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Abstract

An accurate short-term load forecasting system allows an optimum daily
operation of the power system and a suitable process of decision-making,
such as with regard to control measures, resource planning or initial invest-
ment, to be achieved. In a previous work, the authors demonstrated that an
SVR model to forecast the electric load in a non-residential building using
only the temperature and occupancy of the building as attributes is the one
that gives the best balance of accuracy and computational cost for the cases
under study. Starting from this conclusion, a simple, low-computational re-
quirements and economical hourly consumption prediction method, based on
SVR model and only the calculated occupancy indicator as attribute, is pro-
posed. The method, unlike the others, is able to perform hourly predictions
months in advance using only the occupancy indicator.

Due to the relevance of the occupancy indicator in the model, this paper
provides a complete study of the methods and data sources employed in the
creation of the artificial occupancy attributes. Several occupancy indicators
are defined, from the simplest one, using general information, to the most
complex one, based on very detailed information. Then, a load forecast-
ing performance discrimination between the artificial occupancy attributes
is realized demonstrating that using the most complex indicator increases
the workload and complexity while not improving the load prediction sig-
nificantly. A real case study, applying the forecasting method to several
non-residential buildings in the University of Girona, serve as a demonstra-
tion.

Keywords: load forecasting, support vector machines, sensor data,
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Mediterranean climate, occupancy indicator.

1. Introduction

In order to build a fair and more sustainable society, new approaches and
initiatives have appeared in all areas. Energy resources are limited, and there
is the need to generate new technologies and legislation that allows to achieve
a certain environmental balance. The Lisbon Treaty [30] and the Kyoto
Protocol [10] are examples of legal initiatives that have the aim of reducing
consumption and emissions. To reduce the consumption, it is necessary to
improve the existing electricity grid making it more efficient and robust. The
smart grid, in conjunction with decentralized power generation, could avoid
many of the shortcomings of the classical electrical grid.

Thus, to increase the efficiency of the electricity grid, a balance of power
generation is required such that there is no waste or lack of resources. Due
to the apparition of micro-grids, there is a balance between the generation of
power and the users’ consumption. Given that buildings are responsible for
a large part of the electricity consumption, having tools to predict their con-
sumption is key in the adjustment process. Predicting the consumption of a
city is different from predicting the consumption of a building, in that in the
case of buildings there is much variability. Disaggregated environments are
more difficult to predict. Thus, short-term load forecasting (STLF) method-
ology is used to reduce the building’s consumption since it must deal with
non-linearities and noise.

Recent research on energy efficiency in buildings include optimal decisions
and an overall improvement in human behaviour, not just technology. The
International Energy Agency’s Energy in Buildings and Communities Pro-
gramme (IEA-EBC) has recently completed a project related to strength-
ening the robust prediction of energy usage in buildings, with the goal of
enabling the proper assessment of short and long-term energy measures, poli-
cies and technologies. The results of this project are collected in Annex 53
[15]. The analysis methods, developed models and results of Annex 53 were
taken as the starting point for other several working areas. In particular,
and due to the important effect of occupancy in energy prediction, the IEA-
EBC is working on Annex 66 [16]. On this annex they are trying to define
and simulate occupant behaviour in a consistent and standard way. Based
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on these works, some new proposals have arisen, as is shown in [13]. The
ontology represents energy-related occupant behaviour outlined as a DNAS
(drivers, needs, actions and systems) framework, providing a systematic rep-
resentation of energy-related occupant behaviour in buildings. Generally,
researchers working on this topic follow a methodology that consists of mon-
itoring, modelling and simulating, such as [13] and [14], as seen in Figure
1.

Figure 1: Technical framework used in occupancy behaviour.

These models are built after monitoring and collecting enough data about
occupancy of the building. As stated in [14], this data is obtained from
observational studies, occupant surveys and interviews, laboratory studies
and unresolved issues in occupant monitoring, such as contextual factors.
The occupancy models take into account the actions that occupant can do
on the building, such as open the light, close the window, track or predict
the occupant movements, and so on. It can be seen that the building must
be sensorized to some extent to have this information available, a fact that
is not always possible.

Although computing technology continues to develop, some forecasting
models training on databases with dozens of attributes and millions of in-

stances, may lead to high computational cost. Therefore, reducing the database

is still necessary, always taking care to ensure that performance does not de-
teriorate. Most of the papers that propose the use of STLF methods in non-
residential buildings often use weather data and, in some cases, occupancy
information. Other works, such as [22], [17] and [19], conduct comparison
studies using similar models and arrive to a different conclusion, selecting
other model as a best approach. The type of building and the test and train-
ing conditions can greatly affect the results. So, it is important to study
different type of models in order to choose the best option in each case. Ac-
cording to [24], a model predicting consumption with minimal instances using
support vector regression (SVR) with temperature and occupancy attributes
provides excellent results for our buildings under study.

