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Nessuna humana investigazione si pio dimandara vera scienzia s’essa non passa per le mate-
matiche dimonstrazione.
No human investigation can be called real science if it cannot be demonstrated mathemati-
cally.
Keine menschliche Forschung darf sich als wirkliche Wissenschaft bezeichnen, wenn sie nicht
den mathematischen Beweis durchlaufen hat.
(Leonardo da Vinci)





Vorwort

Rückblickend ist eine Promotion wahrscheinlich mehr als nur eine einfache wissenschaftliche
Arbeit. Dies zeigt sich auch daran, wenn man sich anerkennend alle Mitstreiter vor Augen
führt, die in den verschiedenen Stadien der Arbeit vom Anfang bis hin zum Ende ihre Beiträge
geleistet haben. Direkt zu Beginn der Arbeit Mitte 2013 zeigt sich dies, als die Weisheit „Sie
werden sich verändern.“ an mich herangetragen wurde, welche sich bis zum Ende bewahrheiten
sollte. Am Anfang weiß man noch nicht, wo man hinkommt, und am Ende weiß man nicht
mehr, wo man herkam. Das eine, das man aber von Anfang an wissen und einhalten sollte,
ist der Grundsatz „Niemals aufgeben und immer weitermachen!“.

Am Anfang dieser Arbeit stand nur eine Idee aus meiner Masterarbeit, welche sich mit dem
einfachen Satz „Ich möchte Rekursive Subspace Identifikation entwickeln.“ beschreiben lässt,
da es dazu noch nichts zu geben schien. Das ist nun, mit dem heutigen Wissen betrachtet,
doch recht mutig gewesen, da bis Mitte 2016 unklar war, welcher theoretische Ansatz für die
Lösung dieser Aufgabe geeignet ist. Letztlich ist damit eine Promotion zu einem gewissen
Teil auch eine Wette auf sich selbst. Man hat nun das warme Haus des betreuten Lernens
verlassen und wirft sich in die eisige Welt der Wissenschaft, in der man, wenn es darauf
ankommt, niemanden fragen kann, wie man denn nun das vorliegende Problem lösen soll,
da es nur eine Person gibt, die mit dem Problem vertraut ist – und das ist man selbst. Zu
Beginn gibt es nur die Hoffnung, klug genug zu sein, um das gesetzte Ziel zu erreichen. Je
höher aber das Ziel gesteckt wird, um so größer ist dann auch die Veränderung. Das bekommt
man dann allerdings erst am Ende mit, denn unterwegs sind letztlich die treibenden Kräfte
einfach nur das Interesse am Ergebnis und das permanente Ausloten der eigenen geistigen
Grenzen, d.h. die Frage „Bekomme ich das hin und falls ja, wie?“. Das ist im Prinzip der
Niemals-aufgeben-Teil einer Promotion.

Der Immer-weitermachen-Teil ist dann nicht ganz so angenehm. Das sind nämlich in den
jeweiligen Momenten Tiefschläge, zu denen man entweder herausfindet, dass es ja doch schon
etwas in der Welt der Wissenschaft zum Thema gibt, z. B. rekursive Subspace Identifikati-
on für den geschlossenen Kreis mittels des Ansatzes der orthogonalen Zerlegung, oder wenn
man sich bis zur ersten wirklich großen Konferenz durchgekämpft hat, glaubt, man hätte
es geschafft, und dann doch nur wieder feststellen muss, dass die Denkweise noch nicht das
notwendige wissenschaftlich Niveau erreicht hat. Am Ende sind es aber keine Tiefschläge,
sondern die entscheidenden Momente, in denen man entweder aufgibt oder bereit ist, seine
Grenzen zu verschieben. Es sind die Zeitpunkte, in denen man am nächsten Tag die Motiva-
tion wiederfindet und verbissen mit einer Jetzt-erst-recht-Einstellung weitermacht. Da man
noch nicht gut genug war, müssen sowohl der eigene Ansatz als auch die Arbeitsweise halt
nur noch besser werden als bisher. Das Erste sorgte in der Endkonsequenz dafür, dass sich in
dieser Arbeit die Aussage von Herrn da Vinci bewahrheitete, indem am Ende die komplette
mathematische Beschreibung eines zu Beginn eher rein technischen Problems stand – das war
so nie geplant, da zu Beginn nicht gewußt wurde, wo es hingeht. Das Zweite führte dann auf
der zweiten großen Konferenz dazu, dass man beispielsweise von anderen gesagt bekommt,
dass der eigene Ansatz zu schwer sei, um ihn zu verstehen.
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Damit lässt sich nun das Ergebnis der letzten fünf Jahre, an dem neben dem Promovierenden
durch ihre Unterstützung auch noch viele weitere Menschen beteiligt waren, wie folgt zusam-
menfassen. Es ist als fast sicher zu definieren, dass ich diese Dissertation vor fünf Jahren in
die Ecke geworfen hätte, da ich kein Wort verstanden hätte. Abschließend lässt sich somit
feststellen, dass eine ziemlich offensichtliche Veränderung stattfand – q. e. d. Vielleicht ist
auch ein Teil mehr Ironie im Leben hinzugekommen.

In diesem Sinn gilt daher mein Dank allen, die mich auf dem Weg zum erfolgreichen Abschluß
der Arbeit begleitet haben und zur einführend genannten Veränderung beigetragen haben –
es hätte schließlich auch anders ausgehen können. Dies sind auf der fachlichen Seite alle, die
mit ihren Hinweisen dieses Dokument bis zu seiner letztlichen Fertigstellung noch einmal
verbesserten. Hinzu kommt auch die Anerkennung für die halbjährlichen Vortragstrainings
– am Ende ist das ziemlich nützlich, da somit die Verteidigung auch nur wieder zu einem
„dieser Vorträge“ wird. Auch die Unterstützung hinsichtlich verschiedener nicht unwichtiger
Kleinigkeiten, wie z. B. der Formatvorlagen für die Dissertation oder Tipps für die Dokumente
der Einreichung, durch meinen Weggefährten soll an dieser Stelle nicht ungenannt bleiben.
Vor allem gilt aber mein Dank der einen Person, die mir die Möglichkeit zur eigenen Forschung
ermöglichte – sowohl finanziell als auch organisatorisch – und mir eigentlich ab etwa Anfang
2014 freie Hand für die Entwicklung der Ideen ließ und nicht permanent mit „Sind Sie schon
fertig?“ im Rücken saß. Immerhin waren die Konferenzen in Hiroshima, Whistler, Osaka
und Melbourne nun nicht gerade Next Door – schon allein die Flüge. Auf der sozialen Seite
sind es meine Freunde, bei denen ich mich dann doch das eine oder andere Mal über die
Unfairness der Welt, d. h. über die Unfairness einer Promotion, denn das war in den letzten
fünf Jahren „meine Welt“, lautstark beschweren und so mein inneres Gleichgewicht wieder
herstellen konnte.



Kurzfassung

Seit dem Aufkommen modellgestützter Methoden in der Automatisierungstechnik für die Re-
gelung oder Überwachung industrieller Großanlagen, wie z. B. verfahrenstechnische Anlagen
oder Walzwerke in der Stahlindustrie, ist die Modellbildung dieser Anlagen wesentlich für
die Nutzung solcher Methoden. Hierbei ist im Vergleich zur theoretischen Modellbildung die
experimentelle Modellbildung mittels Systemidentifikation ein einfacherer Weg, um an eine
mathematische Beschreibung einer Anlage zu gelangen. Obwohl das Anlagenverhalten grund-
sätzlich nicht-linearer Natur ist, verweilt die Anlage dennoch meist über längere Zeit in einem
Arbeitspunkt. Somit ist die Identifikation eines linear parameter-varianten Modelles zur Be-
schreibung des Gesamtverhaltens eher ungerechtfertigt, wenn der dafür benötigte Aufwand
ins Verhältnis zum Nutzen gestellt wird. Es ist einfacher, ein lineares zeit-invariantes Modell
für die Beschreibung eines Arbeitspunktes adaptiv anzupassen, d. h. rekursiv zu identifizieren,
wenn die Anlage in einen neuen Arbeitspunkt überführt wird. Bezüglich dieser Anforderung
bestanden hinsichtlich der Subspace Identifikation folgende Probleme:

• Bestehende Ansätze für die rekursive Subspace Identifikation setzen an der numerischen
Implementierung der Methoden an, nutzen damit nicht das grundlegende theoretische
Gerüst der Subspace Identifikation und führen letztlich zu speziellen Methoden.

• Trotz der vorhandenen verschiedenen methodischen Ansätze, welche sich für die Iden-
tifikation von industriellen Großanlagen eignen, sind deren numerischen Implementie-
rungen eher ungeeignet für einen Einsatz im Rahmen solcher Anlagen.

Ausgehend von dieser Problemstellung befasst sich diese Dissertation mit der Beschreibung
eines neuen Ansatzes für die rekursive Subspace Identifikation und der Herleitung zugehöriger
Basisalgorithmen für die Identifikationen. Dabei wurden folgende Ergebnisse erzielt:

• Für die Identifikation im offenen Kreis, d. h. im Falle einer ungeregelten Anlage, bei
der die Eingänge unabhängig von den Ausgängen sind, wurde durch die Verbindung des
Ansatzes der orthogonalen Zerlegung des Anlagenausganges mit der auf der Canonical
Correlation Analysis aufsetzenden Identifikationsmethode ein Algorithmus hergeleitet,
der wesentlich besser als bisherige Algorithmen das Prozessmodell industrieller Groß-
anlagen auch unter Störeinflüssen bestimmen kann.

• Für die Identifikation im geschlossenen Kreis, d. h. im Falle einer geregelten Anlage, bei
der die Eingänge abhängig von den Ausgängen sind, wurde für die Prediktor-basierende
Subspace Identifikationsmethode ein Algorithmus hergeleitet, der deren theoretische
Beschreibung direkt implementiert und somit bisherige aufwendige Least-squares Ver-
fahren oder eine Identifikation eines Zwischenmodelles unnötig macht.

• Für die rekursive Subspace Identifikation wurde basierend auf dem aus der stochas-
tischen Realisierungstheorie stammenden Coordinate-free Framework eine grundlegen-
de Beschreibung des rekursiven Verhaltens des zu einem Modell äquivalenten Predic-
tor Space hergeleitet. Während dieser Ansatz aufgrund der Eigenschaft des Predictor
Spaces die höchstmögliche Kompression von Informationen der Vergangenheit erzielt,
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ist er darüber hinaus vor allem allgemeingültig. Damit kann er auf jede beliebige be-
stehende Subspace Methode angewendet werden und macht Spezialmethoden unnötig.

Der neue Algorithmus für den offenen Kreis erhält seine Leistungsfähigkeit durch die Kom-
bination des allgemein guten Identifikationsverhaltens der Methode auf Basis der Canonical
Correlation Analysis mit der sich aus der orthogonalen Zerlegung des Ausganges ergebenden
Unterdrückung von Prozessstörungen. Identifikationsstudien, die sowohl auf rein akademi-
schen Beispielen als auch auf dem Tennessee Eastman Process Modell aufsetzen, weisen die
Güte des Algorithmus simulativ nach. Wenn Systeme mit entweder autoregressiver moving-
average Struktur und exogenem Eingang (deterministisches und stochastisches Subsystem
besitzen gleiche Eigenwerte) oder Box-Jenkins Struktur (deterministisches und stochastisches
Subsystem besitzen unterschiedliche Eigenwerte) identifiziert werden, sind die durch den Al-
gorithmus erzielten Ergebnisse gleich den Ergebnissen oder minimal besser als die Ergebnis-
se bekannter Methoden. Hinsichtlich des realistischen Tennessee Eastman Process Modells
ist der hier eingeführte Algorithmus bei ungestörtem Prozessausgang besser als vorhandene
Identifikationsalgorithmen und bei einer Beeinflussung der Prozessausgänge durch Störun-
gen der einzige Algorithmus, der in Lage ist, das korrekte deterministische Prozessmodell
zu bestimmen. Da es sich beim Tennessee Eastman Process um ein Modell handelt, welches
entsprechend (nicht-linearer) physikalischer und chemischer Grundprinzipien eine existieren-
de verfahrenstechnische Anlage nachbildet, sind die am Tennessee Eastman Process erzielten
Ergebnisse repräsentativ für die Identifikationen solcher Anlagentypen.

Aufgrund des theoretischen Hintergrundes des Ansatzes der orthogonalen Zerlegung kann
dieser Ansatz für die Identifikation im geschlossenen Kreis nicht verwendet und folglich auch
nicht in den neue Algorithmus für die Prediktor-basierende Subspace Identifikationsmetho-
de integriert werden. Somit beschreibt das ermittelte Modell sowohl das deterministische
als auch das stochastische Verhalten des Prozess. Durch die Neuordnung der Daten vor der
Berechnung können eine direkte Implementierung der Methode erfolgen und komplexe Least-
Squares Ansätze oder eine vorherige Schätzung eine Zwischenmodells vermieden werden. Die
Identifikationsergebnisse dieses Algorithmus sind mit minimalen Minderungen gleich denen
der bestehenden Algorithmen der Methode. Ein größeres Beispiel unter Nutzung von Model-
len, die in der Literatur zur Illustration der Funktionstüchtigkeit der Methoden für die direkte
Identifikation im geschlossenen Kreis genutzt wurden, zeigte allerdings, dass die Identifikation
der meisten Systemstrukturen im geschlossenen Kreis fehlschlägt. Das betrifft nicht nur den
hier eingeführten Algorithmus, sondern alle Methoden für die direkte Identifikation, welche
für dieses Beispiel implementiert wurden. Die Klärung dieses Problems ist nicht Bestandteil
dieser Arbeit, da deren Schwerpunkt auf der Herleitung des Ansatzes zur rekursiven Subsapce
Identifikation liegt.

Der neue Ansatz für die Rekursion beruht auf den Eigenschaften des minimalen Predictor
Space. Einerseits verdichtet der minimale Predictor Space alle notwendigen Informationen für
die Vorhersage der zukünftigen Entwicklung des Systems, andererseits ist jeder zukünftige
minimale Predictor Space ein Unterraum des Raumes, der durch einen beliebigen vergan-
genen minimalen Predictor Space und die dazwischen liegenden Ein- und Ausgangsdaten
aufgespannt wird. Aus der Eigenschaft des zeitlichen Voranschreitens lassen sich unter Bei-
behaltung der Kompressionseigenschaft die exakte Verbindung eines beliebigen vergangenen
minimalen Predictor Space mit einem beliebigen zukünftigen minimalen Predictor Space
herstellen und somit eine rekursive Methodik beschreiben, die sich auf beliebige Standard-
methoden der Subspace Identifikation anwenden lässt. Simulationen auf Basis akademischer
Beispiele veranschaulichen die Funktionsfähigkeit dieses neuen Ansatzes. Außerdem werden
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zwei Problemstellungen, die sich aus der Implementierung dieser Methodik ergeben, und ent-
sprechende Lösungsvorschläge erläutert.





Abstract

Since the introduction of model-based methods for control or monitoring of industrial plants,
e.g., chemical processes or rolling mills, more and more emphasis is placed on modeling
of these processes. In this context, the experimental modeling, i.e., system identification,
provides and easier way to achieve this goal than theoretical modeling, i.e., modeling based
on first principles. Although the plants are essentially of non-linear nature, they are often
operated over long periods of time in one operating point, which exhibits a nearly linear
behavior in its proximity. Hence, comparing effort versus reward, it is more rewarding to
identify a linear time-invariant model and adapt this model during the change of the operating
point, i.e., using a recursive identification scheme, than trying to identify a genuine non-
linear model, e.g., a linear parameter-varying model. From this line of thought, the following
problems arise if subspace identification is considered:

• Existing methods for recursive subspace identification approach the problem from the
numerical point of view and hence do not take the underlying theoretical framework
into consideration and, hence, provide purpose-build methods.

• Although there are various methods, which were suitable for the identification of in-
dustrial plants, the respective numerical implementations of these methods lack the
performance for this intended application.

Based on these problems, this thesis is concerned with the derivation of a new methodological
approach to recursive subspace identification and the derivation of related algorithms of base
methods. The following results are achieved:

• In terms of open-loop identification, i.e., if the plant is not controlled and there is no
feedback or dependency between the output and the input, an algorithm is proposed
which combines the approach of the orthogonal decomposition of the system output
with the core algorithm of the method based on the canonical correlation analysis.
This new algorithm is able to retrieve the model of the plant’s process under influences
of process disturbances much better than existing algorithms.

• In terms of closed-loop identification, i.e., if the plant is controlled and there is a
feedback or dependency between the output and input, an algorithm for the predictor-
based subspace identification method is described, which follows exactly the method’s
theoretical derivation. This algorithm thus avoids the involved least-squares approaches
or identifications of intermediate models of previous algorithms.

• In terms of recursive subspace identification, a methodological approach is proposed,
which is based on the underlying coordinate-free framework originating from stochastic
realization theory. This approach describes the recursion based on the model-equivalent
predictor space by using its properties with respect to its progression with time and
data compression capabilities. In addition to achieving the highest possible compression
of past data, the approach can be implemented in terms of every existing subspace
identification method and makes the derivation of purpose-build methods unnecessary.
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The proposed algorithm for open-loop identification draws its strength from the fact that
the good identification performance of the canonical correlation analysis is applied to data
which is free from influences of disturbances. This in turn follows from the integration of
the approach of orthogonal decomposition, which decomposes the output data of the system
into the deterministic component, i.e., the system-driven data component, and the stochastic
component, i.e., the disturbance-driven data component. Identification studies using both
academic examples and the Tennessee Eastman Process model show the accuracy of the
proposed algorithm. In terms of the academic examples, the quality of the results is equal or
slightly better when compared to existing methods. This holds in both cases when system is
of autoregressive moving-average structure with exogenous input (dynamics of stochastic and
deterministic subsystems are the same) or of Box-Jenkins structure (dynamics of stochastic
and deterministic subsystems are disjoint). In terms of the Tennessee Eastman Process
model, the algorithm yields results with improved quality in a disturbance-free scenario and
outperforms existing methods when disturbances are present. As the Tennessee Eastman
Process is a first-principle model of an existing chemical plant, the results achieved on this
model are representative for the identifications of such processes.

For reasons of the underlying theoretical relations, it is not possible to merge the orthogonal
decomposition approach with the predictor-based subspace identification method. Hence,
the proposed algorithm yields a joint stochastic-deterministic model of the system. By re-
arranging the data before entering the processing stages of the identification algorithm, the
proposes algorithm is able to directly follow the theoretical derivations of the predictor-based
subspace identification method. The results of this algorithm are equal to the previously pro-
posed algorithms, where the existing algorithms hold a minimal advantage. Unfortunately,
examples using systems with either autoregressive moving-average structure with exogenous
input, autoregressive structure with exogenous input, or Box-Jenkins structure under closed-
loop conditions resulted in erroneous identifications. Although these very examples have been
used in the literature to illustrate the functionality of the respective methods, this problem
does not only concern the proposed algorithm but all implementations of methods for the di-
rect approach to closed-loop identification. A solution of this issue is not pursued in this thesis
as the main focus is on the derivation of an approach to recursive subspace identification.

The new approach to recursive subspace identification is based on the properties of the mini-
mal predictor space. Firstly, it compresses all past information necessary for the prediction
of the future development of the system, and, secondly, any future minimal predictor space is
a subspace of the joint space of an arbitrary past minimal predictor space and the respective
intermediate data. While retaining the compression property, the exact relation between a
future minimal predictor space and a past minimal predictor space is derived by exploiting
the property describing the progression with time. Thus, the sought-after recursive metho-
dology is established. This results in an approach which can be implemented in terms of
every standard subspace method. Numerical simulations show the proper functioning of the
approach in terms of a academic examples. In addition to the theoretical derivation, two
practical issues and its possible solutions are addressed.



Contents

Kurzfassung iv

Abstract vii

Contents xi

List of abbreviations xv

List of symbols xvii

1 Introduction 1
1.1 System identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Object of research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Problems and motivation . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 Practical impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.3 Proposed theoretical method . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.4 Main contributions of the work . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Review of subspace identification 13
2.1 General identification procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Basic components of identification methods . . . . . . . . . . . . . . . . . . . 14

2.2.1 System representations . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Data spaces and its numerical counterparts . . . . . . . . . . . . . . . 16
2.2.3 Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Assumptions and identification problem . . . . . . . . . . . . . . . . . . . . . 22
2.4 Coordinate-free framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.1 Stochastic systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.2 Systems with exogenous inputs . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Basic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.6 Open-loop identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.6.1 Realization and state-regression approach . . . . . . . . . . . . . . . . 39
2.6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.6.3 Order estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.7 Closed-loop identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.7.1 General problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.7.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.8 Identification of systems by linear parameter-varying models . . . . . . . . . . 50
2.9 Recursive methods for subspace identification . . . . . . . . . . . . . . . . . . 51
2.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3 Problem statement and conceptual outline 59
3.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59



xii Contents

3.2 Conceptual outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2.1 Conceptual outline for the derivation of basic algorithms . . . . . . . . 61
3.2.2 Conceptual outline for the approach to recursive subspace identification 62

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 Revision of methods for basic identifications 65
4.1 Basic algorithm for open-loop identification . . . . . . . . . . . . . . . . . . . 66

4.1.1 Problem of the existing algorithm of the orthogonal decomposition . . 67
4.1.2 New algorithm for the orthogonal decomposition approach based on

canonical correlation analysis . . . . . . . . . . . . . . . . . . . . . . . 70
4.1.3 Numerical implementation . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.1.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2 Basic algorithm for closed-loop identification . . . . . . . . . . . . . . . . . . 87
4.2.1 Restructuring of the QR decomposition for the predictor-based sub-

space identification method . . . . . . . . . . . . . . . . . . . . . . . . 89
4.2.2 Numerical implementation . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.2.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5 Tennessee Eastman Process identification study for non-recursive identification
methods 105
5.1 Experiment description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.2 Order estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.3 Validation and evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6 Recursive subspace identification 123
6.1 Preliminary considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.1.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.1.2 Subspace inclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.2 Determination of predictor space . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.3 Numerical implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.4.1 LTI SISO system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.4.2 Time-varying SISO system . . . . . . . . . . . . . . . . . . . . . . . . 139

6.5 Practical aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.5.1 Influence of the column number . . . . . . . . . . . . . . . . . . . . . . 146
6.5.2 Preservation of basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7 Conclusions and continuative work 153
7.1 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
7.2 Continuative work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Bibliography 159

Publications 165

Student theses 167



Contents xiii

A Tennessee Eastman Process 169
A.1 Process description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
A.2 Simulation model description . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

B Program code of identification methods 175
B.1 CCA-ORT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
B.2 PBSID-QR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
B.3 PBSID-VARX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
B.4 Recursive CCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
B.5 Recursive CCA-ORT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
B.6 Recursive PBSID-QR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185





List of abbreviations

ARMAX Autoregressive moving-average with exogenous input (model structure)

ARX Autoregressive with exogenous input (model structure)

AIC Akaike’s information theoretic criterion

CCA Canonical correlation analysis (subspace identification method)

CVA Canonical variate analysis (subspace identification method)

FIR Finite impulse response (model structure)

FPE Akaike’s final prediction error criterion

IV Instrumental variable

LTI Linear time-invariant (system/model type)

LPV Linear parameter-varying (model structure)

MIMO Multiple-input multiple-output (system/model type)

MOESP MIMO/Multivariable output-error state-space model identification (sub-
space identification method)

N4SID Numerical algorithms for subspace state-space system identification (sub-
space identification method)

NIC Criterion for model order estimation based on Frobenius norm

ORT Orthogonal decomposition (subspace identification approach)

PARSIM-E Parsimonious, causal subspace identification method with innovation es-
timation (subspace identification method)

PBSID Predictor-based subspace identification (subspace identification method)

SISO Single input single output (system/model type)

SNR Signal-to-noise ratio

SSARX State-space ARX (subspace identification method)

SVC Singular value criterion, criterion for model order estimation based on
2-norm

SVD Singular value decomposition

VAF Coefficient of determination, also called “variance accounted for” crite-
rion

VARX Vector autoregressive with exogenous input (model structure)





List of symbols

Vectors and matrices

y, u, x System output, system input, system state (here considered to be
stochastic processes)

w, v, e State noise, measurement noise, innovation (all white-noise pro-
cesses)

A, B, C, D, K Matrices of the state-space representation of a system

y
(·)
t Data vector of past/future of stochastic process y, where past and

future with respect to time t (time point t is included in future)
are denoted by replacing (·) with − or +

u
(·)
t Data vector of past/future of stochastic process u

p(t) Joint random variable of y(t) and u(t)

p
(·)
t Data vector of past/future of joint stochastic process consisting of

y and u

yN(t) (Numerical) tail matrix with N columns representing stochastic
variable y(t), the columns are the respective numerical values of a
sample function of y starting with the element of time t; similar
for any other stochastic process, i.e., the input u or the state x

Y−
t (Numerical) matrix representing y−

t and constructed row-wise
from tail matrices yN(t); similar for Y+

t , U−
t , Y−

t , or P−
t

Sets and spaces

Y(·)
t Space spanned by past/future of stochastic process y, where past

and future with respect to time t (time point t is included in future)
are denoted by replacing (·) with − or +

X (·)
t Space spanned by past/future of stochastic process x (in terms of

systems with exogenous input) or the states of the forward and
backward model (in terms of stochastic systems)

U (·)
t Space spanned by past/future of stochastic process u

P(·)
t Space spanned by past/future of joint stochastic process p = (y, u)

F+
t Joint space of the future innovations/wandering subspace and in-

put



xviii Contents

H Ambient space; depending on problem (stochastic system or sy-
stem with exogenous inputs) either Y−

t ∨ Y+
t ∨ X −

t ∨ X +
t or

Y−
t ∨ Y+

t ∨ U−
t ∨ U+

t ∨ X −
t ∨ X +

t(
Y(·)

t

)⊥
Orthogonal complement of space Y(·)

t within ambient space

Y(·)
[t,t+k) Space constructed from random variables y(t) through y(t+k−1),

where (·) is either − or + denoting its logical assignment to past
or future

Operators

span{· · · } Closed Hilbert space spanned by the elements listed in {· · · }

Im{·} Range space/image of matrix (·) (spanned by column vectors)

ImRow{·} Row space of matrix (·) or range space/image of (·)T (spanned by
row vectors)

Ker{·} Nullspace/kernel of matrix (·)
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1 Introduction

In this chapter, the topic of this thesis will be introduced. Following a general and brief review
of system identification in Section 1.1, the object of research of this thesis will be explained
in Section 1.2. In this context, the problem as well as the resulting methodical approach, its
practical impact, and the main contribution of this work are discussed. A precise formulation
of the scope of the work follows later in the third chapter. This formulation cannot be given
in a comprehensible way before the review of the field of research – subspace identification
– is made in the second chapter. The outline given in Section 1.3 describes the structure of
the thesis, which result from the objectives issued for this thesis.

1.1 System identification

Many application in today’s world make the existence of a model of the related system
necessary. The models in the following are considered to be mathematical descriptions of
theses systems. This type of modeling is not limited to certain types of systems. That is, the
variety of systems ranges from industrial process, e.g., distillation columns or rolling mills,
to the dynamic behavior of car suspensions. In terms of modeling of a system, there are
two general approaches to this problem. The first approach is to derive the model from the
(nonlinear) physical and chemical principles governing the behavior of the system – known
as theoretical modeling. The second approach is to calculate the model from recorded data –
known as experimental modeling or system identification. The subject of this thesis resides
within experimental modeling.

The systems are usually nonlinear and time-varying. However, as time-variance of most
systems results from aging or the change of operating points, the systems behave rather
linear in the proximity of these operating points. Hence, linear time-invariant (LTI) models
are often used to describe the system behavior. In this context, the system’s output can be
described by1

y(t) = P0(z)u(t) + v0(t) , (1.1)

where the output y, the disturbance v0, and the input u can be either scalars or multi-
variable vectors. In the latter case, such a system is called multiple-input multiple-output
(MIMO) system. If y, v0, and u are scalar, a system is called single-input single-output (SISO)
system. Hybrid forms are the MISO (multiple-input single-output) or the less common SIMO
(single-input multiple-output) systems. The transfer function (scalar case) or transfer matrix
(multi-variable case) P0(z) describes the dynamic behavior of the system.

1In this thesis, such formulas need to be understood in a symbolic way. The purpose is only the depiction
of the connection between the signals and its respective system entities. It is not meant to be an exact
mathematical description – which would obviously require the signals to be also in the Z domain. Thus,
P0(z) is used here in the same symbolic way as in Lindquist and Picci (2015, p. 676), Katayama (2005) or
in the style of the equivalent q-transformation used throughout Ljung (2009).
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Figure 1.1: Approaches to system identification of LTI models (Katayama, 2005; van Over-
schee and De Moor, 1996)

Given the input and output data of a system, which is excited in a certain way by the
input, system identification is concerned with the task of calculating a model of this system
representing its controllable and observable properties in the proximity of some point of
operation. Usually, a model is restricted to a certain range of closely adjacent operating
points or by its intended use. To cover the whole system behavior, nonlinear models are
needed.

There are two general approaches to system identification – parametric identification, or
classical identification, and subspace identification. The first group of methods estimate
the parameters of predefined transfer functions, thus identifying the system in the frequency
domain. These types of models are also referred to as black-box models as they only represent
the relationship between the input and the output of a system without giving insight into the
internal structure of the model. This changes with respect to the model of the latter methods.
By estimating the system in the time domain in terms of state-space models, the internal
structure of the model is also given. For this reason, these types of models are also called
white-box models. The procedures of these two approaches are shown in Figure 1.1. Due to
the calculation based on sampled data of the system’s input and output, the models of both
approaches are always linear discrete-time models. With respect to this data acquisition, it
is furthermore distinguished between two modes – open-loop and closed-loop. In open-loop
operation, there is no feedback from the output to the input, i.e., there is no controller, and
the input is hence independent from output, whereas there is a feedback, i.e., a controller,
and hence a dependency of the input on the previous output data, in closed-loop operation.
In terms of this thesis, the object of research will be concerned with a certain aspect of
subspace identification for both open-loop and closed-loop data acquisition. To point out the
differences between classical identification and subspace identification, both approaches will
be briefly reviewed in the following.



1.1 System identification 3

Classical identification

In terms of classical identification, the model of a system is given by

M : y(t) = P (z, θ)u(t) + H(z, θ)e(t) , (1.2)

where θ is an explicit parameter vector. The disturbance v0 is modeled using the white-noise
process e and a respective filter H(z, θ). The relation between the transfer functions P (z, θ)
and H(z, θ) describes certain model structures, like the ARX (autoregressive with exogenous
input) model

y(t) = B(z, θB)
A(z, θA) u(t) + 1

A(z, θA)e(t) ,

the ARXMAX (autoregressive moving average with exogenous input) model

y(t) = B(z, θB)
A(z, θA) u(t) + C(z, θC)

A(z, θA)e(t) ,

or the most flexible Box-Jenkins model

y(t) = B(z, θB)
F (z, θF )u(t) + C(z, θC)

D(z, θD)e(t) .

The part of the model given by the transfer function P (z, θ) is also called deterministic
part of the model or deterministic sub-model, while the part described by H(z, θ) is called
stochastic part or stochastic sub-model. In all model structures, the polynomials A(z, θA),
B(z, θB), C(z, θC), D(z, θD), and F (z, θF ) might have varying degrees, which are respectively
fixed to a certain number before the identification starts. Usually, more than one model
structure and varying degrees, i.e., different models (defined by the structure of the transfer
functions and the degrees of the polynomials), are used during the identification process.
Based on certain criteria, the model giving the best fit is used after a validation phase. As
the degree of the polynomials is fixed, the parameter vector can be split up according to
the various polynomials. In fact, the parameter vector θ contains the coefficients of the
polynomials. Hence, this type of system identification is only concerned with the numerical
estimation of suitable coefficients of these polynomials, as the model structure is pre-defined
and not identified. The most common methods to do so are either the prediction-error
method or the instrumental-variable method. Both are covered in the books of Ljung (2009)
and Söderström and Stoica (2001), wherein also the entire field of classical identification
is addressed. This contains also questions regarding data generation or consistency and
convergence of the results, i.e., whether there is a bias within the models and which value the
covariance of the parameters has. An overview of the field is given in Åström and Eykhoff
(1971), whereas a survey on the types of models is also given in B. Huang and Kadali (2008).
Another big group of methods are maximum likelihood methods, which are for example
covered in Hannan and Deistler (2012). The more complex the models become, so do the
related identifications. In the end, most of the methods result in nonlinear optimization
problems.

Subspace identification

Compared to the classical methods, which were introduced roughly 50 years ago, the field of
subspace system identification started to develop approximately 25 years ago. The first ideas
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can be however traced back to the 1970th, e.g., Akaike (1974). Following from these first
ideas, the original problem of subspace identification was the identification of time series or
stochastic systems as for example addressed in van Overschee and De Moor (1993), Dahlén
and Scherrer (2004), or Tanaka and Katayama (2005). The idea was then extended to the
identification of joint stochastic-deterministic systems. In terms of subspace methods, the
model is assumed to be given by the state-space representation

M :
x(t + 1) = A(θ)x(t) + B(θ)u(t) + K(θ)e(t) ,

y(t) = C(θ)x(t) + D(θ)u(t) + e(t) ,
(1.3)

where the parameter vector θ is only used to showcase the fact that the matrices will be
determined during the identification. That is, there is no explicit set of parameters whose
values will be determined during the course of the identification. This also becomes clear if
the connection between state-space models and transfer-function models given by

y(t) =
(
C(θ) (zI − A(θ))−1 B(θ) + D(θ)

)
u(t) +

(
C(θ) (zI − A(θ))−1 K(θ) + I

)
e(t)

= P (z, θ)u(t) + H(z, θ)e(t)
(1.4)

is considered. As there are no unique state-space realizations, P (z, θ) and H(z, θ) can be
described by various state-space realizations. In this context, θ loses its meaning as one
unique parameter vector. This also means that the model structure will ideally follow from
the identification of system matrices and is consequently identified as well instead of being
fixed beforehand. Other advantages are the reduced number of method parameters and the
inherent ability to similarly deal with single-input single-output and multiple-input multiple-
output systems, as the model is given by a state-space representation. Only the order of the
system/model is needed and not the whole structure of the model. However, trade-offs for
the aforementioned advantages are an increased estimation variance and a reduced estimation
accuracy of zeros and steady-state gains, which is in contrast achieved by classical approaches
(Qin, Lin, and Ljung, 2005). Thus, it is more convenient to use classical approaches as far
as the identification of SISO systems or simple MIMO systems is concerned. As stated in
Katayama (2005), the early success of subspace methods was due to the fact that the nume-
rical implementation is based on the reliable numerical algorithms of the QR decomposition
and singular value decomposition (SVD). Thus, nonlinear optimization techniques, which are
required to solve the parameter estimation of the classical approaches, are avoided.

In the following, a brief overview of subspace identification is given. In terms of an accurate
summary of contributions given to field, a distinction between approaches, methods, and al-
gorithms will be made here and in the remainder of the thesis. Approach refers to a basic
concept or template procedure for the identification of a system. Method refers to the exact
theoretical description of an identification procedure. Methods can be assigned to the diffe-
rent approaches. Algorithm refers to the respective numerical implementation of a method.
It is possible that there are multiple algorithms for one method. Methods and related aspects
which are used and referred to in the thesis will be reviewed in detail in Chapter 2. Following
Viberg (1995) and Bauer and Ljung (2002), the two basic approaches to the problem of sub-
space identification are the realization approach and the state-regression approach. In terms
of the later approach, the system matrices are determined by an estimation of the states x(t)
and x(t + 1), so that by (1.3) a linear regression is described. The former approach is based
on an extraction of the system matrices from certain matrices which follow when (1.3) is ite-
rated to yield a description for a contiguous interval of outputs. A special approach limited
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to the open-loop case is the orthogonal decomposition (ORT) approach discussed in Picci
and Katayama (1996b). By embedding this approach into the algorithms of the methods,
a decomposition of the system output y into its deterministic and stochastic components is
achieved. Hence, the disjoint identifications of the deterministic and stochastic subsystems
of (1.3) is allowed for. By the end of the 1990th, the open-loop problem was covered by the
realization method MOESP2 (Verhaegen, 1993b, 1994; Verhaegen and Dewilde, 1992a), the
state-regression method N4SID3 (van Overschee and De Moor, 1994, 1996), and the state-
regression/realization methods CCA4 (Katayama and Picci, 1999) and its earlier version
CVA5 (Larimore, 1983, 1990). These methods are now considered standard open-loop met-
hods. N4SID is also covered in the monograph by van Overschee and De Moor (1996), where
certain aspects of the subspace approach are set into context of non-steady-state Kalman fil-
ter estimation. As the name indicates, the CCA method uses the algorithm of the canonical
correlation analysis to extract the estimates of the states from the data. Opposed to the usual
rank n estimations of the state or observability matrix by N4SID or MOESP, the estimation
of the state by a canonical correlation analysis assigns a deeper meaning to this estimation as
it will not yield just any rank n state estimate but the estimate with the highest correlation
between past and future. A realization method, which uses the principal component analysis
(PCA) as the core algorithm and is hence called SIMPCA6, has been discussed in B. Huang,
Ding, and Qin (2005) and Wang and Qin (2002, 2006).The closed-loop problem was first ad-
dressed by a joint input-output algorithm of the MOESP method in Verhaegen (1993a). By
the beginning of the 2000th, the subspace identification approach was entirely extended to
closed-loop identification when the direct-approach methods PARSIM-E7, SSARX8, and PB-
SID9 (all state-regression methods) were disclosed in Qin and Ljung (2003a), Jansson (2003)
and Chiuso and Picci (2005). The identification by the SSARX and PBSID methods require
a pre-estimation of a vector ARX (VARX) model and are, in terms of the basic procedures,
similar to each other. The procedure of the PARSIM-E method includes a step-wise esti-
mation of the innovation process e. With either the VARX model or the information of the
innovation process, the bias which would otherwise be introduced in the models of open-loop
methods by the feedback can be avoided. In addition to these standard methods, statistical
properties, such as consistency or asymptotic variance, have been thoroughly analyzed, see,
e.g., Peternell, Scherrer, and Deistler (1996), Bauer (2005), Gustafsson (2002), Jansson and
Wahlberg (1998), Knudsen (2001), or Chiuso and Picci (2004e). Furthermore, a great variety
of methods ranging from the identification in the frequency domain (Akçay, 2011; Hinnen,
Verhaegen, and Doelman, 2005; McKelvey, Akçay, and Ljung, 1996; van Overschee, De Moor,
et al., 1997), over continuous time identification, e.g., D. Huang and Katayama (2004) and
Ohta (2011), to methods for linear parameter-varying (LPV) systems (Favoreel, De Moor,
and van Overschee, 1999; van Wingerden and Verhaegen, 2009; Verdult and Verhaegen, 2002)
have been proposed over time. Algorithms for the recursive identification are discussed for
exmple in Lovera, Gustafsson, and Verhaegen (2000), Mercère, Bako, and Lecuche (2008),
and Oku and Kimura (1999). Common to all proposed recursive approaches is the fact that
the recursive identification is approached from an algorithmic standpoint without taking the
underlying methodological concept of subspace identification into account. That is pronoun-

2MIMO/Multivariable output-error state-space model identification
3Numerical algorithms for subspace state-space system identification
4Canonical correlation analysis
5Canonical variate analysis
6Subspace identification method via principal component analysis
7Parsimonious subspace identification, see Qin, Lin, and Ljung (2005), with innovation estimation
8State-space ARX
9Predictor-based subspace identification
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ced by the fact that the basic method which is used within all recursive algorithms is MOESP.
This results in recursions which are not based on the previous model or entities equal to the
model, like state estimates, but on intermediate data of the identification process.

Due to the rigid theoretical framework of subspace identification, there are only a limit
number of genuine methods, which are covered by the mentioned early papers. In later papers,
the focus switched increasingly to implementational issues and the discussion of different
algorithms for existing methods, e.g., the LPV method of van Wingerden and Verhaegen
(2009) is a LPV version of the PBSID method, or the nuclear norm methods proposed in Sugie,
Inoue, and Maruta (2017) and Verhaegen and Hansson (2014, 2016) are implementations of
the ORT approach and the PBSID method. These papers do hence not contribute from the
standpoint of methods, as the core can be traced back to already given method. For this
reason, such papers are not mentioned.

The theoretical framework of subspace identification evolves from the stochastic realization
theory, which also contributes to the fact that the input and the output of a system are
considered to be stochastic processes. A discussion of subspace identification within this
framework is made in Katayama (2005), which also covers the ORT approach and the CCA
method. An advanced and exhaustive discussion of the fundamentals is given in Lindquist
and Picci (2015). In this framework, the procedures of subspace identification are described
in terms of data spaces, which carry the information presented by stochastic processes, i.e.,
the input and output of a system. As, hence, any ties to a generic state-space model are cut,
the results are given also in terms of subspaces of these data spaces and not in terms of a
particular data vector, i.e., not in terms of a basis of these subspaces. In fact, the identification
procedure turns into a question of extracting a certain subspace – called predictor space –
within an ambient data space. As outlined at the beginning of Lindquist and Picci (1996b),
this predictor space is equal to the model in terms of the contained information. This rationale
can be extended as to interpret this subspace as an entity equal to the parameter vector θ
of the classical identification. This framework for subspace identification, for obvious reasons
called coordinate-free framework, will be heavily used in this thesis, as it constitutes a firm
basis for the questions to be addressed.

1.2 Object of research

The object of research is recursive subspace identification. Although motivated by a purely
practical aspect – identification of large industrial processes, like the Tennessee Eastman
Process (see Appendix A) – the considerations and research eventually led to a theoretical
approach to the problem. This approach is fundamentally different from the previously
proposed algorithms, as those algorithms are not derived against the background of the
coordinate-free framework, which however will be used here. A more in-depth discussion of
the problems and the proposed approach is made in Chapter 3, which in turn can only be
comprehensively discussed once the review of subspace identification of Chapter 2 is given.
This structure is needed, as the idea does not only result in an approach to recursive subspace
identification but also in some modification of existing methods.
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1.2.1 Problems and motivation

The motivation of the work results from the question regarding the identification of realistic
systems of industrial scale, like chemical plants or rolling mills. In terms of such systems, the
identification methods have to cope with the following three challenges:

1. Identification of multi-variable systems. In this context, the number of inputs and
outputs can surpass 5 each. For example, the basic configuration of the Tennessee
Eastman Process features 12 inputs and 22 outputs. This dimension is common and
quite often even surpassed. Depending on the intended use of the model, either a
subsystem consisting of certain input-output combinations or, in terms of the inputs
and outputs, the whole system is to be identified.

2. Identification of nonlinear systems. The internal physical and chemical principles of the
process are given by nonlinear relations10. With increasing dimensionality of the pro-
cess, this becomes also increasingly pronounced. In this context, either an identification
of a nonlinear model is required if the whole system behavior is to be covered, or an
identification of a linear model is required if only a limited operating range is needed.
In terms of the latter case, the methods are however required to yield a sufficiently good
linear approximation of the actual nonlinear behavior in the proximity of the operating
point.

3. Identification of systems subjected to disturbances. These disturbances stem either
from environmental influences, influences of upstream process units, the feedback from
downstream process units, or internal disturbances. These disturbances, which are
commonly modeled by arbitrary colored-noise sequences, need to be rejected if only the
deterministic system behavior is to be modeled.

Whereas the first point and third point are problems which are easy to overcome by any
method which includes the ORT approach, a problem defining question arises from the second
point. Although LPV methods address the identification of dynamically nonlinear systems,
the numerical load to perform such identifications tend to approach an amount too large to
handle, if the system becomes multi-variable (in the range mentioned in the first point).

However, the usual operation of such industrial systems, where this becomes a problem, is
characterized by

• infrequent changes of operating points, i.e., large industrial plants are usually operated
in a full-continuous manner in which the operating points often remain the same over
weeks and months,

• slow transition rates, i.e., the change between operating points is a slow process and
might take hours, and

• sufficiently accurate approximations of local behavior by MIMO LTI models, i.e., as
the systems’ nonlinearities are of dynamic nature, small deviations from the operating
point will only show a weak nonlinear behavior.

The actual nonlinear behavior of the plants shows itself mostly in terms of the difference
between the dynamic behavior of the operating points. Taking these three points into consi-
deration, an identification using LPV models might be an unnecessary effort if an LTI model
describes the plant behavior in the proximity of an operating point sufficiently good. This

10Which are, technically speaking, again just models of observations of relations between physical and chemical
values.
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Figure 1.2: Trajectory of plant operating points and representation of possible operating
points by a LPV model; the plant trajectory shown in the middle diagram follows
from the input trajectories exemplified in the top diagramy whereas the gray plant
trajectories can additionally represented by a LPV model, which is governed by
the parameter vector shown in the bottom diagram (the black parameter vector
represents the actual plant trajectory)

idea is illustrated in Figure 1.2. The upper diagram shows the trajectories of the inputs,
the middle diagram shows the trajectory of the system operating point, and the lower dia-
gram shows three possible trajectories of the parameter vector of a LPV model. The actual
progression of the operating point of the plant, which is governed by the input, is given by
the black operating-point trajectory and the symbolization of the plant during the phase
of stationarity. The remaining gray trajectories show possible alternative trajectories of a
LPV model of the plant, which is governed by the inputs and the parameter vector. The
respective parameter-vector trajectories are given in the lower diagram by the gray curves.
A LPV model covers hence a much larger range of possible models for the operating points
than actually needed at any time during the plant operation. Another problem which should
be taken into consideration is aging. Even if the LPV identification is carried out exactly
at the present time, the plant behavior changes over the time so that the operating point
defined by an input-parameter-vector set might later not conform anymore with the actual
operating point. If however a LTI model is used, only the momentary, actual operating point
is represented. This model is then updated before or once the next operating point is reached,
i.e., the actual progression of the operating point of a plant needs to be traced.
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This rationale of adaptive modeling leads to recursive identification and in particular to
recursive subspace identification. From the standpoint of updating a model, a recursive
procedure as done in terms of classical methods, where the actual parameter vector θ is
updated, see Chapter 11 in Ljung (2009, pp. 361–382), is preferred, as the model is directly
updated in a manner

Mt0 + Z [t0,t1] → Mt1 , (1.5)

where Z [t0,t1] denotes the intermediate data gathered in the interval [t0, t1]. In terms of
subspace identification, this is equal to an update of the system matrices, or in terms of the
coordinate-free framework, to an update of the aforementioned predictor space. Following
this idea, recursive subspace identification is approached from the methodological point of
view and not as done before from the algorithmic point of view.

1.2.2 Practical impact

A recursive update of much simpler LTI models circumvents the complex and time consuming
identification of dynamically nonlinear models. Furthermore, the recursive update does not
require a complete re-identification of the system as the data from previous identifications,
such as system matrices or the predictor space of the coordinate-free framework, already
establishes a data basis. Using a recursive approach, the new model of the plant can be
determined while the system itself is transfered into the new operating point. That is, by the
time the new operating point is reached, the model of this operating point is also given.

This leads to an easy-to-use approach to the identification of large plants, which might lead
to a more frequent use of identification. This in turn facilitates the use of model-based
process monitoring approaches (e.g., Ding (2013), which has the same basis as subspace
identification) or control performance monitoring approaches (e.g., Jelali (2013), where the
determination of a model is a crucial step for the definition of the performance indices). Both
improved process monitoring and improved control performance monitoring result in better
plant operation and reduced loss of material and wear of the plant11.

1.2.3 Proposed theoretical method

In terms of the principle given by (1.5), the recursive approach might be done by a simple
iteration of the state equation of (1.3) based on the model data of Mt0 , which also includes
the state estimate x̂(t0). In this case, the recursion would be given by

x̂(t1) = x̂(t0) +
t1−1∑
k=t0

Ât−1−kB̂u(k) +
t1−1∑
k=t0

Ât−1−kK̂e(k)

= x̂(t0) +
t1−1∑
k=t0

(Â − K̂Ĉ)t−1−k(B̂ − K̂D̂)u(k) +
t1−1∑
k=t0

(Â − K̂Ĉ)t−1−kK̂y(k) ,

(1.6)

where the matrices Â, B̂, Ĉ, D̂, and K̂ denote the estimates of the system Σ = (A, B, C, D, K).
However, the derivation of the recursive approach will be mainly concerned with the question
regarding reachability and observability of the resulting model. In a coordinate-based frame-

11And hence, of course, more profit as the loss of money on plant maintenance is reduced. This is however
not the focus or the motivation of this thesis.
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work as in (1.6), this can only be achieved by imposing restrictions or assumptions on the
system, i.e., on Σ = (A, B, C, D, K). Furthermore, the analysis is made in some fixed basis of
x̂(t), for which reason it is not clear whether the findings hold also for other bases or if x̂(t) is
not minimal. Thus, a coordinate-based approach makes the derivation of a recursive scheme
and the analysis of the properties unnecessary complicated. Taking furthermore time-varying
systems into account, the question with respect to taking changes of the system within the
interval [t0, t1) in (1.6) into consideration appears.

As mentioned before, the coordinate-free framework cuts the ties with a model and the
hence problems arising from the use of a generic model disappear as well. This framework
facilitates the discussion regarding reachability and observability to be made solely in terms
of the predictor space (essentially, a space of the state x(t)) and the data spaces of the input
and the output. Therefore, the approach to recursive subspace identification will be based on
the coordinate-free framework. The predictor space X +/−

t (see definition in Section 2.4) is the
respective model entity within this framework as it represents the same information as the
system matrices or θ. Thus, the approach to recursive subspace identification is essentially
found if a predictor space of time t1 can be calculated based on a previously determined
predictor space X +/−

t0 , or if the predictor space X +/−
t0 can be adapted by the intermediate

data as
X +/−

t0 + Z [t0,t1] → X +/−
t1 . (1.7)

Such an approach also conforms with the recursive methods of the classical identification,
where the parameter vector is updated based on a previous parameter vector θ and the
intermediate data.

