the period of perception and the difficulty of categorization 

of a stimulus was reported, but no or only small effects of stimulus response. In the context 

of P3/300 amplitude, the representation of the demand on the central perceptual resource - 

respectively the amount of resources dedicated for a task - were discussed. The results were 

supplemented by findings of the oddball paradigm as well as dual-task studies. Here, it was 

summarized that in dual-task / oddball settings, the amplitude of the P3/300 is influenced 

by the difficulty of the primary task, but only when the primary task is manipulated in the 

perception-related central domain. Focusing on the event-related potential P2/200, a rela-

tionship with attention, resource allocation, type of stimulus, probability, memory and lan-

guage was stated based on previous findings. Along with the P2/200 localization, dual-task 

studies reported both no differences in P2/200 as a function of increasing postural demand, 

but also differences between two postural demands in a dual-task setting.  

 

3. Evidence for the influence of additional demands, task 

difficulty and the process of aging 

The theoretical background highlighted relevant models, existing theories, behavioral and 

neurophysiological findings as well as individual differences in the field of information 

processing, executive functions, decision making and dual-task. Across the previous stud-

ies, some controversies became apparent. As long as people investigate dual-task situa-

tions, there is a constantly reversing debate about humans’ ability to execute two tasks 

simultaneously. In this context, some researchers suggest a perfect time-sharing, whereas 

others assume that it is impossible to process two or more tasks at the same time. A similar 

discussion involves the effects of additional motor demands. In this context, previous find-

ings reported both increased interferences as well as no influences - but also facilitating 

effects - of simultaneously handling motor demands while executing a cognitive task. Here, 

the aspect of automatization and thus the amount of attention - paid on the additional motor 

demand - is frequently discussed. Along with the controversies in healthy middle-aged 

sample sizes, contrary results are also reported among older adults. In this context, there is 

an ongoing discussion whether automated processes become more and more controlled 
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during the process of aging. Especially in motor functions, numerous studies suggested an 

increased necessity of cognitive processes in everyday motor functions - such as walking - 

with increasing age. By contrast, others argue that a reduced performance of motor func-

tions in dual-task situations based on a decline of attentional capacity or at least physical 

impairments. 

In addition to the controversial findings, some gaps in the research of relevant topics - 

which became apparent during the theoretical background - need to be highlighted. With a 

long history, the field of dual-task came up with an uncountable number of studies investi-

gated different aspects from basal stimuli to more complex ones but also applied situations, 

such as driving. Within these studies, a stystematization of the influence of task difficulty 

/ complexity of combined stimuli is in some way missing. Only a few studies implemented 

a systematic approach regarding the effects of task difficulty / complexity in dual-task sit-

uations. The necessity of considering this aspect in an increasingly systematic way became 

additionally obvious across the sub-chapter of neurophysiological findings in dual-task. 

Here, the broad variety of activated structures highlights the aspect that the dual-task para-

digm does not comprise two clearly defined tasks. Therefore, it can be accepted that an 

increasingly systematic investigation of the effects of task difficulty in dual-task situations 

would lead to a better understanding of humans’ ability of executing two or even more 

tasks simultaneously. Another aspect - which need further consideration - comprises the 

combination of motor and cognitive tasks, from a neurophysiological perspective. While 

evidence from functional magnetic resonance imaging is limited to fine motor functions - 

such as tapping - electroencephalography offers the possibility to get a deeper insight into 

the cortical mechanisms, which underlies motor functions such as standing. While only a 

few studies investigated motor / cognitive task combinations, further investigations from 

an electrophysiological point of view are indispensable. 

 

Based on the previous findings, the upcoming controversies as well as the existing gaps, 

the following three experiments were developed in order to provide further evidence in this 

field of research (see also Figure 16): 

 

- Cognitive performance under different demands – Insights from a neurophysiological 

perspective 

- Cognitive performance under different demands – Insights from a behavioral perspec-

tive 

- Cognitive performance under different demands – Insights from a more applied per-

spective 
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Figure 16 Overview of the three experiments of the thesis at hand. 

 

3.1. Experiment I  

Cognitive performance under different demands – Insights from a neurophys-

iological perspective 

 

‘I did the best thinking of my life on leisurely walks with Amos…’ (Kahneman, 2012; 

p.40). While Daniel Kahnemann, used this example to demonstrate that not all processes 

of thinking require intense concentration and effortful computation, numerous previous 

studies demonstrated occurring interferences in combining motor and cognitive demands 

(e.g. Klimesch, 1999; Huang, Chang, Tsai, & Hwang, 2016; Liebherr, Schubert, 

Schiebener, Kersten, & Haas, 2016, for review). Getting a better understanding of the un-

derlying mechanisms, it is inevitable to investigate the simultaneous processing of motion 

and cognition in a more systematic way. With the current research, I present one of the first 

investigation of the interplay of simultaneous motor and cognitive demands by using elec-

troencephalography. In particular, the levels of a cognitive task (simple vs. complex deci-

sions) and a concurrent motor demand (sitting vs. one-legged stance) will be examined 

during an event-related brain potential study. While most event-related brain potential 

study investigated the simultaneous performance of two cognitive tasks (e.g. Stipacek, 

Grabner, Neuper, Fink, & Neubauer, 2003), a comprehensive understanding of the effects 

of cognitive/motor task-combinations is still missing. Since the difficulty/complexity of 

daily situations is ever growing (e.g. we are standing in the railway while calling a col-

league and checking our appointments or we carry out our daily workout while listening to 
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music and writing text messages to our friends), a thorough understanding in particular of 

the interaction of these tasks will be of utmost importance. Yet how many tasks can humans 

perform, how much information can they process, and how is this influenced by the type 

and difficulty of the involved information? While previous research addressed these ques-

tions from a behavioral perspective and asked for the amount of information that humans 

are able to process (e.g. Halford, Baker, McCredden, & Bain, 2005), the main goal of the 

present study is as follows: Focusing on the event-related potentials of P2/200 and P3/300, 

the main goal is to investigate potential task interactions between cognitive decision tasks 

and motor demands. Here, I am interested in the influence of different postural control 

demands in a motor/cognitive dual-task situation as well as in the effects of varying cogni-

tive task difficulty. I hypothesize first that there is a general interaction between motor 

demands and cognitive tasks and second that additional motor demands lead to a reduced 

amplitude of both P2/200 and P3/300 in the primary cognitive task. Furthermore, I assume 

that increasing task difficulty of the primary cognitive tasks also leads to a reduced P2/200 

and P3/300 amplitude. In addition, I expect an increase in error rate with increasing diffi-

culty of the motor and cognitive task. 

 

3.1.1. Material and methods 

Participants 

 

In total, 20 right-handed participants, all native speakers of German (mean age 24.1 years, 

ranging from 20 to 33 years, 15 women) entered the analysis. All reported normal or cor-

rected-to-normal eyesight and no history of neurological or psychological disorder. The 

study was performed in accordance with the ethical standards laid down in the Declaration 

of Helsinki. All participants provided written informed consent prior to the experiment and 

were informed that they could end participation at any time without reprisal. 

 

Stimuli 

 

In order to investigate the effects of cognitive/motor task interactions as well as task-diffi-

culty, the study comprised of two different motor and two cognitive tasks. Within the ‘easy’ 

cognitive condition (cog1), stimuli consisted of a letter (A-Z) or a number (1-9) in an equal 

proportion across the experiment and were presented visually in the center of a computer 

monitor. The participants’ task was to decide whether the presented stimulus represented a 



Evidence for the influence of additional demands, task difficulty and the process of aging 

90 

  

letter or a number. The response to both letters and numbers could be either a reaction or 

an inhibition stimulus, depending on the specific instructions. The differentiation between 

reaction and inhibition stimulus was chosen in order to increase task-difficulty. While cog1 

included one kind of inhibition and one of reaction stimulus (letter vs. number), the ‘diffi-

cult’ task (cog2) contained two of both. Here, participants had to differentiate between even 

(2,4,6,8) and odd (1,3,5,7,9) numbers as well as vowels and consonants. Each type of stim-

ulus was presented twenty times and could be either a reaction or an inhibition stimulus. 

Stimuli were counterbalanced so that both cognitive tasks included 40 reaction and 40 in-

hibition stimuli. Following the results of Lajoie et al. (1993) who showed that normal stand-

ing and walking requires more attention than sitting in a chair, I also used sitting (mot1) as 

the non-demanding motor task but instead of normal standing or walking, I employed 

standing on one leg (mot2) as the more demanding motor task. Combining the motor and 

cognitive tasks, the resulting four task-combinations are illustrated in Figure 17. Each task 

combination was carried out in a separate block. 

 

 

Figure 17 Summarizing the four task combinations. 

[(cognitive1/motor1, cognitive1/motor2, cognitive2/motor1, cognitive2/motor2), the left side demonstrates 

the different cognitive conditions, whereas the used task-combinations are pointed out on the right.] 

 

Procedure 

 

Participants were already prepared and familiar with the measurement system because they 

previously took part in another, entirely unrelated EEG experiment. Before starting, partic-

ipants had enough time to rest and give informed consent after carefully reading the in-

structions. They were informed that they had to attend to both the cognitive and the motor 

task equally and respond to the cognitive task as fast and as accurately as possible. For the 

motor condition one leg stance (mot2), they were instructed to freely choose which leg to 
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stand on and change the leg in case of fatigue. Prior to each of the blocks (targeting one of 

the four task combinations each), participants received a detailed task description. Partici-

pants completed the experiment in a shielded cabin with a screen presenting the cognitive 

tasks. The position of the chair, the screen as well as the standing position were standard-

ized and cross-marked to ensure equal conditions for all participants. For mot2 the screen 

was heightened to the eye level of the participants. Participants responded with a commer-

cial controller, which was held in two hands, and used the right button in cog1 (one kind 

of reaction stimuli) and either the left or the right button in cog2 (two kinds of reaction 

stimuli). Stimuli were presented in the middle of the screen in black against a white back-

ground in Deja Vu Sans Mono font (34 pt.), in which all letters and numbers have the same 

width. Before each individual stimulus, an asterisk was presented for 1000 ms followed by 

a randomized delay between 1500 ms and 3500 ms. In order to avoid interferences between 

single cognitive stimuli I chose longer intervals. I randomized the latency between asterisk 

and critical stimulus to limit predictability of stimulus appearance. Each stimulus was pre-

sented for a maximum of 2000 ms or until responding and was followed by a short interval 

of 100 ms until the next trial was presented. Participants were instructed to blink after a 

stimulus or while the asterisk was presented. In order to avoid fatigue, participants per-

formed mot2 at the beginning and at the end. To avoid learning effects, simple and difficult 

cognitive-tasks were used alternately and instructions for responses were changed. There-

fore, the two following different sequences of blocks were used and distributed equally 

across participants: cog1/mot2, cog2/mot1, cog1/mot1, cog2/mot2 or cog2/mot2, 

cog1/mot1, cog2/mot1, cog1/mot2. The total duration of the experiment was 30 minutes. 

 

EEG recording procedure and preprocessing 

 

In addition to behavioral data (error rate), I recorded the electroencephalogram (EEG) from 

26Ag/AgCI scalp electrodes mounted on the scalp by an elastic cap (Electro-Cap Interna-

tional). Electrode position conformed to the international 10-20 system. The EEG was dig-

itized at a rate of 500 Hz and amplified by a Brain Vision Brain-Amp amplifier. Electrode 

impedances were kept below 4 kΩ. The EEG was referenced online to the left mastoid and 

re-referenced offline to linked mastoids. I placed the ground at AFz, three electrodes around 

the subject's right eye (over and under the eye and at its outer cantus) and one electrode at 

the outer cantus of the left. The eye electrodes served to control for artefacts from eye 

movement. To avoid slow signal drifts, the EEG data were processed offline with a 0.3–

20.0 Hz band pass filter. To exclude trials containing ocular or movement-related artifacts, 

automatic (±40 μV for the EOG electrodes) and manual rejections were performed. Items 
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with false responses and time-outs as well as ocular and movement artefacts were removed 

(number of discarded items per condition: cog1/mot1 11.08±10.55, cog1/mot2 9.35±8.84, 

cog2/mot1 4.63±4.63, cog2/mot2 7.50±7.62). 

 

Data analysis 

 

For behavioral data, error rates were analyzed using repeated-measures analysis of variance 

(ANOVA) with the factor MOTOR (2 levels: mot1/mot2) and COGNITION (2 levels: 

cog1/cog2). Furthermore, outliners were identified by using the Tukey test (Tukey, 1977), 

for each condition: 

 

Quantil0,25 – 1.5 * interquartile range ≤ x ≤ quantil0.75 + 1.5 * interquartile range 

 

While x describes the range of values accepted for further evaluation, others were excluded 

in order to avoid effects based on confusion of triggers, consciously answering wrong or 

similar. In contrast to the approach of choosing 3-times of the interquartile range, 1.5-times 

was used to get a more conservative consideration. After excluding the outliners (4 partic-

ipants), mean values and standard deviations of error rate were calculated for each condi-

tion.  

ERPs were time-locked to the onset of the stimulus and averaged per participant, condition 

and electrode for a time window from -200-900 ms. Statistical analyses were calculated for 

by means of ANOVAs with the factor MOTOR (2 levels: mot1/mot2) and COGNITION 

(2 levels: cog1/cog2). The EEG-analyses additionally included the factor region of interest 

(ROI) with five levels, which included the following electrodes: frontal (F3/4, Fz, F7/8), 

frontocentral (FC1/2, FCz, FC5/6), central (C3/4, Cz, T7/8), centroparietal (CP1/2, CPz, 

CP5/6) and parietal (P3/4, Pz, P7/8). The critical time-windows were predefined by visual 

inspection, yielding an early window (200-300 ms) and a later window (350-500 ms). 

 

3.1.2. Results 

Considering behavioral results, participants showed relatively low error rates under all con-

ditions. While the simple cognitive task lead to a mean error rate of 0.31±0.52 under sitting 

condition, error rate increased to 0.47±0.81 in the one-legged stance. In contrast, partici-

pants received same mean values of error rate in the difficult cognitive task under sitting 

and one-legged stance condition (cog2/mot1 0.53±0.84; cog2/mot2 0.53±0.77) (see also 
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Figure 18). Statistical analysis revealed no significant effects neither for the factor motor 

nor cognition. 

 

 

Figure 18 Error rate of the four task-combinations. 

 

Figure 19 illustrates the grand average ERPs for all four conditions at selected electrode 

sites. It shows an intricate interaction of the two factors in an early time window between 

200-300 ms indicating a reversal of the influence of the cognitive task as a function of the 

motor task; this effect is reflected in a more pronounced positivity for the more demanding 

cognitive task in the one-legged stance (cog2/mot2) with a central maximum and no dif-

ference between the two cognitive tasks during sitting. In addition, Figure 19 highlights 

clear differences between simple and complex cognitive tasks as well as sitting and one-

legged stance reflected by positive deflections peaking around 400 ms after stimulus-onset 

that have a centroparietal maximum (cog1>cog2; mot1>mot2). 

