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1 Introduction

1.1 Background and motivations

Modern industrial systems are increasingly automated and highly integrated with the rapid

development of computer science, mechanical engineering, electronics and information

techniques. This, undoubtedly, gives rise to the increases in scale and complexity of such

systems due to the embedded large amounts of components and the interactions of them.

Consequently, issues of safety and reliability are significantly important for advanced

engineering systems corrupted with disturbances and faults or failures. Especially for

the safety-critical plants, e.g., nuclear reactors, aircraft, high-speed trains and chemical

processes, etc., a fault or a failure might cause serious casualties, environmental pollution

and heavy economic loss, etc. Therefore, it is of practical significance to monitor anomalies

in systems so as to take appropriate reactions timely, thus preventing secondary damages

and catastrophic consequences as well as enabling a better maintenance schedule.

In response to the ever-growing demands for high levels of safety and reliability of modern

industrial processes, great interest has been stimulated in the study on fault detection

(FD) and fault diagnosis both in the research and application communities, see, e.g.,

[56, 2, 12, 22, 84, 20, 43]. Terminologically, a fault is considered as an unexpected change

of system behavior hampering nominal operation and eventually delivering unacceptable

performance deterioration of the system, which is generally caused by the malfunction

of actuators, sensors or process components. FD is the simplest but essential task of

fault diagnosis and further fault-tolerant control that aims to detect the occurrence of

faults in the functional units of processes [12, 22]. Besides, practical engineering processes

are inevitably corrupted with environmental disturbances, which constitute the main

sources of false and missed detection of faults. Driven by these observations, study on

FD subject to disturbances is practically meaningful and remains an active research topic

worth investigated thoroughly.

1.1.1 Fault detection for dynamic processes

Over the past few decades, a rich body of achievements on FD have been reported,

including the hardware redundancy based technique and the analytical redundancy based

1



1 Introduction

Figure 1.1: Schematic diagram of model-based FD systems.

technique [22, 12]. In hardware redundancy based FD, a redundant process is constructed

using identical hardware components. By comparing the outputs of process components

and the redundant ones, a fault can then be detected for real-time monitoring. Compelling

advantages of this technique lie in the high reliability and the direct achievability of fault

isolation [22], while the expensive costs of redundant hardware hinder its applications

in practice. To alleviate this drawback, analytical redundancy based FD has obtained

ongoing attention, which, as per the adoption of an analytical system model, can be

roughly categorized into the model-based schemes and the data-driven methods.

In the framework of model-based FD, a so-called residual signal is generated to capture

the difference between the measured system output and the model-based estimate. Then

a residual evaluation function and an appropriate threshold are determined in the residual

processing unit, in terms of which a decision logic is carried out to detect the occurrence of

a fault, as shown in Fig. 1.1. Noteworthy merit of model-based FD lies in its capability of

dealing with process dynamics. Plenty of mature results in control engineering community

thus provide powerful tools for the investigation of this technique. According to the way

of residual generation, existing model-based FD achievements fall into three classes, i.e.,

the observer-based methods [28, 87, 55], the parity space-based schemes [5, 88] and the

parameter estimation approaches [86, 50]. Remarkably, the achievability of successful FD

highly relies on a well-established analytical model of the supervised process. In practical

applications, unfortunately, establishing an elaborate system model is becoming time- and

efforts-consuming with the continuously rising scales and complexity of modern engineering

2



1.1 Background and motivations

processes.

With the advent of data and information explosion age, the hinder of dispensing with

analytical process model has led to a new surge of research attention on data-driven

FD very recently, thanks to its capability of extracting process operating information

completely from process input and output (I/O) data [84, 20, 40, 83]. Roughly speaking,

data-driven FD approaches are typically classified into the multivariate analysis (MVA)

methods, e.g., principal component analysis [75, 72] and independent component analysis

[47, 92, 6, 8], the statistical learning schemes [26, 51, 4], e.g., neural network [7], Fisher

discriminate analysis [27], K-nearest neighbor [59] and decision tree [64], etc., and the

subspace technique aided approaches [48, 57, 21]. Among the involved results, MVA and

statistical learning schemes generally work well in the FD for static processes. In contrast,

the methodology of subspace technique aided FD outperforms the others for its efficiency

in coping with the process dynamics [21]. The core idea behind it is to construct a residual

generator directly using process I/O data without identifying sophisticated system models.

In the research line of subspace technique aided data-driven FD, residual evaluation has

only been sporadically studied so far, despite its key role in safeguarding satisfactory FD

performance. From the viewpoint of modeling, disturbances in the monitored system are

generally concerned to be stochastic process and measurement noises. This, on the one

hand, is reasonable in practical applications and, on the other hand, require for system

identification purpose [40]. On account of this, the well studied statistical hypothesis test

methods are apt to be applied for residual evaluation under the assumption of knowing

exact probability distribution for noises. In this fashion, the residual evaluation function

is set as a test statistic of residual and a threshold is then determined towards expected

FD performance criteria, e.g., missed detection rate (MDR), false alarm rate (FAR) and

fault detection rate (FDR) [24, 20, 52].

It is worth emphasizing that conventional statistical hypothesis test methods commonly

work well with perfect distribution knowledge of noises, which, however, is inaccessible

in practical applications. To mitigate this drawback, increasing attention has been paid

to estimating the distributional information of residual from historical data by using the

techniques such as kernel density estimation (KDE), histogram and Gaussian mixture

model (GMM) [85, 73, 38], so that the statistical hypothesis test methods can be applied

for residual evaluation, see, for instance, [31, 34]. Despite the reported successes, achieving

a perfect estimation of probability distribution using process I/O data remains a time-

and efforts-consuming task concerning the requirement for sufficiently large sample sets

under all possible operating scenarios of the monitored process. Besides, derivations of the

empirical estimate of probability distribution from the real one are generally inevitable

due to the limited number of samples. This would give rise to unreliable FD results

3



1 Introduction

when an over-optimistic threshold is set under certain distribution estimate. In other

words, the predefined FD performance under true probability distributions might fail to

be satisfied. For these concerns, issues of data-driven FD in dynamic processes suffering

from distributional ambiguity of noises and faults remain to be addressed properly towards

satisfactory FD performance.

1.1.2 Stochastic optimization

In terms of handling optimization problems dispensing with exact distribution knowledge

of random variables, a surge of interest in the stochastic optimization has emerged in

recent years, e.g., [58, 3, 29], and increasing applications have been exhibited in various

fields, e.g., decision-making [69, 93, 82], robust control [71, 25, 76], dimension reduction

[74], classification [54, 53] and fault diagnosis [45, 89, 90], etc. In line of this research,

distributionally robust optimization (DRO) is one of the most popular topics. Rather

than making specific distribution assumptions on random variables, a so-called ambiguity

set is constituted to characterize a family of probability distributions sharing common

properties, e.g., the moments, the probability density function (PDF) and the support or the

combination of them [25]. The involved chance constraints over random variables are then

posted as distributionally robust chance constraints (DCCs). To this extent, the derived

solution to the targeting optimization problem is thus feasible to all probability distributions

belonging to the predefined ambiguity set [19, 29]. That means the optimization problem

with DCCs is a worst-case formulation regarding the distribution uncertainties.

From the perspective of ambiguity set modeling, the knowledge of mean and covariance

matrix (sometimes in combination with the support information) are mostly used [29].

One natural merit of the mean-covariance based ambiguity set lies in the easy accessibility

of the mean and covariance matrix with high probability from historical data. Meanwhile,

at the level of algorithm, the mean and covariance matrix related DCCs can usually be

converted into deterministic conditions, which greatly simplifies the targeting optimization

objectives for the design and analysis purposes. Especially, thanks to the arising efforts in

the connections of DCCs and conditional Value-at-Risk (CVaR) as well as the worst-case

CVaR (WC-CVaR) in risk theory, the mean-covariance involved DRO problems have been

eventually reformulated as deterministic robust optimization (RO) problems and effectively

addressed by means of the techniques of semidefinite programming (SDP) or stochastic

programming (SP), see, e.g., [30, 94, 3, 39].

In data-driven framework, the true mean and covariance matrix of a random variable

are usually inaccessible and the empirical values of them are instead estimated based on

process data. Even though the empirical estimates are close to the true ones with high

4



1.2 Objective of the work

probability when the size of the sample set is sufficiently large, the estimation uncertainties

are theoretically inevitable due to the finite number of samples. Particularly, in our context

of FD, the samples in faulty cases are commonly scarce. Besides, the perturbation of

the operating point or the change of distribution profiles of random variables may occur

during process operation. For these concerns, investigation of the robustness of DRO

under moments uncertainties is practically meaningful but theoretically challenging [19].

1.2 Objective of the work

Motivated by the above observations, this thesis is devoted to the design and analysis

of data-driven FD systems for stochastic dynamic processes subject to distributional

ambiguity of noises and faults. More specifically, the main objectives of this thesis are

stated as follows:

� Propose a performance-oriented configuration of FD systems. On this basis, address

data-driven design issues of optimal FD systems for stochastic linear discrete-time

processes such that the residual generator, residual evaluator and FD performance

criteria can be synthesized in an integrated manner.

� Formulate design issues of data-driven FD systems as tractable distribution indepen-

dent optimization (DIO) problems based on the mean-covariance based ambiguity

sets without posing specific distribution assumptions on noises and faults.

� Develop algorithms to solve the formulated DIO problems. Analytical solutions of

the targeting problems and the existence conditions are exploited.

� Investigate the robustness of the developed FD systems over the moments uncertain-

ties caused by the estimation errors due to the limited number of historical process

I/O samples. Analyze the confidence levels of the achieved FD performance criteria

in the probabilistic context quantitatively.

1.3 Outline of the thesis

This thesis consists of eight chapters, which are structured in Fig. 1.2. The major objec-

tives and contributions of each chapter are briefly summarized as follows.

Chapter 1: Introduction

In this chapter, the background, motivations, objectives and the organization of this work

are presented.
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1 Introduction

Chapter 2: Preliminaries of data-driven FD for dynamic processes

In this chapter, preliminaries of data-driven FD for dynamic processes are demonstrated.

Basic concepts in the FD field and the schematic structure of subspace technique aided FD

system are first overviewed. Then several algorithms for the data-driven construction of a

residual generator are recalled, followed by a brief review of residual evaluation schemes.

Finally, a short introduction of stochastic optimization is given accompanied with the

modeling of ambiguity set.

Chapter 3: A DIO approach to the design of FD systems

This chapter focuses on developing a DIO approach to address design issues of data-driven

FD systems. By constructing a parity relation based residual generator using process

I/O data, the mean-covariance based ambiguity sets are introduced to characterize the

distribution knowledge of residuals in fault-free and faulty cases, respectively. In the

context of minimizing the MDR for a prescribed FAR, the design of FD systems is then

formulated as a vector-valued DIO problem in terms of the means and covariance matrices,

providing an integrated design of the residual generator, the residual evaluation function,

and the threshold. An iterative parametric algorithm is applied to solve the targeting DIO

problem and the worst-case FAR and MDR criteria are analyzed quantitatively.

Chapter 4: An improved DIO method for FD and analytical algorithms

This chapter demonstrates an improved DIO approach to the data-driven design of FD

systems towards minimizing the MDR for a given FAR. Along the research line of Chapter

3, the design of FD systems is formulated as a stochastic optimization problem with

DCCs with respect to the mean-covariance based ambiguity sets. Moreover, it is proven

rigorously that the targeting FD issue can be addressed by solving a generalized eigenvalue-

eigenvector problem and an analytical solution is thus achieved by means of singular

value decomposition (SVD). Tight upper bounds of FAR and MDR are derived without

distribution assumption. The existence condition of the optimal solution is also studied.

Chapter 5: Matrix-valued DIO approaches to FD systems design

This chapter presents matrix-valued solutions to the DIO approach aided design of data-

driven FD systems. By introducing a parameter matrix to the parity relation based

residual generator, three kinds of configurations of FD systems are proposed in the context

of minimizing the MDR for a prescribed FAR under consideration of available moments

information of faults, namely the multicvector-valued design method, WC-CVaR aided

design method and the optimal matrix-valued design scheme. Furthermore, matrix-valued

solutions to the DIO method aided FD without fault information are discussed.
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1.3 Outline of the thesis

Chapter 6: Performance analysis of FD systems under moments uncertainties

In this chapter, performance analysis of the data-driven FD systems developed in Chap-

ters 3–5 is performed under consideration of the estimation uncertainties in means and

covariance matrices of residuals in fault-free and faulty cases. To this end, the mean-

covariance based ambiguity sets with norm-bounded and box-type uncertainties are first

modeled. On this basis, the robustness of the FD systems against the moments uncer-

tainties is investigated and the worst-case FAR and MDR are suggested quantitatively.

By establishing analytical relationships between the sample numbers and the moments

uncertainties, confidence levels of the achieved FAR and MDR criteria are further studied

in the probabilistic context.

Chapter 7: Benchmark study and real-time implementation

In this chapter, applications of the proposed design and analysis approaches in Chapters

3–6 are illustrated on a laboratory setup of three-tank system. The effectiveness of the

developed vector-valued and matrix-valued DIO methods have been verified through

simulation and experimental results. The robustness of the FD systems over moments

uncertainties is also demonstrated.

Chapter 8: Conclusions and future work

This chapter concludes the thesis and discusses the future scopes.
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2 Preliminaries of data-driven FD for dynamic
processes

In this chapter, preliminaries of data-driven FD for stochastic linear dynamic processes

and stochastic optimization are reviewed. Firstly, mathematical descriptions of stochastic

linear dynamic processes are given. Then basic knowledge of subspace technique aided

data-driven FD is presented, which, to be more specific, includes the residual generation

and residual evaluation. Moreover, the basis of stochastic optimization and ambiguity set

modeling are introduced, followed by a brief summary and notes.

2.1 Mathematical description of linear dynamic processes

2.1.1 Modeling of linear dynamic processes

We start with considering a linear discrete time-invariant system in nominal operation

modeled by x(k + 1) = Ax(k) + Bu(k), x0 = x(0)

y(k) = Cx(k) + Du(k)
(2.1)

where x ∈ Rn, u ∈ Rl, y ∈ Rm are the state, input and output vectors, respectively,

x0 is the initial state of the system, A, B, C, D are real constant system matrices with

appropriate dimensions. The dynamics of the state-space model (2.1) can also be described

as follows

y(z) = Gyu(z)u(z) (2.2)

where Gyu(z) = C(zI−A)−1B+D is the transfer function matrix from input to output and

can be abbreviated to Gyu(z) = (A, B, C, D). Since there are infinite state-space repre-

sentations of the monitored process, it is assumed throughout this thesis that (A, B, C, D)

is a minimal realization of Gyu(z), i.e., (A, B) is controllable and (A, C) is observable.

Concerning the system (2.1) corrupted with noises and faults, a stochastic linear discrete-

time process is modeled as followsx(k + 1) = Ax(k) + Bu(k) + Bf f(k) + ω(k), x0 = x(0)

y(k) = Cx(k) + Du(k) + Df f(k) + υ(k)
(2.3)
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2 Preliminaries of data-driven FD for dynamic processes

where f ∈ Rp, ω ∈ Rn, υ ∈ Rm are the fault, process and measurement noise vectors,

respectively, Bf , Df are time-invariant matrices that indicate the influence of fault to the

system dynamics. Noise signals ω(k), υ(k) are assumed to be white random sequences

statistically independent of x0, u(k) and f(k).

Without loss of generality, the faults in system (2.3) are considered to be additive faults,

which occur without changing the system stability. From the viewpoint of modeling,

additive faults are broadly categorized into the following three classes, i.e.,

� Actuator faults fA: these faults would cause changes in the actuator response to

the input commend u(k). The system (2.3) with actuator fault is then modeled by

setting Bf = B, Df = D.

� Sensor faults fS: these faults would directly influence the process measurement y(k).

The system (2.3) with sensor faults is modeled by setting Bf = 0, Df = I.

� Process faults fP : the malfunctions in process are termed processes faults. With the

use of Dp to determine the location and type of fP , the system (2.3) with process

faults is obtained with Bf = Bp, Df = Dp.

Let f =
[
fTA fTS fTP

]T
, Bf = [B 0 Bp] , Df = [D I Dp]. The dynamics of a system

with actuator faults, sensor faults and process faults can be intuitively described by (2.3).

2.1.2 Coprime factorization technique

Coprime factorization technique is used to factorize a transfer matrix into two stable

and coprime transfer matrices, which provides another alternative description of system

dynamics. Below we first present the definition of left coprime factorization (LCF).

Definition 2.1. (Left coprime factorization (LCF) [22]) A factorization G(z) =

M̂−1(z)N̂(z) is said to be an LCF of G(z) if (i) N̂(z) ∈ RH∞ and M̂(z) ∈ RH∞
and (ii) there exist Ŷ(z) ∈ RH∞ and X̂(z) ∈ RH∞ such that

N̂(z)X̂(z) + M̂(z)Ŷ(z) = I. (2.4)

Followed by Definition 2.1, a state-space computation algorithm of an LCF is presented

in the following lemma.

Lemma 2.1. [22] Suppose G is a proper real-rational transfer matrix with a state space

realization (A, B, C, D), and it is stabilizable and detectable. Let L be so that A−LC is

Schur matrix (i.e., its eigenvalues are inside the unit circle on the complex plane). Define

M̂(z) = (A− LC, −L, C, I) , N̂(z) = (A− LC, B− LD, C,D) . (2.5)

10



2.2 Residual generation techniques

Then G(z) = M̂−1(z)N̂(z) is the LCF of G(z). Moreover, the so-called Bezout identity

(2.4) holds with

X̂(z) = (A + BF, L, C + DF, I) , Ŷ(z) = (A + BF, −L, F,0)

and A + BF being a Schur matrix.

Under assumption of the system (2.1) being controllable and observable, according to

Lemma 2.1, an LCF of transform matrix Gyu(z) is obtained as

Gyu(z) = M̂−1(z)N̂(z) (2.6)

with M̂(z), N̂(z) given in (2.5). Alternatively, the system (2.1) can be represented in the

following form

∀u(z),
[
−N̂(z) M̂(z)

] [ u(z)

y(z)

]
= 0. (2.7)

Equation (2.7) is known as a kernel representation of the system (2.1). More generally,

the stable kernel representation (SKR) is defined as follows.

Definition 2.2. (Stable kernel representation (SKR) [23]) Given system (2.1), a stable

linear system K driven by u(z), y(z) and satisfying

∀u(z), K

[
u(z)

y(z)

]
= 0 (2.8)

is called SKR of (2.1).

It is evident that K =
[
−N̂(z) M̂(z)

]
is an SKR of the system (2.1). One point

worth emphasizing is that the SKR of the concerned system is not unique by noting the

nonunique realization of an LCF. More details about the relationship between different

realizations of LCF can be referred to [22, 91].

2.2 Residual generation techniques

In the framework of analytical redundancy based FD, an FD system consists of two parts

termed the residual generation and residual evaluation, as sketched in Fig. 1.1 in Chapter

1. In this part, the subspace technique aided data-driven constructions of a residual

generator are first reviewed.

Roughly speaking, a residual generator is constructed to check the consistency of the

real monitored system and the redundant process driven by the same input [12]. In general,

the estimate of system output is created using the process model and the difference of it
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2 Preliminaries of data-driven FD for dynamic processes

from the real measured output is adopted as a residual signal. Under ideal conditions, the

residual should be zero in fault-free case and nonzero with the presence of faults. Denote

by r(k) the residual signal, given system (2.1), r(k) should satisfy [22]

i) in fault-free case,

∀u(k), x0, lim
k→∞

r(k) = 0, (2.9)

ii) when some possible faults present,

r(k) 6= 0. (2.10)

Concerning these characteristics, an SKR is actually a parametrized realization of residual

generator for the system (2.1), that is

r(z) =
[
−M̂(z) N̂(z)

] [ u(z)

y(z)

]
. (2.11)

Correspondingly, an observer-based online realization of (2.11) is constructed as follows
x̂(k + 1) = Ax̂(k) + Bu(k) + L(y(k)− ŷ(k))

ŷ(k) = Cx̂(k) + Du(k)

r(k) = y(k)− ŷ(k)

(2.12)

where x̂ ∈ Rn, ŷ ∈ Rm are the estimates of x, y, respectively, L is the observer gain matrix

stabilizing (A− LC). It is noteworthy that (2.12) is also known as a fault detection filter

in the model-based FD concept.

Together with Definition 2.2 and the residual generator (2.11), the following theorem is

achieved intuitively.

Theorem 2.1. [23] Given process model (2.3), a linear discrete time-invariant dynamic

system is a residual generator if and only if it is an SKR of (2.1).

2.2.1 I/O data models

To achieve a data-driven implementation of the residual generator (2.11), establishing the

so-called I/O data model to link the analytical model with process I/O data is necessary.

In what follows, three kinds of I/O data models are first introduced to this end, based on

which the subspace technique aided algorithms for residual generation are studied.
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2.2 Residual generation techniques

For ease of presentation, the following notations are introduced. For a vector ξ ∈ Rkξ

and integer s > 0, let

ξs(k)=


ξ(k − s)

ξ(k − s+ 1)
...

ξ(k)

∈R(s+1)kξ , Ξk=
[
ξ(k) ξ(k + 1) · · · ξ(k +N − 1)

]
∈RNkξ

Ξk,s =
[
ξs(k) ξs(k + 1) · · · ξs(k +N − 1)

]
=


Ξk−s

Ξk−s+1

...

Ξk

 ∈ R(s+1)kξ×N (2.13)

where ξ can be x, u, y, f, ω, υ with kξ being n, l, m, p correspondingly. Corresponding

to state-space representation (2.3), the following parity relation based process model can

be established

ys(k) = Γsx(k − s) + Hu,sus(k) + Hf,sfs(k) + Hω,sωs(k) + υs(k) (2.14)

where s ≥ n and

Γs =


C

CA
...

CAs

 , Hu,s =


D 0 · · · 0

CB D · · · 0
...

. . .
. . .

...

CAs−1B · · · CB D

 (2.15)

Hω,s and Hf,s are obtained by replacing (B,D) in Hus with (I, 0) and (Bf ,Df ), respec-

tively. On this basis, an I/O data model of system (2.3) for fault-free case (i.e., f(k) = 0),

is given by

Yk,s(k) = ΓsXk−s + Hu,sUk,s(k) + Hω,sΩk,s(k) + Υk,s(k) (2.16)

where Xk−s has the same structure of Ξk with respect to replacing ξ with x,

Yk,s, Uk,s, Ωk,s, Υk,s are in form of Ξk,s by replacing ξ with y, u, ω, υ, respectively.

The item Hω,sΩk,s(k) + Υk,s(k) represents the influence of noises to the process output.

By introducing a so-called innovation sequence denoted by e(k) = y(k) − ŷ(k), it is

derived from (2.12) thatx̂(k + 1) = Ax̂(k) + Bu(k) + Le(k) = ALx̂(k) + BLu(k) + Ly(k)

y(k) = Cx̂(k) + Du(k) + e(k)
(2.17)
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2 Preliminaries of data-driven FD for dynamic processes

where AL = A − LC, BL = B − LD. Alternative I/O data models of system (2.3) for

fault-free case can then be obtained as follows

Yk,s = ΓsX̂k−s + Hu,sUk,s + He,sEk,s (2.18)(
I−HL

y,s

)
Yk,s = ΓL

s X̂k−s + HL
u,sUk,s + Ek,s (2.19)

where Ek,s are given in form of (2.13) with ξ replaced by e and

He,s =


I 0 · · · 0

CL I · · · 0
...

. . .
. . .

...

CAs−1L · · · CL I

 , ΓL
s =


C

CAL

...

CAs
L



HL
y,s =


0 0 · · · 0

CL 0 · · · 0
...

. . .
. . .

...

CAs−1
L L · · · CL 0

 , HL
u,s =


D 0 · · · 0

CBL D · · · 0
...

. . .
. . .

...

CAs−1
L BL · · · CBL D


with HL

y,s ∈ R(s+1)m×(s+1)m and He,s ∈ R(s+1)m×(s+1)m.

2.2.2 Subspace technique aided residual generation

Based on Definition 2.2 and the parity relation based process model (2.14), we recall the

following data-driven realization of SKR.

Definition 2.3. (Data-driven realization of SKR [23]) Given system (2.1), matrix Kd,s

is called a data-driven realization of the SKR, if for some positive integer s, it holds

∀us(k), x0, Kd,s

[
us(k)

ys(k)

]
= 0. (2.20)

On this basis, a data-driven realization of residual generator (2.11) is obtained as follows

r(k) = Kd,s

[
us(k)

ys(k)

]
. (2.21)

Notably, the key point of constructing residual generator (2.21) lies in the identification

of Kd,s. Keeping this in mind, corresponding to the I/O data models (2.18), (2.19) and

(2.16), below we successively show three subspace technique aided residual generation

schemes by using process I/O data.
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2.2 Residual generation techniques

� Scheme I

It follows from (2.17) that

x̂(k) = Aρ
Lx̂(k − ρ) +

ρ∑
i=1

Ai−1
L [BL L]

[
us(k)

ys(k)

]
. (2.22)

Note that Aρ
L ≈ 0 holds for a large integer ρ > 0, it immediately follows

x̂(k) ≈
ρ∑
i=1

Ai−1
L [BL L]

[
us(k)

ys(k)

]
. (2.23)

By constructing the following data stacks

Zk−ρ,ρ−1 =

[
Yk−ρ,ρ−1

Uk−ρ,ρ−1

]
the I/O data model (2.18) can then be re-written as

Yk,s ≈ Πs,ρ−1Zk−ρ,ρ−1 + Hu,sUk,s + He,sEk,s (2.24)

where Πs,ρ−1 = [Πs,ρ−1,u Πs,ρ−1,y] with

Πs,ρ−1,u = Γs

[
Aρ−1
L BL · · · BL

]
, Πs,ρ−1,y = Γs

[
Aρ−1
L L · · · L

]
.

Once the matrix Πs,ρ−1, Hu,s are identified using process I/O data, according to

Definition 2.3, a residual generator can then be constructed online by

r(k + ρ) = ys(k + ρ)−Πs,ρ−1zρ−1(k)−Hu,sus(k + ρ). (2.25)

The algorithm is summarized in Algorithm 2.2.1.

� Scheme II

Given I/O data model (2.19) and ρ > 0 such that (2.23) holds, we have

Yk,s = ΠL
s,ρ−1Zk−ρ,ρ−1 + HL

u,sUk,s + HL
y,sYk,s + Ek,s (2.27)

Algorithm 2.2.1 Construction of residual generator (2.25)

1: Collect process I/O data in fault-free case and construct Zk−ρ, ρ−1, Uk,s, Yk,s.

2: Identify the matrices Πs,ρ−1, Hu,s by solving the following least square problem (with

QR-decomposition technique as presented in Algorithm 9.3 in [20])

min
Πs,ρ−1,Hu,s

‖Yk,s −Πs,ρ−1Zk−ρ,ρ−1 −Hu,sUk,s‖F . (2.26)

3: Compute the residual sequence online with (2.25).
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2 Preliminaries of data-driven FD for dynamic processes

where ΠL
s,ρ−1 =

[
ΠL
s,ρ−1,u ΠL

s,ρ−1,y

]
with

ΠL
s,ρ−1,u = ΓL

s

[
Aρ−1
L BL · · · BL

]
, Πs,ρ−1,y = ΓL

s

[
Aρ−1
L L · · · L

]
.

The following approximation of (2.27) is then obtained for a sufficient large ρ

Yk ≈
ρ+s∑
i=1

CAi−1
L

[
BL L

] [ Uk−i

Yk−i

]
+ DUk + Ek = Θ

[
Zk−s−1,s+ρ−1

Uk

]
with Θ =

[
CAs+ρ−1

L B · · · CB, CAs+ρ−1
L L · · · CL, D

]
.

By identifying Θ using process I/O data and constructing the matrices ΠL
s,ρ−1,

HL
u,s and HL

y,s based on it, the residual generator is then given in the following form

r(k + ρ) =
(
I−HL

y,s

)
ys(k + ρ)−ΠL

s,ρ−1zρ−1(k)−HL
u,sus(k + ρ). (2.28)

The algorithm is summarized in Algorithm 2.2.2.

� Scheme III

Consider the fault-free case with f(k) = 0 and rewrite the model (2.14) as follows[
ys(k)

us(k)

]
=

[
Γs Hu,s

0 I

][
x(k − s)

us(k)

]
+

[
Hω,sωs(k) + υs(k)

0

]
. (2.30)

Denote by Γ⊥s ∈ R((s+1)m−n)×(s+1)m the null space of Γs, i.e., Γ⊥s Γs = 0. Let

Ψs =

[
Γs Hu,s

0 I

]
, Ψ⊥s =

[
Γ⊥s −Γ⊥s Hu,s

]
∈ R((s+1)m−n)×(s+1)(l+m).

It is evident that Ψ⊥s Ψs = 0. Recalling Definition 2.3, matrix Ψ⊥s is actually a

data-driven realization of SKR of the system (2.1) and can thus be identified for

residual generation purpose. To this end, it yields from (2.16) that[
Yk,s

Uk,s

]
= Ψs

[
Xk−s

Uk,s

]
+

[
Hω,sΩk,s + Υk,s

0

]
. (2.31)

Algorithm 2.2.2 Construction of residual generator (2.28)

1: Collect process I/O data in fault-free case and form Zk−ρ,ρ−1, Uk,s, Yk,s.

2: Solve the following least square estimation problem with QR-decomposition technique

min
Θ

∥∥∥∥∥Yk −Θ

[
Zk−s−1,s+ρ−1

Uk

]∥∥∥∥∥
F

(2.29)

3: Identify the matrices ΠL
s,ρ−1, HL

u,s and HL
y,s from Θ.

4: Compute the residual sequence online with (2.28).
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Denote by Zp = Zk−s−1,s, Zf = Zk,s. For a large integer s >> n, it holds

1

N
ZfZ

T
p = Ψs

(
1

N

[
Xk−s

Uk,s

]
ZT
p +

1

N

[
Hω,sΩk,s + Υk,s

0

]
ZT
p

)

≈ Ψs

(
1

N

[
Xk−s

Uk,s

]
ZT
p

)
.