In terms of application, some of the assumptions imposed for the theoretical derivation of the
approach need to be relaxed later on. This concerns mainly the stationarity of the input and
output processes. However, the general behavior of the approach remains as the relaxations
will not effect the quintessence of the approach. That is, it will facilitate the tracking of
changes within a process. The time-varying behavior, as which a nonlinear behavior can also
be understood, will only introduce minor deviations from the theoretically derived behavior
of the approach. These deviations are however minor in comparison to deviations introduced
by disturbances (see, e.g., Figure 6.5, Figure 6.6, Figure 6.7, and Figure 6.8, in Section 6.4.2).

1.2.4 Main contributions of the work

The pursuit of a methodological approach for recursive subspace identification resulted in the
following main contributions:

• Derivation of a general approach for recursive subspace identification using the coordinate-
free framework
The description of a recursive scheme for subspace identification is made based on
coordinate-free framework and hence approaches the problem from the underlying prin-
ciples of subspace identification and not in terms of the numerical implementation of
one subspace method. The formulation of the recursion follows from the properties of
the predictor space which can be updated by new data as it evolves through time. This
yields a general approach for recursive subspace identification, which can be implemen-
ted in terms of every existing subspace method.

• Derivation of an identification algorithm for the reliable extraction of the deterministic
plant behavior from disturbance-affected output data under open-loop conditions
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By redefining the procedure of the ORT approach, a combination of this approach with
the CCA method (or N4SID method) is made feasible. The resulting combined algo-
rithm of CCA and ORT improves the previously given algorithm of the ORT approach
based on the MOESP method. As illustrated by a case study using the Tennessee Eas-
tman Process, the combined algorithm facilitates the correct estimation of the plant
model even if the output is subjected to arbitrarily colored noise disturbances of high
magnitude. This algorithm can be hence applied in an industrial environment.

• Derivation of an identification algorithm for the direct calculation of the predictor
space/state under closed-loop conditions
The algorithm directly implements the theoretically derived procedure of the PBSID
method and omits the pre-estimation of the VARX model or an involved least-squares
estimation, which are common for the implementations of the methods of the direct
approach of closed-loop identification. It also simplifies the integration of the recursive
scheme in conjunction with the PBISD method.

Related to these contributions are 3 publications and a paper in preparation. In Bathelt and
Jelali, 2014, the problem of identifying a realistic process model is presented. The actually
poor results of this study led to the derivation of the open-loop identification algorithm in
Bathelt, Söffker, and Jelali, 2015. Some of the results regarding recursive subspace identifi-
cation based on the coordinate-free framework are discussed in Bathelt, Söffker, and Jelali,
2017, 2018.

1.3 Outline

This thesis covers the work done to achieve the goal set in the previous section. It thus
presents a new way to recursive subspace identification and also some new algorithms for
existing methods.

First, in Chapter 2, the field of subspace system identification is reviewed. This review
contains the introduction of the coordinate-free framework but also of a number of methods.
This method review will lead on the one hand to a thorough understanding of the motivation
for the new recursive approach and on the other hand is needed to understand the modification
of the existing algorithms and the respective motivation.

In Chapter 3, the actual challenges resulting from the task of identifying industrial processes
are identified and the thorough motivation of the work is given. From this motivation, the
two main tasks – derivation of the recursive approach and modifications of the algorithms of
certain methods – and their conceptual outlines are deduced. It also serves as the end-point
of the first part containing the review and motivation and as the lead-in to the second part
covering the actual work.

Chapter 4 contains the smaller contribution of the thesis. Here, algorithms of two subspace
methods are described. The first algorithm is a modification of the CCA method (Katayama
and Picci, 1999), which then will be able to determine the deterministic sub-model P (z, θ)
even if y is a sum of a deterministic and stochastic component, i.e, if the system’s output is
subjected to disturbances. This is made possible by integrating the idea of the orthogonal
decomposition of the ORT approach by Picci and Katayama (1996b) into the core algorithm
of the CCA method. Whereas the first algorithm is an open-loop algorithm, the second is an
algorithm for the PBSID method (Chiuso and Picci, 2005). This new algorithm facilitates a
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recursive use of the PBSID method, a trait which is not possible given the existing algorithms.
The derivations of both algorithms is accompanied by respective examples.

To round the derivations of identification algorithms off, an identification study using the
realistic process model of the Tennessee Eastman Process is given in Chapter 5. This study
showcases the improved results of the combined algorithm of the CCA method and ORT
approach as well as the capability of the new algorithm of the PBSID method to yield the
same results as the existing algorithms of the PBSID method while dealing with realistic
processes.

The main theoretical contribution of the thesis is presented in Chapter 6. Here, the theoretical
framework for recursive subspace identification is derived. The derived approach is not a
method but a general methodology which can be transferred to any method of subspace
identification. In addition to the derivation, which also covers the modeling of stochastic
process, i.e., the identification of time series, practical aspects are addressed. The most
important aspect is the explanation of an approach which increases the capability of tracking
of fast changing systems. The tracking capability as of now is limited by the representation
of stochastic processes by data matrices. The second aspect describes a basic concept to keep
the basis of the model the same, as it is not possible to guarantee that the resulting model
basis after a new recursion cycle is the same as in the previous cycle.

The thesis closes with a summary and suggestions for future work resulting from the work
covered in this thesis.

Regarding theorems, lemmas, and propositions adopted from the literature, the proofs of such
are not included, if those are – except for the wording – directly taken out of the respective
references. The same holds also for theorems, lemmas, and propositions which are a summary
of more than one theorem, lemma, or proposition.
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This chapter provides the introduction to the field of subspace identification. Here, the
necessary basic principles and concepts are outlined. The main focus is on the introduction
of the coordinate-free framework of Chiuso and Picci (2003) and Lindquist and Picci (1996b,
2015), which the procedures of subspace identification naturally appear from. The method
review is limited to the basic facts and methods touched upon in the thesis. Proofs of lemmas
and theorems are omitted and can be found in the respective references.

The first two sections of the chapter introduce the basics. The procedure of an identifica-
tion is briefly described in Section 2.1, which also motivates certain aspects of the following
review. Basic definitions of system representations, data spaces and projections are given
in Section 2.2. The discussion of the data spaces shows the one-to-one relationship between
spaces of stochastic variables and spaces of numerical matrices, which in turn clarifies the
easy implementation of subspace method as the theoretical derivations can be given direct
numerical implementation. The discussion of the projections is intended to shed some light
on the actual meaning of the projection as minimum variance estimations. A fact which will
be later referred to when the problem of order estimation is discussed for the case study based
on the Tennessee Eastman Process. The basic identification problem and related assumptions
of subspace identification are formulated in Section 2.3. Section 2.4 introduces the necessary
foundation of the coordinate-free framework referred to during the derivation of the recursive
scheme. The following sections provide the method review. This review is limited to the as-
pects of subspace identification which are necessary for the understanding of the motivation
of the work, i.e., to understand the problems of the given methods and algorithms. This
review is also the basis for the derivation of the algorithms in Chapter 4, or is referred to in
later explanations. First, the basic (coordinate-based) equations are introduced in Section
2.5. Then, open-loop and closed-loop methods will be summarized in Section 2.6 and Section
2.7. The following Section 2.8 and Section 2.9 will briefly summarize the identification of
systems by linear parameter-varying models and review previously disclosed methods and
approaches related to recursive subspace identification.

2.1 General identification procedure

In order to identify a model of the dynamic behavior of a plant, i.e., the dynamic behavior
of the underlying process, the actual identification procedure consists of several steps. This
procedure is illustrated in Figure 2.1 and given a more detailed explanation in Ljung (2009,
pp. 13–15). First, the inputs and outputs of the process, which will be identified, need
to be specified. In this context, inputs and outputs do not refer to the physical process
inputs and outputs (in Figure 2.1 marked by arrows) but to system-theoretical inputs and
outputs like valves and measurement points. Then follows the data acquisition. During this
phase, the process is excited by the specified inputs, and the respective plant response is
recorded. This input-output data set is then used for the actual identification. In terms
of subspace identification, this identification step consists of the calculation of the model



14 2 Review of subspace identification

M

Identification

(LTI) model of process

Response of process
on excitation

through
process outputs

Excitation of process
through

process inputs

Figure 2.1: Schematic diagram of the identification procedure

and the validation of the model. If the validation of calculated model meets the specified
requirements, the model can be used for the intended application, e.g., controller design
or plant monitoring. An important aspect, which essentially influences every step, is the
existence of a priori knowledge regarding the process. This can influence the identification
in terms of the generated excitation signal, e.g., amplitudes of the signal or signal type, the
choice of the model, e.g., LTI model or LPV model, or the way the identification is done, i.e.,
recursive or non-recursive identification.

This brief explanation already shows, that there are several aspects to be taken into ac-
count when dealing with system identification or deriving new algorithms, methods, or even
approach to certain problems like recursive subspace identification. These aspects concern
the components of the methods, like data representation for the derivation, the fundamental
assumption, which the derivations are made under, or the basic ideas and procedures of the
methods itself. These points will be reviewed in the following to raise the awareness of the
problems solved by the algorithms and approach to recursive identification proposed later in
this thesis.

2.2 Basic components of identification methods

All methods and related assumptions for the derivation and the use of these methods are
based on some common components. These fundamental components will be summarized in
this section. First, the different representations of a system or a model in terms of state-space
descriptions are discussed. Secondly, the data spaces are introduced. The important point in
terms of the data spaces is the fact that the definition as spaces of stochastic processes can
be given an equivalent definition based on the sample functions of these stochastic proces-
ses. Thirdly, the projections used to decompose the data and hence identify the system are
explained. The notation is adopted from Katayama (2005).
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2.2.1 System representations

The first problem to be addressed by every identification method is with respect to the repre-
sentation of the process dynamics, i.e., the model structure. As far as subspace identification
for linear time-invariant models is concerned, the structure is given by a generic state-space
representation. As outlined in Qin (2006), any LTI system can be represented by three dif-
ferent but equivalent sets of state-space equations. The basic representation is the process
form, which is given by

xp(t + 1) = Axp(t) + Bu(t) + w(t) , (2.1a)
y(t) = Cxp(t) + Du(t) + v(t) , (2.1b)

where u ∈ Rm, y ∈ Rp, xp ∈ Rn, w ∈ Rn, and v ∈ Rp denote the input, output, state as well
as the state noise and measurement noise. In addition to the white-noise processes w and
v, the input, output, and state are also assumed to be stationary zero-mean second-order
Gaussian processes1. That is,

E{y(t)} = 0 , E{y(t)yT(s)} = Λyy(t, s) < ∞

are fulfilled, where by reason of stationarity Λyy furthermore depends only on the difference
between t and s, i.e., (Katayama, 2005, p. 77)

Λyy(t, s) = Λyy(t − s, 0) = Λyy(t − s) = Λyy(l) = E{y(t + l)yT(t)} . (2.2)

The restriction to Gaussian processes simplifies the following derivations as conditions, which
otherwise would appear, can be omitted. Under this restriction, the innovation process
e ∈ Rp, defined by

e(t) = y(t) − E{y(t) | u(s), y(s − 1); s ≤ t} , (2.3)

is also Gaussian and automatically fulfills certain assumption (cf. Hannan and Deistler, 2012
or Chiuso and Picci, 2004e, pp. 278–279). The innovation process is the causal prediction
error or conditional innovation of y given u up to the present time t (Picci and Katayama,
1996b) and combines the influences of w and v. Based on the Kalman filter theory, the system
can be represented by using this innovation process in terms of the innovation form (see, e.g.,
Katayama, 2005, Chapter 5)

xi(t + 1) = Axi(t) + Bu(t) + Ke(t) , (2.4a)
y(t) = Cxi(t) + Du(t) + e(t) . (2.4b)

The model of the system is usually given in terms of this innovation form. Note that the
state xi(t) of the innovation form is not equal to the state xp(t) of the process form, although
the output is the same (see, e.g., Katayama, 2005, p. 121). If this, xp(t) = xi(t) , would hold
true, the innovation could be defined by

e(t) = y(t) − Cxp(t) − Du(t) = v(t) ,

1In this case, the entities may more precisely be denoted as stochastic processes u : T ×Ω → Rm, y : T ×Ω →
Rp, x : T × Ω → Rn, w : T × Ω → Rn, and v : T × Ω → Rp, where Ω and T denote the sample space and
the index set (time). In terms of the identification problem at hand, the index set contains discrete time
points, i.e., T 6= R but T ⊂ R, where it holds with proper inclusion.
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which would erroneously state equivalence between v and e. Based on the innovation form
of the system representations, the innovation process is also given by

e(t) = y(t) − Cxi(t) − Du(t) ,

which yields the predictor form

xi(t + 1) = AKxi(t) + BKu(t) + Ky(t) , (2.5a)
y(t) = Cxi(t) + Du(t) + e(t) , (2.5b)

where
AK = A − KC , BK = B − KD .

This representation is used to define the state in terms of the past observations of the output
y and the input u.

2.2.2 Data spaces and its numerical counterparts

The second problem is the representation and ordering of the recorded data. This varies
depending on the different identification approaches, e.g., subspace identification or classical
identification. The derivation of the methods is simplified by considering the plant input
and output to be stochastic processes and the recorded data to be random variables. It
will however follow that there is a rather simple one-to-one relationship between the actual
numerical data and the stochastic processes as well as random variables.

In order to identify the system, the stochastic processes u and y are divided around some
arbitrarily-chosen “present” time t into a future and past segment. The present time t belongs
by definition to the future segment. The lengths of the segments, i.e., the past and future
horizons, will be denoted by kp (past) and kf (future) or by k if both horizons are assumed
to have the same length. This assumption will be made throughout the following discussions,
unless the horizon lengths are explicitly denoted by kp and kf . The initial time point will be
denoted by t0 = t−kp. In terms of the theoretical discussion of the methods, t0 → −∞ will be
assumed and k only denotes the (finite) length of the future horizon. Data vectors containing
the respective past and future random variables of the processes y and u are defined and
denoted by

y−
t =



y(t0)
...

y(t − 2)

y(t − 1)


, y+

t =



y(t)

y(t + 1)
...

y(t + k − 1)


; (2.6)

u−
t , u+

t , and e+
t are defined similarly. Using

p(t) =

u(t)

y(t)

 , (2.7)

the joint process (y, u) is defined. The past of the joint process is formed according to (2.6)
and denoted by p−

t . If the length of these data vectors deviates from the length of the actual
horizons or the length of the horizon is emphasized, the respective interval is explicitly given
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by a subscript. The data vectors are then for example denoted by y+
[t,t+k). Notations like

y−
t+1 or y+

t+1 are the logical extensions of the construction pattern of the data vectors if the
“present” time is t + 1.

Based on these data vectors, the respective data spaces are defined (see, e.g., Katayama,
2005). Taking for example a finite number of output random variables y(i), i = 1, · · · N , the
set

H =
{

a +
N∑

k=1
Aky(k)

∣∣∣∣∣ a ∈ Rp, Ak ∈ Rp×p

}
(2.8)

of linear combinations can be formed. Defining furthermore the inner product

〈a, b〉H = E{aTb} = trace
(
E{abT}

)
, (2.9)

where a, b ∈ H, the norm
‖a‖H =

√
E{aTa} =

√
E{‖a‖2

2} (2.10)

is induced. By completing H with this inner product and this norm, it becomes a finite-
dimensional Hilbert space – a finite-dimensional closed vector space with inner product. The
construction of a space Y spanned by an infinite number of elements of y is similar. Equal
to (2.8), the set of all finite linear combinations is constructed and an inner product and
its induced norm are defined. Then the set of elements Y is completed by the limits of all
Cauchy sequences constructed from elements of Y. Thus, Y becomes an infinite-dimensional
closed Hilbert space. This construction is denoted by

Y = span{· · · , y(t − 1), y(t), y(t + 1), · · · } . (2.11)

As only zero-mean random variables are considered, a constant element a as in (2.8) is omitted
for the construction of Y. The operator span{·} likewise defines a finite-dimensional closed
Hilbert space, if the number of the listed elements is finite.

Thus, the spaces of the inputs and outputs are given by

Y = span{· · · , y(t − 1), y(t), y(t + 1), · · · } ,

U = span{· · · , u(t − 1), u(t), u(t + 1), · · · } ,
(2.12)

and can be interpreted as structures carrying all information contained in the processes
(see discussion following Lemma 2.2). The spaces spanned by the past or the future of the
respective processes are denoted by

Y−
t = span{· · · , y(t − 2), y(t − 1)} ,

Y+
t = span{y(t), y(t + 1), · · · } ;

(2.13)

with equal definitions for U−
t and U+

t . These past and future spaces are hence spanned by
the elements of u−

t , u+
t , y−

t , and y+
t , which can also be written as

Y−
t = span{y−

t } , Y+
t = span{y+

t } .

The space of the joint past P−
t is subsequently spanned by p−

t . Furthermore, spaces spanned
by single random variables, e.g., y(t) or u(t), are denoted by Yt or Ut. The superscripts − or
+ denoting past or future are dropped and the subscript denotes the time point of the space.
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Similar notations are used for space spanned by elements of a certain interval, e.g., [t, t + k).
Those spaces are denoted by

Y−
[t,t+k) = span{y(t), y(t + 1), · · · , y(t + k − 1)} , or

Y+
[t,t+k) = span{y(t), y(t + 1), · · · , y(t + k − 1)} .

(2.14)

The assignment to past or future depends on the context these spaces are used in.

The joint space of two vector spaces A and B is denoted by the vector sum

A ∨ B . (2.15)

If those two spaces do not share elements except for 0, i.e., A ∩ B = {0}, the joint space can
also be denoted by the direct vector sum

A + B . (2.16)

If furthermore A ⊥ B, the joint space is given by the orthogonal direct vector sum

A ⊕ B . (2.17)

The joint past P−
t is hence also defined by a vector sum based on Y−

t and U−
t . It is given by

P−
t = span{p−

t } = Y−
t ∨ U−

t . (2.18)

Regarding the numerical representations of the random variables y(t) and u(t), the concept
of tail matrices as discussed in Lindquist and Picci (2015, pp. 508–513) is used. This concept
is based on the assumed stationarity of y and u and the ergodic theorem, see, e.g., Katayama
(2005) and Rozanov and Feinstein (1967). Hence, the tail matrices

uN(t) =
[
u(t) u(t + 1) · · · u(t + N − 1)

]
∧= u(t) ,

yN(t) =
[
y(t) y(t + 1) · · · y(t + N − 1)

]
∧= y(t) ,

(2.19)

where u(i) and y(i), i = t, t + 1, · · · , t + N − 1 denote the numerical values of a sample
function of the processes, are representations of y(t) and u(t). Consequently,

Y−
t =

[
yT

N(t0) · · · yT
N(t − 2) yT

N(t − 1)
]T ∧= y−

t ,

Y+
t =

[
yT

N(t) yT
N(t + 1) · · · yT

N(t + k − 1)
]T ∧= y+

t

(2.20)

correspond to y−
t and y+

t ; the representations of u−
t and u+

t are formed likewise. Note the
different notations for stochastic values, e.g., y(t) ∈ L2(Ω, A, P ), and elements of sample
functions, e.g., y(t) ∈ Rm, or tail matrices, e.g., yN(t) ∈ Rm×N . Governed by the ergodic
theorem, an estimation of ensemble covariance of y(t + l) and y(t) is given in terms of the
sample covariance by

Λ̂yy(l) = 1
N

N−1∑
k=0

y(t + l + k)yT(t + k) = 1
N

yN(t + l)yT
N(t) . (2.21)
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Herein, the meaning of the tail matrices as representations of y(t + l) and y(t) becomes
evident. For N → ∞ the sample covariance converges to the ensemble covariance. Hence,
the respective numerical equivalents of the data spaces Y−

t or Y+
t are then given by the row

spaces of the above defined matrices Y−
t or Y+

t . The respective inner product is given by

〈yN(t + l), yN(t)〉 = trace
( 1

N
yN(t + l)yT

N(t)
)

. (2.22)

The connection between the spaces Y−
t or Y+

t with ImRow{Y−
t } or ImRow{Y+

t } is established
by means of the ensemble covariance (cf. (2.9)) and the sample covariance. The spaces
spanned by y−

t and y+
t and the row spaces of Y−

t and Y+
t are isometrically isomorph, if

N → ∞ (Lindquist and Picci, 1996a and Lindquist and Picci, 2015, p. 512).

2.2.3 Projections

Y

Y⊥

0

h

h̃

Ê{h | Y}

h
−

Ê
{h

|Y
}

Y

U

0

h

Ê{h|Y ∨ U}

Ê||U {h | Y}

Ê ||Y
{h

| U}

Figure 2.2: Illustrations of the orthogonal projection (left) and the oblique (or parallel) pro-
jection (right) (Katayama, 2005)

Operations which play a major role in terms the data decomposition necessary for the iden-
tification are the orthogonal and oblique projections. For the discussion of these projections,
let

H = U−
t ∨ U+

t ∨ Y−
t ∨ Y+

t

be the ambient space and

Y = span{y(i)|i = 1, · · · N} ⊂ H

an arbitrary subspace of H.

Lemma 2.1. (Katayama, 2005) Let H and Y be defined as above and h̃ be an element in H.
Then h̃ is orthogonal to Y if and only if the conditions

E{h̃} = 0 , E{h̃yT(i)} = 0 , i = 1, ..., N (2.23)

hold.

The conditions of this lemma are equal to the conditions for the solution of the least-squares
problem

min
ŷ∈Y

‖h − ŷ‖2
H , (2.24)
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where h ∈ H. The solution is obviously given if h − ŷ ⊥ Y, i.e., if the remainder h̃ = h − ŷ
of the estimation of h by ŷ is orthogonal to ŷ. In terms of the inner product as defined by
(2.9), this would be expressed by

〈h̃, ŷ〉H = trace
(
E{h̃ŷT}

)
= 0 , (2.25)

which is equal to the second condition of (2.23). As h̃ minimizes (2.24) and by (2.10),

‖h − ŷ‖2
H = ‖h̃‖2

H = trace
(
E
{

h̃h̃T
})

(2.26)

is the smallest achievable value, and the respective estimation of ŷ yields hence a minimum
variance estimate. The calculation of ŷ is given by an orthogonal projection of h onto Y.

Lemma 2.2. (Katayama, 2005) The orthogonal projection of h onto Y = span{y(i)|i =
1, · · · N}, denoted by Ê{h|Y}, is defined by the conditional expectation as

Ê{h|Y} = E{h|y(i), i = 1, · · · N} = ΣhyΣ−1
yy y , (2.27)

where
y =

[
yT(1) · · · yT(N)

]T
.

Strictly mathematically written, the conditional expectation of (2.27) is given by

E{h|y(i), i = 1, · · · N} = E{a|Fy} ,

where Fy = σ{y(i); i = 1, · · · , N} is the σ-algebra generated by y(i), i = 1, · · · , N . This
σ-algebra contains all information conveyed by y(i), i = 1, · · · , N (Katayama, 2005, p. 114).
Thus, (2.27) further implies the aforementioned interpretation of the data spaces as structures
holding all information contained in the stochastic processes. The respective orthogonal
projection onto the orthogonal complement Y⊥ is

Ê
{

h
∣∣∣Y⊥

}
= h − Ê {h |Y } = h − ΣhyΣ−1

yy y . (2.28)

In left part of Figure 2.2, these two projections are shown. In terms of spaces, the orthogonal
complement of Y in H is also expressed by

H 	 Y = H − Ê{H | Y} = Y⊥ . (2.29)

This is the inverse operation of the orthogonal direct vector sum

H = Y ⊕ Y⊥ .

However, the operator 	 does not commute, i.e.,

H 	 Y 6= Y 	 H .

Equal to Y, let a space U be given by

U = span{u(k)|k = 1, · · · M} ⊂ H .
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Based on the orthogonal projection, the more general oblique projection is defined according
to the following lemma.

Lemma 2.3. (Katayama, 2005) Given two spaces Y = span{y(i)|i = 1, · · · N} and U =
span{u(k)|k = 1, · · · M} (with U ∩ Y = {0}2). Then

Ê{h|Y ∨ U} = Ê{h|Y + U} = Ê||U{h|Y} + Ê||Y{h|U} , (2.30)

where
Ê||U{h|Y} = Σhy|uΣ−1

yy|uy , Ê||Y{h|U} = Σhu|yΣ−1
uu|yu (2.31)

are called oblique projection of h onto Y along U and oblique projection of h onto U along Y.
The matrices Σhy|u, Σyy|u, Σhu|y, and Σuu|y are the conditional covariance matrices defined
by

Σhy|u = E

{
Ê
{

h
∣∣∣U⊥

}
Ê
{

y
∣∣∣U⊥

}T
}

= Σhy − ΣhuΣ−1
uu Σuy ,

Σyy|u = E

{
Ê
{

y
∣∣∣U⊥

}
Ê
{

y
∣∣∣U⊥

}T
}

= Σyy − ΣyuΣ−1
uu Σuy ,

Σhu|y = E

{
Ê
{

h
∣∣∣Y⊥

}
Ê
{

u
∣∣∣Y⊥

}T
}

= Σhu − ΣhyΣ−1
yy Σyu ,

Σuu|y = E

{
Ê
{

u
∣∣∣Y⊥

}
Ê
{

u
∣∣∣Y⊥

}T
}

= Σuu − ΣuyΣ−1
yy Σyu ,

(2.32)

where
y =

[
yT(1) · · · yT(N)

]T
, u =

[
uT(1) · · · uT(M)

]T
.

If the spaces U and Y are orthogonal to each other the oblique projections of (2.31) become
orthogonal projections. This follows, as Σyu = 0 in the case of orthogonality. The illustration
of the oblique projections in the right part of Figure 2.2 shows the decomposition of one
orthogonal projection onto the joint space of Y and U into two oblique projections onto the
respective spaces Y and U . In fact, the condition U ∩ Y = {0} becomes also evident. In
terms of identifications, the decomposition of the future outputs into a component given by
the past inputs and outputs (cf. predictor representation of a system or Kalman filter) and
a component given by the future inputs follows from the decomposition of an orthogonal
projection into two oblique projections. From the results of these projections, the states and
system matrices are subsequently estimated.

Based on the above defined orthogonal projection, the concept of conditional orthogonality
will be introduced. This property of two vectors or spaces with respect to a third is crucial
for the definition of a space, which will contain the state estimate. In Figure 2.3, the idea of
conditional orthogonality is illustrated.

Definition 2.1. (Katayama, 2005) Suppose that ŷ ∈ Y and û ∈ U satisfy the orthogonality
condition

E

{(
ŷ − Ê {ŷ|Z}

) (
û − Ê {û|Z}

)T
}

= 0 , Z ⊂ H . (2.33)

2For this choice of spaces, the condition is fulfilled if for all k the condition k > i holds, and the system
operates in open-loop. That is, there is no causal connection between the y(i) and u(k).
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Y ′

U ′

Z

0

ŷ

û Ê{ŷ | Z⊥}

Ê{û | Z⊥}

Figure 2.3: Conditional orthogonality of two vectors ŷ ∈ Y = Y ′ ∨ Z and û ∈ U = U ′ ∨ Z
given a vector space Z (Katayama, 2005)

Then, ŷ and û are conditionally orthogonal with respect to Z. If this orthogonality condition
furthermore holds for all ŷ ∈ Y and û ∈ U , Y and U are conditionally orthogonal with respect
to Z, which is denoted by

Y ⊥ U|Z . (2.34)

In terms of Figure 2.3, the two spaces are formed as Y = Y ′ ∨ Z and U = U ′ ∨ Z so that

Ê
{

Y
∣∣∣Z⊥

}
= Y ′ ⊥ U ′ = Ê

{
U
∣∣∣Z⊥

}
.

2.3 Assumptions and identification problem

In addition to considering the system to be linear and time-invariant, there are additional
assumptions which set the scope for the derivation and application of identification methods.
These assumptions need to be met in order to accurately identify a system and are given in
the following.

Assumption 2.1. (e.g., Jansson and Wahlberg, 1998; Knudsen, 2001; Qin, 2006)

A1 The eigenvalues of A − KC are strictly inside the unit circle, i.e., the stochastic subsy-
stem is of minimal phase.

A2 The system is minimal, i.e., (A, C) is observable and
(

A,

[
B K

])
is reachable (or

controllable)3.

A3 The innovation process e or the state noise w and measurement noise v are zero-mean,
white-noise processes with bounded second moments, i.e.,4

E{e(t)e(s)} = Σeeδts < ∞ (2.35a)

3This reachability (or controllability) condition allows the identification of Box-Jenkins as well as ARX/AR-
MAX systems, as for the Box-Jenkins case the reachability (or controllability) of (A, B) excludes the
existence of states that are purely driven by the stochastic subsystem (Knudsen, 2001).

4 δts denotes the Kronecker delta defined by

δts =

{
1, t = s

0, t 6= s
.
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E


w(t)

v(t)

 [wT(s) vT(s)
] =

 Q S

ST R

 δts < ∞ (2.35b)

A4 The richness condition
(Y+

t ∨ U+
t ) ∩ (Y−

t ∨ U−
t ) = {0} (2.36)

is fulfilled, which is the same as the assumption that the spectrum of the joint process
(y, u) is bounded away from zero (Lindquist and Picci, 2015, p. 695). This includes
the requirement of a persistently exciting input (see Ljung, 2009), which in this case is
persistently exciting of any required order as

U−
t ∩ U+

t = {0} . (2.37)

This is a general condition necessary for the unique identification of the model parameter
and in particular for subspace identification to accurately decompose the data spaces (see
condition for the decomposition of an orthogonal projection into oblique projections in
Lemma 2.3 and the discussion following that lemma).

A5 In the open-loop case, the input u is orthogonal to the innovation process e or the state
noise w and measurement noise v. In terms of the closed-loop case, this assumption
does not apply.

Regarding the numerical representation of the data spaces, which are then also of finite
dimension, a condition equivalent to (2.37) is given in Moonen, De Moor, et al. (1989).
Taking the finite dimensionality into account,

ImRow(xN(t0)) ∩ ImRow(U−
t ) ∩ ImRow(U+

t ) = {0}

is required to hold. Furthermore, if the input signal has only a finite-order persistence of
excitation, it needs to fulfill certain conditions (which sometimes also depend on the identi-
fication algorithm). These requirements are analyzed in Jansson and Wahlberg (1998), Chui
and Maciejowski (2005) and Willems, Rapisarda, et al. (2005). General requirements as well
as conditions for the horizons as given in Chui and Maciejowski (2005) are summarized (and
simplified) by the following proposition.

Proposition 2.1. (Chui and Maciejowski, 2005) Let the length of the future and past hori-
zons be denoted by kp and kf and the system be stable and reachable. Then, the input signal
must be at least persistently exciting of order kf + kp + n, where

• kp is not smaller than 3 times the order of the system (kp ≥ 3n),

• kf − 1 is not smaller than the system’s observability index.

As analyzed in Chiuso and Picci (2004c) and Chiuso and Picci (2004d), it is also necessary
that the spectrum of the input should be as flat as possible and should not posses zeros that
are equal to the system’s eigenvalues (see Chiuso and Picci, 2004d, Section 4). Furthermore,
the input is required to not exhibit a spectral density smaller than the spectral density of
the stochastic system (Chiuso and Picci, 1999, p. 241). If this requirement is violated the
variance of the results in this frequency range increases (see also Section 3 in Chiuso and
Picci, 2004b).

With these conditions fulfilled, the identification tasks can be formulated as follows.
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Problem 2.1. Given the input-output data {y(t), u(t), t = 0, 1, ..., T} of a system, determine
A, B, C, D, and Σv,w or K, and Σee of the linear time-invariant system given by (2.1) or
(2.4) up to a global similarity transform.

The value of T follows from the definition of the tail matrices as T ≥ kp + kf + N − 2.

2.4 Coordinate-free framework

In this section, the underlying theoretical framework of subspace identification is reviewed
and summarized. This framework was introduced and discussed in Chiuso and Picci (2003)
and Lindquist and Picci (1996b, 2015). Instead of working with a generic model, the identifi-
cation procedure is based on the relations between the above introduced spaces. Due to this
avoidance of a model, which would fix the identification to a certain coordinate system or
basis, this framework is called coordinate-free framework. The goal is to extract a subspace
of the past P−

t containing all information of the past needed for the prediction of the future.
This subspace is hence called predictor space. Once it is extracted from P−

t , the model is
essentially obtained (Akaike, 1974, p. 669, Lindquist and Picci, 1996b). The remainder of
the identification process is then only concerned with the determination of a basis of this
space and the subsequent realization of the system model. The idea of the predictor space,
i.e., some subspace of the past containing the necessary information for prediction, was first
discussed by Akaike in Akaike (1974) for stochastic systems.

These stochastic systems, i.e., systems without exogenous inputs, will be the starting point of
the following discussion, as the fundamental ideas of the definition of the space of the state, or
the state itself, become more evident in this case. Following these introductory explanations,
the discussion moves on to systems with exogenous inputs. In fact, the definition of the
predictor space for systems with exogenous inputs is a mere extension of the results given
for stochastic systems. The difference concerns only the then arising conditional dependency
on the (future) inputs. The summary given in this section is an excerpt of the thorough
discussion of linear stochastic systems in Lindquist and Picci (2015).

2.4.1 Stochastic systems

Let a stochastic system be given by

x(t + 1) = Ax(t) + Bw(t) , (2.38a)
y(t) = Cx(t) + Dw(t) , (2.38b)

where w is a assumed to be a second-order white-noise process with unity variance andB

D


B

D


T

=

 Q S

ST R

 . (2.39)

This stochastic system, in terms of the output also known as time-series model, should be
given a realization in terms of

x(t + 1) = Ax(t) + Ke(t) ,

y(t) = Cx(t) + e(t) .
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This is essentially the special case of the filtering problem of Wiener and Kolmogorov (see,
e.g., Chapter 4.1 in Lindquist and Picci, 2015, pp. 103–110). In terms of the problem at
hand, i.e., finding a causal estimation of a second stochastic process x based on the knowledge
of y, the filtering problem reads5

x̂−(t) := E{x(t) | Fy
t } . (2.41)

As Fy
t = σ{y(t − 1), y(t − 2), · · · } is the σ-algebra generated by the past up to t − 1, i.e.,

the present output y(t) is not included, x̂−(t) is the one-step ahead predictor of x(t). The
respective acausal estimation problem is given by

x̂(t) := E{x(t) | Fy} ,

where Fy
t = σ{· · · , y(t−1), y(t), y(t+1) · · · } is the σ-algebra generated by the entire process

y. The former problem was given a solution by the well-known Kalman filter in Kalman
(1960). This yields two types of models for the process y; the forward innovation model
(based on the above one-step ahead predictor) and the backward innovation model. The
(stationary) forward innovation model (see Katayama, 2005, pp. 128–130 or Lindquist and
Picci, 2015, pp. 175–179) is

x̂−(t + 1) = Ax̂−(t) + Ke−(t) , (2.42a)
y(t) = Cx̂−(t) + e−(t) , (2.42b)

where the innovation is defined by

e−(t) = y(t) − Ê{y(t)|Y−
t } .

The stationary Kalman gain is given by

K =
(
C

T − AΣx̂x̂CT
) (

Λ(0) − CΣx̂x̂CT
)−1

,

where Σx̂x̂ = E{x̂−(t)x̂T
−(t)} satisfies the algebraic Ricatti equation

Σx̂x̂ = AΣx̂x̂AT +
(
C

T − AΣx̂x̂CT
) (

Λ(0) − CΣx̂x̂CT
)−1 (

C − CΣx̂x̂AT
)

and

C = E{y(t)xT(t + 1)} = CΠAT + ST ,

Λ(0) = E{y(t)yT(t)} = CΠCT + R ,

Π = E{x(t)xT(t)} .

5Note that in this context the following two assumptions need to be fulfilled (Lindquist and Picci, 2015, p.
105):

• The processes x and y are jointly stationary and their distribution function is absolutely continuous
with known spectral density matrix.

• The observations are made since t0 = −∞.
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The (stationary) backward innovation model (see Katayama, 2005, pp. 131–134 or Lindquist
and Picci, 2015, pp. 179–183) is

x̂+(t − 1) = ATx̂+(t) + K
T

e+(t) , (2.43a)
y(t) = Cx̂+(t) + e+(t) , (2.43b)

where the backward innovation is defined by

e+(t) = y(t) − Ê{y(t)|Y+
t+1} .

The stationary backward Kalman gain is given by

K
T =

(
CT − ATΣx̂x̂C

T) (Λ(0) − CΣx̂x̂C
T)−1

,

where Σx̂x̂ = E{x̂+(t)x̂T
+(t)} satisfies the algebraic Ricatti equation

Σx̂x̂ = ATΣx̂x̂A +
(
CT − ATΣx̂x̂C

T) (Λ(0) − CΣx̂x̂C
T)−1 (

C − CΣx̂x̂A
)

.

Based on the associated processes y, x̂−, and x̂+ of the stochastic system (2.38), let

Y−
t = span{y(s)|s < t} , X −

t = span{x(s)|s ≤ t} ,

Y+
t = span{y(s)|s ≥ t} , X +

t = span{x(s)|s ≥ t} ,
(2.44)

be the respective past and future spaces of the output and the joint state. Regarding the
spaces X −

t and X +
t of this joint state, it should be noted that they

1. are defined as overlapping subspaces, i.e., both contain the element x(t), and

2. contain both x̂− and x̂+, i.e., the joint state of both the forward and backward innova-
tion model.

Furthermore, the ambient space is given by

H = Y−
t ∨ X −

t ∨ Y+
t ∨ X +

t . (2.45)

Perpendicular intersection

To define a predictor space Xt and analyze its properties, the concept of perpendicular in-
tersection of two subspaces is needed. The concept of perpendicular intersection is based on
the conditional orthogonality of two subspaces, e.g., Y−

t and Y+
t , and the question of how to

enlarge these spaces while retaining conditional orthogonality. The relations stated in this
paragraph will become important for the definitions of observability and constructibility of
a predictor space. The following discussion introduces a basic mathematical concept and is
not an analysis of system entities. That is, the denotation of subspaces Y−

t and Y+
t does not

carry any deeper meaning than just “some subspaces” and Xt is any small or large subspace
of the ambient space H.

Lemma 2.4. (Lindquist and Picci, 2015) Assuming that the three subspaces Y−
t , Y+

t , and
Xt fulfill

Y−
t ⊥ Y+

t |Xt ,
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S+
t
⊥

S−t
⊥

Xt = S−t ∩ S+
t

S−t = Y−t ∨ Xt

S+
t = Y+

t ∨ Xt

Figure 2.4: Perpendicular intersection (Lindquist and Picci, 2015)

then

(i) Y−
t ∩ Y+

t ⊂ Xt (2.46a)
(ii) (Y−

t ∨ Xt) ⊥ (Y+
t ∨ Xt)|Xt (2.46b)

(iii) (Y−
t ∨ Xt) ∩ (Y+

t ∨ Xt) = Xt (2.46c)

hold.

The points of this lemma give instructions on how the subspaces Y−
t and Y+

t can be enlarged.
Setting6

S−
t := Y−

t ∨ Xt , S+
t := Y+

t ∨ Xt , (2.47)

these two subspaces behave as follows.

Proposition 2.2. (Lindquist and Picci, 2015) The following conditions are equivalent.

(i) S−
t ⊥ S+

t |S−
t ∩ S+

t (2.48a)
(ii) Ê{S+

t |S−
t } = S−

t ∩ S+
t (2.48b)

(iii) Ê{S−
t |S+

t } = S−
t ∩ S+

t (2.48c)
(iv) Ê{S+

t |S−
t } = Ê{S−

t |S+
t } (2.48d)

Subspaces fulfilling these conditions are called perpendicular intersecting. See Figure 2.4 for
an illustration of these conditions.

6If these definitions would be interpreted in terms of system entities, the state, given by Xt, would be internal
(see next paragraph).
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Theorem 2.1. (Lindquist and Picci, 2015) Let the ambient data space H be composed of S−
t

and S+
t as S−

t ∨ S+
t = H. Then, the following conditions are equivalent.

(i) S−
t and S+

t intersect perpendicular (2.49a)
(ii) (S+

t )⊥ ⊂ S−
t or, equivalently (S−

t )⊥ ⊂ S+
t (2.49b)

(iii) H = (S−
t )⊥ ⊕ (S−

t ∩ S−
t ) ⊕ (S+

t )⊥ (2.49c)

From the above discussion, the previously raised question is answered.

Theorem 2.2. (Lindquist and Picci, 2015) Let two subspaces Y−
t and Y+

t be defined so that
Y−

t ∨ Y+
t = H, Y−

t ⊥ Y+
t |Xt and Y−

t ⊂ S−
t , Y−

t ⊂ S+
t hold. Then S−

t ⊥ S+
t |Xt holds if and

only if
S−

t ⊂ Y−
t ∨ Xt , S+

t ⊂ Y+
t ∨ Xt . (2.50)

This theorem states that Y−
t and Y+

t can be enlarged by any subspace of Xt without loosing
conditional orthogonality. In the special case that (2.47) holds, the two spaces S−

t and S+
t

intersect perpendicular

Definition of Markovian splitting subspace

As it will turn out by the following summary, the above equations already have a deeper
meaning than just the illustration of the perpendicular intersection. Now, the denotations
are coupled with the actual entities of the system.

Definition 2.2. (Lindquist and Picci, 2015) Let Y−
t and Y+

t be the past and future spaces
of y, and Xt an arbitrary subspace of the ambient space H defined by (2.45), i.e., Xt ⊂ H.
Then Xt is called splitting subspace if it has the property

Y−
t ⊥ Y+

t | Xt (2.51)

i.e., if the past and future become conditionally orthogonal given Xt. It is furthermore a
Markovian splitting subspace if

(Y−
t ∨ X −

t ) ⊥ (Y+
t ∨ X +

t ) | Xt , (2.52)

which includes the Markov property (where X −
t and X +

t are the respective past and future of
Xt)

X −
t ⊥ X +

t | Xt . (2.53)

The Markov property can be also stated by

E{xt+1 | xs; s ≤ t} = E{xt+1 | xt} .

The splitting property of Xt is also given by the following relations.

Lemma 2.5. (Lindquist and Picci, 2015) Let Xt be a (Markovian) splitting subspace for Y−
t

and Y+
t , then

Ê{λ|Y−
t ∨ Xt} = Ê{λ|Xt} ∀ λ ∈ Y+

t , (2.54a)
Ê{λ|Y+

t ∨ Xt} = Ê{λ|Xt} ∀ λ ∈ Y−
t . (2.54b)
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For a proof, see Proposition 2.4.2 in Lindquist and Picci (2015). This lemma states that
Xt contains all necessary information of the past to predict the future and all necessary
information of the future to predict past, i.e., it serves as a “memory” (Lindquist and Picci,
2015, p. 220). A Markovian splitting subspace is hence synonymic with a predictor space.

The definition of a splitting subspace can be given in terms of perpendicular intersection.

Theorem 2.3. (Lindquist and Picci, 2015) Let (S−
t , S+

t ) be a pair of perpendicular inter-
secting subspaces with Y−

t ⊂ S−
t and Y+

t ⊂ S+
t . Then, Xt ⊂ H is a splitting subspace if and

only if
Xt = S−

t ∩ S+
t (2.55)

and
Xt = Ê{S−

t |S+
t } = Ê{S+

t |S−
t } . (2.56)

Furthermore,

Ê{λ|S−
t } = Ê{λ|Xt} ∀ λ ∈ S+

t , (2.57a)
Ê{λ|S+

t } = Ê{λ|Xt} ∀ λ ∈ S−
t . (2.57b)

Based thereon the Markov property is rephrased by using S−
t and S+

t as extensions of the
past and future spaces of y.

Theorem 2.4. (Lindquist and Picci, 2015) The subspace Xt is a Markovian splitting subspace
if and only if it can be given a scattering pair (S−

t , S+
t ) satisfying

S−
t−1 ⊂ S−

t , S+
t+1 ⊂ S+

t . (2.58)

A unique scattering pair of Xt is given by

S−
t := Y−

t ∨ X −
t , S+

t := Y+
t ∨ X +

t . (2.59)

The pair (S−
t , S+

t ) is called scattering pair by reason of (2.55). Furthermore, the ambient
space is given by

H = S−
t ∨ S+

t . (2.60)

As the properties of a Markovian splitting subspace are now given, the last remaining question
is regarding the calculation or extraction of the respective Markovian splitting subspaces
contained in Y−

t and Y+
t . For that matter, a result of the conditional orthogonality is needed.

Lemma 2.6. (Lindquist and Picci, 2015) For any subspaces A and B,

A ⊥ B|Ê{B|A} . (2.61)

Now, the respective Markovian splitting subspaces are the results of rather simple calculati-
ons.

Proposition 2.3. (Lindquist and Picci, 2015) The subspaces

X +/−
t = span{x−(t)} = Ê{Y+

t | Y−
t } , X −/+

t = span{x+(t)} = Ê{Y−
t | Y+

t } (2.62)

are the respective Markovian splitting subspaces contained in Y−
t and Y+

t .
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Both X +/−
t and X −/+

t are the predictor spaces contained in Y−
t and Y+

t . In this context, it
was tacitly assumed that the superior Markovian splitting subspace Xt (= X +/−

t ∨ X −/+
t ) is

internal. This attributes to the more general fact that

H = Y−
t ∨ X −

t ∨ Y+
t ∨ X +

t = Y−
t ∨ Y+

t , (2.63)

i.e., Xt ⊂ Y−
t ∨ Y+

t , and also

S−
t = Y−

t ∨ Xt , S+
t = Y+

t ∨ Xt . (2.64)

As both S−
t and S+

t need to contain both the forward and backward predictor space (cf.
(2.55)), which are neither completely contained in Y−

t nor Y+
t , the definitions of S−

t and S+
t

can not be made alone in terms of equality to Y−
t and Y+

t .

Observability, constructibility, and minimality

Observability, constructibility and hence minimality of predictor spaces/Markovian splitting
subspaces can now be given in terms of the decomposition of Xt with respect to Y−

t and Y+
t .

Using (see Lemma 2.2.6 in Lindquist and Picci, 2015)

A = Ê{B|A} ⊕ (A ∩ B⊥) , (2.65)

a Markovian splitting subspace can be decomposed as

Xt = Ê{Y+
t |Xt} ⊕

(
Xt ∩ (Y+

t )⊥
)

, (2.66a)

Xt = Ê{Y−
t |Xt} ⊕

(
Xt ∩ (Y−

t )⊥
)

. (2.66b)

These two decompositions give rise to a rather illustrative definitions of observability and
constructibility. As the part of Xt intersecting with (Y+

t )⊥ is obviously not part of Y+
t , it

cannot retrieved or calculated from the observation of the future outputs, i.e., Xt ∩ (Y+
t )⊥

defines the unobservable part of Xt. Likewise, Xt ∩ (Y−
t )⊥ defines the unconstructible part

of Xt. Hence, the observable subspace of Xt is given by Ê{Y+
t |Xt} and the constructible

subspace of Xt by Ê{Y−
t |Xt}. Thus, observability and constructibility are defined as follows.

Definition 2.3. (Lindquist and Picci, 2015) A Markovian splitting subspace Xt is said to be
observable if Xt ∩ (Y+

t )⊥ = 0 and to be constructible if Xt ∩ (Y−
t )⊥ = 0. If both conditions

hold, it is furthermore minimal.

This definition can be also seen from the standpoint of the spaces

N −
t = Y−

t ∩ (Y+
t )⊥ , N +

t = Y+
t ∩ (Y−

t )⊥ ,

which are called junk spaces of the past and future. By reason of forming the intersection
of Y−

t with the orthogonal complement of the future Y+
t , N −

t is the subspace of the past
containing no information on the future. By virtue of similar reasoning, N +

t is the subspace
of the future containing no information on the past. This can be also seen from Figure 2.4, as(
S+

t

)⊥
= N −

t and
(
S−

t

)⊥
= N +

t . A similar reasoning holds for Xt ∩ (Y+
t )⊥ and Xt ∩ (Y−

t )⊥.
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Theorem 2.5. (Lindquist and Picci, 2015) Let (S−
t , S+

t ) be the scattering pair of some
Markovian splitting subspace Xt. Then, this Markovian splitting subspace is observable if and
only if

S+
t = Y+

t ∨
(
S−

t

)⊥
(2.67)

and constructible if and only if
S−

t = Y−
t ∨

(
S+

t

)⊥
. (2.68)

The connection between the definitions of observability and constructibility given in terms
of the junk spaces or in terms of the scattering pairs as by Theorem 2.5 follows from the
decomposition of the ambient space with

H = S+
t ⊕

(
S+

t

)⊥
=
(

Y+
t ∨

(
S−

t

)⊥
)

⊕
(
S+

t

)⊥
= Y+

t ∨
(
S−

t

)⊥
∨
(
S+

t

)⊥
.

This is equal to (performing the orthogonal complement within H on both sides of the
equation) (

Y+
t

)⊥
∩
(
S−

t ∩ S+
t

)
= {0} .

Taking (2.55) into account, this equation describes the condition for observability of a Marko-
vian splitting subspace given by Definition 2.3. The condition for constructibility of Theorem
2.5 can be related to the definition of constructibility in Definition 2.3 by a similar reasoning.

Evolution of the predictor space in time

To see how a Markovian splitting subspace evolves through time, define the wandering sub-
space

W = S−
t+1 	 S−

t . (2.69)

Theorem 2.6. (Lindquist and Picci, 2015) The evolution (forward in time) of a Markovian
splitting subspace Xt is governed by

X +/−
t+1 ⊂ X +/−

t ⊕ Wt ,

Yt ⊂ X +/−
t ⊕ Wt .

(2.70)

Similarly, the evolution backward in time is given by

Xt−1 ⊂ X −/+
t ⊕ Wb

t−1 ,

Yt−1 ⊂ X −/+
t ⊕ Wb

t−1 ,

where
Wb = S+

t 	 S+
t+1 .