 

 

Figure 19 Grand average ERPs for the four combinations of motor task. 

[(easy: blue, difficult: red) and cognitive task (easy: dotted, difficult: solid). Negativity is plotted upwards.] 
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Statistical analysis of the early time window (200-300 ms) registered a motor x cognition 

interaction [F(1,19)=5.83, p < 0.027] as well as a cognition x ROI interaction 

[F(4,76)=6.07, p < 0.013], which was reflected by more reliable effects over frontal regions. 

Resolution of the motor x cognition interaction revealed an effect of the cognitive task in 

the one-legged stance motor condition (mot2) [F(1,19)=4.32, p < 0.051], which is reflected 

by a more pronounced positivity for the difficult task (cog2) relative to the simple task 

(cog1). No significant differences emerged for the simple motor condition (cog1) [F<0.6]. 

Figure 20 illustrates the pair-wise contrast. 

 

 

Figure 20 Pair-wise comparisons for the difficult motor task. 

[one-legged stance (upper plot) and the easy motor task of sitting (lower plot). Negativity is plotted upwards.] 

 

In the later time window (350-500 ms), the simple cognitive task (cog1) showed a more 

pronounced positivity than the complex cognitive task (cogn2) (dotted vs. solid lines) and 

sitting (mot1) evoked a more pronounced positivity than the more complex motor task of 

standing on one leg (mot2) (blue vs. red lines). Analyzing the time-window between 350 

and 500 ms, I found no interaction between motor and cognitive tasks but main effects of 

the motor task [F(1,19)=27.09, p < 0.001] and a marginal effect of the cognitive task 

[F(1,19)=4.12, p < 0.057]. The interaction with ROI did not reach reliable results. 

 

3.1.3. Discussion 

Are cognitive processes facilitated by motor demands and what role does task-diffi-

culty/complexity play in this context? The data first of all suggest that increasing task com-

plexity in both motor demand and cognitive task leads to a reduction of a positivity between 
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350-500 ms after stimulus onset. Considering the earlier positivity between 200-300 ms, 

results demonstrate an interaction of cognitive task and motor demand. In the simple motor 

task (sitting), processing the two types of cognitive tasks did not differ within this time 

window; by contrast, in the more demanding motor task (one-legged stance), the more dif-

ficult cognitive task engendered a more pronounced positivity than the simple cognitive 

task. This interaction might be due to the amount of attention spent on the tasks. In the 

following, I first discuss the interaction in the P2/200 window and the effects in the P3/300 

window before I address the dissociation of these two processes. In addition, behavioral 

results, which were not the primary focus of the current study, yielded no reliable effects. 

Although, I am aware of the fact that the mean error rates are extremely low, and the dif-

ferences are just tendential, the findings of a decreased range in motor conditions with in-

creasing cognitive task-difficulty, should be addressed in further studies. 

As far as the P2/200 interaction between motor and cognitive demands is concerned, I pro-

pose that the differences in the amplitude between the easy and difficult cognitive task in 

the more complex motor task (one-legged stance) (cog2/mot2 > cog1/mot2) are related to 

an increased resource allocation to the complex cognitive task in one-legged stance in an 

early stage of processing. Regarding the motor demand, the present findings are in contrast 

to previous postural control studies, which either reported no effects on P2/200 (Sibley et 

al., 2010) or a decreased P2/200 with increasing motor demand (Huang & Hwang, 2013). 

A possible explanation for these differences might be associated with task differences. 

While the study at hand included a combination of motor and cognitive demand tasks, Si-

bley and colleagues (2010) for example combined two motor demands without a cognitive 

component. Furthermore, participants in the study by Huang and Hwang (2013) conducted 

force-matching manoeuvres (static vs. dynamic) under two stance conditions (bipedal 

stance vs. unipedal stance). 

In contrast to the motor x cognition interaction reported in the P2/200, I found no interac-

tion within a later stage of processing, reflected by the P3/300. This finding is supported 

by the cross-talk model, which suggests that interferences increase with the degree of sim-

ilarity of simultaneously performed tasks (see also Pashler, 1994 for review). Accordingly, 

I suggest a possible parallel processing of motor demand and cognitive task within a later 

stage of information processing.  

Crucially, the current data demonstrate a clear influence of both cognitive and motor task 

complexity on the P3/300 amplitude, which is in contrast to previous studies (cf. Gramann 

et al., 2010 for standing vs. walking vs. running). I argue that this difference across studies 

is due to the type of task used in our study. Based on various previous findings, I propose 

that the demand on central perceptual resources, respectively the effort spent for the task 
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as well as the amount of information (cf. e.g. Sutton et al., 1965; Wickens et al., 1983) 

(Kok, 2001 for an overview) are somehow lesser in normal standing, walking and running 

(as investigated by Gramann et al., 2010; Sibley et al., 2010) compared to the one leg stance 

used in the current study. Thus, there seem to be particular demands associated with the 

complex motor task implemented in the present design. Concerning the effect of the motor 

task (mot1 > mot2), the amount of attention paid to the secondary task is again highly 

relevant. In addition, the P3/300 is regarded as attention associated with bottom-up infor-

mation, which is supported by numerous oddball studies (Isreal et al., 1980b; Kida, Kaneda, 

& Nishihira, 2012; Kramer et al., 1987). Furthermore, Hillyard et al. (1973) concluded that 

only stimuli that are engaged in a selection process and therefore are paid attention to are 

reflected by the P3/300. Ignoring a stimulus actively and therefore not allocating any at-

tentional resources to this stimulus leads to the absence of a P3/300 (cf. e.g. Squires et al., 

1975). Similar results were obtained when people were asked to concentrate on a quickly 

presented, relevant stimulus (Hillyard, 1981; Hillyard, & Kutas, 1983) or when their atten-

tion drifted away from a performed task (Duncan-Johnson & Donchin, 1977; Johnson, 

1988). While gait is generally described as a highly automated task – but see Hoffman et 

al. (1985) who showed that certain automated detection processes require attentional re-

sources – it could be argued, that standing on one leg needs more attentional resources in a 

later period of processing which is therefore reflected in a decrease of P3/300 amplitude 

for the motor task.  

The same accounts for the main effect of the cognitive task (cog1 > cog2). While both tasks 

of the present investigation elicited a P3/300, I suggest that the decrease in amplitude from 

the easy to the more difficult cognitive task reflects the increasing task difficulty of the 

cognitive task. Based on previous findings it could be assumed that the increase of task 

variables from letters and numbers to a finer distinction between even and odd numbers as 

well as vowels and consonants leads to an increasing amount of cognitive resources neces-

sary for completing the tasks. Similar to the consideration of motor/cognitive task-combi-

nations, previous studies revealed conflicting results in varying task difficulty of the sim-

ultaneous performance of two cognitive tasks. On the one hand, Wickens et al. (1977) and 

Isreal et al. (1980b) among others, who combined a tracking task and an oddball task, 

showed no differences in P3/300 with increasing task difficulty of the tracking task. On the 

other hand, Isreal et al. (1980a) reported a decrease of P3/300 amplitude with increasing 

task difficulty using auditory and visual tasks as well as a combination of both. In this latter 

study, task difficulty was varied by increasing the number of stimuli (visual task), the type 

of response (auditory task) as well as in combining the tasks. Furthermore, numerous pre-

vious studies reported a delay in P3/300 latency as well as a reduction in P3/300 amplitude 
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with increasing display load (Brookhuis et al., 1981; Hoffman, Simons, & Houck, 1983; 

Lorist, Snel, Kok, & Mulder, 1996; Smid, Lamain, Hogeboom, Mulder, & Mulder, 1991; 

Wijers et al., 1987). Additionally, the present findings are supported by Kramer et al. 

(1987) and Strayer and Drews (2007) who reported a decreased P3/300 amplitude with 

increasing task difficulty, on a more applied level. While Kramer et al. (1987) combined a 

flight simulation-task with an additional auditory oddball task, participants within the study 

conducted by Strayer and Drews (2007) simultaneously performed a driving and mobile 

phone task. 

Finally, for a better understanding of the dissociation of the two temporally distinct effects, 

attention may be differentiated between willful, top-down processes and bottom-up pro-

cesses, corresponding to the P2/200 and P3/300 respectively. Previous findings that re-

ported the emergence of a P2/200 in the context of frequent stimuli support the assumption 

that the P2/200 is associated with top-down processes (Crowley & Colrain, 2004; Feder-

meier, Mai, & Kutas, 2005; Verleger, Heide, Butt, & Kömpf, 1994). With Maeno et al. 

(2004) who demonstrated a positive correlation between the P2/200 and the amount of at-

tention allocated to a particular task, the more demanding motor task of the current exper-

iment may facilitate the amount of attention paid to the difficult cognitive task. This indi-

cates that allocation of top-down attentional resources is positively affected by the more 

complex motor task. In accordance with the cross-talk theory (first described by Paulhan, 

1887), which focuses on the content of combined tasks, I suggest that the amount of diffi-

culty/complexity of each task plays a crucial role with respect to the supporting or compet-

ing effect of combining two tasks.  

Even though I am aware of the limitations of this first study on the subject matter, it demon-

strates the possibilities and benefits of systematically investigating the effects of additional 

tasks/variables. Especially in the light of the rapidly growing complexity of task require-

ments, further variables such as environmental factors, individual traits, and emotional ef-

fects need to be considered next to additional motor tasks and further degrees of task diffi-

culty. Based on the present findings, future studies should focus on a systematic investiga-

tion of the factors involved in dual-task processing in order to get a better understanding of 

task interaction and demands. Overall, I investigated the effects of motor and cognitive task 

demands in a dual-task setting. I observed an early interaction of the two tasks reflected in 

a more pronounced P2/200 for the difficult cognitive task in the difficult motor task (one-

legged stance), which I associate with increased allocation of top-down attentional re-

sources. This is followed by main effects of complexity for both the motor and the cognitive 

task, with more reduced P3/300 amplitudes for the more complex tasks, explained inter alia 

by bottom-up attentional resources. 
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3.2. Experiment II 

Cognitive performance under different demands – Insights from a behavioral per-

spective 

 

„Any man who can drive safely while kissing a pretty girl is simply not giving the kiss the 

attention it deserves” (Albert Einstein, 1879-1955). 

 

As discussed in numerous dual-task studies, Albert Einstein - probably unconsciously - 

described the consequences of performing two tasks simultaneously. Considered since 

more than 100 years in a multitudinous amount of studies out of numerous fields of interest 

(e.g. Solomon & Stein, 1896) the questions of how many tasks humans can perform, how 

much information they can process, and how this is influenced by the type and difficulty 

of the involved information, which I have already stated in the first experiment, are still not 

fully answered. While previous research in the context was mostly addressed on a specific 

question, for example on the influence of using a mobile phone while driving a car, I am 

of the opinion that it is inevitable to investigate the influence of amount, type and difficulty 

of simultaneous performed tasks in a more systematic way. Furthermore, individual as-

pects, which are reported to influence dual-task performance, need to be considered. Based 

on the first experiment as well as previous findings, the study at hand, focused in a more 

extensive way the influence of simultaneously performing cognitive and motor tasks as 

well as task-difficulty, from a behavioral perspective. These aspects will be supplemented 

by investigating the process of aging but also the way of task-presentation in this context. 

 

Therefore, the present study addresses the following hypotheses, which consider the four 

different main effects: 

 

1a) Increasing cognitive task difficulty lead to an increased response time. 

1b) Increasing cognitive task difficulty lead to an increased error rate. 

 

2a) Increasing difficulty of additional motor demands lead to an increased response time 

when performing a cognitive task simultaneously.  

2b) Increasing difficulty of additional motor demands lead to an increased error rate when 

performing a cognitive task simultaneously.  
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3a) Increasing age lead to an increased response time in cognitive task performance under 

both single- and dual-task conditions. 

3b) Increasing age lead to an increased error rate in cognitive task performance under both 

single- and dual-task conditions. 

 

4a) Different way of cognitive task presentation (visual / auditory) lead to differences in 

response time under both single- and dual-task conditions. 

4b) Different way of cognitive task presentation (visual / auditory) lead to differences in 

error rate under both single- and dual-task conditions. 

 

In addition to the hypothesis of main effects, the possible interaction effects (combinatorics 

formula: 2𝑛 − 𝑛 − 1, here with 𝑛 = 4), lead to 11 sub-hypothese, which are not further 

formulated but outlined within Figure 21.  

 

 

Figure 21 Resulting hypotheses of main- and interaction effects according to set partitioning. 

 

3.2.1. Material and methods 

Participants 

 

Fifty people ranging from 20-80 years (mean 45.24 ± 17.17) participated in the present 

experiment (42 female; 48 right-handed). Participants were recruited from the Hochschule 

Fresenius (Idstein), regional organisations, as well as public facilities. Aiming a broad age 

associated variety, I randomized ten of each decade from age 20 to 60 and ten from 60 to 
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80. People above 60 were tested by the ‘DemTect-Test’ (Kalbe et al., 2004; Kessler, Cala-

brese, Kalbe, & Berger, 2000) and excluded even when they showed mild limitations or 

first signs of dementia (DemTect<13). Furthermore, participants reported normal or cor-

rected-to-normal eyesight as well as hearing abilities and no history of acute or chronic 

diseases (e.g. stroke, joint replacement, Parkinsons disease, etc.), associated with cognitive 

and / or motor impairments.  

Detailed information about the five subgroubs are shown in Table 3. Mean age of each 

subgroup is additionally visualized in Figure 22. 

 

Table 3 Characteristics of the study sample. 

Group Age Sex Hight (cm) 
 

Weight (kg) 
Dominant hand Education 

   m f   left right Level 1 Level 2 Level 3 

20-30 22.0±2.7 1 9 166,6±7.6 59.0±7.3 1 9 0 0 10 

30-40 32.8±3.3 1 9 169.8±6.0 63.4±8.5 0 10 0 0 10 

40-50 46.1±2.7 1 9 172.1±7.8 72.1±11.4 1 9 0 2 8 

50-60 55.7±2.5 3 7 174.6±9.7 73.2±12.2 0 10 0 3 7 

60-80 69.6±6.6 1 9 166.1±5.7 66.4±7.0 0 10 3 1 6 

[level 1: primary school; level 2: secondary modern school; level 3: grammar school]  

 

 

Figure 22 Mean age of each subgroup. 

 

Stimuli 

 

In order to present cognitive tasks under different motor demands on the one hand and to 

measure response time and error rate on the other hand, a measurement system was devel-

oped. The system comprises a personal computer, the measurement software, which is 

based on the data acquisition program DASYLab®, a bus-powered isolated USB M Series 
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multifunction data acquisition module (National InstrumentsTM), and two homemade trig-

gers, which can be held each in one hand and activated with one finger. For stimulus-

presentation, commercial loudspeakers and a flatscreen (21.5”) were used. Cognitive tasks 

comprise six types of tasks with increasing task-difficulty from a simple reaction-task to a 

dichotomous choice and double inhibition task with additional mnemonic component. Each 

task would be presented in both an auditory (A) and a visual (V) way, equal in content. 