Under assumption of

rank

(
1

N

[
Xk−s

Uk,s

]
ZT
p

)
= n+ l(s+ 1) (2.32)

the matrix Ψ⊥s then exists guaranteeing Ψ⊥s
(

1
N

ZfZ
T
p

)
= 0. Do an SVD on 1

N
ZfZ

T
p

1

N
ZfZ

T
p = [U1 U2]

[
Λ1 0

0 Λ2(≈ 0)

][
VT

1

VT
2

]
.

We then have

Ψ⊥s = UT
2 . (2.33)

It is remarkable that the condition (2.32) is usually ensured when the system is

excited sufficiently. This has been well studied in literature [40]. In what follows, we

assume by default that (2.32) holds true except where otherwise stated.

Let Ψ⊥s =
[
Ψ⊥y,s −Ψ⊥u,s

]
with Ψ⊥y,s ∈ R((s+1)m−n)×(s+1)m. It then holds [21]

Ψ⊥y,sΓs = 0, Ψ⊥u,s = Γ⊥s Hu,s = Ψ⊥y,sHu,s (2.34)

where Ψ⊥y,s = Γ⊥s is the so-called parity space. The following parity relation based

residual generator is thus constructed

r(k) = Ψ⊥s

[
ys(k)

us(k)

]
= Ψ⊥y,sys(k)−Ψ⊥u,sus(k). (2.35)

Together with (2.14), the dynamics of residual generator (2.35) is governed by

r(k) = Ψ⊥y,s (Hf,sfs(k) + Hω,sωs(k) + υs(k)) . (2.36)

We summary the construction of residual generator (2.35) in Algorithm 2.2.3.

As a short summary, in the Schemes I and II, the residual generators (2.25) and (2.28) are

depending on the process input. In contrast, the residual generator (2.35) obtained with
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2 Preliminaries of data-driven FD for dynamic processes

Algorithm 2.2.3 Construction of residual generator (2.35)

1: Collect process I/O data in fault-free case and form Zp, Zf .

2: Do an SVD on 1
N

ZfZp and then compute Ψ⊥s with (2.33). Form matrices Ψ⊥y,s, Ψ⊥u,s.

3: Compute the residual signal online with (2.35).

Scheme III is decoupled of the system input in an ideal situation. Meanwhile, the online

realization of (2.35) requires lower computational load in contrast with (2.25) and (2.28).

In the subsequent study, Scheme III will be applied for residual generation except where

otherwise stated.

From the viewpoint of online realization, the residual generator (2.35) is computationally

cumbersome due to the data stacking operations and the delivered residual vector might

contain redundant information and thus less robust against noises. Remembering the

observer-based implementation of SKR, a fault detection filter-like configuration of (2.35)

is demonstrated in the following lemma, a detailed declaration of which is referred to [23].

Lemma 2.2. [23] Given system (2.30) and Ψ⊥s in (2.33), denote by ψ⊥s = [ψ⊥s,y −ψ⊥s,u] ∈
R(s+1)m a row vector of Ψ⊥s satisfying ψ⊥s,yΓs = 0. An observer-based realization of residual

generator (2.35 ) for given ψ⊥s can bexo(k + 1) = Aoxo(k) + Bou(k) + Loy(k)

r(k) = goy(k)− coxo(k)− dou(k)
(2.37)

where xo ∈ Rko,x, r ∈ R, co = [0 · · · 0 1] , go = ψ⊥s,y,s, do = ψ⊥s,u,s and

Ao =


0 0 · · · 0

1 0 · · · 0
...

. . .
. . .

...

0 · · · 1 0

 ∈ Rs×s, Lo = −


ψ⊥s,y,1
ψ⊥s,y,2
...

ψ⊥s,y,s

 , Bo =


ψ⊥s,u,1
ψ⊥s,u,2
...

ψ⊥s,u,s


with ψ⊥s,y,i being the (m(i − 1) + 1 : im) columns of ψ⊥s,y and ψ⊥s,u,i the (l(i − 1) + 1 : il)

columns of ψ⊥s,u with i = 1, 2, . . . , s, respectively.

Remark 2.1. Note that the residual generated in (2.37) is a scalar signal whilst a residual

vector is usually required to achieve reliable FD results. Towards an m-dimensional residual

generator, one simple way is to construct m observer-based residual generators in form of

(2.37) and then form a residual vector directly, i.e.,
xo,i(k + 1) = Ao,ixo,i(k) + Bo,iu(k) + Lo,iyi(k)

ri(k) = go,iyi(k)− co,ixo,i(k)− do,iu(k), i = 1, 2, . . . ,m

r(k) = [r1(k) r2(k) · · · rm(k)]T ∈ Rm

(2.38)
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2.3 Residual evaluation schemes

where xo,i ∈ Rko,x and ri ∈ R denote the state and residual of the i-th observer excited

by the i-th output yi and process input u, respectively, matrices Ao,i, Bo,i, Lo,i, go,i, co,i,

do,i are correspondingly in form of Ao, Bo, Lo, go, co, do as given in Lemma 2.2 with y

substituted by yi. Other algorithms for the construction of an m-dimensional residual

generator is referred to [23].

2.3 Residual evaluation schemes

Followed by residual generation, another essential part of an FD system is residual

evaluation, which involves the determination of residual evaluation function J(r), threshold

Jth and decision logic. Roughly speaking, there are two residual evaluation strategies for

FD purpose, namely the norm-based methods and the statistical hypothesis test schemes.

2.3.1 Norm-based methods

The norm-based residual evaluation strategy is usually adopted for FD concerning the

disturbances being norm-bounded. Typically, the L2-norm and L∞-norm of residual signal

are the two most popular choices for residual evaluation function. In the fashion of

L2-norm, the residual evaluation function and threshold are determined as

J2(r) = ‖r(k)‖2 =
√

rT (k)r(k), J2,th = sup
f=0

J2(r). (2.39)

The occurrence of a fault can then be detected by using the following decision logicJ2(r) ≤ J2,th, ⇒ no fault alarm

J2(r) > J2,th, ⇒ fault alarm.
(2.40)

Similarly, the L∞-norm based residual evaluation function and threshold are set as

J∞(r) = ‖r(k)‖∞ = sup
k

√
rT (k)r(k), J∞,th = sup

f=0
J∞(r). (2.41)

The following decision logic is thus used for FDJ∞(r) ≤ J∞,th, ⇒ no fault alarm

J∞(r) > J∞,th, ⇒ fault alarm.
(2.42)

2.3.2 Statistical hypothesis test methods

Statistical hypothesis test methods are commonly used to deal with residual evaluation

issues subject to stochastic noises. In this research line, the residual evaluation function is
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2 Preliminaries of data-driven FD for dynamic processes

generally set as a test statistic of residual sequence and a threshold is then determined

towards acceptable FD performance in terms of FAR, FDR and MDR, etc.

It is worth mentioning that the likelihood ratio test scheme is one of the most powerful

hypothesis test technique according to the Neyman–Pearson lemma [62]. In the framework

of likelihood ratio test, a likelihood function of residual is defined, i.e., h(r|θ) with θ being

a parameter carrying fault information. Denote by θ = θ0 in fault-free case and θ = θf in

faulty case. The residual evaluation function J(r) can then be defined as

J(r) =
h(r|θ0)

h(r|θf )
(2.43)

which is a so-called likelihood ratio function. By introducing a null hypothesis H0 and an

alternative hypothesis H1 as follows

H0 : θ = θ0, H1 : θ = θf (2.44)

a threshold Jth is then determined with respect to the following decision logicJ(r) ≤ Jth, ⇒ no fault alarm

J(r) > Jth, ⇒ fault alarm
(2.45)

such that

Pr {J(r) > Jth|H0} = α (2.46)

where α is an acceptable significance level of the probability rejecting H0 in favor of H1.

In FD fashion, α is termed as the FAR.

Under assumption of known probability distribution for noises, the PDF of residual is

usually chosen as the likelihood function h(r|θ). Especially when the noises are considered

to be Gaussian distributed, the residual evaluation function in (2.43) is actually a T 2

test statistic of residual that relies merely on the mean and covariance matrix of residual

vector. These results have been illustrated broadly in plenty of achievements, see, e.g.,

[12, 22, 23]. Nevertheless, in practical applications the requirement for exact probability

distributions for noises and faults is difficulty to be fulfilled.

2.3.3 Performance assessment

In terms of assessing the performance of FD systems regarding residual evaluation function

J(r), threshold Jth and decision logic (2.45), the definitions of FAR, FDR and MDR in

the probabilistic context are first introduce as follows [22].
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Definition 2.4. (False alarm rate (FAR)) The conditional probability

PFAR := Pr{J(r) > Jth|f = 0} (2.47)

is called the FAR.

Definition 2.5. (Missed detection rate (MDR)) The conditional probability

PMDR := Pr{J(r) ≤ Jth|f 6= 0} (2.48)

is called the MDR.

Definition 2.6. (Fault detection rate (FDR)) The conditional probability

PFDR := Pr{J(r) > Jth|f 6= 0} (2.49)

is called the FDR.

It is obvious that PFDR = 1 − PMDR. In the framework of statistical hypothesis test

based residual evaluation, when the probability distributions for noises and faults are

known, the threshold can be determined towards minimizing the MDR (or maximizing the

FDR) for a given acceptable FAR or minimizing the FAR for a prescribed MDR (or FDR).

In the application of norm-based residual evaluation, zero FAR is achieved by using (2.39)

or (2.41) while the MDR might be very poor because of the impossibility of decreasing

the FAR and MDR simultaneously only by adjusting the threshold.

As stated before, the assumption of knowing exact probability distributions for noises

and faults made in the statistical hypothesis test based residual evaluation is often,

unfortunately, unrealistic in practical applications. And the mainstream of mitigating this

deficiency that estimating the distributional information from historical data might cause

unreliable FD results due to the estimation errors caused by the finite number of samples.

Very recently, stochastic optimization technique has attracted increasing attention towards

addressing design issues under distributional ambiguity, which provides a good jumping-off

point for newer approaches to performance-oriented optimal FD without precise probability

distributions for noises and faults.

2.4 Basics of stochastic optimization

In this part, basic knowledge of stochastic optimization is presented serving as the

preliminary of subsequent study on the design and analysis of optimal FD systems for

stochastic dynamic processes.
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2 Preliminaries of data-driven FD for dynamic processes

2.4.1 Distributionally robust chance constraints

The concept of chance constraint was proposed in 1958 by Charnes and Cooper [11] and

great efforts have been made on this topic since then, see e.g., [60, 65, 82, 93]. In the

paradigm of chance constraint, a deterministic constraint regarding a random variable

is supposed to be satisfied with a certain probability. That is, given a random variable

ξ ∈ Rn following probability distribution Pξ and decision vector w ∈ Rn such that a

constraint L(ξ,w) ≥ 0 holds with

Pr {L(ξ,w) ≥ 0} ≤ α (2.50)

where α ∈ (0, 1). Obviously, the condition (2.46) posed guaranteeing FAR performance is

actually a chance constraint. Note that the condition (2.50) is formulated conceptually

but restricted in practical applications due to the inaccessible exact knowledge of Pξ.
As a natural extension of (2.50), the so-called distributionally robust chance constraint

(DCC) has been proposed to immunize the exact distribution requirement in chance

constraints. In DCC framework, Pξ is assumed to be within the ambiguity set P that

shares common distributional properties and the constraint (2.50) then holds over P , i.e.,

sup
Pξ∈P

Pr {L(ξ,w) ≥ 0} ≤ α. (2.51)

It is clear that DCC (2.51) gives the worst-case measure of condition (2.50) with respect

to characterizing the distributional uncertainty with ambiguity set P. In other words,

(2.51) is robust against the distributional uncertainty in Pξ.
More generally, concerning multiple constraints Li(ξ,w) ≥ 0, i = 1, 2, . . . , m over

(ξ, w), the following formulation termed distributionally robust joint chance constraints

(DJCCs) is introduced

sup
Pξ∈P

Pr {Li(ξ,w) ≥ 0, i = 1, 2, . . . , m} ≤ α (2.52)

which reduces to a DCC (2.51) when m = 1.

2.4.2 Worst-case conditional Value-at-Risk

CVaR is arguably one of the most popular coherent risk measures of uncertainties that

are broadly utilized in economics [15, 78, 94]. The definition of CVaR is given below.

Definition 2.7. (Conditional Value-at-Risk(CVaR) [93]) Given a loss function L(ξ) :

Rn → R over random variable ξ ∈ Rn obeying probability distribution Pξ, and a tolerance

ρ ∈ (0, 1), the CVaR at level ρ with respect to Pξ is defined as

Pξ − CVaRρ (L(ξ)) = inf
η∈R

{
η +

1

ρ
EPξ

[
(L(ξ)− η)+]} . (2.53)
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It is notable that CVaR essentially evaluates the conditional expectation of loss above

the (1− ρ)-quantile of the loss distribution [93]. When the infimum is attended in (2.53),

we have Pξ−CVaRρ(L(ξ) = Pr{L(ξ) ≤ η} ≥ 1−ρ. Thanks to the properties of monotone,

homogeneous and convex of CVaR with respect to L(ξ), it is usually applied to approximate

the chance constraint (2.50). Unfortunately, the application of CVaR constraints still

requires the precise knowledge of Pξ, which is difficult to access in practice.

To alleviate the CVaR in (2.53) against the distributional ambiguity, similar to (2.51),

we introduce the so-called WC-CVaR with respect to the ambiguity set P taking the

following form

sup
Pξ∈P

Pξ − CVaRρ (L(ξ)) ≤ 0. (2.54)

Note that, for any loss function L(ξ), it holds

Pr {L(ξ) ≤ Pξ − CVaRρ (L(ξ))} ≥ 1− ρ. (2.55)

We thus always have

sup
Pξ∈P

Pξ − CVaRρ (L(ξ)) ≤ 0⇒ sup
Pξ∈P

Pr (L(ξ) ≥ 0) ≤ ρ. (2.56)

In this regard, the WC-CVaR condition (2.54) provides a conservative approximation

for the DCC in form of (2.51). Because of the convexity of WC-CVaR, tractability of

WC-CVaR conditions has been extensively studied by means of SDP and SP, see, e.g.,

[76, 82, 93]. The connection between the WC-CVaR conditions and DCCs is the key

ingredient of this thesis, we defer to the formalities in Chapters 4–6.

2.4.3 Distributionally robust optimization

DRO is an important topic in stochastic optimization that optimizes the targeting objective

in worst-case setting over an ambiguity set constituted in terms of partial distributional

information [17, 70]. To be more specific, consider a standard DRO problem in the

following form

ZDRO(ξ,w) = min
w∈W

sup
Pξ∈P

EPξ [h(w, ξ)] (2.57)

where w is a decision variable belonging to a given set W in space Rn, h(w, ξ) represents

the objective function. It is seen that, the optimal decision variable w obtained by solving

(2.57) would minimize the supremum expectation of objective function h(w, ξ) for a family

of probability distributions Pξ ∈ P .

It is worth mentioning that DRO can be regarded as an extension of SP and RO defined

in the deterministic optimization context [17]. When the ambiguity set P is specified for a
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2 Preliminaries of data-driven FD for dynamic processes

certain distribution Pξ, i.e., P = {Pξ}, the DRO problem (2.57) would degenerate into an

SP problem in the following form

ZSP (ξ,w) = min
w∈W

EPξ [h(w, ξ)] . (2.58)

When the ambiguity set P is modeled only with the support of random variable ξ, i.e.,

P = {Pξ ∈ Rn|Pr{ξ ∈ U} = 1}, the problem (2.57) is reduced to a RO problem as follows

ZRO(ξ,w) = min
w∈W

sup
ξ∈U

h(w, ξ). (2.59)

In comparison with SP, DRO can efficiently cope with the uncertainties in probability

distributions with the introduction of ambiguity set, instead of presumption on the

distribution of random variables as made in SP. Moreover, by modeling the ambiguity set

in combination with partial distribution knowledge except for support, DRO can deliver a

less conservative result in contrast with RO.

2.4.4 Ambiguity set modeling

Considering the interplay between objective function and DCCs in stochastic optimization,

the modeling of ambiguity set is significant towards a tractable DRO problem. Generally

speaking, an ambiguity set should be constructed according to the following principles [36]:

� containing the true probability distribution of random variables at least with high

confidence levels if not possible,

� facilitating the computational handling such that a tractable reformulation of target-

ing DRO problem can be obtained and

� being as small as possible with the first condition satisfied to relieve the conservatism

of the optimal solution.

With these in mind, various ambiguity set models have been studied, see, e.g., [14, 16, 17,

79], that can be roughly divided into the following categories according to the type of the

information they used.

1) Moments. The second-order moments information, i.e., the mean and covariance

matrix, are mostly used in ambiguity set. Mathematically, given ξ ∈ Rn obeying

probability distribution Pξ with mean ξ̄ and covariance matrix Σ, a mean-covariance

based ambiguity set is defined as follows

P =
{
Pξ ∈ L

∣∣∣ E[ξ] = ξ̄, V[ξ] = Σ ∈ Sn+
}

(2.60)
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where L is the set of all valid probability distributions in space Rn. Consider ξ̄, Σ vary

in the confidence regions being polytopes, the nested moment ambiguity sets have been

studied in [36].

2) Empirical PDF. The availability of empirical distribution knowledge from historical

data prompts us to constitute the ambiguity set with empirical PDF. In this fashion,

the estimation errors are generally modeled by the limited statistical distances, e.g.,

φ-divergence, Kullback–Leibler (KL) divergence [49] and Wasserstein metric [13, 14, 39,

80], etc. As an example, when the statistical distance is defined with KL-divergence,

an ambiguity set can be defined as

P =

{
Pξ ∈ L

∣∣∣∣DKL (p||p̂) ≤ δ, p =
dPξ
dξ

}
(2.61)

where p and p̂ are the true PDF of ξ and its empirical estimate, respectively, δ

is given representing the tolerance upper bound of the distance between p and p̂

and DKL (p||p̂) =
∫
p(ξ)ln

(
p(ξ)
p̂(ξ)

)
dξ is the KL-divergence of p and p̂. When one order

Wasserstein metric [16] is used as distance measure of two PDFs, the following ambiguity

set is constituted

P =
{
Pξ ∈ L

∣∣∣Dw(Pξ, P̂ξ) ≤ δ
}

(2.62)

where P̂ξ is the empirical estimate of Pξ, the Wasserstein metric

Dw(Pξ, P̂ξ) = sup
g∈G

{∫
D
g(ξ)Pξ(dξ)−

∫
D
g(ξ)P̂ξ(dξ)

}
measures the distance between Pξ and P̂ξ with G being the space of Lipschitz continuous

functions satisfying |g(ξ1)− g(ξ2)| ≤ µ(ξ1, ξ2), ∀ξ1, ξ2 ∈ D, µ(ξ1, ξ2) is the metric

between ξ1 and ξ2. In practice, these ambiguity sets are usually approximated with

the scenario-wised formulation in data-driven framework [39, 80].

3) Structural information. The information referring to symmetry, unimodality, α-

unimodality and independence, etc., are generally enrolled into an ambiguity set

to capture the structural information of the marginal distribution of random variables

[36]. This is commonly neglected in moments based ambiguity sets. As an example, a

median-absolute deviation ambiguity set is presented as follows

P =

{
Pξ ∈ L

∣∣∣∣∣ Pξ is symmetric with center m

EPξ [|ξ −m|] ≤ d

}
(2.63)

where d is the bound of median absolute deviation.
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Remembering the rules of ambiguity set modeling, the mean-covariance based ambiguity

sets (in some situations in combination with the structural information) are mostly utilized.

The merits are mainly in twofold. Firstly, the empirical mean and covariance matrix can

usually be estimated with high probability from data when the number of samples is large

enough. Simultaneously, the computational load is much less expensive in comparison with

the cost of estimating the empirical knowledge of PDF. Secondly, the tractability of DCCs

and WC-CVaR conditions with respect to (2.60) has been widely studied in a rich body of

literature, in most of which the underlying DCCs are addressed in a deterministic manner,

see, e.g., [19, 42, 53, 81]. To that extent, the involved handling is, indeed, distribution

independent, which facilitates the subsequent design and analysis.

2.5 Summary and notes

This chapter has reviewed the preliminaries of data-driven FD for stochastic linear dy-

namic processes and basic knowledge of stochastic optimization. Firstly, mathematical

descriptions of stochastic linear dynamic systems have been presented. By recalling the

definitions of coprime factorization and SKR, three subspace technique aided schemes have

been given for the data-driven construction of a residual generator. Then the norm-based

and statistical hypothesis test based residual evaluation strategies were introduced for

residual evaluation purpose. Finally, basic concepts of stochastic optimization have been

demonstrated, which serves an essential part of subsequent synthesis and analysis of

optimal FD systems in data-driven framework, as will be investigated in Chapters 3–6.
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As demonstrated in Chapter 2, a data-driven dynamic FD system typically consists of

the residual generation and residual evaluation units with a decision-maker embedded

and these parts are generally designed separately. So far, a great number of literature on

residual generation have been reported and few efforts have been made on the issues of

residual evaluation despite its essential role in safeguarding satisfactory FD performance.

Conventionally, the statistical hypothesis test methods are prone to be used for residual

evaluation under assumption of knowing exact probability distribution for stochastic noises.

In practical applications, this presumption is notoriously unrealistic. Hence, research on

the data-driven FD for stochastic dynamic processes subject to distributional ambiguity

remains an open topic.

Inspired by the merits of the DRO technique in dealing with the distribution ambiguity

as introduced in Chapter 2, this chapter confines to a DIO approach to data-driven FD,

allowing a performance-oriented integrated design of the residual generator, the residual

evaluation function and the threshold. With the introduction of mean-covariance based

ambiguity sets, the design of FD systems is formulated as a stochastic optimization problem

with DCCs in the context of minimizing the MDR for a prescribed FAR. Without posing

specific distribution assumptions on noises and faults, a DIO description of the targeting

problem is achieved in terms of the means and covariance matrices of residuals in fault-free

and faulty cases. An iterative parametric algorithm is then developed to solve the DIO

problem. Furthermore, the worst-case FAR and MDR are exploited and a geometric

interpretation is given to gain a deeper insight into the DIO solution.

3.1 Preliminaries and problem formulation

3.1.1 Configuration of data-driven dynamic FD systems

Consider a stochastic linear discrete-time system modeled byx(k + 1) = Ax(k) + Bu(k) + Bf f(k) + ω(k)

y(k) = Cx(k) + Du(k) + Df f(k) + υ(k)
(3.1)

where x ∈ Rn, u ∈ Rl, y ∈ Rm, f ∈ Rp, ω ∈ Rn, υ ∈ Rm are the state, input, output, fault,

process and measurement noise vectors, respectively, A, B, C, D, Bf , Df are unknown
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3 A DIO approach to the design of FD systems

time-invariant system matrices with appropriate dimensions. It is assumed that the fault

f(k) is a random vector with nonzero mean and the noises ω(k), υ(k) are zero-mean white

sequences statistically independent of u(k), x(0) and f(k).

Given state-space description (3.1), an I/O data model, i.e., (2.14) with s ≥ n, is

obtained as follows[
ys(k)

us(k)

]
= Ψs

[
x(k − s)

us(k)

]
+

[
Hf,sfs(k) + Hω,sωs(k) + υs(k)

0

]
. (3.2)

Recall Ψ⊥s =
[

Ψ⊥y,s −Ψ⊥u,s

]
∈ Rγ×(s+1)(l+m) satisfying Ψ⊥s Ψs = 0 with Ψ⊥y,s ∈ Rγ×(s+1)m

and γ = (s + 1)m − n. Let ϕs(k) = Hω,sωs(k) + υs(k). A subspace technique aided

residual generator is then constructed as follows

z(k) = Ψ⊥s

[
ys(k)

us(k)

]
(3.3)

= Ψ⊥y,s (Hf,sfs(k) +ϕs(k)) (3.4)

r(k) = wTz(k) (3.5)

where r ∈ R is the residual signal, w ∈ Rγ is a nonzero parameter vector in the parity

space spanned by Ψ⊥y,s. The dynamics of residual generator is governed by (3.4), and (3.3)

is suggested for online realization. As demonstrated in Section 2.2.2, the matrices Ψ⊥s and

Ψ⊥y,s can be identified with Algorithm 2.2.3 by using process I/O data.

Followed by residual generation, the residual evaluation function J(r) and a threshold

Jth should be determined appropriately such that the occurrence of a fault can be detected

by using the following decision logicJ(r) ≤ Jth, ⇒ no fault alarm

J(r) > Jth, ⇒ fault alarm.
(3.6)

The configuration diagram of data-driven FD systems is demonstrated in Fig. 3.1.

Recalling the definitions of FAR and MDR in Section 2.3.3, we then formulate the

design of FD system regarding w, J(r) and Jth in the context of minimizing the MDR for

a given acceptable FAR as following SP problem

min
w6=0, J(r), Jth

β (3.7)

s.t.

Pr {J(r) > Jth|f = 0} ≤ α0

Pr {J(r) ≤ Jth|f 6= 0} ≤ β
(3.8)
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Figure 3.1: Schematic diagram of data-driven FD systems.

where α0 ∈ (0, 1) is a given upper bound of FAR, β ∈ (0, 1) is the upper bound of MDR,

respectively. It is remarkable that the chance constraints in (3.8) restrict the FAR and

MDR being not larger than α0 and β, respectively.

In case of knowing exact probability distribution of noises, statistical hypothesis test

methods presented in Section 2.3.2 are usually applied for residual evaluation by setting

the residual evaluation function J(r) as a test statistic of residual r and then determining

the threshold Jth with FAR not larger than α0. According to Neyman–Pearson lemma, a

minimal MDR can be delivered in this context [23]. Thus, when the distributional profile of

noises is known exactly, the FD problem (3.7)–(3.8) can be directly solved with statistical

hypothesis test methods. In engineering applications, precise distribution knowledge of

noises and faults is often, unfortunately, inaccessible and the statistical hypothesis test

based threshold setting is sensitive to the distribution drifts of noises, which may result in

poor FAR and MDR for online FD.

3.1.2 Problem formulation

To address FD system design issues under mild conditions, we can reasonably assume

that the true probability distribution of z(k), i.e., Pz, belongs to a predefined ambiguity

set both in fault-free and faulty cases. That is, given distribution ambiguity sets P0 for
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fault-free scenario and Pf for the faulty scenario, it holdsPz ∈ P0, for f = 0

Pz ∈ Pf , for f 6= 0.
(3.9)

Regarding ambiguity sets P0 and Pf , the following distributionally robust FD problem is

formulated towards minimizing the MDR for a given acceptable FAR, i.e.,

min
w6=0, J(r), Jth

β (3.10)

s.t.


sup
Pz∈P0

Pr {J(r) > Jth} ≤ α0

sup
Pz∈Pf

Pr {J(r) ≤ Jth} ≤ β
(3.11)

which is an SP problem with DCCs. Without precise knowledge or specific assumption on

the distributions for noises and faults, the first DCC in (3.11) guarantees the FAR not

larger than α0 over P0 and the second DCC suggests the MDR not larger than β over Pf .

Without loss of generality, we define the residual evaluation function and threshold as

J(r) = |r(k)|, Jth = b (3.12)

where b > 0. By substituting (3.5) into (3.12), the problem (3.10)–(3.11) is further

re-written as follows

min
w 6=0, b>0

β (3.13)

s.t.


sup
Pz∈P0

Pr
{
|wTz| > b

}
≤ α0

sup
Pz∈Pf

Pr
{
|wTz| ≤ b

}
≤ β.

(3.14)

It is remarkable that the design of FD systems for stochastic dynamic process (3.1)

has been formulated as the problem (3.13)–(3.14). The advantages of this formulation in

contrast with the problem (3.7)–(3.8) are in the following aspects.

� It provides a performance-oriented integrated design of FD systems by incorporating

the criteria of FAR and MDR with the residual generator, residual evaluation function

and threshold setting.

� The demand for exact distribution knowledge of noises and faults, as required in

statistical hypothesis test methods, is alleviated by introducing the ambiguity sets

P0 and Pf to specify families of distributions of z(k) in fault-free and faulty cases,

respectively.
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3.2 Distribution independent optimal FD

� In this sense, the upper bounds of FAR and MDR derived by solving (3.13)–(3.14)

are achievable under any probability distributions for noises ω(k), υ(k) and fault

f(k) supporting Pz ∈ P0 in fault-free case and Pz ∈ Pf in faulty case. It implies the

robustness of the solution to (3.13)–(3.14) against the distributional ambiguity.

Hence, the problems to be addressed in this chapter are formulated as follows:

� With respect to appropriately modeled ambiguity sets P0, Pf , solve the problem

(3.13)–(3.14) for parameter vector w and threshold b without posing distribution

assumptions on noises and faults and

� Develop a data-driven realization of the designed FD system including offline design

and online implementation.

3.2 Distribution independent optimal FD

In this section, a DIO scheme is proposed to address the FD problem (3.13)–(3.14) without

presumption on the distributions for noises and faults. To this end, the mean-covariance

based ambiguity sets are first established, based on which a distribution independent

description of the FD problem (3.13)–(3.14) is formulated in the probabilistic context. Then

an iterative parametric algorithm is developed, followed by a data-driven implementation

of the FD system.

3.2.1 Mean-covariance based ambiguity sets

Note that the core of addressing the problem (3.13)–(3.14) lies in handling the DCCs

(3.14), which highly relies on the models of ambiguity sets P0 and Pf .
As introduced in Section 2.4.4, various forms of ambiguity set are available, among

which the mean-covariance based model is mostly used in engineering applications for

the common availability of second-order moments information using historical data and

its computational tractability under certain conditions [36, 79, 93]. For these merits, in

what follows we model the ambiguity sets P0 and Pf in terms of the mean and covariance

matrix of z(k). Denote by

z0(k) = z(k)|f(k)=0, z̄0 = E[z0], Σz0 = V[z0]

zf (k) = z(k)|f(k) 6=0, z̄f = E[zf ], Σzf = V[zf ].