2.4.2 Systems with exogenous inputs

In the following, the extension of the coordinate-free framework to the case of systems with
exogenous inputs will be discussed. The general system structure is shown in Figure 2.5. The
two processes w and eu are mutually orthogonal white-noise processes (cf. Section 2.3). In
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this context, the predictor space of the joint system P (z) & H(z) is sought. This system can
be decomposed according to P (z) and H(z) into the deterministic subsystem

xd(t + 1) = Axd(t) + Bu(t) , (2.71a)
yd(t) = Cxd(t) + Du(t) , (2.71b)

and the stochastic subsystem

xs(t + 1) = Axs(t) + Gw(t) , (2.72a)
ys(t) = Cxs(t) + Jw(t) , (2.72b)

where the joint output is
y(t) = yd(t) + ys(t) . (2.73)

The remaining transfer functions are either the generation filter C(z) of the input or the
feedback transfer function F (z) and should not be included in the predictor space. Hence,
there are two major points, which need to be accounted for by the derivations:

1. The predictor space cannot be defined by taking only y into consideration. This would
lead to a predictor space and later to a state, which does not only represent the dynamic
behavior of the system P (z) & H(z) but also the dynamic behavior of C(z) (and F (z)).

2. The intrinsic feedback introduced by F (z) needs to be taken into consideration. If
F (z) = 0, the system operates in open-loop.

Based on the last point, the following discussion is split in half. Whereas the first part of
the discussion summarizes the general case with feedback, the later part considers the case
without feedback.

Without knowledge of the system structure, the absence of feedback can be defined by the
feedback-free condition

Y−
t ⊥ U+

t |U−
t . (2.74)

This condition simply states that the residual spaces resulting from the orthogonal com-
plement of U−

t in both Y−
t and U+

t are orthogonal if the system operates under open-loop
conditions. Those spaces are in fact spanned by the past of w and the future of eu. This
condition is hence in line with assumption A5 given in Section 2.3.

In addition to
Xt ⊂ Y−

t ∨ U−
t ∨ Y+

t ∨ U+
t , (2.75)

eu(t)
C(z)

++
u(t)

P (z) yd(t) +
+

w(t)
H(z) ys(t)

y(t)

F (z)

Figure 2.5: General structure of a system with exogenous inputs and feedback (Lindquist and
Picci, 2015, p. 677)
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defining a predictor space as an internal predictor space, a predictor space is furthermore
called causal if

Xt ⊂ Y−
t ∨ U−

t . (2.76)

This later condition clearly contains internalization of a predictor space. The space Xt is
again contained in both the past space X −

t and the future space X +
t of the predictor space.

The ambient space is now defined by

H = Y−
t ∨ U−

t ∨ X −
t ∨ Y+

t ∨ U+
t ∨ X +

t . (2.77)

General case with feedback

The general case for systems with exogenous inputs includes the feedback of system output.
The definition of the predictor space given for this case describes the general procedure for
identifying systems that operate under both closed-loop and open-loop conditions, i.e., if
there is a controller or not. In this context, the richness condition of the assumptions of
Section 2.3 is equivalent to (

U−
t ∨ W−

t

)
∩
(
U+

t ∨ W+
t

)
= {0} , (2.78)

which again includes the richness condition of u. The spaces W−
t and W+

t are the past and
future of the conditional wandering process of S−

t , which is defined by

Wt = S−
t+1 	 (S−

t ∨ Ut) . (2.79)

This conditional wandering process is not equal to the innovation process, as the wandering
process would be defined by (cf. (2.3))

w(t) =

y(t)

x(t)

− Ê


y(t)

x(t)


∣∣∣∣∣∣∣P−

t ∨ X −
t−1 ∨ Ut

 .

The spaces S−
t and S+

t are defined similar to stochastic systems with

S−
t = P−

t ∨ X −
t , S+

t = Y+
t ∨ X +

t .

Furthermore, the space of the observable and not observable future inputs is defined as

F+
t = U+

t ∨ W+
t . (2.80)

As a consequence of (2.78), it obeys

S−
t ∩ F+

t = {0} . (2.81)

The following discussion of the coordinate-free framework for systems with exogenous inputs
is similar to the discussion given for stochastic systems.

Definition 2.4. (Lindquist and Picci, 2015) Let P−
t be the joint past of the output y and

input u, Y+
t the future space of the output y, and Xt an arbitrary subspace of the ambient

space H defined by (2.77), i.e., Xt ⊂ H. Then, Xt is called oblique (i.e., conditional) splitting
subspace if it has the property

P−
t ⊥ Y+

t | Xt ∨ F+
t , (2.82)
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i.e., if the past and future become conditionally orthogonal given Xt ∨ F+
t . It is furthermore

an oblique Markovian splitting subspace if

(P−
t ∨ X −

t ) ⊥ (Y+
t ∨ X +

t ) | Xt ∨ F+
t , (2.83)

which includes the oblique (i.e., conditional) Markov property (where X −
t and X +

t are the
respective past and future of Xt)

X −
t ⊥ X +

t | Xt ∨ F+
t . (2.84)

In the case of exogenous inputs and feedback, the splitting property of Xt can be given
only conditional to F+

t . That is, as (2.82) states, the joint past P−
t does not contain any

information regarding the future of y, only if information of the past, represented by Xt,
and the future inputs F+

t are known. This is essentially the consequence of the two points
mentioned at the beginning of the section. Without F+

t in condition (2.82), Xt would be a
Markovian splitting subspace containing also parts of the input process, as Y+

t is also coupled
with U+

t , which is in general not orthogonal to U−
t .

Lemma 2.7. (Lindquist and Picci, 2015) Let Xt be a (Markovian) splitting subspace for P−
t

and Y+
t , then

Ê{λ|P−
t ∨ Xt ∨ F+

t } = Ê{λ|Xt ∨ F+
t } ∀ λ ∈ Y+

t ∨ X +
t (2.85)

or
Ê||F+

t
{λ|P−

t ∨ Xt} = Ê||F+
t

{λ|Xt} ∀ λ ∈ Y+
t ∨ X +

t . (2.86)

The conditions and definition of an oblique Markovian splitting subspace are summed up by
the next theorem.

Theorem 2.7. (Lindquist and Picci, 2015) Let the space F+
t be defined as in (2.80) and the

spaces S−
t and S+

t be defined, such that

(i) Y+
t ⊂ S+

t , P−
t ⊂ S−

t , S−
t ∩ F+

t = {0} (2.87a)
(ii) S−

t−1 ⊂ S−
t , S+

t+1 ⊂ S+
t (2.87b)

(iii) S−
t ⊥ S+

t |(S−
t ∩ S+

t ) ∨ F+
t (2.87c)

Then, Xt is an oblique Markovian splitting subspace if and only if

Xt = S−
t ∩ S+

t . (2.88)

Furthermore,
Ê||F+

t
{S+

t |S−
t } = Ê||F+

t
{S+

t |Xt} , (2.89)

where the minimal spaces fulfilling the conditions are given by

S−
t = Y−

t ∨ U−
t ∨ X −

t = P−
t ∨ X −

t , S+
t = Y+

t ∨ X +
t . (2.90)

Let now the oblique Markovian splitting subspace be internal and causal, i.e., X −
t ⊂ P−

t ,
which in particular means Xt ⊂ P−

t . Hence,

S−
t = P−

t . (2.91)
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Condition (2.81) is consequently also fulfilled. Under these assumptions the conditional
wandering process of S−

t is equal to the innovation process e. An oblique Markovian splitting
subspace can then be defined as follows.

Theorem 2.8. (Lindquist and Picci, 2015) The subspace

X +/−
t = Ê||F+

t
{Y+

t | P−
t } (2.92)

is the minimal oblique Markovian splitting subspace or the minimal oblique predictor space
contained in P−

t .

Note that this definition directly includes minimality of X +/−
t and hence its observability

and constructibility. Minimality means here that X +/−
t contains no subspace which also

obeys the conditions of an oblique Markovian splitting subspace as given by Theorem 2.7. In
fact, this is the only definition that can be given for minimality as meaningful definitions for
observability and constructibility cannot be specified for the general case.

The condition (2.81) is rather strong and might be violated under feedback (Lindquist and
Picci, 2015, p. 688). Hence an oblique Markovian splitting subspace might also be defined
based on a weaker condition as a one-step-ahead oblique Markovian splitting subspace.

Definition 2.5. (Lindquist and Picci, 2015) A subspace Xt is a one-step-ahead oblique Mar-
kovian splitting subspace if

S−
t ∩ Ut = {0} (2.93)

and
Ê||Ut

{Yt ∨ Xt+1|P−
t ∨ Xt} = Ê||U+

t
{Yt ∨ Xt+1|Xt} . (2.94)

The condition for the one-step-ahead oblique Markovian splitting subspace is essentially equal
to the calculations within a state-space model. The above defined one-step-ahead oblique
Markovian splitting subspace is equivalent to an oblique Markovian splitting subspace if
the strong condition (2.81) holds. Based on the one-step-ahead oblique Markovian splitting
subspace, X +/−

t is defined as follows.

Proposition 2.4. (Lindquist and Picci, 2015) The oblique predictor space is given by the
vector sum

X +/−
t =

∞∨
h=0

X h
t (2.95)

with
X h

t = Ê
P−

t

||Ut

{
Ê

P−
t+1

||Ut+1

{
· · · Ê

P−
t+h

||Ut+h
{Yt+h}

}}
, (2.96)

where Ê
P−

t+i

||Ut+i
{·}, i = 0, · · · h is a short-hand notation for Ê||Ut+i

{· | Y−
t+i ∨ U−

t+i}.

Special case without feedback – The feedback-free oblique predictor space

The relations for the general case with feedback can be simplified if there is no feedback.
This feedback-free case is equal to the open-loop case, i.e., if there is no controller. In the
absence of feedback, the definition of F+

t becomes

F+
t = U+

t ⊕ W+
t , (2.97)
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which simplifies the definition of the oblique Markovian splitting subspace. This follows as
now

S−
t ∨ F+

t = (S−
t ∨ U+

t ) ⊕ W+
t (2.98)

and, furthermore, Lemma 17.4.4 in Lindquist and Picci (2015, pp. 696–697) states that

Ê{A|B ⊕ C} = Ê{A|X ⊕ C} ⇒ Ê{A|B} = Ê{A|X } , (2.99)

if X ⊂ B7. Hence, the existence of the wandering subspace or the innovation process does
not need to be taken explicitly into account.

Theorem 2.9. (Lindquist and Picci, 2015) Let P−
t be the joint past of the input u and output

y, Y+
t the future space of the output y, and Xt an arbitrary subspace of the ambient space H

defined by (2.77), i.e., Xt ⊂ H, satisfying the feedback-free condition(
P−

t ∨ X −
t

)
⊥ Y+

t |U−
t .

Then, Xt is called feedback-free oblique splitting subspace if

P−
t ⊥ Y+

t | Xt ∨ U+
t . (2.100)

It is furthermore a feedback-free oblique Markovian splitting subspace if

(P−
t ∨ X −

t ) ⊥ (Y+
t ∨ X +

t ) | Xt ∨ U+
t . (2.101)

As before, under the assumption of the richness condition,

Ê||U+
t

{Y+
t |P−

t } = Ê||U+
t

{Y+
t |Xt} ,

Ê||U+
t

{S+
t |S−

t } = Ê||U+
t

{S+
t |Xt} .

With the above definitions, it is not yet possible to establish a connection to the concept
of perpendicular intersection, which however facilitates the analysis of minimality. In order
to align the derivation for open-loop systems with exogenous inputs with the setting of
perpendicular intersection, let the usual scattering pair (S−

t , S+
t ) be replaced by the extended

scattering pair
Se,−

t = S−
t ∨ U+

t , Se,+
t = S+

t ∨ U+
t . (2.102)

Based on the extended scattering pair (Se,−
t , Se,+

t ), the condition

Se,−
t ⊥ Se,+

t |Se,−
t ∩ Se,+

t (2.103)

of perpendicular intersection can be again stated, and, in particular,

Se,−
t ∩ Se,+

t = Xt ∨ U+
t (2.104)

follows. Then, the conditions for observability and constructibility and hence minimality, are
along the lines of the definitions given for stochastic systems.

7Which is the case for S−
t ∨ U−

t as Xt ⊂ S−
t .
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Theorem 2.10. (Lindquist and Picci, 2015) Let (Se,−
t , Se,+

t ) be the extended scattering pair
of some oblique Markovian splitting subspace Xt. Then, this oblique Markovian splitting
subspace is observable if and only if

Se,+
t =

(
Se,−

t

)⊥
∨ Y+

t ∨ U+
t (2.105)

and constructible if and only if

Se,−
t =

(
Se,+

t

)⊥
∨ P−

t ∨ U+
t . (2.106)

The calculation of the (feedback-free) minimal oblique Markovian splitting subspace follows
directly from Theorem 2.8 under consideration of (2.98) and (2.99).

Theorem 2.11. (Lindquist and Picci, 2015) The subspace

X +/−
t = Ê||U+

t
{Y+

t | P−
t } (2.107)

is the minimal oblique Markovian splitting subspace or the minimal predictor space contained
in P−

t .

Evolution of the predictor space in time

The following theorem will be crucial for the derivation of the main theorem of recursive
subspace identification. It gives the description of the evolution of X +/−

t in time. It is
assumed that the oblique Markovian splitting space is internal.

Theorem 2.12. (Lindquist and Picci, 2015) Let Et be the space generated by the innovation

e(t) = y(t) − Ê{y(t) | P−
t ∨ Ut} ,

and X +/−
t the (minimal internal) oblique Markovian splitting space of time t. Then, the

following inclusions hold:

X +/−
t+1 ⊂ X +/−

t ∨ Ut ∨ Yt , (2.108a)

Yt ⊂
(
X +/−

t ∨ Ut

)
⊕ Et , (2.108b)

Et ⊂ X +/−
t ∨ Ut ∨ Yt . (2.108c)

This result holds for both the case with feedback as well as for the feedback-free case. Note
that the first equation is the coordinate-free representation of the state equation of the pre-
dictor system (2.5). The subspace inclusions are equal to the ones given in Theorem 2.6 as
the first inclusion could be also noted for the general case (non-internal oblique Markovian
splitting space) by

X +/−
t+1 ⊂

(
X +/−

t ∨ Ut

)
⊕ Wt .

The additional Ut stems from the existence of the exogenous input.
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2.5 Basic equations

Although the coordinate-free framework is a versatile basis and mighty tool for the description
and analysis of subspace methods, a framework based on the system description gives a
slightly better understanding regarding the meaning of the projections. Due to the then
introduced assumption of a generic model, this framework becomes coordinate-based and
is mostly used for derivations in terms of numerical calculations. This coordinate-based
framework gives the basic equations that describe the relationship between the data vectors
u−

t , u+
t , y−

t , and y+
t . These basic equations follow from the description of the future outputs

y+
t . In terms of an iteration of the innovation form (2.4), the future outputs are hence

described by

y+
t = OkC∞p−

t + Ψd
k u+

t + Ψ s
ke+

t

= Okx(t) + Ψd
k u+

t + Ψ s
ke+

t .
(2.109)

In this equation, Ψd
k and Ψ s

k are Toeplitz matrices of the Markov parameters of the determi-
nistic and stochastic subsystems, where

Ψd
k =



D 0 0 · · · 0

CB D 0 · · · 0

CAB CB D · · · 0
...

...
... . . . 0

CAk−2B CAk−3B CAk−4B · · · D


,

and Ψ s
k is formed likewise. Furthermore, Ok and C∞ denote the extended observability matrix

and the reversed and extended reachability matrix for an infinite past horizon. They are
defined by

Ok =
[
CT (CA)T · · · (CAk−1)T

]T
,

C∞ =
[
· · · A2

K

[
BK K

]
AK

[
BK K

] [
BK K

]]
.

The structure of the reversed reachability matrix results from the structure of the past data
vector p−

t . Based on the observations of u and y, the calculation of the state x(t) follows with

x(t) =
t∑

i=−∞
At−i

K BKu(i) +
t∑

i=−∞
At−i

K Ky(i) . (2.110)

If p−
t is based on a finite past horizon, the calculation of the state x(t) also includes an initial

state x(t0), i.e.,

x(t) = Ak
Kx(t0) +

t∑
i=t0

At−i
K BKu(i) +

t∑
i=t0

At−i
K Ky(i) . (2.111)

In this case, the future outputs are given by

y+
t = Ok(Ak

Kx(t0) + Ckp−
t ) + Ψd

k u+
t + Ψ s

ke+
t

= Okx(t) + Ψd
k u+

t + Ψ s
ke+

t .
(2.112)
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Only if the system is of ARX type, which implies that AK is nilpotent for a certain choice of
k, i.e., Ak

K = 0, the term Ak
Kx(t0) vanishes and the finite past is equal to the infinite past.

As the description of x(t) by (2.110) can only be made based on observable data vectors,
the description of the future outputs by (2.109) or (2.112) is based on both the predictor
form for the description of the state x(t), i.e., the past of the system, and on the innovation
form for the description of the future outputs y+

t , i.e., the future of the system. Another
representation of the future outputs y+

t is given if only the predictor form of the system is
used. This yields

y+
t = OkC∞p−

t + Ψd
k u+

t + Ψ s
ke+

t

= OK
k x(t) + Ψd,K

k u+
t + Ψ s,K

k y+
t + e+

t .
(2.113)

This representation will be referred to in terms of closed-loop identification. Note that now
OK

k , Ψd,K
k , and Ψ s,K

k are also build from the system matrices of the predictor form, i.e., based
on AK , BK , K, C, and D. As Ψ s,K

k is moreover used in conjunction with the future outputs,
the main diagonal of Ψ s,K

k is zero.

2.6 Open-loop identification

In the following section methods for open-loop identification are summarized. These methods
are to be used when there is no feedback from the outputs to the inputs, i.e., if there is
no controller. It should be noted that not all methods are based on the coordinate-free
framework. Some approaches use the coordinate-based framework resulting from numerical
relations governed by the system. For the sake of brevity, the discussion is limited to methods
used in the remainder of the thesis. Other methods, which will be referred to, are briefly
summarized in terms of their basic ideas and respective references.

In terms of the following review, the distinction between approaches, methods, and algorithms
will remain as given in the introduction:

• Approach: basic concept or template procedure of an identification

• Method: exact theoretical description of an identification

• Algorithm: numerical implementation of a method

Based on the underlying principles of the methods, they are divided into two main approa-
ches. These two approaches are called realization approach and state-regression approach (cf.
Viberg, 1995, Bauer and Ljung, 2002, where similar classifications are made). Although the
methods – whose number is already limited due to the fixed theoretical framework – might be
different, the core operations are either of the realization approach or of the state-regression
approach.

2.6.1 Realization and state-regression approach

Realization approach

Except for implementation-related differences, all realization methods conform with the fol-
lowing procedure:



40 2 Review of subspace identification

1. Determination of the extended observability matrix Ok of a high-order model or any
equivalent intermediate entity comprising the extended observability matrix from (2.109)

2. Reduction of the model to order n and if necessary extraction of the extended observa-
bility matrix by means of a singular value decomposition; see Theorem 2.14

3. Determination of the Toeplitz matrix Ψd
k or intermediate entity comprising Ψd

k

4. Determination (upto a similarity transformation) of Â, Ĉ from the reduced-order ob-
servability matrix and B̂, D̂ from the Toeplitz matrix or respective intermediate entity
using the estimate of the observability matrix of the reduced-order model

5. Estimation of the Kalman gain K and innovation variance Σee

Although an estimation of the Kalman gain is not explicitly considered in the standard
methods, an algorithm for the estimation of the Kalman gain K and innovation variance Σee

based on the realization framework is outlined in Knudsen (2002).

State-regression approach

Likewise, except for implementation-related differences, all state-regression methods (abbre-
viated by state methods) conform with the following procedure:

1. Estimation of states x(t) and x(t + 1) of a high-order model or any entities comprising
these state from (2.109)

2. Reduction of the model to order n and if necessary extraction and estimation of the
states x(t) and x(t + 1) by means of a singular value decomposition; see Theorem 2.14

3. Estimation (upto a similarity transformation) of the system matrices by solving

min
A,B,C,D

∥∥∥∥∥∥∥
x(t + 1)

y(t)

−

A B

C D


x(t)

u(t)


∥∥∥∥∥∥∥

2

H

(2.114)

4. Estimation of the covariance matrices Q, R, S from the residualsŵ(t)

ê(t)

 =

x(t + 1)

y(t)

−

Â B̂

Ĉ D̂


x(t)

u(t)

 (2.115)

as

E


ŵ(t)

ê(t)

 [ŵT(t) êT(t)
] =

 Q̂ Ŝ

ŜT R̂

 (2.116)

5. Estimation of the Kalman gain K and the innovation variance Σee

The estimate of the Kalman gain is given by

K̂ = (ÂP ĈT + Ŝ)(ĈP ĈT + R̂)−1 , (2.117)
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where P is the stationary error covariance of P (t) = E{(x(t) − x̂(t))(x(t) − x̂(t))T} satisfying
the algebraic Riccati equation (Katayama, 2005, pp. 282–285, p. 292)

P = ÂP ÂT + Q̂ − (ÂP ĈT + Ŝ)(ĈP ĈT + R̂)−1(ÂP ĈT + Ŝ)T . (2.118)

Similar to Knudsen (2002), an approach for the determination of the Kalman gain K̂ and the
innovation variance Σ̂ee without calculating the solution of the algebraic Riccati equation is
outlined in Katayama (2010). These algorithms can however not guarantee that the forward
innovation model is of minimal phase, i.e., λmax(A − KC) < 1 is not guaranteed.

Core calculations

Both the realization and state approaches are essentially based on two core calculations. The
first is the extraction of either the state or observability matrix from (2.109). This extraction
is part of the optimal predictor, which in turn is the implementation of Theorem 2.9. At this
point of the identification procedure, the order of the model is still equal to the number of
rows in y+

t , which is why the model is called high-order model.

Theorem 2.13. (Katayama and Picci, 1999; van Overschee and De Moor, 1996) Under
the assumption U−

t ∩ U+
t = {0}, i.e., under the assumption of persistence of excitation, the

optimal prediction ŷ+
t of y+

t based on the data

p−
t and u+

t is given by

Ê{y+
t |P−

t ∨ U+
t } = OkC∞p−

t + Ψd
k u+

t = ŷ+
t , (2.119)

where

Ê||U+
t

{y+
t |P−

t } = OkC∞p−
t = Okx(t) , (2.120a)

Ê||P−
t

{y+
t |U+

t } = Ψd
k u+

t . (2.120b)

Regarding an orthogonal decomposition of the data as done by some methods, the following
corollary characterizes the resulting implications. A similar statement, focusing primarily on
the implication in terms of the state estimation, was made in Katayama (2005) and Katayama
and Picci (1999).

Corollary 2.1. (Bathelt, Söffker, and Jelali, 2015) By decomposing Ê{y+
t | U+

t ∨ P−
t } into

two orthogonal projections according to

Ê{y+
t | P−

t ∨ U+
t }

= Ê
{

y+
t

∣∣∣Ê {P−
t

∣∣∣(U+
t )⊥

}}
+ Ê{y+

t |U+
t }

= Π̃kÊ
{

p−
t

∣∣∣(U+
t )⊥

}
+ Ψ̃ku+

t ,

(2.121)

the resulting operator Ψ̃ is non-causal (unless u is white noise) and

Ê
{

y+
t

∣∣∣Ê {P−
t

∣∣∣(U+
t )⊥

}}
= OkÊ

{
x(t)

∣∣∣(U+
t )⊥

}
. (2.122)

By absence of causality of Ψ̃k, it is referred to the absence of a lower triangular structure,
which implies causality (cf. (2.109) and (2.112)).
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The second core calculation is the order reduction based on a singular value decomposition.
Although this can be also expressed in terms of an operator theoretical framework (see
Lindquist and Picci, 2015, pp. 33–35), it is more comprehensible if it is discussed in terms of
the actual data. Let therefore Okx(t) or its numerical equivalent OkxN(t) be separated from
(2.109) by the projection (2.120a).

Theorem 2.14. Let the singular value decomposition of OkxN(t) be

OkxN (t) = UΣV T =
[
Un Ur

] Σn 0

0 Σr


V T

n

V T
r

 , (2.123)

where Un and Vn are the matrices constructed from the left and right singular vectors corre-
sponding to the first n singular values, i.e., corresponding to Σn. Then, the rank n approxi-
mation of OkxN (t) is given by

arg min
rank(Γ)=n

‖OkxN (t) − Γ‖2 = UnΣnV T
n . (2.124)

A rank n estimate of the observability matrix is hence given by

Ôk = UnΣ1/2
n . (2.125)

Equally, a rank n estimate of the state is given by

x̂N (t) = Σ1/2
n V T

n . (2.126)

Proof. For a proof of the rank n approximation, see De Moor (1993), van Overschee and De
Moor (1996), pp. 110–111, or Katayama (2005) and the references therein. As explained by
Lemma 2.9 in Katayama (2005),

Im(Ok) = Im(U), ImRow (xN(t)) = ImRow(V T) .

This yields, for some matrix T1 ∈ Rkf p×n,

Ok = UT1 ,

and, taking a basis transformation into account, a rank n estimate of Ok as in (2.125). The
same holds for the rank n estimation of xN (t) by (2.126).

Standard methods

In the following, the standard methods of the subspace approach for the identification of
systems operating under open-loop conditions are summarized. The remainder of methods
discussed in the literature are only versions and modifications of this set of basic methods.

MOESP. The standard method in terms of the realization approach is MOESP (MIMO/Multi-
variable output-error state-space model identification). The MOESP method is based on the
numerical relations between the input and output data governed by the system and does not
use the coordinate-free framework of subspace identification. These methods extracts the
sought-after entities directly from the data. See the review in the following.
N4SID. The standard method of the state approach is the N4SID method (numerical algo-
rithms for subspace state-space system identification). As outlined in van Overschee and De
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Moor (1993) for time series, the basis is the interpretation of the projections of Theorem 2.13
in the context of a state estimation by a non-steady state Kalman filter. This was extended
to systems with exogenous inputs in van Overschee and De Moor (1994, 1996). This interpre-
tation of the optimal predictor provides valuable insight into the meaning of the projections.
A thorough explanation of this rationale is given in van Overschee and De Moor (1996, pp.
100–106). Regarding the implementation of the coordinate-free framework, N4SID uses parts
of it, like Theorem 2.13. In terms of the implementation, the derivations follow numerical
rationales. In fact, the first of two numerical implementation of the N4SID approach uses
also realization-approach techniques for the calculation of the system matrices. However, this
way of calculating the model also facilitates the exact identification of systems that are not of
ARX-type (Bauer, 2005). The second numerical implementation follows exactly the general
state approach, which, for a finite past, results in a slightly incoherent estimation of x(t) and
x(t + 1).
CCA. The CCA method (calculation based on the canonical correlation analysis) was deri-
ved completely against the background of the above outlined coordinate-free framework of
subspace identification. Based on the underlying canonical correlation analysis, a realization-
based and state-based implementation can be given. See the review in the following.

2.6.2 Methods

Multivariable output-error state-space model identification

The group of identification algorithms summarized under MOESP are introduced and analy-
zed in Verhaegen and Dewilde (1992a), Verhaegen and Dewilde (1992b), Verhaegen (1993b),
and Verhaegen (1994). The principle of the underlying approach is the QR decomposition of
the input-output data of the system which has to be identified. Based on the basic algorithm
called ordinary MOESP (Verhaegen and Dewilde, 1992a), several instrumental variable (IV)
algorithms were proposed. Of these algorithms, the PO-MOESP algorithm (instrumental va-
riables made from past inputs and past outputs) is dominantly used. In terms of the ordinary
MOESP algorithm, where Ψ s

k = I is assumed, the observability matrix is estimated from an
orthogonal projection of the output onto the orthogonal complement of the input, i.e.,

Ê

{
Y+

t

∣∣∣∣(U+
t

)⊥
}

= OkÊ

{
xN(t)

∣∣∣∣(U+
t

)⊥
}

+ E+
t . (2.127)

As for example outlined in Verhaegen and Dewilde (1992b) or De Moor (1993), the estimation
of Ok using the singular value decomposition of the left hand-side of (2.127) will not be
affected by the disturbance E+

t as long as E+
t is white noise, which is guaranteed by the

assumption. In terms of the PO-MOESP algorithm, where the assumption of Ψ s
k = I is

dropped, the observability matrix is extracted from a projection onto the complementary
past P−

t 	 U+
t . Here, this complementary past serves as the instrument. The estimation of

Ψd
k is basically given for all algorithms by the orthogonal projection onto the future inputs

Ê
{

Y+
t

∣∣∣U+
t

}
= OkÊ{xN(t)|U+

t } + Ψd
k U+

t . (2.128)
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To extract Ψd
k , the additional term OkÊ{xN(t)|U+

t } needs to be removed. This is done by a
left-multiplication with (O⊥

k )T as

Im(O⊥
k ) ⊥ Im(Ok) = Ker

((
O⊥

k

)T
)

(2.129)

This yields (
O⊥

k

)T
Ê
{

Y+
t

∣∣∣U+
t

}
=
(
O⊥

k

)T
Ψd

k U+
t . (2.130)

In terms of the singular value decomposition (2.123), an estimate of (O⊥
k )T is given by UT

r .
As the estimates of A and C are known from Ôk, (O⊥

k )TΨd
k becomes linear in B and D.

Hence, the estimates of B and D can be extracted using a least-squares approach; refer to
Verhaegen and Dewilde (1992a) and Katayama (2005).

Methods based on canonical correlation analysis

The methods discussed in Katayama and Picci (1999) and Larimore (1990) use the canonical
correlation analysis applied to the past data and the future data to calculate a state estimate.
In Katayama and Picci (1999), it is shown that the obliqued projection

Ê||U+
t

{y+
t |P−

t } = Σy+
t p−

t |u+
t

Σ−1
p−

t p−
t |u+

t

p−
t = Okx(t) (2.131)

can be calculated by a (conditional) canonical correlation analysis of the respective values.
Defining the Cholesky factors of the conditional covariance matrices

Σy+
t y+

t |u+
t

= Lf LT
f ,

Σp−
t p−

t |u+
t

= LpLT
p ,

the singular value decomposition of the normalized conditional cross-covariance Σy+
t p−

t |u+
t

L−1
f Σy+

t p−
t |u+

t
L−T

p = UΣV T ≈ UnΣnV T
n , (2.132)

is calculated. The reduction to the n dominant singular values gives the state estimate of a
system of order n with

x(t) = CkΣ−1
p−

t p−
t |u+

t

p−
t = Σ1/2

n V T
n L−1

p p−
t . (2.133)

Refer to Katayama (2005) and Katayama and Picci (1999) for the numerical implementation
of the resulting state-approach algorithm of the CCA method and the associated estimations
of the states x(t) and x(t + 1). Likewise, an estimate of the observability matrix can be
calculated. This leads to a realization-approach algorithm. As additionally outlined, the
canonical vector V TΣ−1/2

p−
t p−

t |u+
t

(p−
t |U+

t
⊥) cannot be used to identify the system as it yields a

non-causal representation (Katayama, 2005; Katayama and Picci, 1999). In Jansson and
Wahlberg (1996), the CCA-based calculation of the oblique projection was derived using a
weighted optimization approach with a special choice of the weighting matrix.

The algorithm introduced in Larimore (1983) as canonical variate analysis (CVA) is based
on a modification of the canonical correlation analysis. Introducing the weighted prediction
error

E{‖y+
t − ŷ+

t ‖Θ−1} = E{(y+
t − ŷ+

t )TΘ−1(y+
t − ŷ+

t )} ,
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Ys,−
t ∨ Ys,+

t

Ys,−
t

U−
t ∨ U+

t

Y−
t

E+
t

ŷ+
t

yd,+
t

ys,+
t

y+
t

Figure 2.6: Principle of the orthogonal decomposition; Ys,−
t and Ys,+

t are the past and future
spaces of the stochastic component of y

the calculation of the normalized cross-covariance is converted into

Θ−1Σy+
t p−

t
Σ−T/2

p−
t p−

t

= UΣV T ≈ UnΣnV T
n .

Using the resulting quasi-canonical vector V TΣ−1/2
p−

t p−
t

p−
t (see description of canonical correla-

tion analysis in Katayama (2005, pp. 203–207)) as an auxiliary state, the system matrices are
identified. Note that here the conditional covariances are not used and thus the covariance
between u−

t and u+
t is not taken into account, restricting this algorithm to white inputs. In

Larimore (1990), this was addressed and the conditional CVA leading to a singular value
decomposition of the form

Θ−1Σy+
t p−

t |u+
t

L−T/2
p = UΣV T ≈ UnΣnV T

n

was proposed.

Orthogonal decomposition

The standard methods do not a priori assume a certain structure of the system/model, as
the information regarding the structure will ideally also be recovered from the data during
the identification. Thus, a generic joint stochastic-deterministic model (basically an ARMAX
structure) is used. By means of pole-zero-cancellations, any model structure can be recovered.
This assumption of a joint model can be restrictive if the deterministic and stochastic subsys-
tems have disjoint dynamics, i.e., if the noise is arbitrarily colored. An approach which cuts
the connection between both subsystems and facilitates the identification of disjoint models
is the orthogonal decomposition (ORT) approach proposed in Picci and Katayama (1996b).
The theoretical basis of the ORT approach is the assumption of the absence of feedback. In
this case, the output process y of a system can be decomposed as follows; see also Figure 2.6.

Theorem 2.15. In the absence of feedback, the orthogonal projection of y(t) onto U is causal,
so that

yd(t) = Ê{y(t) | U} = Ê{y(t) | U−
t+1} (2.134)
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is the deterministic component of y(t), driven by the exogenous input u. The corresponding
stochastic component is given by

ys(t) = Ê{y(t) | U⊥} (2.135)

and is driven by the innovation process

e(t) = ys(t) − Ê{ys(t) | Ys,−
t }

= y(t) − Ê{y(t) | U−
t+1 ∨ Y−

t } ,
(2.136)

where Ys,−
t is the past of the stochastic component ys. The future data vector of the output

y+
t is hence decomposed according to

yd,+
t = Ê{y+

t | U−
t ∨ U+

t } ,

ys,+
t = y+

t − Ê{y+
t | U−

t ∨ U+
t } .

(2.137)

Proof. The causality of the projection (2.134) follows from Theorem 9.1 in Katayama (2005),
whereas (2.136) is shown in Proposition 3.1 in Picci and Katayama (1996b).

By performing two separate identifications based on yd,+
t and ys,+

t , the system is split into
two independent subsystems according toxd(t + 1)

xs(t + 1)

 =

Ad 0

0 As


xd(t)

xs(t)

+

Bd

Ks


u(t)

e(t)

 , (2.138a)

y(t) =
[
Cd Cs

] xd(t)

xs(t)

+

Dd

I


u(t)

e(t)

 . (2.138b)

This structure is equal to the Box-Jenkins structure of the classical system identification; see
Ljung (2009, p. 87). The state estimation as outline in Katayama (2005) is given by

X d,+/−
t = Ê||U+

t
{Yd,+

t |U−
t } , (2.139)

where
Yd,+

t = Ê{Y+
t |U−

t ∨ U+
t } (2.140)

follows from Theorem 2.15. If both subsystems share modes, the identified model is no longer
minimal. This is expressed in terms of the predictor space by the following result.

Proposition 2.5. (Picci and Katayama, 1996b) Let the (orthogonal) predictor spaces of the
respective components yd and ys of y be defined by

X d,+/−
t = span{xd(t)} , X s,+/−

t = span{xs(t)} .

Then, the predictor space as defined by (2.107) is related to these spaces by

X +/−
t ⊂ X d,+/−

t ⊕ X s,+/−
t . (2.141)

Implementations of the identification algorithm for the deterministic part are given in Chiuso
and Picci (2004a) and Katayama (2005), whereas the stochastic part can be identified by any
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method for the identification of stochastic systems, e.g., Tanaka and Katayama (2006, 2007)
and van Overschee and De Moor (1993). Given the estimation based on finite past data, the
stochastic component will be perturbed by a residual term, which arises from the orthogonal
projection (2.134). An algorithm taking this deviation into account is presented in Picci and
Katayama (1996a).

The merit of this approach is the feasibility of the sole identification of the deterministic
subsystem. Assuming the noise process has different dynamics, identifications using N4SID
or PO-MOESP will result in models, whose number of eigenvalues/poles, i.e., the order,
exceeds that of the actual deterministic subsystem. A system reduction of these models to
the order of the deterministic subsystem will not give the actual deterministic eigenvalues as
the additional eigenvalues of the stochastic subsystem are not cut off but intermixed with
the deterministic eigenvalues. It is also advantageous that the bases of the models for the
deterministic and stochastic subsystems can be selected independently, e.g., choosing the a
stochastic balanced basis for the stochastic model without interfering with the basis of the
deterministic system (Chiuso and Picci, 1999). The PI-MOESP algorithm of the MOESP
family can also be used to extract the deterministic subsystem. The IV idea is however
different.

2.6.3 Order estimation

One of the few parameters needed for the identification by subspace methods is the order of
the system or model. If the order is however not known beforehand, it has to be estimated
based on the available data. There are two approaches discussed in the literature. The first
approach is based on the singular values resulting form the SVD used for the model reduction
and extraction of the state or observability matrix. One way is to check for the number of
dominant singular values and set the order to this number, as for example suggested in
terms of the N4SID method in van Overschee and De Moor (1996). The second approach
is the use of order estimation criteria, which are introduced in Bauer (2001). Those are
based on the Frobenius norm or the 2-norm of the residuals of the rank n approximations
of the state or the observability matrix. These residuals are the remaining singular values
σ̂i, i = n + 1, · · · , min(kf p, kp(m + p)) of the SVD after a certain order is chosen. The first
criterion, called NIC, is defined by

NIC(n) =
min(kf p,kp(m+p))∑

j=n+1
σ̂2

j + C(T )d(n)/T (2.142)

whereas the SVC (singular value criterion) is given by

SV C(n) = σ̂2
n+1 + C(T )d(n)/T , (2.143)

where T is the length of the recorded data, C(T ) is a penalty term, which is based on the
length of the recorded data and the horizons kf and kp, and d(n) is the number of independent
model parameters. The value of C(T ) should lie in the range log T to kf kp log T . For systems
with exogenous inputs, the value of d(n) is given in Hannan and Deistler (2012) with

d(n) = np + n(m + p) + mp . (2.144)

The order is then chosen according to that value of n minimizing NIC(n) or SV C(n). The
consistency of the criteria is also analyzed in Bauer (2001).
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An order estimation approach for CCA-based methods can be derived from the discussions
in Fujikoshi and Veitch (1979), where the dimensionality of canonical correlation analysis is
discussed8. Adapted to subspace identification, the measure calculated for each order n is

Cn = (N − 1)
(

σ̂2
n+1

1 − σ̂2
n+1

+ · · · +
σ̂2

kf p

1 − σ̂2
kf p

)
− 2(kf p − n)(kpm + kpp − n) , (2.145)

where N is the column number of the tail matrices, and σ̂i, i = n+1, · · · , min(kf p, kp(m+p))
are the individual singular values of the SVD of the model reduction and extraction of the
state or the observability matrix. The order is then chosen equal to that n giving the smallest
Cn. The condition for the use of this estimation method is kf p ≤ kpm + kpp.

2.7 Closed-loop identification

If there is a controller and hence a feedback from the output to the input, the previously
explained open-loop methods can not (theoretically sound) be used with respective data, as
there is now a correlation between the disturbances and the future inputs. As the discussion
of the coordinate-free framework explained, a correct estimation of the predictor space/state
is hence not possible. Hence, separate methods are needed for the closed-loop case. As above,
the following explanation is limited to the methods referred to in the remainder of the thesis.

2.7.1 General problem

The general issue in a closed-loop environment is the occurrence of correlations of future
inputs with future innovations (actually with past innovations as well). Applying open-loop
methods despite the data was collected under closed-loop conditions, the model will exhibit
a bias. As now Σe+

t u+
t

= 0 does no longer hold, the obliqued projections of y+
t onto P−

t and
U+

t yield

Ê||U+
t

{y+
t | P−

t } = Ê||U+
t

{Okx(t) + Ψd
k u+

t + Ψ s
ke+

t | P−
t }

= Okx(t) + Ψ s
kÊ||U+

t
{e+

t | P−
t }

= Okx(t) − Ψ s
kΣe+

t u+
t

Σ−1
u+

t u+
t

Σu+
t p−

t
p−

t

(2.146)

and likewise
Ê||P−

t
{y+

t | U+
t } = Ψd

k u+
t + Ψ s

kΣe+
t u+

t
u+

t . (2.147)

The last equation of (2.146) follows from

Ê||U+
t

{e+
t | P−

t } = Σe+
t p−

t
− Σe+

t u+
t

Σ−1
u+

t u+
t

Σu+
t p−

t
p−

t ,

where by definition Σe+
t p−

t
= 0 (cf. (2.3)). In terms of a linear regression analysis, this result

is also given in Ljung and McKelvey (1996a,b).

8My special thanks to Mr. Victor Solo of the University of New South Wales, Sydney for advising me of his
paper.
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2.7.2 Methods

There are three general approaches to closed-loop identification (see, e.g., Katayama (2005)
and Ljung (2009)) – direct approach, indirect approach, joint input-output approach. In
terms of subspace identification, the methods mainly follow either the direct approach or
the joint input-output approach. The idea of using the joint input-output approach was in-
troduced in Verhaegen (1993a) as a closed-loop approach for the MOESP methods. It was
later used for the closed-loop implementation of the ORT approach in Katayama, Kawauchi,
and Picci (2005) and Katayama and Tanaka (2007). The three main methods of the direct
approach are the state-space ARX (SSARX) method (Jansson, 2003), predictor-based sub-
space identification (PBSID) method (Chiuso and Picci, 2005), and a method based on an
explicit innovation estimation (PARSIM-E) (Qin and Ljung, 2003a). The advantage of these
approaches is that they are also able to work in the open-loop setting. In the following, the
focus will be on the PBSID method, as its theoretical derivation is based on the previously
introduced coordinate-free framework. The SSARX method is similar to the PBSID method
in terms of the basic idea but the calculation of the estimates is slightly different (see, e.g.,
Chiuso, 2007b).

Based on Proposition 2.4 and as explained in Chiuso and Picci (2005) and Lindquist and Picci
(2015, p. 722), the oblique predictor space can be also extracted in a closed-loop setting.

Lemma 2.8. (Chiuso and Picci, 2005) The oblique predictor space is given by the vector
sum

X +/−
t =

kf −1∨
h=0

X h
t , (2.148)

where
X h

t = Ê||P+
[t,t+h)

{Yt+h | P−
t } (2.149)

and for finite dimensional systems kf ≥ n.

The relation between the SSARX method and the PBSID method is given by the extraction
of the past component. In terms of the SSARX method, the calculation is defined by Ê{y+

t −
Ψ s,K

kf
y+

t −Ψd,K
kf

u+
t | P−

t } (Chiuso, 2007b). The single oblique projections Ê||P+
t,t+h

{Yt+h | P−
t }

of (2.148) are essentially the same as every future value up to t + h is removed. That is, the
single oblique projections are equal to the respective rows of Ê{y+

t −Ψ s,K
kf

y+
t −Ψd,K

kf
u+

t | P−
t }.

Numerical implementations of the PBSID method in terms of a least-squares algorithms are
discussed in Chiuso (2006, 2007a). The optimized version of the PBSID algorithm (PBSIDopt)
derived in Chiuso (2007a) was later also implemented in terms of a vector ARX (VARX)
algorithm in Chiuso (2007b). This VARX-based algorithm starts by obtaining the first kp

coefficients of the truncated VARX model (no feed-through)

yN+kf (t) ≈
kp∑

i=1
Φ̂ipN+kf (t − i) = CCkpP−

t , (2.150)

where the coefficients are also given by the product of the output matrix C of the system and
the reversed and extended reachability matrix Ckp . In terms of the estimated coefficients, the
past component Ŷ+,P−

t
t of Y+

t is given by

Ŷ+,P−
t

t = ΞP P−
t = ÔK

k xN(t) , (2.151)
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where

ΞP−
t

=



Φ̂kp Φ̂kp−1 . . . Φ̂kp−kf +1 . . . Φ̂1

0 Φ̂kp . . . Φ̂kp−kf
. . . Φ̂2

...
... . . . ... . . .

...

0 0 . . . Φ̂kp . . . Φ̂kf


.

For an explanation of the structure of ΞP−
t

, refer to Remark 4.4 in Chiuso (2007b, p. 1043).

The observability matrix is extracted from Ŷ+,P−
t

t by the weighted singular value decomposi-
tion

W −1
p Ŷ+,P−

t
t = UΣV T ≈ UnΣnV T

n (2.152)

as
ÔK

k = WpUnΣ1/2
n . (2.153)

Here, the observability matrix is based on the predictor system and is hence constructed from
AK = A − KC and C. The states are given by

xN(t) = (ÔK
k )†Ŷ+,P−

t
t xN(t + 1) = (ÔK

k−1)†Ŷ+,P−
t

t+1 . (2.154)

With the states given, the system can be identified equal to the state approach.

Remark 2.1. As outlined in Chiuso and Picci (2005), the PBSID method is, like any other
direct approach method, affected by the transient behavior of the innovations if the past
horizon is finite. However, the major advantage the PBISD method has over any other
method is that it can also deal with the identification of unstable systems. This is a direct
consequence of the extraction of the oblique predictor space as done by (2.148) and (2.149);
see Chiuso and Picci (2005, pp. 387–388).

2.8 Identification of systems by linear parameter-varying models

In the previous sections the model of the system has been considered to be a LTI model,
as it has been assumed that the model will only be used for a limited range of operation,
where the system behavior is nearly linear. If the model is however required to cover a much
larger range of operation, where the system behavior is clearly non-linear, a different type of
model is required. One model for the description of non-linear system behavior is the linear
parameter-varying (LPV) representation of a system. The structure of such a LPV model is
given by (see, e.g., Verdult and Verhaegen, 2002)

x(t + 1) =
[
A(0) A(1) · · · A(s)

]  x(t)

µ(t) ⊗ x(t)


+
[
B(0) B(1) · · · B(s)

]  u(t)

µ(t) ⊗ u(t)

 (2.155a)

+
[
K(0) K(1) · · · K(s)

]  e(t)

µ(t) ⊗ e(t)

 ,
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y(t) =Cx(t) + Du(t) + e(t) , (2.155b)

where µ(t) ∈ Rs is the parameter vector. The remaining vectors and matrices correspond to
definitions made for the linear time-invariant system description of (2.4). The structure of
the above given LPV model reflects the assumption of state affinity. Methods for the LPV
identification of systems are proposed in van Wingerden and Verhaegen (2009) and Verdult
and Verhaegen (2002). The LPV approach proposed in Verdult and Verhaegen (2002) is an
extension of the usual linear open-loop state approach to LPV models. Both the derivation
and numerical implementation remain basically the same. The difference concerns only the
structure of the data matrices of past and future inputs. In van Wingerden and Verhaegen
(2009), a LPV method which is equivalent to the PBSID method is proposed. Thus, this
method works in both open-loop and closed-loop settings.

It is important to note that, for the identification of LPV models, the parameter vector µ(t)
needs to be known. In particular, the result of the identification heavily depends on the
choice of the interval which µ(t) covers during the data collection, as it basically defines the
range of operating points the resulting model is valid for.

One the major drawback of LPV algorithms is the rapidly growing dimension of the data
matrices. For example, in terms of the identification of a MIMO system by the LPV method
of Verdult and Verhaegen (2002), where s = 3, kp = kf − 1 = 5, and m = p = 2, the row
number of the equivalents of the numerical past and future output data matrices P−

t and Y+
t

is 1397424. Similarly, in terms of the identification of a MIMO system by the LPV method of
van Wingerden and Verhaegen (2009), where s = 4, kp = 5, and m = p = 2, the row number
of the equivalent of the numerical past data matrices P−

t is 5456. See Table 1 in Verdult
and Verhaegen (2002) and Table 1 van Wingerden and Verhaegen (2009) for more examples
regarding the row numbers of the respective matrices9.

2.9 Recursive methods for subspace identification

Similar to a change of the basic model type, the whole approach to the identification can
be changed. Instead of recording the data and using all the data at once to calculate the
model, it can be determined successively when a new data point becomes available. This type
of identification is called recursive identification. In the early stages of recursive subspace
identification, the focus was on the reduction of the numerical load (Lovera, Gustafsson, and
Verhaegen, 2000). The primary goal was to prevent the direct calculation of the QR decom-
position and SVD of large data matrices. Later, as sufficient computational power became
available, the focus switched to the update of models of time-varying systems (Kameyama,
Ohsumi, et al., 2005). The two basic approaches discussed in the literature will be reviewed
in the following. Those are the update of the sample covariance matrices which avoids the
QR decomposition and the subspace tracking approach which facilitates the avoidance of the
SVD.

9Without introducing the construction of these numerical data matrices, it is not meaningful to give these
tables here.
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Update of data matrices

In Oku and Kimura (1999), Takei, Imai, and Wada (2001) or Takei, Nanto, et al. (2006),
algorithms for the recursive computation of the observability matrix within the MOESP
framework are given. Let the orthogonal projection, which is used for the estimation of the
observability matrix, be given by (see (2.127))

Z+
t = Ê{Y+

t |
(
U+

t

)⊥
} = OkÊ

{
xN(t)

∣∣∣∣(U+
t

)⊥
}

+ E+
t . (2.156)

As pointed out in Oku and Kimura (1999), the eigenvalue decomposition of

Szz = Z+
t (Z+

t )T = OkÊ

{
xN(t)

∣∣∣∣(U+
t

)⊥
}

Ê

{
xN(t)

∣∣∣∣(U+
t

)⊥
}T

OT
k (2.157)

gives the same estimate of the observability matrix as the singular value decomposition of
Z+

t . Thus, the algorithm presented in Oku and Kimura (1999) concentrates on the recur-
sive estimation of Z+

t (Z+
t )T, which is essentially the sample covariance matrix of Z+

t . This
eventually replaces the QR decomposition. To accomplish this, the auxiliary quantities

αN+i =
(

1 + u+
t

T(N + i)
(
Si−1

uu

)−1
u+

t (N + i)
)−1

,

z+
t (N + i) = y+

t (N + i) − Si−1
yu

(
Si−1

uu

)−1
u+

t (N + i)
(2.158)

are introduced, where

u+
t (N + i) =

[
uT(N + i) · · · uT(N + i + k − 1)

]T
,

y+
t (N + i) =

[
yT(N + i) · · · yT(N + i + k − 1)

]T

are the N + ith column of U+
t

(i) ∈ Rkm×N+i and10

Si−1
uu = U+

t
(i−1) (U+

t
(i−1))T

.