Task-difficulty is regulated by the number of presented stimuli as well as the changing 

content of the tasks and the possibilities to response during five cognitive tasks.  

The systematic characterization of increasing task-difficulty is based on the idea of bipartite 

graphs out of the mathematical field of graph theory. Therefore, it might be helpful giving 

a short introduction in the graph theory as well as bipartite graphs, before focusing the 

content of cognitive tasks in more detail. In the mathematical field a graph is defined as an 

ordered pair G = (V,E) of a disjunct set with E  V2, where the elements of E are 2-element 

subsets of V. While elements of V are described as vertices of the graph G, elements of E 

are described as edges (Diestel, 2010). The example of a public transportation map (Figure 

23) is a helpful way to describe how vertices and edges interact. Imagine that each vertice 

represents a station and each edge a connection between two stations, the mathematical 

understanding of graphs should become obvious. 

 

 

Figure 23 Public transportation map for describing vertices and edges. 

 

Without going into more detail of graph theory, I would like to focus on bipartite graphs 

hereinafter. Here, a graph is described as r-partite (r  2 a natural number) when a partition 

of V exists in r-parts, so that the vertices of each edge lie in different classes of partition. It 

is not allowed that vertices of the same class are next to each other. While Figure 24 shows 

both a 3-partite graph (a) as well as a bipartite graph (b,c), bipartite graphs are characterized 
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by two disjoint sets of vertices that are independent of each other (Diestel, 2010). Consid-

ering example b) of Figure 24, every edge connects a vertex in the left set to one in the 

right. Furthermore, a bipartite graph does not contain any circle with odd-length (Asratian, 

Denley & Häggkvist, 1998). 

 

 

Figure 24 Examples of 3-partite (a) and bipartite (b,c) graphs. 

 

As it is used in describing the increasing task-difficulty of cognitive tasks in the present 

study (Figure 25), the two different colors of the different sets are based on graph coloring. 

The idea is, that all vertices of one set have the same color (blue) and the vertices of the 

other set have another color (green), which leads to the fact that each edge has endpoints 

of different colors (Scheinerman, 2012). It follows, that each bipartite graph could be col-

ored by exactly two colors.  

 

 

Figure 25 Increasing task-difficulty / complexity on the example of bipartite graphs. 

 

Describing bipartite graphs within the project at hand, Figure 25 drafts five out of the six 

cognitive tasks with increasing task difficulty from one to five for the auditory task-setting. 

While the vertices on the left, describe the different kinds of stimuli, presented to the par-

ticipants, vertices on the right comprising possible responses. Here, the increasing number 

of edges point out the increase in task-difficulty. Before I go into more detail in describing 

a ) b ) c ) 
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the content of each cognitive task, some aspects should be stated in the context of Figure 

25 before: 

 

- Stimuli used in the present study comprise tones (auditory setting) / points (visual set-

ting), as well as letters and numbers (both settings). 

- With increasing task-difficulty stimuli are more separated (e.g. letters and numbers in 

task 4 and vowels/consonants & even-/odd-numbers in task 5). 

- Each of the vertices comprise ten stimuli, taken from a different number of stimuli (out 

of 26 letters, 9 numbers, 5 vowels, 24 consonants, 4 even-numbers, 5 odd-numbers). 

- Responses are related to the used trigger in each task. While in task one and two, par-

ticipants had only one trigger in their right hand, in task three to five participants have 

to respond either with their left or right trigger. 

- While non-response must be seen as a possible action in each task, task two, four, and 

five explicitly request participants to inhibit certain stimuli. Here, participants have also 

the possibility to press a trigger. Therefore, inhibition is not listed as additional vertex 

within the bipartite graphs.  

 

One might wonder that I have stated six cognitive tasks before, but always talking about 

cognitive task one to five. This based on the fact that task six could be seen as in somehow 

specific. This task is equal in content of task five but additionally comprises a mnemonic 

component, which could not be described by bipartite graphs. In the following, each cog-

nitive task used in the present study will be described in detail (additionally summarized in 

Table 4).  

 

1. Simple reaction task (A1/V1) 

A single type of stimulus (tone with a frequency of 500Hz / black points, having a di-

ameter of 5cm) would be applied. Participants should answer by using one of the two 

triggers. 

Amount: 10 response-stimuli. 

 

2. Inhibition reaction task (A2/V2) 

Application of two different type of stimuli (tone with a frequency of either 500Hz or 

2000Hz / red or blue points, having a diameter of 5cm). Participants should press one 

of the two triggers, on one type of stimulus and not react on the other. 

Amount: 10 response-stimuli / 10 inhibition-stimuli. 
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3. Dichotomous choice task (A3/V3) 

Application of two different type of stimuli (tone with a frequency of either 500Hz or 

2000Hz / red or blue points, having a diameter of 5cm), identical to A2/V2. Participants 

should press one of the two triggers, for the first type of stimulus and the other trigger 

for the second type of stimulus. 

Amount: 20 response-stimuli. 

 

4. Dichotomous choice and inhibition task (A4/V4) 

Application of different letters (A-Z) and numbers (1-9), equal in the auditory and visual 

setting. Participants should press one of the two triggers, for letters and the other for 

numbers. An additional type of stimulus (tone with a frequency of 500Hz / black point, 

having a diameter of 5cm), would be applied, on which participants should not response. 

Amount: 20 response-stimuli / 10 inhibition-stimuli. 

 

5. Dichotomous choice and double inhibition task (A5/V5) 

Application of different letters (A-Z) and numbers (1-9), equal in the auditory and visual 

setting. Within this task, I created the subcategories “vowel”, “consonant”, “even num-

ber”, and “odd number”. Participants should press one of the two triggers, for one sub-

category (e.g. “vowel”), not for the other subcategory out of the same category (e.g. 

“consonant”). Furthermore, they should press the second trigger for one subcategory of 

the other category (e.g. “even number”), but not for the other (e.g. “odd number”). 

Amount: 20 response-stimuli / 20 inhibition-stimuli. 

 

6. Mnemonic – dichotomous choice and double inhibition task (A6/V6) 

Equal to A5/V5. Additional, prior to the actual task participants get ten words applied 

in a visual way for 30 seconds. People should memorize as much as they can of the 10 

words across the dichotomous choice and double inhibition task. At the end of the task, 

people were asked to report as much of the ten words, verbally. The words vary between 

2-6 syllables (mean: 3-4 syllables), but the focus in choosing the words was the differ-

ences in meaning and its abstract character.  

Amount: 20 response-stimuli / 20 inhibition-stimuli. 
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Table 4 Summary of the six cognitive tasks. 

Cognitive tasks  Task-description 

  visual (v) auditory (a) 

V1 / A1 Simple reaction task 
Application of visual signals (black 

points - response) 

Application of auditory signals 

(tone - response) 

V2 / A2 Inhibition reaction task 

Application of different visual sig-

nals (blue points - response; red 

points - inhibition) 

Application of different audi-

tory signals (high tone - re-

sponse; low tone - inhibition) 

V3 / A3 Dichotomous choice task 

Application of different visual sig-

nals (blue points - response 1; red 

points - response 2) 

Application of different audi-

tory signals (high tone - re-

sponse 1; low tone - response 

2) 

V4 / A4 Dichotomous choice and 

inhibition task 

Application of different letters, num-

bers and a visual signal (letter - re-

sponse 1; number - response 2; vis-

ual signal - inhibition) 

Application of different letters, 

numbers and a auditory signal 

(letter - response 1; number - 

response 2; auditory signal - in-

hibition) 

V5 / A5 Dichotomous choice and 

double inhibition task 

Application of different letters and 

numbers ( vowel - response 1; conso-

nant - inhibition; even number - re-

sponse 2; odd number - inhibition) 

Application of different letters 

and numbers (vowel - response 

1; consonant - inhibition; even 

number - response 2; odd num-

ber - inhibition) 

V6 / A6 Mnemonic - dichoto-

mous choice and double inhibi-

tion task 

Equal to V5 + mnemonic task Equal to A5 + mnemonic task 

 

The resulting twelve cognitive tasks (6 auditory / 6 visual) were combined with three dif-

ferent motor demands. Following the results of Lajoie et al. (1993) who showed that normal 

standing and walking requires more attention than sitting in a chair, I also used ‘sitting’ 

(mot1) as non-demanding motor task, standing as simple motor demand (mot2), but instead 

of walking, I employed standing on one leg (mot3) as more demanding motor task. In total 

36 task-combinations were applied to each participant (Figure 26). 
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Figure 26 Description of the 18 motor / cognitive task-combinations. 

[Both visual and the auditory setting] 

 

Procedure 

 

Before starting, participants give informed consent after carefully reading the instructions. 

As already stated, people aged above 60 years were tested by the ‘DemTect-Test’ (Kalbe 

et al., 2004; Kessler et al., 2000) and excluded even when they showed mild limitations or 

first signs of dementia (DemTect<13). Participants completed the experiment under stand-

ardized conditions (e.g. light, noise, temperature, etc.). Furthermore, the position of the 

chair, the screen as well as the standing position were standardized and cross-marked to 

ensure equal conditions for all participants. For mot2 and mot3 the screen was heightened 

to the eye level of the participants. Participants responded with two handmade trigger, held 

one in each hand, and used the right trigger in cog1 and cog2 and either the left or the right 

trigger in cog3 – cog6. Stimuli were presented in a randomized way either in the left upper 

corner, left lower corner, right upper corner, right lower corner, or in the middle of the 

screen in black against a white background in Deja Vu Sans Mono font (34 pt.), Déjà vu 

Sans Mono was used due to the fact that all letters and numbers have the same width. 

Participants were informed that they had to attend to both the cognitive and the motor task 

equally and respond to the cognitive task as fast and as accurately as possible. For the motor 

condition one-legged stance (mot3), they were instructed to freely choose which leg to 

stand on and change the leg in case of fatigue. Prior to each task, participants received a 

detailed task description.  

Before running the study a visual (V1) and an auditory task (A2) were presented to the 

participants in order to get familiar with the test equipment as well as understand the task 

description. A2 was chosen to demonstrate participants the difference between a high and 
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low tone. After successfully complete the ‘test-tasks’, the first 18 tasks were applied to the 

participants. In order to avoide cognitive and motor fatigue, the second 18 tasks were per-

formed on a second time. Here, there was exactly one week off between the first and the 

second time of measurement. Furthermore, participants were instructed to choose breaks 

between single tasks whenever they feel fatigue. Within the experiment, all cognitive tasks 

out of the auditory and visual category are combined in a pseudorandomized way with the 

three motor demands. In order to avoid motor fatigue two tasks with the motor demand 

one-legged stance never follow each other. To prevent habituation effects, cognitive tasks 

of the same level never follow each other (e.g. cog3/mot2 and cog3/mot1). Furthermore, 

interstimulus interval is randomized between 300-3000ms. Interstimulus interval starts af-

ter response of the previous stimulus or 2000ms of its presentation. Therefore, maximum 

amount of time between two stimuli (in case of non-response or inhibition stimulus) is 

5000ms. A delay in stimulus application due to the operating system Windows® and there-

fore a resulting bias in recording of the response-time is considered in the configuration of 

the circuit diagram based on the measurement software Dasylab®. Response time and used 

trigger are saved automatically within the Microsoft program Excel®, by the measurement 

software. The total duration of the experiment was 2.5 hours. 

 

Data analysis 

 

For the purpose to test for global differences of the mean between different age groups 

(group factor) and between the different conditions (three repeated-measures factors) the 

common method is to perform a four-way repeated-measures ANOVA on three within-

subjects’ factors. However, a necessity of this analysis is that each participant has been 

measured on each factor – otherwise from a conservative point of view the whole measure-

ment set of this participant should be excluded from further computations (list wise dele-

tion). In order to cope with missing data, a novel way is to adapt the analysis to perform a 

mixed-models ANOVA which incorporate both, random and fixed-effects factors (Gueor-

guieva & Krystal, 2004, Krueger & Tian, 2004). Therefore, the repeated-measure factors 

(number of levels: motor 3, type 2, cognitive task 6) were treated as simple fixed-effects 

factors, as the missing data points are assumed to be random samples of the data set. In 

other words, the conventional wide-data format in which each participant is ordered row-

wise with column-wise measurement points was restructured into a long-data format where 

the repeated-measures factors are arranged row-wise as well. Hence, we got 10*5*3*2*6 

= 1080 rows and the columns comprised the 4 factors (age, motor, stimuli, cognitive task) 

and the two dependent variables (reaction time, number of errors).  
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As independency between the two dependent variables could not be deduced, henceforth a 

mixed-models four-way-MANOVA was conducted with three random factors and one 

fixed factor as stated above. Multivariate significance has been proven with Wilk’s lambda. 

Global alpha level has been controlled by Benjamini-Hochberg step-up procedure due to 

hidden multiplicity in this exploratory multiway design (Cramer et al., 2016), that is com-

paring the p-values (sorted in ascending order) p_1≤p_2≤⋯≤p_m of the m null-hypotheses 

(main effects and interaction effects) each with α/k with k=1,…,m (Benjamini & Hochberg, 

1995). So, the highest p-value p_m was compared with α, p_(m-1) with α/2, etc. 

A bivariate analysis on outliers was performed. For this purpose, Mahalanobis distance was 

calculated and compared with the cut-off value χ²=13.82 (df=2, p=0.001) (Mahalanobis, 

1936). Three more data points were excluded. The dependent variables showed a low cor-

relation of r = 0.354. The assumptions for MANOVA are bivariate normal distribution and 

homoscedasticity of the residuals both within each factor level. Bivariate normal distribu-

tion has been tested by Roystons-H-tests (Royston, 1982, 1983) and a further visual inspec-

tion has been done with qq-plots of Mahalanobis-distance for each variable level. Homo-

scedasticity has been tested first by the Box-M-test and by Levene tests for both dependent 

variables. Considering MANOVA post-hoc analysis, the Roy Bargman stepdown analysis 

(Roy & Bargmann, 1958) was used. Here, univariate ANOVA on the dependent variable 

reaction time has been run. In a second step, a second univariate ANOVA with the depend-

ent variable errors with respect to reaction time as a covariate (ANCOVA) was conducted. 

This procedure accounts for dependencies between the dependent variables rather than an-

alyzing bivariate significant results on dependent variables independently from each other. 

Main effects have been analyzed by pairwise conservative Scheffé-tests (due to unbalanced 

samples). Interaction effects have been analyzed subject to all factor levels using multiple 

ANOVAs and pairwise independent t-tests. Family-wise alpha level has been controlled 

using Benjamini-Hochberg step-up procedure when testing familywise tests (multiple 

ANOVAs or multiple t-tests) or by Scheffé-tests (post-hoc after ANOVA). 