Let ω̄s = E[ωs], ῡs = E[υs], Σω = V[ωs], Συ = V[υs], f̄s = E[fs] 6= 0, Σf = V[fs]. It is
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3 A DIO approach to the design of FD systems

derived from (3.4) that

z̄0 = Ψ⊥y,sϕ̄s, Σz0 = Ψ⊥y,sΣϕ(Ψ⊥y,s)
T (3.15)

z̄f = z̄0 + H̄f,sf̄s, Σzf = Σz0 + H̄f,sΣfH̄
T
f,s (3.16)

where ϕ̄s = Hω,sω̄s + ῡs, Σϕ = V[ϕs] = Hω,sΣωH
T
ω,s + Συ, H̄f,s = Ψ⊥y,sHf,s. We then

construct the ambiguity set P0 as follows

P0 =
{
Pz ∈ L

∣∣∣ E[z] = z̄0, V[z] = Σz0 ∈ Sγ+
}

(3.17)

where L is the set of all valid probability distributions in space Rγ . Similarly, the ambiguity

set Pf is modeled as

Pf =
{
Pz ∈ L

∣∣∣ E[z] = z̄f , V[z] = Σzf ∈ Sγ+
}
. (3.18)

Remark 3.1. In general, real values of z̄0, Σz0 , z̄f , Σzf are unavailable in practical

applications and their empirical estimates are usually obtained using process I/O data.

When the sample number is sufficiently large, the empirical estimates are considered to be

close to the true values with high probability and thus temporarily assumed to be known

exactly. The estimation error involved issues will be discussed in Chapter 6.

3.2.2 Problem reformulation

Since the residual evaluation function J(r) in (3.12) is a two-sided test statistic of residual

and the condition |wTz| > b is nonconvex, it is difficult to deal with the DCCs (3.14)

directly. One alternative solution is to reformulate the problem (3.13)–(3.14) in terms of

two one-sided test statistics of residual. It yields from (3.4) and (3.12) that

J(r) = |wTz(k)| =

{
wTz(k), for wTz(k) > 0

−wTz(k), for wTz(k) ≤ 0.
(3.19)

According to Bonferroni’s inequality, we have, for the first DCC in (3.14), it holds

sup
Pz∈P0

Pr
{
|wTz| > b

}
= sup

Pz∈P0

Pr
{
wTz > b or −wTz > b

}
≤ sup

Pz∈P0

Pr
{
wTz > b|wTz > 0

}
+ sup

Pz∈P0

Pr
{
−wTz > b|wTz ≤ 0

}
≤ α0

if the following inequalities hold true

sup
Pz∈P0

Pr
{
wTz > b|wTz > 0

}
≤ α0

2
, sup

Pz∈P0

Pr
{
−wTz > b|wTz ≤ 0

}
≤ α0

2
.

In this context, the FD problem (3.13)–(3.14) can be addressed by solving the following

two optimization problems, wherein one-sided evaluation functions are adopted.
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3.2 Distribution independent optimal FD

1) When wTz(k) > 0, i.e., J(r) = wTz(k). Regarding decision logic (3.6), a one-sided FD

problem is constructed as

min
w 6=0, b>0

β (3.20)

s.t.


sup
Pz∈P0

Pr
{
wTz(k) > b

}
≤ α0

2

sup
Pz∈Pf

Pr
{
wTz(k) ≤ b

}
≤ β.

(3.21)

2) When wTz(k) < 0, i.e., J(r) = −wTz(k). Regarding decision logic (3.6), a one-sided

FD problem is constructed as

min
w6=0, b>0

β (3.22)

s.t.


sup
Pz∈P0

Pr
{
−wTz(k) > b

}
≤ α0

2

sup
Pz∈Pf

Pr
{
−wTz(k) ≤ b

}
≤ β.

(3.23)

It is obvious that the optimal solution to FD problem (3.20)–(3.21) solves the problem

(3.22)–(3.23) by substituting the parameter vector w with −w. Besides, by solving (3.20)–

(3.21) for w, b, β, the FAR of the FD system can be ensured not larger than α0 and MDR

not greater than β with respect to using (3.12) for residual evaluation. Thus, below we

will focus on solving the FD problem (3.20)–(3.21), the core of which lies in the handling

of DCCs (3.21) in a deterministic manner.

3.2.3 Distribution independent FD

In order to deal with the DCCs in (3.21) in the probabilistic context, the following theorem

is first referred.

Theorem 3.1. [53] Given a random vector ξ ∈ Rn with mean ξ̄ and covariance matrix

Σ ∈ Sγ+, i.e., ξ ∼ (ξ̄,Σ), for a convex set S, it holds

sup
ξ∼(ξ̄,Σ)

Pr{ξ ∈ S} =
1

1 + d2

with d2 = inf
ξ∈S

(ξ − ξ̄)TΣ−1(ξ − ξ̄).

Based on Theorem 3.1, the following lemma for our study can be achieved.
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3 A DIO approach to the design of FD systems

Lemma 3.1. [53] Given a random vector ξ ∈ Rn with ξ ∼ (ξ̄,Σ), w 6= 0 and b, such that

wT ξ̄ ≤ b and ρ ∈ [0, 1), the condition

inf
ξ∼(ξ̄,Σ)

Pr{wTξ ≤ b} ≥ 1− ρ

holds if and only if

b−wT ξ̄ ≥ κ(ρ)
√

wTΣw

with κ(ρ) =
√

1−ρ
ρ

, when wT ξ̄ > b, inf
ξ∼(ξ̄,Σ)

Pr{wTξ ≤ b} = 0.

Note that Lemma 3.1 provides a deterministic formulation of a DCC in terms of mean

and covariance matrix. On this basis, given ambiguity set P0 in (3.17), it holds for the

first DCC in (3.21) with wT z̄0 < b that

sup
Pz∈P0

Pr
{
wTz(k) > b

}
≤ α0

2
⇔ inf

Pz∈P0

Pr
{
wTz(k) ≤ b

}
≥ 1− α0

2

⇔ b−wT z̄0 ≥ κ̄(α0)
√

wTΣz0w (3.24)

where κ̄(α0) = κ(α0

2
) =

√
2−α0

α0
. Similarly, given Pf in (3.18), the second DCC in (3.21)

with wT z̄f > b is reformulated as follows

sup
Pz∈Pf

Pr
{
wTz(k) ≤ b

}
≤ β ⇔ inf

Pz∈Pf
Pr
{
wTz(k) > b

}
≥ 1− β

⇔ inf
Pz∈Pf

Pr
{
−wTz(k) < −b

}
≥ 1− β

⇔ −b+ wT z̄f ≥ κ(β)
√

wTΣzfw (3.25)

where κ(β) =
√

1−β
β

. In the cases of w designed such that wT z̄0 ≥ b and wT z̄f ≤ b, it is

obvious that the MDR and FAR would be one, which is meaningless for our FD purpose

and thus are discarded. Together with (3.24) and (3.25), the FD problem (3.20)–(3.21) is

equally re-written as the following distribution independent form

max
w6=0, b>0

β (3.26)

s.t.

b−wT z̄0 ≥ κ̄(α0)
√

wTΣz0w

−b+ wT z̄f ≥ κ(β)
√

wTΣzfw.
(3.27)

This formulation is a second-order cone programming (SOCP) problem that is obviously

independent of the probability distributions of noises and faults. In the next subsection,

the optimal solution of the FD problem (3.26)–(3.27) is studied.
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3.2 Distribution independent optimal FD

3.2.4 Optimal solution and algorithms

It is derived from (3.27) that

κ̄(α0)
√

wTΣz0w−wT
1 z̄0 ≤ b ≤ wT z̄f − κ(β)

√
wTΣzfw. (3.28)

It follows

κ(β)
√

wTΣzfw + κ̄(α0)
√

wTΣz0w ≤ wT (z̄f − z̄0). (3.29)

Note that the value of ‖w‖ would not influence the optimal solution of β regarding (3.29).

We can without loss of generality set

wT (z̄f − z̄0) = 1 (3.30)

and then

κ(β)
√

wTΣzfw + κ̄(α0)
√

wTΣz0w ≤ 1 (3.31)

holds, which delivers

κ(β) ≤
1− κ̄(α0)

√
wTΣz0w√

wTΣzfw
. (3.32)

Since β has the opposite monotonicity with κ(β), we then have

min
w 6=0

β ⇔ max
w6=0

κ(β) ⇔ max
w6=0

1− κ̄(α0)
√

wTΣz0w√
wTΣzfw

. (3.33)

Together with (3.30) and (3.33), we can rewrite the problem (3.26)–(3.27) as follows

max
w

1− κ̄(α0)
√

wTΣz0w√
wTΣzfw

s.t. wT (z̄f − z̄0) = 1 (3.34)

which is a fractional programming (FP) problem according to [68]. After solving the

problem (3.34) for an optimal w, the equalities in (3.28) hold at this optimum. And then

we have

κ(β) =
1− κ̄(α0)

√
wTΣz0w√

wTΣzfw
(3.35)

β =
1

1 + κ2(β)
(3.36)

b = κ̄(α0)
√

wTΣzfw−wT z̄0

= wT z̄f − κ(β)
√

wTΣzfw. (3.37)

Therefore, the key point of solving the problem (3.26)–(3.27) lies in solving the FP

problem (3.34). Up to now, various parametric algorithms and software have been
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3 A DIO approach to the design of FD systems

developed to deal with this kind of FP problems, e.g., the iterative least square [53] and

quadratic search methods [42]. Here an iterative least square scheme is applied to this

end. Let

l (w) = 1− κ̄(α0)
√

wTΣz0w, g(w) =
√

wTΣzfw. (3.38)

The problem (3.34) is re-written as follows

max
w

l (w)

g(w)
s.t. wT (z̄f − z̄0) = 1. (3.39)

By introducing a parameter λ ≥ 0, the problem (3.39) can then be addressed by iteratively

solving the following SOCP problem for a fixed λ

max
w

l (w)− λg(w) s.t. wT (z̄f − z̄0) = 1. (3.40)

With respect to updating λ with

λ =
l (w∗)

g(w∗)
, w∗ = arg max

w
l (w)− λg(w) (3.41)

an optimal w to (3.34) is then achieved until a predefined criterion is achieved.

Regarding solving the SOCP problem (3.40), denote by F ∈ Rγ×(γ−1) an orthogonal

matrix whose columns span the subspace orthogonal to z̄f − z̄0, q ∈ Rγ−1. Let

w = w̄0 + Fq, w̄0 =
z̄f − z̄0

‖z̄f − z̄0‖2
2

. (3.42)

The condition wT (z̄f − z̄0) = 1 holds obviously. Then the problem (3.40) is re-written as

an unconstrained SOCP problem in the following form

max
q

{
1− κ̄2(α0)

∥∥Σ1/2
z0

(w̄0 + Fq)
∥∥2

2
− λ2

∥∥∥Σ1/2
zf

(w̄0 + Fq)
∥∥∥2

2

}
which equals to

min
q

{
κ̄2(α0)

∥∥Σ1/2
z0

(w̄0 + Fq)
∥∥2

2
+ λ2

∥∥∥Σ1/2
zf

(w̄0 + Fq)
∥∥∥2

2

}
. (3.43)

To handle the problem (3.43), the following lemma is recalled.

Lemma 3.2. [37] For any vectors a, c and any matrix M and for all ε > 0, we have

(a + c)TM(a + c) ≤
(

1 +
1

ε

)
aTMa + (1 + ε)cTMc.

A proposition of Lemma 3.2 can then be obtained as follows.
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3.2 Distribution independent optimal FD

Algorithm 3.2.4 Iterative least square method for solving (3.40)

1: Given λ > 0, sufficient small ε > 0, τ0 > 0, ∆ > 0, compute w̄0, F. Let

G = λ2FTΣz0F, H = κ̄2(α0)FTΣzfF

g = λ2FTΣz0w̄0, h = κ̄2(α0)FTΣzf w̄0.

2: Initialize ξ1 = 1, ζ1 = 1, δ1 = 1, i = 1.

3: Do the following computation until |δi+1 − δi| ≤ ε, i.e.,

K = 1
ζi

G + 1
ξi

H + ∆I, Q = −
(

1
ζi

g + 1
ξi

h
)
, qi = K−1Q

wi = w̄0 + Fqi, ζi+1 =
√
λ(wi)TΣz0w

i, ξi+1 =
√
κ̄(α0)(wi)TΣzfw

i

δi+1 = ζi+1+ξi+1

2
, i← i+ 1.

4: Assign w∗ = wi−1.

Proposition 3.1. For any vector a, matrix M and ε > 0, it holds

a∗ = arg min
a

aTMa = arg inf
a,ε>0

(
ε+

1

ε

)
aTMa.

Based on Lemma 3.2 and Proposition 3.1, we introduce parameters η > 0, µ > 0 and

rewrite the problem (3.43) as follows

inf
q, η>0, µ>0

{
η +

κ̄2(α0)

η

∥∥Σ1/2
z0

(w̄0 + Fq)
∥∥2

2
+ µ+

λ2

µ

∥∥∥Σ1/2
zf

(w̄0 + Fq)
∥∥∥2

2

}
(3.44)

which can be solved with an iterative least square algorithm, as presented in Algorithm

3.2.4, in which the iteration is stopped when the error between two steps is smaller than a

predefined sufficient small tolerance.

By solving the optimal w with Algorithm 3.2.4, the optimal solutions of β, b are further

achieved with (3.36) and (3.37), respectively. As a summary, the algorithm for solving the

FD problem (3.26)–(3.27) is given in Algorithm 3.2.5.

As mentioned before, the optimal solutions of w, b, β obtained by solving the problem

(3.26)–(3.27) also address the problem (3.22)–(3.23) by replacing w with −w. Since the

DCCs (3.14) hold if the DCCs (3.21) and (3.23) hold, the solutions w, b, β to (3.26)–(3.27)

thus solve the original FD problem (3.13)–(3.14). We thus give the following theorem.

Theorem 3.2. The optimal solution to the DIO problem (3.26)–(3.27) is given in (3.35)–

(3.37), which solve the FD problem (3.13)–(3.14).
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3 A DIO approach to the design of FD systems

Algorithm 3.2.5 Optimal solution to the DIO problem (3.26)–(3.27)

1: Given a small τ1 > 0, set j = 1, λ = λ1.

2: Solve the problem (3.40) with Algorithm 3.2.4 for w∗, Let wj = w∗.

3: Repeat the following process until λj > λj+1 and λj > λj−1 hold simultaneously

λj+1 =
1− κ̄(α0)

√
(wj)TΣz0w

j√
(wj)TΣzfw

j
, j ← j + 1.

4: Let w = wj, κ(β) = λj. Compute β, b by (3.36) and (3.37), respectively.

5: Return w, β, b.

3.2.5 Data-driven implementation

The above presented solution to the FD problem (3.13)–(3.14) provides an integrated

design of FD systems regarding residual generator, residual evaluation function, threshold,

FDR and MDR criteria without distribution assumptions on noises and faults. In this

part, a data-driven implementation of the designed FD system is presented, which includes

the offline design and online FD, as show in Fig. 3.2.

Offline design Online FD

s
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fu(i), y(i), i 1,2,..., N

Figure 3.2: DIO method aided data-driven configuration of FD systems

In the stage of offline design, the matrix Ψ⊥s is identified using process I/O data

with Algorithm 2.2.3. The sample sets {z0(i)}N0
i=1 in fault-free case and {zf(i)}

Nf
i=1 in the

concerned faulty case are then constructed using (3.3), where N0, Nf are given large

enough sample numbers. The means z̄0, z̄f and covariance matrices Σz0 , Σzf are thus
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3.3 Discussion

Algorithm 3.2.6 Data-driven implementation of DIO method aided FD systems

Offline design

1: Collect process I/O data in fault-free and the concerned faulty cases.

2: Identify Ψ⊥s with Algorithm 2.2.3 by using process I/O data in fault-free case.

3: Construct sample sets {z0(i)}N0

i=1 and {zf (i)}
Nf
i=1. Compute the empirical means z̄0, z̄f

and covariance matrices Σz0 , Σzf .

4: Given α0 ∈ (0, 1), solve the FD problem (3.20)–(3.21) with Algorithm 3.2.5 for optimal

w, b, β. Compute ϑ, Jth with (3.47).

Online FD

1: Compute residual r(k) and J(r) with (3.48) and (3.12) at time step k, respectively.

2: Perform (3.6) to detect the occurrence of a fault.

estimated by

z̄0 =
1

N0

N0∑
i=1

z0(i), Σz0 =
1

N0

N0∑
i=1

(z0(i)− z̄0)(z0(i)− z̄0)T (3.45)

z̄f =
1

Nf

Nf∑
i=1

zf (i), Σzf =
1

Nf

Nf∑
i=1

(zf (i)− z̄f )(zf (i)− z̄f )
T . (3.46)

Given an appropriate α0 ∈ (0, 1), Algorithm 3.2.5 is then applied to solve the FD problem

(3.26)–(3.27) for w, b, β. Let

ϑ = wTΨ⊥s , Jth = b. (3.47)

In the stage of online FD, a residual signal at time step k is generated with

r(k) = ϑ

[
ys(k)

us(k)

]
. (3.48)

By computing the residual evaluation function J(r) and threshold with (3.12), the occur-

rence of a fault is then detected by performing the decision logic (3.6). The algorithm is

summarized in Algorithm 3.2.6. As discussed in Section 3.2.2, the FAR of the designed

FD system is ensured not greater than α0 and the MDR not larger than β with respect to

Pz ∈ P0 in fault-free case and Pz ∈ Pf in faulty case.

3.3 Discussion

In the above study, the design of FD systems regarding a two-sided residual evaluation

function is formulated as the problem (3.13)–(3.14), which is further re-written as two one-

sided DIO problems in form of (3.26)–(3.27) and then solved with an iterative parametric
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3 A DIO approach to the design of FD systems

algorithm. To gain a deeper insight, in this section we give two additional remarks about

the worst-case FAR and MDR and a geometric interpretation of the optimal solution.

3.3.1 Worst-case FAR and MDR

In Section 3.2.2, we have represented the DCCs (3.14) with DCCs (3.21) and (3.23) as

sufficient conditions by using Bonferroni’s inequality. To explain this point better, we

introduce the following theorems as side results of Theorem 3.1.

Theorem 3.3. Given ξ ∈ Rn with ξ ∼ (ξ̄, Σ), w 6= 0 and b > 0 such that |wT ξ̄| ≤ b,

ρ ∈ (0, 1), if

b− |wT ξ̄| ≥ κ̄(ρ)
√

wTΣw (3.49)

holds with κ̄(ρ) =
√

2−ρ
ρ

, then the condition

sup
ξ∼(ξ̄,Σ)

Pr
{∣∣wTξ

∣∣ > b
}
≤ ρ (3.50)

holds true, when |wT ξ̄| > b, sup
ξ∼(ξ̄,Σ)

Pr
{∣∣wTξ

∣∣ > b
}

= 1.

Proof. See the Appendix A.1.

Theorem 3.4. Given ξ ∈ Rn with ξ ∼ (ξ̄, Σ), w 6= 0 and b > 0 such that |wT (ξ̄)| ≥ b,

ρ ∈ (0, 1), the condition

− b+ |wT ξ̄| ≥ κ(ρ)
√

wTΣw (3.51)

holds with κ(ρ) =
√

1−ρ
ρ

if and only if

sup
ξ∼(ξ̄,Σ)

Pr
{∣∣wTξ

∣∣ ≤ b
}
≤ ρ (3.52)

holds true, when |wT ξ̄| < b, sup
ξ∼(ξ̄,Σ)

Pr
{∣∣wTξ

∣∣ ≤ b
}

= 1.

Proof. See the Appendix A.2.

Based on Theorems 3.3 and 3.4, the FD problem (3.20)–(3.21) can be substituted by

min
w6=0, b>0

β (3.53)

s.t.

b− |wT z̄0| ≥ κ̄(α0)
√

wTΣz0w

−b+ |wT z̄f | ≥ κ(β)
√

wTΣzfw.
(3.54)

By eliminating b from (3.54) and further re-written the problem (3.53)–(3.54) as follows

max
w

1− κ̄(α0)
√

wTΣz0w√
wTΣzfw

s.t. |wT z̄f | − |wT z̄0| = 1 (3.55)
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3.3 Discussion

which is obviously identical with the FD problem (3.34) with |wT z̄f | − |wT z̄0| > 0.

Algorithm 3.2.5 can then be used intuitively to solve (3.55). It is remarkable that

|wT z̄f | − |wT z̄0| > 0 surely holds under assumption of z̄0 = 0 and this assumption is

without loss of generality since data can always be pre-processed so to comply with this

assumption. When z̄0 6= 0 for the nonzero mean noises, the primary residual signal z(k)

can be redefined as z̃(k) = Ψ⊥s

[
ys(k)

us(k)

]
− z̄0 such that E[z̃] = 0 holds in fault-free case.

In summary, we solve the one-sided FD problem (3.20)–(3.21) for the optimal solutions

of w, b, β, as given in (3.35)–(3.37), respectively. Then, with respect to using the two-sided

test statistic (3.12) and decision logic (3.6) for residual evaluation, the FAR and MDR of

the FD system can be achieved satisfying

PFAR ≤ α0, PMDR ≤ β

for noises and faults supporting Pz ∈ P0 in fault-free case and Pz ∈ Pf in faulty case.

Remark 3.2. It is worth emphasizing that the proposed DIO approach to FD with respect

to solving (3.13)–(3.14) provides quantitative upper bounds of FAR and MDR in the

probabilistic context, without special distribution assumptions on noises and faults. In

case that the probability distributions for noises and faults are known in specific forms, the

well-established (generalized) likelihood ratio method is apt to be applied to solve the problem

(3.10)–(3.11), which will achieve a tighter upper bound of MDR for an identical FAR due

to the additional distributional information except for mean and covariance matrix.

3.3.2 Geometric interpretation

In the fashion of statistical learning, FD issue can be regarded as a binary classification

problem, i.e., the fault-free class and the faulty class. The FD problem (3.13)–(3.14) is

formulated aiming to find a hyperplane such that these two classes can be separated with

minimum missed classification probabilities, i.e., the FAR and MDR. In this context, a

geometric interpretation of the achieved solution is given below.

Since the solution to FD problem (3.13)–(3.14) is achieved by addressing (3.34), we start

with using Lagrangian multiplier method to cope with (3.34). By introducing parameter

vectors ς, ζ, a Lagrangian function corresponding to (3.34) is constructed as follows [41]

L(w, λ1, λ2, ς, ζ) = min
w,λ1

max
λ2,ς,ζ

κ̄(α0)wTΣ
1
2
z0ς + λ1w

TΣ
1
2
zf ς + λ2(1−wT (z̄f − z̄0)) (3.56)

with ‖ς‖2 ≤ 1, ‖ζ‖2 ≤ 1. Given λ2z̄f − λ1Σ
1
2
zfζ = λ2z̄0 + κ̄(α0)Σ

1
2
z0ς, i.e., z̄f − λ1Σ

1
2
zfζ =
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3 A DIO approach to the design of FD systems

z̄0 + κ̄(α0)Σ
1
2
z0ς with ‖ς‖2 ≤

1
λ2
, ‖ζ‖2 ≤

1
λ2

, the problem (3.56) is re-written as

L(w, λ1, λ2, ς, ζ) = max
‖ς‖2≤1,‖ζ‖2≤1,λ1

λ2 : λ2z̄f − λ1Σ
1
2
zfζ = λ2z̄0 + κ̄(α0)Σ

1
2
z0ς

= min
‖ς‖2≤

1
λ2
,‖ζ‖2≤

1
λ2
,λ1

1

λ2

: z̄f − λ1Σ
1
2
zfζ = z̄0 + κ̄(α0)Σ

1
2
z0ς. (3.57)

At the optimum, it holds

λ2 = λ1

∥∥∥Σ 1
2
zfw
∥∥∥

2
+ κ̄(α0)

∥∥∥Σ 1
2
z0w
∥∥∥

2
= 1, λ1 = κ(β). (3.58)

The formulation (3.57) admits a Mahalanobis distance based geometric interpretation of

(3.58). Consider two ellipsoids centered with mean and shaped obeying covariance matrix

in the following form

E0 =
{

z0 := z̄0 + κ̄(α0)Σ
1
2
z0ς, ‖ς‖2 ≤ 1

}
, Ef =

{
zf := z̄f + κ(β)Σ

1
2
zfζ, ‖ζ‖2 ≤ 1

}
which specify two groups of instances whose Mahalanobis distance to the center satisfies

M0 =
∥∥∥Σ− 1

2
z0 (z0 − z̄0)

∥∥∥
2
≤ κ̄(α0), Mf =

∥∥∥Σ− 1
2

zf (zf − z̄f )
∥∥∥

2
≤ κ(β).

The optimal solution (3.58) is then interpreted as that a w is fund achieving the ellipsoids

E0, Ef being tangentially intersected, such that a minimum MDR β = 1
1+κ2(β)

is achieved

for a given FAR not larger than α0 = 2
1+κ̄2(α0)

with Mahalanobis distances M0 ≤ κ̄(α0)

and Mf ≤ κ(β).

3.4 Summary and notes

In this chapter, a DIO scheme has been presented to address design issues of data-driven

FD systems subject to distributional ambiguity of noises and faults. Rather than posing

specific distribution assumptions on noises and faults as made in conventional hypothesis

test methods, ambiguity sets have been introduced to characterize families of probability

distributions with common mean and covariance matrix both for fault-free and faulty

cases. On this basis, the FD systems design has been formulated as an SP problem

with DCCs in the context of minimizing the MDR for a prescribed FAR. A distribution

independent solution to the targeting problem has been developed, which provides an

integrated synthesis of the residual generator, residual evaluation function and threshold.

Moreover, a data-driven implementation of the designed FD system has been given. To a

better understanding, the worst-case FAR and MDR and a geometric interpretation of the

solution have been discussed.
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4 An improved DIO method for FD and analytical
algorithms

A DIO approach has been demonstrated in Chapter 3 towards an integrated design of

FD systems, achieving a minimum MDR for a given acceptable FAR without precise

distribution knowledge of noises and faults. The basic idea behind this approach is to

formulate the FAR and MDR involved DCCs as distribution independent conditions and

then solve the DIO problem with iterative parametric algorithms. In the offline design

procedure, the DCCs with residual evaluation function being two-sided test statistic of

residual are decomposed into two conditions with one-sided test statistics and the FAR

criterion is then derived using Bonferroni’s inequality. It is worth mentioning that this

handling would result in a conservative upper bound of FAR. On the other hand, despite

various iterative parametric algorithms for solving DIO problems, the computational cost

is generally expensive for the cases involving high dimensional process variables and a

closed-form solution is rarely available [41]. Searching for an analytical solution to the

DIO method aided FD is thus of practical importance but theoretically challenging.

Motivated by these concerns, this chapter confines to an improved DIO approach to

the design of data-driven FD systems, providing tighter upper bounds of FAR and MDR

without precise distribution knowledge of noises and faults. On the basis of a data-driven

construction of a parity relation based residual generator, a two-sided test statistic of

residual is applied as residual evaluation function, and then the design of FD systems is

formulated as an SP problem with DCCs towards minimizing the MDR for a prescribed

FAR. It is rigorously proven that the targeting problem can be addressed by solving

a generalized eigenvalue-eigenvector problem. An analytical solution is thus obtained

by means of an SVD. The existence condition of the optimal solution is also studied

analytically. At the end of this chapter, a short discussion is given concerning two special

cases of FD missing fault information and deterministic fault detection.

4.1 Problem formulation

For the purpose of FD in stochastic linear discrete-time systems of form (3.1), we recall

the residual generator (3.3)–(3.5) to generate the residual signal using process I/O data.

Considering the situation of unknown exact distributions for noises and faults, we refer
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4 An improved DIO method for FD and analytical algorithms

to the mean-covariance based ambiguity sets P0 in (3.17) and Pf in (3.18) to specify

groups of probability distributions of z(k) in fault-free and faulty cases, respectively. In

this context, given known means z̄0, z̄f and covariance matrices Σz0 , Σzf , the residual

evaluation function J(r) and threshold Jth are without loss of generality defined as follows

J(r) = (r(k)− r̄0)2, Jth = 1 (4.1)

where r̄0 = wT z̄0. The following decision logic is then used to for online FDJ(r) ≤ Jth ⇒ no fault alarm

J(r) > Jth ⇒ fault alarm.
(4.2)

The design of FD systems thus lies in the design of parameter vector w.

Towards minimizing the MDR for a given FAR, we substitute (3.5) into (4.1) and

formulate the design of FD system regarding parameter vector w as an SP problem with

DCCs in the following form

min
w 6=0

β (4.3)

s.t.


sup
Pz∈P0

Pr
{

(wT (z− z̄0))2 > 1
}
≤ α0

sup
Pz∈Pf

Pr
{

(wT (z− z̄0))2 ≤ 1
}
≤ β

(4.4)

where α0 ∈ (0, 1) is a given upper bound of FAR and β ∈ (0, 1) the upper bound of MDR.

Due to the DCCs (4.4), it remains a challenging task to find the optimal solution to

the FD problem (4.3)–(4.4) in an analytical manner. To deal with this issue, the main

objectives of this chapter are as follows:

� Study the deterministic formulations of the DCCs (4.4) in the probabilistic context

such that the tighter upper bounds of FAR and MDR can be achieved and

� Develop an analytical solution to the FD problem (4.3)–(4.4) without specific

distribution assumptions on noises and faults.

4.2 An improved DIO approach to FD

In this part, an improved DIO approach is demonstrated for the design of FD systems by

solving the problem (4.3)–(4.4). To this end, distribution independent representations of

the DCCs in (4.4) are first studied.
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4.2 An improved DIO approach to FD

4.2.1 Deterministic description of DCCs

As demonstrated in Chapter 3, the first DCC in (4.4) can be handled by decomposing

the two-sided residual evaluation function into two one-sided test statistics of residual

due to its nonconvexity, then the FAR criterion is obtained using Bonferroni’s inequality.

Unfortunately, this approximation will lead to a quite conservative FAR. To alleviate

this deficiency, below an equivalent deterministic formulation of the first DCC in (4.4) is

investigated according to the connections between DCCs and WC-CVaR constraints [66].

Recall the definition of CVaR given in 2.7. The following theorems are referred at first.