Obtaining predictions of temperature, in order to know the temperature
of a particular place, is normally possible, although acquiring information of
future occupancy remains difficult. In [24], occupancy information collected
from passive infra-red (PIR) sensors was used. However, this information
is not available in advance. The non-residential buildings usually dispose of
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work or scholar schedules, or other information about their occupancy. A
technique designed to generate this information beforehand is needed. The
goal is to obtain a model that is not dependent of any information unavailable
months ago, such as previous consumption or temperature. This model can
perform consumption predictions months ahead. Perhaps resulting accuracy
level of the model may not be as good as the other works in this topic, but
this is only a first step in this new direction.

The aim of the work is to test the load forecasting accuracy using several
occupancy indicators. It is not centred on occupant behaviour modelling,
but estimating the occupancy is necessary, as it is one of the main factors
that contributes to the accuracy of the SFTL. Concerning the occupancy
estimation, we deal with buildings that are poorly sensed. That means there
is not information about occupant actions, such as open/close the window,
switch on/off the lights or plug a device, even if the actions are taken. There
is information about scholar and working schedules, classrooms dimensions,
expert knowledge, etc. Furthermore, there is only one of the buildings under
study having sensors to estimate the amount of occupants inside the building
by means of PIR sensors. Due to this limitation, several occupancy indexes
have been defined using the available information.

In the first part of the paper, artificial occupancy indicators for the build-
ings are generated using different techniques and information available in ad-
vance such as academic calendars and work schedules. Then, SVR model is
trained to forecast the consumption of the respective buildings, using these
indicators of occupancy. Subsequently, an analysis of the relationship be-
tween the forecasting performance and the workload based on occupancy
indicators, is performed. The idea is to show that there is a balance point in
the artificial occupancy indicators, between forecast accuracy and workload.
From a certain point on, increasing the complexity of the indicator does not
improve significantly the prediction.

The paper starts with related works and follows with back-ground ma-
terial. Then, the dataset is explained. This is followed by a presentation
of the methodology, where the several occupancy indicators are defined, and
the test process explained. Next, the results are presented and the method
is discussed. Finally, conclusions are shown.
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2. Related works

There have been a large number of papers on the topic of STLF with re-
gard to residential and non-residential buildings. The non-residential build-
ings are basically malls, schools, universities, hospitals and offices. Assuming
that the use of information concerning the occupancy of buildings is key for
improving prediction, the present state of the art focuses on the following
topic: STLF in non-residential buildings based on occupancy data.

In the present state of the art, the advantages and disadvantages of the
several methods associated with using the building’s occupancy information
in a prediction model are evaluated. The methods can be grouped into 4
blocks, as seen in Table 1.

Method Sources Works
2] [17] [28] [29]
Calendar Day types, months, etc. [
P 37] [5] [31] [7]
Schedule Work, student or use schedules. [2{)2]156]
. . . 8] [18] [24] [27]
Sensors Motion, C'O,, noise, light, etc. 33] [23] [26]
Expert knowledge | Surveys, interviews or inspections. [25[]19[?5]

Table 1: Occupancy related methods.

In the first block, there are eight works that use calendar information.
The first [2], is the case of a campus in Los Angeles that uses temperature
and occupancy information, based on calendar data such as day of the week
and holidays, with a regression tree model. In the paper [17], based on syn-
thetic data and a non-residential building located in Athens (Greece), using
meteorological data including temperature, solar flux, relative humidity and
wind speed and the profile of the days of the week, the consumption is pre-
dicted using an ANN model. The work [28] and [29], in the campus of the
University of Deusto (Spain), use weather data such as relative humidity,
precipitation, temperature, wind speed and wind direction in conjunction
with the use of types of day comprising Saturdays, working and non-working
days using AR, ANN and SVR principally. The work [37], with regard to an
office building in Hong Kong, uses weather data including temperature, solar
radiation and relative humidity and also takes into account if it is a weekday

5
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or a weekend using an ANN. In [5], an ANN is trained to predict the con-
sumption of a commercial office building in Iowa (USA) using weather data
such as precipitation provability, rain indicator, outdoor dry-bulb tempera-
ture, outdoor relative humidity, wind speed and sky condition in conjunction
with the use of day type indicator. The work [31] proposes a non-linear au-
toregressive model with exogenous inputs to forecast the load in a college
campus in Texas (USA) employing weather variables including temperature,
relative humidity and calendar information such as hour, day of the week or
month. The paper [7] presents an ANN based on indoor and outdoor tem-
perature and relative humidity and occupancy data including day type in a
supermarket in UK.