 

3.2.2. Results 

Taking into account that each factor is treated as a fixed factor, the conservative procedure 

to test for multivariate normal distribution is to test on each factor level: only 65 tests of 

180 tests showed that the sample was taken from a normally distributed population 

(p>0.05). Both dependent data sets were consistently right-skewed over each age category 

(response time: (age 20-30 years) S=0.4, (age 30-40 years) S=0.68, (age 40-50 years) 
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S=0.53, (age 50-60 years) S=0.424, (age 60-80 years) S=0.38; error rate: (age 20-30 

years) S=1.18, (age 30-40 years) S=1.18, (age 40-50 years) S=1.23, (age 50-60 years) 

S=1.16, (age 60-80 year) S=1.22) (see Figure 27 & 28). Therefore, this might be an inherent 

characteristic, which has to be taken into account.  

 

The Box-M-test has been significant (F(489,218708.147)=3.803, p < 0.001); furthermore, 

both Levene-tests showed significant results (RT: F(179,1497)=2.966, p < 0.001, error: 

F(179,1497)=11.0, p<0.001). ANCOVA revealed a significant effect of RT on error 

(F(1,1496)=27.62, p<0.001, 𝜂²=0.018). An overview of the result of the MANOVA ac-

cording to Roy Bargman stepdown analysis is highlighted in Table 5. 

 

 

Figure 27 Histogram of the dependent variable response time (absolute frequencies).  

[The histogram shows an unimodal distribution but a positive skewness is observable.] 

 

 

Response time
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Figure 28 Histogram of the dependent variable error rate (absolute frequencies).  

[The morphology of the distribution represents a power law (exponential distribution).] 

 

 

Table 5 Result of the MANOVA according to Roy Bargman stepdown analysis. 

Independent 

Variables and 

interactions 

MANOVA ANOVA (RT) ANCOVA (Error + 

RT[covariate]) 

ANOVA / 

Scheffé test, in-

dependent t-

tests 

Age F(8,2994)=47.616, 

p<0.001, 𝜂²=0.113 

F(4,1497)=100.368, 

p<0.001, 𝜂²= 0.211 

F(4,1496)=0.784, 

p=0.536, 𝜂²=0.002 

Reaction time: 

Figure 29 

Motor F(4,2992)=1.843, 

p=0.118, 𝜂²=0.02 

X X X 

Type F(2,1496)=224,696, 

p<0.001, 𝜂²=0.231 

F(1,1497)=449.7, 

p<0.001, 𝜂²=0.231 

 

F(1,1496)=0.002, 

p=0.965, 𝜂²=0.0 

X 

Cognitive task F(10,2992)=407.985, 

p<0.001, 𝜂²=0.577 

F(5,1497)=1108.0, 

p<0.001, 𝜂²=0.787 

F(5,1496)=56.37, 

p<0.001, 𝜂²=0.16 

Reaction time:  

Figure 30;  

Error rate:  

Figure 31 

Error rate
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Age*Motor F(16,2992)=0.619, 

p=0.871, 𝜂²=0.003 

X X X 

Age*Type F(8,2992)=1.379, 

p=0.201, 𝜂²=0.004 

X X X 

Age*Cognitive 

task 

F(40,2992)=2.654, 

p<0.001, 𝜂²=0.034 

F(20,1497)=3.093, 

p<0.001, 𝜂²=0.04 

 

F(20,1496)=2.22, 

p=0.001, 𝜂²=0.029 

Reaction time: 

Figure 32; 

Error rate:  

Figure 33 

Motor*Type F(4,2992)=8.748, 

p<0.001, 𝜂²=0.012 

F(2,1497)=5.292, 

p=0.005, 𝜂²=0.007 

 

F(2,1496)=12.22, 

p<0.001, 𝜂²=0.016 

Reaction time: 

Figure 34; 

Error rate:  

Figure 35 

Motor*Cogni-

tive task 

F(20,2992)=5.137, 

p<0.001, 𝜂²=0.033 

F(10,1497)=5.5, 

p<0.001, 𝜂²=0.035 

 

F(10,1496)=4.77, 

p<0.001, 𝜂²=0.031 

Reaction time: 

Figure 36; 

Error rate:  

Figure 37 

Type*Cognitive 

task 

F(10,2992)=32.0, 

p<0.001, 𝜂²=0.097 

F(5,1497)=63.47, 

p<0.001, 𝜂²=0.175 

F(5,1496)=3.3, 

p=0.006, 𝜂²=0.01 

Reaction time: 

Figure 38; 

Error time:  

Figure 39 

Age*Mo-

tor*Type 

F(16,2992)=1.773, 

p=0.029, 𝜂²=0.009 

X X X 

Age*Motor* 

Cognitive task 

F(80,2992)=0.901, 

p=0.722, 𝜂²=0.024 

X X X 

Age*Type* 

Cognitive task 

F(40,2992)=1.164, 

p=0.223, 𝜂²=0.015 

X X X 

Motor*Type* 

Cognitive task 

F(20,2992)=6.074, 

p<0.001, 𝜂²=0.039 

F(10,1497)=2.25, 

p=0.013, 𝜂²=0.015 

 

F(10,1496)=9.998, 

p<0.001, 𝜂²=0.063 

Reaction time: 

Figure 40,  

Figure 41; 

Error rate:  

Figure 42,  

Figure 43 

Age*Motor* 

Type*Cognitive 

task 

F(80,2992)=0.919, 

p=0.682, 𝜂²=0.024 

X X X 
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Figure 29 Main effect on age in response time. 

 

Considering the main effect on age, I found significant results with respect to the mean 

difference (MD) in response time on all pairs (3-1: MD=65.58, p<0.001*, 4-1: MD=88.87, 

p<0.001*, 5-1: MD=116.07, p<0.001*, 3-2: MD=69.8, p<0.001*, 4-2: MD=93.08, 

p<0.001*, 5-2: MD=120.29, p<0.001*, 5-3: MD=50.49, p<0.001*, 5-4: MD=27.2, 

p=0.013*), except of the pairs 4-3: MD=23.29, p=0.05 and 2-1 (MD=-4.21, p=0.989). 

 

 

Figure 30 Main effect on cognitive tasks in response time. 

 

With respect to the main effect on cognitive tasks in response time, all Scheffé tests 

showed significant results (2-1: MD=124.29, p<0.001, 3-1: MD=178.8, p<0.001, 4-1: 
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MD=442.4, p<0.001, 5-1: MD=409.82, p<0.001, 6-1: MD=485.76, p<0.001, 3-2: 

MD=54.52, p<0.001, 4-2: MD=318.13, p<0.001, 5-2: MD=285.53, p<0.001, 6-2: 

MD=361.47, p<0.001, 4-3: MD=263.61, p<0.001, 5-3: MD=231.02, p<0.001, 6-3: 

MD=306.96, p<0.001, 5-4: MD=-32.6, p=0.009, 6-4: MD=43.34, p<0.001, 6-5: 

MD=75.94, p<0.00). 

 

 

Figure 31 Main effect on cognitive tasks in error rate. 

 

Considering the main effect on cognitive tasks, I found several significances in error rate, 

using Scheffé tests (2-1: MD=3.81, p<0.001, 3-1: MD=5.64, p<0.001, 4-1: MD=8.7, 

p<0.001, 5-1: MD=10.22, p<0.001, 6-1: MD=3.82, p<0.001, 3-2: MD=1.83, p<0.016, 4-2: 

MD=4.89, p<0.001, 5-2: MD=6.41, p<0.001, 6-2: MD=0, p=1.0, 4-3: MD=3.07, p<0.001, 

5-3: MD=4.58, p<0.001, 6-3: MD=-1.82, p=0.02, 5-4: MD=1.51, p=0.098, 6-4: MD=-4.89, 

p<0.001, 5-6: MD=-6.4, p<0.001). 
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Figure 32 Effects on age*cognitive task interaction in response time. 

 

To determine effects in the interaction age*cognitive task in response time, I calculated 5 

One-way-ANOVAs on cognitive tasks. I found significant effects in all age groups (age 

20-30: F(5,338)=189.35, p<0.001*, post-hoc Scheffé: 2-1: MD=93.87, p<0.001, 3-1: 

MD=144.72, p<0.001, 4-1: MD=374.34, p<0.001, 5-1: MD=361.99, p<0.001, 6-1: 

MD=444.66, p<0.001, 3-2: MD=50.85, p=0.173, 4-2: MD=280.47, p<0.001, 5-2: 

MD=268.13, p<0.001, 6-2: MD=350.78, p<0.001, 4-3: MD=229.62, p<0.001, 5-3: 

MD=217.27, p<0.001, 6-3: MD=299.9, p<0.001, 5-4: MD=-12.34, p=0.994, 6-4: 

MD=70.31, p=0.016, 6-5: MD=82.66, p=0.003; age 30-40: F(5,338)=158.99, p<0.001*, 

post-hoc Scheffé: 2-1: MD=97,59, p<0.001, 3-1: MD=158.37, p<0.001, 4-1: MD=411.93, 

p<0.001, 5-1: MD=359.15, p<0.001, 6-1: MD=426.12, p<0.001, 3-2: MD=60.78, p=0.089, 

4-2: MD=314.34, p<0.001, 5-2: MD=261.56, p<0.001, 6-2: MD=328.53, p<0.001, 4-3: 

MD=253.57, p<0.001, 5-3: MD=200.78, p<0.001, 6-3: MD=267.75, p<0.001, 5-4:  

MD=-52.79, p=0.22, 6-4: MD=14.18, p=0.992, 6-5: MD=66.97, p=0.054; age 40-50: 

F(5,338)=178.98, p<0.001*, post-hoc Scheffé: 2-1: MD=123.3, p<0.001, 3-1: MD=192.76, 

p<0.001, 4-1: MD=489.32, p<0.001, 5-1: MD=420.28, p<0.001, 6-1: MD=509.29, 

p<0.001, 3-2: MD=69.45, p=0.07, 4-2: MD: 366.02, p<0.001, 5-2: MD=296.97, p<0.001, 

6-2: MD=385.98, p<0.001, 4-3: MD=296.57, p<0.001, 5-3: MD=227.52, p<0.001, 6-3: 

MD=316.53, p<0.001, 5-4: MD=-69.05, p=0.085, 6-4: MD=19.96, p=0.978, 6-5: 

MD=89.01, p=0.009, age 50-60: F(5,342)=137.55, p<0.001*, post-hoc Scheffé: 2-1: 

MD=153.84, p<0.001, 3-1: MD=186.37, p<0.001, 4-1: MD=462.89, p<0.001, 5-1: 

MD=419.32, p<0.001, 6-1: MD=509.13, p<0.001, 3-2: MD=32.53, p=0.875, 4-2: 

MD=309.06, p<0.001, 5-2: MD=265.48, p<0.001, 6-2: MD=355.29, p<0.001, 4-3: 
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MD=276.52, p<0.001, 5-3: MD=232.95, p<0.001, 6-3: MD=322.75, p<0.001, 5-4:  

MD=-43.58, p=0.66, 6-4: MD=46.23, p=0.623, 6-5: MD=89.8, p=0.022; age 60-80: 

F(5,319)=128.2, p<0.001*, post-hoc Scheffé: 2-1: MD=151.9, p<0.001, 3-1: MD=216.28, 

p<0.001, 4-1: MD=479.12, p<0.001, 5-1: MD=493.38, p<0.001, 6-1: MD=538.67, 

p<0.001, 3-2: MD=64.38, p=0.33, 4-2: MD=327.22, p<0.001, 5-2: MD=341.49, p<0.001, 

6-2: MD=386.77, p<0.001, 4-3: MD=262.84, p<0.001, 5-3: MD=277.1, p<0.001, 6-3: 

MD=322.39, p<0.001, 5-4: MD=14.25, p=0.998, 6-4: MD=59.54, p=0.468, 6-5: 

MD=45.29, p=0.752). To summarize, when cognitive task-complexity increases response 

time increases as well. Consecutive significances could be found from cognitive task one 

to cognitive task two and from cognitive task five to cognitive task six. The greatest in-

crease in response time is observed consistently from cognitive task three to cognitive task 

four. The increase from cognitive task two to cognitive task three results in marginal re-

sponse time changes. A general decline (except of the age group of 60-80 years) could be 

found when regarding cognitive task four and cognitive task five. A comparison with 6 

One-way ANOVAs on the age factor revealed significant differences as well (cognitive 

task one: F(4,271)=8.04, p<0.001*, post-hoc Scheffé: 5-1: MD=37.82, p=0.018, 4-2: 

MD=47.06, p=0.001, 5-2: 52.35, p<0.001; cognitive task two: F(4,285)=21.02, p<0.001*, 

post-hoc Scheffé: 4-1: MD=92.5, p<0.001, 5-1: MD=95.85, p<0.001, 3-2: MD=49.42, 

p=0.034, 4-2: MD=103.3, p<0.001, 5-2: MD=106.65, p<0.001, 4-3: MD=53.88, p=0.015; 

cognitive task three: F(4,293)=20.72, p<0.001*, post-hoc Scheffé: 3-1: MD=57.22, 

p=0.005, 4-1: MD=74.18, p<0.001, 5-1: MD=109.38, p<0.001, 3-2: MD=58.1, p=0.004, 4-

2: MD=75.06, p<0.001, 5-2: MD=110.26, p<0.001, 5-3: MD=52.16, p=0.018; cognitive 

task four: F(4,281)=7.07, p<0.001*, post-hoc Scheffé: 3-1: MD=124.17, p=0.013, 4-1: 

MD=121.09, p=0.016, 5-1: MD=142.6, p=0.003, 5-2: MD=119.53, p=0.025; cognitive 

task five: F(4,278)=19.43, p<0.001*, post-hoc Scheffé: 4-1: MD=89.85, p=0.007, 5-1: 

MD=169.2, p<0.001, 4-2: MD=107.23, p<0.001, 5-2: MD=186.58, p<0.001, 5-3: 

MD=101.74, p=0.002, 5-4: MD=79.35, p=0.027; cognitive task six: F(4,263)=12.4, 

p<0.001*, post-hoc Scheffé: 4-1: MD=97.0, p=0.016, 5-1: MD=131.84, p<0.001, 3-2: 

MD=106.88, p=0.005, 4-2: MD=130.06, p<0.001, 5-2: MD=164.9, p<0.001). Consistently, 

age differences between age group of 20-30 years and 30-40 years versus age group of 50-

60 years and 60-80 years exist over all stimulus levels. Age group of 40-50 years is signif-

icant different from older age groups when easy tasks are presented, however, when task 

complexity increases, age of 40-50 years is significant different to younger age groups. 
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Figure 33 Effects on age*cognitive task interaction in error rate. 