Theorem 4.1. [93] Let L(ξ) : Rn → R be a continuous loss function that is either concave

or quadratic in ξ (possibly nonconcave). Then the following equivalence holds

Z(ρ, L(ξ)) = sup
Pξ∈P

Pξ − CVaRρ (L(ξ)) ≤ 0 ⇔ inf
Pξ∈P

Pr (L(ξ) ≤ 0) ≥ 1− ρ

where P is a mean-covariance based ambiguity set of Pξ, Z(ρ, L(ξ)) is a WC-CVaR

condition.

Theorem 4.2. [76] Given ξ ∈ Rn following probability distribution Pξ with E[ξ] = ξ̄ and

V[ξ] = Σ, let the second-order moment matrix be

Mξ =

[
Σ + ξ̄ξ̄T ξ̄

ξ̄T 1

]
. (4.5)

Define an ambiguity set

P =

{
Pξ
∣∣∣∣∫ [ξT 1

]T · [ξT 1
]
dPξ = Mξ

}
and a loss function L(ξ) = ξTEξ + 2eT1 ξ + e0 with E ∈ Sn+, e1 ∈ Rn, e0 ∈ R. Then the

WC-CVaR is equivalent to the following tractable SDP

sup
Pξ∈P

P− CVaRρ (L(ξ)) = inf
η,K

η +
1

ρ
Tr (MξK)

s.t. K ∈ Sn+1
+ , η ∈ R, K−

[
E e1

eT1 e0 − η

]
� 0.

Theorem 4.3. [76] Using the notations in Theorem 4.2, given ξ̄ = 0, Σ ∈ Sn+ and loss

function L(ξ) = ξTEξ + e0, then

sup
Pξ∈P

P− CVaRρ (L(ξ)) = e0 +
1

ρ
Tr (ΣE) .

Based on Theorems 4.2 and 4.3, the following theorem can be achieved.

45



4 An improved DIO method for FD and analytical algorithms

Theorem 4.4. Given ξ ∈ Rn obeying probability distribution Pξ with E[ξ] = ξ̄, V[ξ] =

Σ ∈ Sn+, define a mean-covariance based ambiguity set P. For α ∈ (0, 1), the condition

sup
Pξ∈P

Pr
{

(wT (ξ − ξ̄))2 > 1
}
≤ α (4.6)

holds if and only if

ν(α)
√

wTΣw ≤ 1 (4.7)

with ν(α) =
√

1/α.

Proof. Denote by ζ = ξ− ξ̄ obeying distribution Pζ with E[ζ] = 0, V[ζ] = V[ξ] = Σ ∈ Sn+.

Define an ambiguity set P = {Pζ ∈ L |E[ζ] = 0, V[ζ] = Σ} and a function of ζ by

F(ζ) = ζTQζ − 1, Q = wwT . (4.8)

According to Theorem 4.1, the following expression regarding the condition (4.6) holds

sup
Pξ∈P

Pr
{

( wT (ξ − ξ̄))2 > 1
}
≤ α ⇔ sup

Pζ∈P
Pr {F(ζ) > 0} ≤ α

⇔ inf
Pζ∈P

Pr {F(ζ) ≤ 0} ≥ 1− α. (4.9)

Note that F(ζ) is a quadratic function over ζ. It is known from Theorem 4.2 that (4.9)

holds if and only if

sup
Pζ∈P

P− CVaRα (F (ζ)) ≤ 0 (4.10)

Referring to Theorem 4.3, we have (4.10) equals to

− 1 +
1

α
Tr (ΣQ) ≤ 0. (4.11)

Together with (4.8)–(4.10) and (4.11), the condition (4.6) then holds if and only if

1

α

(
wTΣw

)
≤ 1

which clearly delivers (4.7). The proof is completed.

According to Theorem 4.4, the first DCC in (4.4) is equally described as the following

distribution independent form

ν(α0)
√

wTΣz0w ≤ 1 (4.12)

where ν(α0) =
√

1/α0. In order to deal with the second DCC in (4.4) in deterministic

manner, we further propose the following theorem.
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4.2 An improved DIO approach to FD

Theorem 4.5. Using the notations in Theorem 4.4, let κ(α) =
√

(1− α)/α. Given a

constant vector g ∈ Rn with |wT (ξ̄ − g)| ≥ 1, the condition

sup
Pξ∈P

Pr
{

(wT (ξ − g))2 ≤ 1
}
≤ α (4.13)

holds if and only if √
wT (ξ̄ − g)(ξ̄ − g)Tw− 1 ≥ κ(α)

√
wTΣw. (4.14)

When |wT (ξ̄ − g)| < 1, it holds sup
Pξ∈P

Pr
{

(wT (ξ − g))2 ≤ 1
}

= 1.

Proof. Let ς = ξ − g, D =
{
Pς ∈ L

∣∣E[ς] = ξ̄ − g = ς̄, V[ς] = Σ ∈ Sn+
}

. It is noted from

Theorem 3.4 that, for |wT ς̄| ≤ 1, it holds

Eq. (4.13) ⇔ sup
Pς∈D

Pr
{

( wT ς)2 ≤ 1
}
≤ α⇔ sup

Pς∈D
Pr
{
|wT ς| ≤ 1

}
≤ α

⇔
√

wT ς̄ ς̄Tw− 1 ≥ κ(α)
√

wTΣw. (4.15)

The substitution of ς̄ = ξ̄ − g to (4.15) delivers (4.14). When |wT ς̄| > 1, we have

sup
Pς∈D

Pr
{

(wT ς)2 ≤ 1
}

= sup
Pς∈D

Pr
{
|wT ς| ≤ 1

}
= 1. The proof is completed.

Let κ(β) =
√

(1− β)/β, z̃f = z̄f − z̄0. Based on Theorem 4.5, the second DCC in (4.4)

is then equally substituted by the following deterministic constraint√
wT z̃f z̃Tf w− κ(β)

√
wTΣzfw ≥ 1. (4.16)

Combining with (4.12) and (4.16), the FD problem (4.6)–(4.7) is thus equally reformulated

as the following distribution independent form

min
w6=0

β (4.17)

s.t.

 ν(α0)
√

wTΣz0w ≤ 1√
wT z̃f z̃Tf w− κ(β)

√
wTΣzfw ≥ 1.

(4.18)

Now the remaining task is to solve the DIO problem (4.17)–(4.18). Though various

parametric algorithms, e.g., the iterative least square [53] and the quadratic interpolation

schemes [41], can be applied to this end, achieving an analytical solution to this problem

remains difficult and a rigorous analysis of the FD results is then intractable. In the

upcoming subsection we propose an SVD-based algorithm to address the FD problem

(4.17)–(4.18) analytically.
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4 An improved DIO method for FD and analytical algorithms

4.2.2 Analytical optimal solution

It follows from (4.18) that

ν(α0)
√

wTΣz0w ≤ 1 ≤
√

wT z̃f z̃Tf w− κ(β)
√

wTΣzfw. (4.19)

Let

C(w) =

√
wT z̃f z̃Tf w− ν(α0)

√
wTΣz0w√

wTΣzfw
. (4.20)

We then have

0 < κ(β) ≤ C(w). (4.21)

Since κ(β) has the opposite monotonicity with β, the objective of minimizing β in (4.17)

can be achieved by maximizing κ(β). Simultaneously, it obviously holds at the maximum

of κ(β) that

κ(β) = C(w), ν(α0)
√

wTΣz0w = 1. (4.22)

Because if w delivers ν(α0)
√

wTΣz0w < 1, we can always find another w achieving a

larger κ(β). In this regard, the problem (4.17)–(4.18) can be solved by addressing

max
w 6=0

C(w) (4.23)

s.t. ν(α0)
√

wTΣz0w = 1, C(w) > 0. (4.24)

Note that the constraint ν(α0)
√

wTΣz0w = 1 in (4.24) can always be satisfied by

multiplying a constant to the optimal solution of w to the following problem

max
w 6=0

C(w) s.t. C(w) > 0. (4.25)

We thus temporally omit the first constraint in (4.24) and focus on solving the problem

(4.25). The following theorem is proposed to this aim.

Theorem 4.6. The solution to the problem (4.25) can be achieved by solving the following

generalized eigenvalue-eigenvector problem

max
w 6=0

wT Σ̃w

wTΣzfw
(4.26)

where Σ̃ = z̃f z̃
T
f − ν2(α0)Σz0. Do an SVD on Σ

1
2
zf , i.e., Σ

1
2
zf = U [S 0] VT , UUT =

I, VVT = I. The optimal solution of w to (4.26) is obtained as

w = US−1v (4.27)

where v solves

vT (λmI− S−1UT Σ̃US−1)v = 0, vTv = 1 (4.28)

with λm > 0 being the maximum eigenvalue of matrix S−1UT Σ̃US−1.
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4.2 An improved DIO approach to FD

Proof. For w 6= 0, z̃f 6= 0, let t(w) =

√
wT z̃f z̃Tf w√
wTΣzf

w
, h(w) =

ν(α0)
√

wTΣz0w√
wTΣzf

w
with t(w) >

h(w) > 0 and

C(w) = t(w)− h(w), H(w) = t2(w)− h2(w).

Since t(w) and h(w) are scalars, there without loss of generality exists µ(w) ∈ (0, 1) such

that h(w) = µ(w)t(w). Then, we have C(w) = (1− µ(w))t(w) and

H(w) = (1− µ2(w))t2(w) =
(1 + µ(w))C2(w)

1− µ(w)
.

Because of C(w) > 0, it is easy to verify that

∂H(w)

∂C(w)
= 2C(w)

1 + µ(w)

1− µ(w)
> 0

which means H(w) has the same monotonicity with C(w) over w. Then it follows

w = arg max
w 6=0

C(w) = arg max
w6=0

H(w).

Submitting t(w), h(w) into H(w), the solution of (4.25) is then obtained by solving (4.26).

Note that (4.26) is a generalized eigenvalue-eigenvector problem and thus is solved by

(4.27) by means of an SVD with λm = max
w6=0

wT Σ̃w
wTΣzf

w
> 0. The proof is completed.

Now we consider the constraint ν(α0)
√

wTΣz0w = 1 in (4.24). As mentioned before,

we can obviously determine the optimal w by dividing w in (4.27) with a constant such

that this equality holds without changing the maximum of C(w). The following theorem

is thus achieved.

Theorem 4.7. The optimal solution to the problem (4.17)–(4.18) can be obtained by

solving (4.26) such that ν(α0)
√

wTΣz0w = 1. At the optimum, it holds κ(β) = C(w).

Denote by w∗ the optimal solution of w to the problem (4.17)–(4.18). According to

Theorems 4.6 and 4.7, we have

w∗ =
w

ν(α0)
√

wTΣz0w
(4.29)

with w being given in (4.27) and

κ(β) = C(w∗) =

√
wT
∗ z̃f z̃

T
f w∗ − 1√

wT
∗Σzfw∗

, β =
1

1 + κ2(β)
. (4.30)

So far, analytical solutions of w, β to the FD problem (4.17)–(4.18) are achieved by

means of SVD technique. The algorithm is summarized in Algorithm 4.2.7. From the
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Algorithm 4.2.7 Analytical solution to the FD problem (4.17)–(4.18)

1: Given an appropriate α0 ∈ (0, 1), z̄0 6= z̄f , Σz0 , Σzf ∈ Sγ+, do an SVD on Σ
1
2
zf and

compute w with (4.27) by solving (4.28) for v.

2: Compute w∗ and β with (4.29) and (4.30), respectively.

viewpoint of computation, it is worth mentioning that the key of the proposed analytical

algorithm lies in solving the generalized eigenvalue-eigenvector problem (4.26), which can

be addressed efficiently by means of the well-developed SVD techniques [18], the worst-case

computational complexity is O(γ3). Nowadays, various iterative numerical algorithms

have been proposed to solve generalized eigenvalue-eigenvector problems, which involve

comparable lower computational cost than O(γ3), especially for high dimensional random

variables, see, for instance, [32, 33, 67]. In comparison, the existing parametric algorithms,

e.g., the iterative least-square method presented in [53], would involve the worst-case

computational complexity not smaller than O(γ3), meanwhile, an analytical solution is

unavailable for further FD performance analysis.

Remark 4.1. As illustrated in Section 3.2.3, the parameter vector w to the problem

(3.13)–(3.14) is obtained by solving the FD problem (3.20)–(3.21) and then the FAR

criterion is obtained according to Bonferroni inequality. In other words, constraints (3.21)

hold as sufficient conditions of (3.14). While as proven before, (4.18) provide sufficient

and necessary conditions to DCCs (4.4). Comparing (3.27) and (4.18), we can see that

they are in the same form with κ̄(α0) in place of ν(α0) for z̄0 = 0 and b = 1. Because

κ̄(α0,1) = ν(α0,2) with α0,1, α0,2 ∈ (0, 1) leads to α0,2 < α0,1, we can then conclude that, for

an identical upper bound of MDR, i.e., β, a smaller upper bound of FAR can be achieved

by using the improved DIO method.

Remark 4.2. Algorithm 4.2.7 can be directly applied to solve the distribution independent

FD problems (3.24)–(3.25) and (3.26)–(3.27). In this manner, not only a closed-form

solution can be delivered but also a comparable lower computational load in contrast with

Algorithm 3.2.5.

4.2.3 Existence condition of the optimal solution

It is observed from Theorem 4.6 that there naturally exists a lower bound of α0 to guarantee

the existence of w, such that λm > 0 holds to ensure κ(β) > 0. Since κ(β) decreases

monotonically with the increase of β and the decrease of α0, we study the existence

condition of the optimal solution to problem (4.17)–(4.18) by setting β = 1. In this

context, κ(β) = 0 holds. Denote by αl0 the lower bound of α0. Let ν(αl0) =
√

1/αl0. It
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4.2 An improved DIO approach to FD

yields from (4.19) that

ν2(αl0) := max
w6=0

wT z̃f z̃
T
f w

wTΣz0w
(4.31)

which is a generalized eigenvalue-eigenvector problem. Do an SVD on Σ
1
2
z0 , i.e., Σ

1
2
z0 =

Ū
[
S̄ 0

]
V̄T , ŪŪT = I, V̄V̄T = I. The optimal solution of w to (4.31) is achieved as

w = ŪS̄−1v̄ (4.32)

with v̄ solving the following equations

v̄T (λ̄mI− S̄−1ŪT z̃f z̃
T
f ŪS̄−1)v̄ = 0, v̄T v̄ = 1 (4.33)

where λ̄m = λmax
{
S̄−1ŪT z̃f z̃

T
f ŪS̄−1

}
. Due to S̄−1ŪT z̃f z̃

T
f ŪS̄−1 is a rank-one matrix, it

then holds

λ̄m = z̃Tf Σ−1
z0

z̃f . (4.34)

We intuitively have ν2(αl0) = λ̄m = z̃Tf Σ−1
z0

z̃f and then

αl0 =
1

z̃Tf Σ−1
z0

z̃f
. (4.35)

Moreover, note that αl0 ∈ (0, 1), it should hold z̃Tf Σ−1
z0

z̃f > 1. Recalling the dynamics of

residual generator in (3.4), we have z̃f = z̄f − z̄0 = H̄f,sf̄s and then

z̃Tf Σ−1
z0

z̃f =
∥∥∥Σ− 1

2
z0 H̄f,sf̄s

∥∥∥2

2
> 1 (4.36)

should hold. It implies that the magnitude of f̄s should satisfy (4.36) such that an MDR

smaller than one can be ensured for a given appropriate α0 ∈
(
αl0, 1

)
. The following

theorem is thus achieved.

Theorem 4.8. Given z̄0, z̄f ∈ Rγ, Σz0 , Σzf ∈ Sγ+, if (4.36) holds true, an optimal solution

of (4.17)–(4.18) exists on condition that α0 ∈
(
αl0, 1

)
with αl0 given in (4.35).

It is noted from (4.35) that αl0 gets smaller with the increase of the magnitude of f̄ for a

given s and ∥∥∥Σ− 1
2

z0 H̄f,sf̄s

∥∥∥
2
≤
∥∥∥Σ− 1

2
z0 H̄f,s

∥∥∥
∞

∥∥f̄s∥∥2
= σ1

∥∥f̄s∥∥2
(4.37)

with σ1 being the maximum singular value of matrix Σ
− 1

2
z0 H̄f,s. Then, if∥∥f̄s∥∥2

≤ σ−1
1 (4.38)

the fault with magnitude not larger than σ−1
1 cannot be detected. The following theorem

is thus derived providing a necessary condition of the worst-case fault detectability.

Theorem 4.9. Given z̄0 ∈ Rγ, Σz0 ∈ Sγ+, if a fault f(k) with E[f] = f̄ leading to (4.38),

the worst-case FAR would be one.
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4 An improved DIO method for FD and analytical algorithms

Algorithm 4.2.8 Data-driven realization of FD systems using improved DIO method

Offline design

1: Collect process I/O data in fault-free and concerned faulty cases. Identify the matrix

Ψ⊥s using Algorithm 2.2.3.

2: Generate residual samples with (3.3) using process I/O data in fault-free and faulty

cases. Then compute z̄0, z̄f , Σz0 , Σzf with (3.45).

3: Compute αl0 using (4.35) and set α0 ∈ (αl0, 1).

4: Solve w∗, β using Algorithm 4.2.7 and then compute ϑ, r̄0 with (4.39).

Online FD

1: Compute residual r(k) and J(r) with (4.40) at time step k.

2: Perform (4.2) to detect the occurrence of a fault.

4.2.4 Data-driven implementation

A data-driven realization of the above designed FD system is described in Algorithm

4.2.8. In the offline design stage, the residual generator (3.3) is first constructed by

identifying the matrix Ψ⊥s using process I/O data. Then the empirical means z̄0, z̄f and

covariance matrices Σz0 , Σzf are computed with (3.45)–(3.46). Before solving the FD

problem (4.3)–(4.4), an appropriate α0 ∈ (αl0, 1) should be set for the considered fault so

as to ensure the existence of the optimal solution. By using Algorithm 4.2.7, the optimal

parameter vector w∗ is then obtained. Let

ϑ = wT
∗Ψ

⊥
s , r̄0 = wT

∗ z̄0. (4.39)

For online FD purpose, compute the residual sequence and residual evaluation function in

time step k by

r(k) = ϑ

[
ys(k)

us(k)

]
, J(r) = (r(k)− r̄0)2. (4.40)

Then the occurrence of a fault can be detected by using the decision logic (4.2) with

Jth = 1. The FAR and MDR are ensured not larger than α0 and β, respectively.

4.3 Special cases discussion

In this part, we discuss the analytical solutions of the distribution independent FD problem

(4.17)–(4.18) in two special scenarios, i.e., missing fault formation and the fault being

deterministic signal. Some interesting results are presented below.
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4.3 Special cases discussion

4.3.1 FD missing fault information

In some engineering applications, prior knowledge of faults and even historical process

I/O samples in faulty case is unavailable, which result in inaccessible mean and covariance

matrix of residual in faulty case and then infeasible solution of the proposed DIO method.

In this situation, we propose to formulate the design of FD system regarding w, residual

evaluation function and threshold given in (4.1) as follows

max
w6=0

∥∥wT H̄f,s

∥∥2

2
s.t. sup

Pz∈P0

Pr
{

(wT (z− z̄0))2 > 1
}
≤ α0. (4.41)

In this formulation, the DCC ensures FAR no larger than a given α0 ∈ (0, 1), the objective,

i.e., max
w 6=0

∥∥wT H̄f,s

∥∥2

2
, is posed aiming to minimize the MDR. Since for fixed threshold

Jth = 1, maximizing
∥∥wT H̄f,s

∥∥2

2
means minimizing the probability of (wT (zf − z̄0))

2 =∥∥wT H̄f,sfs
∥∥2

2
≤
∥∥wT H̄f,s

∥∥2

2
‖fs‖2

2≤1 for unknown fault modes, i.e., minimizing the MDR.

According to Theorem 4.4, the problem (4.41) can be reformulated as follows

max
w6=0

∥∥wT H̄f,s

∥∥2

2
s.t. ν(α0)

√
wTΣz0w ≤ 1 (4.42)

which follows

max
w6=0

∥∥wT H̄f,s

∥∥2

2
s.t. wTΣz0w ≤ α0. (4.43)

By introducing a Lagrangian function L(w, λ) = −
∥∥wT H̄f,s

∥∥2

2
+ λ

(
wTΣz0w− α0

)
with

λ ≥ 0, it holds at the optimum that

∂L(w, λ)

∂w
= 0,

∂L(w, λ)

∂λ
= 0 ⇒ H̄f,sH̄

T
f,sw = λΣz0w, wTΣz0w = α0. (4.44)

Do an SVD on Σ
1
2
z0 , the optimal solution of (4.43) is then obtained as

w =
√
α0ŪS̄−1v̄ (4.45)

with v̄ solving the equations (4.33). Then it obviously holds for λ̄m given in (4.34) that

max
w 6=0

∥∥wT H̄f,s

∥∥2

2
= α0λ̄m.

Note that a fault can be detected on condition that α0λ̄m > 1, i.e.,
√
λ̄m > ν(α0). From

the viewpoint of geometric, the residual evaluation function given in (4.1) is actually a Maha-

lanobis distance of z from the mean vector z̄0, i.e., (wT (z−z̄0))2 = α0

∥∥v̄T S̄−1ŪT (z− z̄0)
∥∥2

2
.

In this context, given the FAR not greater than α0, it is easy to understand that, a fault

is expected to be detected when the Mahalanobis distance of z from z̄0 in the direction of

ṽ is larger than ν(α0).
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4 An improved DIO method for FD and analytical algorithms

4.3.2 Deterministic fault detection

Consider the situation that the concerned fault is deterministic, i.e., V[f] = 0, then

Σz0 = Σzf . With respect to the FD problem (4.3)–(4.4), a distribution independent form

of it can then be described by (4.17)–(4.18) with Σzf = Σz0 , i.e.,

min
w6=0

β (4.46)

s.t.

ν(α0)
√

wTΣz0w ≤ 1√
wT z̃f z̃Tf w− κ(β)

√
wTΣz0w ≥ 1.

(4.47)

which, according to the results in Section 4.2.2, can be solved by addressing

max
w 6=0

wT z̃f z̃
T
f w

wTΣz0w
s.t. ν(α0)

√
wTΣz0w = 1. (4.48)

To this end, we first solve the unconstrained problem max
w6=0

wT z̃f z̃Tf w

wTΣz0w
for w by means of

SVD, the solution is given in (4.32). Then the optimal solution w∗ to (4.46)–(4.47) can be

obtained by dividing a constant to w in (4.32) such that ν(α0)
√

wT
∗Σz0w∗ = 1 holds. At

the optimum, we have

w∗ =
w

ν(α0)
√

wTΣz0w
, κ(β) =

√
λ̄m − ν(α0), β =

1

1 + κ2(β)
(4.49)

with w and λ̄m being given in (4.32) and (4.34), respectively. To ensure κ(β) > 0, the

prescribed FAR should be given such that α0 ∈ (αl0, 1), as summarized in Theorem 4.8.

On the other hand, given acceptable FAR and MDR, we can derive a sufficient condition

of the existence of the optimal solution to the problem (4.47)–(4.46) with respect to the

magnitude of fault. It yields from the DCCs (4.47) that

wT
(
z̃f z̃

T
f − (κ(β) + ν(α0))2Σz0

)
w ≥ 0.

Therefore, a nonzero w exists on condition that∥∥∥Σ− 1
2

z0 z̃f

∥∥∥
2

=
∥∥∥Σ− 1

2
z0 H̄f,sf̄s

∥∥∥
2
≥ κ(β) + ν(α0). (4.50)

It implies that, a deterministic fault f can be detected with FAR and MDR not larger

than α0 and β, respectively, on condition that (4.50) holds.

Hence, when no fault information is available, another alternative solution is to set a

so-called reference constant fault vector with f̄ = fref 6= 0, V[f] = 0 and then solve the FD

problem (4.46)–(4.47) for an optimal w∗. In this context, any fault with the magnitude of

mean larger than fref can be detected with probability not smaller than 1− β for given

FAR no larger than α0. Besides, the value of fref for expected α0, β can be determined

according to (4.50).
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4.4 Summary and notes

4.4 Summary and notes

In this chapter, an improved DIO approach has been developed for the design of data-driven

FD systems achieving a minimum MDR for a given FAR. By constructing the residual

generator using process I/O data, the FD issue subject to distributional ambiguity has

been formulated as an SP problem with DCCs. Then an equivalent DIO representation of

the targeting FD problem has been derived. It has been further proven that the formulated

DIO problem can be addressed by solving a generalized eigenvalue-eigenvector problem.

An analytical solution has thus been achieved by means of an SVD. Moreover, the existence

condition of the optimal solution has been studied. In comparison with the DIO method

in Chapter 3, a tighter upper bound of MDR for an identical FAR can be achieved with a

lower computational cost. In the end, alternative solutions to the improved DIO approach

aided FD in the situations of inaccessible fault information and deterministic faults have

been discussed.
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5 Matrix-valued DIO approaches to FD systems
design

In Chapters 3 and 4, vector-valued DIO approaches have been studied to cope with

data-driven FD issues for stochastic dynamic processes, in which the fault is considered to

be in a certain mode with features of mean and covariance matrix of residual. Despite the

achieved results, the following concerns arising from the perspective of practical application

are worth mentioning.

� The introduced parameter vector is designed such that the residual signal is mostly

sensitive to the concerned fault mode. In practice, however, the underlying fault in

the monitored process is generally unpredictable in advance that a poor MDR might

be delivered when a fault occurs deflecting the concerned fault in the offline design

stage in type, direction and magnitude, etc.

� In engineering applications, historical process I/O data in some faulty scenarios might

be merely accessible, which results in unreliable moments information of residual in

faulty cases.

For the first consideration, one natural remedy is to apply a bank of parameter vectors to

generate a group of residual generators and each of them is designed to be sensitive to

a certain kind of fault pattern, see, e.g., [74, 89]. Nevertheless, this exhaustive strategy

might cause a higher FAR on the one hand and, cannot cope well with the faults without

reliable moments knowledge on the other hand, as mentioned in the second point.

For the above observations, in this chapter matrix-valued solutions to the DIO scheme

aided design of FD systems are developed both for the cases of available and unavailable

prior knowledge of faults. With the introduction of a parameter matrix rather than a

vector to a data-driven residual generator, the design of FD systems is first formulated as

an SP problem with DCCs in the context of minimizing the MDR for a prescribed FAR.

Concerning available knowledge of faults in different modes, three configurations of FD

systems, named the multivector-valued solution, the WC-CVaR aided solution and the

optimal matrix-valued solution, are developed with respect to solving the targeting SP

problem by means of SDP. Successively, without fault information, the matrix-valued DIO

solutions to the design of FD systems are investigated.
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5.1 Problem formulation

On the basis of generating the signal z(k) ∈ Rγ with (3.3) using process I/O data, we

introduce a parameter matrix W ∈ Rγ×η and construct the residual generator in the

following form

r(k) = WTz(k) (5.1)

where r(k) ∈ Rη is the residual vector, W 6= 0. Followed by residual generation, a residual

evaluation function J(r) and a threshold Jth should be determined such that the occurrence

of a fault can be detected by performingJ(r) > Jth ⇒ fault alarm

J(r) ≤ Jth ⇒ no alarm.
(5.2)

Oriented by the requirement of satisfactory FD performance, we consider to design the

matrix W, residual evaluation function J(r) and threshold Jth towards minimizing the

MDR for a given FAR. Disregarding perfect distributions for noises and faults, we refer to

ambiguity sets P0 in (3.17) and Pf in (3.18) and formulate the design of FD system as

min
W6=0, J(r), Jth

β (5.3)

s.t.


sup
Pz∈P0

Pr {J(r) > Jth} ≤ α0

sup
Pz∈Pf

Pr {J(r) ≤ Jth} ≤ β
(5.4)

where α0 ∈ (0, 1) is a given upper bound of FAR, β ∈ (0, 1) is the upper bound of MDR.

It is remarkable that, when the fault f(k) is known in prior of certain mode with features

of mean and covariance matrix, vector-valued solutions of W with η = 1 to the problem

(5.3)–(5.4) have been given in Chapters 3 and 4, while a higher MDR might be delivered

when a fault occurs in other pattern during online FD. The parameter matrix W with

η > 1 is adopted for this reason, which allows more freedom of design of FD systems

towards a lower MDR.

Hence, the main objectives of this chapter are to address design issues of FD systems

with respect to

� solving the FD problem (5.3)–(5.4) with known fault information, the key of which

lies in handling the DCCs (5.4) without precise distributional information of noises

and faults and

� dealing with the FD problem (5.3)–(5.4) without prior knowledge of fault.
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5.2 Multivector-valued design

5.2 Multivector-valued design

Despite the unpredictable knowledge of faults in practice, the engineer can usually design

FD systems to detect some possible faults in different patterns such that the most of

the underlying faults can be detected with high probability. Keeping this in mind, a

multivector-valued solution to the FD problem (5.3)–(5.4) is first investigated below.

5.2.1 System configuration

Without loss of generality, we parametrize the fault mode with the features of mean and

covariance matrix. Denote by fi(k) the fault signal in i-th faulty scenario and

zfi(k) = z(k)
∣∣
fi(k)6=0 , i = 1, 2, . . . , M

where M is the number of the concerned fault patterns. Let f̄is = E[fis], Σfis = V[fis] with

fis(k) = fs(k)|f(k)=fi(k). The mean and covariance matrix of zfi(k) are obtained as

z̄fi = E[zfi ] = z̄0 + H̄f,sf̄is, Σzfi
= V[zfi ] = Σz0 + H̄f,sΣfisH̄

T
f,s.

Let Pfi be the probability of the occurrence of i-th fault. It holds

Pfi ∈ [0, 1], i = 1, 2, . . . , M,
M∑
i=1

Pfi = 1.