In this context, U+
t

(i) denotes the input matrix of the ith recursion step. The initial estimation
is thus given by the index 0, where U+

t
(0) = U+

t . The matrices Si−1
yu and Si−1

zz are formed
according to the same pattern. After those auxiliary quantities are obtained, the update step
is performed by calculating

Si
zz = Si−1

zz + αN+iz+
t (N + i)(z+

t )T(N + i) (2.159)

and

(Si
uu)−1 = (Si−1

uu )−1 + αN+i(Si−1
uu )−1u+

t (N + i)(u+
t )T(N + i)(Si−1

uu )−1 ,

Si
yu = Si−1

yu + y+
t (N + i)(u+

t )T(N + i) .
(2.160)

The updated version of the observability matrix is obtained from the eigenvalue decomposition
of Si

zz. Hence, updated estimates of A and C can be determined. Although not pointed out,

10The matrices Si
zz, Si

yu, and Si
uu are equal to the sample covariance matrices (upto the factor 1

N+i
).
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the Toeplitz matrix of the Markov parameters can be estimated as well. Hence, B̂ and D̂ can
be estimated using the algorithm outlined in Verhaegen and Dewilde (1992a). An extension
to the PO-MOESP algorithm is given also in Oku and Kimura (1999).

Opposed to the previous version which uses all incoming data, the algorithm proposed in
Kameyama, Ohsumi, et al. (2005) uses a sliding window for the recursive calculation. That
is, as new data becomes available, old data is discarded. This approach makes the algorithm
also suitable for time-varying systems. The idea of the recursive calculation is based on the
QR decomposition of two consecutive recursion steps, denoted by the superscripts i − 1 and
i, as 

u+
t (N + i)

Ri−1 (Qi−1)T p−
t (N + i)

y+
t (N + i)

 =


u+

t (i − 1)

p−
t (i − 1) Ri

(
Qi
)T

y+
t (i − 1)

 , (2.161)

where p−
t (N + i) is defined similar to u+

t (N + i) or y+
t (N + i). Denoting the matrices of the

left-hand and right-hand side by the short forms
[
A | b

]
and

[
c | D

]
,

AAT + bbT =
[
A | b

] [
A | b

]T
=
[
c | D

] [
c | D

]T
= ccT + DDT

follows. Thus, the calculation of

DDT = AAT + bbT − ccT (2.162)

results in a recursive update of the sample covariance matrices of the past and future data
which are given by 1

N AAT and 1
N DDT. See Kameyama, Ohsumi, et al. (2005) for a detailed

explanation. A direct calculation of the QR decomposition is thus replaced by the update of
the sample covariance matrices.

Subspace tracking algorithms

Based on the PAST (projection approximation subspace tracking) and IV-PAST (instru-
mental variable PAST) algorithms introduced in B. Yang (1995) and Gustafsson (1998), a
recursive algorithm for subspace identification is proposed in Lovera, Gustafsson, and Ver-
haegen (2000). In the context of the PAST algorithm, a measured complex-valued random
signal z is defined by

z(t) = Ox(t) + e(t) , (2.163)

where e is white noise, x is the incoming but not measurable random signal and O describes
the measuring device, defining the propagation of x and thereby the signal subspace of z.
The signal subspace is also connected through

E{z(t)zH(t)} = Σzz = OΣxxOT + σ2I (2.164)

to the covariance of z. That is, given the eigenvalue decomposition

Σzz = UΛUH =
[
Un Ur

] Λn 0

0 σ2I


UH

n

UH
r

 , (2.165)
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then Im(Un) = Im(O). The same holds also for a singular value decomposition. In terms of
the PAST algorithm, this eigenvalue decomposition is replaced by an unconstrained minimi-
zation.

Theorem 2.16. (B. Yang, 1995) Let the unconstrained minimization

min
W (t)

J (W (t)) = min
W (t)

E

{∥∥∥z(t) − W (t)W H(t)z(t)
∥∥∥2
}

, (2.166)

be given. Then, for some arbitrary unitary matrix Q ∈ Cn×n and Un, containing n distinct
eigenvectors of (2.165), W (t) = UnQ if and only if W (t) is the global minimum of (2.166).
Thus, Im(W (t)) is an estimate of the signal subspace O.

Using a sample function of z, which is furthermore restricted to real numbers, and introducing
a forgetting factor λ, the expectation is replaced by

W (t) = arg min
W (t)

t∑
k=1

λt−k‖z(k) − W (t)W T(t)z(k)‖2 . (2.167)

In terms of this equation, W (t) gives an estimation of the respective eigenvectors of the
eigenvalue decomposition of

Σ̂zz =
t∑

k=1
λt−kz(k)zT(k) . (2.168)

In the PAST algorithm, W T(t)z(k) is replaced by h(k) = W T(k − 1)z(k) to simplify the
calculation. Then, W (t) is given by

W (t) = Σ̂zhΣ̂−1
hh , (2.169)

where the sample covariance matrices Σ̂zh and Σ̂hh are formed according to (2.168). The IV-
PAST algorithm of Gustafsson (1998) adds the instrumental variable ξ(t) to the calculation
to eliminate colored-noise disturbances, which would otherwise influence the estimation of
W (t). This lifts the restriction of e(t) to be white noise. Given an instrumental variable ξ(t)
(E{e(t)ξH(t)} = 0) and

E{z(t)ξH(t)} = Σzξ =
[
Un Ur

] Σn 0

0 0


V H

n

V H
r

 , (2.170)

it again follows that Im(Un) = Im(O).

Theorem 2.17. (Gustafsson, 1998) Let the unconstrained minimization

min
W (t)

J (W (t)) = min
W (t)

E
{(

z(t) − W (t)W H(t)z(t)
)

ξH(t)
}

, (2.171)

be given. Then, for some arbitrary unitary matrix Q ∈ Cn×n and Un, containing n distinct
eigenvectors of (2.170), W (t) = UnQ if and only if W (t) is the global minimum of (2.171).
Thus, Im(W (t)) is an estimation of the signal subspace O.

The numerical minimization then reads

W (t) = arg min
W (t)

t∑
k=1

λt−k‖z(k)ξT(t) − W (t)W T(t)z(k)ξT(t)‖2 . (2.172)
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The resulting W (t) is
W (t) = Σ̂zξΣ̂−1

hξ , (2.173)

where Σ̂zξ and Σ̂hξ are again formed according to (2.168).

In Lovera, Gustafsson, and Verhaegen (2000), the resemblance between (2.163) and

Ê{y+
t | U+

t
⊥} = z+

t = OkÊ{x(t) | U+
t

⊥} + e(t)

of the ordinary MOESP method is used to derive a recursive algorithm for the estimation
of the observability matrix Ok (equal to O in (2.163)). In this context, the value of W (t) is
equivalent to Un of the SVD of (2.123). The most pressing problem is now the avoidance of
the QR decomposition, as the SVD is already replaced by the PAST algorithm. Combining
the results of the QR decomposition of the previous step with the data of the current step,

(U+
t )(i−1) u+

t (N + i)

(Y+
t )(i−1) y+

t (N + i)

 =

Ri−1
11 0 u+

t (N + i)

Ri−1
21 Ri−1

22 y+
t (N + i)



(
Qi−1

1

)T
0(

Qi−1
2

)T
0

0 1


is yielded. Using Givens rotations, the extended R matrix is transformed into (Lovera,
Gustafsson, and Verhaegen, 2000)(U+

t )(i−1) u+
t (N + i)

(Y+
t )(i−1) y+

t (N + i)

 =

Ri
11 0 0

Ri
21 Ri−1

22 z+
t (N + i)

 (Qi)T .

The calculated z+
t (N + i), where i = 0, 1, · · · , t, are now used in conjunction with the PAST

algorithm to determine W (t). Extensions to the PI/PO-MOESP algorithms based on the
IV-PAST algorithms are discussed in Lovera, Gustafsson, and Verhaegen (2000) and Wu,
Yang, et al. (2008). Once the matrices Â and Ĉ are estimated using W (t), a linear regression
approach is used to determine the remaining system matrices (see, e.g., Chiuso and Picci,
2001).

A combination of the recursive algorithm outlined in Oku and Kimura (1999) and the PAST
algorithm is proposed in Oku and Kimura (2002). Here, the gradient of J(W (t)) of (2.166)
is formed and used to update the eigenvalue decomposition of (2.157). Consequently, the
eigenvalue decomposition of the algorithm of Oku and Kimura (1999) is also replaced and the
estimate of observability matrix is recursively updated. Using the basic principle of the PAST
approach, an approach, which provides, with respect to the progression of t, an improved
convergence of W (t) calculated in (2.167) and (2.172), is outlined in Mercère, Lecoeuche,
and Vasseur (2003) and Mercère, Bako, and Lecuche (2008). The basic idea is based on a
permutation of the rows of the observability matrix, so that the dynamics of the system are
observable in one output. Thus, an auxiliary output is formed from a linear combination of
all outputs of the system. Knowing the permutation matrix and the linear combination of
the outputs, the observability matrix of the original system can be reconstructed after the
recursion step is performed.
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2.10 Summary

This chapter introduces the notation as well as the basic principles of subspace identification
and the assumptions needed for the discussion and derivation of the later-proposed approach
to recursive subspace identification and new algorithms. The briefly explained coordinate-free
framework is the theoretical foundation of subspace identification. For both stochastic and
joint stochastic-deterministic systems, the definition of the predictor space and its extraction
form the data spaces, i.e., the spaces spanned by the output and the input, are discussed.
This predictor space is the crucial entity of the whole identification procedure, as it is equi-
valent to the state of the system. Furthermore, conditions for minimality are discussed. The
review of the methods has focuses on the explanation of the basic approaches, i.e., the rea-
lization approach and the state approach, and respective methods, which are referred to in
the remainder of the thesis. This includes the basic open-loop methods MOESP (realization
approach) and CCA (state approach, based on coordinate-free framework), the ORT ap-
proach, which decomposes the output into its stochastic and deterministic components, and
the closed-loop method PBSID, which follows from a derivation within the coordinate-free
framework. To understand the difference between the approach to recursive identification
proposed in this thesis and the methods discussed in the literature, these existing methods
of recursive subspace identification were discussed as well.

Recapitulation of main results

• The task of subspace identification is to calculate the matrices A, B, C, D, and K, of a
linear time-invariant state-space representation of the system as well as the innovation
covariance matrix Σee. These matrices are equal to the actual system representation
(given there is one) up to a global similarity transform. In terms of the methods’
descriptions, the recorded data points {y(t), u(t), t = 0, 1, ..., T} are considered to be
random variables and are divided into a past segment as well as a present and future
segment. This segmentation is necessary to decompose the output into a component
associated with the state and a component associated with the future input.

• Identification methods are divided into methods of the realization approach and met-
hods of the state-regression approach. Based on

y+
t = OkC∞p−

t + Ψd
k u+

t + Ψ s
ke+

t = Okx(t) + Ψd
k u+

t + Ψ s
ke+

t ,

realization-based methods, like the MOESP method, extract the matrices Ok, Ψd
k ,

and Ψ s
k and calculate the respective system matrices based on these matrices. State-

regression-based method, like the CCA method or the N4SID method, extract the
states x(t) and x(t + 1) (from y+

t+1, where the “present” time is shifted to t + 1) and
calculate the system matrices based on a regression using x(t), x(t + 1), u(t), and y(t).
Furthermore, the MOESP method is based on a rationale resulting from the QR decom-
position of the numerical data of a system’s input and output. The MOESP method is
hence not derived on the basis of the coordinate-free framework but on the basis of a
coordinate-based framework.

• The ORT approach decomposes the output into its deterministic component, which
is governed by the input u, and its stochastic component, which is governed by the
innovation process e. It thus facilitates the identification of the deterministic subsystem
in the presence of arbitrary disturbances.
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• Although derived from the coordinate-free framework, the implementation of the closed-
loop method PBSID is based on a VARX estimation (or an involved least-squares
solution).

• Existing recursive methods perform the recursion in terms of the data and are not
based on the methodological basis of subspace identification, i.e., are not based on the
coordinate-free framework.

• The space spanned by a data vector of a stochastic process, e.g., y+
t , and the row space

of the associated numerical data matrix Y+
t build from tail matrices of one of the sample

functions of y are equivalent if the column count N of the tail matrices goes to infinity,
i.e.,

ImRow





yN(t0)

· · ·

yN(t − 2)

yN(t − 1)




N→∞−−−−→ span{y−

t } ,

where
yN(t) =

[
y(t) y(t + 1) · · · y(t + N − 1)

]
.

Hence, the derivations made using the coordinate-free framework or stochastic pro-
cesses can be transfered to implementations in terms of data matrices without loss of
correctness.

• For stochastic systems, a Markovian splitting subspace/predictor space is every sub-
space of an ambient data space which satisfy

(Y−
t ∨ X −

t ) ⊥ (Y+
t ∨ X +

t ) | Xt ,

whereas for joint stochastic-deterministic systems an oblique Markovian splitting sub-
space/oblique predictor space is every subspace which satisfy

(P−
t ∨ X −

t ) ⊥ (Y+
t ∨ X +

t ) | Xt ∨ F+
t ,

where F+
t is the space spanned by the future input and wandering subspace (see (2.79)).

The minimal predictor spaces are given by (for stochastic systems and joint stochastic-
deterministic systems)

X +/−
t = Ê{Y+

t | Y−
t } , X +/−

t = Ê||F+
t

{Y+
t | P−

t } .

The evolution through time of the predictor spaces is governed by (for stochastic systems
and joint stochastic-deterministic systems)

X +/−
t+1 ⊂ X +/−

t ⊕ Wt , X +/−
t+1 ⊂ X +/−

t ∨ Ut ∨ Yt .





3 Problem statement and conceptual outline

Based on the review of subspace identification made in the previous chapter, the goal drafted
in the introductory chapter can now be stated precisely. This starts by stating the challenges
which are to be faced in terms of the identification of industrial processes in Section 3.1. It is
then changed over to the issues resulting from existing methods and algorithms when these
challenges of real-world identifications are addressed. This serves furthermore as a detailed
definition of the problem statement and hence as the motivation of this thesis. From the
problem statement, the direction of the work is concluded, and the conceptual outline of the
proposed methodological approach to recursive subspace identification and related algorithms
of methods is given in Section 3.2.

3.1 Problem statement

Regarding the identification of industrial plants, the following challenges need to be addressed:

1. Multi-variable processes: several inputs and outputs

2. Non-linear processes: plant behavior depending on the operating point

3. Process disturbances: observed plant output subjected to measurement noise and in-
ternal disturbances

Hence, the course of action during an identification of such processes depends heavily on the
degree these challenges appear. These challenges are however given adequate responses as

1. CCA method facilitates the handling of large data spaces (due to underlying canonical
correlation analysis),

2. LPV methods facilitate the identification of nonlinear processes, and

3. ORT approach facilitates the identification of the process even under influences of dis-
turbances.

The general question is hence whether it is possible to combine all three approaches into one.
However, with respect to the LPV approach, the following problems can be hardly overcome:

• Dimensionality of the problem and numerical load: usual identification problems of
industrial scale might have four and more inputs, four and more outputs, and require
rather long past and future horizons. In such cases, the dimensionality and hence the
numerical load rapidly increases, see Table 1 in Verdult and Verhaegen (2002) or Table
1 in van Wingerden and Verhaegen (2009).

• Determination of parameter vector: which plant variables are needed for the formation
of the parameter vector?

• Plant safety: even if the parameter vector might be found, the remaining question
is regarding the feasibility of a thorough identification, which covers the necessary
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domain of both the input and the parameter vector. This is limited by possible safety
or operational constraints.

These issues lead to the idea of replacing a LPV identification by a recursive re-identification
of a LTI model during a change of the operating point. Regarding the existing recursive
approaches, the review of the previous chapter points to the following issues:

• Existing recursive approaches are numerical methods, i.e., the problem of recursion
is not addressed in terms of a sound theoretical framework like the coordinate-free
framework.

• The algorithms are purpose-build, i.e., the basic approach is mainly a modification of
the MOESP algorithm and is hence not easily applicable to other methods.

From these challenges and issues, the problem statement of this thesis can be rendered pre-
cisely as follows:

In order to circumvent the problems of a general identification of linear parameter-
varying models by an adaptation of a linear time-invariant model, a methodolo-
gical approach to recursive subspace identification is needed. This methodological
approach is required to facilitate the implementation in terms of the majority of
existing methods. This methodological approach needs to be derived within the the-
oretical framework of subspace identification. Basic identification methods need
to be capable to yield sufficiently accurate results even when applied to problems
of industrial scale.

3.2 Conceptual outline

As this problem statement includes the derivation of a general approach to recursive subspace
identification as a subtask, this subtask can be separated from the overall task of deriving a
suitable recursive algorithm for the identification of industrial systems. Hence, there are the
following two separate subtasks:

1. Derivation of new basic algorithms for open-loop and closed-loop identification in order
to achieve sufficient results in terms of the identification of industrial systems
As the goal is the recursive identification of industrial systems, the basic algorithms
should not only facilitate the recursive identification but should also give sufficiently
good results when applied to industrial systems. Whereas the former point is a pro-
blem with respect to the implementations of closed-loop methods, the latter point is
a problem in terms of the open-loop identification. Hence, new algorithms for both
open-loop and closed-loop identification are needed.

2. Derivation of a new approach for recursive subspace identification
To be considered a recursive approach, information regarding the model from previous
identifications needs to be transfered to following identifications and to be used for
the calculation of the updated model. This information is furthermore required to be
as close as possible to the actual model in terms of its meaning. By fulfilling this
requirement the recursive approach becomes similar to the recursive identification of
the classical methods, which update the parameter vector and hence directly update
the model.
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3.2.1 Conceptual outline for the derivation of basic algorithms

As the first subtask states, not only modifications with respect to the quality of the results
are needed but also the modifications which yield algorithms that are in accordance with
the state approach as it represents the implementation of the coordinate-free framework. In
terms of open-loop identification, the main problem is the capability of the given implemen-
tations of the ORT approach, which was concluded to be the core approach of a method
for the identification of industrial processes. In terms of closed-loop identification, the main
hindrance is the implementation of the direct-approach methods by either VARX-based algo-
rithms or least-squares-based algorithms. These two types of algorithms should be replaced
by a state-approach algorithm.

Open-loop identification

Following from the above considerations, the proposed algorithm for the open-loop problem
will be combination of the CCA method and the ORT approach. That is, the calculation of
the deterministic state

xd(t) = Ê||U+
t

{yd,+
t |U−

t } ,

where yd,+
t follows from the orthogonal projection

yd,+
t = Ê{y+

t |U−
t ∨ U+

t } ,

should be made in terms of a canonical correlation analysis. On the basis of the CCA method
of Katayama and Picci (1999), the archetype algorithm of the state estimation would be based
on

L−1
f Σ

yd,+
t u−

t |u+
t

L−T
p = UΣV T ≈ UnΣnV T

n ,

where

Σ
yd,+

t yd,+
t |u+

t
= Lf LT

f ,

Σu−
t u−

t |u+
t

= LpLT
p .

The state is then given by

xd(t) = CkΣ−1
u−

t u−
t |u+

t

u−
t = Σ1/2

n V T
n L−1

p u−
t .

This approach naturally leads to a state-approach algorithm and is expected to solve the reli-
ability issues of the existing MOESP-based algorithms proposed in Chiuso and Picci (2004a)
and Katayama (2005). These issues are demonstrated by the identification study of Chapter
5. Given this archetype algorithm, the actual goal is the combination of the orthogonal de-
composition and the oblique projection, in order to calculate the deterministic state directly
from the disturbance-affected y+

t instead of yd,+
t .

Closed-loop identification

The proposed algorithm for the closed-loop problem will be based on the PBSID method,
as this method is derived based on the coordinate-free framework, which also is the basis
for the approach to recursive subspace identification. The proposed algorithm will directly
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implement the theoretical basis of the PBSID method given by Lemma 2.8, which already
describes the state-approach algorithm needed for the recursive identification. That is, the
calculation of the oblique predictor space as

X +/−
t =

kf −1∨
h=0

X h
t ,

where
X h

t = Ê||P+
[t,t+h)

{y(t + h) | P−
t } ,

needs simply to be given a suitable algorithm. By achieving this, the pre-estimation of a
VARX model or the least-squares algorithm of the previously disclosed algorithms of the
PBSID method, which would otherwise hinder the integration of the recursive scheme, can
be avoided.

A long-term objective would be the inclusion of the ORT approach into the resulting algo-
rithm. This is however a problem of its own, as the absence of feedback is a basic element of
the derivation of the ORT approach, see Katayama (2005) and Picci and Katayama (1996b).
Hence, an in-depth analysis regarding the orthogonal decomposition in a closed-loop setting
and an answer to the question whether it is possible at all are needed.

3.2.2 Conceptual outline for the approach to recursive subspace identification

Once the first subtask is cleared, the focus shifts towards the derivation of the approach to
recursive subspace identification. This approach is obviously required to reuse all the ne-
cessary information from the results of past identifications while keeping the compression of
this information as high as possible to avoid the propagation of redundant information (Bat-
helt, Söffker, and Jelali, 2017). The derivations made within the coordinate-free framework
of Chiuso and Picci (2003) and Lindquist and Picci (1996b, 2015) provide an entity, which
actually fits all these requirements – the minimal predictor space. This predictor space is the
core entity of every identification as its determination is the actual identification, whereas
the remainder, i.e., the calculation of the system matrices, is rather a realization of the model
than an identification (Akaike, 1974, p. 669, Lindquist and Picci, 1996b). That is, this sub-
space can be considered to be equal to the model. Considering an isolated identification, the
predictor space contains furthermore all the necessary information from the past data needed
for the prediction of the future, while being the smallest subspace to do so, i.e., there are no
redundant information contained in this space. So does any basis of this space. Therefore, the
approach to recursive subspace identification might the given as follows. Given the (oblique)
predictor space X +/−

t of time t, a substitution as

X +/−
t+k = Ê||U+

t+k
{Y+

t+k | P−
t+k} = Ê||U+

t+k
{Y+

t+k | X +/−
t ∨ P−

[t,t+k)}

should be eventually possible. That is, the projection of the future outputs of a system onto
the joint space spanned by any previous predictor space and the space of the intermediate
inputs and outputs should yield the same results as the projection of the future outputs onto
the whole past. Such a substitution results in a natural recursive framework for subspace
identification, as any future predictor space can then be defined in terms of any past predictor
space. This claim needs to be thoroughly proven.
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Note that such an approach will not lead to purpose-build algorithms, as the recursive scheme
can be directly implemented in terms of any state-approach method, such as CCA or N4SID,
and do not need any kind of modification of the respective algorithms. The only difference
within the resulting algorithms concerns the past data, i.e., instead of a huge amount of past
data, only the past state and the intermediate data would be needed. In terms of realization
methods/algorithms, the only additional step is a state estimation. This step does however
not alter the general procedure of any realization method/algorithm.

3.3 Summary

In this chapter, the scope of the following work is precisely defined. Considering that the
identification of (large) industrial processes by LPV models leads to a number of more or
less unsolvable issues, like the dimensionality of the problem or the correct definition of the
parameter vector, the focus of the identification of such processes is switched to a recursive
re-identification of a LTI model during the change of operating points. Therefore, a suita-
ble approach to recursive subspace identification is needed, which can furthermore be easily
implemented within algorithms of existing methods – a requirement existing recursive met-
hods can hardly met. Furthermore, suitable open-loop and closed-loop algorithms for the
identification of industrial processes are required.

As the approach will use also future data (U+
t and Y+

t ), it might be debatable whether it is
a genuine recursive approach or just a recycling of already known information. However, the
use of future data is a basic characteristic of all subspace methods. Furthermore, judging the
approach proposed here in terms of the existing methods, which also perform the recursion
using future data, it can be concluded that the approach proposed here will lead to a recursive
methodology.

Recapitulation of main results

• In terms of open-loop identification, an improved algorithm of the ORT approach is
needed, i.e., not a MOESP-based algorithm. This algorithm should be able to deal
with the nonlinear nature of industrial processes. The idea is to derive a projection
which yields the deterministic predictor space by combining the orthogonal decompo-
sition of the ORT approach with the oblique projection used for the determination of
the joint stochastic-deterministic predictor space. This projection facilitates in turn a
combination of the CCA method with the ORT approach.

• In terms of closed-loop identification, an algorithm of the PBSID method needs to be
derived which circumvents the VARX estimation. Based on the theoretical derivation
of the PBSID method, such an algorithm is given by numerically realizing Lemma 2.8.

• In terms of recursive identification, an approach, which is based on the predictor space,
needs to be derived.
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In order to achieve the goal of deriving a recursive subspace identification algorithm, which
is able to deal with industrial problems, the task is subdivided into the subtask of deriving
suitable basic identification algorithms and the subtask of deriving the recursive scheme. In
the following the first subtask will be covered. This subtask is illustrated in Figure 4.1.
For the moment, the question regarding an identification during the change of the plant’s
operating points is left aside. Only the basic identification problem, i.e., deriving a model for
the present operating point, is considered. In this context, two new identification algorithms
for both open-loop conditions and closed-loop conditions are proposed. These two algorithms
are based on existing methods and approaches and are motivated by

• the need for an open-loop algorithm, which combines the capabilities of reliably approx-
imating a suitable LTI model for an operating point of an otherwise nonlinear system
and suppressing the influence of process disturbances on the identification result, and

• the need for a closed-loop algorithm, which avoids either an involved least-squares
procedure or the pre-estimation of a VARX model, which is done in terms of all closed-
loop identification methods of the direct approach.

These two algorithm are then the basis for an integration of the recursive scheme derived in
Chapter 6.

In terms of the open-loop algorithm, the fundamental idea of the ORT approach – decom-
position of the output into the deterministic and stochastic components – is appealing for
the practical use, as usually only the deterministic plant behavior is needed while effects of
disturbances need to be suppressed. The algorithm needs however to be furthermore able
to deal with the great variety of realistic systems, at least in terms of the identification of a
LTI model for an operating point. As however documented by the first trail identifications
using Tennessee Eastman Process model, which feature the typical nonlinear behavior of real
processes or plants, in Bathelt and Jelali (2014), the results of the existing realization-based
algorithm of the ORT approach have been unexpectedly poor. Hence, an analysis of the
approach and its previous implementation as well as a subsequent revision of the algorithm
are needed. This proposed algorithm will further take changes into consideration, which ease
the integration of the recursive scheme. The results and the new algorithm are presented in
Section 4.1.

In terms of the closed-loop algorithm, the implication made by the explanations of Section
3.2.2 need to be taken into account. That is, for an easy implementation of the recursive
scheme, the identification algorithm should facilitate the partial replacement of the past data
by a state estimate. Considering the closed-loop methods, this results in a problem, as the
algorithms of all methods include steps which hinder the integration of the recursive scheme.
With respect to the favored PBSID method and also in terms of the SSARX method, this
is the pre-estimation of a VARX model. Hence, an algorithm will be proposed which avoids
this pre-estimation and thus facilitates the incorporation of the past state. This is presented
in Section 4.2.
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Figure 4.1: Principle of identification of new models for each operating point; the colored
areas around the inputs symbolize the excitation for identification

4.1 Basic algorithm for open-loop identification

First trial runs of the ORT approach and its numerical implementation as published in
Katayama (2005), which have been made using the Tennessee Eastman Process model and
have been published in Bathelt and Jelali (2014), have revealed major problems when more
realistic processes are considered. The standard ORT implementation is not able to give
satisfying results (cf. results of the study of Chaper 5). This problem is however not limited to
the ORT implementation but rather a general problem of realization-based algorithms, as the
MOESP algorithms yield similar unsatisfactory results. This points to a more systematic and
deep-seated problem centered around the realization approach. A solution for this problem
and the also necessary change needed for the recursive approach have led to the concept of
combining the fundamental idea of the ORT approach of Katayama (2005) and Picci and
Katayama (1996b) with the CCA method of Katayama and Picci (1999).

The first subsection addresses the cause of the unsatisfactory results and thus motivates
the switch to a state algorithm, which furthermore offers a basis for the incorporation of
the recursive approach. In the second subsection, the method combining CCA and ORT
is outlined. The third subsection describes the numerical implementation, and the fourth
subsection gives the results of two theoretical examples. In Chapter 5, the results of an
identification study are presented, showing that the method derived in the following yields
the overall best results in both disturbance-free and disturbance-affected environments. The
problem and the algorithm have first been disclosed in Bathelt, Söffker, and Jelali (2015).
This section expands the content of this paper by several in-depth explanations.



4.1 Basic algorithm for open-loop identification 67

(U+
t )⊥

Ê
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Figure 4.2: Orthogonal decomposition of y+
t according to PO-MOESP method (left) and

theoretical decomposition of y+
t via oblique projections (right)

4.1.1 Problem of the existing algorithm of the orthogonal decomposition

The algorithm for the ORT approach as given in Katayama (2005) is based on the MOESP
method. As discussed in Section 2.6.2, the MOESP method is based on an orthogonal
decomposition of the future outputs with respect to the future inputs and the respective
complement. This is not similar to the orthogonal decomposition of the ORT approach,
where the future outputs are decomposed with respect to future and past inputs. Taking
furthermore the optimal predictor discussed by Theorem 2.13 into consideration, the problem
concerns the differences between the orthogonal decomposition of the MOESP method and
the oblique decomposition as given by the optimal predictor.

In terms of the PO-MOESP algorithm, this orthogonal decomposition is depicted in the left
part of Figure 4.2. The estimation of the matrices A and C is not a problem as the orthogonal
projection onto the complement of the past Ê

{
P−

t

∣∣∣(U+
t )⊥

}
in

Ê
{

y+
t

∣∣∣Ê {P−
t

∣∣∣(U+
t )⊥

}}
= Okx̃(t)

only affects the state as
x̃(t) = Ê

{
x(t)

∣∣∣Ê {P−
t

∣∣∣(U+
t )⊥

}}
and hence yields, theoretically, the correct observability matrix. The actual problem is created
by the associated orthogonal projection

Ψ̃ku+
t = Ê{y+

t |U+
t } . (4.1)

Following Corollary 2.1, the operator Ψ̃ is non-causal. As the input u is not necessarily white
noise, i.e., a processes with mutually orthogonal random variables, the state x(t) correlates
with u+

t through its deterministic part xd(t). This becomes evident if Ψ̃k is written as

Ψ̃k = Ψk + OkΣxd(t)u+
t

Σ−1
u+

t u+
t

. (4.2)
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The lower-triangular structure mandatory for causality is lost, as OkΣxd(t)u+
t

Σ−1
u+

t u+
t

has in
general not a lower-triangular structure1. As outlined in the MOESP paragraph of Section
2.6.2, the elimination of this term is achieved by the left-multiplication with

(
O⊥

k

)T
(cf.

(2.129)). Thus,(
O⊥

k

)T
Ψ̃k =

(
O⊥

k

)T
Ψk +

(
O⊥

k

)T
OkΣxd(t)u+

t
Σ−1

u+
t u+

t

=
(
O⊥

k

)T
Ψk (4.3)

follows. However, this relation holds only true if the congruence of the range space of Ok and
the cokernel of O⊥

k is exact, or, in terms of the numerical implementation, at least sufficiently
exact.

If the specified order used for the estimation of Ok (see Section 2.6.2) is the same as the
order of the true system, (4.3) is fulfilled despite the use of an estimate of O⊥

k . In cases
of considerable order reduction, as for example occurring during the estimation of linear
approximate models for nonlinear systems, which are in this context in general of high order
(see Remark 5.1), the deviations between the cokernel of Ô⊥

k and the range space of Ok (in
this context only of symbolic character) are considerable. Hence, (4.3) using Ôk yields(

Ô⊥
k

)T
Ψ̃k =

(
Ô⊥

k

)T
Ψk + R , (4.4)

where
R =

(
Ô⊥

k

)T
OkΣxd(t)u+

t
Σ−1

u+
t u+

t

. (4.5)

As such a residual term is not taken into account in the theoretical derivation of the calculation
of B and D, it will affect those matrices and will hence worsen the model. The effect R has on
the matrices depends on the choice of n. The following examination shows that a reduction
of the order n results in an enlargement of R.

Assuming that the identification is carried out as described in Section 2.6.2, the estimate of
the observability matrix follows then as a result of the SVD (2.123) with Ôk = UnΣ1/2

n . An
estimate of O⊥

k is consequently given by

Ô⊥
k = Ur .

It follows that R is given by
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(
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)T
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t u+
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r US1/2Σxd(t)u+
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Σ−1
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.

1The entity x(t) in Figure 4.2 is hence given by x(t) = Ê{x(t)|U+
t } = Ê{xd(t)|U+

t }.
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Thus, the smaller the order is chosen, the more singular values of considerable modulus
are contained in Σr and R grows larger. Another effect that influences the residual is the
covariance of the past and future of u, as it enters the equation through Σxd(t)u+

t
.

In contrast to the orthogonal decomposition of the output, methods decomposing the data
as described in Theorem 2.13, do not suffer from this problem. The oblique decomposition
of the output according to

Ê||U+
t

{y+
t |P−

t } = OkC∞p−
t = Okx(t) ,

Ê||P−
t

{y+
t |U+

t } = Ψd
k u+

t

supersedes any secondary calculations for the extraction of Ψd
k . In fact, as shown in the right

part of Figure 4.2, the oblique decomposition and orthogonal decomposition differ only in
terms of the recovery of the data vectors within the space of the past inputs and past outputs
or the space of the future inputs. Following Lemma 2.3, the oblique projection yielding
Okx(t) is given by
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whereas the orthogonal projection on the complement of the past is given by
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(4.7)

where p̃−
t = p−

t − Ê
{

p−
t

∣∣∣U+
t

}
. As both equations show, the difference is only in terms of the

data vector p−
t . It is the missing Ê

{
p−

t

∣∣∣U+
t

}
in (4.7) which reappears in (4.1) in terms of

OkΣxd(t)u+
t

Σ−1
u+

t u+
t

u+
t .

Another advantage of the oblique decomposition is the possibility of directly estimating the
state. Once the states x(t) and x(t + 1) are estimated, the system matrices are calculated
through (2.114). Possible estimation errors, which may affect x̂(t) and x̂(t + 1) due to the
linearization (see Remark 4.4) of the data of a nonlinear system, are mitigated by the joint
least-squares calculation of the system matrices based on the original data (y(t) and u(t)).
Thus, the influence due to the violation regarding the assumption of linearity, which the
methods are derived under, will be reduced, so that the identification of linear low-order
models of an operating point of nonlinear systems will not be an issue.

Remark 4.1. It should be emphasized that the problem outlined above does not reside within
the ORT approach. It is rather an implementation-based issue of the MOESP approach.
In fact, the derivation of the ORT approach as given in Katayama (2005) uses a two-step
strategy, which includes the optimal predictor of Theorem 2.13. Subsequent to the orthogonal
projection (2.140),

Yd,+
t = Ê{Y+

t |U−
t ∨ U+

t } ,
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Figure 4.3: Extraction of a deterministic state estimate

which removes the disturbance effects, the predictor space of the deterministic component of
the system is calculated as

X d,+/−
t = Ê||U+

t
{Yd,+

t |U−
t } .

The claim that the problems are caused by the numerical implementation based on a MOESP-
like algorithm of the ORT method, is backed up by the results of Chapter 5. Here, the
CCA-based ORT algorithm proposed in the following subsection shows the best overall per-
formance.

4.1.2 New algorithm for the orthogonal decomposition approach based on
canonical correlation analysis

The consequence of the discussion of the previous subsection is the idea of combining the
orthogonal decomposition of the ORT approach with the calculations of the optimal predictor.
This points to a state estimation which includes the orthogonal decomposition and in turn
yields the deterministic state of the system. As outlined in Section 2.6.2 by Theorem 2.15,
the identification of the deterministic subsystem by the ORT approach is based on the fact
that the orthogonal projection

yd(t) = Ê{y(t) | U}

yields a causal estimation of the deterministic component of y(t), i.e., Ê{y(t) | U} = Ê{y(t) |
U−

t+1}. Hence, the oblique projection

X d,+/−
t = Ê||U+

t
{Yd,+

t |U−
t }

gives the deterministic predictor space. This relation is illustrated in Figure 4.3. Further
inspection shows also

Ys,+
t ⊥ U+

t ∨ U−
t . (4.8)

Together with the fact that

Ê||C{A1 ⊕ A2|B} = Ê||C{A1|B} (4.9)
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if A2 ⊥ B ∨ C, the predictor space X d,+/−
t can be directly calculated.

Proposition 4.1. (Bathelt, Söffker, and Jelali, 2015) The combined orthogonal decomposi-
tion of the future output and calculation of the deterministic predictor space is given by

X d,+/−
t = Ê||U+

t
{Y+

t |U−
t } . (4.10)

Proof. An element y(t + h), h = 0, 1, · · · , k, of the future outputs y+
t can be represented by

y(t + h) =
t+h∑

i=−∞
Gt+h−iu(i) +

t+h∑
i=−∞

Ht+h−ie(i)

= yd(t + h) + ys(t + h) ,

where

Gt =

 D t = 0

CdAt−1
d B t > 0

, Ht =

 I t = 0

CsAt−1
s K t > 0

.

Due to the orthogonality of u and e, yd ⊥ ys follows. Based on the decomposition P−
t =

U−
t ⊕ Ys,−

t , the oblique projection Ê||U+
t

{y(t + h) | P−
t } can be split into a deterministic and

a stochastic part as

Ê||U+
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{y(t + h) | P−
t } =Ê||U+

t
{yd(t + h) + ys(t + h) | U−

t ⊕ Ys,−
t }

=Ê||U+
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{yd(t + h) + ys(t + h) | U−
t }

+ Ê||U+
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=Ê||U+
t

{yd(t + h) | U−
t } + Ê{ys(t + h) | Ys,−
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(4.11)

As U+
t ⊥ Ys,−

t , the second oblique projection becomes an orthogonal projection. The oblique
projection Ê||U+

t
{yd(t + h)|U−

t } yields

Ê||U+
t

{yd(t + h)|U−
t } = CdAh

d

t−1∑
i=−∞

At−1−i
d Bu(i)

= CdAh
dxd(t)

= y−
d (t + h) .

The elements y−
d (t + h), h = 0, 1, · · · , k, span the deterministic predictor space X d,+/−

t .
The orthogonal projection of the last equation in (4.11) defines the predictor space of the
stochastic subsystem, i.e., X s,+/−

t .

Remark 4.2. Based on the interpretation of projections as estimations of high-order ARX
models, as made for example in Jansson and Wahlberg (1996), Ljung and McKelvey (1996a),
and Qin, Lin, and Ljung (2005), projection (4.10) resembles the estimation of a FIR (finite
impulse response) model. In the standard algorithms, the inclusion of Y−

t in the past data
is only needed for the identification of the stochastic subsystem. This in turn gives rise to
the autoregressive part of the high-order ARX model. In terms of the deterministic part of
Y−

t , i.e., for Yd,−
t = Ê{Y−

t |U−
t }, the inclusion Yd,−

t ⊂ U−
t holds. That is, Yd,−

t contains no
additional information regarding the past if U−

t is given. Thus, Yd,−
t is not needed for the
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prediction of the future of the deterministic outputs yd,+
t , and hence the autoregressive part

is redundant and the moving average part over U−
t remains.

The calculation of the state xd(t) is based on the CCA method of Katayama and Picci (1999).
In the context of the here proposed ORT algorithm, the data used for the underlying canonical
correlation analysis needs to be changed according to the differences between the standard
projection Ê||U+

t
{Y+

t |P−
t } and the projection Ê||U+

t
{Y+

t |U−
t } of Proposition 4.1. Thus, the

conditional covariance matrices are now based only on the past input (instead of the past
input and past output) and are given by

Σy+
t y+

t |u+
t

= E

{(
y+

t

∣∣∣U+
t

⊥) (
y+

t

∣∣∣U+
t

⊥)T
}

,

Σy+
t u−

t |u+
t

= E

{(
y+

t

∣∣∣U+
t

⊥) (
u−

t

∣∣∣U+
t

⊥)T
}

,

Σu−
t u−

t |u+
t

= E

{(
u−

t

∣∣∣U+
t

⊥) (
u−

t

∣∣∣U+
t

⊥)T
}

.

(4.12)

With the Cholesky factorizations

Σy+
t y+

t |u+
t

= LLT , Σu−
t u−

t |u+
t

= MMT , (4.13)

the SVD of the canonical correlation analysis is given by

L−1Σy+
t u−

t |u+
t

M−T = UΣV T =
[
Un Ur

] Σn 0

0 Σr


V T

n

V T
r

 , (4.14)

and the estimate of a deterministic state of order n subsequently follows with

x̂d(t) = Σ1/2
n V T

n M−1u−
t . (4.15)

Although the necessity of explicitly determining the state estimate x̂d(t+1) is avoided by the
numerical implementation of the CCA method (see following subsection), a possible approach
to the coherent estimation of x̂d(t) and x̂d(t + 1) can be outlined as follows (see, e.g., Chiuso,
2007b; Chiuso and Picci, 2004d). From (4.14), an estimate of the observability matrix is
found as

Ôk = LUnΣ1/2
n .

By construction Ôk is injective, i.e., the pair (A, C) of Ôk is observable. Thus, it has a left
pseudo-inverse fulfilling Ô†

kÔk = In. Then, the state estimates are calculated by

x̂d(t) = Ô†
kΣy+

t u−
t |u+

t
Σu−

t u−
t |u+

t
u−

t ,

x̂d(t + 1) = Ô†
kΣy+

t+1u−
t+1|u+

t+1
Σu−

t+1u−
t+1|u+

t+1
u−

t+1 ,

where y+
t+1 contains y(t+h), h = 1, · · · , k+1 . The model is then determined by the regression

min
Ad,Bd,Cd,Dd

∥∥∥∥∥∥∥
x̂d(t + 1)

yd(t)

−

Ad Bd

Cd Dd


x̂d(t)

u(t)


∥∥∥∥∥∥∥

2

H

, (4.16)
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where yd(t) is the deterministic part of the output given by2

yd(t) = Ê{y(t)|U−
t+1} . (4.17)

Remark 4.3. A formulation of the regression in terms of the usual output y(t) would yield
the same result as the stochastic part ys(t) of y(t) is orthogonal to both u(t) and x̂d(t). That
is, the regression

min
Ad,Bd,Cd,Dd

∥∥∥∥∥∥∥
x̂d(t + 1)

y(t)

−

Ad Bd

Cd Dd


x̂d(t)

u(t)


∥∥∥∥∥∥∥

2

H

can also be used. However, due to the lack of sufficiently accurate orthogonality in the case
of numerical entities, the use of yd(t) is preferred for the numerical implementation.

Due to the use of the CCA approach and the direct calculation of the deterministic predictor
space by an oblique projection, this algorithm of the ORT approach differs not only from
the MOESP-based algorithm of Katayama (2005) but also from the algorithm of Picci and
Katayama (1996b, pp. 157–158). The latter one uses an approach via an intersection between
U−

t and the extended future subspace spanned by Ê{y+
t |U} and x(t) (see Lemma 4.2 in Picci

and Katayama, 1996b). It is also noteworthy that the approach presented in Chiuso and
Picci (2004d) is different, as it is based on the determination of the complementary state, i.e.,
the state resulting from an orthogonal projection of y+

t onto u−
t − Ê{u−

t |U+
t }. This creates

a state, which is orthogonal to u+
t . However, by Corollary 2.1 and Katayama (2005, p. 282),

this state is non-causal. Thus, a correct estimation of a model of the system is not possible
as Bd and Dd can not be estimated.

4.1.3 Numerical implementation

In terms of the implementation, the data vectors u−
t and y+

t , u+
t are limited to the intervals

[t − k, t − 1] and [t, t + k − 1]. The interval length k might be chosen arbitrarily, but have
to fulfill the conditions for informative experiments as outlined by Proposition 2.1 and in
Chui and Maciejowski (2005). If u is a regular stochastic process, these conditions and the
condition of U+

t ∩ U = {0}, which is required for the oblique projection, are naturally met.
The order n is assumed to be known or estimated by the methods discussed in Section 2.6.3.
The algorithm hereafter referred to as CCA-ORT is based on the following steps:

1. Calculation of the QR decomposition
U+

t

U−
t

Y+
t

 =


R11 0 0

R21 R22 0

R31 R32 R33




QT
1

QT
2

QT
3



2It should be kept in mind that U−
t includes only the past of u, whereas y(t) also depends on the current

u(t). Thus, the projection needs to use U−
t+1 = U−

t ∨ Ut.
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2. Calculation of the numerical equivalents of the conditional covariance matrices of equa-
tion (4.12) as

NΣy+
t y+

t |u+
t

≈ Sy+
t y+

t |u+
t

= R32RT
32 + R33RT

33 ,

NΣy+
t u−

t |u+
t

≈ Sy+
t u−

t |u+
t

= R32RT
22 ,

NΣu−
t u−

t |u+
t

≈ Su−
t u−

t |u+
t

= R22RT
22 .

As the result of the QR decomposition is not only needed to determine the conditi-
onal sample covariance matrices but also ŷd

N(t), a scaling with 1√
N

as done in Kata-
yama (2005) and Katayama and Picci (1999) to adjust Sy+

t y+
t |u+

t
, Sy+

t u−
t |u+

t
, Su−

t u−
t |u+

t
to

Σy+
t y+

t |u+
t

, Σy+
t u−

t |u+
t

, Σu−
t u−

t |u+
t

is not possible.

3. Calculation of the factorizations

Sy+
t y+

t |u+
t

= LLT , Su−
t u−

t |u+
t

= MMT

using the SVDs

Sy+
t y+

t |u+
t

= ULΣLVT
L , Su−

t u−
t |u+

t
= UMΣMVT

M

as
L = VLΣ−1/2

L UT
L , M = VMΣ−1/2

M UT
M

4. Calculation of the SVD

L−1Sy+
t u−

t |u+
t

M−T = UΣVT =
[
Un Ur

] Σn 0

0 Σr


Vn

T

Vr
T


5. Determination of the state estimate

x̂d
N(t) = Σ1/2

n VT
n M−1U−

t .

It should be noted that this state estimate is N−1/2 times smaller than the one given in
(4.15). This is due to the use of Su−

t u−
t |u+

t
instead of Σu−

t u−
t |u+

t
. This will however only

influence the estimation in terms of a similarity transformation or a scaling factor for
Bd and Cd, which is hardly an issue as the calculated model represents just one of the
countless possible realizations of the system. The calculation of the state estimate as

x̂d,∗
N (t) = N1/2Σ1/2

n VT
n M−1U−

t

is consistent with (4.15). This follows if the above numerical quantities are replaced by
the conditional sample covariance matrices

Σy+
t y+

t |u+
t

≈ S̃y+
t y+

t |u+
t

= 1
N

Sy+
t y+

t |u+
t

Σu−
t u−

t |u+
t

≈ S̃u−
t u−

t |u+
t

= 1
N

Su−
t u−

t |u+
t
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and the factorizations (with relation to L and M)

S̃u−
t u−

t |u+
t

= L̃L̃T = 1
N1/2 L 1

N1/2 LT , S̃u−
t u−

t |u+
t

= M̃M̃T = 1
N1/2 M 1

N1/2 MT .

With these relations, it follows from M̃ ≈ M and (4.15) that

x̂d,∗
N (t) = Σ1/2

n VT
n M̃−1U−

t

is the actual numerical equivalent of x̂d(t). Replacing M̃ by the above relation with
respect to M gives the equation of x̂d,∗

N (t) in terms of M. Note that there is no scaling
involved within the SVD of Step 4, as the respective factors are mutually canceled.

6. Determination of the numerical estimates of xd(t) and xd(t + 1) by choosing x̂d
N−1(t) =

x̂d
N(t)(:, 1 : N − 1) and x̂d

N−1(t + 1) = x̂d
N(t)(:, 2 : N)3. Such a partition of xd

N(t) yields
coherent numerical estimates of xd(t) and xd(t + 1). Observing that

Ck = Σ1/2
n VT

n M̃−1

is the deterministic (reversed) reachability matrix, the partition is equal to (assuming
the order of the row vectors in U−

t to be in accordance with Ck)

N−1/2x̂d
N−1(t) = CkU−

t (:, 1 : N − 1) ,

N−1/2x̂d
N−1(t + 1) = CkU−

t (:, 2 : N) = CkU−
t+1(:, 1 : N − 1) .

This reasoning can be as well extended to the joint stochastic-deterministic case.

7. Calculation of the orthogonal projection Ê{y(t)|U−
t+1} as

ŷd
N−1(t) = L31(1 : p, :)QT

1 (:, 1 : N − 1) + L32(1 : p, :)QT
2 (:, 1 : N − 1)

8. Solving the set of overdetermined equationsx̂d
N−1(t + 1)

ŷd
N−1(t)

 =

Ad Bd

Cd Dd


x̂d

N−1(t)

uN−1(t)


in terms of a least-squares solution.

The respective MATLAB® implementation of the CCA-ORT algorithm can be found in
Section B.1. This algorithm contains the estimation of both the deterministic model (as
shown here) and the stochastic model. The order estimation is not included within the there
shown implementation.