 

With respect to the interaction age*cognitive task in error rate, five one-way ANOVAs 

each within the age levels were used to reveal significant differences on the factor cognitive 

task. I found a significant increase in the numbers of errors with increasing cognitive task 

complexity until cognitive task four for age groups 20-30 to 40-50; no significances oc-

curred from cognitive task four to cognitive task five and a significant decline in the number 

of errors occurred from cognitive task five to cognitive task six (age 20-30: 

F(5,335)=19.78, p<0.001*, post-hoc Scheffé: 3-1: MD=6, p<0.001, 4-2: MD=5.22, 

p=0.002, 5-2: MD=5.24, p=0.002, 6-4: MD=-6.8, p<0.001, age 30-40: F(5,338)=17.65, 

p<0.001*, post-hoc Scheffé: 3-1: MD=5.9, p<0.001, 4-2: MD=5.69, p<0.001, 6-5:  

MD=-4.63, p=0.012, 6-4: MD=-4.1, p=0.044, age 40-50: F(5,338)=23.72, p<0.001*, post-

hoc Scheffé: 3-1: MD=6.01, p<0.001, 4-2: MD=6.37, p<0.001, 6-5: MD=-6.85, p<0.001, 

6-4: MD=-7.49, p<0.001). In the age groups of 50-60 years and 60-80 years, the same 

structure as before has been roughly revealed; in addition there has been a significant dif-

ference from cognitive task four to cognitive task five, and therefore the decline to cogni-

tive task six is even more decisive (age 50-60: F(5,342)=29.06, p<0.001*, post-hoc 

Scheffé: 2-1: MD=4.6, p=0.009, 5-2: MD=8.3, p<0.001, 5-3: MD=8.62, p<0.001, 5-4: 

MD=4.6, p=0.007, 6-5: MD=-8.9, p<0.001, age 60-80: F(5,319)=15.34, p<0.001*, post-

hoc Scheffé: 2-1: MD=4.4, p=0.039, 5-3: MD=4.85, p=0.015, 6-5: MD=-4.75, p=0.023).  

Furthermore, the six one-way ANOVAs within the stimuli levels showed some inconsistent 

differences (cognitive task one: F(4,271)=3.59, p=0.007*, post-hoc Scheffé: 2-1:  

MD=-0.5, p=0.017, cognitive task two: F(4,285)=1.448, p=0.218, cognitive task three: 

F(4,293)=1.89, p=0.112, cognitive task four: F(4,281)=0.42, p=0.796, cognitive task five: 
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F(4,278)=1.75, p=0.139, cognitive task six: F(4,263)=4.412, p=0.002*, post-hoc Scheffé: 

5-1: MD=3.52, p=0.039, 5-3: MD=4.1, p=0.009).  

 

 

Figure 34 Effects on motor demand*type interaction in response time. 

 

With regards to motor demand*type in response time, a first analysis with One-way-ANO-

VAs over the motor demands showed no significant difference (visual: F(2,831)=0.172, 

p=0.842, auditive: F(2,844)=1.577, p=0.207). Independent t-tests between the different 

type of stimuli were significant (sitting (1): t=-4.218, p<0.001*, standing (2): t=-6.02, 

p<0.001*, one-legged stance (3): t=-6.52, p<0.001*). 

 

 

Figure 35 Effects on motor demand*type interaction in error rate. 
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Considering the interaction motor demand*type in error rate, two one-way ANOVAs on 

the factor motor within the factor typ were applied (visual: F(2,831)=5.39, p=0.005*, post-

hoc Scheffé: 2-1: MD=1.34, p=0.054, 3-2: MD=0.41, p=0.762, 3-1: MD=1.75, p=0.008; 

auditive: F(2,844)=3.32, p=0.037. Independent t-tests were used to describe differences 

within each motor level (sitting (1): t(559)=-3.967, p<0.001*, standing (2): t(560)=-1.81, 

p=0.071, one-legged stance (3): t(552)=1.34, p=0.182). 

 

 

Figure 36 Effects on motor demand*cognitive task interaction in response time. 

 

The interaction motor demand*cognitive task in response time was first analyzed on cog-

nitive tasks conducting One-way-ANOVAs (sitting: F(5,560)=263.73, p<0.001*, post-hoc 

Scheffé significant except of the pair 5-4; standing: F(5,561)=215.9, p<0.001*, post-hoc 

Scheffé significant except of 3-2, 6-4, 6-5; one-legged stance: F(5,553)=199.58, p<0.001*, 

post-hoc Scheffé significant except of 3-2, 5-4, 6-4). A second analysis was made on motor 

demands for each cognitive task using One-way ANOVAs (cognitive task one: 

F(2,271)=1.51, p=0.224, cognitive task two: F(2,285)=0.763, p=0.467, cognitive task 

three: F(2,293)=2.14, p=0.119, cognitive task four: F(2,281)=6.442, p=0.002*, post-hoc 

Scheffé: 2-1: MD=97.83, p=0.002, cognitive task five: F(2,278)=2.18, p=0.115, cognitive 

task six: F(2,263)=2.713, p=0.068).  
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Figure 37 Effects on motor demand*cognitive task interaction in error rate. 

 

I found several significant differences when analyzing the interaction motor demand*cog-

nitive task in error rate. First, I calculated 3 one-way ANOVAs on the factor cognitive 

task for each motor level (sitting: F(5,560)=25.6, p<0.001*, post-hoc Scheffé: 2-1: 

MD=3.47, p=0.012, 6-5: MD=-5.66, p<0.001, 6-4: MD=-3.68, p=0.006; standing: 

F(5,561)=57.87, p<0.001*, post-hoc Scheffé: 3-1: MD=4.65, p<0.001, 4-3: MD=5.42, 

p<0.001, 6-5: MD=-9.44, p<0.001; one-legged stance: F(5,553)=23.93, p<0.001*, post-

hoc Scheffé: 2-1: MD=4.95, p<0.001, 6-5: MD=-3.93, p=0.003). Second, 6 one-way ANO-

VAs on the factor motor demand for each cognitive task were conducted (cognitive task 

one: F(2,271)=8.71, p<0.001*, post-hoc Scheffé: 3-1: MD=-0.45, p<0.001; 3-2:  

MD=-0.31, p=0.02; cognitive task two: F(2,285)=3.226, p=0.041; cognitive task three: 

F(2,293)=3.225, p=0.041; cognitive task four: F(2,281)=2.91, p=0.056; cognitive task 

five: F(2,278)=7.38, p=0.001*, post-hoc Scheffé: 2-1: MD=3.85, p=0.016, 3-2: MD=-4.85, 

p=0.002; cognitive task six: F(2,263)=0.44, p=0.645).  
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Figure 38 Effects on type*cognitive task interaction in response time. 

 

The interaction type*cognitive task in response time is processed on the one hand by using 

One-way-ANOVAs on type (visual: F(5,831)=301.77, p<0.001*, post-hoc Scheffé: signif-

icant except of 5-4, auditive: F(5,844)=598.74, p<0.001*, post-hoc Scheffé: significant 

except of 6-4). On the other hand, independent t-tests were used to reveal differences on 

cognitive tasks (cognitive task one: t=0.374, p=0.709, cognitive task two: t=-4.195, 

p<0.001*, cognitive task three: t=-3.841, p<0.001*, cognitive task four: t=-14.07, 

p<0.001*, cognitive task five: t=-8.912, p<0.001*, cognitive task six: t=-9.212, 

p<0.001*). Therefore, cognitive tasks lead to more different response time when stimulus 

complexity is enhanced. 

 

 

Figure 39 Effects on type*cognitive task interaction in error rate. 
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The interaction type*cognitive task is first analyzed in error rate by one-way ANOVAs 

on cognitive task: I found an increasing tendency of the number of errors with increasing 

cognitive task-complexity. However, the number of errors declined with the last condition 

(visual: F(5,831)=46.77, p<0.001*, post-hoc Scheffé: 2-1: MD=3.07, p=0.002, 3-2: 

MD=2.6, p=0.014, 4-3: MD=2.54, p=0.02, 6-5: MD=-4.82, p<0.001, 6-4: MD=--3.73, 

p<0.001, 6-1: MD=4.47, p<0.001; auditive: F(5,844)=52.1, p<0.001*, post-hoc Scheffé: 

2-1: MD=4.55, p<0.001, 4-3: MD=3.58, p=0.001, 6-5: MD=-7.98, p<0.001, 6-4:  

MD=-6.01, p<0.001, 6-1: MD=3.18, p=0.008). Multiple independent t-tests were calcu-

lated for each cognitive task (cognitive task one: t(270)=-4.34, p<0.001*, cognitive task 

two: t(284)=-3.5, p=0.001*, cognitive task three: t(292)=-0.59, p=0.553, cognitive task 

four: t(280)=-1.38, p=0.17, cognitive task five: t(277)=-2.01, p=0.045, cognitive task six: 

t(262)=1.28, p=0.201). 

 

 

Figure 40 Effects on motor demand*cognitive task*type [visual] interaction in response time. 
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Figure 41 Effects on motor demand*cognitive task*type [auditive] interaction in response time. 
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p<0.001, 6-5: MD=23.1, p=0.975, 6-4: MD=-126.88, p<0.001, 6-3: MD=336.94, p<0.001; 

one-legged stance: F(5,280)=227.98, p<0.001*, post-hoc Scheffé: 2-1: MD=158.13, 

p<0.001, 3-2: MD=58.57, p=0.208, 4-3: MD=343.8, p<0.001, 5-4: MD=-102, p=0.002, 5-

3: MD=241.77, p<0.001, 6-5: MD=124.89, p<0.001, 6-4: MD=22.85, p=0.958). There has 

been a significant difference of response time on the factor motor demand within cognitive 

task four (cognitive task one: F(2,137)=3.184, p=0.045, cognitive task two: 

F(2,143)=1.523, p=0.22, cognitive task three: F(2,146)=2.213, p=0.113, cognitive task 

four: F(2,142)=13.717, p<0.001*, post-hoc Scheffé: 2-1: MD=160.92, p<0.001, 3-2: 

MD=80.75, p=0.03; cognitive task five: F(2,138)=0.836, p=0.436, cognitive task six: 

F(2,133)=3.25, p=0.042).  

 

 

 

Figure 42 Effects on motor demand*cognitive task*type [visual] interaction in error rate. 
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Figure 43 Effects on motor demand*cognitive task*type [auditive] interaction in error rate. 
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p<0.001; cognitive task five: F(2,138)=3.48, p=0.034, cognitive task six: F(2,133)=3.64, 

p=0.029. 

 

3.2.3. Discussion 

The present study aimed to provide a better understanding of the influence of cognitive 

task-difficulty/complexity, motor demands, the way of task-presentation, as well as the 

process of aging within a dual-task paradigm. The main findings of the study at hand can 

be summarized as follows: 

 

- Increasing cognitive task-difficulty leads to a general increase in response time, under 

both single- and dual-task conditions.  

- Rapid increase in response time between cognitive tasks three and four represents the 

influence of the kind of stimulus. While tasks one to three comprise a reaction to simple 

points or tones, task four to six comprise more complex contents such as letters and 

numbers. 

- Additional mnemonic components (task 6) lead to an increase in response time, but also 

to a substantial decrease in error rate. 

- In general, there was no significant influence of different motor demands. 

- Inconsistent findings regarding the error rate. However, a tendency of decreased error 

rate under one-legged stance was found.  

- Longer response times in the auditory compared to visual stimulus-presentation.  

- Increasing age is associated with a general increase in response time of cognitive tasks 

under both single- and dual-task conditions. 

- A pattern in response time similar among the younger groups one (aged 20-30 years) 

and two (aged 30-40 years), as well as the two older groups four (aged 50-60 years) and 

five (aged 60-80 years) was identified. On the contrary, age group three (aged 40-50 

years) showed a deviant pattern, which could be partly assigned to the younger (within 

easier cognitive tasks) and partly to the older group (within more difficult cognitive 

tasks). 

 

The present findings of an increased response time and error rate with increasing task-

difficulty are in accordance with previous findings reported by Huang and Pashler (2005). 

Within their study, the authors reported an affected search efficiency by increasing task 

difficulty of visual search tasks. The authors argued that task difficulty affects efficiency 
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of task performance but does not necessarily introduce attentional capacity limits. Regard-

ing the rapid increase in response time between cognitive task three and four, Hancock, 

Williams and Manning (1995) pointed out that task performance is sensitive to multiple 

characteristics of the task. Considering task three and four in more detail, the relevance of 

the kind of reaction stimuli becomes obvious (because there are no differences in the 

amount of response and inhibition stimuli as well as the kind of inhibition stimuli between 

the two tasks). While task three comprises points with different colors / tones with different 

frequency, task four comprises letters and numbers. Therefore, it can be assumed that a 

further increase of the number of reaction and inhibition stimuli would lead to a linear 

increase of response time (as shown from task one to three), whereas changing the kind of 

stimuli to a more complex one leads to a rapid increase in response time. Further evidence 

for the relevance of task difficulty comes from physiological studies. In this context, Light 

and Obrist (1983) reported a relation between task difficulty and cardiovascular responses. 

Within their experiment, participants were asked to perform an appetitive reaction time 

task where winning money was either easy, difficult, or impossible. Similar was reported 

in a more recent study by Richter, Friedrich and Gendolla (2008), who indicated an in-

creased pre ejection period and systolic blood pressure reactivity with increasing cognitive 

task difficulty. Considering the underlying neural mechanisms, Chen, Martinez-Conde, 

Macknik, Bereshpolova and Swadlow (2008) suggested that task difficulty modulates the 

activity of specific populations of neurons in the primary visual cortex. By contrast to the 

present but also other previous studies, Iwashita, McNamara, & Elder (2001) reported no 

interaction between task performance and task difficulty. Considering a specific phenom-

enon in the context of task difficulty - the rapid decrease in error rate from task five to six - 

one might assume that adding an additional mnemonic task might facilitate the accuracy of 

the primary cognitive task performance but leads to a general slowing. Thereby, it is nec-

essary to address one question, which seems trivial but might be highly relevant in this 

context. To what extent can the additional mnemonic task be attributed to working or long-

term memory? This question is based on the assumption that information in long-term 

memory would not affect additional cognitive performance, whereas holding information 

in working memory would highly interfere additional task performance (Watter, Geffen, & 

Geffen, 2001). In the present context, there are arguments for an allocation of the mne-

monic component to both working memory and long-term memory. One might argue that 

memorizing a list of 10 words for 30 seconds would lead to a storage in long-term memory, 

because people would still remember some words even days afterwards. In contrast, the 

process of rehearsal would appear to confirm the assumption of an allocation to working 

memory. Assigned to the phonological loop and visuospatial sketchpad within Baddeley’s 
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model of working memory (Baddeley, 2000; Baddeley et al., 2010), it has to be assumed 

that the repetition of information over and over again, would adversely affect further cog-

nitive task performance. In the theoretical background, I suggested that it is time to break 

away from the black-box models of the 1970s and rather create models based on neurosci-

entific findings. At this point, I further suggest that it is not possible to clearly separate 

working memory from long-term memory, as well as define a so-called ‘magical number’ 

for representing working memory capacity. These aspects should be focused in future stud-

ies, whereas for the present context it should be kept in mind that independently of its 

allocation the processes addressed by the additional mnemonic components have been still 

active during the primary task performance which was indicated by differences in response 

time and error rate. Another aspect, which needs to be addressed in this context concerns 

the process of attention. Based on the present, but also on previous findings I suggest that 

additional tasks / demands could act as stimulus, facilitating the process of attention. In 

contrast to the load theory, which assumes that concurrent working memory load, impairs 

selective attention and increases distractor interference (e.g. Lavie, Hirst, De Fockert, & 

Viding, 2004), results indicated by Downing (2004) demonstrate the influence of working 

memory contents on the guidance of attention. While early non-human studies of macaques 

confirmed these findings on a single-cell level (e.g. Chelazzi, Duncan, Miller, & Desimone, 

1998; Chelazzi, Miller, Duncan, & Desimone, 1993), further evidence for a facilitating 

effect of working memory tasks on attention in humans comes from Park, Kim and Chun 

(2007). Therein, within two experiments, participants were asked to perform a working 

memory task as well as a same / different matching task that required focusing on targets 

while ignoring distractors. The authors reported on the one hand, that sharing the same 

limited capacity processing mechanisms by working memory items and targets in the 

matching task leads to an increase of distractor interference. On the other hand, interference 

decreased and therefore target selection was facilitated when working memory items shared 

processing with distractors in the matching task. In case of using long-term memory for 

memorizing the ten words in the present context, previous findings reported that infor-

mation from long-term memory is highly related to the capacity of attention and that indi-

viduals with greater attentional capacity can more readily utilize information in long-term 

memory to support recall (e.g. Hambrick & Engle, 2002). Furthermore, non-human studies 

reported that priming of attention leads to a facilitation of the process of responding (Fre-

mouw, Herbranson, & Shimp, 1998). In sum, cumulating evidence supported the idea of 

attention facilitation as a possibility for the substantial decrease in error rate. 
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Considering the hypothesis of an increased response time and error rate with increasing 

demand of a simultaneously performed motor task, the present results showed no signifi-

cant influence of the different motor demands on response time, and only marginal effects 

in the easier cognitive tasks on error rate. Instead, participants showed a trend of shorter 

response times in simultaneously performing the most demanding motor task, standing on 

one leg. Furthermore, this phenomenon was also partly revealed within the error rate. The 

motor demands of sitting, standing and standing on one leg are in contrast to the ones used 

in previous studies. Here, researchers used more demanding tasks such as walking (e.g. 