In case of unavailable prior knowledge of Pfi , we can generally set Pfi = 1
M

. Given known

z̄fi , Σzfi
, we introduce a family of confidence sets of Pz for M faulty cases as follows

Pfi =
{
Pz ∈ L

∣∣∣ E[z] = z̄fi , V[z] = Σzfi
∈ Sγ+

}
, i = 1, 2, . . . , M (5.5)

and redefine the ambiguity set in faulty cases as a set of Pfi , i.e.,

Pf =
M⋃
i=1

Pfi , Pr {Pz ∈ Pfi} = Pfi , i = 1, 2, . . . , M. (5.6)

On this basis, we rewrite the matrix W in a column-wised form with η = M , i.e.,

W =
[

w1 w2 · · · wM

]
∈ Rγ×M (5.7)

where wi ∈ Rγ is termed the i-th parameter vector. The residual signal in (5.1) is then

obtained as

r(k) =


r1(k)

r2(k)
...

rM(k)

 , ri(k) = wT
i z(k), i = 1, 2, . . . , M. (5.8)
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5 Matrix-valued DIO approaches to FD systems design

In this context, the design of matrix W is formulated as the design of a bank of parameter

vectors wi, i = 1, 2, ...,M . Let

r̄i,0 = wT
i z̄0, i = 1, 2, . . . , M. (5.9)

Define the residual evaluation functions and thresholds as follows

J(ri) = (ri(k)− r̄i,0)2, Jth,i = bi, i = 1, 2, . . . , M (5.10)

where bi > 0. The following decision logic is then used for FD{
∃i, J(ri) > Jth,i ⇒ fault alarm

∀i, J(ri) ≤ Jth,i ⇒ no alarm.
(5.11)

In this formulation, the FD system is actually divided into a bank of subsystems in

terms of wi, bi, i = 1, 2, . . . M , see the diagram in Fig. 5.1. Analogy to the Definitions

2.47 and 2.48, we define the FAR and MDR with respect to i-th fault mode respectively by

PFARi = Pr{J(ri) > Jth,i |f(k) = 0} (5.12)

PMDRi = Pr{J(ri) ≤ Jth,i |fi(k) 6= 0}. (5.13)

By substituting (5.9) into (5.10), the design of wi, , bi for i-th FD subsystem regarding

the ambiguity set Pfi is formulated as follows

min
wi 6=0, bi>0

βi (5.14)

s.t.


sup
Pz∈P0

Pr
{

(wT
i (z− z̄0))2 > bi

}
≤ α0

sup
Pz∈Pfi

Pr
{

(wT
i (z− z̄0))2 ≤ bi

}
≤ βi

(5.15)

where α0 ∈ (0, 1) is the prescribed upper bound of PFARi , βi ∈ (0, 1) is the upper bound

of PMDRi . Clearly, the formulation (5.14)–(5.15) searches for the optimal wi, bi towards

minimizing the i-th MDR for a given FAR not larger than α0. In this regard, the original

FD problem (5.3)–(5.4) with respect to matrix W is reformulated as solving a bank of

vector-valued problems in form of (5.14)–(5.15) with i = 1, 2, . . . , M separately.

5.2.2 Optimal solution

Note that the magnitude of ‖wi‖2 , bi would not influence the optimal solution of problem

(5.14)–(5.15). Then, we set bi = 1, i = 1, 2, . . . , M . According to Theorems 4.4 and 4.5,
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Figure 5.1: Diagram of multivector-valued configuration of FD systems.

the problem (5.14)–(5.15) is equally re-written as the following DIO form

min
wi 6=0

βi (5.16)

s.t.


ν(α0)

√
wT
i Σz0wi ≤ 1√

wT
i z̃fi z̃

T
fi

wi − κ(βi)
√

wTΣzfi
wi ≥ 1.

(5.17)

where ν(α0) =
√

1/α0, κ(βi) =
√

(1− βi)/βi, z̃fi = z̄fi − z̄0.

As presented in Section 4.2.2, an analytical solution to (5.16)–(5.17) can be achieved by

means of SVD, as presented in Theorem 4.6. Let Σ̃i = z̃fi z̃
T
fi
− ν2(α0)Σz0 . Do an SVD on

Σ
1
2
zfi

, i.e., Σ
1
2
zfi

= Ui [Si 0] VT
i , UiU

T
i = I, ViV

T
i = I. Let

w̃i = UiS
−1
i vi (5.18)

with vi solving the following equations

vTi (λm,iI− S−1
i UT

i Σ̃iUiS
−1
i )vi = 0, vTi vi = 1 (5.19)

where λm,i = λmax

{
S−1
i UT

i Σ̃iUiS
−1
i

}
. The optimal solutions of wi, βi to the problem
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5 Matrix-valued DIO approaches to FD systems design

(5.16)–(5.17) are then obtained as follows

wi =
w̃i

ν(α0)
√

w̃T
i Σz0w̃i

, κ(βi) =

√
wT
i z̃fi z̃

T
fi

wi − 1√
wT
i Σzfi

wi

, βi =
1

1 + κ2(βi)
. (5.20)

For online realization purpose, the residual vector is generated with (5.8) and then

FD is carried out by performing (5.10) and (5.11) with Jth,i = 1, i = 1, 2, . . . , M . The

algorithm for the multivector-valued solution to FD problem (5.3)–(5.4) is summarized in

Algorithm 5.2.9.

Remark 5.1. As mentioned in Section 4.2.3, an appropriate α0 should be set to guarantee

the existence of the optimal solution to the problem (5.16)–(5.17) with i = 1, 2, . . . , M .

To this end, denote by αl0,i the lower bound of α0 for the i-th faulty case. Recalling (4.35),

we then have

αl0,i =
1

z̃TfiΣ
−1
z0

z̃fi
. (5.21)

The value of α0 is thus selected satisfying

α0 ∈ (αl0,max, 1), αl0,max = max
i=1, 2, ...,M

{αl0,i}. (5.22)

5.2.3 Worst-case FAR and MDR

It is notable that the upper bounds of FAR and MDR for each FD subsystem are tight

with respect to the corresponding ambiguity set Pfi , as proven in Chapter 4. Since these

subsystems are designed separately, it is necessary to discuss the worst-case FAR and

MDR criteria of the FD system regarding Pf =
M⋃
i=1

Pfi .

Algorithm 5.2.9 Multivector-valued configuration of FD systems

Offline design

1: Estimate z̄0,Σz0 , z̄fi ,Σzfi
, i = 1, 2, ...,Musing process I/O data and compute αl0,i with

(5.21). Set α0 satisfying (5.22).

2: For i = 1, 2, ...M , solve (5.19) for w̃i and compute wi, βi and r̄i,0 with (5.20) and

(5.9), respectively.

Online FD

1: Compute ri(k) and J(ri) for i = 1, 2, ...M with (5.8) and (5.10), respectively.

2: Perform decision logic (5.11) to detect the occurrence of a fault.
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5.2 Multivector-valued design

According to Definitions 2.47 and 2.48, the FAR and MDR of the multivector-valued

FD system can be written as follows

PFAR = Pr {∃i, J(ri) > Jth,i |f(k) = 0} (5.23)

PMDR = Pr {∀i, J(ri) ≤ Jth,i |f(k) 6= 0} . (5.24)

Note from the Bonferroni inequality that

sup
Pz∈P0

Pr {∃i, J(ri) > Jth,i} = sup
Pz∈P0

Pr

{
M⋃
i=1

{J(ri) > Jth,i}

}

≤
M∑
i=1

sup
Pz∈P0

Pr {J(ri) > Jth,i}

≤Mα0. (5.25)

It implies that the worst-case FAR of the FD system is Mα0, i.e., PFAR ≤Mα0.

For the MDR criterion, we recall the ambiguity set Pf defined in (5.6) and note that

sup
Pz∈Pf

Pr {∀i, J(ri) ≤ Jth,i} = 1− inf
Pz∈Pf

Pr {∃i, J(ri) > Jth,i}

= 1−

(
1− min

i=1, 2, ...,M

{
sup

Pz∈Pfi
Pr {J(ri) ≤ Jth,i}

})
= min

i=1, 2, ...,M
{βi} (5.26)

which shows that the MDR of the FD system is obtained satisfying PMDR ≤ min
i=1, 2, ...,M

{βi}.
From the viewpoint of FD performance evaluation, it should be pointed out that

the values Mα0 and min
i=1, 2, ...,M

{βi} are the worst-case upper bounds of FAR and MDR,

respectively, which sometimes are too pessimistic in practical applications. To alleviate

this deficiency, the so-called average FAR and MDR criteria are introduced as follows

P̄FAR =
1

M

M∑
i=1

PFARi , P̄MDR =
M∑
i=1

PMDRiPfi . (5.27)

In this fashion, the average FAR and MDR of the multivector-valued FD system satisfy

P̄FAR ≤ α0, P̄MDR ≤
M∑
i=1

βiPfi . (5.28)

Together with (5.21) and (5.25), it is remarkable that, the upper bound of PFARi , i.e.,

α0 in (5.4), should be set satisfying α0 ∈ (αl0,max,
1
M

] with αl0,max given in (5.22) because

of PFAR ∈ [0, 1]. This fact implies that the upper bound of the feasible interval of α0 gets
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5 Matrix-valued DIO approaches to FD systems design

smaller with the increase of the number of fault modes. For this reason, on the one hand,

the existence condition of the optimal solution to problem (5.16)–(5.17) might not be

ensured when ∃i, αl0,i > 1
M

. On the other hand, a much higher MDR would be delivered

when a prescribed FAR smaller than 1
M

is given. For these concerns, the multivector-valued

configuration with respect to solving the problem (5.16)–(5.17) is not a good choice to

handle design issues of FD systems regarding solving the problem (5.3)–(5.4).

5.3 Worst-case CVaR aided design

To achieve tighter upper bounds of FAR and MDR of the multivector-valued FD system,

a WC-CVaR aided solution to (5.3)–(5.4) is proposed in this part.

5.3.1 System configuration

Recalling the column-wised matrix W in (5.7) and the definitions of PFARi in (5.12) and

PMDRi in (5.13), we define the following residual evaluation function and threshold

J(r) = max
i=1, 2, ...,M

J(ri), Jth = b (5.29)

where b > 0, J(ri) is given in (5.10). In this setting, the FD problem (5.3)–(5.4) with

decision logic (5.2) is re-written as follows

min
wi 6=0, i=1, 2, ...,M, b>0

β (5.30)

s.t.


sup
Pz∈P0

Pr {J(r) > b} ≤ α0

sup
Pz∈Pf

Pr {J(r) ≤ b} ≤ β.
(5.31)

Given bi = b, i = 1, 2, . . . , M , it clearly holds

J(r) > b ⇔ max
i=1, 2, ...,M

J(ri) > b ⇒ ∃i, J(ri) > bi

J(r) ≤ b ⇔ max
i=1, 2, ...,M

J(ri) ≤ b ⇒ ∀i, J(ri) ≤ bi

which reveals that the formulation (5.30)–(5.31) allows an integrated design of the parameter

vectors wi, i = 1, 2, . . . , M and the threshold in the context of minimizing the MDR for

a prescribed FAR. The diagram of the FD system is sketched in Fig. 5.2.

Note that the key of solving the FD problem (5.30)–(5.31) lies in dealing with the DCCs

(5.31), which is notoriously difficult. Thanks to the arising efforts on the study of the

connection between DCC and WC-CVaR condition [78, 15, 94, 29, 10], below we endeavor

to cope with the DCCs (5.31) with WC-CVaR approximations in the probabilistic context

such that the problem (5.30)–(5.31) can be handled with SDP.
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Figure 5.2: Diagram of WC-CVaR aided configuration of FD systems.

5.3.2 Optimal solution

Given J(ri) in (5.10), we start with introducing the following functions

Li(ri) = J(ri)− b, i = 1, 2, . . . , M. (5.32)

Let z̃ = z− z̄0, Qi = wiw
T
i . By substituting (5.10) into (5.32), it follows

Li(ri) = Li(z̃) = z̃TQiz̃− b, i = 1, 2, . . . , M. (5.33)

Define a function L(z̃) over z̃ in the following form

L(z̃) = max
i=1, 2, ...,M

Li(z̃). (5.34)

For Qi ∈ Sγ+ and the convexity of Li(z̃), i = 1, 2, . . . , M , the function L(z̃) is convex over

z̃. The DCCs in (5.31) therefore satisfy

sup
Pz∈P0

Pr {J(r) > b} ≤ α0 ⇔ inf
Pz∈P0

Pr {L(z̃) ≤ 0} ≥ 1− α0 (5.35)

sup
Pz∈Pf

Pr {J(r) ≤ b} ≤ β ⇔ inf
Pz∈Pf

Pr {L(z̃) ≥ 0} ≥ 1− β. (5.36)

Towards deterministic representations of DCCs in (5.35)–(5.36), the following theorem

according to the results in [93] is first recalled, which suggests a tractable WC-CVaR

approximation of a DCC.

Theorem 5.1. ([93] Theorem 3.2) Given ξ ∈ Rn, strictly positive parameters εi ∈ A =

{ε : ε > 0} and

Li(ξ) = ξTEiξ + 2eTi ξ + e0
i (5.37)
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5 Matrix-valued DIO approaches to FD systems design

with Ei ∈ Sn+, e0
i ∈ R, i = 1, 2, ..., M , define a loss function

Lε(ξ) = max
i=1, 2, ...,M

εiLi(ξ). (5.38)

For fixed εi, it holds

sup
Pξ∈P

P− CVaRρ (Lε(ξ)) ≤ 0 ⇒ inf
Pξ∈P

Pr {Li(ξ) ≤ 0, ∀i = 1, 2, ...,M} ≥ 1− ρ.

Note that max
i=1, 2, ...,M

Li(z̃) ≤ 0 means Li(z̃) ≤ 0, ∀i = 1, 2, ...,M . According to Theorem

5.1, The DCCs in (5.35) can be substituted by

sup
Pz∈P0

P− CVaRα0 (L(z̃)) ≤ 0. (5.39)

Moreover, it has been proven in [76] that a WC-CVaR condition can be described as an

SDP, as demonstrated in the following theorem.

Theorem 5.2. [76] Using the notations in 4.2, given ξ ∈ Rn, Mξ in (4.5) and a loss

function (5.38) with Li(ξ) in (5.37), the WC-CVaR is equivalent to a tractable SDP, i.e,

sup
Pξ∈P

P− CVaRρ (Lε(ξ)) = inf
η,K

η +
1

ρ
Tr (MξK)

s.t. K ∈ Sn+1
+ , η ∈ R (5.40)

K−

[
εiEi εiei

εie
T
i εie

0
i − η

]
� 0, ∀i = 1, 2, . . . , M. (5.41)

Theorem 5.2 allows an SDP representation of WC-CVaR condition (5.39) with εi = 1.

Let z̃0 = z̃|f=0 and Ωz̃0 be the second-order moment matrix of z̃0. Due to E[z̃0] = 0,

V[z̃0] = Σz0 , we have

Ωz̃0 =

[
Σz0 0

0 1

]
. (5.42)

The WC-CVaR condition (5.39) thus can be equally re-written as following SDP constraints
K0 ∈ Sγ+1

+ , Qi ∈ Sγ+, η ∈ R, b > 0

η + 1
α0

Tr (Ωz̃0K0) ≤ 0, K0 −

 Qi 0

0 −b− η

 � 0, ∀i = 1, 2, . . . , M.
(5.43)

Remark 5.2. It is notable that Theorem 4.2 is the result of Theorem 5.1 with M = 1.
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Remark 5.3. The constraint in (5.43) that equals to (5.39), is a sufficient condition of

(5.35). More specifically, for ε with entries εi ∈ A, given the following sets of Qi,

J1(ε) = {Qi ∈ Sγ+ |constraints in (5.43)}

J2(ε) =

{
Qi ∈ Sγ+

∣∣∣∣ sup
Pz∈P

P− CVaRα0 (L(z̃)) ≤ 0

}
J3(ε) =

{
Qi ∈ Sγ+

∣∣∣∣ inf
Pz∈P

Pr {Li(z̃) ≤ 0, ∀i = 1, 2, ...,M} ≥ 1− α0

}
it then holds J1(ε) = J2(ε) ⊆ J3(ε).

Next, we devote to dealing with the DCC in (5.36). The following lemma is referred.

Lemma 5.1. [9] Let S ∈ Rn be any Borel measurable set (which is not necessarily convex),

and define the worst-case probability π as

π = sup
Pξ∈P

Pr {ξ ∈ S} (5.44)

where P is the set of Pξ with mean ξ̄ and covariance matrix Σ ∈ Sn+. It then holds

π = inf
K

{
Tr(MξK) : K ∈ Sn+1

+ ,
[
ξT 1

]
K
[
ξT 1

]T ≥ 1, ∀ξ ∈ S
}

(5.45)

According to Lemma 5.1, we have the following theorem.

Theorem 5.3. Using the notations in Theorem 5.1, for fixed εi ∈ A, the condition

sup
Pξ∈P

Pr {Lε(ξ) ≤ 0} ≤ ρ (5.46)

can be substituted by the following SDP
K ∈ Sn+1

+ , τi ≥ 0

Tr(MξK) ≤ ρ, [K− diag(0, 1)] +
M∑
i=1

τi

 εiEi εiei

εie
T
i εie

0
i

 � 0.
(5.47)

Proof. Define a set for random vector ξ by S = {ξ ∈ Rn |Lε(ξ) ≤ 0}. we have

π = sup
Pξ∈P

Pr {ξ ∈ S} = sup
Pξ∈P

Pr {εiLi(ξ) ≤ 0, ∀i = 1, 2, . . . , M} .

Note that ∀ξ ∈ S it holds

εiLi(ξ) =
[
ξT 1

] [ εiEi εiei

εie
T
i εie

0
i

] [
ξT 1

]T ≤ 0, ∀i = 1, 2, . . . , M.
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Let ς =
[
ξT 1

]
. The constraints in π, according to Lemma 5.1, are reformulated as follows

K ∈ Sn+1
+ , ς [K− diag(0, 1)] ςT ≥ 0, ς

[
εiEi εiei

εie
T
i εie

0
i

]
ςT ≤ 0,∀i = 1, 2, . . . , M

for fixed εi ∈ A, which, by using the S-lemma, can be rewritten as

∃τi ≥ 0, [K− diag(0, 1)] +
M∑
i=1

τi

[
εiEi εiei

εie
T
i εie

0
i

]
� 0.

The condition π, therefore, is equally represented by

π = inf
K

Tr(MξK)

s.t. K ∈ Sn+1
+ , τi ≥ 0, [K− diag(0, 1)] +

M∑
i=1

τi

[
εiEi εiei

εie
T
i εie

0
i

]
� 0

In this context, π ≤ ρ can be substituted by (5.47). The proof is completed.

It is remarkable that Theorem 5.3 provides an SDP formulation of a DCC in form of

(5.43), in which one ambiguity set with fixed mean and covariance matrix is taken into

consideration. In DCC (5.36), a family of ambiguity sets Pfj ∈ Pf , j = 1, 2, ..., M are

concerned and the results in Theorem 5.3 cannot be applied directly. For this reason, we

first consider a single fault mode with respect to ambiguity set Pfj . Let

Ωz̃j =

[
Σzfj

+ ¯̃zj ¯̃z
T
j

¯̃zTj
¯̃zTj 1

]
, ¯̃zj = z̄fj − z̄0 = H̄f,sf̄js. (5.48)

It yields according to Theorem 5.3 that

sup
Pz∈Pfj

Pr {L(z̃) ≤ 0} ≤ β

⇔


Kj ∈ Sγ+1

+ , τji ≥ 0, i = 1, 2, . . . , M

Tr(Ωz̃jKj) ≤ β, [Kj − diag(0, 1)] +
M∑
i=1

τji

 Qi 0

0 −b

 � 0.
(5.49)

Moreover, ∀Pfj ∈ Pf , j = 1, 2, ...,M , we note that

sup
Pz∈Pf

Pr {L(z̃) ≤ 0} ≤ β ⇔ max
Pfj∈Pf , j=1,2,...,M

{
sup

Pz∈Pfj
Pr {L(z̃) ≤ 0}

}
≤ β

⇔ sup
Pz∈Pfj

Pr {L(z̃) ≤ 0} ≤ β, ∀j = 1, 2, ...,M.
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5.3 Worst-case CVaR aided design

Similar to (5.49), it is intuitive that the DCC in (5.36) can be substituted by
Kj ∈ Sγ+1

+ , τji ≥ 0, Tr(Ωz̃jKj) ≤ β

[Kj − diag(0, 1)] +
M∑
i=1

τji

 Qi 0

0 −b

 � 0, ∀i, j = 1, 2, ...,M.
(5.50)

Now the DCCs in (5.35) and (5.36) have been represented by SDP constraints, i.e.,

(5.38) and (5.50). On this basis, the FD problem (5.30)–(5.31) can be addressed by solving

the following SDP problem

min
K0,b,η,Qi,Kj ,i=1,2,...,M

β (5.51)

s.t.



K0 ∈ Sγ+1
+ , Qi ∈ Sγ+, η ∈ R, b > 0, Kj ∈ Sγ+1

+ , τji ≥ 0

η + 1
α0

Tr (Ωz̃0K0) ≤ 0, K0 −

 Qi 0

0 −b− η

 � 0

Tr(Ωz̃jKj) ≤ β, [Kj − diag(0, 1)] +
M∑
i=1

τji

Qi 0

0 −b

�0, ∀i, j = 1, 2, ...,M.

(5.52)

Numerical solution of this problem can be obtained by using the toolboxes such as CVX,

OPTI and YALMIP [1], etc.

Because the magnitudes of Qi, b will not influence the optimal solution of the problem

(5.51)–(5.52), we can usually set b = 1. By solving this problem for β, Qi, i = 1, 2, ...,M ,

the residual evaluation function and and threshold in (5.29) can then be applied for online

FD by using the decision logic (5.2). In this context, the FAR of the FD system is achieved

not larger than α0 and MDR not greater than β. The design and real-time implementation

of WC-CVaR aided FD systems is demonstrated in Algorithm 5.3.10.

Until now, design issues of FD systems in terms of parameter matrix W are addressed

by designing a bank of parameter vectors wi, i = 1, 2, ..., M in a separated manner, i.e.,

(5.16)–(5.17), or in an integrated manner, i.e., (5.51)–(5.52).

Remark 5.4. In comparison with the results obtained in Section 5.2, the formulation

(5.51)–(5.52) delivers a much lower bound of MDR for an identical FAR, and vice versa.

More specifically, denote by Dse the set of W that is constructed by separately solving each

entry wi satisfying (5.15) and Dwc the set of W guaranteeing (5.52), i.e.,

Jse(α0) =
{
W ∈ Rγ×M | wi satisfying (5.15) with i = 1, 2, ..., M

}
Jwc(α0) =

{
W ∈ Rγ×M ∣∣ wiw

T
i = Qi, i = 1, 2, ..., M, with Qi satisfying (5.52)

}
Given fixed α0, it holds Jwc(α0) ⊆ Jse(α0).
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Algorithm 5.3.10 WC-CVaR aided configuration of FD systems

Offline design

1: Estimate z̄0, Σz0 , z̄fi , Σzfi
, i = 1, 2, . . . , M using process I/O data.

2: Solve the SDP problem (5.51)–(5.52) for Qi, i = 1, 2, . . . , M, β, b.

Online FD

1: At time step k, compute z(k) with (3.3) using process I/O data.

2: Construct the residual evaluation function J(r) with (5.29) and (5.10).

3: Perform decision logic (5.2) for FD.

Remark 5.5. It is worth mentioning that the distribution independent conditions (3.27)

in Chapter 3 are in essential the closed-forms of SDPs (5.38) and (5.50) as special cases

with the quadratic items being zero. A detailed proof is referred to [9].

5.4 Optimal matrix-valued design

In terms of residual generator (5.1), a 2-norm based residual evaluation function is defined

in the following form

J(r) = ‖r(k)− r̄0‖2
2 (5.53)

where r̄0 = WT z̄0. Remembering z̃ = z− z̄0, it then follows from (5.53) that

J(r) =
∥∥WT z̃(k)

∥∥2

2
. (5.54)

By without loss of generality setting Jth = 1 and using the decision logic (5.2), the FD

problem (5.3)–(5.4) with respect to Pf in (5.6) is then reformulated as follows

min
W 6=0

β (5.55)

s.t.


sup
Pz∈P0

Pr
{∥∥WT z̃

∥∥2

2
> 1
}
≤ α0

sup
Pz∈Pf

Pr
{∥∥WT z̃

∥∥2

2
≤ 1
}
≤ β

(5.56)

which provides an integrated design of parameter matrix W, FAR and MDR criteria. The

configuration of this optimal matrix-valued FD system is illustrated in Fig. 5.3.

5.4.1 Optimal solution

In order to solve the problem (5.55)–(5.56), a quadratic function of z̃ is defined as follows

L(z̃) = z̃TPz̃− 1 (5.57)
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Figure 5.3: Diagram of optimal matrix-valued configuration of FD systems.

where P = WWT ∈ Sγ+. Then the first DCC in (5.56) yields

sup
Pz∈P0

Pr
{∥∥WT z̃

∥∥2

2
> 1
}

= sup
Pz∈P0

Pr {L(z̃) > 0} ≤ α0

⇔ inf
Pz∈P0

Pr {L(z̃) ≤ 0} ≥ 1− α0. (5.58)

Referring to Theorems 4.1 and 4.2, we have

Eq. (5.58)⇔ sup
Pz∈P0

Pz–CVaRα0(L(z̃)) = −1 +
1

α0

Tr(Σz0P) ≤ 0. (5.59)

For the second DCC in (5.56), it follows from Theorem 5.3 that

sup
Pz∈Pf

Pr
{∥∥WT z̃

∥∥2

2
≤ 1
}

= max
j=1, 2, ...,M

{
inf

Kj ,τj
Tr(Ωz̃jKj)

}
s.t. Kj ∈ Sγ+1

+ , τj ≥ 0, Kj +

[
τjP 0

0 −1− τj

]
� 0

where Ωz̃j is given in (5.48). An SDP representation of the second DCC in (5.56) is then

achieved as

Kj ∈ Sγ+1
+ , τj ≥ 0, Tr(Ωz̃jKj) ≤ β, Kj+

[
τjP 0

0 −1− τj

]
� 0, ∀j = 1, 2, . . . , M. (5.60)

Due to (5.59) and (5.60), the FD problem (5.55)–(5.56) is thus re-written as follows

min
P,Kj ,τj ,j=1, 2, ...,M

β (5.61)

s.t.



Kj ∈ Sγ+1
+ , P ∈ Sγ+, τj ≥ 0

Tr(Σz0P) ≤ α0, Tr(Ωz̃jKj) ≤ β

Kj +

 τjP 0

0 −1− τj

 � 0, ∀j = 1, 2, . . . , M.

(5.62)
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By solving (5.61)–(5.62) for P, β, an optimal solution to W can be obtained as

W = P
1
2 . (5.63)

In this regard, the FAR and MDR are achieved not larger than α0 and β, respectively.

The configuration of this optimal matrix-valued FD systems is given in Algorithm 5.4.11.

So far, three DIO configurations of FD systems have been drawn with respect to solving

the problem (5.3)–(5.4). For the achieved results, the following two additional remarks are

worth mentioning.

� It is observed from (5.10), (5.29) and (5.54) that, the value of residual evaluation

functions get larger with the increase of the magnitude of fault fi(k), which implies

a smaller MDR for a given FAR and fixed threshold. In this sense, the value of f̄is (

or z̄fi in ambiguity set Pfi) can be regarded as a reference mean of the i-th fault

mode towards FD performance regarding FAR and MDR not poor than α0 and β,

respectively, likewise for the DIO methods in Chapters 3 and 4.

� Since the upper bounds of FAR and MDR are obtained with M groups of the

concerned faulty scenarios, i.e., Pf =
M⋃
i=1

Pfi , a fault with probability distribution

varying over the set Pf can then be detected with the above designed FD systems,

guaranteeing the MDR not greater than β and FAR not larger than α0.

For these facts, even though the mean and covariance matrix of residual in each faulty

scenario are considered to be constant, the developed FD systems can well handle the

faults with time-varying distribution profiles changing in mean and covariance matrix.

On the other hand, in the above discussion the fault mode is characterized by the

features of mean and covariance matrix and the information of most of possible fault

modes is required towards a lower MDR. As stated before, this kind of exhaustive handling

Algorithm 5.4.11 Optimal matrix-valued configuration of FD systems

Offline design

1: Estimate z̄0, Σz0 , z̄fi , Σzfi
, i = 1, 2, . . . , M using process I/O dtata.

2: Solve the problem (5.61)–(5.62) for P, β and determine W with (5.63).

3: Compute r̄0 = WT z̄0.

Online FD

1: At time step k, generate residual r(k) with (3.3) and (5.1) and compute residual

evaluation function J(r) with (5.53).

2: Perform decision logic (5.2) for FD.
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would involve high complexity for implementation in case that the number of fault class

and the dimension of residual signal are large. Furthermore, due to the scarcity of data

in faulty cases in practical applications, the intrinsic assumption of known mean and

covariance matrix of all fault modes is, to some extent, unrealistic. When a fault in new

mode occurs, the above developed DIO schemes may lead to a high MDR during online FD.

These shortcomings trigger direct matrix-valued solutions to the FD problem (5.3)–(5.4)

without knowledge of Pf , as discussed in the forthcoming section.

5.5 Matrix-valued solutions without fault information

Given ambiguity set P0 in (3.17), residual evaluation function (5.53) and threshold Jth = 1,

we begin with formulating the design of FD systems regarding matrix W as follows

max
W6=0

Tr(H̄T
f,sWWT H̄f,s) (5.64)

s.t. sup
Pz∈P0

Pr
{∥∥WT z̃

∥∥2

2
> 1
}
≤ α0. (5.65)

This formulation is posted towards minimizing the MDR for a given FAR not larger than

α0 despite no fault information is available. More detailedly, the DCC (5.65) clearly

restricts the FAR not larger than α0. With (5.65) ensured, it is observed from (5.54) that

the value of J(r) gets larger with the increase of the magnitude of Tr(H̄T
f,sWWT H̄f,s) for

certain f(k). In this context, the objective (5.64) delivers a minimum MDR.

Recall the notations P = WWT ∈ Sγ+, L(z̃) = z̃TPz̃− 1. The DCC (5.65), according

to Theorem 4.1, is then equally replaced with the following WC-CVaR condition

sup
Pz∈P0

P− CVaRα0 (L(z̃)) ≤ 0 (5.66)

which, due to Theorem 4.3, can be further substituted by the following condition

Tr(Σz0P) ≤ α0. (5.67)

The problem (5.64)–(5.65) is thus reformulated as the following SDP problem

max
P6=0

Tr(H̄T
f,sPH̄f,s) s.t. P ∈ Sγ+, Tr(Σz0P) ≤ α0. (5.68)

Though the simple form of (5.68), an analytical solution is difficult to achieve and the

orthogonality of the entries wi, i = 1, 2, . . . , γ is not specified.