Remark 4.4. With regard to identifications of nonlinear systems like the Tennessee Eastman
Process, the QR decomposition can be also seen as a linearization procedure. Considering
the QR decomposition of Step 1, L33QT

3 contains both the disturbances effects as well as line-
arization errors. As the rows of QT

3 are orthogonal to the rows QT
1 and QT

2 , the linearization
is given in terms of a least-squares fit. Thus, the QR decomposition produces essentially a
high-order FIR model, or ARX model if P−

t is used instead of U−
t . In a second step, the

3The notation is used in the style of MATLAB®’s matrix notation, where A(i : j, k : l) describes the submatrix
of A consisting of rows i through j and columns k through l. The colon : itself indicates that either all
rows or all columns are used.
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model is extracted. This model extraction is basically a version of Ho-Kalman’s method
for the realization of deterministic systems (see Katayama, 2005). This becomes evident if
the connection of the two conditional covariance matrices of the oblique projection (4.6) is
considered. Assuming that the random vectors in p−

t are lined up in a descending order, it
follows that they are connected as

E

{
Ê
{

y+
t

∣∣∣(U+
t )⊥

}
Ê
{

p−
t

∣∣∣(U+
t )⊥

}T
}

= HE

{
Ê
{

p−
t

∣∣∣(U+
t )⊥

}
Ê
{

p−
t

∣∣∣(U+
t )⊥

}T
}

, (4.18)

where

H =



C

[
BK K

]
CAK

[
BK K

]
CA2

K

[
BK K

]
· · ·

CA

[
BK K

]
CAAK

[
BK K

]
CAA2

K

[
BK K

]
· · ·

...
...

... . . .

CAk−1
[
BK K

]
CAk−1A2

K

[
BK K

]
CAk−1A2

K

[
BK K

]
· · ·


= OkCK

∞ . (4.19)

The structure of H follows from the equations given in Section 2.2.1. Whereas the projections
recover H, the singular value decomposition step is essentially used to decompose this matrix
into Ok and CK

∞, or rather CK
k . In terms of the proposed algorithm of the ORT approach, H

is given by

H =



CB CAB CA2B · · ·

CAB CA2B CA3B · · ·

CA2B CA3B CA4B · · ·
...

...
... . . .

CAk−1B CAkB CAk+1B · · ·


= OkCd

∞ .

If the order of the random vectors in p−
t or u−

t is as in (2.6), CK
∞ and Cd

∞ would be reversed
reachability matrices and H would not exhibit the classical Hankel structure.

4.1.4 Examples

The two following examples are taken out of Katayama (2005) and should be considered
as illustrative examples. The results are supposed to show that the proposed algorithm
performs as stated and is not inferior to existing methods. The first example is an ARMAX
system, i.e., the dynamics of the stochastic and deterministic subsystems are the same. The
second example is a Box-Jenkins system, i.e., the dynamics of the stochastic and deterministic
subsystems are disjoint.

This second example somewhat illustrates the worst case of a system identification. That
is, the case of an identification with unknown and non-white disturbances acting on the
output of the system with non-white input signals. Although one might argue that this is
actually not a problem as the correct order of the joint stochastic-deterministic system can
be estimates by methods explained in Section 2.6.3, those order estimation methods might
fail as later shown by the identification study of Chapter 5. In such a case, it is necessary
that the identification methods still perform its duty flawlessly.
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ARMAX system

The ARMAX example, whose system structure is shown in Figure 4.4, is based on Case 2 of
the examples in Katayama (2005, pp. 292–296). The system to be identified is given by

P (z) = B(z)
A(z) = 0.0275z−4 + 0.0551z−5

1 − 2.3443z−1 + 3.081z−2 − 2.5274z−3 + 1.2415z−4 − 0.3686z−5 .

The only difference with respect to the example in Katayama (2005) concerns the choice of
the number of columns N and horizon lengths k, which are here set to N = 2000, k = 30. All
other parameters remain the same. The input u is a white-noise sequence with unity variance.
The disturbances v1 and v2 are white-noise sequences with σ2

1 = 0.01 and σ2
2 = 0.09. The

number of data sets is 100. Over the 100 simulations, the input is kept the same whereas
the disturbances are different for each simulation. The methods/algorithms used for the
identifications are the state algorithm of the CCA method, N4SID Algorithm 1, PO-MOESP,
PI-MOESP, ORT (MOESP-based implementation), and CCA-ORT. The implementations of
the algorithms are either based on the associated files of van Overschee and De Moor (1996)
or as outlined in the appendices of Katayama (2005). The pre-defined order of the models is
n = 5. As explained in Katayama (2005, p. 294), the disturbance of the system shown above
are defined by

v(t) = H(z)e(t) =
[
1 P (z)

] v1(t)

v2(t)

 ,

and hence the noise filter H(z) is a minimum-phase transfer function with the same poles/ei-
genvalues as P (z).

The evaluations of identification results are made in terms of the models’ eigenvalues, bode
plots, and coefficients in Figure 4.5 through Figure 4.7. As expected from the structure of
the system, both the eigenvalues in Figure 4.5 and the bode plots in Figure 4.6 show that
the all methods can handle the given problem. This is also reflected by the boxplots of the
coefficients of P (z) in Figure 4.7. The often reported problem of insufficient identification of
zeros by subspace methods presents itself by the relatively large dispersion of the numerator
coefficients. Regarding the order estimation, which has been done in parallel for test purposes,
the methods NIC and SVC yielded incorrect results if the penalty term C(T ) is not chosen
correctly. By setting C(T ) = kf kp log(T ), the order has been correctly estimated in all
identifications. In terms of the N4SID algorithms, it is however required to use the CVA
weighting (see van Overschee and De Moor, 1996, p. 114). The method of Fujikoshi and
Veitch (1979) has been able to correctly estimate the order in 60% of the identifications
whereas the remainder of estimates has resulted in overestimations.

u(t) +
+

v2(t)

P (z)
+
+

v1(t)

y(t)

Figure 4.4: System structure of the ARMAX example
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Figure 4.5: Eigenvalues of the identified models for the ARMAX system (red cross: nominal
value of P (z), black cross: value of identified models)
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Figure 4.6: Bode gain plots of the identified models for the ARMAX system (red: nominal
value of P (z), black: value of the identified models)
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Figure 4.7: Coefficients of the transfer functions of the identified models for the ARMAX
system (whisker length: 1.5 interquartile range)
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Box-Jenkins system

The Box-Jenkins example, whose system structure is shown in Figure 4.8, is based on Case
2 of the examples in Katayama (2005, pp. 261–264). The system to be identified is again
given by

P (z) = 0.0275z−4 + 0.0551z−5

1 − 2.3443z−1 + 3.081z−2 − 2.5274z−3 + 1.2415z−4 − 0.3686z−5 ,

whereas the input model C(z) and the disturbance noise model H(z) are described by

C(z) =
√

1 − 0.9
1 − 0.9z−1 , H(z) = 1 − 0.2z−1 − 0.48z−2

1 + 0.4z−1 + 0.4z−2 .

Again, the number of columns and horizon lengths are N = 2000 and k = 30. The white
noise eu has unity variance whereas e is adjusted to yield σ2

ys
= 0.01. The input sequence is

the same for all 100 simulations whereas the disturbance is varied for each simulation. The
aim is the identification of P (z) and hence the order of the model is set to n = 5. The
methods/algorithms are again the state algorithm of the CCA method, N4SID Algorithm 1,
PO-MOESP, PI-MOESP, ORT (MOESP-based implementation), and CCA-ORT.

The evaluation of the poles/eigenvalues of the resulting models in Figure 4.9 shows that not
all methods are able to deal with the increased complexity of the example. By introducing
a colored-noise disturbance with different dynamics, the specification of the model order
by the order of the deterministic subsystem is not sufficient for methods identifying a joint
stochastic-deterministic model (N4SID, CCA, PO-MOESP). In order to determine a model
of order five, the actual joint model with an order of seven is reduced. Hence, considering also
the poles of the stochastic system at −0.2±0.6i, the resulting poles of the model of order five
are a blend between the seven poles of the joint system. As shown by the other diagrams, the
ORT approach does not exhibit these problems, as the stochastic part ys is suppressed during
the identification. PI-MOESP takes a special position. Although yielding the same results
as the orthogonal decomposition approach, the underlying IV approach is different; see the
comment following the figures. Comparing the MOESP-based ORT algorithm and the CCA-
ORT algorithm, CCA-ORT has a slight advantage in terms of the dispersion of the identified
eigenvalues. A similar pattern presents itself in terms of the Bode gain plots of Figure 4.10.
CCA-ORT is the best among the methods, whereas the methods for the joint identification
show a clear bias in the high frequency range. The large scattering of the frequency response
observed for ORT, CCA-ORT and PI-MOESP stem from the difference of the power spectra
of yd and ys. In the high-frequency range, ys holds considerably more power than u. For
numerical reasons and due to finite horizons, the orthogonal decomposition is not completely
exact and hence the scattering appears. The effects seen here are also addressed in Chiuso
and Picci (1999, 2004a,d). For the joint identification, the boxplots of the coefficients in
Figure 4.11 and Figure 4.12 finally depict the deviation of the coefficient of the models from

eu(t)
C(z) u(t)

P (z) yd(t) +
+

e(t)
H(z) ys(t)

y(t)

Figure 4.8: System structure of the Box-Jenkins example
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the actual coefficients. Again, the CCA-ORT algorithm achieves a smaller coefficient variance
than MOESP-based ORT algorithm.
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Figure 4.9: Eigenvalues of the identified models for deterministic subsystem of the Box-
Jenkins system (red cross: nominal value of P (z), black cross: value of identified
models)
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Figure 4.10: Bode gain plots of the identified models for deterministic subsystem of the Box-
Jenkins system (red: nominal value of P (z), black: value of identified models)
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Figure 4.11: Coefficients of the transfer functions of the identified models for the deterministic
subsystem of the Box-Jenkins system (whisker length: 1.5 interquartile range)
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Figure 4.12: Relative error of the transfer function coefficients of the identified models for
the deterministic subsystem of the Box-Jenkins system (whisker length: 1.5
interquartile range)
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The good results of the PI-MOESP algorithm stem from the fact that it is essentially based
on the SVD of E

{
Ê{y+

t | (U+
t )⊥}Ê{u−

t | (U+
t )⊥}T

}
≈ Σyf up|uf

or, in terms of the QR de-
composition of the CCA-ORT algorithm, is based on the SVD of R22RT

32. Hence, the basis of
the identifications by the CCA-ORT and PI-MOESP algorithms is the same. The difference
is only in terms of the subsequent steps, which only influence the results if there is a system
reduction. This should however not hide the fact that the PI-MOESP algorithm is an IV
algorithm, which is bound to fail when the linearity of the system is dropped. Based on
the results of the identification study on the Tennessee Eastman Process, the PI-MOESP
algorithm is not suited for such systems, whereas the CCA-ORT algorithm is able to deal
with such systems.

Regarding the order estimation, the result has been the same as for the ARMAX example.
The correct order of the joint stochastic-deterministic system (n = 7) has been estimated
for the joint models by both NIC/SVC and the method of Fujikoshi and Veitch (1979) (with
the aforementioned 40% of over-estimations). In terms of the CCA-ORT method, the order
nd = 5 has been likewise recovered by the method of Fujikoshi and Veitch (1979).

4.1.5 Summary

In this section, an algorithm, called CCA-ORT, for the open-loop identification which com-
bined the ORT approach with the CCA method is presented. This derivation of an new
algorithm is motivated by the observation that the existing algorithm of the ORT approach
is not able to cope with identifications of real systems like the one which is emulated by the
Tennessee Eastman Process. The problem is traced back to the implementation based on the
MOESP method (realization-based method), which does not decompose the future outputs
based on two oblique projections onto the past data and the future inputs, but based on two
orthogonal projections onto the future inputs and the respective complement of the past.
This in turn is shown to introduce a bias within the estimation of the input and feed-through
matrices if the assumed order of the model is not equal to the order of the system – a problem
which is pronounced by nonlinearities of real systems. Modifying the oblique decompositions
of the optimal predictor with respect to the idea of the ORT approach, the deterministic com-
ponent of the state is estimated. The core calculation of the proposed CCA-ORT algorithm
is given by the canonical correlation analysis, which orders the the dimensions of the data
spaces with respect to the strongest correlation between the past and the future. An estima-
tion of a state of order n based on this calculation contains hence the n most important data
combinations from the past data. As the proposed algorithm is based on the state-regression
approach, the integration of the recursive scheme is also eased. The examples based on SISO
LTI systems already illustrate that the proposed algorithm achieves better results than its
MOESP-based counterpart.

4.2 Basic algorithm for closed-loop identification

Similar to the open-loop case, a new identification algorithm for the closed-loop case is needed.
The problem is however not related to the quality of the results or to a problem of a respective
method itself as it was the case for the open-loop identification. Now, the problem is rather
related to the algorithmic implementation of the methods. Among the closed-loop methods,
the PBSID method is favored, as it is already based on the coordinate-free framework, which is
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also the basis for the derivation of the recursive approach. Although its theoretical description
allows for an easy integration of the recursive scheme, the algorithms highly deviates from
the methodical description. Before the focus is turned to the derivation of a new algorithm
for closed-loop identification, it should be noted that an inclusion of the ORT approach into
the closed-loop method as done above for the CCA method is however not possible, as the
basis of the ORT approach is the freedom of feedback.

The recursive methodology that will be proposed in Chapter 6 requires the methods to be
able to use the past predictor space. Whereas this is not a major problem for open-loop
methods, it is a problem if the algorithm of the closed-loop method PBSID (the same holds
for the SSARX method) is considered. As discussed in Section 2.7.2, the method is based on
a pre-identification of a high-order VARX model, whose parameters are approximately the
Markov parameters of the predictor system (2.5). This algorithmic approach is based on the
fact that the determination of the predictor space as in (2.148) and (2.149) with

X +/−
t =

kf −1∨
h=0

X h
t , (4.20)

where
X h

t = Ê||P+
[t,t+h)

{y(t + h) | P−
t } , (4.21)

is not possible if the usual QR decomposition of the data according to
U+

t

P−
t

Y+
t

 =


R11

R21 R22

R31 R32 R33

QT (4.22)

is used, see Chiuso (2007a). As the VARX-based algorithm follows the rationale of estimating
the system’s Markov parameters over a suitable horizon, it requires the associated past input-
output data. Hence, a replacement of the majority of this past by some past predictor space
is problematic. If however the VARX estimation can be avoided and the estimation of X +/−

t

can be made according to the theoretical expressions of (4.20) and (4.21), the incorporation
of the recursive scheme into the resulting algorithm is possible.

As this problem is related to the numerical implementation of the oblique projections (4.21),
another way of implementing these projections is needed. Such an idea was presented in van
Overschee and De Moor (1996, p. 167), which is subsequently borrowed and applied to the
problem at hand. The idea outlined in van Overschee and De Moor (1996) is based on the
fact that an oblique projection is merely a part of a superordinate orthogonal projection. In
fact, the coefficients, which govern the orthogonal projection4

Ê{Y+
t | P−

t ∨ U+
t } =

[
LP−

t
LU+

t

] P−
t

U+
t

 ,

4The matrices LP−
t

and LU+
t

remain italic as they are numerically also the same in terms of the calculation
based on stochastic values. The upright notation is used only for numerical values which replace the
stochastic values.
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can be used to define the respective oblique projections by

Ê||U+
t

{Y+
t | P−

t } = LP−
t

P−
t , Ê||P−

t
{Y+

t | U+
t } = LU+

t
U+

t .

Hence, defining the QR decomposition as
P−

t

U+
t

Y+
t

 =


R11

R21 R22

R31 R32 R33

QT ,

the coefficients LP−
t

and LU+
t

are given by

[
LP−

t
LU+

t

]
=
[
R31 R32

] R11

R21 R22


−1

.

The inversion is replaced by a pseudo inversion if the matrix is rank-deficient. It is however
assumed in the following that this is not case, which is a sound assumption as u is assumed
to be a regular stochastic process.

Using this approach and changing the data arrangement of the matrix of the left-hand side
of (4.22), it will be shown that an implementation of (4.20) and (4.21) is possible without
compromising the causality of the estimator. The resulting advantage is the omission of the
VARX estimation and hence the feasibility of incorporating the recursive scheme into the
resulting algorithm.

4.2.1 Restructuring of the QR decomposition for the predictor-based subspace
identification method

The following discussion is based on the assumption that the system has no feed-through, i.e.,
D = 0. To this end, consider the numerical data matrix and its associated QR decomposition
to be structured as

P−
t

pN(t)

pN(t + 1)
...

pN(t + kf − 1)


=



R11

R21 R22

R31 R32 R33
...

...
... . . .

R(1+kf )1 R(1+kf )2 R(1+kf )3 · · · R(1+kf )(1+kf )





QT
1

QT
2

QT
3
...

QT
1+kf


, (4.23)

where

pN(t) =

yN(t)

uN(t)

 .
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The dimensions of the matrices are R11 ∈ Rkp(m+p)×kp(m+p), Ri1 ∈ R(m+p)×kp(m+p), i ≥ 2,
and Rij ∈ R(m+p)×(m+p), i, j ≥ 2. The restructuring of the data matrix as in (4.23) follows
from the consideration to facilitate the calculation of the orthogonal projections

Ê{y(t + h) | P−
t ∨ P+

[t,t+h)} = Ê||P+
[t,t+h)

{y(t + h) | P−
t } + Ê||P−

t
{y(t + h) | P+

[t,t+h)}

= Lt+h
P−

t

p−
t + Lt+h

P+
[t,t+h)

p+
[t,t+h) ,

(4.24)

which the oblique projections (4.21) are part of. The coefficients of these orthogonal projecti-
ons are defined in terms of (4.23) as

Lt
P−

t
= Ry

21R−1
11 ,

[
Lt+1

P−
t

Lt+1
Pt

]
=
[
Ry

31 Ry
32

] R11

R21 R22


−1

,

[
Lt+2

P−
t

Lt+2
P+

[t,t+2)

]
=
[
Ry

41 Ry
42 Ry

43

] 
R11

R21 R22

R31 R32 R33


−1

,

...

(4.25)

where the Ry
ij stem from the partition of the decompositions of the pN(t + h), h = 0, 1, · · · , kf −

1 in (4.23) with

pN(t + h) =


R(2+h)1 · · · R(2+h)(1+h) R(2+h)(2+h)

kf −1−h times︷ ︸︸ ︷
0(m+p) · · · 0(m+p)

QT

=


Ry

(2+h)1

Ru
(2+h)1

 · · ·

Ry
(2+h)(1+h)

Ru
(2+h)(1+h)


Ry

(2+h)(2+h) 0p×m

Ru
(2+h)(2+h)

 0(m+p) · · · 0(m+p)

QT

(4.26)

where Ry
(2+h)1 ∈ Rp×kp(m+p), Ry

(2+h)i ∈ Rp×(m+p) for i = 2, · · · , 1 + h, Ry
(2+h)(2+h) ∈ Rp×p,

and Ru
(2+h)i ∈ Rm×(m+p) for i = 2, · · · , 2 + h. By concatenating these calculations, the state

estimate can be retrieved.

Lemma 4.1. Let the QR decomposition of data be given according to (4.23). Then, the
estimation of OK

k xN (t) is given by

ÔK
k x̂N(t) =



Ê{yN(t) | P−
t }

Ê||Pt
{yN(t + 1) | P−

t }
...

Ê||P+
[t,t+kf −1)

{yN(t + kf − 1) | P−
t }


= LP−

t
P−

t , (4.27)
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where kf ≥ n and LP−
t

follows from

[
LP−

t
LP+

t

]
=



Ry
21 0

Ry
31 Ry

32
...

... . . .

Ry
(1+kf )1 Ry

(1+kf )2 · · · Ry
(1+kf )(1+kf −1)



×



R11 0

R21 R22
...

... . . .

R(kf )1 R(kf )2 · · · R(kf )(kf )



−1

.

(4.28)

The matrix LP+
t

has zeros above and on the main diagonal, and hence the estimate OKxN (t)
is causal.

Proof. As seen from the applied sub-matrices of R of the QR decomposition of (4.23) in
(4.25), one part of the causality of the calculation of the orthogonal projections is already
secured by the use of the respective past data. Hence, to prove causality of the estimator, it
just remains to show that all elements on and above the main diagonal of

LP+
t

=



Lt
Pt

Lt
Pt+1

· · · Lt
Pt+kf −2

Lt+1
Pt

Lt+1
Pt+1

· · · Lt+1
Pt+kf −2

...
... . . . ...

L
t+kf −2
Pt

L
t+kf −2
Pt+1

· · · L
t+kf −2
Pt+kf −2

L
t+kf −1
Pt

L
t+kf −1
Pt+1

· · · L
t+kf −1
Pt+kf −2


are zero, i.e., Lt+h

Pt+k
= 0, h = 0, 1, · · · , kf − 1, k ≥ h. This condition follows, as LP+

t
has

a similar meaning as Ψd,K
k and Ψ s,K

k in (2.113). Note that LP+
t

has kf block rows but only
kf − 1 columns. This results, as the orthogonal projection (4.24) uses only data of the past,
i.e., in terms of y(t + kf − 1) the last data set is p(t + kf − 2).

From the inversion of block matrices, the inversion of a lower triangular block matrix follows
with A 0

C D


−1

=

 A−1 0

−D−1CA−1 D−1

 .
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Hence, (4.28) can be rewritten as

[
LP−

t
LP+

t

]
=





Ry
21 0

Ry
31 Ry

32
...

... . . .

Ry
(kf )1 Ry

(kf )2 · · · Ry
(kf )(kf −1)


0(p(kf −1)×p)

(
Ry

(1+kf )1 · · · Ry
(1+kf )(1+kf −2)

)
Ry

(1+kf )(1+kf −1)



×





R11 0

R21 R22
...

... . . .

R(kf −1)1 R(kf −1)2 · · · R(kf −1)(kf −1)



−1

0(kp(p+m)+(kf −1)p×p+m)

(· · · )−1 R−1
(kf )(kf )



=


(

L
[t,t+kf −2]
P−

t

L
[t,t+kf −2]
P+

[t,t+kf −2)

)
L

[t,t+kf −2]
Pt+kf −2(

L
t+kf −1
P−

t

L
t+kf −1
P+

[t,t+kf −2)

)
L

t+kf −1
Pt+kf −2

 .

If follows that L
[t,t+kf −2]
Pt+kf −2

= 0. This matrix is constructed from coefficients Lt+h
Pt+kf −2

, h =
0, 1, · · · kf − 2. Repeating this rationale for the sub-matrices in the parentheses, the required
condition Lt+h

Pt+k
= 0, h = 0, 1, · · · , kf − 1, k ≥ h follows. Hence, the estimation of OK

k xN (t)
is causal.

Although the lower triangular structure in LP+
t

is secured, the drawback of this algorithm
is the loss of the Toeplitz structure of LP+

t
, which would however theoretically be given (cf.

Chiuso, 2007a). The numerical calculation of the elements on the diagonals of LP−
t

will not
lead to the theoretically prescribed equality of these elements. As the numerical examples
will show, this problem does however not compromise the results.

A deeper analysis of the meaning of the operation show that the fundamental idea of this nu-
merical algorithm of the PBSID method is comparable to the idea of the PARSIM (open-loop
method) or PARSIM-E (closed-loop method) methods as presented in Qin, Lin, and Ljung
(2005) and Qin and Ljung (2003b). In terms of the PARSIM methods, causality is enforced
by successive QR decompositions and calculations, which are basically implementations of
(4.25). Regarding the closed-loop estimation by PARSIM-E, estimates of the innovations are
also calculated, which are than reused in the next iteration. However, the approach proposed
here only needs one global calculation, which is a consequence of the reordering of the data.
The proposed approach can hence be seen as a continuation of the ideas of PARSIM and
PARSIM-E. The innovation estimation is not needed, as the innovation process is implicitly
estimated by the PBSID method by using the predictor system.

Remark 4.5. As the assumption of no feed-through is a build-in feature of the above propo-
sed algorithm, systems having a feed-through can not be correctly identified. However, by
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changing the data structure of the future part of the data matrix in the left-hand side of
(4.23) to

pN(t) =
[
uT

N(t) yT
N(t)

]T

and adding the row Ru
(1+kf )i, i = 1, · · · 1+kf in (4.28), the feed-through can also be included.

Note that the structure of the matrix consisting of Ry
ij also changes as the estimations of

X h
t , h = 0, · · · , kf − 1 in

X +/−
t =

kf −1∨
h=0

X h
t

are now given by
X h

t = Ê||(P+
[t,t+h)∨Ut+h){y(t + h) | P−

t } ,

which in turn are based on the orthogonal projections Ê{y(t + h) | P−
t ∨ P[t,t+h) ∨ Ut+h}.

That is, a term attributed to the additional subspace Ut+h needs to appear in each of the
inverted matrices of (4.25) after the last block row of these matrices.

4.2.2 Numerical implementation

As stated for the implementation of the CCA-ORT algorithm, the data vectors u−
t , y−

t , and
y+

t , u+
t are limited to the intervals [t − k, t − 1] and [t, t + k − 1]. The requirements for the

length are again given by the conditions for informative experiments as outlined in Chui and
Maciejowski (2005). From (4.20), the length of the horizons has at least to fulfill k > n,
where the order n is either known or estimated. The QR decomposition-based algorithm of
the PBSID method, subsequently referred to as PBSIDQR, is then given by the following
steps (the calculation of the Kalman gain is borrowed from the CCA algorithm in Katayama,
2005, pp. 291–292):

1. Construction of the numerical data matrix as in the left-hand side of (4.23) and calcu-
lation of the respective QR decomposition

2. Construction of the right-hand side matrices of (4.28), where the sub-matrices Ry
ij are

extracted as defined in (4.26).

3. Calculation and extraction of LP−
t

, and calculation of the estimator of ÔK
k x̂N(t) as

LP−
t

R11 = ÔK
k x̂N(t)Q1 .

Note that QT
1 is a matrix only containing the basis vectors of P−

t . That is, R11 contains
the necessary information regarding the actual structure of P−

t and hence LP−
t

R11

contains the information regarding ÔK
k x̂N(t). As QT

1 is furthermore an orthogonal
matrix, its inverse is given by its transpose Q1. Hence,

LP−
t

P−
t = LP−

t
R11QT

1 = ÔK
k x̂N(t) ⇒ LP−

t
R11 = ÔK

k x̂N(t)Q1
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4. Calculation of the SVD

LP−
t

R11 = UΣVT =
[
Un Ur

] Σn 0

0 Σr


Vn

T

Vr
T


5. Determination of the state estimate

xN(t) = Σ1/2
n VT

n QT
1

6. Determination of the numerical estimates of x(t) and x(t + 1) by choosing x̂N(t) =
xN(t)(:, 1 : N − 1) and x̂N(t + 1) = xN(t)(:, 2 : N)5. The underlying reasoning of this
determination is explained in Section 4.1.3.

7. Solving of the set of overdetermined equationsx̂N−1(t + 1)

ŷN−1(t)

 =

A B

C D


x̂N−1(t)

uN−1(t)


in terms of a least-squares solution under the constraint D = 0. By virtue of the
Frobenius norm, this constraint can be directly included into the calculation as

min
A,B,C

∥∥∥∥∥∥∥
xN−1(t + 1)

yN−1(t)

−

A B

C 0


xN−1(t)

uN−1(t)


∥∥∥∥∥∥∥

2

F

= min
A,B

∥∥∥∥∥∥∥xN−1(t + 1) −
[
A B

] xN−1(t)

uN−1(t)


∥∥∥∥∥∥∥

2

F

+ min
C

‖yN−1(t) − CxN−1(t)‖2
F

8. Calculation of the residualswN−1(t)

eN−1(t)

 =

xN−1(t + 1)

yN−1(t)

−

Â B̂

Ĉ 0


xN−1(t)

uN−1(t)


and its error covariance matricesΣ̂ww Σ̂we

Σ̂ew Σ̂ee

 = 1
N − 1

wN−1(t)wT
N−1(t) wN−1(t)eT

N−1(t)

eN−1(t)wT
N−1(t) eN−1(t)eT

N−1(t)


9. Solving of the algebraic Riccati equation

P = ÂP ÂT − (ÂP ĈT + Σ̂we)(ĈP ĈT + Σ̂ee)−1(ÂP ĈT + Σ̂we)T + Σ̂ww

5The notation is used in the style of MATLAB®’s matrix notation, where A(i : j, k : l) describes the submatrix
of A consisting of rows i through j and the columns k through l. The colon : itself indicates that either
all rows or all columns are used.
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and calculation of the Kalman gain as

K = (ÂP ĈT + Σ̂we)(ĈP ĈT + Σ̂ee)−1

The respective MATLAB® implementation of the QR decomposition-based algorithm of the
PBSID method can be found in Section B.2.

Remark 4.6. If the identification of the feed-through matrix D is to be included in the
algorithm, changes are in Steps 1 and 2 owing to the definition of the data as pN (t) =[
uT

N(t) yT
N(t)

]T
. The other obvious modification is with the regression of Step 7, which then

reads Â B̂

Ĉ D̂

 = arg min
A,B,C,D

∥∥∥∥∥∥∥
xN−1(t + 1)

yN−1(t)

−

A B

C D


xN−1(t)

uN−1(t)


∥∥∥∥∥∥∥

2

F

.

4.2.3 Examples

The two numerical examples shall illustrate that the proposed algorithm is equal in compa-
rison with the existing closed-loop methods. In particular, the comparison to the original
PBSIDopt algorithm is of importance, as the proposed PBSIDQR algorithm is expected to
yield the same results. The first example is an open-loop system based on the examples
given in Katayama (2005). The second example is taken from Jansson (2003) and Ljung and
McKelvey (1996b) and is a closed-loop example.

Open-loop example

As seen from the system structure in Figure 4.13, the open-loop example is based on an
ARMAX system, whose transfer function is given by

P (z) = 0.0275z−4 + 0.0551z−5

1 − 2.3443z−1 + 3.081z−2 − 2.5274z−3 + 1.2415z−4 − 0.3686z−5 .

The example is again based on Case 2 of the examples in Katayama (2005, pp. 292–296). It
is also equal to the first example of Section 4.1.4. Similar to that example, the number of
columns N and horizon lengths k are set to N = 2000, k = 30. The disturbances v1 and v2
are white-noise sequences with σ2

1 = 0.01 and σ2
2 = 0.09. In deviation from the examples in

Katayama (2005) and in Section 4.1.4, the input u is a colored-noise sequence defined by

C(z) =
√

1 − 0.9
1 − 0.9z−1

u(t) +
+

v2(t)

P (z)
+
+

v1(t)

y(t)

Figure 4.13: System structure of the ARMAX example



96 4 Revision of methods for basic identifications

and a white-noise process with unity variance. The number of data sets is 100. Over the 100
simulations, the input is kept the same, whereas the disturbances are different. The met-
hods/algorithms used for the identification are the open-loop methods CCA (state algorithm),
PO-MOESP, the closed-loop methods based on the explicit VARX estimation PBSIDopt and
SSARX, PARSIM-E and PBSIDQR. The implementations of the algorithms of the closed-
loop methods are based on the explanations in Chiuso (2007b), Jansson (2003), and Qin
and Ljung (2003a). For the VARX-based algorithms, the horizon length k = 30 defines also
the number of past coefficients of the VARX model. The implementation of the PBSIDQR
algorithm which includes the identification of the feed-through matrix performed virtually
the same in comparison to the primary implementation without estimation of D. Hence, the
results of this implementation of the PBSIDQR algorithm are omitted here.

As shown by the evaluation of the results in terms of the models’ eigenvalues and Bode gain
plots given in Figure 4.14 and Figure 4.15, all methods are able to identify the system. The
deterioration of the results in comparison to the ARMAX example given in Section 4.1.4
stems from the input, which is here a colored-noise sequence. As, in comparison to the noise,
less power is placed in the high-frequency range by the input, the identification becomes
more difficult. This is illustrated by the frequency responses in Figure 4.15, showing a high
scattering of the individual frequency responses (cf. Figure 4.6). Although this increased
complexity of the identification problem resulted also in a higher spreading of the eigenvalues,
the PBSID algorithms and SSARX show the smallest scattering (with PBSIDopt dominating
among those three). The apparent similarity of the results of SSARX and PBSIDQR can
be traced back to the fact that the calculations of both methods are – technically speaking
– the same. Whereas SSARX first identifies an high-order VARX model and then removes
the effects of the future form y+

t , the same is done by PBSIDQR in terms of projections. In
contrast to those two algorithms, the algorithm of PBSIDopt uses the VARX coefficients to
construct OK

kf
CK

kp
.
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Figure 4.14: Eigenvalues of the identified models for the ARMAX system (red cross: nominal
value of P (z), black cross: value of identified models)
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Figure 4.15: Bode gain plots of the identified models for the ARMAX system (red: nominal
value of P (z), black: value of identified models)

Closed-loop example

For the evaluation of the closed-loop capabilities of the proposed algorithm, several test with
examples presented in the literature were performed. The here discussed results are based
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r(t)
−+

u(t)
P (z)

+
+

e(t)
H(z)

y(t)

Figure 4.16: System structure of the closed-loop example (Box-Jenkins system)

on the example given in Jansson (2003) and Ljung and McKelvey (1996b). The structure of
the example is shown in Figure 4.16. The transfer functions P (z) and H(z) are defined by

P (z) = 0.21z−1 + 0.07z−2
1 − 0.6z−1 + 0.8z−2

and
H(z) = 1

1 − 0.98z−1 .

The closed-loop system is excited be means of the reference signal r, which is here a white-
noise process with unity variance. The variance of the noise process e is σ2

e = 4. The number
of columns N and horizon lengths k are set to N = 2000, k = 30. The number of data sets is
100. The input is kept the same and only the disturbances differ. The methods/algorithms
used for the identification are the previously chosen CCA (state algorithm), PO-MOESP,
PBSIDopt, PBSIDQR, SS-ARX, and PARSIM-E.

The results illustrated in terms of the eigenvalues and Bode gain plots in Figure 4.17 and
Figure 4.18 showcase the results given for all identifications whose system included a gen-
uine stochastic subsystem, i.e., not only a white-noise disturbance acting on the output of
the system. Although the deterministic eigenvalues, which are in this example located at
0.3 ± 0.843i, are identified correctly (see Figure 4.17), the defective identification of the sto-
chastic subsystem (eigenvalue at 0.98) results in a overall faulty identification. For cases in
which H(z) = 1 was chosen, e.g., Chiuso (2007b), the results are as expected. However,
for identifications including the modeling of the dynamics of a stochastic subsystem, be it
a Box-Jenkins system as in this example or an ARMAX system as in the example of Qin
and Ljung (2003a), neither of the methods have been capable to deliver the expected (and
published) results. This is in so far intriguing as the examples of the respective papers could
not be repeated in a satisfactory manner.

This points to a much more severe underlying problem in the implementation of the methods
used for this example. A simple implementation error would also have shown itself during
identification of open-loop systems. An implementation error regarding the VARX estimation
seems hence highly likely, as this step is not elaborately explained in neither of the papers
Chiuso (2007b), Jansson (2003), and Ljung and McKelvey (1996b). The problem might
also concern the order of the VARX model, i.e., the length of the past horizon kp. Although
PARSIM-E does not include an explicit estimation of a VARX model, the recurrent orthogonal
projections/regressions are similar to a VARX estimation.

This problem, which appears irrespective of the method, calls for a comparison of the methods
and experiment implementations used for the disclosed results in the literature and here. This
time consuming work is however postponed to a later date, as the main focus of this work is
on the derivation of a framework for recursive subspace identification.
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Figure 4.17: Eigenvalues of identified models for the Box-Jenkins system (red cross: nominal
value of P (z) and H(z), black cross: value of identified models)
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Figure 4.18: Bode gain plots of the identified models for deterministic subsystem of the Box-
Jenkins system (red: nominal value of P (z), black: value of identified models)

4.2.4 Summary

In this section an algorithm, called PBSIDQR, for the identification under closed-loop con-
dition is derived. This algorithm is based on the PBSID method. The goal is to directly
implement the theoretical description of the method and hence to avoid the pre-estimation of
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a VARX model or teh involved least-squares calculation of previous algorithms of the PBSID
method. Although not rendering impossible, these two algorithms would however hinder the
integration of the recursive scheme derived in Chapter 6. The direct implementation is based
on a rearrangement of the data of the future inputs and outputs within the data matrix,
which the usual QR decomposition is applied to. The future data is not arranged in blocks
with respect to the inputs or outputs but rather with respect to time. That is, the first entry
of the joint-input-output block of the future is the input-output-pair of time t, followed by
the pair of time t + 1 and so on. By means of this interleaving data structure, the oblique
projections of the state estimation

X +/−
t =

kf −1∨
h=0

X h
t ,

where
X h

t = Ê||P+
[t,t+h)

{y(t + h) | P−
t } ,

can be directly constructed from the results of the QR decomposition. Hence, the PBSID
method is directly implemented and the recursive scheme can be integrated, as these oblique
projection do not prohibit to do so. Based on open-loop and closed-loop examples, it is shown
that the PBSIDQR algorithm achieves results equal to the given PBSIDopt algorithm, where
the PBSIDopt algorithm is slightly better if the spread of the eigenvalues is considered. A
problem which needs further investigation is however concerned with the identification under
closed-loop conditions. Although the algorithms used for the examples are implemented as
given by the respective references, the disclosed results could not be recovered. This raises
the question regarding the sensitivity with respect to the necessary parametrization of the
algorithms or the implementation itself.

4.3 Summary

This chapter discusses modifications of algorithms of the ORT approach and the closed-loop
method PBSID. The intention is the derivation of basic algorithms, which can be used for the
integration of the recursive scheme derived in Chapter 6. As it has became apparent that the
ORT algorithm based on the MOESP method does not perform satisfactory when dealing with
realistic identification problems (e.g., the identification of the Tennessee Eastman Process),
the goal has also been to change the actual identification algorithm in order to facilitate
the identification of these kind of processes by the ORT approach. In terms of the ORT
approach, both tasks are solved by changing the algorithm from a realization-based algorithm
to a state-regression algorithm based on the CCA method, called CCA-ORT. Therefore, the
orthogonal decomposition of the output into the deterministic and stochastic components is
embedded into the oblique projection used to determine the predictor space. By virtue of
this combination, the deterministic predictor space is directly determined, instead of being
the result of a two-step procedure. Regarding the modifications of the algorithm of the
PBSID method, a circumvention of the explicit VARX estimation has been necessary. This
is achieved by directly implementing the underlying projections based on the results of a
QR decomposition of a data Hankel matrix featuring a rearranged structure. Although the
proposed PBSIDQR algorithm is able to perform similar to the PBSIDopt algorithm, closed-
loop examples reveal a problem in terms of the correct parametrization of the methods, as
both algorithm give (the same) incorrect results.
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Recapitulation of main results

• The orthogonal decomposition of the output space into the deterministic and stochas-
tic subspaces, referred to as ORT approach, and the subsequent determination of the
deterministic predictor space can be combined as

X d,+/−
t = Ê||U+

t
{Y+

t |U−
t } .

• An algorithm embedding this approach of the orthogonal decomposition into the CCA
method, called CCA-ORT, is presented. Based on the SVD

Σ−1/2
y+

t y+
t |u+

t

Σy+
t u−

t |u+
t

Σ−T/2
u−

t u−
t |u+

t

= UΣV T ≈ UnΣnV T
n ,

where Un, Σn, V T
n are reduced according to the first n singular values, the observability

matrix of the deterministic subsystem is estimated by

Ôk = Σ1/2
y+

t y+
t |u+

t

UnΣ1/2
n

and subsequently the deterministic states as

x̂d(t) = Ô†
kΣy+

t u−
t |u+

t
Σu−

t u−
t |u+

t
u−

t ,

x̂d(t + 1) = Ô†
kΣy+

t+1u−
t+1|u+

t+1
Σu−

t+1u−
t+1|u+

t+1
u−

t+1 .

With these values, the system matrices of the deterministic subsystem can be determi-
ned by the state-regression approach. CCA-ORT slightly improves the results of the
MOESP-based ORT approach in terms of the identification of theoretical examples.

• An algorithm of PBSID method, directly implementing the determination of the pre-
dictor space by

X +/−
t =

kf −1∨
h=0

X h
t

where
X h

t = Ê||P+
[t,t+h)

{y(t + h) | P−
t }

is presented. This is facilitated by changing the arrangement of the data in data Hankel

matrix
[
(U+

t )T (P−
t )T (Y+

t )T
]T

to
[
(P−

t )T pT
N(t) pT

N(t + 1) · · · pT
N(t + kf − 1)

]T
, where

pT
N(t) =

[
yT

N(t) uT
N(t)

]
. As a consequence of this rearrangement, the oblique projections

yielding X h
t , h = 0, · · · kf − 1 can be implemented, and a causal estimation of OK

k x(t)
is achieved. This algorithm is called PBSIDQR.





5 Tennessee Eastman Process identification
study for non-recursive identification
methods

In order to illustrate how the various methods stack up against each other if the identification
of a real system is considered, the results of an identification study using the Tennessee
Eastman Process described in Downs and Vogel (1993) are presented in this chapter. This
study illustrates the ability of the proposed algorithms to deal with realistic processes. In
particular, it shows that the CCA-ORT algorithm is able to deliver the expected results,
i.e., determination of the deterministic model even if the process is increasingly affected by
disturbances, which is an environment other methods tend to fail in. As the Tennessee
Eastman Process is a first-principles model of a real process plant, the presented results are
exemplary for the results which are to be expected for identifications of real systems.

5.1 Experiment description

This identification study aims at a comparison of different subspace methods against the
realistic process model of the Tennessee Eastman Process. A short overview of this model
is given in Appendix A. As the process is inherently unstable, some of the inner (stage 1)
control loops of the control strategy explained in McAvoy and Ye (1994) and McAvoy, Ye,
and Gang (1995) are implemented. In terms of this identification study, the task of these
loops is to stabilize the process and first and foremost to keep the respective process units off
its shutdown limits (see Table A.3). Thus, the process runs “as open-loop as possible”. The
resulting process structure is shown in the piping and instrument diagram (P&ID) of Figure
5.1. Due to this configuration of the process, this study differs from the study disclosed in
Juricek, Seborg, and Larimore (2001), where a fully controlled process has been identified.
Such a configuration however tends to obscures the characteristics of the process, i.e., the
nonlinear behavior of the process. A summary of the key points of the experiments, e.g.,
inputs, outputs, number of identifications, etc. can be found in Table 5.1.

In order to compare the methods also under realistic conditions, two experimental arrange-
ments are considered. In terms of the first arrangement, identifications without disturbances
or measurement noise are considered. These first identifications shed light on the capability
of the methods to deal with non-academic examples. The results are used for a basic compa-
rison of the methods’ behavior and represent also the individual benchmarks of the methods
for the second experimental arrangement. Here, the outputs of the process are additionally
subjected to arbitrarily colored-noise disturbances. By affecting the process outputs with
disturbances, the resulting system structure of the second identifications bears resemblance
to the Box-Jenkins example of Section 4.1.4. The internal process disturbances are not used
as they do not comply with the assumption of being (colored) noise sequences uncorrelated
with the input and hence exhibit some kind of variance with the input signals.
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Figure 5.1: P&ID of the stabilized Tennessee Eastman Process (Bathelt, Söffker, and Jelali,
2015)

The identifications are based on a small subprocess of the Tennessee Eastman Process model.
The outputs of this subprocess (in Figure 5.1 in blue) are the condenser cooling water flow
(measuring point FI1201) and the reactor pressure (measuring point PICAZ+1101). The
inputs (in Figure 5.1 in red) are the position of the C feed valve (V-1004), the position of
the condenser cooling water valve (V-1201), the set-point of the reactor level control cascade
(from LICAZ±1101 via FIC1003 to V-1003), and the set-point of the reactor pressure control
cascade (from PICAZ+1101 via TIC1103 to V-1101). This was mainly done to keep the
numerical load of the identifications to a reasonable level and due to the lack of additional
information on the methods’ behavior gained from a larger model. Another reason is also
given by a potential ill-conditioning of the process, i.e., the possibility of the process being
dominated by the dynamics of one process unit. However, the subprocess containing the
mentioned inputs and outputs displays two interesting features. First, it contains the rather
sensible path from V-1004 to the reactor pressure. Infusing too much components A, B, and
C through the C feed leads to a dis-balancing of the reaction and usually to a subsequent
shutdown of the process as one of the components starts to accumulate in the gas phase of the
reactor and subsequently raises the reactor pressure beyond the shutdown limit. Secondly,
the condenser cooling water flow depends only on the position of the valve V-1201. That
is, this output highlights the methods’ capabilities to correctly assign the observed effects to
the respective inputs. Furthermore, due to the internal feedback (see streams 5 and 8 in the
P&ID of Figure 5.1), the two outputs feature the reaction of the entire process to changes
of the respective inputs, i.e., changing the position of V-1201 will affect not only the cooling
water flow but also the reactor (through the separator and stripper).

Regarding the signals of the four inputs, multi-variable colored-noise sequences are used
during the data generating simulations. Those are defined by

C(z) = σ2
i

√
1 − 0.995

1 − 0.995z−1 ,
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Table 5.1: Overview of the key parameters of the comparative study

Inputs C feed valve (V-1004), condenser cooling water valve
(V-1201), set-point reactor pressure (PICAZ+1101), set-
point reactor level (LICAZ±1101)

Outputs Reactor pressure (PICAZ+1101), condenser cooling water
flow (FI1201)

Number of simulations 100

Types of identifications Distrubance-free & output subjected to colored-noise se-
quences

Methods/algorithms PO-MOESP, PI-MOESP, ORT, N4SID Algorithm 1, N4SID
Robust Algorithm, PBSIDopt, PBSIDQR, CCA, CCA-ORT

Sample time (of data) 2 min

N 10000

kf = kp = k 425

Order (see Section 5.2) 6

Validation methods (see
Section 5.3)

Coefficient of determination/variance accounted for & final
prediction error

Validation data sets 3 stochastic processes with 5 realizations each

where σ2
i = 4, i = 1, 2, 3, for the valve positions and the reactor level set-point and σ2

4 = 400
for the reactor pressure set-point. A total of 100 input sequences are generated, which are
equally used for the identifications with and without disturbances. The disturbances acting
on the reactor pressure and the condenser cooling water flow are governed by the filter

H(z) = σ2
i

1 − 1.3z−2 + 0.42z−2

1 − 1.8z−2 + 0.97z−2 ,

where σ2
i , i = 1, 2, are adjusted to comply with predefined signal-to-noise ratios (SNR, set to

50 and 10) as

σ2
i =

σ2
d,i

SNR 1
2π

∫ π
−π |H(ejω)|2dω

,

with σ2
d,i being the variance of the respective outputs. The methods/algorithms used are

PO-MOESP, PI-MOESP, ORT (MOESP-based implementation), N4SID Algorithm 1, N4SID
Robust Algorithm, PBSIDopt, PBSIDQR, CCA (state algorithm), and CCA-ORT. For each
method, the past and future horizons kp and kf are set to k = 425, whereas the number of
columns is N = 10000.

5.2 Order estimation

The original intended use of the order estimation methods, which are described in Section
2.6.3, has turned out to be pointless as neither of the methods has been able to yield a
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Table 5.2: Estimated orders by different order estimation methods (exemplarily for one data
set; number of total singular values: 850)

Method PO-MOESP N4SID 1 N4SID Robust CCA CCA-ORT

SVC 246 1 1 1 1

NIC 850 1 1 1 2

Cn – – – 436 236

reasonable estimate for the order of the model. The resulting estimates are exemplarily
shown in Table 5.2 for one of the 100 data sets. Regarding the use of the Akaike information
criterion (AIC) or the Bayesian information criterion (BIC) as done in Juricek, Seborg, and
Larimore (2001), the following needs to be taken into consideration. Both the AIC and BIC
are criteria based on maximum likelihood estimates of the innovation variance (Hannan and
Deistler, 2012, p. 161; see also description in Akaike, 1976). It is hence highly questionable
whether the use of these criteria in conjunction with subspace methods is theoretically sound,
as the resulting estimates of the innovations are the results of a minimal variance estimation
(cf. definitions of projections in Section 2.2.3). Even in Larimore and Baillieul (1990, p. 599),
the solution given by the CVA method is referred to as an “approximate maximum likehood
solution”, i.e., the CVA method used in Juricek, Seborg, and Larimore (2001) does not give
a maximum likelihood estimates of the innovation variance.

Hence, the order determination has been done by resorting to the heuristic procedure of
evaluating the singular values of the SVD step of the methods. In terms of this procedure, a
distinct “gap” (see van Overschee and De Moor, 1994, p. 90) between the dominant singular
values and residual singular values, which, from the theoretical point of view, are considered
to be zero, marks the point which determines the order, i.e., the ordinal number of the last
singular value before the gap determines the order.

In this context, the order has been determined using the singular values, which are given
by the CCA and N4SID (Algorithm 1) methods for the first data set. These are shown
in Figure 5.2. The singular values of the N4SID method show its gap between the fourth
and the fifth singular value, whereas, for the CCA method, this gap is to be found in the
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Figure 5.2: Singular values of N4SID (left) and CCA (right); first data set
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range between the fifth and thirteenth singular value. In addition to the evaluation of the
singular values, test identifications with orders between 4 and 12 has been made to evaluate
the influence of the specified order. It turned out that there are six or seven eigenvalues,
which are located in approximately certain regions of the complex plane. Taking this and
the more significant meaning of the singular values of the CCA method as (conditional)
canonical correlations between the past and future into consideration, the order has been
chosen with 6. The difference of the order determined by the “gap” in contrast to the order
determined in Juricek, Seborg, and Larimore (2001)1, which was specified with 23, stems from
the differences of the considered subprocess. Here, a rather small subprocess is considered,
hence the order is smaller.