Woollacott & Shumway-Cook, 2002), tandem stance (e.g. Dault et al., 2001a) or a sway 

referenced surface (e.g. Swan et al., 2004). According to Takakusaki (2017) - who sug-

gested automated or highly trained / learned motor functions are barely restricted to the 

brain stem and the spinal cord - it could be assumed that the motor demands applied in the 

present context might be too simple to identify any effects. In contrast, others reported dual-

task associated differences also in normal standing conditions (Lajoie et al., 1993; Pellec-

chia, 2003). For example, Lajoie et al. (1993) revealed a significant increase in response 

time of cognitive task performance in normal standing, compared to sitting. In addition to 

the findings of Lajoie (1993), which focused exclusively on cognitive task-performance, 

Pellecchia (2003) reported a deterioration in motor performance of standing with increasing 

difficulty of a simultaneously performed cognitive task (digit reversal, digit classification, 

and counting backwards). In accordance with the present findings, Shumway-Cook and 

Woollacott (2000) reported no effects in simultaneously performing a choice reaction time 

auditory task while standing. Furthermore, participants in the study conducted by Mitra 

(2003) tended to search faster in narrow stance compared to normal stance but also swayed 

more with increasing search-load, and made more errors in the high search-load condition. 

Within their study, the authors suggested that the results are based on a sharing of limited-

capacity, modality-non-specific spatial-attentional resource between postural and su-

prapostural tasks. In the present context, I speculate that the used motor demands lead to 

an attention facilitation and therefore reduce mental effort. Further support for this assump-

tion comes from Woollacott and Shumway-Cook (2002) who stated in their review that 

maintaining an upright stance might tax cognitive factors, such as attentional processes. 

With respect to age-related differences, participants in the present study showed a general 

increase in response time of cognitive task performance under both single- and dual-task 

conditions with increasing age. While the two younger groups (aged 20-30 years & 30-40 

years) clearly differentiated between the two older ones (aged 50-60 years & 60-80 years), 

group three (aged 40-50 years) showed a divergent pattern. Findings at hand confirmed the 

previous assumption of an increased age-related dual-task cost with increasing difficulty / 
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complexity, as summarized in the complexity hypothesis (e.g. Hartley & Little, 1999; Mat-

tay et al., 2002; McDowd & Craik, 1988; Salthouse et al., 1984; Wright, 1981). Further 

evidence for age-related differences in simple and complex reaction time tasks comes from 

Vaportzis et al. (2013). Within their experiment, participants showed an inverse pattern 

regarding response time and error rate from simple to complex tasks. The authors argued 

that younger and older adults use different strategies depending on complexity and diffi-

culty. Another assumption, previously made in this context, concerns the prioritization of 

motor demands in motor / cognitive dual-task situations. As already reported above that 

motor demands are generally prioritized against cognitive tasks, this behavior becomes 

more and more present with increasing age, in order to maintain postural control and avoid 

falls (e.g. Doumas et al., 2009; Li et al., 2001). By contrast, Srygley et al. (2009) reported 

age-related differences in motor but not in cognitive task performance of a motor/cognitive-

dual-task paradigm. Furthermore, Lajoie et al. (1996), Lindenberger et al. (2000) and Spar-

row et al. (2006) indicated an age-related increase in both domains. No age-related effects 

were found by Springer et al. (2006) in comparing a walking task with three different cog-

nitive tasks.  

A further aspect - which might provide some explanations in this context - concerns age-

related differences in executive functions (e.g. Zelazo, Craik, & Booth, 2004). While the 

function of inhibition is highly relevant in tasks comprising a non-responding component 

(as it is in task two, four, five, and six), previous findings reported impairments in higher 

age (e.g. Comalli et al., 1962, Williams et al., 1999). Intact working memory might be 

another function highly relevant in successfully performing the present tasks. Especially in 

the more difficulty / complexity cognitive tasks which require the memorization of the task 

description (which stimuli to react to and which not, but also which trigger to use), the 

working memory becomes more and more relevant. Therefore, with increasing the amount 

of different stimuli, the requirement for, regarding the working memory increases. In this 

context, Brennan et al. (1997) and Rönnlund et al. (2001) reported increased age-related 

differences with increasing task difficulty of working memory tasks. Therefore, it is not 

surprising that the different age groups of the present study performed nearly similar in the 

simple reaction task and showed greater differences with increasing difficulty / complexity. 

Considering the executive function of shifting, previous findings indicated a relation be-

tween the process of aging and a decline in task-shifting (Cepeda et al., 2001; Lezak, 1995; 

Mejia et al., 1998). Thereby, this function is important in several contexts of the present 

study, such as shifting between response and inhibition, the kind of response, motor and 

cognitive task performance. In the context of shifting between cognitive and motor tasks, 
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the relation between more complex motor tasks and executive functions, which is fre-

quently pointed out in previous articles (e.g. Hausdorff et al., 2005; Springer et al., 2006), 

needs to be considered. Based on these findings, it can be speculated that both a decline in 

executive functions and in more complex motor tasks adversely affect each other; espe-

cially in situations where challenging motor demands need to be performed simultaneously 

with complex cognitive tasks (which require a high level of executive functions). Next to 

executive functions, the aspect of attention and resource allocation should be additionally 

considered. For example, Woollacott and Shumway-Cook (2002) pointed out the relevance 

of increasing attentional resources for maintaining both postural control and gait in older 

adults. Similar was reported by Doumas et al. (2008), concerning resource allocation in 

sensorimotor and cognitive processing. By contrast, early findings identified no age-related 

differences in division of attention (McDowd & Caik, 1988; Plude & Doussard-Roosevelt, 

1989). Furthermore, in their meta-analysis Verhaeghen and Cerella (2002) reported a 

greater dual-task cost among the elderly compared to younger adults, but could not identify 

age-related deficits specific to selective attention. In accordance with further studies of at-

tentional processes among the elderly (e.g. Hartley & Little, 1999; Redfern, Jennings, Mar-

tin, & Furman, 2001), it can be suggested that the process of attention seems to play a 

subordinate role in explaining age-related differences in dual-task performance. 

Considering the way of stimulus presentation, which must be seen as a supplementary field 

in the present study, participants showed significant differences between visual and audi-

tory task presentation in both error rate and response time. Longer response times in audi-

tory conditions can be explained by an increasing time of perception and processing of 

auditory compared to visual stimuli. In this context, it should be further mentioned that 

visually presented number (task four to six) are perceived as numbers, whereas auditory 

presented numbers are perceived as words. By contrast to the present findings, Carterette 

and Jones (1967) postulated that visual processing of information in adults is at least as 

good as auditory. Similar results were reported in a dual-task study by Baron and Mattila 

(1989) who identified a similar decrease in both visual and auditory task settings. Further-

more, Molholm, Ritter, Murray, Javitt, Schroeder and Foxe (2002) showed similar mean 

reaction-times in the visual (305ms) and the auditory (297ms) task setting. Focusing motor 

task performance, Hunter and Hoffman (2001) identified, next to a greater variability of 

the center of pressure in the non-cognitive condition, no differences between visual and 

auditory conditions. Similar was reported by Vuillerme, Nougier and Teasdale (2000) using 

a visual and auditory task with verbal response while standing on a force platform. In ac-

cordance with the present findings, Riley et al. (2005) showed that the spatiotemporal pro-

file of postural sway was affected by both visual and auditory short-term memory tasks, 
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but to a greater degree by the auditory task, which could be deduced from different com-

putational pathways. Further evidence for the findings of differences in the way of stimulus 

presentation comes from Alho, Woods, Algazi and Näätänen (1992). Within their event-

related potential study, selective attention tasks were used in either auditory or visual task-

setting. The authors identified differences between auditory intermodal attention effects 

and those typically obtained during intramodal selective attention, whereas visual inter-

modal attention effects were similar to the effects associated with intramodal visual atten-

tion.  

Next to the highly interesting findings of the present study, some limitations have to be 

discussed additionally. First, I have to account for not having met the assumptions for 

MANOVA testing that are multivariate normal distribution and homoscedasticity of the 

variables. On the one hand, in terms of large sample sizes due to our procedure, the proba-

bility of generating significant normality tests is increasing. On the other hand, MANOVA 

procedure seems to be rather robust against violations of the assumptions with large sample 

sizes, equal group sizes, and with increasing group number (e.g. Finch, 2005). Moreover, 

despite non-homoscedastic univariate data (measured by Levene-tests), I have decided to 

analyze the data set with the mentioned MANOVA design as in the present case (sample 

sizes equal, large group number) a nonparametric variant of MANOVA would not remark-

ably perform better (e.g. Finch, 2005). Furthermore, I am also aware that using cross-sec-

tional designs should not be ascribed to age-related effects without considering the prob-

lems of confounding. In the present study, factors such as technical understanding, social 

influences, or age-related openness to the experiment etc., may be discussed. There are 

various ways to exclude or control confounding variables such as statistical methods, ran-

domization, restriction or matching (Pourhoseingholi, Baghestani, & Vahedi, 2012). For 

the study at hand, I argue that the simple laboratory design is likely to reduce confounding 

effects to a minimum. Furthermore, it can be assumed that neither single longitudinal nor 

cross-sectional studies can interpret age-related effects without biases. 

In contrast to most previous motor / cognitive dual-task studies, which focused on the motor 

components, dependent variables in the study at hand exclusively regard on cognitive task-

performance. Based on previous findings, I argue that both older (e.g. Li et al., 2001) and 

younger adults (e.g. Siu & Woollacott, 2007) prioritize motor task performance in simul-

taneously performing motor and cognitive tasks. Therefore, I suggest that differences / im-

pairments in motor / cognitive dual-task performance will firstly result in changes of cog-

nitive task performance. Although, the quantification of motor demands should not be ne-

glected, especially in the context of increasing risk of falling for example in the elderly, the 

cognitive tasks appear to be more sensitive. Another fact that should be mentioned is a 
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methodological induced influence on attentional resources, which is called the focus of 

attention (Wulf, Höß, & Prinz, 1998). Wulf and collegues (for a review see Wulf, 2013) 

have shown that experimental instructions that are made to target on internal effects of a 

task lead to an internal focus of attention, whereas instructions making subjects concentrate 

on external effects of a task lead to an external focus of attention, and as a consequence, 

may induce different effects on the motor outcome variable. In the study at hand, I did not 

specify any further instructions to the motor task. It could be speculated that additional 

instructions that lead to an internal (‘please solve the tasks without any error but as fast as 

you can and try to sway as less as possible’) or external focus of attention (‘please solve 

the tasks without any error but as fast as you can. Try to keep the sway of the cursor in 

front of you which is linked to your body sway as less as possible.’) with respect to the 

motor task may induce a more demanding loading. Therefore, it could be assumed that in 

this study the additional motor tasks were limited to an automatized level (lower infor-

mation processing stage), which therefore showed a minor interference with the cognitive 

tasks (higher information processing stage). This theory is in line with several early studies 

that have shown that motor tasks conducted by professionals – hence highly automatized 

tasks – simultaneously conducted with an additional cognitive task have a minor effect on 

the outcome variables, whereas the same motor tasks executed by amateurs lead to great 

effects (e.g. Abernethy, 1988; Smith & Chamberlin, 1992). 

 

Despite the limitations, the present study provides some highly interested findings, which 

lead to the following conclusions. First, increasing the amount of different stimuli as well 

as possibilities to respond leads to a linear decrease in task-performance, whereas different 

kinds of stimuli lead to rapid changes in task-performance. Second, it can be assumed that 

both additional mnemonic components as well as motor demands might facilitate the focus 

of attention and therefore improve the performance of a primary cognitive task. Third, the 

present study demonstrated the influence of aging in performing different single- and dual-

tasks, but furthermore highlighted the relevance of the age between 40 and 50 years as key 

role in transition from younger and older adults. Fourth, even among older adults, results 

revealed no negative effects of the additionally used sitting, standing, and one-legged 

stance on cognitive task performance. Fifth, task-performance clearly differed between the 

type of presentation because of the increased time of perception and processing of auditory 

stimuli and the fact that visual presented numbers are perceived as numbers, whereas audi-

tory presented numbers perceived as words. Especially with regard to both the aging soci-

ety and the increasing complexity of our everyday life, the aspects focused in the study at 

hand should be addressed in future studies in a further applied context. 
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3.3. Experiment III 

Cognitive performance under different demands – Insights from a more applied per-

spective 

 

Every day, we are deciding 100 to 1000 times or even more; in complex scientific, tech-

nical, economical and leadership situations, but also in almost every situation of daily liv-

ing. These processes are mostly performed not isolated, but under the influence of numer-

ous additional demands. In this context, previous studies focused the influence of additional 

cognitive task-performance, stress, diseases, and the process of aging (e.g. Gathmann et al., 

2014a; Gathmann et al., 2014b; Pabst et al., 2013a) - as it is shown in the theoretical back-

ground - but the effects of simultaneously performing motor demands is for some reason 

neglected. However, both negative as well as facilitating effects in combining cognitive 

tasks and motor demands have been reported in various fields of interest (e.g. Swan et al., 

2004; Shumway-Cook, & Woollacott, 2000) but also shown in the previous experiments. 