To solve (5.68), let

H = H̄f,sH̄
T
f,s, W = εW̃ (5.69)
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5 Matrix-valued DIO approaches to FD systems design

with ε > 0. By specifying the orthogonality of the column entries of W with W̃TΣz0W̃ = I,

the FD problem (5.68) can be re-written as follows

max
W̃,ε>0

Tr(W̃THW̃) s.t. W̃TΣz0W̃ = I, ε2γ ≤ α0. (5.70)

Note that Tr(WTΣz0W) = α0 holds at the optimum of (5.68). Since if the inequality holds,

a larger Tr(H̄T
f,sPH̄f,s) can always be found with respect to P. In this sense, ε =

√
α0

γ

holds in (5.70). And then the solution to (5.70) is obtained by solving the following

generatized eigenvalue-eigenvector problem [63]

max
W̃,ε>0

Tr(W̃THW̃) s.t. W̃TΣz0W̃ = I. (5.71)

Do an SVD on Σ
1
2
z0 , i.e., Σ

1
2
z0 = Ū[S̄ 0]ṼT . Let

w̃i = ŪS̄−1v̄i (5.72)

with v̄i solving the following equations

v̄Ti (λ̃m,iI− S̄−1ŪTHŪS̄−1)v̄i = 0, v̄Ti v̄i = 1 (5.73)

where λ̃m,i is the i-th largest eigenvalue of S̄−1ŪTHŪS̄−1. Then, the optimal solution of

W̃ = [w̃1 w̃2 . . . , w̃γ] to (5.70) is obtained. Thus, the matrix W is achieved with

W =

√
α0

γ
W̃. (5.74)

The orthogonality of the column vectors of W is surely satisfied. Remembering that a

vector-valued solution with η = 1 has been presented in Section 4.3.1, in this case the

optimal solutions to (5.70) and (5.71) are identical. It could be verified that the solution

can also be derived using Lagrangian multiplier method.

More generally, we post the constraint W̃TW̃ = I to the FD problem (5.68) to specify

the orthogonality of the entries of W. The problem (5.68) is then reformulated as follows

max
W̃TW̃=I

Tr(W̃THW̃)

Tr(W̃TΣz0W̃)
. (5.75)

with ε =
√
α0/Tr(W̃Σz0W̃

T ) guaranteeing Tr(WΣz0W
T ) = α0 at the optimum.

For a global optimal solution to the problem (5.75), various iterative algorithms have

been reported, see, e.g., [44, 77, 35]. Here we used the so-called iterative trace ratio (ITR)

algorithm presented in [77], as summarized in Algorithm 5.5.12. The convergence of this

algorithm and its theoretical background have been studied in [44]. After W̃ is achieved,

the global optimal W is then obtained as W = εW̃.
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5.5 Matrix-valued solutions without fault information

Algorithm 5.5.12 Iterative trace ratio method for solving (5.75)

1: Let Σu
z0

= ŪTΣz0Ū, Hu = ŪTHŪ, δ > 0 be a smaller scalar.

2: Initialize Φ0 as an arbitrary columnly orthogonal matrix.

3: Perform the following steps until ‖Φn −Φn−1‖2 ≤ ηδ:

� Compute the trace ratio value θn from the projection matrix Φn−1, i.e.,

θn =
Tr((Φn−1)THuΦn−1)

Tr((Φn−1)TΣu
z0

Φn−1)

� Solve the trace difference problem

Φn = arg max
ΦTΦ=I

Tr(ΦT (Hu − θnΣu
z0

)Φ)

using generalized eigenvalue decomposition, i.e., Φn = [φ1, φ2, . . . , φη] with φi

solving (Hu − θnΣu
z0

)φi = τni φi, τ
n
i is the i-th largest eigenvalue of Hu − θnΣu

z0
.

� Set Σφ
z0

= Φn(Φn)TΣu
z0

Φn(Φn)T . Do SVD as Σφ
z0

= ΦnΛn(Φn)T for Φn. Set

n+ 1→ n.

4: Return W̃ = Φn.

Algorithm 5.5.13 Design and implementation of the FD system without fault information

Offline design

1: Collect process I/O data to identify the matrices Ψ⊥s . Construct the residual generator

(3.3) and estimate z̄0 and Σz0 using process I/O data in fault-free case.

2: Solve the problem (5.75) for W̃ by using Algorithm 5.5.12 (or solving the SDP problem

(5.70), using the solutions (5.74)).

3: Set W = εW̃. Let r̄0 = WT z̄0.

Online FD

1: Compute residual sequence r(k) using (3.3) and (5.1).

2: Compute residual evaluation function J(r) with (5.53).

3: Detect the occurrence of a fault with decision logic (5.2).

Because of the orthogonality of the column vectors of W, rank(W) = γ holds in

the solutions (5.74) and (5.75). In this context, the parity space of residual generator

specified by Ψ⊥y,s has been parameterized by a bank of orthogonal vectors and a fault with

appropriate nonzero magnitude can be mostly detected.

For online FD purpose, the residual sequence r(k) at time step k is first generated using

(3.3) and (5.1). Then the residual evaluation is carried out to detect the occurrence of a
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5 Matrix-valued DIO approaches to FD systems design

fault by performing (5.53) and (5.2). The offline design and real-time realization of the

FD system without fault information is given in Algorithm 5.5.13.

Remark 5.6. It is worth noting that the assumption of known matrix H̄f,s is without loss

of generality under consideration of actuator and sensor faults. When actuator faults are

concerned, we have Bf = B and Df = D and then H̄f,s = Ψ⊥y,sHu,s = Ψ⊥u,s can be identified

using process I/O data. When sensor faults are concerned, it holds Bf = 0, Df = I. Then

the matrix Hf,s can be constructed in form of (2.15) and H̄f,s is thus available. When no

information of the H̄f,s is available, it is without loss of generality to set H̄f,sH̄
T
f,s = I.

5.6 Summary and notes

In this chapter, matrix-valued DIO approaches have been developed for the data-driven

design of FD systems. Regarding a family of faults characterized by the features of

mean and covariance matrix, a parameter matrix has been introduced to the data-driven

construction of residual generator. In the context of minimizing the MDR for a prescribed

FAR, the design of FD systems has been formulated as an SP problem with DCCs and three

DIO solutions have been proposed, namely the multivector-valued design, the WC-CVaR

aided design and the optimal matrix-valued design. Additionally, under consideration of

inaccessible fault knowledge, matrix-valued solutions without fault information have also

been investigated.
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6 Performance analysis of FD systems under
moments uncertainties

In Chapters 3–5, design issues of data-driven FD systems have been addressed using

DIO approaches, achieving a minimum MDR for a prescribed FAR without specific

distribution assumptions on noises and faults. Performance analysis of data-driven FD

systems is another important topic that has not gained enough attention yet [24, 46, 52].

As demonstrated before, the mean-covariance based ambiguity sets are introduced to

characterize the distribution knowledge of noises and faults so as to obtain DIO formulations

of the FD problems. In this context, the first-layer robustness of FD systems against

the distributional ambiguity has been well handled, assuming known precise means and

covariance matrices. In practice, however, the mean and covariance matrix of residual are

estimated from process I/O data and the estimation errors in them are inevitable due

primarily to the finite number of samples, especially in faulty scenarios. On account of

this, the derived FAR and MDR criteria are undoubtedly credible with the probability

smaller than one. These observations stimulate the necessity of performance analysis of

distribution independent FD systems against the moments uncertainties in the probabilistic

context, which is termed the second-layer robustness study.

This chapter focuses on the performance assessment of FD systems designed using DIO

approaches under moments uncertainties. At first, the mean-covariance based ambiguity

sets plagued by the norm-bounded and box-type moments uncertainties are established.

On this basis, the robustness of FD systems demonstrated in Chapters 3–5 is studied

quantitatively. The upper bounds of FAR and MDR in the worst-case setting are derived

correspondingly. Moreover, the confidence levels of the derived FAR and MDR criteria are

investigated in the probabilistic context by establishing analytical relationships between

the sample numbers and the estimation errors.

6.1 Problem formulation

Recall the I/O data model (2.14) as presented in Chapter 2, i.e.,[
ys(k)

us(k)

]
= Ψs

[
x(k − s)

us(k)

]
+

[
Hf,sfs(k) + Hω,sωs(k) + υs(k)

0

]
. (6.1)
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6 Performance analysis of FD systems under moments uncertainties

For FD purpose, a data-driven construction of residual generator is given below

z(k) = Ψ⊥s

[
ys(k)

us(k)

]
(6.2)

r(k) = WTz(k) (6.3)

where r(k) ∈ Rη, W ∈ Rγ×η, η ≥ 1. When η = 1, r(k) and W reduce to r(k) ∈ R and

w ∈ Rγ , respectively. By determining the residual evaluation function J(r) and threshold

Jth appropriately, the occurrence of a fault is then detected by usingJ(r) > Jth ⇒ fault alarm

J(r) ≤ Jth ⇒ no alarm.
(6.4)

As presented previously, W, J(r), Jth have been addressed using DIO approaches with

respect to the mean-covariance based ambiguity sets P0 and Pf , wherein the true values

of means and covariance matrices, i.e., z̄0, Σz0 and z̄f , Σzf , are assumed to be known

exactly. In practical applications, unfortunately, we can only obtain the empirical estimates

of them based on process I/O data. This leads to the uncertainties in P0, Pf due to

the estimation errors. To be more specific, denote by ˆ̄z0, Σ̂z0 , ˆ̄zf , Σ̂zf the empirical

estimates of z̄0, Σz0 , z̄f , Σzf , respectively. By constructing sample sets S0 = {z0(i)}N0

i=1

and Sf = {zf (i)}
Nf
i=1 with (6.2) respectively using process I/O data in fault-free and faulty

cases, then, over S0 and Sf , we have

ˆ̄z0 =
1

N0

N0∑
i=1

z0(i), Σ̂z0 =
1

N0

N0∑
i=1

(z0(i)− ˆ̄z0)(z0(i)− ˆ̄z0)T (6.5)

ˆ̄zf =
1

Nf

Nf∑
i=1

zf (i), Σ̂zf =
1

Nf

Nf∑
i=1

(zf (i)− ˆ̄zf )(zf (i)− ˆ̄zf )
T . (6.6)

Because of the finite sample numbersN0, Nf , the estimation uncertainties are inevitable and

nonnegligible especially for small N0, Nf . Let ∆z̄0 , ∆Σz0
, ∆z̄f , ∆Σzf

be the uncertainties

in means z̄0, z̄f and covariance matrices Σz0 , Σzf , respectively, and model

z̄0 = ˆ̄z0 + ∆z̄0 , Σz0 = Σ̂z0 + ∆Σz0
(6.7)

z̄f = ˆ̄zf + ∆z̄f , Σzf = Σ̂zf + ∆Σzf
. (6.8)

Denote by P0,∆0 , Pf,∆f
the ambiguity sets under moments uncertainties with ∆0 =

{∆z̄0 , ∆Σz0
}, ∆f = {∆z̄f , ∆Σzf

}. Then, with respect to P0,∆0 , Pf,∆f
, the FD problem
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towards minimizing the MDR for a given FAR is formulated as follows

min
W6=0, J(r), Jth

βrob (6.9)

s.t.


sup

Pz∈P0,∆0

Pr {J(r) > Jth} ≤ αrob0

sup
Pz∈Pf,∆f

Pr {J(r) ≤ Jth} ≤ βrob
(6.10)

where αrob0 ∈ (0, 1) is a given upper bound of FAR, βrob ∈ (0, 1) the upper bound of MDR

under moments uncertainties ∆0 and ∆f .

Considering ∆0 6= 0, ∆f 6= 0 in practical applications, main attention of this chapter is

thus focused on the performance evaluation of the distribution independent FD systems

demonstrated in Chapters 3–5 under moments uncertainties. The problems are specifically

formulated as follows, i.e., given ambiguity sets P0,∆0 , Pf,∆f
,

� solve the problem (6.9)–(6.10) for vector-valued solution w, with residual evaluation

function J(r) = | wTz(k)| and threshold Jth = b.

� Solve the problem (6.9)–(6.10) for vector-valued solution w with residual evaluation

function J(r) = ( wT (z(k)− z̄0))2 and threshold Jth = 1.

� Solve the problem (6.9)–(6.10) for matrix-valued solutions W with the residual

evaluation function J(r) given in forms of (5.10), (5.29) and (5.53) and threshold

Jth = 1, respectively.

� Assess the derived FAR and MDR performance under moments uncertainties in the

probabilistic context and exploit the confidence levels of them.

6.2 Ambiguity sets modeling under moments uncertainties

To cope with the formulated problems, we start by modeling the ambiguity sets P0,∆0 , Pf,∆f

under norm-bounded and box-type moments uncertainties.

6.2.1 Norm-bounded model

Consider the moments uncertainties ∆z̄0 , ∆z̄f , ∆Σz0
, ∆Σzf

being norm-bounded. The

ambiguity set P0,∆0 for fault-free case is modeled as follows

P0,∆0 (ε1, ε2) =


Pz ∈ L

∣∣∣∣∣∣∣∣∣∣∣

z ∈M0

E[z] = z̄0, V[z] = Σz0 ∈ Sγ+∥∥∥Σ− 1
2

z0 (z̄0 − ˆ̄z0)
∥∥∥

2
≤ ε1∥∥∥Σz0 − Σ̂z0

∥∥∥
F
≤ ε2


(6.11)
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whereM0 is the support of z0, L is the set of all valid distributions in space Rγ , ε1, ε2 ≥ 0,

ˆ̄z0, Σ̂z0 are empirical values of z̄0, Σz0 , as given in (6.5). Remarkably, the uncertainty

in mean is characterized by an ellipsoid of size ε1 centered at ˆ̄z0 and, the uncertainty in

covariance matrix is specified within a Frobenius-norm ball centered at Σ̂z0 with radius ε2.

Similarly, the ambiguity set Pf,∆f
for the faulty case is defined as follows

Pf,∆f
(ε3, ε4) =


Pz ∈ L

∣∣∣∣∣∣∣∣∣∣∣

z ∈Mf

E[z] = z̄f , V[z] = Σzf ∈ Sγ+∥∥∥Σ− 1
2

zf (z̄f − ˆ̄zf )
∥∥∥

2
≤ ε3∥∥∥Σzf − Σ̂zf

∥∥∥
F
≤ ε4


(6.12)

where Mf , ε3 ≥ 0, ε4 ≥ 0 have the same physical meanings with M0, ε1, ε2 in P0,∆0 ,

respectively. Analogously, the ambiguity sets for the concerned M faulty modes can be

established, i.e.,

Pfi,∆fi
(ε3,i, ε4,i) =


Pz ∈ L

∣∣∣∣∣∣∣∣∣∣∣

z ∈Mfi

E[z] = z̄fi , V[z] = Σzfi
∈ Sγ+∥∥∥Σ− 1

2
zfi

(z̄fi − ˆ̄zfi)
∥∥∥

2
≤ ε3,i∥∥∥Σzfi

− Σ̂zfi

∥∥∥
F
≤ ε4,i


(6.13)

where ε3,i, ε4,i ≥ 0, ∀, i = 1, 2, ..., M . In this sense, we define Pf,∆f
=

M⋃
i=1

Pfi,∆fi
.

Remark 6.1. Generally speaking, the uncertainties ∆z̄0 , ∆z̄f , ∆Σz0
, ∆Σzf

are considered

to be estimation errors caused by the limited number of samples and the probability

distribution being time-invariant, as shown in Fig. 6.1(a). Indeed, the uncertainties caused

by the identification errors in Ψ⊥s , the perturbations of working point and the drifts of the

distribution profile of noises and faults, etc., can also be modeled with P0,∆0 and Pf,∆f
,

as seen in Fig. 6.1(b). In this situation, the ˆ̄z0, ˆ̄zf , Σ̂z0 , Σ̂zf can be regarded as reference

means and covariance matrices.

6.2.2 Box-type model

By specifying the uncertainties ∆z̄0 , ∆z̄f , ∆Σz0
, ∆Σzf

in box-type, we model the ambiguity

set P0,∆0 in the following form

P0,∆0 (R0, τ1, τ2) =

Pz ∈ L

∣∣∣∣∣∣∣∣∣
E[z] = z̄0, V[z] = Σz0 ∈ Sγ+ (a)

(z− z̄0)T Σ−1
z0

(z− z̄0) ≤ R2
0 (b)

(z̄0 − ˆ̄z0)TΣ−1
z0

(z̄0 − ˆ̄z0) ≤ τ1 (c)

Σz0 � τ2Σ̂z0 (d)

 (6.14)
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Figure 6.1: Moments uncertainties: (a) caused by the estimation errors; (b) caused by

the modeling uncertainties.

where R0 ≥ 0 in (b) determines a ball that contains the entire support of z0 being with

the mean z̄0 and covariance matrix Σz0 . Conditions (c) and (d) give box-type measures of

uncertainties in mean z̄0 and covariance matrix Σz0 , respectively, with the introduction of

parameters τ1 ≥ 0, τ2 ≥ 1.

Similarly, the ambiguity set Pfi,∆fi
for the i-th fault mode is defined as follows

Pfi,∆fi
(Rfi , τ3,i, τ4,i) =

Pz ∈ L

∣∣∣∣∣∣∣∣∣∣
E[z] = z̄fi , V[z] = Σzfi

∈ Sγ+
(z− z̄fi)

T Σ−1
zfi

(z− z̄f ) ≤ R2
fi

(z̄fi − ˆ̄zfi)
TΣ−1

zfi
(z̄fi − ˆ̄zfi) ≤ τ3,i

Σzfi
� τ4,iΣ̂fi

 (6.15)

where Rfi > 0, τ3,i ≥ 0, τ4,i ≥ 1, i = 1, 2, ...M .

For ease of subsequent discussion, we denote by z̃c,0 = z0 − ˆ̄z0, z̃c,fi = zfi − ˆ̄z0 and

¯̃zc,0 = z̄0 − ˆ̄z0, ¯̃zc,fi = z̄fi − ˆ̄z0, i = 1, 2, ...,M.

The second-order moment matrices of z̃c,0 and z̃c,fi are given as

Ωz̃c,0 =

[
Σz0 + ¯̃zc,0¯̃zTc,0 ¯̃zc,0

¯̃zTc,0 1

]
, Ωz̃c,fi

=

[
Σzfi

+ ¯̃zc,fi ¯̃z
T
c,fi

¯̃zc,fi
¯̃zTc,fi 1

]
(6.16)

Note from (c) in (6.14) that

[
Σz0

¯̃zc,0
¯̃zTc,0 τ1

]
� 0, ¯̃zc,0¯̃zTc,0 − τ1Σz0 � 0. Let

Ωz̃c,0 =

[
(2 + τ1)τ2Σ̂z0 0

0 1 + τ1

]
. (6.17)
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Then, together with (d), we have

Ωz̃c,0 −Ωz̃c,0 =

[
(2 + τ1)τ2Σ̂z0 −Σz0 − ¯̃zc,0¯̃zTc,0 −¯̃zc,0

−¯̃zTc,0 τ1

]
� 0.

This is obtained by noting that Π = (2 + τ1)τ2Σ̂z0 − Σz0 − ¯̃zc,0¯̃zTc,0 = 2τ2Σ̂z0 − Σz0 +

τ1τ2Σ̂z0 − ¯̃zc,0¯̃zTc,0 � Σz0 + τ1Σz0 − ¯̃zc,0¯̃zTc,0 � Σz0 and τ1Π− ¯̃zc,0¯̃zTc,0 � τ1Σz0 − ¯̃zc,0¯̃zTc,0 � 0.

It thus clearly holds, with respect to the ambiguity set (6.14),

0 � Ωz̃c,0 � Ωz̃c,0 . (6.18)

Analogically, given ambiguity set Pfi,∆fi
in (6.15) we also have

0 � Ωz̃c,fi
� Ωz̃c,fi

(6.19)

for i = 1, 2, ..., M with

Ωz̃c,fi
=

[
(2 + τ3,i)τ4,iΣ̂zfi

+ (ˆ̄zfi − ˆ̄z0)(ˆ̄zfi − ˆ̄z0)T ˆ̄zfi − ˆ̄z0

(ˆ̄zfi − ˆ̄z0)T 1 + τ3,i

]
. (6.20)

It is remarkable that (6.18) and (6.19) determine box-type uncertainties in the second-order

moment matrices Ωz̃c,0 and Ωz̃cfi
, respectively, in terms of the so-called upper bounds

Ωz̃c,0 and Ωz̃cfi
and zero lower bounds.

6.3 Robustness analysis of the FD systems

Regarding the above modeled ambiguity sets, the robustness of the FD systems designed

with respect to addressing the problem (6.9)–(6.10) is investigated in this section.

6.3.1 DIO method aided robust FD

Remember that, using the following residual evaluation function and threshold

J(r) = |wTz(k)|, Jth = b

the design of FD systems has been addressed by solving the problem (3.13)–(3.14) with

known precise means and covariance matrices of residuals both in fault-free and faulty

cases, as demonstrated in Chapter 3. When the uncertainties in means and covariance

matrices specified in P0,∆0(ε1, ε2), Pf,∆f
(ε3, ε4) are concerned, the FD problem (6.9)–(6.10)
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6.3 Robustness analysis of the FD systems

is then handled by solving

min
w6=0, b>0

βrob (6.21)

s.t.


sup

Pz∈P0,∆0
(ε1, ε2)

Pr
{
wTz > b

}
≤ αrob0

2

sup
Pz∈Pf,∆f (ε3, ε4)

Pr
{
wTz ≤ b

}
≤ βrob.

(6.22)

Aiming to cope with this problem, the following lemmas are firstly recalled to handle the

DCCs (6.22) in the probabilistic context.

Lemma 6.1. [53] Given ε > 0, w ∈ Rn, ξ̄0 ∈ Rn and matrix Σ ∈ Sn+, the optimal solution

of the problem

Q1(ξ̄) = min
ξ̄

wT ξ̄ s.t.
∥∥∥Σ− 1

2 (ξ̄ − ξ̄0)
∥∥∥

2
≤ ε

is achieved with ξ̄ = ξ̄0 − εΣw√
wTΣw

. At the optimum, it holds Q1(ξ̄) = wT ξ̄0 − ε
√

wTΣw.

Lemma 6.2. [53] Using the notations in Lemma 6.1, the optimal solution of the problem

Q2(Σ) = max
Σ

wTΣw s.t. ‖Σ−Σ0‖F ≤ ε

is achieved with Σ = Σ0 + εI. At the optimum, it holds Q2(Σ) = wT (Σ0 + εI) w.

According to Lemmas 6.1 and 6.2, it is obvious that, if

b−wT ˆ̄z0 ≥
(
κ̄(αrob0 ) + ε1

)√
wT (Σ̂z0 + ε2I)w (6.23)

holds with κ̄(αrob0 ) =
√

(2− αrob0 )/αrob0 , we then have

b−wT z̄0 ≥ κ̄(αrob0 )
√

wTΣz0w, ∀ (z̄0, Σz0) ∈

(z̄0, Σz0)

∣∣∣∣∣∣
∥∥∥Σ− 1

2
z0 (z̄0 − ˆ̄z0)

∥∥∥
2
≤ ε1∥∥∥Σz0 − Σ̂z0)

∥∥∥
F
≤ ε2


⇔ sup

Pz∈P0,∆0
(ε1, ε2)

Pr
{
wTz > b

}
≤ αrob0

2

which means the constraint (6.23) holding ensures the first condition in (6.22). Ditto for

the faulty case, a deterministic substitution of the second DCC in (6.22) can be obtained,

as summarized in the following theorem.

Theorem 6.1. Given P0,∆0(ε1, ε2) in (6.11) and Pf,∆f
(ε3, ε4) in (6.12), the first DCC in

(6.22) holds if

b−wT ˆ̄z0 ≥
(
κ̄(αrob0 ) + ε1

)√
wT (Σ̂z0 + ε2I)w. (6.24)

Let κ(βrob) =
√

(1− βrob)/βrob, the second DCC in (6.22) holds if

− b+ wT ˆ̄zf ≥
(
κ(βrob) + ε3

)√
wT (Σ̂zf + ε4I)w. (6.25)
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6 Performance analysis of FD systems under moments uncertainties

According to Theorem 6.1, the problem (6.21)–(6.22) is converted into the following RO

problem

min
w 6=0, b>0

βrob s.t. (6.24) and (6.25) (6.26)

which can be further re-written as follows

min
w

1−
(
κ̄(αrob0 ) + ε1

)√
wT (Σ̂z0 + ε2I)w√

wT (Σ̂zf + ε4I)w
s.t. wT (ˆ̄zf − ˆ̄z0) = 1. (6.27)

It is noteworthy that this problem can be solved with Algorithm 3.2.5. The optimal

solutions of w, b, βrob to (6.26) are then obtained as

κ(βrob) =
1−

(
κ̄(αrob0 ) + ε1

)√
wT (Σ̂z0 + ε2 I)w√

wT (Σ̂zf + ε4 I)w
− ε3 (6.28)

βrob =
1

1 + κ2(βrob)
(6.29)

b = wT ˆ̄z0 +
(
κ̄(αrob0 ) + ε1

)√
wT (Σ̂z0 + ε2I)w

= wT ˆ̄zf − (κ(βrob) + ε3)
√

wT (Σ̂zf + ε4 I)w (6.30)

In this context, the worst-case FAR and MDR under moments uncertainties are obtained

satisfying PFAR ≤ αrob0 , PMDR ≤ βrob.

To gain a deeper interpretation of the robust optimal solutions (6.28)–(6.30), we make

a comparison of them with the ones obtained without moments uncertainties, i.e., (3.35)–

(3.37) given in Section 3.3, and have the following observations.

� For an identical upper bound of FAR α0, it holds

βrob ≥ β (6.31)

because κ(βrob) ≤ κ(β) and κ(βrob), κ(β) have the opposite monotonicity with

βrob, β, respectively. It implies, the uncertainties in means and covariance matrices

would give rise to the increase of MDR on the one hand and, on the other hand, admits

a good robustness against the uncertainties might be caused by the perturbations of

operating point, distribution drifts of noises and faults and estimation errors, etc.

� The FD problem (6.27) has the same form of the problem (3.34) with the item

κ̄(αrob0 ) + ε1 in place of κ̄(α0). In this context, consider κ̄(αrob0 ) + ε1 = κ̄(α0). Then

αrob0 =
2

1 + (κ̄(α0)− ε1)2 , α
rob
0 ≥ α0. (6.32)
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6.3 Robustness analysis of the FD systems

It implies that the worst-case FAR gets larger due to the moments uncertainties.

Meanwhile, because of κ̄(αrob0 ) > 0, it should hold κ̄(α0) > ε1, which means κ̄(α0)

suggests a tolerance bound of the uncertainties in mean z0 for given α0. This point

has also been mentioned in [53] from the perspective of classification.

6.3.2 Improved DIO method aided robust FD

In this part, we evaluate the robustness of the improved DIO method aided FD systems in

Chapter 4. To this end, consider the following residual evaluation function and threshold

J(r) = (wT (z(k)− ˆ̄z0))2, Jth = 1. (6.33)

The FD problem (6.9)–(6.10) with respect to (6.11) and (6.12) is then re-written as follows

min
w6=0

βrob (6.34)

s.t.


sup

Pz∈P0,∆0
(ε1, ε2)

Pr
{

(wT (z− ˆ̄z0))2 > 1
}
≤ αrob0

sup
Pz∈Pf,∆f (ε3, ε4)

Pr
{

(wT (z− ˆ̄z0))2 ≤ 1
}
≤ βrob.

(6.35)

To solve this problem, the following lemmas are given as corollaries of Theorem 6.1.

Lemma 6.3. Given ambiguity set P0,∆0(ε1, ε2) in (6.11), the first DCC in (6.35) holds if

(
ε1 + ν(αrob0 )

)√
wT (Σ̂z0 + ε2I)w ≤ 1 (6.36)

with ν(αrob0 ) =
√

1/αrob0 .

Proof. Without considering the uncertainties in mean and covariance matrix, it is known

form the Theorem 4.4 that the first DCC in (6.35) can be equally converted into

1−
√

wT (z̄0 − ˆ̄z0)(z̄0 − ˆ̄z0)Tw ≥ ν(αrob0 )
√

wTΣz0w (6.37)

It yields ν(αrob0 )
√

wTΣz0 w ≤ 1 on condition that z̄0 = ˆ̄z0, i.e., ε1 = 0 in P0,∆0 . Consider

the uncertainty in z̄0. Note that∥∥wT (z̄0 − ˆ̄z0)
∥∥

2
≤
∥∥∥wTΣ

1
2
z0

∥∥∥
2

∥∥∥Σ− 1
2

z0 (z̄0 − ˆ̄z0)
∥∥∥

2
≤ ε1

∥∥∥wTΣ
1
2
z0

∥∥∥
2
. (6.38)

Using the result in Lemma 6.2, we have

max
‖Σz0−Σ̂z0‖F≤ε2

wTΣz0w = wT (Σ̂z0 + ε2I)w. (6.39)
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6 Performance analysis of FD systems under moments uncertainties

Together with (6.37), (6.38) and (6.39), it is then derived that√
wT (z̄0 − ˆ̄z0)(z̄0 − ˆ̄z0)T w + ν(αrob0 )

√
wTΣz0w ≤ ε1

∥∥∥ wTΣ
1
2
z0

∥∥∥
2

+ ν(αrob0 )
∥∥∥ wTΣ

1
2
z0

∥∥∥
2

≤
(
ε1 + ν(αrob0 )

)√
wT (Σ̂z0 + ε2I)w.

Hence, if
(
ε1 + ν(αrob0 )

)√
wT (Σ̂z0 + ε2I)w ≤ 1 holds, then (6.37) holds true. The first

DCC in (6.35) can thus be substituted by constraint (6.36). The proof is completed.

Lemma 6.4. Given ambiguity set Pf,∆f
(ε3, ε4) in (6.12), the second DCC in (6.35) holds

if √
wT (ˆ̄zf − ˆ̄z0)(ˆ̄zf − ˆ̄z0)Tw− 1 ≥

(
κ(βrob) + ε3

)√
wT (Σ̂zf + ε4I)w (6.40)

holds with κ(βrob) =
√

(1− βrob)/βrob.