Remark 5.1. In terms of time-discrete systems, the order estimation problem can be given
a rather simple interpretation. In terms of the infinite Hankel matrix of impulse response
coefficient

H =



G1 G2 G3 G4 · · ·

G2 G3 G4 G5 · · ·

G3 G4 G5 G6 · · ·
...

...
...

... . . .


, (5.1)

where the impulse response coefficients are given by the state-space realization of the system
or model as (for deterministic realizations and joint stochastic-deterministic realizations)

Gi = CAi−1B , or Gi = CAi−1
[
B K

]
, (5.2)

the order of the system or model is equal to rank(H). For linear systems, this is governed by
the Cayley-Hamilton theorem, i.e., by

An + a1An−1 + · · · + an−1A + anI = 0 , (5.3)

where the coefficients ai are given by the characteristic polynomial of A. This relation is
comprehensively explained in Katayama (2005, pp. 65–67). It is noteworthy that this holds
independently of the chosen sample time as a change of the sample time results only in a
change of the coefficients ai but not in a change of the order of the characteristic polynomial.
Regarding nonlinear systems, this clear-cut relation is no longer given. Although the order
of the system is in a broader sense still determined by the Hankel matrix of impulse response
coefficients, namely by the SVD step of the methods, the resulting order varies with respect
to the sample time. Although the rank estimation of a matrix is determined by the number of
linear independent rows or columns, it is numerically determined by the number of singular
values above a certain threshold. This means for the rank estimation of a Hankel matrix,
which consists of impulse-response coefficients of a nonlinear system, that the rank is in the
worst case equal to the number of non-zero impulse response coefficients as linear dependency
can be not achieved until the coefficients become zero or close to zero. This number is however
equal to the number of coefficients of the settling time. Hence, the sample time influences
the estimated order. In Juricek, Seborg, and Larimore (2001), the sample time has been set
to 30 min, whereas here the sample time is 2 min. Thus, the estimated orders deviate; in
Juricek, Seborg, and Larimore (2001) the AIC estimated the order with 23.

1The disclosed plots in Juricek, Seborg, and Larimore (2001) (Figure 7) do unfortunately not allow for an
exact location of the “gap”.
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5.3 Validation and evaluation

The validation and evaluation of the identified models is based on the coefficient of deter-
mination R2 and Akaike’s final prediction error (FPE) JF P E (see Ljung, 2009, p. 500 or
Kroll and Schulte, 2014). The former one, also known as “variance accounted for” (VAF),
as it specifies the ratio of the output variance explained by the model (see Ljung, 2009, pp.
549–550), has the advantage to give an objective good-bad-evaluation of a model and not
only a relative comparison between two models. The latter one has the advantage that it
also takes the model complexity, i.e., the number of parameters, into consideration and hence
gives a better evaluation of the model’s actual accuracy2. If the error covariance of a model
of, e.g., order 6 is similar to the error covariance of a model of higher order, the low-order
model is superior, as it gives the same accuracy while being less complex. The coefficient of
determination/variance accounted for measure is defined by

R2 = JV AF =
(

1 −
∑T

k=1 (y(k) − ŷ(k))2∑T
k=1 y2(k)

)
· 100%

and is limited from below to 0, i.e., any value smaller than 0 is set to 0. The final prediction
error criterion is given by

JF P E = 1 + dim(M)/T

1 − dim(M)/T

1
T

T∑
k=1

(y(k) − ŷ(k))2 ,

where dim(M) denotes the number of (independent) parameters of the model. In terms of
the state-space model as given by (2.4)3 (Hannan and Deistler, 2012, p. 69),

dim(M) = n(m + p) + np + mp .

For the numerical evaluations and in the wake of the fixed order of the models, the value of
dim(M) is set to np+nm+mp – the number of independent parameters of the deterministic
subsystem.

In terms of the possible validation signals, the limitation to stochastic signals is obvious.
The final prediction error is furthermore restricted to signals having the same second-order
properties as the signals used during the identification/estimation (Ljung, 2009, p. 503).
Hence, the input-output data of the validation data sets are generated by inputs, which are
again defined by

C(z) = σ2
i

√
1 − a

1 − az−1 ,

where σ2
i = 4, i = 1, 2, 3 for the valve positions and the reactor level set-point and σ2

4 = 400
for the reactor pressure set-point. Three validation sets with five realizations of stochastic
processes defined by the value of a were generated. The parameter a was set to a = 0.995 for
the first validation set, to a = 0.9 for the second validation set, and to a = 0.9995 for the third
validation set. The rationale of having three validation sets is to test the models not only with
signals which are a statistically the same as the estimation data sets but also with signals,
which are, in terms of its dynamics, faster (validation set 2) or slower (validation set 3). The

2The measures have been chosen before the problem of the order estimation became apparent. This measure
was intended to be used for an objective comparison of the resulting models despite having different orders.
In the light of a fixed order, the value of the FPE is equal to the error covariance.

3See also discussion regarding the number of invariant parameters in Section 7.2.
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number of realizations within each validation set is governed by the rationale of mitigating the
possibility of having a process realization that is particularly unsuitable for the given model,
i.e., yielding an unjustified poor result for one model of a method with respect to a model of
another method despite being actually the better model (e.g., in terms of the step response).
For the calculation of the two measures, the length of the generated realizations reaches up
to a length of 504 h. The first 24 h are however discarded to accommodate the transient
behavior of the process (response of the Tennessee Eastman Process on the activation of
the noise input). The two outputs of the models – reactor pressure and condenser cooling
water flow – are separability evaluated. See Table 5.3, Table 5.4, Table 5.5, and Table 5.6 for
the resulting values given by the coefficient of determination and final prediction error with
respect to the respective validation set. The tables show the median as well as the upper and
lower quartile values for the resulting values of the measures.

In terms of the results of identifications with undisturbed data, which are illustrated for
the reactor pressure in Figure 5.3, it is evident that, although the median of the models is
acceptable, the realization-based methods are not suitable for the identification of systems
that violate the linearity assumption. Furthermore, the methods’ results become better, the
less the methods’ derivations are based on a coordinate-based framework and the more the
general underlying data relations are used (increasing accuracy from N4SID to CCA). The
plot of the final prediction error mirrors the results given by the coefficient of determination as
the results improve from the realization-based methods to the state-regression-based methods
and from N4SID to CCA. The outliers of PI-MOESP are as high as 1034. In terms of the
condenser cooling water flow, CCA and CCA-ORT give the best results as both methods
identified the transfer functions from V-1004, PICAZ+1101, and LICAZ±1101 with nearly
zero while correctly representing the response on a change of the valve position. This is
reflected the best by the small values of final prediction error in Table 5.6. The values
of the CCA-based algorithms are roughly one order of magnitude better than the results
of N4SID and slightly better than the results of the PBSID algorithms. In terms of the
identification with disturbances the expected behavior occurs. The accuracy of the models
starts to decrease; compare upper diagrams of Figure 5.3 and Figure 5.4 for an illustration of
the coefficient of determination of the reactor pressure models. Figure 5.4 also shows that the
models determined by CCA-ORT algorithm exhibit a better accuracy in the high-frequency
range as the drop of the coefficient of determination is not as pronounced as it is the case
with the other methods; compare upper and middle diagrams of Figure 5.4. Regarding the
transition from identifications without disturbances to identifications with disturbances, an
intriguing effect was shown by the CCA method. In terms of the step responses, the accuracy
increases if the disturbances are small (SNR < 50, or white-noise disturbances), cf. Figure
5.5 and Figure 5.6. This is but an effect of the numerical implementation. If there are no
disturbances, the data matrices of the input and output tend to become numerically parallel.
This in turn adversely affects the estimation. If there is a slight disturbance, this parallelism
vanishes and the identification algorithm works more closely according to the theoretical
derivations. Although the differences between the CCA method and CCA-ORT algorithm
for increasing disturbances seems not to be severe in terms of the measures, the step responses
shown in Figure 5.6 and Figure 5.7 for disturbance levels of SNR = 50 and SNR = 10 draw a
contrary picture regarding the influence of disturbances on the identification results. Hence,
considering the step responses, the CCA-ORT algorithm gives clearly the better results even
in conditions with severe disturbances (SNR = 10).
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Figure 5.5: Step responses of models identified by the CCA method and the CCA-ORT al-
gorithm using data of undisturbed process; black: individual results, blue: mean
of results, red: step response of process
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Figure 5.6: Step responses of models identified by the CCA method and the CCA-ORT al-
gorithm using data of process subjected to disturbance (SNR = 50); black: indi-
vidual results, blue: mean of results, red: step response of process
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Figure 5.7: Step responses of models identified bythe CCA method and the CCA-ORT algo-
rithm using data of process subjected to disturbance (SNR = 10); black: indivi-
dual results, blue: mean of results, red: step response of process
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5.4 Summary

This chapter concludes the derivations of basic identification algorithms for the later derived
approach to recursive subspace identification by an identification study. This study uses the
realistic process model of the Tennessee Eastman Process. Results on real systems can be
expected to match the here presented results. The identification tests include a variety of
methods and cases considered. The methods applied to the data are the open-loop methods/-
algorithms MOESP (PO-MOESP, PI-MOESP), N4SID (N4SID Algorithm 1, N4SID Robust
Algorithm), CCA (state algorithm), MOESP-based ORT, and CCA-ORT as well as the al-
gorithms PBSIDopt and PBSIDQR of closed-loop method PBSID, as this method is also able
to identify a model under open-loop conditions. Although the inherently unstable process
model has been stabilized by some control loops, the data acquisition has been made outside
of these control loops and thus under open-loop conditions. The cases considered for the
identification are an undisturbed plant and plant subjected to some arbitrary colored noise of
decreasing signal-to-noise ratio. The operating point was fixed for these identifications. The
identifications are furthermore based on a small subprocess of the whole process and consists
of 4 inputs and 2 outputs.

Recapitulation of main results

• Although there are methods for the order estimation, which work reasonably well in
the case of LTI systems, they failed in this example when applied to a system of the
scale of the Tennessee Eastman process.

• It turned out that the realization-based MOESP method is already challenged by the
identification of the undisturbed system. With the addition of process disturbances
this problem increases. This holds for every algorithm, PO-MOESP, PI-MOESP, and
MOESP-based ORT algorithm, used here. The results of the state-regression-based
methods N4SID, CCA, and PBSID are consistently better.

• In terms of the state-regression-based methods, the methods based on the theoretical
framework and whose algorithms are rather straight forward implementations of the
these theoretical descriptions have an advantage over methods/algorithms which do
not exactly follow the theoretical descriptions. This follows from the comparison of the
CCA and PBSID methods with the N4SID method. The N4SID method can give reli-
able results in an undisturbed environment but sometimes tend to yield wrong models
(outliers in the boxplots). Under the influence of disturbances, the results of the N4SID
method drastically worsen. Although not shown by diagrams, it has been observed that
the CCA and PBSID methods are able to correctly identify the zero-output responses
from three of the four inputs with respect to the condenser cooling water flow (this is
only influenced by the position of its respective valve).

• In terms of the disturbance-affected identification data , the CCA-ORT algorithm yield
the expected results. Of all methods and algorithm considered, this algorithm is the
only one to recover the deterministic plant behavior even under the influence of severe
disturbances (SNR = 10).
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Up to this point, the identifications are considered to be done while the plant is in an ope-
rating point, i.e., at rest. This approach to identifying a system results in the necessity of
reidentifying the model once a new operating point is reached as illustrated in Figure 4.1.
The alternative is the identification of a genuine non-linear model for the whole system, e.g.,
a LPV model, which was deemed hard to achieve in Section 3.1 if a certain complexity of
the process is surpassed, or unnecessary from a the standpoint of effort and reward, as a LTI
model of the operating point basically suffices if the reidentifications are left out. To avoid
this problem of a reidentification when the operating point is reached, the task of Section
3.1 reformulated this problem into an adaptive identification problem. That is, instead of
performing the identification when the new operating point is reached and building a new
model from scratch, the given model of the old operating point is adapted or updated during
the transition phase between the two operating points. This idea is illustrated in Figure 6.1.
The identification is pushed back to the transition phase between the operating points and
the already identified model is not discarded but adapted. This idea of adapting a model is
basically the problem formulation of recursive identification.

As discussed in Section 3.2.2, the problem of a genuine recursive formulation for subspace
methods is basically concerned with the problem of reusing a previously identified predictor
space. In this context, be reminded of the fact that any predictor space of a system is
essentially equivalent to the model itself (Akaike, 1974, p. 669, Lindquist and Picci, 1996b).
That is, any calculations of future predictor spaces that use a past predictor space of the
same system, are, as a matter of principle, calculations based on the past information of the
model and an update of this model.

From this conceptual idea, two important considerations follow:

1. The procedure of the recursion can be based on the projections (for stochastic and joint
stochastic-deterministic systems)

X +/−
t+k = Ê

{
Y+

t+k

∣∣∣Y−
[t,t+k) ∨ X +/−

t

}
, or X +/−

t+k = Ê||U+
t+k

{
Y+

t+k

∣∣∣P−
[t,t+k) ∨ X +/−

t

}
.

That is, the usual past can be replaced by any previous predictor space and the inter-
mediate data space, i.e., by the spaces spanned by the values of y or y and u between
the time points of the predictor spaces. The increment of the recursion is furthermore
variable; there is no restriction to one-step-recursions or certain step sizes.

2. This scheme is especially rewarding from a practical point of view when time-varying
systems are considered. Assuming that the order of the system remains the same,
but the system dynamics change, a reduction of the past horizon in terms of P−

t is a
meaningful contribution as the calculations perform an averaging over the presented
data, which, depending on the rate of the change and the lengths of the horizons, could
result in an insufficient model for the current point in time. The predictor space is
however an entity which is not influenced by the changing dynamics of the past, as it is
equivalent to a state of a certain time. The state represents a map of past input-output
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Figure 6.1: Principle of recursive identification by adapting the existing model based on the
plant data during the change of an operating point; the colored areas around the
inputs symbolizes the excitation for identification

data1 to the future. This map is in turn governed by the system. That is, the state
decouples the change of the system from the information which are transfered by the
system from the past to the future, as it contains exactly these information. Hence, by
using the predictor space, past information of the system are taken into account while
avoiding interferences by the changing of system.

Whereas the first point will be proven in the following, the second point is a mere consequence
and extension of the rationale of the recursive procedure. In fact, the proofs are based on
the assumption of stationary processes – which is obviously not given if one allows for time-
varying systems. Using the recursive scheme for the identification or tracking of time-varying
systems, there will be some deviations from the expected values. However, as explained,
these errors stem from the averaging effect over the horizons. Thus, if the changes of the
dynamics of the system are slow compared to the length the horizons of the intermediate
data and the future (minimal length fixed by the order of the system), the identification will
give reasonable results2.

1Keep in mind that the output is needed to retrieve the information on the unobservable input, i.e., on the
innovation process e.

2As it will be discussed in Section 6.5.1, the accuracy of the tracking is also influenced by the column number
of the tail matrices. If this problem is however circumvented by the explained approach of Section 6.5.1,
the here made statement holds.
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Similarly to the above considerations, which contain both theoretical aspects and its practical
implications, this chapter deals with both the theoretical and practical aspect of the recursive
scheme. The major theoretical contribution is given in Section 6.1 and Section 6.2, which
the recursive scheme is explained and the basic points are proven in. This derivation is made
for both stochastic and joint stochastic-deterministic systems. The principles of the scheme
are illustrated by the stochastic systems and are extended to joint stochastic-deterministic
systems in the following. The implementation of the recursive scheme in terms of genuine
methods is outlined in Section 6.3. Examples in Section 6.4 illustrate the functionality of
those methods and serve as a lead-in to the practical aspects discussed in Section 6.5. Parts
of the following results are disclosed in Bathelt, Söffker, and Jelali (2018)3, whereas an initial
derivation for open-loop joint stochastic-deterministic systems is disclosed in Bathelt, Söffker,
and Jelali (2017).

6.1 Preliminary considerations

In this section, the introductory topics are covered. Those are the assumptions for the
derivations and the mutual relations of the different data spaces involved in the calculation.
These relations are fundamental as they constitute the point of origin for the derivations of
the recursive methodology.

6.1.1 Assumptions

The assumptions for the derivations contain basically restrictions on the processes y, x, and
u. These assumptions are:

• The processes y, x, and u are stationary zero-mean Gaussian processes.

• With respect to the ambient data space, the predictor space X +/−
t is an internal sub-

space. That is, in terms of stochastic systems (here restriction to the forward predictor
space),

X −
t ⊂ Y−

t , (6.1)

and, in terms of joint stochastic-deterministic systems,

X −
t ⊂ P−

t , (6.2)

which makes X +/−
t also a causal predictor space. In the end, these assumptions are

needed regardless of the preceding derivations, as these internal predictor spaces are
the only predictor spaces that can be extracted from the data. To some degree, this
assumption is also connected to the fact that only constructible predictor spaces are
considered or that the system is tacitly assumed to be reachable.

• The processes y and u fulfill the richness condition (Lindquist and Picci, 2015, p. 695)(
Y+

t ∨ U+
t

)
∩
(
Y−

t ∨ U−
t

)
= {0} . (6.3)

3This paper contains the derivations and results for stochastic systems and joint stochastic-deterministic
systems in open-loop conditions, the numerical implementation of the recursive scheme, the example re-
garding the influence of the column number presented in Section 6.4.2, and the input scheme of Section
6.5.1.
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N −
t

Y−
t

P−
[t,t+k)

X +/−
tU−

t

X +/−
t+k

Figure 6.2: Inclusion of the future predictor space in the joint space X +/−
t ∨ P−

[t,t+k)

This condition is equivalent to the assumption that the joint process (y, u) has a
spectrum which is bounded away from zero.

• The past and future horizons are assumed to be denoted by kp and kf . In the following,
k denotes the step width of the update step of the recursion.

With respect to the application in connection with time-varying systems, the first assumption
establishes a rather strong restriction. This can be resolved if a weaker assumption is made.
As the changes of the system, i.e., changes between different operating points, are governed
by the input, the input can be assumed to consist of two subprocesses u1 and u2. Let
both subprocess be defined by the innovation systems Σu1 = (Au1 , Ku1 , Cu1 , I) and Σu1 =
(Au2 , Ku2 , Cu2 , I), where the relation of the spectral radii4 of Au1 and Au2 and the variances
of u1 and u2 obey

ρ(Au1) << ρ(Au2), Σu1u1 << Σu2u2 . (6.4)

Then, the identification can be made in terms of y1 and u1, as subprocess u2 is only responsible
for the change of the operating point, whereas u1 is the usual excitation process. If the changes
in u2 are slow enough to be negligible over the horizons kp and kf , standard identification in
terms of y and u can be made.

6.1.2 Subspace inclusions

The inclusions of certain subspaces form the basis for the recursive scheme, as these inclusions
describe a way to define new predictor spaces. The definitions for stochastic systems and joint
stochastic-deterministic systems differ due to the exogenous input present in the latter one.
Hence, the definitions are separated according to these two types of systems. Figure 6.2 (in
terms of the joint stochastic-deterministic case) illustrates the statements of the following
lemma and corollaries.

4The spectral radius of a matrix is given by

ρ(A) = max
i

|λi(A)| .
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Stochastic systems

For stochastic systems the statement of Theorem 2.6 already declares a way for the definition
of new predictor spaces. However, this definition requires the knowledge of the wandering
subspace Wt. This theorem can be restated in terms of spaces spanned by y.

Lemma 6.1. (Bathelt, Söffker, and Jelali, 2018) Let X +/−
t be an internal forward Markovian

splitting subspace. Then,
X +/−

t+1 ⊂ X +/−
t ∨ Yt . (6.5)

Proof. Theorem 2.6 defines
X +/−

t+1 ⊂ X +/−
t ⊕ Wt ,

where
Wt = S−

t+1 	 S−
t . (6.6)

If X +/−
t is a internal forward Markovian splitting subspace, then

S−
t = Y−

t ∨ X −
t = Y−

t ,

where

X −
t =

t∨
k=−∞

X +/−
k .

Hence, by (6.6) the wandering subspace is given as Wt = S−
t+1 	 S−

t = Y−
t+1 	 Y−

t . By (2.54a)
(cf. proof of Proposition 17.3.15 in Lindquist and Picci, 2015)

Y−
t+1 	 Y−

t = (Y−
t ∨ Yt) 	 Y−

t = Yt 	 Y−
t

= Yt − Ê
{

Yt

∣∣∣Y−
t

}
= Yt − Ê

{
Yt

∣∣∣X +/−
t

}
⊂ Yt ∨ X +/−

t ,

follows, which in turn proofs (6.5).

Note that this lemma holds only true for the case of the forward predictor space or forward
Markovian splitting subspace. If X −/+

t would be the backward predictor space, the inclusion
would read

X −/+
t−1 ⊂ X −/

t ∨ Yt .

From Lemma 6.1 an extension to more than a one-step-ahead inclusion can readily deduced.

Corollary 6.1. (Bathelt, Söffker, and Jelali, 2018) For any predictor space, which lies k
steps into the future, the inclusion

X +/−
t+k ⊂ X +/−

t ∨ Y−
[t,t+k) (6.7)

holds.
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Systems with exogenous inputs

The transition to systems with exogenous inputs is now obvious and follows from Proposition
2.12, which is the equivalent to Lemma 6.15. Iterating the inclusion for the predictor space,
a general inclusion for any future predictor space can be concluded.

Corollary 6.2. (Bathelt, Söffker, and Jelali, 2017) For any predictor space, which lies k
steps into the future, the inclusion

X +/−
t+k ⊂ X +/−

t ∨ Y−
[t,t+k) ∨ U−

[t,t+k) (6.8)

holds.

Figure 6.2 illustrates this inclusion. The past P−
t = Y−

t ∨ U−
t can be constructed as

P−
t = X +/−

t ⊕ N −
t

by the predictor space and its junk space N −
t , i.e., the subspace containing no information

on the future. No component, which belongs to N −
t , has an influence on X +/−

t+k . The minimal
oblique Markovian splitting subspace X +/−

t+k of time t + k is hence contained only in the joint
space spanned by the predictor space X +/−

t and the data up to time t + k. Simply put, by
reason of the Markov property of X +/−

t , only this subspace of the past influence the future.

6.2 Determination of predictor space

Now that the subspaces which contain X +/−
t+k are defined, the next steps concern the defini-

tion of suitable (oblique) Markovian splitting subspaces and the determination of a minimal
(oblique) Markovian splitting subspace. The latter problem follows from the former one.
Hence, first some general (oblique) Markovian splitting subspaces for the stochastic system
and the joint stochastic-deterministic system are defined. Subsequently, they are reduced to
the respective minimal (oblique) Markovian splitting subspaces, i.e., the sought-after predic-
tor spaces.

Stochastic systems

Based on Corollary 6.1, let a subspace Xt+k be defined as

Xt+k := X +/−
t ∨ Y−

[t,t+k) . (6.9)

Lemma 6.2. (Bathelt, Söffker, and Jelali, 2018) The space Xt+k defined by (6.9) is a Mar-
kovian splitting subspace such that(

Y−
t+k ∨ X −

t+k

)
⊥
(
Y+

t+k ∨ X +
t+k

)
| Xt+k , (6.10)

5Note that the approach to stochastic systems and joint stochastic-deterministic systems is different, as
the Markovian splitting subspace of stochastic systems usually contains both the forward and backward
predictor spaces. For the joint stochastic-deterministic case, the derivations in Lindquist and Picci (2015)
are however already restricted to internal/causal and hence forward predictor spaces.
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and the respective scattering pair fulfills the invariance property (2.58).

Proof. To proof that the space defined in (6.9) is a Markovian splitting subspace, the splitting
and Markov properties need to be shown. Therefore, let the respective past and future spaces
of Xt+k, X −

t+k and X +
t+k, in (6.10) be defined as

X −
t+k =

0∨
i=−∞

X +/−
t+i ∨ Y−

[t+i,t+k+i) ,

X +
t+k =

∞∨
i=0

X +/−
t+i ∨ Y−

[t+i,t+k+i) .

Using these spaces, the scattering pair (S−
t , S+

t ) of Xt+k is defined as in (2.64). First, the
Markov property is shown in terms of the invariance property (2.58). By assumption, X +/−

t is
a forward internal Markovian splitting subspace, which subsequently means that X −

t+k ⊂ Y−
t+k

holds. Thus, S−
t+k = Y−

t+k and S−
t+k−1 ⊂ S−

t+k trivially follows. The inclusion with respect to
S+

t+k is given as

S+
t+k = Y+

t+k ∨ X +
t+k

= Y+
t+k+1 ∨ X +

t+k+1 ∨ (Yt ∨ X +/−
t )

= S+
t+k+1 ∨ (Yt ∨ X +/−

t ) .

Hence, S+
t+k+1 ⊂ S+

t+k. The splitting property follows from

Ê{S+
t | S−

t } = Ê{S+
t | X +/−

t } ,

i.e.,
Ê{λ | S−

t } = Ê{λ | X +/−
t } ∀ λ ∈ S+

t .

As S+
t+k ⊂ S+

t , this means in particular

Ê{S+
t+k | S−

t } = Ê{S+
t+k | X +/−

t } .

Due to the restriction to forward internal Markovian splitting subspaces, S−
t+k = S−

t ∨Y−
[t,t+k).

Hence,

Ê{S+
t+k | S−

t+k} = Ê{S+
t+k | S−

t ∨ Y−
[t,t+k)}

= Ê{S+
t+k | X +/−

t + Y−
[t,t+k)}

= Ê{S+
t+k | Xt+k}

where the second equation follows as a consequence of the richness condition (6.3) (see also
Lemma 2.7.3 in Lindquist and Picci, 2015)6. Thus, a subspace as defined in (6.9) fulfills the
necessary properties to make it a Markovian splitting subspace.

6The whole step of the proof uses the fact proven by Lemma 2.7.3 in Lindquist and Picci (2015) that

Ê{A | B ∨ C} = Ê{A | D ∨ C} ,

if B ⊂ D, and D ∩ C = {0}.
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In general, the subspace defined by (6.9) is not a minimal Markovian splitting subspace. This
is similar to the space spanned by the whole past of a process. Although it is also a Markovian
splitting subspace, it is obviously not a minimal one. This problem, i.e., the extraction of the
minimal Markovian splitting subspace contained in Xt+k, is dealt with by the next theorem.

Theorem 6.1. (Bathelt, Söffker, and Jelali, 2018) The minimal forward Markovian splitting
subspace contained in Xt+k is given by

X +/−
t+k = Ê

{
Y+

t+k

∣∣∣Xt+k

}
. (6.11)

Proof. To show that X +/−
t+k as defined in (6.11) is a minimal Markovian splitting subspace, it

suffices to show that it is both observable and constructible.

Constructibility follows by construction as

Xt+k ∩
(
Y−

t+k

)⊥
= {0} .

Hence, the minimal Markovian splitting subspace X +/−
t+k is given by the observable subspace

of Xt+k. In terms of the scattering pair (S−
t+k, S+

t+k), which is associated with Xt+k,

Xt+k =S−
t+k ∩ S+

t+k

=Ê{Y+
t+k | S−

t+k ∩ S+
t+k} ⊕

(
S−

t+k ∩ S+
t+k

)
∩
(
Y+

t+k

)⊥

=Ê{Y+
t+k | Xt+k} ⊕ Xt+k ∩

(
Y+

t+k

)⊥
,

(6.12)

where
N −

t+k := Xt+k ∩
(
Y+

t+k

)⊥

defines the unobservable subspace. Let the orthogonal projection in (6.12) define a subspace
of Xt+k as

Ê{Y+
t+k | S−

t+k ∩ S+
t+k} = X ∗

t+k = Ŝ−
t+k ∩ Ŝ+

t+k ,

where (Ŝ−
t+k, Ŝ+

t+k) is the respective scattering pair of X ∗
t+k. By construction,

(
Ŝ−

t+k ∩ Ŝ+
t+k

)
∩(

Y+
t+k

)⊥
= {0}, and hence (cf. proof of Theorem 7.4.9 in Lindquist and Picci, 2015)

Y+
t+k ∨ Y−

t+k =
(
Ŝ−

t+k

)⊥
∨
(
Ŝ+

t+k

)⊥
∨ Y+

t+k =
(
Ŝ+

t+k

)⊥
⊕
((

Ŝ−
t+k

)⊥
∨ Y+

t+k

)
.

Thus7,
Ŝ+

t+k = (Ŝ−
t+k)⊥ ∨ Y+

t+k

states that X ∗
t+k ⊂ Xt+k is observable, making it a minimal Markovian splitting subspace,

and
X +/−

t+k := X ∗
t+k .

7H =
(
Ŝ+

t+k

)⊥ ⊕
((

Ŝ−
t+k

)⊥ ∨ Y+
t+k

)
⇒ H 	

(
Ŝ+

t+k

)⊥ = Ŝ+
t+k =

(
Ŝ−

t+k

)⊥ ∨ Y+
t+k
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Remark 6.1. To show that the predictor space in (6.11) is a minimal predictor space without
explicitly proving observability and constructibility, minimality follows also from Proposition
2.3. By Proposition 2.3,

X +/−
t+k = Ê

{
Y+

t+k

∣∣∣Y−
t+k

}
is a minimal Markovian splitting subspace. As Xt+k is already shown to be a Markovian
splitting subspace,

Ê
{

Y+
t+k

∣∣∣Y−
t+k

}
= Ê

{
Y+

t+k

∣∣∣Xt+k

}
holds.

From Theorem 6.1, the calculation of a minimal Markovian splitting subspace or minimal
predictor space based on knowledge of any past predictor space and the intermediate data
space is hence given by the afore claimed

X +/−
t+k = Ê

{
Y+

t+k

∣∣∣Y−
[t,t+k) ∨ X +/−

t

}
. (6.13)

Systems with exogenous inputs

The derivation of the recursive scheme for the joint stochastic-deterministic case follows
the derivation for the stochastic systems. However, due to the existence of the exogenous
inputs and the possible feedback of the output, some statements change in comparison to the
stochastic system. In this context, the condition

S−
t ∩ F+

t = {0} , (6.14)

where
S−

t = P−
t ∨ X −

t , F+
t = U+

t ∨ E+
t

is needed. This condition is essential for the subsequent derivations. Only if this condition is
fulfilled, the correct decomposition of the future output into its past and future components
is possible. Here, F+

t is defined based on the future space of the innovation process, as the
wandering subspace Wt becomes the innovation process Et under the assumption of causality
of the predictor space.

Again, define a subspace

Xt+k := X +/−
t ∨ Y−

[t,t+k) ∨ U−
[t,t+k) , (6.15)

which will serve as basis for the minimal oblique Markovian splitting subspace.

Lemma 6.3. The space Xt+k defined by (6.15) is an oblique Markovian splitting subspace
such that (

P−
t+k ∨ X −

t+k

)
⊥
(
Y+

t+k ∨ X +
t+k

)∣∣∣Xt+k ∨ F+
t+k , (6.16)

and the respective scattering pair fulfill the invariance property (2.87b).

Proof. The proof is similar to that of Lemma 6.2. By showing the oblique splitting and oblique
Markov properties, the space Xt+k defined in (6.15) is shown to be an oblique Markovian



132 6 Recursive subspace identification

splitting subspace. Let the respective past and future spaces of Xt+k, X −
t+k and X +

t+k, in
(6.16) be defined as

X −
t+k =

0∨
i=−∞

X +/−
t+i ∨ Y−

[t+i,t+k+i) ∨ U−
[t+i,t+k+i) ,

X +
t+k =

∞∨
i=0

X +/−
t+i ∨ Y−

[t+i,t+k+i) ∨ U−
[t+i,t+k+i) .

Based on theses spaces, the scattering pair (S−
t+k, S+

t+k) of Xt+k is defined as in (2.90). First,
the Markov property is shown in terms of the invariance property (2.87b). By assumption,
X +/−

t is internal and causal, which subsequently means that S−
t+k = Y−

t+k ∨U−
t+k and S−

t+k−1 ⊂
S−

t+k follows. The inclusion with respect to S+
t+k is given as

S+
t+k = Y+

t+k ∨ X +
t+k

= Y+
t+k+1 ∨ X +

t+k+1 ∨ (Yt ∨ Ut ∨ X +/−
t )

= S+
t+k+1 ∨ (Yt ∨ Ut ∨ X +/−

t ) .

Hence, S+
t+k+1 ⊂ S+

t+k. The splitting property follows from

Ê{S+
t | S−

t ∨ F+
t } = Ê{S+

t | X +/−
t ∨ F+

t } ,

which again implies by S+
t+k ⊂ S+

t that

Ê{S+
t+k | S−

t ∨ F+
t } = Ê{S+

t+k | X +/−
t ∨ F+

t } .

Due to the restriction to internal and forward predictor spaces, S−
t+k = S−

t ∨Y−
[t,t+k) ∨U−

[t,t+k).
Hence,

Ê{S+
t+k | S−

t+k ∨ F+
t } = Ê{S+

t+k | S−
t ∨ Y−

[t,t+k) ∨ U−
[t,t+k) ∨ F+

t }

= Ê
{

S+
t+k

∣∣∣X +/−
t +

(
Y−

[t,t+k) ∨ U−
[t,t+k) + F+

t

)}
= Ê{S+

t+k | Xt+k + F+
t } ,

where the third equation follows as a consequence of the richness condition (6.3) (see also
Lemma 2.7.3 in Lindquist and Picci, 2015). Hence, the subspace as defined in (6.15) is an
oblique Markovian splitting subspace.

Seen in terms of the assumption X −
t+k ⊂ P−

t+k, condition (6.14) is already fulfilled by the
richness condition, i.e., by

P−
t+k ∩ F+

t+k = {0} . (6.17)

Thus,
Ê||F+

t+k
{S+

t+k | S−
t+k} = Ê||F+

t+k
{S+

t+k | Xt+k} (6.18)

is furthermore equivalent to

Ê||F+
t+k

{Y+
t+k | P−

t+k} = Ê||F+
t+k

{Y+
t+k | Xt+k} (6.19)
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Hence, the minimal oblique Markovian splitting subspace can be determined as given by the
following theorem.

Theorem 6.2. The minimal oblique Markovian splitting subspace contained in Xt+k is given
by

X +/−
t+k = Ê||F+

t+k
{Y+

t+k | Xt+k} . (6.20)

Proof. By Lemma 6.3, Xt+k is an oblique Markovian splitting subspace, so that

Ê||F+
t+k

{Y+
t+k | P−

t+k} = Ê||F+
t+k

{Y+
t+k | Xt+k} .

In terms of Theorem 2.8, the left-hand side of the above equation defines the minimal oblique
Markovian splitting subspace contained in P−

t+k. Thus,

X +/−
t+k = Ê||Ft+k

{Y+
t+k | Xt+k} .

By means of this theorem the recursive determination of the minimal predictor space for
systems with exogenous inputs in the general structure, which includes feedback, is given by

X +/−
t+k = Ê||F+

t+k

{
Y+

t+k

∣∣∣X +/−
t ∨ Y−

[t,t+k) ∨ U−
[t,t+k)

}
. (6.21)

As X +/−
t is assumed to be an internal predictor space, the reasoning of Theorem 6.2 holds

also for the one-step-ahead oblique Markovian splitting subspace (cf. Proposition 17.3.11 in
Lindquist and Picci, 2015). Hence, similar to Proposition 2.4, the oblique predictor space
can be defined without taking the innovations in Ft+k explicitly into consideration.

Corollary 6.3. Let the system be finite-dimensional with order n. Then, the oblique predictor
space is given by the vector sum

X +/−
t+k =

n−1∨
h=0

X h
t+k , (6.22)

with

X h
t+k = Ê

X +/−
t ∨P−

[t,t+k)
||Ut+k

{
Ê

X +/−
t ∨P−

[t,t+k+1)
||Ut+k+1

{
· · ·
{

Ê
X +/−

t ∨P−
[t,t+k+h)

||Ut+k+h
{Yt+k+h}

}}}
, (6.23)

where Ê
X +/−

t ∨P−
[t,t+k+i)

||Ut+k+i
{·}, i = 0, · · · h is a short-hand notation for Ê||Ut+k+i

{· | X +/−
t ∨

Y−
[t,t+k+i) ∨ U−

[t,t+k+i)}.

Similar to the underlying calculations of the PBSID method as given in Lemma 2.8, the
recursive implementation of this method follows from Corollary 6.3

Corollary 6.4. Let the system be finite-dimensional with order n. Then, oblique predictor
space is given by the vector sum

X +/−
t+k =

n−1∨
h=0

X h
t+k , (6.24)
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where the subspaces X h
t+k can be extracted as

X h
t+k = Ê||P+

[t+k,t+k+h)

{
Yt+k+h

∣∣∣X +/−
t ∨ P−

[t,t+k)

}
. (6.25)

If the feedback is dropped, the space of the future innovation is by assumption orthogonal to
both the future inputs and the future outputs. In this case, F+

t+k can be reduced to U+
t+k.

Corollary 6.5. (Bathelt, Söffker, and Jelali, 2017) Let the system operate under open-loop
conditions. Then, the minimal oblique Markovian splitting subspace contained in Xt+k is
given by

X +/−
t+k = Ê||U+

t+k

{
Y+

t+k

∣∣∣X +/−
t ∨ Y−

[t,t+k) ∨ U−
[t,t+k)

}
. (6.26)

This corollary is the consequence of

Ê{A|B ∨ C1 ⊕ C2} = Ê{A|B ∨ C1} ,

if C2 ⊥ A. A thorough proof of the corollary can be found in Bathelt, Söffker, and Jelali
(2017). That proof shows that the space given by the projection in (6.26) is both observable
and constructible and hence minimal.

In terms of the orthogonal decomposition, the respective determination of the deterministic
predictor space follows from the open-loop calculation by reducing the intermediate data space
to U−

[t,t+k) and replacing the past predictor space by its deterministic component X d,+/−
t .

Corollary 6.6. (Bathelt, Söffker, and Jelali, 2018) Let X d,+/−
t be the deterministic predictor

space of time t. Then, the deterministic predictor space of time t + k is given by

X d,+/−
t+k = Ê||U+

t+k

{
Y+

t+k

∣∣∣X d,+/−
t ∨ U−

[t,t+k)

}
. (6.27)

Proof. Let X d,+/−
t be the predictor space of the deterministic subsystem and X s,+/−

t be the
predictor space of the stochastic subsystem. Then the inclusion (see Proposition 2.5)

X +/−
t ⊂ X d,+/−

t ⊕ X s,+/−
t

holds for the joint predictor space. This statement reflects the case in which the deterministic
and stochastic system join certain dynamics. Equality holds only for disjoint dynamics.
Taking this connection between X +/−

t and X d,+/−
t , X s,+/−

t into consideration, (6.26) can be
decomposed as

X +/−
t+k = Ê||U+

t+k

{
Y+

t+k

∣∣∣X +/−
t ∨ Y−

[t,t+k) ∨ U−
[t,t+k)

}
⊂ Ê||U+

t+k

{
Y+

t+k

∣∣∣(X d,+/−
t ∨ U−

[t,t+k)

)
⊕
(
X s,+/−

t ∨ Ỹ−
[t,t+k)

)}
= X d,+/−

t+k ⊕ X s,+/−
t+k ,

where Ỹ−
[t,t+k) = Y−

[t,t+k) − Ê
{

Y−
[t,t+k)

∣∣∣X d,+/−
t ∨ U−

[t,t+k)

}
. This decomposition of (6.26) is

similar to the decomposition of the oblique projection in (4.11). Hence the same reasoning
leads to (6.27).
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6.3 Numerical implementation

All recursive approaches discussed in Kameyama, Ohsumi, et al. (2005), Lovera, Gustafsson,
and Verhaegen (2000), Mercère, Bako, and Lecuche (2008), and Oku and Kimura (1999,
2002) are based on the numerical implementations of subspace methods. Hence, each of the
algorithms result in a purpose-build implementation, i.e., a special implementation, which
deviate from the original algorithm of the underlying standard subspace method. In terms
of the literature, the basic algorithm is usually MOESP. In contrast to these recursive al-
gorithms, the recursive scheme proposed by Theorem 6.1 and Theorem 6.2 is completely
embedded into the theoretical framework of (oblique) Markovian splitting subspaces. The
resulting implication is that there is no need for special algorithms. That is, any of the pro-
posed subspace methods can be used as a basis to implement the recursive scheme. In terms
of the identification of stochastic systems, the methods outlined in Katayama (2005), Tanaka
and Katayama (2006, 2007), and van Overschee and De Moor (1993) might be used. For
the identification of joint stochastic-deterministic systems, the (standard) methods outlined
in Katayama and Picci (1999), van Overschee and De Moor (1994), and Verhaegen (1994)
might be used. Another consequence presents itself in terms of the re-identification intervals.
As the past data spaces used for the construction of Xt+k in (6.9) or (6.15) are not restricted
to a certain horizon, the re-identification can be carried out over varying intervals. Fixed
interval length are not necessary.

In terms of the numerical implementation of the recursive scheme, i.e., the implementation
of (6.13) or (6.21) (or any calculation based thereon), the only modification of the met-
hods concerns the QR decomposition of the data matrices (for stochastic systems and joint
stochastic-deterministic systems)

Y−
t

Y+
t

 =

R11 0

R21 L22


QT

1

QT
2

 ,


U+

t

P−
t

Y+
t

 =


R11 0 0

R21 R22 0

R31 R32 R33




QT
1

QT
2

QT
3

 , (6.28)

which are replaced by


xN(t0)

Y−
[t0,t)


Y+

t

 =

R11 0

R21 L22


QT

1

QT
2

 ,



U+
txN(t0)

P−
[t0,t)


Y+

t


=


R11 0 0

R21 R22 0

R31 R32 R33




QT
1

QT
2

QT
3

 , (6.29)

where t0 is the time of the previous identification. Depending on the method, the structure of
the data matrices on the left-hand side of both equations may vary, but the approach remains
the same. The past data matrix P−

t /Y−
t is replaced by xN(t0) and P−

[t0,t)/Y−
[t0,t). Although

the main focus was the derivation of a theoretically based approach to recursive

subspace identification and not on the reduction of the numerical load, this second aspect
appears quite naturally as a consequence of the recursive scheme. As easily seen from the
above equations, the number of rows in the data matrices is reduced in the wake of the
replacement of Y−

t /P−
t by

[
xN(t0)T

(
Y−

[t0,t)

)T
]
/
[
xN(t0)T

(
P−

[t0,t)

)T
]
. Hence, the matrices

are smaller and the computational load is reduced.
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The identification proceeds according to the sequence explained in the following (cf. Bathelt,
Söffker, and Jelali, 2017, 2018):

1. Initial identification at time t0 using standard methods; identification of the stochastic
or joint stochastic-deterministic system with respectively chosen lengths for the horizons
of the past and future, i.e., for Y−

t0 and Y+
t0 or P−

t0 and Y+
t0 , U+

t0

2. If not already given, determination of the state x(t0) via

x(t0) = Cky−
t , x(t0) = CK

k p−
t ,

where Ck (stochastic systems) or CK
k (joint stochastic-deterministic systems) can be

determined alongside Ok during the sequence of the realization algorithms; see, e.g.,
Katayama (2005).

3. Second identification at time t1 based on (6.13) or (6.21); the past consists of Y−
[t0,t1) ∨

X +/−
t0 or P−

[t0,t1) ∨ X +/−
t0

4. Iteration of identifications for t2, t3, · · · , starting with Step 2.

The state estimation of Step 2 needs to be included if a system is identified either by the
stochastic methods of Tanaka and Katayama (2006, 2007) and van Overschee and De Moor
(1993) or the joint stochastic-deterministic method of Verhaegen (1994), as either the imple-
mentations or the methods itself are realization-based.

Remark 6.2. Regarding the question whether the identification should explicitly include a past
state or not, the explanations in Chui and Maciejowski (2005) give a reasonable guideline.
Here, a lower bound for the length of the past horizon kp is given with (simplified)

kp ≥ 3n ,

where n is the order of the system to be identified. That is, as long as the increment between
two adjacent identifications is smaller than 3n, the recursive scheme might be used. Once
the increment reaches 3n, the past data suffices to (re-)identify the system.

6.4 Examples

The simulations given in this section are rather a proof of concept than a comparative study
with the existing methods. The primary reason stems from the different key aspects and
approaches to the problem – theoretically based approach for time-varying systems vs. nu-
merically based approach for reduction of computational load. The given methods essentially
update the sample covariance matrices, which the identifications are based on. The only
method focusing also on the identification of time-varying systems is outlined in Kameyama,
Ohsumi, et al. (2005). However, from the way this method works, it is obvious that it es-
sentially performs a standard identification, i.e., there is no reduction of the past in terms of
the horizons or any reuse of information from previous identifications except for the results
of the previous QR decomposition. Thus, the existing methods do not perform a recursion in
terms of information from previous identifications. In short, there is no conceptually similar
approach, which the proposed recursive scheme can be compared to.

The examples will be divided into two groups. The first group is concerned with the actual
proof of concept. These examples will show that the results of the numerical implementations
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are in line with the theoretical derivation. Thus, the systems to be identified are LTI (SISO)
systems. The important point will be that the concepts known from standard identifications
will carry over to recursive identifications. The second group is concerned with the identifica-
tion of time-varying systems. The focus will be on the tracking capabilities of the approach.
Closed-loop identifications will be skipped in both cases.

Regarding the results of the second group, one aspect should be pointed out beforehand. It
has turned out that the accuracy of the tracking of a change within the system is limited by
the number of the columns of the data matrices. This effect is not completely unexpected. A
sufficiently accurate estimation of the sample covariance matrices of the current time needs
an interval of stationary data. Hence, the column number of the tail matrices needed for the
estimation of the sample covariances is dictated by the required accuracy of this estimation.
This in turn means also that every recursive method suffers from the same problem. However,
due to the different approach to recursive subspace identification proposed in this thesis, it is
possible to derive a solution for this problem. This will be discussed in detail in Section 6.5.1.
Except for Kameyama, Ohsumi, et al. (2005), the existing algorithms exhibit furthermore
a much more severe problem, as the estimation of the sample covariance matrices in these
schemes sum up all the past data until the current time. Hence, a change in the system which
presents itself by a change of the covariance matrices is blurred by the past data. This has
led to the inclusion of a forgetting factor in the respective methods of Lovera, Gustafsson,
and Verhaegen (2000) and Mercère, Bako, and Lecuche (2008).

6.4.1 LTI SISO system

The examples presented in this subsection are re-runs of the two examples of Section 4.1.4.
That is, one example is the identification of an ARMAX system whereas the other one is
the identification of a Box-Jenkins system. The setup and properties of identifications and
simulations are the same as outlined in Section 4.1.4. The only difference here is with respect
to the input signal. For each of the 100 simulations, a new input signal is generated. The
disturbance is again also changed for each simulation. The methods/algorithms used for the
identification are the recursive versions of CCA (state algorithm), CCA-ORT and the QR
decomposition-based algorithm of the PBSID method (see Appendix B.4, Appendix B.5, and
Appendix B.6 for the implementations). The interval between each identification is set to
four time steps. It should be noted that a correct non-recursive identification requires for
both examples a past horizon of at least kp = 15 (order of P (z) is n = 5)8. The initial
identifications are made as outlined in Section 4.1.4.

The resulting Bode plots of the identification are shown for the ARMAX example in Figure
6.3 and for the Box-Jenkins example in Figure 6.4. Both figures show the expected results,
i.e., the Bode plots indicate that the theoretical derivation of (6.26) and (6.27) can be im-
plemented without any difficulties. Regardless of the underlying calculation, i.e., irrespective
of the use of the past data of 30 time steps or the previous predictor space and past data of
four time steps, the results of the identifications remain the same without showing significant
deviations from each other. The small variations visible in the respective Bode plots of each
method for different recursion cycles can be attributed to the numerical differences of the

8For a correct identification of the Box-Jenkins system by the CCA and PBSID methods, the model order
needs actually to be set to 7, and the resulting minimal length of the past horizon is kp = 21. However,
the Box-Jenkins example given here aims at the illustration of an identification with unknown (non-white)
disturbances on the output of the system and non-white input signals, i.e., the worst case encountered in
terms of identifications.
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data. Furthermore, the general behavior of the methods remains also for the recursive imple-
mentation. The identification of the systems which share the dynamics, i.e., the stochastic
and deterministic subsystems have the same dynamics, is performed correctly by each of the
methods. In terms of the Box-Jenkins structure, i.e., the identification of a system, which is
subjected to an arbitrarily colored noise, the correct results are only given by methods based
on the ORT approach (see Figure 6.4).
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Figure 6.3: Recursive identification of the LTI ARMAX system with CCA, CCA-ORT, and
PBSIDQR (from left to right): plots show the identification results of the initial
identification and the first, second, and fourth recursion cycle (red: nominal value
of P (z), black: identified models)
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Figure 6.4: Recursive identification of the LTI Box-Jenkins system with CCA, CCA-ORT, and
PBSIDQR (from left to right): plots show the identification results of the initial
identification and the first, second, and fourth recursion cycle (red: nominal value
of P (z), black: identified models)

6.4.2 Time-varying SISO system

In this subsection, two different examples are considered. The first is a general example
illustrating the capabilities of tracking the changes of time-varying systems. The second
provides a deeper look at the influence the change rate and/or the number of columns has
on the results of the identification.