Based on these findings as well as the fact that numerous decisions are made under various 

motor demands, I suggest that attention should also be paid on the effects of performing 

additional motor tasks within decision-making processes. Therefore, the present experi-

ment addresses the effects of simultaneously performing a motor demand and decision 

making under objective risk. Based on previous studies, it is hypothesized that performing 

decision making under objective risk with additional motor demands leads to an increase 

in disadvantageous behavior. 

 

3.3.1. Material and methods 

Participants 

 

In total, 72 people participated in the present study. People were assigned either to the 

sitting group [36 people ranging from 19-30 years (mean age 21.44 ± 3.20 years) (28 fe-

male)] or to the one-legged stance group [36 people ranging from 18-25 years (mean age 

21.17 ± 1.84 years) (25 female)]. Participants were recruited from the University Duisburg-

Essen and the Hochschule Fresenius (Idstein). All participants reported normal or cor-

rected-to-normal eyesight as well as hearing abilities and no history of neurological or psy-

chological disorder. The study was performed in accordance with the ethical standards laid 

down in the Declaration of Helsinki. All participants provided written informed consent 
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prior to the experiment and were informed that they could end participation at any time 

without reprisal. 

 

Stimuli 

 

In the study at hand, the ‘Game of Dice Task’ was used to measure decision making under 

objective risk (Brand et al., 2005). Within the ‘Game of Dice Task’ task, the probabilities 

for winning are easy to comprehend and principally calculable by simple mathematic. In 

order to maximize a fictitious start-capital of 1.000€, participants had to decide which num-

ber of a virtual dice will be thrown next. The bet can be placed on one single number (win-

ning probability 16.67%, related to a gain/loss of € 1,000), on two numbers in combination 

(winning probability 33.33%, gain/loss € 500), on three numbers in combination (winning 

probability 50%, gain/loss € 200) or on four numbers in combination (winning probability 

66.67%, gain/loss € 100). Based on the winning probabilities, the single-number option and 

the combination of two numbers are associated with disadvantageous or high-risk decisions 

(expectation of 1000€ * 1/6 + (-1000€) * 5/6 = -666.67€ and of 500€ * 2/6 + (-500€) * 4/6 

= -166.67€ respectively), whereas the combination of three- and four-number must be seen 

as more advantageous or rather low-risk decisions (expectation of 200€ * 3/6 + (-200€) * 

3/6 = 0€ and of 100€ * 4/6 + (-100€) * 2/6 = 33.33€ respectively). Choosing the opportunity 

of three numbers would statistically lead to a positive final balance and is therefore neither 

advantageous nor disadvantageous. During the 18 trials, the actual capital is shown con-

stantly and the current win/loss appears on the screen after each trial (Figure 44). 

 

 

Figure 44 The Game of Dice Task (Brand et al., 2005). 
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While this feedback enables participants to reconsider his/her behavior, it should be men-

tioned that the optimal strategy for a long-term profit is to choose four numbers in all trials 

(expected value for each trial: 33.33€). Accordingly, the other options do not lead to a long-

term profit (expected value for one number: -666.67€, two numbers: -166.67€, three num-

bers: 0€). 

The ‘Game of Dice Task’ was performed either while sitting in a chair (group 1) or while 

standing on one leg (group 2). Choosing the two different motor demands was inspired by 

previous findings who reported affected primary task performance by increasing the diffi-

culty of additional motor demands (e.g. Lajoie et al., 1993). 

 

Procedure 

 

Before starting, participants gave informed consent after having carefully read the instruc-

tions. They were informed that they should maximize their fictitious start-capital of 1.000€ 

during 18 trials by choosing which number of a virtual dice will be thrown next. Further-

more, examples of the possibilities to bet were shown. In group one, participants were ad-

ditionally instructed to focus the cognitive and the motor task equally. The ‘Game of Dice 

Task’ was presented on a commercial screen, set at eye level of the participants. The posi-

tion of the chair, the screen, as well as the standing position were standardized and cross-

marked to ensure equal conditions for all participants. Within each trial, participants gave 

their response verbally to the experimenter and get their feedback directly on the screen. 

The total duration of the experiment was 10 minutes. 

 

Data Analysis 

 

All statistical analyses were carried out with Statistical Package for the Social Sciences 

version 21.0 for Windows. Normal distribution of the data was tested with the Shapiro-

Wilk-Test and homogeneity of variance with the Levene-Test. T-tests for independent sam-

ples were used to analyze between-group differences in age and for comparing GDT net 

scores and final outcome (in €) of the two groups. GDT net score was calculated by sub-

tracting the number of risky selections from the number of safety selections. Furthermore, 

a two-way analysis of variance with repeated measurements with ‘choice’ as within-subject 

factor and “group” as between-subject factor was used to analyze the effects of additional 

motor demands, on the absolute frequencies of decisions for each alternative (single num-

ber, 2, 3, or 4 numbers together). Alpha error was set at 0.05. Results were corrected for 

multiple comparisons (Bonferroni) when appropriate. 
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3.3.2. Results 

The groups did not differ in age (T = 0.451; df = 70; p = 0.653) and gender (25 females in 

the sitting and 28 females in the one-legged stance group). The GDT net score in the one-

legged stance group (5.11 ± 9.28) was significantly lower (T = -4.559; df = 70; p < 0.001), 

than in the sitting group (13.17 ± 5.14) (Figure 45), whereas the final outcome (SI: 

816.67±1,399.49; OLS: 583.33±2,568.43) did not differ between the two groups (T = 

0.634; df = 70; p = 0.634). 

 

 

Figure 45 Netscore of the Game of Dice Task. 

 

Considering the ANOVA outcome, there was a significant main effect for ‘choice’  

(F = 31.810; p < 0.001), as well as a significant interaction of ‘choice’ X ‘group’  

(F = 8.324; p = 0.001). Furthermore, people standing on one leg, more frequently selected 

the most disadvantageous choice (one single number), whereas the sitting group most 

often selected the advantageous combination of four numbers (Figure 46).  
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Figure 46 Absolute frequency of choice of numbers. 

 

Between-group comparisons of selection frequency of each single alternative revealed 

significant differences for ‘single number’ (OLS: mean = 1.53, sd = 2.36; SI: mean = 0.42, 

sd = 0.91; p = 0.010), two numbers (OLS: mean = 4.92, sd = 3.61; SI: mean = 2.00, 

sd = 2.18; p < 0.001), and four numbers (OLS: mean = 4.86, sd = 4.29; SI: mean = 8.78, 

sd = 6.00; p = 0.002), whereas the frequency of three numbers (OLS: mean = 6.69; 

sd = 3.08; SI: mean = 6.81; sd = 4.53; p = 0.904) did not differ between the two groups.  

 

3.3.3. Discussion  

The main findings of the present study indicated that participants perform more disadvan-

tageous in the Game of Dice Task when standing on one leg, compared to sitting. While 

O’Brien and Ahmed (2014) reported no differences in performing an economic decision 

task while standing or sitting, previous Game of Dice Task studies are in accordance with 

the findings at hand. Within these studies, the authors reported an increased disadvanta-

geous behavior under dual- compared to single-task conditions (Gathmann et al., 2014a; 

Gathmann et al., 2014b; Gathmann et al. 2015; Pabst et al., 2013b; Starcke et al., 2011a; 

Verbruggen et al., 2012). For example, Starcke et al. (2011b) argued that occurring inter-

ferences are based on the fact that both the Game of Dice Task and an additional working 

memory task compete for existing resources of the rational-analytical system two. Further 

evidence for this assumption comes from both single Game of Dice Task (e.g. Brand et al., 

2009a) as well as single working memory studies (e.g. Evans, 2003; Oppenheimer, 2008 

for an overview). Considering the Game of Dice Task, it is argued that the attribution to 
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the rational-analytical system is based on the characteristics of explicit rules for gains and 

losses as well as task contingencies (Brand et al., 2009a). In the context of the working 

memory, studies pointed out the necessity of the rational-analytical system (Evans, 2003; 

Oppenheimer, 2008). Based on these findings, it can be assumed that additional working 

memory load leads to a greater involvement of system one in performing the Game of Dice 

Task and therefore to an increasing disadvantageous behavior. This is in accordance with 

Hinson, Jameson and Whitney (2003) who reported that limits on working memory func-

tion are predictive for a more impulsive decision-making style. Within their study, partici-

pants were asked to make delay-discounting judgments under different working memory 

load conditions. Although standing on one leg will not require additional working memory 

capacity, I speculate that the motor demand also leads to an increasing relevance of system 

one, within performing decision making under objective risk. This assumption refers inter 

alia on the hypothesis of somatic marker. Described to refer to the collection of body-re-

lated responses that hallmark an emotion (Damasio et al., 1996; Bechara, & Damasio, 

2005), it can be assumed that somatic markers affect the process of decision making. Fur-

thermore, associations of rapid heartbeat but also somatic reactions from the streaked mus-

cles (e.g. extremities, faces) play a highly relevant role in this context (Bechara, & Dama-

sio, 2005). In the present study, I do not suggest that standing on one leg affects heart rate 

of younger adults, but it seems more plausible that different somatic reactions occur due to 

the streaked muscles in the one-legged stance compared to the sitting condition. An emo-

tionally induced shift of decision-making strategy as proposed in the present context was 

also demonstrated by Figner, Mackinlay, Wilkening and Weber (2009), using a cold and a 

hot version of the Columbia Card Task. Participants in the hot version used ‘gut level’ and 

‘excitement’ strategies, whereas in the cold version ‘mathematical’ processes were mostly 

engaged. Another aspect in the context of the intuitive and reflective systems comprises 

stress. Starcke et al. (2008) for example reported a significantly lower performance of the 

Game of Dice Task under stress, but also a correlation between decreased task-performance 

and increased level of cortisol. Within a further study of the research group (Starcke et al., 

2011a), the authors confirmed their previous results, by reporting a positive correlation of 

cortisol level and egoistic decision making in emotional dilemmas. These findings are in 

accordance with numerous other studies, which addressed the effects of stress in various 

fields of decision making (e.g. Gathmann et al., 2014a). Within the present study, I assume 

that the motor component of standing on one leg might additionally act as stressor and 

therefore triggers a shift from reflective to more intuitive decision making (reflected in a 

more disadvantageous behavior). 
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Along with the stated aspects, cognitive abilities should be discussed in the context of 

changing decision-making strategies. For example, West and Stanovich (2003) showed that 

decision makers with a higher cognitive performance chose the most rational maximization 

strategy. Furthermore, the authors reported more advantageous decisions in the Game of 

Dice Task in participants who tended to make more calculations. Regarding the influence 

of motor demands on cognitive abilities, Ouchi, Okada, Yoshikawa, Nobezawa and 

Futatsubashi (1999) reported increased cerebral blood flow in the cerebellar anterior vermis 

and the posterior lobe lateral cortex ipsilateral to the weight-bearing side in participants 

who stood on one leg. Therefore, it can be speculated that in situations where the available 

cognitive resources for decision making under objective risk were reduced, for example by 

adding additional motor demands, the impulsive system becomes more prominent. Consid-

ering dual-task performance in the Iowa Gambling Task, which is assumed to tap more in 

the impulsive system, Turnbull et al. (2005) found no differences in Iowa Gambling Task 

performance between single- and dual-task conditions. Within their study, the authors used 

two different secondary tasks, an executive and a non-executive task.  

Finally, the role of executive functions should be additionally considered in this context. 

Here, numerous studies in various fields (e.g. Bull, Phillips & Conway, 2008), but also in 

the context of decision making (e.g. Toplak, Sorge, Benoit, West, & Stanovich, 2010) pre-

viously investigated the influence of executive functions. Especially in decision making 

under objective risk, executive functions are discussed as main components for guiding 

development and applying decision-making strategies, as well as feedback processing 

(Brand et al., 2005; Brand et al., 2006; Brand et al., 2007b; Brand et al., 2008; Brand et al., 

2009a; Euteneuer et al., 2009; Schiebener et al., 2011; Schiebener et al., 2012; Schiebener 

et al., 2013; Schiebener et al., 2014). For example, Gathmann et al. (2015) asked their par-

ticipants to simultaneously perform the Game of Dice Task and a n-back task. Furthermore, 

the authors applied the Modified Card Sorting Test as well as the Balanced Switching Task. 

Results demonstrated an important role of the executive function of monitoring. Until now 

‘monitoring’ has not been considered in more detail, because I suggest a classification of 

this function as component of each of the three mostly used executive functions inhibition, 

updating working memory, and shifting (see also Packwood et al., 2011). Further evidence 

for the relevance of considering executive functions in the context of decision making un-

der risk comes from Brand and Schiebener (2013). Based on their findings, the authors 

reported age-related differences only in older adults who showed decreased executive func-

tions, but not in the elderly who performed well on executive function tasks. Regarding the 

study at hand, the relation between more complex motor tasks and executive functions 

should be additionally considered (e.g. Ble et al., 2005; Persad et al., 1995; Springer et al., 
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2006). In this context, Persad et al. (1995) identified problem solving, response inhibition 

but also attentional aspects as predictors responsible for successful obstacle avoidance. Us-

ing the trail-making test, which is described to measuring visual attention and task switch-

ing, Ble et al. (2006) suggested that in non-demented elderly executive functions are asso-

ciated with tasks of lower extremity function. Focusing on the executive function of inhi-

bition, participants in the study conducted by Springer et al. (2006) performed a stroop test 

and go-/nogo task next to a dual-task walking task. Here, the authors pointed out the ability 

of the executive function as factor for differentiating between fallers and non-fallers. 

While the study at hand investigated younger adults, further research should also address 

age-related differences. Based on the aspect of fear of falling the influence of stress might 

become increasingly relevant within this group. In sum, the present study revealed that 

performing the Game of Dice Task while standing on one leg causes in a more disadvanta-

geous decision-making behavior. The findings further support the increasing relevance of 

the impulsive system one in dual-task decision making under objective risk as well as the 

role of additional motor demands as mediating peoples decision making. While most deci-

sions in everyday life have to be made under the influence of motor demands, future studies 

should address further more complex motor demands, such as walking. 

 

4. General Discussion / Conclusion 

The three experiments comprised in the thesis at hand investigated the influence of addi-

tional demands, task difficulty and the process of aging on cognitive task performance. The 

first experiment investigated a limited number of different task-combinations from a neu-

rophysiological perspective. Additional behavioral results indicated no reliable effects nei-

ther of task-difficulty nor of additional demands. By contrast, event-related potentials 

showed a reduction of a positivity between 350-500 ms after stimulus onset with increasing 

task complexity in both demands (motor & cognitive). Furthermore, a cognitive x motor 

interaction was identified in the earlier positivity. Here, only the more demanding motor 

task revealed a differentiation between the two cognitive tasks. Within the second experi-

ment, the number of cognitive tasks as well as motor demands was increased and further 

aspects such as the process of aging and the way of stimulus presentation were added. Be-

havioral results pointed out the relevance of cognitive task difficulty as well as the kind of 

stimulus in dual- but also single-task performance. Furthermore, older adults showed 

longer response times in cognitive tasks under both single- and dual-task conditions. Con-

sidering the influence of additional motor demands, there were no significant differences 

between the three motor demands regarding the response time, but a tendency of decreased 
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error rate under the most difficult motor demand. By contrast, the third experiment high-

lighted the influence of performing more difficult motor demands while making decisions 

under objective risk. Participants performed significantly more disadvantageous in the 

Game of Dice Task while standing on one leg compared to the sitting condition (see Figure 

47 for an overview of the findings of the three experiments). 