Proof. Under no moments uncertainties, it is derived from Theorem 4.5 that the second

DCC in (6.35) can be equally converted into√
wT (z̄f − ˆ̄z0)(z̄f − ˆ̄z0)Tw− 1 ≥ κ(βrob)

√
wTΣzfw. (6.41)

Let h = z̄f − ˆ̄z0, h0 = ˆ̄zf − ˆ̄z0. Then h− h0 = z̄f − ˆ̄zf . The uncertainty in h holds with∥∥∥Σ− 1
2

zf (h− h0)
∥∥∥

2
≤ ε3. Note that

min∥∥∥∥Σ
− 1

2
zf

(z̄f−ˆ̄zf )

∥∥∥∥
2

≤ε3

√
wT (z̄f − ˆ̄zf )(z̄f − ˆ̄zf )Tw = min∥∥∥∥Σ

− 1
2

zf
(h−h0)

∥∥∥∥
2

≤ε3

∥∥wTh
∥∥

2

=

√
wTh0h

T
0 w− ε3

√
wTΣzfw. (6.42)

The second equality is achieved by using Lagrangian multiplier method. Together with

(6.42) and the result in Lemma 6.2, we have, with respect to Pf,∆f
(ε3, ε4),√

wT (z̄f − ˆ̄z0)(z̄f − ˆ̄z0)Tw ≥
√

wT (ˆ̄zf − ˆ̄z0)(ˆ̄zf − ˆ̄z0)Tw− ε3
√

wTΣzfw√
wTΣzfw ≤

√
wT (Σ̂zf + ε4I)w.

It implies (6.40) holds ensuring (6.41). The second DCC in (6.35) can thus be substituted

by (6.40). The proof is completed.

According to Lemmas 6.3 and 6.4, the FD problem (6.34)–(6.35) is thus solved by

addressing

min
w6=0

βrob s.t. (6.36) and (6.40). (6.43)
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Let

C(w) =

√
wT (ˆ̄zf − ˆ̄z0)(ˆ̄zf − ˆ̄z0)Tw− (ε1 + ν(αrob0 ))

√
wT (Σ̂z0 + ε2I)w√

wT (Σ̂zf + ε4I)w
. (6.44)

The problem (6.43) is then re-written as follows

max
w 6=0

C(w) s.t. (ε1 + ν(αrob0 ))

√
wT (Σ̂z0 + ε2I)w = 1, C(w) > 0 (6.45)

which, according to Theorem 4.6, can be further converted into a generalized eigenvalue-

eigenvector problem

max
w6=0

wT Σ̃1w

wT Σ̃2w
(6.46)

where Σ̃1 = (ˆ̄zf − ˆ̄z0)(ˆ̄zf − ˆ̄z0)
T − (ε1 + ν(αrob0 ))2(Σ̂z0 + ε2I), Σ̃2 = Σ̂zf + ε4I. And then

the SVD technique is applied to solve (6.46) for an optimal w. The optimal solutions to

the problem (6.43) are then obtained as

κ(βrob) = C(w)− ε3, βrob =
1

1 + κ2(βrob)
. (6.47)

Similar to the case as discussed in Section 6.3.1, given α0, β the upper bounds of FAR

and MDR achieved by solving the problem (4.17)–(4.18), a larger MDR will be derived

due to the uncertainties in means and covariance matrices, i.e., βrob ≥ β. Simultaneously,

the worst-case FAR is achieved as

αrob0 =
1

(ν(α0)− ε1)2
, αrob0 ≥ α0. (6.48)

It means that the uncertainties in means z̄0, z̄f should be within the ellipsoids of size ε1

and ε3, respectively, such that ν(αrob0 ) > 0, κ(βrob) > 0.

Remark 6.2. Thanks to the discussion in Section 4.2.3, we can directly derive the existence

condition of the FD problem (6.43) under moments uncertainties as follows

αl,rob0 =
1

λ̄robm
(6.49)

where λ̄robm = (ˆ̄zf − ˆ̄z0)
T (Σ̂z0 + ε1I)

−1(ˆ̄zf − ˆ̄z0). Hence, the value of αrob0 should be set

satisfying αrob0 ∈ (αl,rob0 , 1) to guarantee a feasible solution to (6.43).

6.3.3 Matrix-valued robust FD

With respect to the box-type moments uncertainties, below we focus on the robust versions

of matrix-valued FD systems demonstrated in Chapter 5.
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6 Performance analysis of FD systems under moments uncertainties

Multivector-valued robust FD

Recall the multivector-valued configuration of FD systems with respect to solving a group

of problems (5.14)–(5.15) with i = 1, 2, ...,M . With ˆ̄z0 in place of z̄0 in (5.9), we define a

bank of residual evaluation functions and the threshold as follows

J(ri) = (wT
i (z(k)− ˆ̄z0))2, Jth = 1, i = 1, 2, ...,M. (6.50)

Given ambiguity sets P0,∆0(ε1, ε2) in (6.11) and Pfi,∆fi
(ε3,i, ε4,i) in (6.13), a robust

multivector-valued solution to the FD problem (6.9)–(6.10) is then achieved by separately

solving the following problems

min
wi 6=0

βrobi (6.51)

s.t.


sup

Pz∈P0,∆0
(ε1, ε2)

Pr
{

(wT
i (z− ˆ̄z0))2 > 1

}
≤ αrob0

sup
Pz∈Pfi,∆fi (ε3,i, ε4,i)

Pr
{

(wT
i (z− ˆ̄z0))2 ≤ 1

}
≤ βrobi

(6.52)

with i = 1, 2, . . . , M , where βrobi ∈ (0, 1) represents the upper bound of MDR for the

i-th fault mode under moments uncertainties. For the same form of (6.52) with (6.35), a

deterministic description of (6.51)–(6.52) is directly obtained as follows

min
wi 6=0

βrobi (6.53)

s.t.


(
ε1 + ν(αrob0 )

)√
wT
i (Σ̂z0 + ε2I)wi ≤ 1√

wT (ˆ̄zfi − ˆ̄z0)(ˆ̄zfi − ˆ̄z0)Twi − 1 ≥
(
κ(βrobi ) + ε3,i

)√
wT
i (Σ̂zfi

+ ε4,iI)wi

(6.54)

where κ(βrobi ) =
√

(1− βrobi )/βrobi . By means of Algorithm 4.2.7, the analytical optimal

solution of wi can then be obtained by means of SVD, and then

κ(βrobi ) = C(wi)− ε3,i, βrobi =
1

1 + κ2(βrobi )
(6.55)

where C(wi) is given in (6.44) with ˆ̄zfi , wi, ε4,i in place of ˆ̄zf , w, ε4, respectively.

As discussed in Section 5.2.3, the worst-case FAR and MDR with moments uncertainties

satisfy

PFAR ≤Mαrob0 , PMDR ≤ min
i=1, 2, ...,M

{βrobi } (6.56)

where αrob0 is given in (6.48). It is clear that the uncertainties in means and covariance

matrices would cause degradation of FD performance in terms of FAR and MDR, by

noting that αrob0 > α0 and βrobi > βi with α0, βi derived solving (4.17)–(4.18).
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Remark 6.3. Together with the conclusions in Remarks 5.1 and 6.2, the existence condition

of the multivector-valued FD problem under moments uncertainties is

αrob0 ∈ (αl,rob0,max, 1) (6.57)

where αl,rob0,max = max
i=1, 2, ...,M

{αl,rob0,i } with

αl,rob0,i =
1

λ̄robm,i
, λ̄robm,i = (ˆ̄zfi − ˆ̄z0)T (Σ̂z0 + ε1I)−1(ˆ̄zfi − ˆ̄z0). (6.58)

WC-CVaR aided robust FD

To study the robustness of the WC-CVaR aided FD with respect to solving the problem

(5.3), the following residual evaluation function and threshold are defined

J(r) = max
i=1, 2, ...,M

J(ri), Jth = b (6.59)

where J(ri) = (wT
i (z(k)− ˆ̄z0))2. Let Qi = wiw

T
i ∈ Sγ+ and

z̃c = z− ˆ̄z0. (6.60)

Define Li(z̃c) = J(ri)− b = z̃Tc Qiz̃c − b, i = 1, 2, . . . , M and a convex function

L(z̃c) = max
i=1, 2, ...,M

Li(z̃c). (6.61)

Regarding the box-type uncertainties specified in (6.14) and (6.15), the FD problem

(6.9)–(6.10) with the substitution of (6.59) and (6.61) is re-written as

min
Qi 6=0, i=1,2,...,M, b

βrob (6.62)

s.t.


sup

Pz∈P0,∆0
(R0, τ1, τ2)

Pr {L(z̃c) > 0} ≤ αrob0

sup
Pz∈Pf,∆f

Pr {L(z̃c) ≤ 0} ≤ βrob
(6.63)

where Pf,∆f
=

M⋃
i=1

Pfi,∆fi
(Rfi , τ3,i, τ4,i). The solution of this problem lies in handling the

DCCs (6.63). Due to the moments uncertainties, the extension of the results obtained in

Section 5.3.2 is unintuitive. Note that

sup
Pz∈P0,∆0

(R0, τ1, τ2)

Pr {L(z̃c) > 0} = sup
(z̄0,Σz0 )∈U0

sup
Pz∈P0

Pr {L(z̃c) > 0} ≤ αrob0 (6.64)

sup
Pz∈Pf,∆f

Pr {L(z̃c) ≤ 0} = sup
(z̄fi ,Σzfi

)∈Uf
sup
Pz∈Pf

Pr {L(z̃c) ≤ 0} ≤ βrob. (6.65)
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6 Performance analysis of FD systems under moments uncertainties

where P0, Pf are given in (3.17) and (5.6), respectively, U0 is the set of (z̄0,Σz0), i.e.,

U0 =

{
(z̄0,Σz0)

∣∣∣∣∣ (z̄0 − ˆ̄z0)TΣ−1
z0

(z̄0 − ˆ̄z0) ≤ τ1

Σz0 � τ2Σ̂0

}
(6.66)

and Uf =
M⋃
i=1

Ufi with

Ufi =

{
(z̄fi ,Σzfi

)

∣∣∣∣∣ (z̄fi − ˆ̄zfi)
TΣ−1

zfi
(z̄fi − ˆ̄zfi) ≤ τ3,i

Σzfi
� τ4,iΣ̂fi

}
. (6.67)

On this basis, the inner objectives in (6.64) and (6.65) can be handled with SDPs (5.40)

and (5.50), respectively, a detailed proof has been given in Section 5.3.2. Then the equation

(6.64) holds on condition that G0 ≤ 0 with

G0 = sup
(z̄0,Σz0 )∈U0

inf
η,K0

η +
1

αrob0

Tr
(
Ωzc,0K0

)
s.t. K0 ∈ Sγ+1

+ , η ∈ R, K0 −

[
Qi 0

0 −b− η

]
� 0, ∀i = 1, 2, . . . , M.

Recall the second-order moment matrix of z̃c in fault-free case, i.e., Ωz̃c,0 defined in

(6.16). Given (z̄0,Σz0) ∈ U0, a box-type confidence region of Ωz̃c,0 is given in (6.18), i.e.,

0 � Ωz̃c,0 � Ωz̃c,0 . In this context, the dual formulation of SDP G0, according to [61], is

obtained as follows

Gd0 = inf
η,K0,K0

η +
1

αrob0

Tr
(
Ωz̃c,0K0

)
(6.68)

s.t. K0 −K0 � 0, K0 � 0, K0 ∈ Sγ+1
+ , η ∈ R

K0 −

[
Qi 0

0 −b− η

]
� 0, ∀i = 1, 2, . . . , M. (6.69)

In this regard, the first DCC in (6.63) is then represented as Gd0 ≤ 0.

According to Theorem 5.3, the condition (6.65) is re-written as Gf ≤ βrob with

Gf = sup
(z̄fi ,Σzfi

)∈Uf
inf
Kfj

Tr(Ωz̃c,fj
Kfj)

s.t. Kfj ∈ Sγ+1
+ , τji ≥ 0[

Kfj − diag(0, 1)
]

+
M∑
i=1

τji

[
Qi 0

0 −b

]
� 0, ∀i, j = 1, 2, ...,M
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whose dual representation is then achieved as

Gdf = inf
Kfj

,Kfj

Tr(Ωz̃c,fj
Kfj) (6.70)

s.t. Kfj −Kfj � 0, Kfj � 0, Kfj ∈ Sγ+1
+ , τji ≥ 0[

Kfj − diag(0, 1)
]

+
M∑
i=1

τji

[
Qi 0

0 −b

]
� 0, ∀i, j = 1, 2, ...,M. (6.71)

Together with (6.68)–(6.69) and (6.70)–(6.71), the FD problem (6.62)–(6.63) can be

addressed by solving the following SDP problem

min
K0,K0,Kfj

,Kfj
,Qi,i=1,2,...,M,b,η

βrob (6.72)

s.t.



K0 −K0 � 0, K0 � 0, K0 ∈ Sγ+1
+ , Qi ∈ Sγ+, η ∈ R, b > 0

η + 1
αrob0

Tr
(
Ωz̃c,0K0

)
≤ 0, K0 −

 Qi 0

0 −b− η

 � 0

Kfj −Kfj � 0, Kfj � 0, Kfj ∈ Sγ+1
+ , τji ≥ 0, Tr(Ωz̃c,fj

Kfj) ≤ βrob[
Kfj − diag(0, 1)

]
+

M∑
i=1

τji

 Qi 0

0 −b

 � 0, ∀i, j = 1, 2, ...,M.

(6.73)

We term this formulation as the WC-CVaR aided robust FD problem, the solution of

which is not only independent from the distributions for noises and faults but also robust

over the uncertainties in means and covariance matrices of residuals both in fault-free and

the concerned faulty cases. After obtaining Qi, i = 1, 2, ...,M, b, online FD is then realized

by performing (6.59) and (6.4).

Matrix-valued robust optimal FD

By replacing r̄0 in (5.54) with ˆ̄r0 = WT ˆ̄z0, we define the residual evaluation function and

threshold as follows

J(r) =
∥∥r(k)− ˆ̄r0

∥∥2

2
, Jth = 1. (6.74)

With respect to the ambiguity sets P0,∆0(R0, τ1, τ2) and Pf,∆f
=

M⋃
i=1

Pfi,∆fi
(Rfi , τ3,i, τ4,i),

the FD problem (6.9)–(6.10) is re-written as follows

min
W6=0

βrob (6.75)

s.t.


sup

Pz∈P0,∆0
(R0, τ1,τ2)

Pr
{∥∥WT z̃c

∥∥2

2
> 1
}
≤ αrob0

sup
Pz∈Pf,∆f

Pr
{∥∥WT z̃c

∥∥2

2
≤ 1
}
≤ βrob.

(6.76)
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6 Performance analysis of FD systems under moments uncertainties

To solve this problem, we consider the following issues

sup
Pz∈P0,∆0

(R0, τ1,τ2)

Pr
{∥∥WT z̃c

∥∥2

2
> 1
}

= sup
(z̄0,Σz0 )∈U0

sup
Pz∈P0

Pr
{∥∥WT z̃c

∥∥2

2
> 1
}
≤ αrob0 (6.77)

sup
Pz∈Pf,∆f

Pr
{∥∥WT z̃c

∥∥2

2
≤ 1
}

= sup
(z̄fi ,Σzfi

)∈Uf
sup
Pz∈Pf

Pr
{∥∥WT z̃c

∥∥2

2
≤ 1
}
≤ βrob. (6.78)

Along the research line of last subsection, conditions (6.77) and (6.78) can be addressed

with dual SDPs. Let P = WWT . It is known from Theorems 4.1 that the inner objective

of (6.77) can be represented with an SDP, i.e., Ḡ0 ≤ 0 with

Ḡ0 = sup
(z̄0,Σz0 )∈U0

inf
η,K0

η +
1

αrob0

Tr(Ωz̃c,0K0)

s.t. K0 ∈ Sγ+1
+ , η ∈ R, K0 −

[
P 0

0 −η − 1

]
� 0

whose dual formulation is given as

Ḡd0 = inf
η,K0,K0

η +
1

αrob0

Tr(Ωz̃c,0K0)

s.t. K0 −K0 � 0, K0 � 0

K0 ∈ Sγ+1
+ , η ∈ R, K0 −

[
P 0

0 −η − 1

]
� 0.

Moreover, it follows from Theorem 5.3 that the condition (6.78) equals to Ḡfj ≤ βrob, ∀j =

1, 2, . . . , M with

Ḡfj = sup
(z̄fi ,Σzfi

)∈Ufj
inf

Kfj
,τj

Tr(Ωz̃c,fj
Kfj)

s.t. Kfj ∈ Sγ+1
+ , τj ∈ R, Kfj +

[
τjP 0

0 −1− τj

]
� 0.

Considering the dual form of Ḡfj , i.e.,

Ḡdfj = inf
Kfj

,Kfj
,τj

Tr(Ωz̃c,fj
Kfj)

s.t. Kfj −Kfj � 0, Kfj � 0

τj ∈ R, Kfj ∈ Sγ+1
+ , Kfj +

[
τjP 0

0 −1− τj

]
�0

the condition (6.77) is then represented with max
i=1,2,...,M

{Ḡfj} ≤ βrob, which means Ḡfj ≤

βrob, ∀j = 1, 2, . . . , M . The FD problem (6.75)–(6.76) is thus addressed by solving the
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6.4 Probabilistic evaluation

following SDP problem

min
P,K0,K0,η,Kfj

,Kfj
, τj , j=1,2,..,M

βrob (6.79)

s.t.



K0 −K0 � 0, K0 � 0, P ∈ Sγ+, K0 ∈ Sγ+1
+ , η ∈ R

η + 1
αrob0

Tr(Ωz̃c,0K0) ≤ 0, K0 −

 P 0

0 −η − 1

 � 0

Kfj −Kfj � 0, Kf � 0, Kfj ∈ Sγ+1
+ , τj ∈ R

Tr(Ωz̃c,fj
Kfj) ≤ βrob, Kfj +

 τjP 0

0 −1− τj

 � 0, ∀j = 1, 2, . . . , M.

(6.80)

As a special case of the matrix-valued optimal solution, the FD issue without fault

information has also been studied in Section 5.5, i.e., the FD problem (5.68). With the

uncertainties in z̄0, Σz0 concerned, the robustness of the solution to (5.68) is briefly studied

below.

With respect to the ambiguity set P0,∆0 (R0, τ1, τ2), the FD problem (5.65) subject to

moments uncertainties is formulated as follows

max
W 6=0

Tr(H̄T
f,sWWT H̄f,s) (6.81)

s.t. sup
Pz∈P0,∆0

(R0, τ1, τ2)

Pr
{∥∥WT z̃c

∥∥2

2
> 1
}
≤ αrob0 . (6.82)

Note that the DCC (6.82) can be re-written as an SDP problem Ḡd0 ≤ 0. The problem

(6.81)–(6.82) is then solved by addressing

max
P,K0,K0,η

Tr(H̄T
f,sPH̄f,s) (6.83)

s.t.


K0 −K0 � 0, K0 � 0, K0 ∈ Sγ+1

+ , P ∈ Sγ+, η ∈ R

η + 1
αrob0

Tr(Ωz̃c,0K0) ≤ 0, K0 −

 P 0

0 −η − 1

 � 0.
(6.84)

Remark 6.4. In the above discussion, the dual formulation of SDP plays a key role in

dealing with the DCCs subject to moments uncertainties. It is remarkable that the strong

duality is ensured when the bounds of the involved box-type second-order moment matrices

are feasible [61].

6.4 Probabilistic evaluation

Concerning the moments uncertainties being caused by the estimation errors, the pa-

rameters in ambiguity sets P0,∆0 , Pf,∆f
, i.e., ε1, ε2, ε3, ε4, R0, τ1, τ2, Rfi , τ3,i, τ4,i, thus
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6 Performance analysis of FD systems under moments uncertainties

highly depend upon the sample numbers of process I/O data. In this part, we tackle

the determination issue of these parameters, meanwhile, suggest confidence levels of the

achieved worst-case FAR and MDR criteria in the probabilistic context.

6.4.1 Parameters determination of ambiguity sets

The following lemma is recalled for the determination of parameters ε1, ε2, ε3, ε4 in

ambiguity sets P0,∆0 (ε1, ε2) in (6.11) and Pf,∆f
(ε3, ε4) in (6.12).

Lemma 6.5. [19] Let S = {ξ(i)}Ni=1 be a set of N identically independent distributed

(i.i.d) samples generated according to the probability distribution of ξ ∈ Rn. Given E[ξ] = ξ̄,

V[ξ] = Σ ∈ Sn+, ‖ξ‖2 ≤ R and δ ∈ (0, 1), if N ≥
(

2 +
√

2ln (2/δ)
)2

, then with probability

at least 1− δ over the choice of samples, we have∥∥∥Σ− 1
2 (ξ̄ − ˆ̄ξ)

∥∥∥
2
≤ µ1(δ),

∥∥∥Σ− Σ̂
∥∥∥
F
≤ µ2(δ)

holds with

µ1(δ) =
R√
N

(
2 +

√
2ln (1/δ)

)
, µ2(δ) =

2R2

√
N

(
2 +

√
2ln (2/δ)

)
(6.85)

where ˆ̄ξ, Σ̂ are the empirical estimate of ξ̄ and Σ over S, respectively.

Lemma 6.5 provides analytical relationships between the sample number and the norm

bounds of uncertainties in mean and covariance matrix. Given δ0, δf ∈ (0, 1), i.i.d sample

sets S0 = {z0(i)}N0

i=1 and Sf = {zf (i)}
Nf
i=1 with sample numbers N0, Nf satisfying

N0 ≥
(

2 +
√

2ln (2/δ0)
)2

, Nf ≥
(

2 +
√

2ln (2/δf )

)2

(6.86)

respectively, parameters ε1, ε2, ε3, ε4 are then obtained as

ε1 =
R0√
N0

(
2 +

√
2ln (1/δ0)

)
, ε2 =

2R2
0√
N0

(
2 +

√
2ln (2/δ0)

)
(6.87)

ε3 =
Rf√
Nf

(
2 +

√
2ln (1/δf )

)
, ε4 =

2R2
f√
Nf

(
2 +

√
2ln (2/δf )

)
. (6.88)

It clearly holds ε1, ε2 → 0 as N0 → ∞ and ε3, ε4 → 0 as Nf → ∞, which implies the

empirical estimates of mean and covariance matrix would approach their true values with

probability one as sample size goes to infinity.

Regarding the ambiguity sets P0,∆0 (R0, τ1, τ2) in (6.14) and Pfi,∆fi
(Rfi , τ3,i, τ4,i) in

(6.15) with box-type moments uncertainties, the following theorem is referred.
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6.4 Probabilistic evaluation

Theorem 6.2. [19] Using the notations in Lemma 6.5, denote by

R̂ = sup
ξ∈Mξ

∥∥∥Σ̂− 1
2 (ξ − ˆ̄ξ)

∥∥∥
2

(6.89)

with Mξ being the known support of ξ. For δ ∈ (0, 1), set δ̄ = 1−
√

1− δ, if

N > max
{
T1(δ̄, R̂), T2(δ̄, R̂)

}
(6.90)

holds with T1(δ̄, R̂) = (R̂2 + 2)2T 2(δ̄), T2(δ̄, R̂) = (8 +
√

32ln(4/δ̄))2/(
√
R̂ + 4− R̂)4,

T (δ̄) = 2 +
√

2ln(4/δ̄), then with probability greater than 1− δ, the constraints(
ξ − ξ̄

)T
Σ−1

(
ξ − ξ̄

)
≤ R2, (ˆ̄ξ − ξ̄)TΣ−1(ˆ̄ξ − ξ̄) ≤ ρ1, Σ � ρ2Σ̂

are satisfied by setting

ρ1 =
R̄2

N
(2 +

√
2ln(2/δ̄))2, ρ2 =

1

1− t
(
δ̄/4
)
− ρ1

(6.91)

where R̄ = R̂(1− (R̂2 + 2)T (δ̄)/
√
N)−

1
2 , R̂ is a sample-based approximation of R, t(δ̄/4) =

R̄2
√
N

(
√

1− n/R̄4 +
√

ln(4/δ̄)).

Theorem 6.2 suggests a probabilistic manner to determine the parameters R0, τ1, τ2,

Rfi , τ3,i, τ4,i regarding sample numbers N0, Nfi and confidence levels 1− δ0, 1− δfi .
It is remarkable that, with respect to Lemma 6.5 and Theorem 6.2, we can, on the one

hand, determine the confidence level of empirical estimates for a given sample number

and, on the other hand, compute the minimum sample number for a fixed confidence

level. In general, parameters ε1, ε2 in (6.11) and τ1, τ2 in (6.14) are computed by finding

a minimum N0 for a given acceptable 1 − δ0 aiming at saving computational expense

while without FD performance degradation. Differently, parameters ε3, ε4 in (6.12) and

Rfi , τ3,i, τ4,i in (6.15) and 1− δfi are computed for a given Nfi . This handling is required

for the fact that a large enough sample set of the residual signal in normal operation is

accessible while comparatively smaller sample sets in faulty cases are availiable in practice.

6.4.2 Confidence levels of FAR and MDR

Provided the quantitative evaluation of the estimation errors under certain confidence

levels, we can, together with the results in Section 6.3, intuitively evaluate the confidence

levels of the achieved FAR and MDR under moments uncertainties in the probabilistic

context, as stated in the following theorem.
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6 Performance analysis of FD systems under moments uncertainties

Theorem 6.3. Given δ0, δfi ∈ (0, 1), i = 1, 2, . . . M , empirical means ˆ̄z0, ˆ̄zfi and co-

variance matrices Σ̂z0 , Σ̂zfi
obtained over the i.i.d sample sets S0 = {z0(i)}N0

i=1 and

Sfi = {zf (i)}
Nfi
i=1, respectively, the FD systems designed by solving

(i) the problems (6.21)–(6.22) and (6.34)–(6.35), wherein the parameters ε1, ε2, ε3, ε4

are given in (6.87), (6.88) with sample numbers N0, Nf satisfying (6.86),

(ii) the multivector-valued FD problem (6.51)–(6.52), wherein Nfi , i = 1, 2, ...,M are

given satisfying (6.86) and the parameters ε3,i, ε4,i are determined with (6.88) and

(iii) the matrix-valued FD problems (6.51)–(6.52), (6.62)–(6.63) and (6.75)–(6.76),

wherein the sample numbers N0, Nfi are given satisfying (6.90) and parameters

R0, τ1, τ2, Rfi , τ3,i, τ4,i with i = 1, 2, ...M determined according to Theorem 6.3

can achieve the FAR not larger than αrob0 and the MDR not greater than βrob with confidence

levels not less than 1− δ0 and 1− δfi, respectively.

6.5 Summary and notes

In this chapter, performance assessment of the DIO methods aided data-driven FD systems

developed in Chapters 3–5 has been carried out under the estimation uncertainties in means

and covariance matrices. Ambiguity sets with norm-bounded and box-type uncertainties

have been first established to this end, with respect to which design issues of FD systems

have been formulated as distribution independent RO problems in terms of the empirical

means and covariance matrices of residuals. It has been theoretically proven that the

derived upper bounds of FAR and MDR get poor due to the moments uncertainties.

Moreover, quantitative confidence levels of the achieved FAR and MDR depending on the

sample numbers have been exploited in the probabilistic context.
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7 Benchmark study and real-time implementation

In this chapter, applications of the proposed FD methods in Chapters 3–6 to a laboratory

setup of three-tank system will be demonstrated. For this purpose, the process model

is first described. Then data-driven implementations of FD systems designed using

DIO approaches in Chapters 3–5 are illustrated, followed by quantitative performance

evaluation of the achieved FAR and MDR under moments uncertainties. The simulation

and experimental results are given to show the effectiveness of the methods.

7.1 Process description

A three-tank system consists of tanks, pipelines and pumps that are typically used in

chemical industry and thus serves as a popular benchmark example for process monitoring.

A laboratory setup of three-tank system considered here is TTS20, see Fig. 7.1(a). As

sketched in Fig. 7.1(b), the system consists of three water tanks that are connected

through pipes and two pumps. Pumps 1 and 2 pump water to tank 1 and tank 2 with

incoming mass flow rates Q1 and Q2, respectively. The water levels of the tanks, i.e.,

h1, h2, h3, are measured through sensors. With regard to the parameters in Table 7.1,

the dynamics of three-tank system is modeled as follows

Aḣ1 = Q1 −Q13, Aḣ2 = Q2 +Q32 −Q20, Aḣ3 = Q13 −Q32

where Qij is the mass flow from the ith tank to the jth tank with

Q13 = a1s13sgn(h1 − h3)
√

2g|h1 − h3|
Q32 = a3s23sgn(h3 − h2)

√
2g|h3 − h2|

Q20 = a2s0

√
2gh2

and s13 = s23 = s0 = sn. By choosing the incoming mass flow rates as system inputs, the

water levels the states and the sensor measurements the outputs, i.e.,

x =

 h1

h2

h3

 , u =

[
Q1

Q2

]
=

[
u1

u2

]
, y =

 h1

h2

h3


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Figure 7.1: Laboratory setup (a) and schematic diagram (b) of three-tank system TTS20.

Table 7.1: Parameters of three-tank system TTS20

Parameters Symbol Value Unit

Cross section area of tanks A 149 cm2

Cross section area of pipes sn 0.5 cm2

Maximal height of tanks Hmax 62 cm

Maximal flow rate of pump 1 Q1max 100 cm3/s

Maximal flow rate of pump 2 Q2max 100 cm3/s

Coefficient of flow for pipe 1 a1 0.45 /

Coefficient of flow for pipe 2 a2 0.60 /

Coefficient of flow for pipe 3 a3 0.45 /

the system model subject to process noise ω(t) and measurement noise υ(t) is then

described as follows ẋ(t) = φ (x(t)) + Bu(t) + ω(t)

y(t) = x(t) + υ(t)
(7.1)

where

B =


1
A

0

0 1
A

0 0

 , φ (x(t)) =


−a1s13sgn(h1−h3)

√
2g|h1−h3|

A

a3s23sgn(h3−h2)
√

2g|h3−h2|−a2s0
√

2gh2

A

a1s13sgn(h1−h3)
√

2g|h1−h3|−a3s23sgn(h3−h2)
√

2g|h3−h2|
A


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Controller
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Figure 7.2: Schematic block of the controller of three-tank system.