Standard identifications

Again, the two examples of Section 4.1.4 are considered with unchanged basic simulations
and identification parameters. That is, the identifications of a time-varying ARMAX system
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Figure 6.5: Tracking of eigenvalues z1 to z5 (from top to bottom) by the CCA method for the
ARMAX example (red: nominal value of P (z), black: value of identified models)

and a time-varying Box-Jenkins system are considered. The methods used are the recursive
versions of the CCA method (state algorithm) and the CCA-ORT algorithm. The difference
with respect to Section 4.1.4 is only in terms of the input and the number of simulations.
For each of the 50 simulations, a new input signal is generated alongside with the change of
the disturbance. The interval between each identification is 10 time steps and identifications
are made over a total time interval of [30, 12000], i.e., the re-identifications take place at



6.4 Examples 141

2000 4000 6000 8000 10000

0.8

0.85

0.9

Va
lu

e

2000 4000 6000 8000 10000
−0.02

0

0.02
Eigenvalue, real part Eigenvalue, imaginary part

2000 4000 6000 8000 10000

0.4

0.45

0.5

0.55

Va
lu

e

2000 4000 6000 8000 10000

−0.7

−0.65

−0.6

−0.55

2000 4000 6000 8000 10000

0.4

0.45

0.5

0.55

Va
lu

e

2000 4000 6000 8000 10000

0.55

0.6

0.65

0.7

2000 4000 6000 8000 10000

0.25

0.3

0.35

Va
lu

e

2000 4000 6000 8000 10000

−0.75

−0.7

−0.65

−0.6

2000 4000 6000 8000 10000

0.25

0.3

0.35

Time in 1/Tsample

Va
lu

e

2000 4000 6000 8000 10000

0.6

0.65

0.7

0.75

Time in 1/Tsample

Figure 6.6: Tracking of eigenvalues z1 to z5 (from top to bottom) by the CCA-ORT algorithm
for the ARMAX example (red: nominal value of P (z), black: value of identified
models)

40, 50, 60, · · · , 12000, whereas the initial identification was made at 30. The time variation
of the system was introduced by changing the eigenvalues (poles) according to

z1(t) = 0.9000 − 0.1 1
1 + e

6000−t
1250

,

z2/3(t) = 0.4323 + 0.1 1
1 + e

6000−t
1250

±
(

0.6729 − 0.1 1
1 + e

6000−t
1250

)
,

z4/5(t) = 0.2898 ±
(

0.7458 − 0.1 1
1 + e

6000−t
1250

)
.

The resulting progressions of the eigenvalues of the models are shown in Figure 6.5 and Figure
6.6 for the ARMAX system and in Figure 6.7 and Figure 6.8 for the Box-Jenkins system. To
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Figure 6.7: Tracking of eigenvalues z1 to z5 (from top to bottom) by the CCA method for
the Box-Jenkins example (red: nominal value of P (z), black: value of identified
models)

align the data within the diagrams, the reference time of the tail matrices yN(t) and uN(t) is
set to be in the middle of the tail matrices, i.e., the tail matrices are constructed as

yN(t) =
[
y(t − 1000) · · · y(t − 1) y(t) y(t + 1) · · · y(t + 999)

]
.

Unless this adjustment is made the results of the identification would appear to be time
shifted with respect to the actual progression of the system’s eigenvalues. Nevertheless, this
already reveals the first problem of the basic recursive scheme. A genuine tracking seems to be
impossible because of the need for (with respect to the reference time t) future values. That
is, an actual online tracking will always exhibit a time delay of N/2. This offset follows from
an averaging of the covariances matrices over the interval [t − N + 1, t], which, for a constant
rate of change, leads to the covariance of t − bN/2c. This aspect will be further developed in
Section 6.5.1. For the time being, the general behavior of the results is of interest. As shown
by the diagrams, the general properties of the methods remain the same. Whereas the
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Figure 6.8: Tracking of eigenvalues z1 to z5 (from top to bottom) by the CCA-ORT algorithm
for the Box-Jenkins example (red: nominal value of P (z), black: value of identified
models)

identification of the systems with joint dynamics is not a problem for either of the methods,
the correct identification of a system in the presence of an arbitrarily colored noise is only
achieved by the CCA-ORT algorithm. The results of the PBSIDQR algorithm are omitted as
they are basically the same as for the CCA method.

Number of columns vs. change rate

In the wake of the remark regarding the influence of the tail matrices on the tracking capabi-
lities of recursive subspace methods, the question regarding the limitations of this approach
cannot be evaded. It should be noted that this is not a problem of the proposed approach but
rather a general problem. Although recognized in the literature, this aspect is usually only
superficially dealt with. In Lovera, Gustafsson, and Verhaegen (2000) and Mercère, Bako,
and Lecuche (2008) this problem appears in terms of the calculation of sample covariance
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matrices. The influence by past values is then suppressed by introducing a forgetting factor.
In Kameyama, Ohsumi, et al. (2005) the influence of the past is suppressed by introducing
a data window. That is, the sample covariance matrices are only calculated over a certain
interval. In each iteration step the past data, which lies outside of the window, is subtracted
from whereas the new data is added to the covariance estimates. However, the limitations of
this approach and its cause of the limitations, which become apparent in the examples are
not thoroughly addressed.

To illustrate the influence the length of the tail matrices and the change rate have on the
results (and in particular to derive an approach to solve this), an identification of an undis-
turbed ARMAX system, i.e. an ARX system, with an initial transfer function of

P (z) = 0.0275z−4 + 0.0551z−5

1 − 2.3443z−1 + 3.081z−2 − 2.5274z−3 + 1.2415z−4 − 0.3686z−5 .

is considered. The initial identification is made with kp = kf = 30. The following identifica-
tions are made with a time increment of 10 and over the interval [30, 5500]. For each of 50
simulations, a different white-noise input is generated. In terms of the nominal identificati-
ons, i.e., the identification which the comparisons are made against, the column number N
is 1000, whereas the change of the system is given by the change of the eigenvalues as

z1(t) = 0.9000 − 0.1 1
1 + e

2500−t
350

,

z2/3(t) = 0.4323 + 0.1 1
1 + e

2500−t
350

±
(

0.6729 − 0.1 1
1 + e

2500−t
350

)
,

z4/5(t) = 0.2898 ±
(

0.7458 − 0.1 1
1 + e

2500−t
350

)
.

For the following four comparative identifications, either the column number was set to 500
or 2000 or the change rate was accelerated according to

z1(t) = 0.9000 − 0.1 1
1 + e

2500−t
175

,

z2/3(t) = 0.4323 + 0.1 1
1 + e

2500−t
175

±
(

0.6729 − 0.1 1
1 + e

2500−t
175

)
,

z4/5(t) = 0.2898 ±
(

0.7458 − 0.1 1
1 + e

2500−t
175

)
.

or decelerated according to

z1(t) = 0.9000 − 0.1 1
1 + e

5000−t
700

,

z2/3(t) = 0.4323 + 0.1 1
1 + e

6000−t
700

±
(

0.6729 − 0.1 1
1 + e

5000−t
700

)
,

z4/5(t) = 0.2898 ±
(

0.7458 − 0.1 1
1 + e

5000−t
700

)
,

with a respective adjustment of the identification interval to [30, 11000] for the slower change
rate.
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Figure 6.9: Comparison of the influence of the column number and the change rate of the sy-
stem in terms of the real-valued eigenvalue z1 of P (z) (from left to right: increase
of the change rate with otherwise fixed simulation and identification parameters,
from bottom to top: increase of the column number with otherwise fixed simula-
tion and identification parameters; red: nominal value of P (z), black: identified
models)

The resulting progressions of the real-valued eigenvalue z1 (transition from 0.9 to 0.8) are
compared in Figure 6.9. The reference times of the tail matrices are again aligned with
nominal progression of the system’s eigenvalues. The diagrams show the expected results.
Whereas the accuracy of the tracking improves as either the column number or the change
rate are reduced, the tracking becomes worse if both values are increased. These observations
led to the remark in the introduction of this section regarding the yet to be solved problem
of recursive subspace identification and the outline of an approach for solving this problem
as presented in Section 6.5.1.

6.5 Practical aspects

Up to this point, the main focus has been on the theoretical aspect of the recursion. In this
last section, two aspects which are more concerned with the implementation and application
of the particular methods are highlighted. The first and foremost important aspect of making
the methods actually usable deals with the influence of the column count of the tail matrices.
This aspect already surfaced in someway in the previous examples. Here, the analysis and a
possible remedy are discussed. The second aspect deals with the effects the re-identifications
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have on the basis of the model. This results in an outline of an approach for keeping the
basis of a model of a SISO system the same throughout the recursion cycles. An extension
of the idea to MIMO systems is also mentioned.

6.5.1 Influence of the column number

As previously stated, the hindrance for tracking fast changes of a system stems from the tail
matrices yN(t) or uN(t), which represent the stochastic variables y(t) or u(t). However, the
underlying reasoning, which gives rise to these tail matrices, coincidentally depicts also an
approach to circumvent this problem. Hence, after explaining the need for tail matrices, an
approach for a possible solution is drawn. Some of the following considerations are also made
in Bathelt, Söffker, and Jelali (2017, 2018).

In terms of the numerical implementation, the spaces U−
t , Y−

t , etc. are represented by the
row spaces of block (row-wise) Hankel matrices. These block rows are in turn given by tail
matrices of the type (here for the output y)

yN(t) =
[
y(t) y(t + 1) · · · y(t + N − 1)

]
, (6.30)

where y(t) are the values of a sample function of y. The idea to represent the stochastic
variable y(t) by yN(t) follows from the law of large numbers and the ergodic theorem (see, e.g.,
Doob, 1990, 1953; Rozanov and Feinstein, 1967). Basically, a tail matrix can be constructed
from the results of repetitions of the random experiment y(t). However, multiple evaluations
of a stochastic processes at one point in time are practically impossible, as time can obviously
not be stopped. The solution presents itself by the assumed stationarity of the processes. That
is, all random variables within a stochastic process are the same (for subspace identification
similarity in terms of second moments, i.e., wide-sense similarity). Hence, the necessary
multiple evaluation at one point in time can be replaced by evaluations of consecutive random
variables, i.e., by evaluations of · · · , y(t), y(t + 1), y(t + 2), · · · . This results in one possible
sample function of y, which is then used for the construction of the tail matrix. Given
these values, the tail matrices · · · , yN(t), yN(t + 1), yN(t + 2), · · · or its respective elements
represent the stochastic process y through the sample covariance function

Σ̂yy(l) = 1
N

yN(t + l)yT
N(t) = 1

N

N−1∑
k=0

y(t + l + k)yT(t + k) , (6.31)

which replaces the ensemble covariance function in terms of the numerical implementations,
see Katayama (2005) and Lindquist and Picci (2015). For N → ∞,

Σyy(l) = Σ̂yy(l) = lim
N→∞

1
N

yN(t + l)yT
N(t) (6.32)

holds. In terms of the numerical implementation, the number N of the columns is dictated
by both the signal-to-noise ratio and by the complexity of the process. Thus, the number of
columns of the tail matrices and hence of the block Hankel matrices is usually larger (' 10
times larger) than the lengths of the past and future horizons, i.e., the number of its block
rows.

Considering the typical application of recursive identification means to consider time-varying
systems. In such cases, the stationarity of y is however no longer given. Abandoning the
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Figure 6.10: Construction of input signals consisting of multiple subprocesses; ei are mutually
orthogonal

assumption of stationarity has in turn major implications regarding on the elements of the
tail matrices · · · , yN(t), yN(t + 1), yN(t + 2), · · · . As the underlying stochastic process y
is now allowed to change in terms of its stochastic properties, the single random variables
· · · , y(t), y(t + 1), y(t + 2), · · · do not exhibit the same stochastic properties. Thus, Σ̂yy(l)
in (6.31) is no longer an estimator of the Σyy(l), as Σ̂yy(l) essentially represents the mean
of the covariances over the interval [t, t + N − 1] (cf. ergodic theorem and central limiting
theorem in Rozanov and Feinstein, 1967, pp. 156–161, pp. 190–198). This averaging effect
has already been mentioned during the explanation of the examples and has led to the shift of
the results. Technically speaking and respecting the data collection during on-line operation,
this effect already renders a genuine tracking close to impossible as the tail matrices need to
be constructed under on-line conditions as

yN(t) =
[
y(t − N + 1) y(t − N + 2) · · · y(t)

]
,

which in turn results together with the averaging effect over the interval of yN(t) in a delayed
tracking of the system’s changes. This strict restriction was relaxed during the simulation by
placing the reference time of the tail matrices in the middle of the interval of tail matrices.
Similar considerations were also made in Kameyama, Ohsumi, et al. (2005). The other
problem resulting from this is the direct influence of the averaging. Unless one assumes that
the processes is close to stationarity over the [t − N + 1, t] (called stationarity interval in
Kameyama, Ohsumi, et al., 2005), results as shown by the top and right diagrams of Figure
6.9 follow, i.e., there will be deviations from the exact value even if the reference times of
the tail matrices are aligned. As however the length of this stationarity interval is usually
required to be much larger than the past and future horizons, the process is assumed to be
slow enough that there is practically no merit of a recursive approach (except for run time
benefits). That is, standard methods can be used without compromising the accuracy of the
results. Due to the relation between the tail matrices and the sample covariances, this issue
appears not only in terms of the algorithm of Kameyama, Ohsumi, et al. (2005) but also the
in terms of the algorithms of Lovera, Gustafsson, and Verhaegen (2000) and Mercère, Bako,
and Lecuche (2008).

The solution of these problems can be concluded from the idea of the tail matrices. Multiple
momentary evaluations of the stochastic processes y and u at any time must be facilitated.
This requirement can be achieved by constructing the input process u as a sum of multiple
input subprocesses ui, which are the same in a wide sense, i.e., in terms of their second
moments. Under this condition, the resulting subprocesses yi of the output are also the
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same. Then, tail matrices can be constructed from the sample function of these subprocesses
as

yN(t) =
[
y1(t) y2(t) · · · yN(t)

]
, (6.33)

or as

yN(t) =
[
y1(t) · · · yM(t) y1(t + 1) · · · yM(t + k − 1) y1(t + k) · · · yM(t + k)

]
if the number of subprocesses is smaller than the number of columns. This idea for the
generation of an input is illustrated in Figure 6.10. For example, the introduction of 10
subprocesses reduces the length of the interval of the tail matrices to one tenth of its original
length. The reduction of the interval in turn allows change rates which are, with respect
to the original tail matrix, 10 times faster than original. This is a direct consequence of
the reduction of the averaging effects if the tail matrices are constructed as in (6.33). This
averaging vanish completely if all elements stem from the same point in time and hence
exhibit the same stochastic properties. These properties are governed by the system P (z).
To facilitate a separation of the output or input into the individual subprocesses yi and ui,
these subprocesses need to be mutually orthogonal. This property can be in turn inherited
from the driving white noise of the input process, as

E{u1(t)uT
2 (t)} = C(z)E

{
eu

1(t)
(
eu

2(t)
)T}

CT(z) . (6.34)

Hence, if the driving white-noise processes ei are mutually orthogonal, so are the individual
subprocesses yi and ui. The separation of y and u into its subprocesses is then given as
follows. Whereas the input separation simply follows with

ui(t) = Ê
{

u(t)
∣∣∣E i,−

t+1

}
, (6.35)

the separation of the output process needs to take the disturbances, which, by assumption,
are orthogonal to the ei, into consideration. That is, first, the disturbances need to be
determined by

ys(t) = y(t) − Ê

{
y(t)

∣∣∣∣∣
h∨

i=1
E i,−

t+1

}
, (6.36)

where h is the number of subprocesses ei. The disturbance ys(t) is then added to each
subprocess when the separation is made by

yi(t) = Ê
{

y(t)
∣∣∣E i,−

t+1

}
+ ys(t) . (6.37)

The core of this proposed scheme is based on the underlying relation between the second mo-
ments of a stochastic process and a system. These second moments are governed by the filter
C(z) and the system P (z). Thus, the identifications only need these second moments of a sto-
chastic processes to be the same – in general, the same holds also for classical identifications.
The general stochastic properties of the stochastic process or the underlying subprocesses
of the entries in the tail matrices (6.33) are thus irrelevant as long the second moments are
equal. A proof of this idea would be based on the central limiting theorem, which is however
beyond the scope of this thesis.



6.5 Practical aspects 149

Σt =
(At, Bt, Ct, Dt, Kt)

T0t = T0[c]T[c]t = T −1
[c]0T[c]t Σ0 =

(A0, B0, C0, D0, K0)

T[c]t T0[c] = const

Observability or
Controllability

forms
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nical forms; the subscript c is to be replaced by either C or O, indicating the
controllability or observability forms

6.5.2 Preservation of basis

The eponymous operation of subspace methods is the extraction of the predictor space. That
does actually not include the extraction of a certain basis of this predictor space. In fact,
different methods might determine different bases for the same predictor space. In terms of
the recursive methodology, this leads to the nuisance of a possible basis change with every re-
identification. Hence, a method is needed to keep the basis of the model either to a predefined
basis or to the basis of the initially identified model.

An approach to this problem includes similarity transformations between two systems Σ1 =
(A1, B1, C1, D1, K1) and Σ2 = (A2, B2, C2, D2, K2) which are given by

A2 = T −1
21 A1T21, B2 = T −1

21 B1, C2 = C1T21, D2 = D1, K2 = T −1
21 K1 .

As on the one hand, the transformation matrix T21 is determined (Kailath, 1980) as

T21 = C1C−1
2 = O−1

1 O2 ,

but on the other hand the matrices of the realization, which is to be transformed into, are
unknown, a procedure using an intermediate step via canonical forms is introduced. In terms
of SISO systems and using the controllability or observability forms, the transformation
matrices reduce to

TC1 = C1, or TO1 = O−1
1 ,

as the respective controllability and observability matrices are the unity matrices, see Kailath
(1980, p. 128). Based thereon, the procedure of the transformation of the identified models
into realizations having the same basis is as follows:

1. Determination of the transformation matrix T0[c], where the subscript c is to be replaced
by either C or O, indicating a transformation from the controllability or observability
forms to a basis realization Σ0, i.e., the model of the initial identification cycle. This
transformation matrix is the inverse of T[c]0, the transformation from Σ0 to the re-
spective canonical form.

2. Determination of the transformation matrix T[c]t for the transformation from the model,
identified in in each recursion cycle, to the controllability or observability forms
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3. Construction of the global transformation matrix T0t for the transformation from the
identified model to the basis of the basis realization as T0[c]T[c]t

4. Transformation of the identified model

This procedure is illustrated in Figure 6.11. The artifice of the transformation procedure lies
in the fact that the transformation matrix T0[c] remains the same independent of the numerical
values of the canonical forms. The changes of the canonical forms or the realizations in general
stem from the changes of the system dynamics but not from changes of the state basis, cf.
LPV models. Hence, once the transformation matrix T0[c] is determined by inverting the
transformation matrix from Σ0 to the controllability or observability forms, it can be used
in every identification cycle. The determination of the missing transformation matrix Tct is
straightforward as only the realization of the model of the current recursion cycle is needed.
It should be noted that this procedure is however restricted to SISO models.

The problem appearing in terms of the MIMO system is the loss of the uniqueness of the
controllability or observability forms (Kailath, 1980, p. 426), which is however crucial for this
procedure. Without uniqueness, the transformation T[c]t might give a canonical realization
which differs from the realization, which T0[c] is based on. A solution to this problem is given
by the approach outlined in Mercère and Bako (2011) or the overall unique echelon form, see
Hannan and Deistler (2012).

A general issue that should be kept in mind is the question regarding the correct extraction
of the order. The idea outlined in this section is based on the tacit assumption of a known
and fixed order of the system, as it would for example be the case with LPV systems. An
overall change of the basis can then be ruled out, as the order of the system is constant and
exactly known. In all other cases, a possible change of the predictor space as a whole might
be possible.

6.6 Summary

In this chapter, the work with respect to the theoretical contribution of the thesis is discussed.
The approach to recursive subspace identification is based on the fundamental methodologi-
cal relations of subspace identification instead of the compression of some data matrices as it
has been done before. Hence, the approach outlined here is the first of its kind. The theore-
tical foundation for the approach to recursive subspace identification is derived based on the
coordinate-free framework. In this framework, the space of the state of a system is given by
the (oblique) Markovian splitting subspace of some past and future data spaces. It is shown
that these Markovian splitting subspaces can be recursively extracted. This leads to an inhe-
rent recursive scheme for the identification by subspace methods. That is, given a Markovian
splitting subspace of any point in the past and the intermediate data, the current Markovian
splitting subspace can be determined. As a minimal Markovian splitting subspace or mini-
mal predictor space provides the necessary past information while being the smallest possible
subspace of the past to do so, the minimal predictor space gives also the best possible data
compression. That is, there is no redundant data or information propagated to the future.
As this scheme is furthermore theoretically motivated, the resulting methods/algorithms are
not purpose-build but rather simple extensions of existing methods. The numerical examples
verified the functioning of the approach. Further studies show that the tracking capability
and hence quality of the results are limited by the length of the interval needed to construct
the tail matrices, which represent the stochastic variables, i.e., the longer the tail matrices
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are, the slower the change rate of the system has to be to retain an accurate tracking of the
system. If this is not taken into account, this problem manifests itself in terms of a time shift
or a blurring of the changes of the system. Although this problem also concerns the methods
discussed in the literature, it has not sufficiently been addressed before. In terms of the ap-
proach proposed here, this emerging problem is given a possible solution by an input scheme,
which facilitates the construction of tail matrices based on the data of reduced intervals or
even of a single point in time.

Recapitulation of main results

• The future minimal (oblique) Markovian splitting subspaces are contained in the joint
spaces spanned by the current minimal (oblique) Markovian splitting subspaces and the
respective intermediate data spaces (stochastic case and joint stochastic-deterministic
case) as

X +/−
t+k ⊂ X +/−

t ∨ Y−
[t,t+k) , X +/−

t+k ⊂ X +/−
t ∨ Y−

[t,t+k) ∨ U−
[t,t+k) .

• The determination of minimal (oblique) Markovian splitting subspaces follows as (sto-
chastic case and general joint stochastic-deterministic case)

X +/−
t+k = Ê

{
Y+

t+k

∣∣∣X +/−
t ∨ Y−

[t,t+k)

}
,

X +/−
t+k = Ê||F+

t

{
Y+

t+k

∣∣∣X +/−
t ∨ Y−

[t,t+k) ∨ U−
[t,t+k)

}
.

• From the derivation of the minimal oblique Markovian splitting subspace for the joint
stochastic-deterministic case, the formulation for the open-loop case is achieved by
reducing F+

t to U+
t , yielding

X +/−
t+k = Ê||U+

t+k

{
Y+

t+k

∣∣∣X +/−
t ∨ Y−

[t,t+k) ∨ U−
[t,t+k)

}
.

This is further extended to the identification of the deterministic subsystem by a re-
duction to the deterministic component X d,+/−

t ∨ U−
[t,t+k). This gives

X d,+/−
t+k = Ê||U+

t+k

{
Y+

t+k

∣∣∣X d,+/−
t ∨ U−

[t,t+k)

}
.

Similar reasoning leads to a version for the predictor-based approach of the PBSID
method (which is supposed to also work under closed-loop conditions) with

X +/−
t+k =

n−1∨
h=0

X h
t+k ,

where
X h

t+k = Ê||P+
[t+k,t+k+h)

{
Yt+k+h

∣∣∣X +/−
t ∨ P−

[t,t+k)

}
.

• The numerical implementation of the recursive methodology requires only minor chan-
ges to existing methods. In terms of the basic QR decompositions, the numerical data
matrices of the past, Y−

t (stochastic case) or P−
t (joint stochastic-deterministic case),

are replaced by
[
xT

N (t0) (Y−
[t0,t))

T
]T

or
[
xT

N (t0) (P−
[t0,t))

T
]T

. The remainder of the met-
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hods remains the same, except for, where necessary, an additional determination of the
current state estimate x̂N(t). That is, the recursive approach can be embedded into
existing method without changing the actual identification algorithm.

• The influence of the interval which the data of the tail matrices is collected over, is
reduced by constructing an input consisting of several mutually orthogonal subprocess.
By constructing the tail matrices based on the sample functions of these subprocess,
the interval length of the tail matrices is reduced or avoided altogether. This allows for
the identification of systems with higher change rates.



7 Conclusions and continuative work

This last chapter concludes the thesis. In Section 7.1, the achieved results are summarized
and assessed in terms of the goals set in Chapter 3. Ideas and recommendations for future
work are given in Section 7.2.

7.1 Summary and conclusions

In this thesis, an approach to recursive subspace identification is proposed. This is mainly
motivated by the pursuit of simplifying the identification of complex industrial plants, so
that LTI models can be used instead of LPV models. These LTI models are then supposed
to be adapted during a change of the operating point. In this context, not only a recursive
approach is needed but also methods or algorithms suitable for the industrial environment.
That is, methods or algorithms are needed that facilitate the recursive use in open-loop and
closed-loop settings, while also be able to suppress disturbances and yield sufficiently accurate
results in an industrial environment.

Open-loop methods

The basic idea of embedding the ORT approach into the calculation procedure of the CCA
method is based on the fact that the determination of the deterministic predictor space can
be achieved by

X d,+/−
t = Ê||U+

t
{Y+

t |U−
t } .

This results from merging the two-step procedure of calculating first the deterministic com-
ponent of the output and then the respective predictor space of this component. Based on
the above oblique projection, the state-regression algorithm of the CCA method is modified
to yield the model of the deterministic part of the system. This algorithm is hence called
CCA-ORT. Comparing the results of this algorithm in terms of academic examples with the
CCA method, N4SID method, PO/PI-MOESP algorithms, and the original MOESP-based
ORT algorithm, the proposed CCA-ORT algorithm yields the same results or in comparison
with the original MOESP-based ORT algorithm slightly better results. However, comparing
the methods in terms of the more realistic benchmark example of the Tennessee Eastman
Process, the CCA-based methods/algorithms yield the overall best results. This becomes
even more pronounced once the outputs of the system are subjected to disturbances. Alt-
hough the results of the CCA-based ORT algorithm starts to slightly loose its accuracy once
the signal-to-noise ratio increases (SNR > 50), The results remain however the best, as the
loss of accuracy is not as severe as it is the case with other methods/algorithms. Hence, the
proposed algorithm outperforms the other methods/algorithms and satisfies the set goal.
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Closed-loop methods

The candidate method for the identification in a closed-loop setting is the PBSID method,
which is categorized as a direct approach method, i.e., neither the knowledge of the controller
transfer function (indirect approach) nor an entire identification of the closed-loop system
(joint input-output approach) are needed. As the algorithmic core of this method is a VARX
estimation, the major issue is first and foremost concerned with an algorithm for the esti-
mation which avoids any pre-estimation of a VARX model. In this context, an algorithm
directly implementing the theoretical basis of the PBSID method is proposed. Instead of
using a least-squares approach or a VARX estimation, the calculation of the predictor space
is implemented according to

X +/−
t =

kf −1∨
h=0

X h
t ,

where
X h

t = Ê||P[t,t+h){y(t + h) | P−
t } .

This is achieved by rearranging the data in the numerical data matrix of the QR decom-
position, which in turn facilitates the implementation of the projections of the predictor
subspaces X h

t , h = 0, · · · , kf − 1 as given in the above equation. This algorithm is hence
called PBSIDQR. However, problems in terms of either the numerical examples or the im-
plementation of the methods – the QR decomposition-based PBSID method and benchmark
methods – forbid a thorough comparison of the accuracy of the methods/algorithms. None of
the methods/algorithms is able to achieve the set goal of identifying ARX, ARMAX or Box-
Jenkins systems in a closed-loop setting. These problems appear although the benchmark
methods are implemented as given in the literature. The cause of this problem needs further
investigation, as it is not clear if it is only a parametrization error (the exact implementa-
tions and complete parametrization of the examples are not disclosed in the literature) or
something more fundamental. Identifications of systems subjected to white-noise disturban-
ces (output-error systems) in a closed-loop setting and open-loop identifications (the direct
approach methods can be used in both settings) produce suitable results. Here, both the
VARX-based and the QR decomposition-based PBSID algorithms are the best, with a slight
advantage for the VARX-based algorithm. As furthermore, the fundamental assumptions of
the ORT approach forbid a direct embedding of this approach into closed-loop methods, only
the main goal, i.e., deriving a method which allows the recursive use, was achieved. Thus, the
adaption of the algorithm for the use within an industrial environment, which would require
a disturbance suppression, needs further work. In terms of Tennessee Eastman Process study,
the PBSID algorithms were the second best algorithms, only surpassed by the CCA method
and the CCA-ORT algorithm.

Recursive subspace identification

The goal of deriving a methodological basis for recursive subspace identification is achieved.
It is given in terms of the modeling of stochastic systems by

X +/−
t+k = Ê

{
Y+

t+k

∣∣∣X +/−
t ∨ Y−

[t,t+k)

}
,

and in terms of the modeling of joint stochastic-deterministic systems by

X +/−
t+k = Ê||F+

t

{
Y+

t+k

∣∣∣X +/−
t ∨ Y−

[t,t+k) ∨ U−
[t,t+k)

}
.



7.2 Continuative work 155

The recursion is given by the calculation of a future minimal predictor space based on a past
minimal predictor space, which are both equal to the model of a system (Akaike, 1974, p.
669, Lindquist and Picci, 1996b). The calculations for the deterministic minimal predictor
space and for the theoretical basis of the PBSID method follow as corollaries with

X d,+/−
t+k = Ê||U+

t+k

{
Y+

t+k

∣∣∣X d,+/−
t ∨ U−

[t,t+k)

}
and

X +/−
t+k =

n−1∨
h=0

X h
t+k ,

where
X h

t+k = Ê||P+
[t+k,t+k+h)

{
Yt+k+h

∣∣∣X +/−
t ∨ P−

[t,t+k)

}
.

In terms of the numerical implementation, the approach is however limited by the represen-
tation of stochastic values by tail matrices. As the covariance matrices, which are needed
for the calculation of the projections, are based on these tail matrices, the change rate of a
time-varying system needs to be slow, so that the ergodic theorem still holds to some degree
and the sample covariance matrices are similar to the ensemble covariance matrices. Such a
limitation of the change rate is however theoretically not needed. Thus, the numerical results
of the identification – but not the underlying derivation of the approach – are similar to the
ones of existing algorithms. A possible solution of this problem is discussed in terms of an
input scheme, which can increase the permissible change rate. The open task is mainly the
thorough proof of the idea and the subsequent implementation. It should be kept in mind
that the correctness of the recursive approach remains unaltered even if the application of
this approach to time-varying systems means a violation of the assumed stationarity, which
the derivation is based on.

7.2 Continuative work

The following list contains recommendations for continuative work, which results from the
work covered by this thesis. The order is with respect to the importance of the individual
points.

Derivation and implementation of the input scheme

As mentioned in the conclusions, the most important next step is the derivation and im-
plementation of the input scheme. The basic approach is already given by the outline in
Section 6.5.1. In this context, the first step is to thoroughly prove the discussed idea, which
states that the tail matrices, which are constructed from the sample functions of different
orthogonal subprocesses, yield the same covariance estimation as the tail matrices of one
sample function. This basically includes an approach via the central limiting theorem, see
Doob (1990, 1953), Katayama (2005, pp. 79–81), and in particular the discussions in chapter
11 of Rozanov and Feinstein (1967). The second and more involved step is the implemen-
tation of the projections for the decomposition of y. Here, the approach needs to take into
consideration that a projection is basically a linear least-squares estimation and that the
coefficients associated with past random variables are not influenced by the future changes of
the system. Only coefficient associated with the current and future random variables carry
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the information regarding the present and future changes of the system. The application of
this input scheme is not limited to recursive algorithms. It can also be used for standard
algorithms.

Fixed state basis

The idea regarding the fixation of the state basis for MIMO systems needs to be further
investigated. If it is true that such can be achieve similar to the SISO case by using the
echolon form (see Hannan and Deistler, 2012, pp. 55–61), the question regarding the direct
inclusion of this approach into the recursive scheme appears. The determination of the
echolon form is based on the Kronecker indices and the resulting selection of certain parts of
the Hankel matrix

H =



G1 G2 G3 G4 · · ·

G2 G3 G4 G5 · · ·

G3 G4 G5 G6 · · ·
...

...
...

... . . .


,

where its entries are given by the impulse response coefficients (for deterministic realizations
and joint stochastic-deterministic realizations)

Gi = CAi−1B , or Gi = CAi−1
[
B K

]
.

As these Hankel matrices appear within the oblique projections yielding the predictor space,
the question is whether the basis can be fixed by directly embedding the selection procedure
into the calculations of these projections.

Closed-loop problems

The most pressing problem in this context is regarding the substandard results of all closed-
loop methods as witnessed in the examples. It is not clear whether the issue might be an
implementation related problem or if the chosen parameters, i.e., horizon lengths, have been
outright wrong – something that cannot be ruled out, as such has not been disclosed in
the respective literature. Further investigations and identification tests are needed, to get a
deeper understanding.

In terms of improvements of the proposed PBSIDQR algorithm, the inclusion of a canonical
correlation analysis approach, as discussed in Chiuso (2006) or done in Jansson (2003), might
be a worthwhile endeavor. Another idea is with respect to the QR decomposition. As the
data structure basically permits some kind of back-propagation of previous results, cf. Qin
and Ljung (2003b), it might be possible to actually achieve a complete consistent estimation,
i.e., enforcing the Toeplitz structure of LP+

t
, see page 92 and preceding derivations. See also

Qin, Lin, and Ljung (2005) for a similar discussion in terms of PARSIM-E.

Closed-loop ORT

Although an approach for the orthogonal decomposition in a closed-loop setting is given by
the joint input-output methods outlined in Katayama (2005) and Katayama and Tanaka
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(2007), the question is whether it is possible to find also a way for direct-approach methods.
Here, the main issue is regarding the necessity of the freedom of feedback needed for the ORT
approach. If this assumption can be relaxed, it might be possible to find a similar approach
for the closed-loop setting. In this context, the starting point is the fundamental work related
to feedback in Anderson and Gevers (1982), Caines and Chan (1975, 1976), and Gevers and
Anderson (1981) as well as related to feedback-free processes in Caines (1976) and Gevers
and Anderson (1982).

Inclusion into process monitoring or control performance monitoring algorithms

The long-term objective1 is to derive methods for process monitoring or control performance
monitoring (see, e.g., Ding, 2013; Jelali, 2013) based on recursive subspace identification.
Hence, once the previous issues are addressed, this idea might be resumed and algorithms
for both fields should be derived. In particular, the process monitoring schemes outlined
in Ding (2013) present a basis for such, as its algorithmic basis is intriguingly similar to
subspace identification. In this context, the calculation of an initial state for the recursion
by an observer reduces also the necessity of the initial identification.

Number of invariant parameters in subspace identification and order estimation

Although this is an important aspect for the implementation of order estimation schemes,
the publications referring to this question are rather rare. Whereas in Hannan and Deistler
(2012) the number of invariant parameters of a state-space system is specified in Theorem
2.5.3 and later on p. 69 with (assuming no feed-through)

d(n) = n(m + p) + np ,

it is concluded in Candy, Bullock, and Warren (1979) that the number of invariant parameters
of a stochastic system is given with

d(n) = 2np + 1/2p(p + 1) ,

which takes the invariant parameters in A and C as well as in Q, R and S into account. From
the standpoint of the Kalman filter representation of (2.4) and the explanations of Hannan
and Deistler (2012), this is the number of invariant parameters of A, K, (C), and Σee. As
hence the specifications of the number of invariant parameters vary across the papers without
one common reference, it would be a useful to find a common specification of the number of
invariant parameters. Combining the explanations of Hannan and Deistler (2012) and Candy,
Bullock, and Warren (1979), the initial idea would be

d(n) = np + n(m + p) + mp + 1/2p(p + 1) ,

which takes the invariant parameters of the system matrices of (2.4) and the number of
invariant parameters of the as well estimated Σee into account. Considering furthermore the
identification of the deterministic subsystem, the number of invariant parameters should be

d(n) = np + nm + mp .

1Or rather the actual initial idea of this thesis, which eventually turned out to be way to ambitious to be
reached within the period of time.
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This last equation is however restricted to systems being completely reachable by the input.

Although the above equations might be correct, the whole issue needs a thorough treatment
and derivation, as those equations are rather results of assumptions than derivations. These
assumptions follow from the combination of the mentioned references. Such a derivation and
discussion should however be well-recieved as a combined presentation is missing and the
parameter number is mostly written down without further discussion to why it is chosen
in this particular way. The most ambiguous case concerns the inclusion of the innovation
matrix. The question is whether it should be included into the parameter number or not.

Furthermore, the problem of order estimation might need additional treatment. Even if
the methods of Bauer (2001) and Fujikoshi and Veitch (1979) produce good results in a
linear setting, they tend to fail if the system in question becomes nonlinear or the estimation
problem is handled in a rather straight-forward way as it was done in the Tennessee Eastman
Process example (the horizon lengths were simply chosen based on a “the longer the better”
judgment). In terms of the methods proposed in Bauer (2001) and considering linear systems,
it should be further noted that the results depend heavily on the right choice of C(T ) or even
the way the identification method/algorithm works. In the case of N4SID, the results have
been satisfying only after the algorithm was adjusted to use a CVA weighting scheme (see
van Overschee and De Moor, 1996, pp. 80–81, p. 114).

Implemenational aspects of open-loop methods

Lastly, an observation, which has been made during the Tennessee Eastman Process study,
should be pointed out. Although the CCA-based algorithms performed the best in terms of
a general assessment by the R2 measure or the FPE measure, the N4SID algorithms yielded
(on average) the best identification of the transient phase of the step responses (not shown
by diagrams). The CCA-based algorithms are however superior in terms of the steady state
estimation and percentage of usable models. When applied to the identification data, the
N4SID algorithms partially tend to determine unstable models, which are clearly wrong as
the system itself is stable. The CCA-based algorithms (and algorithms of the PBSID method)
do not show this behavior. This determination of unstable models is reflected by outliers of
the N4SID algorithms in the respective boxplots. Hence, the question is if it is possible to
combine the good approximation of the transient phase of the N4SID methods with the good
identification of the steady state and the reliability achieved by the CCA-based algorithms.



Bibliography

Akaike, H. (1974). “Stochastic Theory of Minimal Realization”. In: IEEE Transactions on
Automatic Control 19.6, pp. 667–674.

Akaike, H. (1976). “Canonical Correlation Analysis of Time Series and the Use of an In-
formation Criterion”. In: System Identification. Ed. by R. K. Mehra and D. G. Lainiotis.
Vol. 126. Mathematics in science and engineering. New York: Academic Press, pp. 27–96.

Akçay, H. (2011). “Frequency Domain Subspace-Based Identification of Discrete-Time Power
Spectra from Uniformly Spaced Measurements”. In: Automatica 47.2, pp. 363–367.

Anderson, B. D. O. and Gevers, M. R. (1982). “Identifiability of Linear Stochastic Systems
Operating Under Linear Feedback”. In: Automatica 18.2, pp. 195–213.

Åström, K. J. and Eykhoff, P. (1971). “System identification - A survey”. In: Automatica 7.2,
pp. 123–162.

Bathelt, A. and Jelali, M. (2014). “Comparative study of subspace identification methode on
the Tennessee Eastman Process under disturbance effects”. In: Proceedings of the 5th In-
ternational Symposium on Advanced Control of Industrial Processes. Ed. by IEEE, pp. 31–
36.

Bathelt, A., Ricker, N. L., and Jelali, M. (2015). “Revision of the Tennessee Eastman Process
Model”. In: Proceedings of the 9th IFAC Symposium on Advanced Control of Chemical
Processes. Ed. by IFAC. Vol. 48, pp. 309–314.

Bathelt, A., Söffker, D., and Jelali, M. (2015). “An algorithm combining the subspace identi-
fication methods ORT and CCA”. In: Proceedings of the 54th Conference on Decision and
Control, 2015. Ed. by IEEE, pp. 3361–3366.

Bathelt, A., Söffker, D., and Jelali, M. (2017). “An Approach to Recursive Subspace Iden-
tification”. In: Proceedings of the 56th Conference on Decision and Control, 2017. Ed. by
IEEE, pp. 4638–4643.

Bathelt, A., Söffker, D., and Jelali, M. (2018). “Recursive Subspace Identification based on
Stochastic Realization Theory”. In: Automatica in preparation.

Bauer, D. (2001). “Order estimation for subspace methods”. In: Automatica 37.10, pp. 1561–
1573.

Bauer, D. (2005). “Asymptotic properties of subspace estimators”. In: Automatica 41.3,
pp. 359–376.

Bauer, D. and Ljung, L. (2002). “Some facts about the choice of the weighting matrices in
Larimore type of subspace algorithms”. In: Automatica 38.5, pp. 763–773.

Caines, P. E. (1976). “Weak and Strong Feedback Free Processes”. In: IEEE Transactions on
Automatic Control 21.5, pp. 737–739.

Caines, P. E. and Chan, C. W. (1975). “Feedback between Stationary Stochastic Processes”.
In: IEEE Transactions on Automatic Control 20.4, pp. 498–508.

Caines, P. E. and Chan, C. W. (1976). “Estimation, Identification and Feedback”. In: Mat-
hematics in Science and Engineering 126, pp. 349–405.

Candy, J. V., Bullock, T. E., and Warren, M. E. (1979). “Invariant system description of the
stochastic realization”. In: Automatica 15.4, pp. 493–495.

Chiuso, A. (2006). “Asymptotic Variance of Closed-Loop Subspace Identification Methods”.
In: IEEE Transactions on Automatic Control 51.8, pp. 1299–1314.



160 Bibliography

Chiuso, A. (2007a). “On the Relation Between CCA and Predictor-Based Subspace Identifi-
cation”. In: IEEE Transactions on Automatic Control 52.10, pp. 1795–1812.

Chiuso, A. (2007b). “The role of vector autoregressive modeling in predictor-based subspace
identification”. In: Automatica 43.6, pp. 1034–1048.

Chiuso, A. and Picci, G. (1999). “Subspace Identification by Orthogonal Decomposition”. In:
Proceedings of the 14th World Congress. Ed. by T. Y. Chai and H.-F. Chen. Kidlington:
Pergamon.

Chiuso, A. and Picci, G. (2001). “Some Algorithmic Aspects of Subspace Identification with
Inputs”. In: International Journal of Applied Mathematics and Computer Science 11.1,
pp. 55–75.

Chiuso, A. and Picci, G. (2003). “Geometry of oblique splitting, minimality and Hankel
operators”. In: Directions in mathematical systems theory and optimization. Ed. by A.
Rantzer, C. I. Byrnes, and A. Lindquist. Vol. 286. Lecture Notes in Control and Information
Science. Berlin, New York: Springer, pp. 85–124.

Chiuso, A. and Picci, G. (2004a). “Asymptotic variance of subspace methods by data orthogo-
nalization and model decoupling: a comparative analysis”. In: Automatica 40.10, pp. 1705–
1717.

Chiuso, A. and Picci, G. (2004b). “Numerical Conditioning and Asymptotic Variance of
Subspace Estimates”. In: Automatica 40.4, pp. 677–683.

Chiuso, A. and Picci, G. (2004c). “On the Ill-Conditioning of Subspace Identification with
Inputs”. In: Automatica 40.4, pp. 575–589.

Chiuso, A. and Picci, G. (2004d). “Subspace Identification by Data Orthogonalization and
Model Decoupling”. In: Automatica 40.10, pp. 1689–1703.

Chiuso, A. and Picci, G. (2004e). “The Asymptotic Variance of Subspace Estimates”. In:
Journal of Econometrics 118.1-2, pp. 257–291.

Chiuso, A. and Picci, G. (2005). “Consistency analysis of some closed-loop subspace identi-
fication methods”. In: Automatica 41.3, pp. 377–391.

Chui, N. L. C. and Maciejowski, J. M. (2005). “Criteria for informative experiments with
subspace identification”. In: International Journal of Control 78.5, pp. 326–344.

Dahlén, A. and Scherrer, W. (2004). “The relation of the CCA subspace method to a balanced
reduction of an autoregressive model”. In: Journal of Econometrics 118.1-2, pp. 293–312.

De Moor, B. L. R. (1993). “The Singular Value Decomposition and Long and Short Spaces
of Noisy Matrices”. In: IEEE Transactions on Signal Processing 41.9, pp. 2826–2838.

Ding, S. X. (2013). “Data-driven design of monitoring and diagnosis systems for dynamic
processes: A review of subspace technique based schemes and some recent results”. In:
Journal of Process Control 24.2, pp. 431–449.

Doob, J. L. (1990, 1953). Stochastic processes. 2nd ed. Wiley Classics Library. New York:
John Wiley & Sons.

Downs, J. J. and Vogel, E. F. (1993). “A plant-wide industrial process control problem”. In:
Computers & Chemical Engineering 17.3, pp. 245–255.

Favoreel, W., De Moor, B. L. R., and van Overschee, P. (1999). “Subspace identification of
bilinear systems subject to white inputs”. In: IEEE Transactions on Automatic Control
44.6, pp. 1157–1165.

Fujikoshi, Y. and Veitch, L. G. (1979). “Estimation of dimensionality in canonical correlation
analysis”. In: Biometrika 66.2, pp. 345–351.

Gevers, M. R. and Anderson, B. D. O. (1981). “Representations of Jointly Stationary Sto-
chastic Feedback Processes”. In: International Journal of Control 33.5, pp. 777–809.

Gevers, M. R. and Anderson, B. D. O. (1982). “On Jointly Stationary Feedback-free Stochas-
tic Processes”. In: IEEE Transactions on Automatic Control 27.2, pp. 431–436.



Bibliography 161

Gustafsson, T. (1998). “Instrumental variable subspace tracking using projection approxima-
tion”. In: IEEE Transactions on Signal Processing 46.3, pp. 669–681.

Gustafsson, T. (2002). “Subspace-based System Identification: Weighting and Pre-filtering of
Instruments”. In: Automatica 38.3, pp. 433–443.

Hannan, E. J. and Deistler, M. (2012). The statistical theory of linear systems. SIAM ed.
Vol. 70. Classics in applied mathematics. Philadelphia, Pa: Society for Industrial and Ap-
plied Mathematics (SIAM 3600 Market Street Floor 6 Philadelphia PA 19104).

Hinnen, K., Verhaegen, M., and Doelman, N. (2005). “Robust spectral factor approximation
of discrete-time frequency domain power spectras”. In: Automatica 41.10, pp. 1791–1798.

Huang, B., Ding, S. X., and Qin, S. J. (2005). “Closed-loop subspace identification: an ort-
hogonal projection approach”. In: Journal of Process Control 15.1, pp. 53–66.

Huang, B. and Kadali, R. (2008). Dynamic Modeling, Predictive Control and Performance
Monitoring: A Data-driven Subspace Approach. Vol. 374. Lecture notes in control and
information sciences. London: Springer London.

Huang, D. and Katayama, T. (2004). “A Closed-loop Subspace Identification Method for
Continuous-time Systems based on δ-Operator Model”. In: Asian Journal of Control 6.3,
pp. 341–352.

Jansson, M. (2003). “Subspace Identification and ARX Modeling”. In: System identification
(SYSID ’03). Ed. by IFAC. Oxford: Elsevier.

Jansson, M. and Wahlberg, B. (1996). “A Linear Regression Approach to State-Space Sub-
space System Identification”. In: Signal Processing 52.2, pp. 103–129.

Jansson, M. and Wahlberg, B. (1998). “On Consistency of Subspace Methods for System
Identification”. In: Automatica 34.12, pp. 1507–1519.

Jelali, M. (2013). Control performance management in industrial automation: Assessment,
diagnosis and improvement of control loop performance. Advances in industrial control.
London and New York: Springer.

Juricek, B. C., Seborg, D. E., and Larimore, W. E. (2001). “Identification of the Tennessee
Eastman Challenge Process with Subspace Methods”. In: Control Engineering Practice
9.12, pp. 1337–1351.

Kailath, T. (1980). Linear systems. Prentice-Hall information and system sciences series.
Englewood Cliffs, NJ: Prentice-Hall.

Kalman, R. E. (1960). “A New Approach to Linear Filtering and Prediction Problems”. In:
Journal of Basic Engineering 82.1, pp. 35–45.

Kameyama, K., Ohsumi, A., et al. (2005). “Recursive 4SID-based identification algorithm
with fixed input-output data size”. In: International Journal of Innovative Computing,
Information and Control 1.1, pp. 17–33.

Katayama, T. (2005). Subspace Methods for System Identification. Communications and Con-
trol Engineering. London: Springer-Verlag London Limited.

Katayama, T. (2010). “Subspace identification of combined deterministic-stochastic systems
by LQ decomposition”. In: Proceedings of the 2010 American Control Conference. Ed. by
IEEE. New York: IEEE Press Books, pp. 2941–2946.

Katayama, T., Kawauchi, H., and Picci, G. (2005). “Subspace identification of closed loop
systems by the orthogonal decomposition method”. In: Automatica 41.5, pp. 863–872.

Katayama, T. and Picci, G. (1999). “Realization of stochastic systems with exogenous inputs
and subspace identification methods”. In: Automatica 35.10, pp. 1635–1652.

Katayama, T. and Tanaka, H. (2007). “An Approach to Closed-Loop Subspace Identification
by Orthogonal Decomposition”. In: Automatica 43.9, pp. 1623–1630.

Knudsen, T. (2001). “Consistency analysis of subspace identification methods based on a
linear regression approach”. In: Automatica 37, pp. 81–89.



162 Bibliography

Knudsen, T. (2002). “Subspace identification - Reducing uncertainty on the stochastic part”.
In: Proceedings of the 15th World Congress of the International Federation of Automatic
Control. Ed. by IFAC, p. 448.

Kroll, A. and Schulte, H. (2014). “Benchmark problems for nonlinear system identification and
control using Soft Computing methods: Need and overview”. In: Applied Soft Computing
25, pp. 496–513.

Larimore, W. E. (1983). “System identification, reduced-order filtering and modeling via
canonical variate analysis”. In: Proceedings of the 1983 American Control Conference. Ed.
by IEEE, pp. 445–451.

Larimore, W. E. (1990). “Canonical variate analysis in identification, filtering, and adaptive
control”. In: Proceedings of the 29th IEEE Conference on Decision and Control. Ed. by
IEEE Control Systems Society. IEEE, 596–604 vol.2.

Larimore, W. E. and Baillieul, J. (1990). “Identification and filtering of nonlinear systems
using canonical variate analysis”. In: Proceedings of the 29th IEEE Conference on Decision
and Control. Ed. by IEEE Control Systems Society. IEEE, 635–640 vol.2.