 

 

Figure 47 Overview of the findings of the three experiments. 

 

While the findings of the single experiments have been already discussed in the respective 

studies, the chapter at hand aims a classification of these within existing models and theo-

retical aspects. At the beginning of this thesis, I stated the aspect that our brain cannot 

process all information it is confronted with. This became apparent in complex but also 

simple tasks. In course of the three experiments, a broad variety of cognitive tasks from 

simple reaction time tasks to dichotomous choice and double inhibition tasks with addi-

tional mnemonic components, but also more applied tasks in the form of a gambling task 

were used. In accordance with Atkinson and Shiffrin (1968) - but also more recent studies 

(e.g. Pashler, 1994) - the present findings of the three experiments indicate that processing 

more novel information or information that require a higher amount of controlled processes 

lead to greater interferences in dual- but also single-task situations. Although the tasks of 

the first and second experiment are not commonly practiced, the used stimuli of numbers 
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and letters are omnipresent in everyone’s daily life. By contrast, the Game of Dice Task 

constitutes a noval - in some ways relatively complex - task. In this context, previous neu-

rophysiological studies highlighted the increasing demand of the performance of novel and 

more difficult tasks compared to overlearned ones by indigating an increased activity in the 

prefrontal and anterior cingulate cortex (e.g. Birnmoim, 2003; Büchel et al., 1999; Frith et 

al., 1991; Jansma et al., 2007; Raichle et al., 1994). Another explanation was stated in some 

early works of Sternberg (1966) and Sternberg (1975), who assumed that more difficult / 

complex tasks require a greater amount of search through the memory set and thus lead to 

longer response times and greater interferences. Based on the present but also previous 

findings I modified the ‘stage theory model’ - stated by Atkinson & Shiffrin (1968) - to 

ensure a classification of the results at hand but also to highlight some aspects relevant in 

this context (Figure 48). 

 

 

Figure 48 Modified model of Atkinson & Shiffrin (1968). 

 

Within the modified model, I included the ‘stages of response’ to describe the kind of re-

sponses that can arise at different stages of information processing and to highlight the 

effects of simultaneous task performance at different stages of information processing. In 

advance to the first stage I stated the aspect of reflexes within the modified model, acting 

on a minimum level of information processing. Generally described as involuntary and 

nearly instantaneous (Purves & Augustine, 2004), in the present context reflexes need to 

be differentiated between spinal reflexes who act on a spinal level and those who act on a 

(lower) cortical level. For example, the pattelar reflex but also the spinal cord pattern gen-

erator (Dietz, 2003) can be summarized under the term of spinal reflexes acting without 

cortical involvement. Therefore, the amount of information that need to be processed in 

this kind of reflexes is assumed to be at the lowest level. By contrast, reflexes such as 

preventing a fall after stumbling require cortical activity and thus discussed in context of 

the sensory register. In dual-task settings, the execution of spinal reflexes is assumed to be 
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independent of the difficulty of the secondary demand, whereas cortical reflexes are af-

fected by simultaneously performing additional tasks. In this context, cortical relexes can 

be classified comparable to reaction tasks, with one exception: reflexes constitute responses 

to unexpected events, whereas reactions occur on expected stimuli. In the present context, 

the first cognitive task of the second experiment (pressing a button when a dot or tone is 

presented) represents a typical reaction task. By contrast to the present findings - which 

revealed no differences between singl- and dual-task performances on the execution of the 

reaction task - Herath et al. (2001) identified significant differences. In their study, partic-

ipants had to respond to blunt, painless stimuli by pressing a button. While Herath et al. 

(2003) asked their participants to react on blunt, painless stimuli while performing addi-

tional cognitive tasks, the experiment at hand comprised different cognitive tasks and motor 

demands in which participants had to respond only to cognitive stimuli.  

In the context of simultaneous task performance, the next stage of the model and its related 

aspects of attention, rehearsal as well as encoding and retrieval are of particular importance. 

Here, I replaced the term short-term memory with working memory. While theoretical as-

pects, behavioral and neurophysiological findings of the working memory are highlighted 

in detail in the theoretical background, its relevance in the present experiments can be seen 

as follows: in context of the Game of Dice Task, previous studies described a correlation 

between task performance and working memory capacity (e.g. Euteneuer et al., 2009). 

Across the first and second experiment, the working memory must be seen as indispensable 

for keeping task-information in mind. Here, the increasing complexity / difficulty of the 

tasks - as highlighted by using the example of graph theory - constitutes the increasing 

demand on working memory until the information is transferred into long-term memory 

and thus becomes increasingly automated. This aspect - of repeating information and au-

tomatization - was already highlighted in previous studies: for example in the context of 

reading (Schneider et al., 1984), but also relatively complex tasks such as shadowing spo-

ken language while playing the piano (Allport, Antonis, & Reynolds, 1972), writing dic-

tated words while reading a novel (Hirst, Spelke, Reaves, Caharack, & Neisser, 1980) or 

shadowing a text while typewriting (Shaffer, 1975). More recent studies discussed the per-

formance of walking and standing as highly automated and thus not interrupted by addi-

tional tasks. As shown across the theoretical background, findings in this context are highly 

inconsistent (Dault et al., 2001a/b; Lajoie et al., 2003; Maylor et al., 2001; Mitra, 2003; 

Pellecchia, 2003; Ramenzoni et al., 2007; Shumway-Cook & Woollacott, 2000; Vuillerme 

et al., 2000). By contrast, there is a general agreement that during the process of aging 

increasingly automated processes become more and more controlled (e.g. Beurskens & 

Bock, 2012; Riby et al., 2004; Verhaeghen et al., 2003). In the second experiment, older 
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adults showed a reduced cognitive task performance but no differences in dual-task perfor-

mance. In this context, I argue that the most difficult motor demand of standing on one leg 

- used in the present context - was too easy to reveal differences on a behavioral level. 

Within a pilot study - which is not part of this thesis - the design of the second experiment 

was transferred to a small group of people with multiple sclerosis but also healthy controls 

(Liebherr et al., 2017). The descriptive results showed increasing dual-task costs in people 

with multiple sclerosis, even under the motor demand of ‘normal’ standing compared to 

healthy controls. Based on these results and the fact that the mean age of the oldest group 

within the second experiment was 69.6±6.6 years, it can be assumed that increasing age 

and thus a concomitant progress of degenerative processes would also lead to increasing 

dual-task costs. Here, a decline in working memory capacity during the process of aging is 

frequently discussed - responsible for the increasing amount of interferences in simultane-

ously performing two tasks among older adults (e.g. Brennan et al., 1997; Park et al., 2002; 

Rönnlund et al., 2001). Along with this, the aspect of working memory training should be 

additionally considered. Based on previous findings, it can be assumed that working 

memory training would generally lead to a reduction of interferences in simultaneous task 

performance (e.g. Constantinidis & Klingberg 2016; Lervåg & Hulme, 2013; Shipstead, 

Redick, & Engle, 2012). For example, McKendrick, Ayaz, Olmstead and Parasuraman 

(2014) reported decreased proactive interferences, increased neural efficiency, reduced 

mental workload for stimulus processing, and increased working memory capacity after a 

working memory training. Furthermore, the effectiveness of working memory training is 

also reported among older adults (e.g. Borella, Caretti, Riboldi, & De Beni, 2010; Buschku-

ehl et al., 2008).  

Along with the association of automated processes and long-term memory, further aspects 

such as experience but also impulsivity and reflexivity need to be highlighted in this con-

text. While Atkinson and Shiffrin (1968) proposed no possibility of transfering information 

directly into the long-term memory, the modified model at hand suggest two ways: a trans-

fer of conscious information from working memory and the possibility to transfer infor-

mation unconsciously / subconsciously direct from the sensory register. Here, the aspect of 

experience might play a relevant role. For example - think about driving a car - an experi-

enced driver can roughly estimate when driving 60 mph, without looking at the speedom-

eter. This phenomenon does not base on the fact that every time we drive 60 mph, we 

consciously think about how it feels to drive this speed and repeat this feeling as long as 

we memorized it into long-term memory. It is rather based on our experience, which grows 

un- / subconsciously. This aspect is also frequently discussed in the context of the impulsive 

and reflective system (e.g. Kahneman, Lovallo, & Sibony, 2011). While it is pointed out at 
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different places of this thesis, there is an ongoing debate whether a clear separation between 

the two systems can be made or not. In accordance with Schiebener and Brand (2015), I 

suggest that both systems guide humans behavior in pararell but one has the upper hand; 

which one depends on several individual and environmental aspects, as well as the situation 

itself. In the present context, I highlighted the somatic markers but also the aspect of stress 

relevant for shifting between the two systems in dual-task situations. This is reflected in a 

more disadvantage decision making behavior of the Game of Dice Task while standing on 

one leg. Another aspect frequently used for explaining differences in dual- compared to 

single-task performance comprises attention. In the modified model at hand, attention is 

adopted from the original model in the context of transferring information from the sensory 

register to working memory. Furthermore, Kahneman (1993) proposed that attention can 

selectively act at multiple stages of information processing and is amongst other contribu-

tors responsible for the limitations in information processing (Kahneman, 1993). The rela-

tion of attention and automaticity in information processing was described by Logan 

(1988), who stated that the degree of automaticity rather than resource limitations moder-

ates the effects of attention in information processing. The aspect of allocation of attention 

during automatic processing was also highlighted by Strayer and Kramer (1990) in the 

context of the event-related potential P3/300. Furthermore, both the P3/300 and the P2/200 

are frequently described as reflecting the consequences of paying attention to a stimulus, 

dividing attention between different stimuli or drifting ones attention away (e.g. Hillyard, 

1981; Hillyard & Kutas, 1983; Hillyard et al., 1978; Johnson, 1988; Maeno et al., 2004). 

Further neurophysiological studies highlighted the relevance of the parietal and frontal lobe 

but also the mid-brain in switching attention between different tasks / demands (Posner and 

Raichle, 1994; Sylvester et al., 2003). Based on these findings, the increased amplitude in 

the earlier positivity - predominantly located at the parietal electrodes - from easy to more 

difficult cognitive tasks, can be interpreted as follows: standing on one leg facilitates the 

process of paying attention on the more difficult cognitive task. Similar was reported in a 

behavioral study by Kathmann et al. (1999), who found a reduced error rate when attention 

was divided between two tasks. By contrast, Siu et al. (2008) reported a diminished atten-

tion in the stroop task under dual- compared to single-task conditions. Among older adults, 

previous studies explained an increase in dual-task costs by a decline in attentional re-

sources (Hauer et al., 2003; Lajoie et al., 1996; Woollacott & Shumway-Cook; 2002). Alt-

hough the aspect of attention is stated in the modified model in the context of transferring 

information from sensory register to the working memory, I agree with Kahneman (1993) 

that this aspect plays a highly relevant role at every stage of information processing. 
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Considering the stages of response again, it is assumed that both the similarity between 

stimulus and response but also the instruction - what to focus on - might play a highly 

relevant role. Regarding the instruction of task-focusing, participants across all three ex-

periments were asked to focus on both task performances equally. In this context, Mitra 

and Fraizer (2004) reported differences in error rate depending on whether the instruction 

was to focus both tasks equally, or to focus on the performance of one task predominantly. 

Similar findings come from Schumacher et al. (2001), who showed that observed interfer-

ences can be modulated by instructions of task prioritization. Regarding the influence of 

stimulus / response similarity, cross talk models assume that greater similarity leads to in-

creased interferences, as highlighted in the theoretical background (e.g. Koch, 2009; Navon 

and Miller, 1987). While most dual-task studies used a manual way of responding (e.g. 

Tombu & Jolicœur, 2002), some studies combined visual stimuli with verbal responding 

(Dux et al., 2006) but also auditory stimuli with verbal responding (Bowen, Wenman, 

Mickelborough, Foster, Hill & Hill, 2001). Based on previous findings of cross talk models, 

it can be assumed that the combination of auditory stimuli and verbal responding lead to 

higher interferences compared to other stimulus / response combinations. While this topic 

should be addressed in further studies, the present experiments exclusively used either a 

visual / manual, auditory / manual, or visual / verbal stimulus / response combination in 

order to avoid similarity effects. Along with the limitations of each study, the effects of 

additional demands, task difficulty and the process of aging were investigated across the 

three experiment only in consideration of cognitive task performance without investigating 

the motor component. Furthermore, a higher number of cognitive tasks as well as an in-

creasingly number motor demands - as implemented in the second experiment - should be 

additionally investigated from a neurophysiological perspective. Based on technical inno-

vations, social pressure but also our own expectations the amount of factors that affect our 

mind positively but also negatively, will constantly increase. Therefore, additional and 

more demanding motor conditions, further cognitive tasks with higher difficulty /complex-

ity but also increasingly real-world scenarios should be addressed within future research of 

this field. 

The present thesis will be completed by addressing the discussion of the existence of a 

central bottleneck or the possibility of sharing capacity between different tasks / demands. 

From a behavioral point of view, Schumacher et al. (2001) reported the possibility of per-

fect time-sharing in dual-task performance of basic choice reaction tasks even after a rela-

tively modest amount of practice. In accordance, Tombu and Jolicœur (2005) confirmed 

the assumption of a central capacity sharing, which divides resources amoung to-be-per-
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formed tasks. By contrast, results presented by Ruthruff, Pashler and Klaasen (2001) con-

firmed the assumtion of structural central bottleneck models. Furthermore, Dux et al. 

(2006) suggested a neural network of frontal lobe areas, which acts as a central bottleneck 

responsible for severely limits of our ability to multitask. While the stated findings are 

based on the combination of two reaction / response tasks, the experiments in the manu-

script at hand comprised one reaction / response task and an additional demand that requires 

no direct response. Nevertheless, based on previous behavioral and neurophysiological 

studies but also the present findings, I suggest that we should no longer deal with the dis-

cussion about the two theories, but rather investigate dual-task situations – similar to the 

approach of the thesis at hand – from an increasingly systematic point of view. Here, I 

assume that the difficulty / complexity of single tasks but also the discussed factor of task 

and stimulus / response similarity plays a highly relevant role and thus should be considered 

from basal stimuli to more applied tasks. 

Although humans’ ability of simultaneously performing different tasks / demands is one of 

the most fascinating aspect in numerous fields of science, in daily life we should no longer 

strive for performing as many things as possible at the same time, but rather prioritize single 

aspects such as drinking a glass of wine with some friends without focusing additional 

demands. 
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