To guarantee the system operates steadily, PI controllers are applied in TTS20, as

presented in Fig. 7.2. The transfer functions of controllers 1 and 2 are as follows

C1(s) = Kp1 +
Ki1

s
, C2(s) = Kp2 +

Ki2

s

where Kp1 = Kp2 = 0.087, Ki1 = Ki2 = 0.001.

Typically, four kinds of faults are considered in three-tank systems, i.e.,

� Leakage faults fli , i = 1, 2, 3: additional mass flows out of tanks, i.e.,

fli = θli
√

2ghi, i = 1, 2, 3.

where θli , i = 1, 2, 3 are unknown parameters related to the size of leakage.

� Plugging faults fpi , i = 1, 2, 3: the changes in Q13, Q32, Q20 with

fp1 = θp1Q13, fp2 = θp2Q32, fp3 = θp3Q20

where θpi ∈ [−1, 0), i = 1, 2, 3 are parameters related to the plugging size.

� Actuator faults fai , i = 1, 2: the additive faults in input u.

� Sensor faults fsi , i = 1, 2, 3: the additive faults in output y.

It is remarkable that the leakage faults and plugging faults are component faults being

multiplicative from the viewpoint of modeling. In the fashion of data-driven FD, their

influence on the process can be regarded as additive without changing the system stability.
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Figure 7.3: Experimental input and output of three-tank system working around steady

point of h1 = 15cm, h2 = 10cm, h3 = 12.5cm.

By linearizing the nonlinear process (7.1) at a steady operating point, a linear discrete-

time model of three-tank system with stochastic noises and faults can be established as

follows x(k + 1) = Ax(k) + Bu(t) + Bf f(k) + ω(k)

y(k) = x(k) + Df f(k) + υ(k).

In the research line of data-driven FD, the system matrices and the distributional informa-

tion of noises and faults are considered to be unknown.

In the following discussion, we consider the system operates steadily around the point

of h1 = 15cm, h2 = 10cm, h3 = 12.5cm unless otherwise stated. The experimental inputs

and outputs in nominal situation are shown in Fig. 7.3 with sampling time Ts = 1s.

7.2 FD results using vector-valued DIO methods

In this part, the applicability of the proposed FD methods in Chapters 3–4 are demonstrated

through numeric simulation and experimental studies.

For verification purpose, three faulty cases listed in Table 7.2 are considered. It is

assumed that only one type of fault occurs at each time sampling step k, i.e., f =

[fl1 fl2 fp2 ]T = [f1 f2 f3]T and in i-th faulty case fi 6= 0, fj = 0, i 6= j, ∀i, j = 1, 2, 3.
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Table 7.2: Concerned fault modes of three-tank system

Fault mode Parameters

Faulty case 1 f1 = fl1 : 5% leakage of tank 1 θl1 = 0.05

Faulty case 2 f2 = fl2 : 7% leakage of tank 2 θl2 = 0.07

Faulty case 3 f3 = fp2 : 6% plugging of pipe S32 θp2 = −0.06

Around the above operating point, the experimental process I/O data in fault-free and

each faulty cases are collected.

As a common part of the DIO methods aided design of FD systems, a parity relation

based primary residual generator (3.3) should be constructed using process I/O data in

fault-free case. To this end, by setting s = 10, N = 1000, the matrix Ψ⊥s is then identified

with Algorithm 2.2.3. On this basis, the sample sets S0 = {z0(j)}N0

j=1 for fault-free case

and Sfi = {zfi(j)}
Nfi
j=1 for i-th faulty case with i = 1, 2, 3 are established, over which

the empirical means ˆ̄z0, ˆ̄zfi and covariance matrices Σ̂z0 , Σ̂zfi
with i = 1, 2, 3 are then

achieved with (6.5)–(6.6). Below, we first verify the effectiveness of the vector-valued DIO

methods for FD as presented in Chapters 3 and 4.

7.2.1 Real-time implementations

We temporally ignore the estimation errors in means and covariance matrices and assume

ˆ̄z0 = z̄0, Σ̂z0 = Σz0 , ˆ̄zfi = z̄fi , Σ̂zfi
= Σzfi

, i = 1, 2, 3. The upper bound of FAR is set as

α0 = 0.05. For the DIO method presented in Chapter 3, the FD problem (3.10)–(3.11) is

solved with Algorithm 3.2.5 for the optimal solutions of w, b, β. The results of b, β for

the concerned faulty cases are summarized in Table 7.3. To gain a deeper insight, the

Table 7.3: Experimental FD results using vector-valued DIO methods

Methods Faults β βrob b brob αl0 αl,rob0 α0 αrob0

f1 0.1506 0.3976 3.5660 3.8483 0.0136 0.0284 0.05 0.0883

DIO f2 0.1024 0.2338 3.5990 4.1713 0.0138 0.0245 0.05 0.0883

f3 0.1050 0.3163 2.8992 3.4021 0.0111 0.0367 0.05 0.0883

f1 0.0875 0.1516 b = 1 brob = 1 0.0136 0.0283 0.05 0.1206

Improved f2 0.0616 0.1872 b = 1 brob = 1 0.0138 0.0245 0.05 0.1206

DIO f3 0.0684 0.2989 b = 1 brob = 1 0.0112 0.0374 0.05 0.1206
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Figure 7.4: Evolutions of β over α0 ∈ [0.05, 0.95] by using the DIO method and the

improved DIO method.

evolutions of β over α0 ∈ [0.05, 0.95] for each faulty case are studied, as demonstrated in

Fig. 7.4. It is seen that the MDR gets smaller with the increase of FAR and the selection

of α0 = 0.05 can achieve an acceptable tradeoff between FAR and MDR.

For online FD, we inject each fault into the laboratory setup of three-tank system at

k = 500, the experimental FD results are demonstrated in Fig. 7.5 (a). As shown in Table

7.3 and Fig. 7.5 (a), good fault detectability is achieved by means of the DIO method

without known precise distribution knowledge of noises and faults.

For the improved DIO method given in Chapter 4, Algorithm 4.2.7 is applied to achieve

w, β for each faulty case. Firstly, the existence condition of the optimal solutions is first

checked, i.e., α0 ∈ (αl0, 1) with αl0 obtained using (4.35). By solving the FD problem

(4.17)–(4.18) by means of an SVD, the optimal solutions of w, β are then obtained. The

results of αl0 and β are given in Table 7.3 and the evolutions of β over α0 ∈ [0.05, 0.95]

for each faulty case are demonstrated in Fig. 7.4. In comparison with the results using

DIO method, a smaller upper bound of MDR can be achieved for an identical FAR, as

stated in Remark 4.1. For online FD purpose, we introduce each fault at k = 500. The

FD results are illustrated in Fig. 7.5 (b). We then see from Table 7.3 and Fig. 7.5 (b)

that, with the utilization of the improved DIO method, the concerned faults can be well

detected with a satisfactory MDR for a given FAR not larger than 0.05.

7.2.2 Performance evaluation

Under consideration of the estimation uncertainties in means and covariance matrices

caused by the limited sample numbers, robustness and confidence levels of the above
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Figure 7.5: FD results using (a) the DIO method and (b) the improved DIO method.

achieved FAR and MDR can be evaluated in the probabilistic context according to the

results in Chapter 6. For this purpose, we build a simulation platform of TTS20 in

Matlab/Simulink towards generating process I/O data in fault-free and faulty cases.

The process and measurement noises are simulated with random sequences keeping the

accordance of ˆ̄z0, Σ̂z0 , ˆ̄zfi , Σ̂zfi
with the ones in experiment study. On this basis, the

parameters ε1, ε2, ε3,i, ε4,i of ambiguity sets P0,∆0 in (6.11) and Pfi,∆fi
, i = 1, 2, 3 in (6.13)

are first determined according to Lemma 6.5.

Due to the commonly sufficient large I/O samples in fault-free case, we give the confidence

level of FAR being not less than 1− δ0 = 0.99 and determine a N0 satisfying (6.86). The

parameters ε1, ε2 are then computed with (6.87). For the faulty cases, we consider to

achieve an acceptable confidence level 1 − δfi of MDR for each faulty case with fixed

Nfi satisfying (6.86). The parameters ε3,i, ε4,i are obtained with (6.88). The results of

ε1, ε2 and δfi , ε3,i, ε4,i for the i-th faulty case are summarized in Table 7.4. With known

ε1, ε2, ε3,i, ε4,i, the performance of FAR and MDR under moments uncertainties, i.e.,

αrob0 , βrob, are thus achieved with (6.32), (6.29) for the DIO method and (6.48), (6.47) for

the improved DIO method, respectively, as demonstrated in Table 7.3. In comparison with

the results without moments certainties, we obviously have αrob0 > α0 and βrob > β that

implies the FD performance degradation due to the corruption of uncertainties.
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7 Benchmark study and real-time implementation

Table 7.4: Parameters in norm-based ambiguity sets P0,∆0 and Pf,∆f

Faults N0/Nf (×104) ε1/ε3(×10−4) ε2/ε4(×10−4) δ0/δf

Fault-free 100 1.5922 0.0074 0.01

f1 20 12.5801 2.3862 0.05

f2 20 9.4351 1.8982 0.05

f3 10 3.9782 2.3862 0.05

7.3 FD results using matrix-valued DIO methods

In this section, we show the effectiveness of matrix-valued DIO solutions presented in

Chapter 5 to real-time FD and evaluate the FAR and MDR criteria in the probabilistic

context by using the results in Chapter 6. For verification purpose, three fault modes

listed in Table 7.2 are concerned subsequently. The above designed residual generator and

the obtained empirical means and covariance matrices ˆ̄z0, Σ̂z0 , ˆ̄zfi , Σ̂zfi
, i = 1, 2, 3 are

considered to be available here.

7.3.1 Real-time implementations

Multivector-valued solution

Given ˆ̄z0, Σ̂z0 , ˆ̄zfi , Σ̂zfi
, i = 1, 2, 3, we temporarily omit the estimation errors and consider

to design an FD system with the multivector-valued DIO method. As stated in Algorithm

5.2.9, the upper bound of FAR α0 should be set satisfying (5.22). Due to the values of αl0 for

each faulty case has been given in Table 7.3, we can directly have αl0,max = 0.0112. Then, by

setting α0 = 0.05, the parameter vector wi and MDR criterion βi are obtained by solving

the problem (5.14)–(5.15) with i = 1, 2, 3. The results of βi, i = 1, 2, 3 have been given in

Table 7.3. According to (5.25)–(5.26), the FAR and MDR of the FD system in worst-case

setting are obtained as PMDR ≤ P u
FAR = Mα0 = 0.15 and PMDR ≤ β = min

i=1,2,3
βi = 0.0616,

as summarized in Table 7.5.

For online realization purpose, we inject each fault at k = 500 and compute the residual

evaluation functions J(ri), i = 1, 2, 3 with (5.10). Using the decision logic (5.11) with

Jth = 1, the FD results for the concerned fault modes are demonstrated in Figs. 7.6–7.8,

respectively. It is seen from Table 7.5 and Figs. 7.6–7.8 that, the muletivector-valued DIO

method to FD can achieve a quite lower MDR while a larger FAR.
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7.3 FD results using matrix-valued DIO methods

Table 7.5: Experimental FD results using matrix-valued DIO methods

Methods β βrob αl0 αl,rob0 P u
FAR P u,rob

FAR

Multivector-valued DIO 0.0616 0.0872 0.0112 0.0374 0.15 0.3618

WC-CVaR aided DIO 0.0829 0.2860 / / 0.05 0.05

Optimal matrix-valued DIO 0.0631 0.3235 / / 0.05 0.05
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Figure 7.6: FD results using the multivector-valued DIO method for faulty case f1.
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Figure 7.7: FD results using the multivector-valued DIO method for faulty case f2.

WC-CVaR aided solution

To verify the applicability of the WC-CVaR aided DIO method for FD, Algorithm 5.3.10

is applied to FD system configuration and the key lies in solving the problem (5.51)–(5.52).

Using the SDPT3 solver in CVX, the solutions of β, Qi, i = 1, 2, 3 are thus achieved and

the results of β are given in Table 7.5 with the given upper bound of FAR α0 = 0.05. In
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Figure 7.8: FD results using the multivector-valued DIO method for faulty case f3.
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Figure 7.9: FD results using the WC-CVaR aided DIO method for faulty case f1.

the phase of online realization, the residual evaluation function (5.29) and decision logic

(5.2) are applied. With the injection of each fault at k = 500, the FD results are given in

Figs. 7.9–7.11, respectively, from which we can see that satisfactory FD performance can

be achieved in terms of a lower MDR and an acceptable FAR.

Matrix-valued optimal solution

We are now in the position of verifying the effectiveness of the optimal matrix-valued DIO

method to FD. Let α0 = 0.05. The optimal solutions of W, β are obtained with respect to

solving the problem (5.61)–(5.62) with Algorithm 5.4.11. By using the residual evaluation

function (5.53) and decision logic (5.2), the real-time FD results for each faulty case are

demonstrated in Figs. 7.12–7.14, respectively. It is seen that the optimal matrix-valued

DIO method can deliver good FD performance without distribution knowledge of noises

and faults.
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Figure 7.10: FD results using the WC-CVaR aided DIO method for faulty case f2.
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Figure 7.11: FD results using the WC-CVaR aided DIO method for faulty case f3.
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Figure 7.12: FD results using optimal matrix-valued DIO method for faulty case f1.
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Figure 7.13: FD results using optimal matrix-valued DIO method for faulty case f2.
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Figure 7.14: FD results using optimal matrix-valued DIO method for faulty case f3.

Solutions without fault information

Regarding the residual evaluation function (5.53) and threshold Jth = 1, we consider to

establish the FD systems without information of fault and the matrix H̄f,sH̄
T
f,s = I. In

the stage of offline design, given ˆ̄z0, Σ̂z0 and α0 = 0.05, the solutions of the parameter

matrix W are successively solved by addressing the SDP problem (5.68), the generalized

eigenvalue-eigenvector problem (5.71) and the trace ratio problem (5.75), respectively, and

the solutions are called solution 1, 2 and 3, respectively.

In the phase of online FD, the faults in Table 7.2 are individually injected at k = 500

and the FD results are illustrated in Figs. 7.15–7.17, respectively. It is seen from Figs.

7.15–7.17 that solution 3 outperforms the other two solutions for the faults f1, f2 in terms

of larger magnitudes of residual evaluation functions for the given identical threshold, and

solution 2 achieves a lower MDR for fault f3 in comparison with the solutions 1 and 3. By
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Figure 7.15: FD results using matrix-valued DIO method without fault knowledge in

the presence of f1.
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Figure 7.16: FD results using matrix-valued DIO method without fault knowledge in

the presence of f2.

comparing Figs. 7.6–7.14 and Figs. 7.15–7.17, we can see that the matrix-valued solutions

obtained with fault information outperform the ones without using fault knowledge.

7.3.2 Performance evaluation

In this subsection, we evaluate the FD performance under consideration of the estimation

uncertainties in means and covariance matrices.

At first, parameters in ambiguity sets P0,∆0(R0, τ1, τ2) in (6.14) and Pfi,∆fi
(Rfi , τ3,i, τ4,i)

in (6.15) with i = 1, 2, 3 should be determined according to Theorem 6.2. As mentioned

before, we determine the parameters R0, τ1, τ2 by finding an appropriate N0 satisfying

(6.90) for a given confidence level 1− δ0 = 0.99 whilst the δfi , Rfi , τ3,i, τ4,i are computed

with a fixed Nfi for the i-th faulty case. By generating I/O samples in fault-free and each
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Figure 7.17: FD results using matrix-valued DIO method without fault knowledge in

the presence of f3.

Table 7.6: Parameters in box-type ambiguity sets P0,∆0 , Pfi,∆fi

Faults N0/Nf (×104) τ1/τ3,i τ2/τ4,i R0/Rfi δ0/δfi
Fault-free 100 0.0009 1.1198 5.0171 0.01

f1 80 0.0010 1.1391 5.2633 0.05

f2 50 0.0018 1.2005 5.3025 0.05

f3 50 0.0025 1.3046 6.0201 0.05

faulty cases in the simulation platform, the parameters are then determined, as given in

Table 7.6. This allows us to study the robustness of the proposed matrix-valued solutions

in Chapter 6. By solving the SDP problems (6.72)–(6.73) and (6.79)–(6.80), the values of

βrob for each faulty case are given in Table 7.5. It is clear that the MDR performance gets

poor when the means and covariance matrices involve estimation errors.

7.4 Summary and notes

In this chapter, the applicability of the DIO approaches for FD systems design and

performance analysis has been illustrated through the simulation and experimental studies

on a laboratory setup of three-tank system. The results show that both vector- and

matrix-valued DIO approaches can well handle FD issues with a satisfactory MDR for a

given acceptable FAR without precise distribution knowledge of noises and faults, even

though no prior knowledge of fault is available. In addition, the worst-case FAR and MDR

criteria under moments uncertainties have been derived quantitatively and the confidence

levels of them have been suggested in the probabilistic context.
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8 Conclusions and future work

In this thesis, data-driven design and analysis issues of optimal FD systems for stochastic

dynamic processes are addressed dispensing with precise distribution knowledge of stochas-

tic noises and faults. In Chapter 1, the motivations and objectives of this work have

been presented. In response to the increasing requirements on the safety and reliability

of modern industrial processes, great interest has been stimulated in data-driven FD for

stochastic dynamic processes subject to distributional ambiguity due to the practically

inaccessible probability distributions for noises and faults. Serving as the basis of this

work, preliminaries of subspace technique aided data-driven FD and basic concepts of

stochastic optimization have been reviewed in Chapter 2.

Chapter 3 focuses on a DIO approach to the design of FD systems in the context of

minimizing the MDR for a prescribed FAR. On the basis of a data-driven construction

of residual generator, the mean-covariance based ambiguity sets have been introduced to

characterize the distribution knowledge of residuals in fault-free and faulty cases. Then,

the design of FD systems has been formulated as an SP problem with DCCs, which was

further reformulated as a DIO problem and solved with iterative parametric algorithms.

Moreover, the worst-case FAR and MDR and a geometric interpretation of the achieved

optimal solution have been discussed to gain a deeper insight into the proposed method.

Noting the conservatism of the achieved FAR criterion and the computational burden

of the DIO method in Chapter 3, an improved DIO approach to data-driven FD has been

demonstrated in Chapter 4. Regarding the mean-covariance based ambiguity sets, a two-

sided test statistic of residual was applied as residual evaluation function and the design of

FD systems has been formulated as a DIO problem in terms of the means and covariance

matrices of residuals in fault-free and faulty cases. It has been theoretically proven that

the targeting problem can be addressed by solving a generalized eigenvalue-eigenvector

problem. Then an analytical solution has been achieved by using an SVD-based algorithm.

The existence condition of the optimal solution has also been studied quantitatively.

The DIO methods given in Chapters 3 and 4 are vector-valued that concerns certain

fault mode with known mean and covariance matrix. To improve the freedom of the

design of FD systems towards a lower MDR, Chapter 5 is devoted to the matrix-valued

DIO approaches to data-driven FD with respect to the mean-covariance based ambiguity

sets, wherein both the situations of accessible and inaccessible prior knowledge of fault
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have been concerned. By characterizing the fault modes with mean and covariance matrix

of residual, three configurations of FD systems have been developed successively in the

context of minimizing the MDR for a prescribed FAR, namely the multivector-valued

scheme, the WC-CVaR aided scheme and the optimal matrix-valued method. Moreover,

the matrix-valued DIO solutions to FD without fault information have also been studied.

Remarkably, the results in Chapters 3–5 have been obtained based on the true means

and covariance matrices of residuals both in fault-free and faulty cases. In fact, only the

empirical estimates of them can be achieved based on process I/O data. Concerning the

estimation uncertainties in means and covariance matrices caused by the limited number

of I/O samples, Chapter 6 has provided a quantitative analysis of the FD performance

in the probabilistic context. The robustness of the FD systems designed in Chapters 3–5

against the moments uncertainties have been studied and confidence levels of the achieved

FAR and MDR criteria have been suggested in the probabilistic context by constituting

analytical relationships between sample numbers and estimation uncertainties.

Finally, a benchmark study on a laboratory setup of three-tank system has been

demonstrated in Chapter 7 to illustrate the applicability and effectiveness of the developed

DIO methods in Chapters 3–6.

As future works, the following directions are well worth considering:

� Extension of the proposed DIO methods in dealing with multiplicative faults will be

performed.

� Fault isolation issues will be addressed in the framework of distribution independent

optimization. On this basis, the integrated design of fault diagnosis and fault-tolerant

control systems will be exploited with respect to a two-stage optimization of fault

diagnosis performance and control performance.

� Different types of distribution features except for the mean and covariance matrix,

e.g., Wassterin metric and KL-divergence, will be applied to model the ambiguity

sets such that more precise FD performance criteria can be achieved to a better

synthesis of fault diagnosis systems.
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A Appendix

A.1 Proof of Theorem 3.3

Given ξ ∈ Rn, b > 0, if the following inequalities hold

sup
ξ∼(ξ̄,Σ)

Pr{wTξ > b} ≤ ρ

2
, sup

ξ∼(ξ̄,Σ)

Pr{−wTz > b} ≤ ρ

2
(A.1)

according to Bonferroni inequality, we have sup
ξ∼(ξ̄,Σ)

Pr{|wTξ| ≥ b} ≤ ρ. Moreover, according

to Lemma 3.1, (A.1) with wT ξ̄ ≤ b yields

sup
ξ∼(ξ̄,Σ)

Pr{wTξ > b} ≤ ρ

2
⇔ inf

ξ∼(ξ̄,Σ)
Pr{wTξ ≤ b} ≥ 1− ρ

2

⇔ b−wT ξ̄ ≥ κ(1− ρ

2
)
√

wTΣw

⇔ b−wT ξ̄ ≥ κ̄(ρ)
√

wTΣw (A.2)

where κ(1 − ρ
2
) = κ̄(ρ) =

√
2−ρ
ρ

. When wT ξ̄ > b, it holds inf
ξ∼(ξ̄,Σ)

Pr{wTξ ≤ b} = 0. By

replacing w, b in (A.2) with −w, −b, respectively, it holds

sup
ξ∼(ξ̄,Σ)

Pr{−wTz > b} ≤ ρ

2
⇔ −b+ wT ξ̄ ≥ κ̄(ρ)

√
wTΣw. (A.3)

When −wT ξ̄ > b, it holds inf
ξ∼(ξ̄,Σ)

Pr{−wTξ ≤ b} = 0. Together with (A.1)–(A.3), we thus

have

b− |wT ξ̄| ≥ κ̄(ρ)
√

wTΣw⇒ sup
ξ∼(ξ̄,Σ)

Pr{|wTξ| > b} ≤ ρ. (A.4)

When
∣∣wT ξ̄

∣∣ > b, it holds sup
ξ∼(ξ̄,Σ)

Pr{|wTξ| > b} = 1. The proof is completed.

A.2 Proof of Theorem 3.4

Given ξ ∈ Rn, ξ̄ = E[ξ], V[ξ] = Σ ∈ Sn+. Define a convex set S = {ξ|(wTξ)2 ≤ b2} with

w 6= 0, b 6= 0 given such that |wT ξ̄| ≥ |b|. Let a = Σ−
1
2 (ξ − ξ̄), TT = wTΣ

1
2 . Recalling

Theorem 3.1, we have

sup
ξ∼(ξ̄,Σ)

Pr
{

(wTξ)2 ≤ b2
}

=
1

1 + d2
, d2 = inf

(wT ξ)2≤b2
aTa.
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Let c = wTξ, c̄ = wT ξ̄. Then c = TTa + c̄. Formulate a Lagrangian function as follows

L(a, λ) = aTa + λ
(
cT c− b2

)
= aTa + λ [θ(a)− τ ]

with τ = b2 − c̄T c̄, θ(a) = aTTTTa + aTTc̄+ c̄TTTa. Note that the Lagrangian function

L(a, λ) is maximized w.r.t. λ ≥ 0 and minimized w.r.t. a, i.e., d2 = min
a

max
λ≥0

L(a, λ). At

the optimum of d2, we have

∂L(a, λ)

∂a
= 2

[(
I + λTTT

)
a + λTc̄

]
= 0,

∂L(a, λ)

∂λ
= θ(a)− τ = 0.

It implies
(
I + λTTT

)
a = −λTc̄, τ = θ(a). Then

a = −λ
(
I + λTTT

)−1
Tc̄ = mTc̄ (A.5)

where m = −λ
(
I + λTTT

)−1
, mT = m.

Let k = TTT = wTΣw, t = TTmT. Then it holds t = − λk
λk+1

. By substituting a in

(A.5) and τ to θ(a), we have

θ(a) =
(
t2 + 2t

)
c̄T c̄ = b2 − c̄T c̄ ≤ 0.

It follows t =
√

b2

c̄T c̄
− 1. At the optimal, we have

d2 = aTa =
t2

k
c̄T c̄ =

(√
wT ξ̄ξ̄Tw−

√
b2

√
wTΣw

)2

. (A.6)

Because of |wT ξ̄| ≥ |b|, it thus holds

sup
ξ∼(ξ̄,Σ)

Pr
{
|wTξ| ≤ |b|

}
= sup

ξ∼(ξ̄,Σ)

Pr
{

(wTξ)2 ≤ b2
}

=
1

1 + d2
≤ β

⇔ d2 ≥ 1− β
β
⇔ |wT ξ̄| − b ≥ κ(β)

√
wTΣw

with κ(β) =
√

(1− β)/β, b > 0. When |wT ξ̄| < b, d2 = 0, then sup
ξ∼(ξ̄,Σ)

Pr
{
|wTξ| ≤ |b|

}
=

1. The proof is completed.

114



Bibliography

[1] “https : //www − user.tu− chemnitz.de/ helmberg/sdpsoftware.html.”

[2] R. V. Beard, “Failure accomodation in linear systems through self-reorganization.”

Ph.D. dissertation, Massachusetts Institute of Technology, 1971.

[3] D. Bertsimas, M. Sim, and M. Zhang, “Adaptive distributionally robust optimization,”

Management Science, vol. 65, no. 2, pp. 604–618, 2019.

[4] C. M. Bishop, Pattern recognition and machine learning. Springer, 2006.

[5] J. Blesa, V. Puig, J. Saludes, and R. M. Fernández-Cant́ı, “Set-membership parity

space approach for fault detection in linear uncertain dynamic systems,” International

Journal of Adaptive Control and Signal Processing, vol. 30, no. 2, pp. 186–205, 2016.

[6] R. Boscolo, H. Pan, and V. P. Roychowdhury, “Independent component analysis

based on nonparametric density estimation,” IEEE Transactions on Neural Networks,

vol. 15, no. 1, pp. 55–65, 2004.

[7] B. Cai, L. Huang, and M. Xie, “Bayesian networks in fault diagnosis,” IEEE Trans-

actions on Industrial Informatics, vol. 13, no. 5, pp. 2227–2240, 2017.

[8] L. Cai, X. Tian, and S. Chen, “Monitoring nonlinear and non-gaussian processes

using gaussian mixture model-based weighted kernel independent component analysis,”

IEEE Transactions on Neural Networks and Learning Systems, vol. 28, no. 1, pp.

122–135, 2017.

[9] G. Calafiore, U. Topcu, and L. El Ghaoui, “Parameter estimation with expected and

residual-at-risk criteria,” Systems & Control Letters, vol. 58, no. 1, pp. 39–46, 2009.

[10] G. C. Calafiore and L. El Ghaoui, “On distributionally robust chance-constrained

linear programs,” Journal of Optimization Theory and Applications, vol. 130, no. 1,

pp. 1–22, 2006.

[11] A. Charnes and W. W. Cooper, “Chance-constrained programming,” Management

Science, vol. 6, no. 1, pp. 73–79, 1959.

115



Bibliography

[12] J. Chen and R. J. Patton, Robust model-based fault diagnosis for dynamic systems.

Springer Science & Business Media, 2012.

[13] R. Chen, “Outlier detection using distributionally robust optimization under the

wasserstein metric,” https://hdl.handle.net/2144/29592, 2017.

[14] R. Chen and I. C. Paschalidis, “A robust learning approach for regression models

based on distributionally robust optimization,” Journal of Machine Learning Research,

vol. 19, no. 1, pp. 517–564, 2018.

[15] W. Chen, M. Sim, J. Sun, and C.-P. Teo, “From cvar to uncertainty set: Implications

in joint chance-constrained optimization,” Operations Research, vol. 58, no. 2, pp.

470–485, 2010.

[16] Z. Chen, M. Sim, and P. Xiong, “Tractable distributionally robust optimization with

data,” http://www. optimization-online. org/DB FILE/2017/06/6055.pdf, 2017.

[17] Z. Chen, M. Sim, and H. Xu, “Distributionally robust optimization with infinitely

constrained ambiguity sets,” Operations Research, vol. 67, no. 5, pp. 1328–1344, 2019.

[18] A. K. Cline and I. S. Dhillon, “Computation of the singular value decomposition,”

in Handbook of Linear Algebra. Edited by L. Hogben. CRC Press, Boca Raton, FL,

45.1-45.13, 2006.

[19] E. Delage and Y. Ye, “Distributionally robust optimization under moment uncertainty

with application to data-driven problems,” Operations Research, vol. 58, no. 3, pp.

595–612, 2010.

[20] S. X. Ding, Data-driven Design of Fault Diagnosis and Fault-tolerant Control Systems.

Springer, 2014.

[21] S. X. Ding, P. Zhang, E. L. Ding, and B. Huang, “Subspace method aided data-driven

design of fault detection and isolation systems,” Journal of Process Control, vol. 19,

no. 9, pp. 1496–1510, 2009.

[22] S. X. Ding, Model-based fault diagnosis techniques: design schemes, algorithms, and

tools. Springer, 2013.

[23] ——, Data-driven design of fault diagnosis and fault-tolerant control systems. Springer,

2014.

116



Bibliography
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learning for data stream analysis: A survey,” Information Fusion, vol. 37, pp. 132–156,

2017.
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