Lindquist, A. and Picci, G. (1996a). “Canonical Correlation Analysis, Approximate Covari-
ance Extension, and Identification of Stationary Time Series”. In: Automatica 32.5, pp. 709–
733.

Lindquist, A. and Picci, G. (1996b). “Geometric Methods for State Space identification”. In:
Identification, Adaptation, Learning: Proceedings of the NATO Advanced Study Institute
From Identification to Learning, held in Como, Italy, August 22 - September 2, 1994. Ed.
by S. Bittanti and G. Picci. Vol. 153. NATO ASI series Series F, Computer and Systems
Sciences. Berlin: Springer, pp. 1–69.

Lindquist, A. and Picci, G. (2015). Linear stochastic systems: A geometric approach to mo-
deling, estimation and identification. Vol. v. 1. Series in contemporary mathematics. Hei-
delberg: Springer.

Ljung, L. (2009). System identification: Theory for the user. 2. ed., 11. printing. Prentice Hall
information and system sciences series. Upper Saddle River, NJ: Prentice Hall PTR.

Ljung, L. and McKelvey, T. (1996a). “A least squares interpretation of sub-space methods
for system identification”. In: Proceedings of the 35th IEEE Conference on Decision and
Control. Ed. by IEEE Control Systems Society. Vol. 1. Piscataway, NJ: IEEE, pp. 335–342.

Ljung, L. and McKelvey, T. (1996b). “Subspace identification from closed loop data”. In:
Signal Processing 52.2, pp. 209–215.

Lovera, M., Gustafsson, T., and Verhaegen, M. (2000). “Recursive Subspace Identification of
Linear and Non-linear Wiener State-space Models”. In: Automatica 36.11, pp. 1639–1650.

McAvoy, T. J. and Ye, N. (1994). “Base control for the Tennessee Eastman problem”. In:
Computers & Chemical Engineering 18.5, pp. 383–413.

McAvoy, T. J., Ye, N., and Gang, C. (1995). “An Improved Base Control for the Tennessee
Eastman Problem”. In: Proceedings of the 1995 American Control Conference. Ed. by IEEE.
Vol. 1. Piscataway, NJ: IEEE, pp. 240–244.

McKelvey, T., Akçay, H., and Ljung, L. (1996). “Subspace-based multivariable system identi-
fication from frequency response data”. In: IEEE Transactions on Automatic Control 41.7,
pp. 960–979.

Mercère, G. and Bako, L. (2011). “Parameterization and Identification of Multivariable State-
space Systems: A canonical approach”. In: Automatica 47.8, pp. 1547–1555.

Mercère, G., Bako, L., and Lecuche, S. (2008). “Propagator-based methods for recursive
subspace model identification”. In: Signal Processing 88.3, pp. 468–491.



Bibliography 163

Mercère, G., Lecoeuche, S., and Vasseur, C. (2003). “A new recursive method for subspace
identification of noisy systems: EIVPM”. In: System identification (SYSID ’03). Ed. by
IFAC. Oxford: Elsevier.

Moonen, M., De Moor, B. L. R., et al. (1989). “On- and off-line identification of linear state-
space models”. In: International Journal of Control 49.1, pp. 219–232.

Ohta, Y. (2011). “Stochastic System Transformation using Generalized Orthonormal Basis
Functions with Applications to Continuous-time System Identification”. In: Automatica
47.5, pp. 1001–1006.

Oku, H. and Kimura, H. (1999). “A recursive 4SID from the input-output point of view”. In:
Asian Journal of Control 1.4, pp. 258–269.

Oku, H. and Kimura, H. (2002). “Recursive 4SID algorithms using gradient type subspace
tracking”. In: Automatica 38.6, pp. 1035–1043.

Peternell, K., Scherrer, W., and Deistler, M. (1996). “Statistical analysis of novel subspace
identification methods”. In: Signal Processing 52.2, pp. 161–177.

Picci, G. and Katayama, T. (1996a). “A simple subspace identification method with exogenous
inputs”. In: Proceedings of the 13th IFAC World Congress. Ed. by J. J. Gertler.

Picci, G. and Katayama, T. (1996b). “Stochastic realization with exogenous inputs and
‘subspace-methods’ identification”. In: Signal Processing 52.2, pp. 145–160.

Qin, S. J. (2006). “An overview of subspace identification”. In: Computers & Chemical Engi-
neering 30.10-12, pp. 1502–1513.

Qin, S. J., Lin, W., and Ljung, L. (2005). “A novel subspace identification approach with
enforced causal models”. In: Automatica 41.12, pp. 2043–2053.

Qin, S. J. and Ljung, L. (2003a). “Closed-loop Subspace Identification with Innovation Esti-
mation”. In: System identification (SYSID ’03). Ed. by IFAC. Oxford: Elsevier.

Qin, S. J. and Ljung, L. (2003b). “Parallel QR implementation of subspace identification
with parsimonious models”. In: System identification (SYSID ’03). Ed. by IFAC. Oxford:
Elsevier.

Ricker, N. L. (1995). “Optimal steady-state operation of the Tennessee Eastman challenge
process”. In: Computers & Chemical Engineering 19.9, pp. 949–959.

Ricker, N. L. (2005). Tennessee Eastman Challenge Archive. url: http://depts.washington.
edu/control/LARRY/TE/download.html (visited on 02/09/2018).

Rozanov, Y. A. and Feinstein, A. (1967). Stationary random processes. Holden-Day series in
time series analysis. San Francisco: Holden-Day.

Söderström, T. and Stoica, P. G. (2001). System identification. 2001 ed. Prentice Hall Inter-
national series in systems and control engineering. New York [u.a.]: Prentice Hall Interna-
tional.

Sugie, T., Inoue, K., and Maruta, I. (2017). “Closed-loop Subspace Identification with long
Data based on Nuclear Norm Minimization”. In: Proceedings of the 56th Conference on
Decision and Control, 2017. Ed. by IEEE.

Takei, Y., Imai, J., and Wada, K. (2001). “A new interpretation of subspace methods by
using Schur complement”. In: Proceedings of the 40th IEEE Conference on Decision and
Control. Ed. by IEEE Control Systems Society. Piscataway, NJ: IEEE, pp. 3924–3929.

Takei, Y., Nanto, H., et al. (2006). “Recursive Updating of Error Covariance Matrix in Sub-
space Methods”. In: Proceedings of the 14th IFAC Symposium on System Identification,
2006 (SYSID 2006). Ed. by I. Mareels and B. Ninness, pp. 285–290.

Tanaka, H. and Katayama, T. (2005). “Stochastic Subspace Identification Method Guaran-
teeing Stability and Minimum Phase”. In: Proceedings of the 16th World Congress of the
International Federation of Automatic Control. Ed. by M. ebek and P. Zítek. Elsevier
Science Ltd., pp. 152–157.

http://depts.washington.edu/control/LARRY/TE/download.html
http://depts.washington.edu/control/LARRY/TE/download.html


164 Bibliography

Tanaka, H. and Katayama, T. (2006). “A Stochastic Realization Algorithm via Block LQ
Decomposition in Hilbert Space”. In: Automatica 42.5, pp. 741–746.

Tanaka, H. and Katayama, T. (2007). “Minimum Phase Properties of Finite-Interval Sto-
chastic Realization”. In: Automatica 43.9, pp. 1495–1507.

van Overschee, P. and De Moor, B. L. R. (1993). “Subspace Algorithms for the Stochastic
Identification Problem”. In: Automatica 29.3, pp. 649–660.

van Overschee, P. and De Moor, B. L. R. (1994). “N4SID: Subspace algorithms for the
Identification of combined deterministic-stochastic systems”. In: Automatica 30.1, pp. 75–
93.

van Overschee, P. and De Moor, B. L. R. (1996). Subspace identification for linear systems:
Theory, implementation, applications. Boston: Kluwer Academic Publishers.

van Overschee, P., De Moor, B. L. R., et al. (1997). “A subspace algorithm for the identifi-
cation of discrete time frequency domain power spectra”. In: Automatica 33.12, pp. 2147–
2157.

van Wingerden, J.-W. and Verhaegen, M. (2009). “Subspace Identification of Bilinear and
LPV Systems for Open- and Closed-loop data”. In: Automatica 45.2, pp. 372–381.

Verdult, V. and Verhaegen, M. (2002). “Subspace identification of multivariable linear parameter-
varying systems”. In: Automatica 38.5, pp. 805–814.

Verhaegen, M. (1993a). “Application of a subspace model identification technique to identify
LTI systems operating in closed-loop”. In: Automatica 29.4, pp. 1027–1040.

Verhaegen, M. (1993b). “Subspace Model Identification: Part 3. Analysis of the ordinary
output-error state-space model identification algorithm”. In: International Journal of Con-
trol 58.3, pp. 555–586.

Verhaegen, M. (1994). “Identification of the Deterministic Part of MIMO State Space Models
given in Innovations Form from Input-Output Data”. In: Automatica 30.1, pp. 61–74.

Verhaegen, M. and Dewilde, P. (1992a). “Subspace Model Identification: Part 1. The output-
error state-space model identification class of algorithms”. In: International Journal of
Control 56.5, pp. 1187–1210.

Verhaegen, M. and Dewilde, P. (1992b). “Subspace Model Identification: Part 2. Analysis of
the elementary output-error state-space model identification algorithm”. In: International
Journal of Control 56.5, pp. 1211–1241.

Verhaegen, M. and Hansson, A. (2014). “Nuclear norm subspace identification (N2SID) for
short data batches”. In: Proceedings of the 19th World Congress of the International Fede-
ration of Automatic Control, 2014. Ed. by IFAC. IFAC.

Verhaegen, M. and Hansson, A. (2016). “N2SID: Nuclear norm subspace identification of
innovation models”. In: Automatica 72.October 2016, pp. 57–63.

Viberg, M. (1995). “Subspace-based Methods for the Identification of Linear Time-invariant
Systems”. In: Automatica 31.12, pp. 1835–1851.

Wang, J. and Qin, S. J. (2002). “A New Subspace Identification Approach based on Principal
Component Analysis”. In: Journal of Process Control 12.8, pp. 841–855.

Wang, J. and Qin, S. J. (2006). “Closed-loop Subspace Identification using the Parity Space”.
In: Automatica 42.2, pp. 315–320.

Willems, J. C., Rapisarda, P., et al. (2005). “A note on persistency of excitation”. In: Systems
& Control Letters 54.4, pp. 325–329.

Wu, P., Yang, et al. (2008). “A Novel RSMI Based on Regression and Natural Power Method”.
In: Proceedings of the 17th World Congress of the International Federation of Automatic
Control, 2008. Ed. by IFAC. Curran Associates, Inc., pp. 7474–7479.

Yang, B. (1995). “Projection approximation subspace tracking”. In: IEEE Transactions on
Signal Processing 43.1, pp. 95–107.



Publications

This thesis is in parts based on the results published in the following publications and was
presented on the corresponding conferences. If based on the respective publication, the thesis
deepens or goes beyond the results disclosed in the publication.

Bathelt, A. and Jelali, M. (2014). “Comparative study of subspace identification methode on
the Tennessee Eastman Process under disturbance effects”. In: Proceedings of the 5th In-
ternational Symposium on Advanced Control of Industrial Processes. Ed. by IEEE, pp. 31–
36.

Bathelt, A., Ricker, N. L., and Jelali, M. (2015). “Revision of the Tennessee Eastman Process
Model”. In: Proceedings of the 9th IFAC Symposium on Advanced Control of Chemical
Processes. Ed. by IFAC. Vol. 48, pp. 309–314.

Bathelt, A., Söffker, D., and Jelali, M. (2015). “An algorithm combining the subspace identi-
fication methods ORT and CCA”. In: Proceedings of the 54th Conference on Decision and
Control, 2015. Ed. by IEEE, pp. 3361–3366.

Bathelt, A., Söffker, D., and Jelali, M. (2017). “An Approach to Recursive Subspace Iden-
tification”. In: Proceedings of the 56th Conference on Decision and Control, 2017. Ed. by
IEEE, pp. 4638–4643.

Bathelt, A., Söffker, D., and Jelali, M. (2018). “Recursive Subspace Identification based on
Stochastic Realization Theory”. In: Automatica in preparation.





Student theses

During the work a the Technische Hochschule Köln, the following student theses have been
co-supervised together with Prof. Dr.-Ing. Mohieddine Jelali. The content of these student
theses are however not related to the work presented in this doctoral thesis.

Bajo, A. (2013). “Implementierung einer Steuerung und Regelung mit SPS zur Positionierung
eines Bandes im einem Walzprozess”. Masterprojekt. Köln: Fachhochschule Köln.

Farbischewski, V. (2014). “Implementierung eines Zustandsreglers mit Beobachter unter MAT-
LAB als S-Function mit C”. Masterprojekt. Köln: Fachhochschule Köln.

Gürke, S. (2015). “Erweiterung des Tennessee Eastman Prozess Modelles”. Masterprojekt.
Köln: Fachhochschule Köln.

Heiloun, K. (2017). “Erstellung von S-Functions zur Einbindung der Tennessee Eastman
Simulation Klasse”. Masterprojekt. Köln: Technische Hochschule Köln.

Hufenbecher, D. and Behr, C. (2017). “Modellierung der Störprozesse des Tennessee Eastman
Prozesses mittels Subspace Methoden”. Masterprojekt. Köln: Technische Hochschule Köln.

Papadopoulos, K. (2014). “Überarbeitung und Erweiterung der Implementierung einer Sys-
temidentifikation für den offenen und geschlossenen Kreis”. Masterprojekt. Köln: Fachho-
chschule Köln.





A Tennessee Eastman Process

In the following chapter, an overview of the Tennessee Eastman Process model is given. It
has been first described in Downs and Vogel (1993). The initial simulation model created by
Downs and Vogel has been a FORTRAN program (without simulation loop). Later, several
conversions of the FORTRAN code to MATLAB/Simulink versions have been released, of
which the most commonly used is the S-function model of the Tennessee Eastman Challenge
Archive of Ricker (2005). Issues with the S-function-based simulation model have resulted in
a revision of the model, see Bathelt, Ricker, and Jelali (2015). The revised model and the
original FORTRAN sources are available at Ricker (2005). The following overview is divided
into the description of the process and the description of the simulation model.

A.1 Process description

The process is shown in terms of its piping and instrument diagram (P&ID) in Figure A.1.
It is a multi-component process as it consists of four (gaseous) reactants (A, C, D, E), two

Figure A.1: P&ID of the process model (Bathelt, Ricker, and Jelali, 2015); numbers refer to
the respective stream numbers
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(liquid) products (G, H), one (liquid) byproduct (F) and one (gaseous) inert (B). The reaction
as given in Downs and Vogel (1993) are

A(g) + C(g) + D(g) → G(liq), Product 1,

A(g) + C(g) + E(g) → H(liq), Product 2,

A(g) + E(g) → F(liq), Byproduct,
3D(g) → 2F(liq), Byproduct.

At any time, each of the component is present in all of the five major unit operations (reactor,
product condenser, vapor-liquid separator, recycle compressor, product stripper) .

The reactants enter the process through streams 1 through 4 and are fed into the reactor,
where the above given reactions take place. Stream 4, the feed of component C, enters the
reactor not directly but through the stripper and its reactor feedback. Stream 4 is furthermore
a multi-component stream as it contains not only component C but also components A and
B (the feed streams of components A, D, and E contain only these components). The reactor
posses a gas phase and a liquid phase. The reactions take place in the gas phase and are
supported by an nonvolatile catalyst. The heat of the exothermic reactions are removed
by the cooling bundle of the reactor (stream 12). Governed by the reaction kinetics, the
temperature and pressure of the reactor behave contrary to each other, i.e., an increase of
the temperature results in a decrease of the reactor pressure and vice versa. The products
leave the reactor as vapor blended with unreacted feeds. This blend enters the condenser
where, as a result of the cooling of the blend, the products become liquid. In the vapor-
liquid-separator, non-condensed products as well as major parts of the unreacted feeds and
the inert1 are drawn from the blend and fed back to the reactor via the compressor. Finally,
the blend, which consists of liquid D, E, F, G, and H, enters the stripper where the remaining
feed and byproduct fractions are separated from the products G and H. The product mix
leaves the process through stream 11. As the stripper is not only fed by the bottom fraction
of the separator but also by stream 4, the product stream consist also of small fractions of
components A, B, and C. Stream 9 is used to purge the system, i.e., to dispose of the inert
B and the byproduct F which would otherwise accumulate in the process over time.

In Table A.1, the 73 measurements of the revised process as described in Bathelt, Ricker,
and Jelali (2015) are given. The first 41 measurements stem from the original process and
the remainder are measurements added to the process in the wake of the revision. Additional
information on the components are given by the respective tables in Downs and Vogel (1993).

1Whereas A, B, and C are practically non-condensible, D and E are condensible and hence partly condense
in the condenser.
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Table A.1: Extended measurements of the Tennessee Eastman Process; indexing in terms of
the output of the simulation model (Table 4 and Table 5 of Downs and Vogel,
1993 and Table 1 of Bathelt, Ricker, and Jelali, 2015)

Index Meas. point Description Base value Unit

1 FI1001 Flow A feed (stream 1) 0.25052 kscmh
2 FI1002 Flow D feed (stream 2) 3664.0 kg/h
3 FI1003 Flow E feed (stream 3) 4509.3 kg/h
4 FI1004 Flow A & C feed (stream 4) 9.3477 kscmh
5 FI1006 Recycle flow (stream 8) 26.902 kscmh
6 FI1101 Reactor feed rate (stream 6) 42.339 kscmh
7 PIAZ+1101 Reactor pressure 2705.0 kPa gauge
8 LIAZ±1101 Reactor level 75.0 %
9 TIAZ+1101 Reactor temperature 120.4 ◦C
10 FI1005 Purge rate (stream 9) 0.33712 kscmh
11 TI1301 Product separator temperature 80.109 ◦C
12 LIAZ±1301 Product separator level 50 %
13 PI1301 Product separator pressure 2633.7 kPa gauge
14 FI1301 Product separator underflow (stream

10)
25.160 m3/h

15 LIAZ±1501 Stripper level 50 %
16 PI1501 Stripper pressure 3102.2 kPa gauge
17 FI1502 Stripper underflow (stream 11) 22.949 m3/h
18 TI1501 Stripper temperature 65.731 ◦C
19 FI1501 Stripper steam flow 230.31 kg/h
20 JI1401 Compressor work 341.43 kW
21 TI1102 Reactor cooling water outlet tempera-

ture
94.599 ◦C

22 TI1202 Condenser cooling water outlet tempe-
rature

77.297 ◦C

23 - 28 XI1101 Reactor feed analysis (stream 6); com-
ponents A through F

∗) mol%

29 - 36 XI1005 Purge gas analysis (stream 9); compo-
nents A through H

∗) mol%

37 - 41 XI1006 Product analysis (stream 11); compo-
nents A through F

∗) mol%

42 TI1001 Temperature A feed (stream 1) 45 ◦C
43 TI1002 Temperature D feed (stream 2) 45 ◦C
44 TI1003 Temperature E feed (stream 3) 45 ◦C
45 TI1004 Temperature A & C feed (stream 4) 45 ◦C
46 TI1102 Reactor cooling water inlet tempera-

ture
35 ◦C

47 FI1102 Reactor cooling water flow 93.37 m3/h
48 TI1201 Condenser cooling water inlet tempera-

ture
40 ◦C

49 FI1201 Condenser cooling water flow 49.37 m3/h
50 - 55 XI1001 Composition of A feed (stream 1); com-

ponents A through F
∗) mol%

56 - 61 XI1002 Composition of D feed (stream 2); com-
ponents A through F

∗) mol%

62 - 67 XI1003 Composition of E feed (stream 3); com-
ponents A through F

∗) mol%

68 - 73 XI1004 Composition of A & C feed (stream 4);
components A through F

∗) mol%

∗) for base values see Table 1 of Downs and Vogel (1993, p. 247)
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Table A.2: Process disturbances (Table 8 of Downs and Vogel, 1993, p. 250 and Table 5 of
Bathelt, Ricker, and Jelali, 2015)

Number Description Type

IDV(1) A/C feed ratio, B composition constant (stream 4) Step
IDV(2) B composition, A/C feed ratio constant (stream 4) Step
IDV(3) D feed temperature (stream 2) Step
IDV(4) Reactor cooling water inlet temperature Step
IDV(5) Condenser cooling water inlet temperature Step
IDV(6) A feed loss (stream 1) Step
IDV(7) C header pressure loss – reduced availability (stream 4) Step
IDV(8) A, B, and C feed composition (stream 4) Random variation
IDV(9) D feed temperature (stream 2) Random variation
IDV(10) C feed temperature (stream 2) Random variation
IDV(11) Reactor cooling water inlet temperature Random variation
IDV(12) Condenser cooling water inlet temperature Random variation
IDV(13) Reaction kinetics Slow drift
IDV(14) Reactor cooling water valve Sticking
IDV(15) Condenser cooling water valve Sticking
IDV(16) (unknown) Deviation of heat transfer within heat exchanger of

stripper
(unknown) approx.
random variation

IDV(17) (unknown) Deviation of heat transfer within reactor (unknown) approx.
random variation

IDV(18) (unknown) Deviation of heat transfer within condenser (unknown) approx.
random variation

IDV(19) (unknown) Re-cycle valve of compressor, underflow separator
(stream 10), underflow stripper (stream 11), and steam valve strip-
per

(unknown) sticking

IDV(20) (unknown) (unknown) random
variation

IDV(21) A feed temperature (stream 1) Random variation
IDV(22) E feed temperature (stream 3) Random variation
IDV(23) A feed pressure (stream 1) Random variation
IDV(24) D feed pressure (stream 2) Random variation
IDV(25) E feed pressure (stream 3) Random variation
IDV(26) A, B, and C feed pressure (stream 4) Random variation
IDV(27) pressure fluctuation in the cooling water re-circulating unit of the

reactor
Random variation

IDV(28) pressure fluctuation in the cooling water re-circulating unit of the
condenser

Random variation

A.2 Simulation model description

The latest simulation model available at Ricker (2005) is the revised version described in
Bathelt, Ricker, and Jelali (2015). In addition to the basic chemical-physical simulation, the
model provides a number of internal process disturbances, which are listed in Table A.2. With
these internal process disturbance, the process model provide a versatile range of application,
like identification, monitoring, or disturbance estimation. There are three basic types of
disturbances – step-like disturbances, random variation disturbances and valve sticking. Note
that the random-variation disturbances are not stochastic processes but rather piece-wise
defined polynomials of time, whose re-calculation interval and end-values are determined by
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Table A.3: Process operating limits and shutdown constraints (Table 6 of Downs and Vogel,
1993, p. 249)

Process variable
Normal operating limits Shutdown constraints

Low High Low High

Reactor pressure – 2895 kPa – 3000 kPa

Reactor level 50%
(11.8 m3)

100%
(21.3 m3)

2.0 m3 24 m3

Reactor temperature – 150 ◦C – 175 ◦C

Product separator level 30%
(3.3 m3)

100%
(9.0 m3)

1.0 m3 12.0 m3

Stripper level 30%
(3.5 m3)

100%
(6.6 m3)

1.0 m3 8.0 m3

an internal random number generator. The variations of the heat transfer coefficients and the
reaction kinetics are also basically random variations but with different characteristics. The
disturbances marked with “(unknown)” were not disclosed in the original paper by Downs &
Vogel. The activation and scaling of the disturbances are made by either an external input or
a parameter of the simulation model. That is, there are two S-functions, one for each version
of providing the activation and scaling flags of the disturbances.

As the model does not provide a complete process description, i.e., it does not include start-up
and shutdown capabilities, the model is limited to a certain range of operating points, which
are given in Downs and Vogel (1993, p. 247). These different operating points are called
Modes, as they essentially define the amount of product (components G and H) produced
and what the ratio between the product components is. As a consequence of the limitation
of the operating range, the simulation model exhibits furthermore simulation constraints,
which, upon violation, terminate the simulation. These shutdown constraints are given in
Table A.3. For a meaningful simulation, some operating limits are also given. As these limits
are coupled to measurement points of the process, the respective names of these measuring
points are extended by “A” (operating limit), “Z” (shutdown limit) and “+”/“-” for the
respective direction of the limit and constraint (see Table A.1).

In order to specify the initial values of the internal state, to initialize the internal random
number generator, and to setup the internal structure of the process simulation, the respective
parametrization of the simulation model must be made in terms of model parameters. These
parameters are listed in Table A.4. The second parameter is only necessary for the S-function
which not facilitates the activation and scaling of the disturbances by an additional input.
In Ricker (1995), the initial values for the different Modes of the process are provided. If the
parameters are omitted the simulation model switches to internal default values.
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Table A.4: Parameter list of the S-functions (Bathelt, Ricker, and Jelali, 2015)

Parameter Description

1 Array of the initial values for the 50 states of the simulation
model; if empty, the default values of Mode 1 (see Downs
and Vogel, 1993) are used

2 (only for S-function without additional disturbance input)
Array of the activation flags of the 28 disturbances; if empty,
the disturbances are switched off

3 (2)∗ Initial value (seed) of the state of the random generator

4 (3)∗ Model structure flag
Bit Description

0 Activation of additional measurement points

1 Activation of monitoring outputs of the values subjected to
random variations

2 Activation of monitoring outputs of the reaction and process

3 Activation of monitoring outputs of the component’s concen-
tration

4 Deactivation of measurement noise

5 Random generator uses different state variables for the process
disturbances and measurement noise

6 Activation of solver-independent calculation of the process dis-
turbances

7 Activation of disturbance scaling by the value of the activation
flags; values in the interval [0, 1]

15 Reset structure of simulation model to original structure

∗ parameter number for S-function with additional disturbance input



B Program code of identification methods

The functions shown here are part of a superordinate simulation and identification program.
Thus the parameters and return values are standardized. The construction of the Hankel
matrices and evaluation of the return values is made by the superordinate program.

B.1 CCA-ORT

The implementation of the stochastic identification shown here has not been used during the
examples of Chapter 4, and is hence untested.

function sys = ccaort(U, Y, m, p, n, k)

if length(n)>1

ndet = n(1); nstoch = n(2);

else

ndet = n; nstoch = n;

end;

km = size(U, 1)/2; kp = size(Y, 1)/2;

N = size(U, 2);

Up = U(1:km, :); Uf = U(km + 1:2*km, :);

Yp = Y(1:kp, :); Yf = Y(kp + 1:2*kp, :);

[Q,R] = qr([Uf; Up; Yp; Yf]',0);

L = R';

Qdet = Q(1:N,1:2*km);

% km km kp kp N

% | Uf | | L11 0 0 0 | | Q1' | km

% | | | | | |

% | Up | | L21 L22 0 0 | | Q2' | km

%H = | | = | | | |

% | Yp | | L31 L32 L33 0 | | Q3' | kp

% | | | | | |

% | Yf | | L41 L42 L43 L44 | | Q4' | kp

L22 = L( km + 1:2*km, km + 1:2*km);

L33 = L(2*km + 1:2*km + kp, 2*km + 1:2*km + kp);

L41 = L(2*km + kp + 1:2*km + 2*kp, 1: km);

L42 = L(2*km + kp + 1:2*km + 2*kp, km + 1:2*km);

L43 = L(2*km + kp + 1:2*km + 2*kp, 2*km + 1:2*km + kp);

L44 = L(2*km + kp + 1:2*km + 2*kp, 2*km + kp + 1:2*km + 2*kp);
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%Identification of deterministic subsystem

Rff = L42*L42' + L43*L43' + L44*L44';

Rpp = L22*L22';

Rfp = L42*L22';

[Uff, Sff, Vff] = svd(Rff); [Upp, Spp, Vpp] = svd(Rpp);

Sff = sqrtm(Sff); Spp = sqrtm(Spp);

Lffi = Vff/Sff*Uff'; Lppi = Vpp/Spp*Upp';

OC = Lffi*Rfp*Lppi';

[~,Soc,Voc] = svd(OC);

if ndet > size(Soc,1)

ndet = size(Soc,1);

end;

S1 = Soc(1:n, 1:n); V1 = Voc(:, 1:n);

X = sqrtm(S1)*V1'*Lppi*Up;

X = X(:,1:N−1); XX = X(:,2:N);

U = Uf(1:m,1:N−1); Y = [L41 L42]*Qdet(1:N−1,:)';

ABCD = [XX; Y]/[X; U];

A = ABCD (1:ndet,1:ndet);

B = ABCD (1:ndet,ndet+1:ndet+m);

C = ABCD (ndet+1:ndet+p,1:ndet);

D = ABCD (ndet+1:ndet+p,ndet+1:ndet+m);

%CCA−type identifcation of stochastic subsystem (see Katayama, 2005)

Rfp = 1/N*L43*L33';

Rff = 1/N*(L43*L43' + L44*L44');

Rpp = 1/N*(L33*L33');

[Uf,Sf,Vf] = svd(Rff); [Up,Sp,Vp] = svd(Rpp);

Sf = sqrtm(Sf); Sp = sqrtm(Sp);

L = Uf*Sf*Vf; M = Up*Sp*Vp';

Linv = Vf/Sf*Uf'; Minv = Vp/Sp*Up';

OC = Linv*Rfp*Minv;

[U,Sigma,V] = svd(OC);

if nstoch > size(Sigma,1)

nstoch = size(Sigma,1);

end;

S = Sigma(1:nstoch,1:nstoch);

Ok = L*U(:,1:nstoch)*sqrtm(S);

Ck = sqrtm(S)*V(:,1:nstoch)'*M';

Lambda = Rpp(1:p,1:p);

As = Ok(1:k*p−p,:)\Ok(p+1:k*p,:);
Cs = Ok(1:p,:); Cb = Ck(:,(k − 1)*p + 1:k*p)';

R = Lambda − Cs*S*Cs'; K = (Cb'−As*S*Cs')/R;
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sys = {A, B, C, D, As, K, Cs, R};

end

B.2 PBSID-QR

function sys = pbsid_qr_D0(U, Y, m, p, n, k)

km = size(U, 1)/2; kp = size(Y, 1)/2;

N = size(U, 2);

Up = U(1:km, :); Uf = U(km + 1:2*km, :);

Yp = Y(1:kp, :); Yf = Y(kp + 1:2*kp, :);

Pf = zeros(kp+km,N);

for I = 1:k

Pf(((I−1)*(m+p) + 1):I*(m+p),:) = ...

[Yf(((I−1)*p + 1):I*p,:); Uf(((I−1)*m + 1):I*m,:)];

end; %for I = 1:k

[Q,R] = qr([Up; Yp; Pf]',0);

L = R';

Lp = L(1:(kp+km),1:(kp+km));

Qp = Q(1:N,1:(kp+km));

Lpf = L(1:(k+(k−1))*(m+p),1:(k+(k−1))*(m+p));

Ly = zeros(kp,(k+(k−1))*(m+p));

for I = 1:k

Ly(((I−1)*p + 1):I*p,1:(I+k−1)*(m+p)) = ...

L((k + I − 1)*(m+p)+1:((k + I − 1)*(m+p)+p),1:(I+k−1)*(m+p));

end; %for I = 1:k

Gamma = Ly/Lpf;

OC = Gamma(:,1:(kp+km));

[~,Sigma,VV] = svd(OC*Lp);

if n > size(Sigma,1)

n = size(Sigma,1);

end; %if n > size(Sigma,1)

S1 = Sigma(1:n, 1:n); V1 = VV(:, 1:n);

X = sqrtm(S1)*V1'*Qp';

XX = X(:,2:N); X = X(:,1:N−1);

Ut = Uf(1:m,1:N−1); Yt = Yf(1:p,1:N−1);

AB = XX/[X; Ut];

A = AB (1:n,1:n); B = AB (1:n,n+1:n+m);

C = Yt/X; D = zeros(p,m);

W = XX − A*X − B*Ut; E = Yt − C*X;

SigWE = [W;E]*[W;E]'/(N − 1);
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QQ = SigWE(1:n,1:n); RR = SigWE(n+1:n+p,n+1:n+p);

SS = SigWE(1:n,n+1:n+p);

[~,~,G,~] = dare(A',C',QQ,RR,SS);

K = G';

sys = {A, B, C, D, A, K, C, RR};

end

B.3 PBSID-VARX

Regarding the SVD step and state estimation, the implementation given in the following does
not exactly conform with the explanations in Chiuso (2007b), but yields better results.

function sys = pbsid_varx_D0(U, Y, m, p, n, k)

km = size(U, 1)/2;

kp = size(Y, 1)/2;

N = size(U, 2);

Yt = Y(kp + 1:kp + p, N−1);

Ut = U(km + 1:km + m, N−1);

Ytv = [Y(kp+1:kp+p, :),Y((2*k−1)*p+1:2*kp,(N−k+2):N)];
Zpv = zeros(km+kp,N+k−1); Zp = zeros(km+kp,N);

for I=1:k

Zpv((I − 1)*(p + m) + 1:I*(p + m),:) = ...

[Y((I − 1)*p + 1:I*p, :), ...

Y((I + k − 2)*p + 1:(I + k −1)*p,(N−k+2):N);
U((I − 1)*m + 1:I*m, :), ...

U((I + k − 2)*m + 1:(I + k −1)*m,(N−k+2):N)];
Zp((I − 1)*(p + m) + 1:I*(p + m),:) = ...

[Y((I − 1)*p + 1:I*p, :);

U((I − 1)*m + 1:I*m, :)];

end;

VARX = Ytv/Zpv;

OC = zeros(kp−p,km+kp);
for I = 1:(k−1)

OC((I − 1)*p + 1:I*p,(I − 1)*(p + m) + 1:(km+kp)) = ...

VARX(:,1:(km+kp) − (I − 1)*(p + m));

end;

[Q, R] = qr(Zp');

[~,Sigma,VV] = svd(OC*R');

if n > size(Sigma,1)

n = size(Sigma,1);

end; %if n > size(Sigma,1)

S1 = Sigma(1:n, 1:n); V1 = VV(:, 1:n);
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X = sqrtm(S1)*V1'*Q';

XX = X(:,2:N); X = X(:,1:N−1);

AB = XX/[X; Ut];

A = AB (1:n,1:n); B = AB (1:n,n+1:n+m);

C = Yt/X; D = zeros(p,m);

W = XX − A*X − B*Ut; E = Yt − C*X;

SigWE = [W;E]*[W;E]'/(N − 1);

QQ = SigWE(1:n,1:n); RR = SigWE(n+1:n+p,n+1:n+p);

SS = SigWE(1:n,n+1:n+p);

[~,~,G,~] = dare(A',C',QQ,RR,SS);

K = G';

sys = {A, B, C, D, A, K, C, RR};

end

In order to conform with the explanations in Chiuso (2007b), the following code depicts the
necessary changes to the above implementation.

function sys = pbsid_varx_D0(U, Y, m, p, n, k)

...

Yt = Y(kp + 1:kp + p, :);

Ut = U(km + 1:km + m, :);

...

Zp1 = [Zp; Y(kp + 1:kp+p, :); U(km + 1:km+m, :)];

...

OC = zeros(kp−p,km+kp); OC1 = zeros(kp−p,km+m+kp+p);
for I = 1:(k−1)

OC((I − 1)*p + 1:I*p,(I − 1)*(p + m) + 1:(km+kp)) = ...

VARX(:,1:(km+kp) − (I − 1)*(p + m));

OC1((I − 1)*p + 1:I*p,I*(p + m) + 1:(km+m+kp+p)) = ...

VARX(:,1:(km+kp) − (I − 1)*(p + m));

end;

...

[UU,Sigma,~] = svd(OC);

if n > size(Sigma,1)

n = size(Sigma,1);

end; %if n > size(Sigma,1)

S1 = Sigma(1:n, 1:n);

U1 = UU(:, 1:n);
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%State Estimation according to (3.6) and (3.17) in Chiuso (2007b)

Ok = U1*sqrtm(S1);

X = Ok\OC*Zp; XX = Ok\OC1*Zp1;

...

SigWE = [W;E]*[W;E]'/N;

...

end

B.4 Recursive CCA

function [Sys, X] = cca_rec(X, U, Y ,m ,p ,n ,k)

kfm = k*m; kfp = k*p;

kpm = size(U,1) − kfm; kpp = size(Y,1) − kfp;

N = size(U, 2);

Up = U(1:kpm, :);

Uf = U(kpm + 1:kpm + kfm, :);

Yp = Y(1:kpp, :);

Yf = Y(kpp + 1:kpp + kfp, :);

if isempty(X) == 1

[~,R] = qr([Uf; Up; Yp; Yf]',0);

L = R';

L22 = L(kfm + 1: kfm + (kpm + kpp),....

kfm + 1: kfm + (kpm + kpp));

L32 = L(kfm + (kpm + kpp) + 1:kfm + (kpm + kpp) + kfp,...

kfm + 1: kfm + (kpm + kpp));

L33 = L(kfm + (kpm + kpp) + 1:kfm + (kpm + kpp) + kfp, ...

kfm + (kpm + kpp) + 1:kfm + (kpm + kpp) + kfp);

else

% n

% kfm kpm kfp N

% kpp

% | Uf | | L11 0 0 | | Q1' | kfm

% |−−−−| | | | |

% | X | | | | |

% | | | | | |

% H = | Up | = | L22 L22 | | Q2' | n + kpm + kpp

% | | | | | |

% | Yp | | | | |
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% |−−−−| | | | |

% | Yf | | L31 L32 L33 | | Q4' | kfp

[~,R] = qr([Uf; X; Up; Yp; Yf]',0);

L = R';

L22 = L(kfm + 1: kfm + (n + kpm + kpp),....

kfm + 1: kfm + (n + kpm + kpp));

L32 = L(kfm + (n + kpm + kpp) + 1:kfm + (n + kpm + kpp) + kfp,...

kfm + 1: kfm + (n + kpm + kpp));

L33 = L(kfm + (n + kpm + kpp) + 1:kfm + (n + kpm + kpp) + kfp, ...

kfm + (n + kpm + kpp) + 1:kfm + (n + kpm + kpp) + kfp);

end;

Rff = L32*L32' + L33*L33';

Rpp = L22*L22';

Rfp = L32*L22';

[Uff, Sff, Vff] = svd(Rff); [Upp, Spp, Vpp] = svd(Rpp);

Sff = sqrtm(Sff); Spp = sqrtm(Spp);

Lffi = Vff/Sff*Uff'; Lppi = Vpp/Spp*Upp';

OC = Lffi*Rfp*Lppi';

[~,SS,VV] = svd(OC);

if n > size(Sigma,1)

n = size(Sigma,1);

end; %if n > size(Sigma,1)

S1 = SS(1:n, 1:n);

V1 = VV(:, 1:n);

if isempty(X) == 1

X = sqrtm(S1)*V1'*Lppi*[Up; Yp];

else

X = sqrtm(S1)*V1'*Lppi*[X; Up; Yp];

end;

Xt = X(:,1:N−1); Xtt = X(:,2:N);

U = Uf(1:m,1:N−1); Y = Yf(1:p,1:N−1);

ABCD = [Xtt; Y]/[Xt; U];

A = ABCD (1:n,1:n); B = ABCD (1:n,n+1:n+m);

C = ABCD (n+1:n+p,1:n); D = ABCD (n+1:n+p,n+1:n+m);

%Calculation of Kalman gain

W = Xtt − A*Xt − B*U; E = Y − C*Xt − D*U;

SigWE = [W;E]*[W;E]'/(N − 1);

QQ = SigWE(1:n,1:n); RR = SigWE(n+1:n+p,n+1:n+p);

SS = SigWE(1:n,n+1:n+p);

[~,~,G,~] = dare(A',C',QQ,RR,SS);
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K = G';

Sys = {A, B, C, D, A, K, C, RR};

d

B.5 Recursive CCA-ORT

The implementation of the stochastic identification shown here has not been used during the
examples of Chapter 6, and is hence untested.

function [Sys X] = ccaort_rec(X, U, Y ,m ,p ,n ,k)

if length(n)>1

ndet = n(1); nstoch = n(2);

else

ndet = n; nstoch = n;

end;

kfm = k*m; kfp = k*p;

kpm = size(U,1) − kfm; kpp = size(Y,1) − kfp;

N = size(U, 2);

Up = U(1:kpm, :);

Uf = U(kpm + 1:kpm + kfm, :);

Yp = Y(1:kpp, :);

Yf = Y(kpp + 1:kpp + kfp, :);

if isempty(X) == 1

[Q,R] = qr([Uf; Up; Yp; Yf]',0);

L = R';

Qdet = Q(1:N,1:(kfm + kpm));

% kfm kpm kpp kfp N

% | Uf | | L11 0 0 0 | | Q1' | kfm

% | | | | | |

% | Up | | L21 L22 0 0 | | Q2' | kpm

% H = | | = | | | |

% | Yp | | L31 L32 L33 0 | | Q3' | kpp

% | | | | | |

% | Yf | | L41 L42 L43 L44 | | Q4' | kfp

L22 = L(kfm + 1:kfm + kpm,...

kfm + 1:kfm + kpm);

L33 = L(kfm + kpm + 1:kfm + kpm + kpp,...

kfm + kpm + 1:kfm + kpm + kpp);

L41 = L(kfm + kpm + kpp + 1:kfm + kpm + kpp + kfp,...

1:kfm);

L42 = L(kfm + kpm + kpp + 1:kfm + kpm + kpp + kfp,...

kfm + 1:kfm + kpm);

L43 = L(kfm + kpm + kpp + 1:kfm + kpm + kpp + kfp,...
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kfm + kpm + 1:kfm + kpm + kpp);

L44 = L(kfm + kpm + kpp + 1:kfm + kpm + kpp + kfp,...

kfm + kpm + kpp + 1:kfm + kpm + kpp + kfp);

else

Xdet = X(1:ndet,:); Xstooch = X(ndet + 1:ndet + nstoch,:);

[Q,R] = qr([Uf; Xdet; Up; Xstoch; Yp; Yf]',0);

L = R';

Qdet = Q(1:N,1:(kfm + ndet + kpm));

% kfm kpm kpp kfp N

% ndet nstoch

% | Uf | | L11 0 0 0 | | Q1' | kfm

% |−−−−| | | | |

% | Xd | | | | |

% | | | L21 L22 0 0 | | Q2' | kpm + ndet

% | Up | | | | |

% H = |−−−−| = | | | |

% | Xs | | | | |

% | | | L31 L32 L33 0 | | Q3' | kpp + nstoch

% | Yp | | | | |

% |−−−−| | | | |

% | Yf | | L41 L42 L43 L44 | | Q4' | kfp

L22 = L(kfm + 1:kfm + ndet + kpm,...

kfm + 1:kfm + ndet + kpm);

L33 = L(kfm + ndet + kpm + 1:kfm + ndet + kpm + nstoch + kpp,...

kfm + ndet + kpm + 1:kfm + ndet + kpm + nstoch + kpp);

L41 = L(kfm + ndet + kpm + nstoch + kpp + 1:...

kfm + ndet + kpm + nstoch + kpp + kfp,...

1:kfm);

L42 = L(kfm + ndet + kpm + nstoch + kpp + 1:

kfm + ndet + kpm + nstoch + kpp + kfp,...

kfm + 1:kfm + ndet + kpm);

L43 = L(kfm + ndet + kpm + nstoch + kpp + 1:...

kfm + ndet + kpm + nstoch + kpp + kfp,...

kfm + ndet + kpm + 1:kfm + ndet + kpm + nstoch + kpp);

L44 = L(kfm + ndet + kpm + nstoch + kpp + 1:...

kfm + ndet + kpm + nstoch + kpp + kfp,...

kfm + ndet + kpm + nstoch + kpp + 1:...

kfm + ndet + kpm + nstoch + kpp + kfp);

end;

%Identification of deterministic subsystem

Rff = L42*L42' + L43*L43' + L44*L44';

Rpp = L22*L22';

Rfp = L42*L22';

[Uff, Sff, Vff] = svd(Rff); [Upp, Spp, Vpp] = svd(Rpp);

Sff = sqrtm(Sff); Spp = sqrtm(Spp);

Lffi = Vff/Sff*Uff'; Lppi = Vpp/Spp*Upp';
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OC = Lffi*Rfp*Lppi';

[~,Soc,Voc] = svd(OC);

if ndet > size(Sigma,1)

ndet = size(Sigma,1);

end; %if n > size(Sigma,1)

S1 = Soc(1:ndet, 1:ndet);

V1 = Voc(:, 1:ndet);

if isempty(X) == 1

Xdet = sqrtm(S1)*V1'*Lppi*Up;

else

Xdet = sqrtm(S1)*V1'*Lppi*[Xdet; Up];

end;

Xt = Xdet(:,1:N−1); Xtt = Xdet(:,2:N);

U = Uf(1:m,1:N−1); Y = [L41 L42]*Qdet(1:N−1,:)';

ABCD = [Xtt; Y]/[Xt; U];

A = ABCD (1:ndet,1:ndet);

B = ABCD (1:ndet,ndet+1:ndet+m);

C = ABCD (ndet+1:ndet+p,1:ndet);

D = ABCD (ndet+1:ndet+p,ndet+1:ndet+m);

%CCA−type identifcation of stochastic subsystem (see Katayama, 2005)

Rfp = 1/N*L43*L33';

Rff = 1/N*(L43*L43' + L44*L44');

Rpp = 1/N*(L33*L33');

[Uf,Sf,Vf] = svd(Rff); [Up,Sp,Vp] = svd(Rpp);

Sf = sqrtm(Sf); Sp = sqrtm(Sp);

L = Uf*Sf*Vf; M = Up*Sp*Vp';

Sfi = inv(Sf); Spi = inv(Sp);

Linv = Vf*Sfi*Uf'; Minv = Vp*Spi*Up';

OC = Linv*Rfp*Minv;

[U,Sigma,V] = svd(OC);

if nstoch > size(Sigma,1)

nstoch = size(Sigma,1);

end; %if n > size(Sigma,1)

Lambda = Rpp(1:p,1:p);

S = Sigma(1:nstoch,1:nstoch);

Ok = L*U(:,1:nstoch)*sqrtm(S);

Ck = sqrtm(S)*V(:,1:n)'*M';

Xstoch = sqrtm(S)*V(:,1:n)'*Minv*L33*Q3';

As = Ok(1:k*p−p,:)\Ok(p+1:k*p,:);
Cs = Ok(1:p,:);

Cb = Ck(:,(k − 1)*p + 1:k*p)';
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R = Lambda − Cs*S*Cs';

K = (Cb'−As*S*Cs')/R;

Sys = {A, B, C, D, As, K, Cs, R};

X = [Xdet; Xstoch];

end

B.6 Recursive PBSID-QR

function [Sys, X] = pbsid_qr_D0_rec(X, U, Y ,m ,p ,n ,k)

kfm = k*m; kfp = k*p;

kpm = size(U,1) − kfm; kpp = size(Y,1) − kfp;

N = size(U, 2);

Up = U(1:kpm, :);

Uf = U(kpm + 1:kpm + kfm, :);

Yp = Y(1:kpp, :);

Yf = Y(kpp + 1:kpp + kfp, :);

Pf = zeros(kfp + kfm,N);

for I = 1:k

Pf(((I−1)*(m + p) + 1):I*(m + p),:) = ...

[Yf(((I−1)*p + 1):I*p,:); Uf(((I−1)*m + 1):I*m,:)];

end; %for I = 1:k

if isempty(X) == 1

[Q,R] = qr([Up; Yp; Pf]',0);

L = R';

Lp = L(1:(kpp + kpm),1:(kpp + kpm));

Qp = Q(1:N,1:(kpp + kpm));

Lpf = L(1:(k+(k−1))*(m+p),1:(k+(k−1))*(m+p));

Ly = zeros(kfp,(k+(k−1))*(m+p));

for I = 1:k

Ly(((I−1)*p + 1):I*p,1:(I+k−1)*(m+p)) = ...

L((k + I − 1)*(m+p)+1:((k + I − 1)*(m+p)+p),1:(I+k−1)*(m+p));

end; %for I = 1:k

Gamma = Ly/Lpf;

OC = Gamma(:,1:(kpp + kpm));

else

[Q,R] = qr([X; Up; Yp; Pf]',0);

L = R';

Lp = L(1:(n + kpp + kpm),1:(n + kpp + kpm));

Qp = Q(1:N,1:(n + kpp + kpm));

Lpf = L(1:n + kpp + kpm + (k−1)*(m+p),1:n + kpp + kpm + (k−1)*(m+p));
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Ly = zeros(kfp,n + kpp + kpm + (k−1)*(m+p));

for I = 1:k

Ly(((I−1)*p + 1):I*p,1:n + kpp + kpm + (I−1)*(m+p)) = ...

L( n + kpp + kpm + (I − 1)*(m+p) + 1:...

(n + kpp + kpm + (I − 1)*(m + p) + p),...

1:n + kpp + kpm + (I − 1)*(m+p));

end; %for I = 1:k

Gamma = Ly/Lpf;

OC = Gamma(:,1:(n + kpp + kpm));

end; %if isempty(X) == 1

[~,Sigma,VV] = svd(OC*Lp);

if n > size(Sigma,1)

n = size(Sigma,1);

end; %if n > size(Sigma,1)

S1 = Sigma(1:n, 1:n);

V1 = VV(:, 1:n);

X = sqrtm(S1)*V1'*Qp';

Xt = X(:,1:N−1); Xtt = X(:,2:N);

Ut = Uf(1:m,1:N−1); Yt = Yf(1:p,1:N−1);

AB = Xtt/[Xt; Ut]; C = Yt/Xt;

A = AB (1:n,1:n); B = AB (1:n,n+1:n+m);

D = zeros(p,m);

%Calculation of Kalman gain

W = Xtt − A*Xt − B*Ut; E = Yt − C*Xt;

SigWE = [W;E]*[W;E]'/(N − 1);

QQ = SigWE(1:n,1:n); RR = SigWE(n+1:n+p,n+1:n+p);

SS = SigWE(1:n,n+1:n+p);

[~,~,G,~] = dare(A',C',QQ,RR,SS);

K = G';

Sys = {A, B, C, D, A, K, C, RR};

end
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