In the second block, where schedules are used, the work [20] predicts the
consumption of the university library in Zhejiang (China) using temperature
data and an index of occupancy based on the opening schedule of each of
the rooms of the library using a fuzzy inference system. The paper [6], a
commercial building in Iowa (USA), uses SVR and ANN based on weather
data such as outdoor air dry bulb temperature, outdoor air relative humid-
ity, outdoor air flow rate, diffuse solar radiation rate, direct solar radiation
rate, zone air temperature, zone air relative humidity and zone thermostat
cooling set point temperature and occupancy data including schedules of
building equipment, building light and HVAC operation. The work [21] pro-
poses a model predictive control to forecast the consumption in a simulated
commercial building (Energy plus) using meteorological data such as outdoor
air temperature, indoor temperature and solar radiation and an equipment
schedule ratio.

In the third block, there are works that employ occupancy information
through the collection of sensor data. The work [8], in the case of the Re-
search Centre in Rome (Italy), involves meteorological data such as tem-
perature and solar radiation, and creates occupancy indicator counting the
number of people who check-in using a card, and then models using an au-
toregressive integrated moving average, ANN and Naive Bayes. The paper
[18], deals with an office building in Hong Kong involving weather data such
as outdoor temperature, relative humidity, rainfall, wind speed and global
solar radiation and an occupancy attribute created using the hourly total
power consumption of the primary air unit, and uses an ANN to create the
model. The work [24], in the University of Girona, uses temperature and oc-
cupancy data collected with PIR sensors, using MLR, ANN and SVR models.
In [27], an ANN is used in conjunction with sensor data such as parking and

6
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building occupancy in the campus of the university of Lisbon (Portugal).
In [33], the consumption of an office building in Sweden is forecasted based
on weather data such as indoor temperature, outdoor temperature, daylight
level, solar radiation and wind speed and PIR sensor data using an MLR.
The case [23], the electrical load of an sports hall in Finland is predicted
using autoregressive models based on meteorological data comprising indoor
and outdoor air temperatures and sensor data such as C'O, measurements.
The work [26] presents an autoregressive integrated moving average model
that uses outdoor temperature and sensor data such as contact closure, PIR,
COy and network activity sensors to predict the consumption in an office
building in Ontario (Canada).

In the fourth block, there are works that use expert knowledge such as
inspections or surveys to collect information related to occupancy. The case
[25], the Administration building of the University of Sao Paulo (Brazil), uses
weather data and an attribute related to occupancy, generated performing
expert inspections in order to describe the use and the features or the internal
loads such as lighting and computers, with an ANN model. In [35], a fast-
food restaurant in Cyprus, an autoregressive model based on representative
indicators per energy end use of the building such as lighting, kitchen, and
refrigerators is used to predict the consumption. The paper [19] proposes
an ANN to predict the consumption of 19 subway stations in Hong Kong
using outdoor temperature and relative humidity and expert information
such as area of concourse, area of platform, shops area, plant room area,
staff accommodation area and weekly amount of passengers.

All these methods provide proper results but present shortcomings. There
is a demand for methods based on data available in advance which has the
ability to perform hourly long-term predictions, predict with few attributes
which means low computational cost and do not require continuous sensor
data which is economic. In short, there is a need for simple, economic and
fast systems that predict the load accurately. The main shortcomings of
these methods are as follows:

e The works that employ meteorological data including temperature and
solar radiation need weather forecasts which are not always available.
In addition, weather forecasts can only be obtained for few days ahead
and contain uncertainties. A method without weather data is needed.

e In the case of methods that use occupancy sensor data, there is no data
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available in advance, so there is no data to predict. Artificial occupancy
data is needed.

e Most of these methods are able to forecast consumption just a few days
ahead, but cannot do so months in advance. Therefore a method to
predict consumption several months in advance is needed.

e The expert knowledge is not always available and contains uncertain-
ties. A repeatable and objective method is needed.

Therefore, all the occupancy methods are employed to artificially create
an index of occupancy using previously available data such as calendar, old
PIR sensor data, school schedules and other information. These different
artificial indicators of occupancy are then tested in order to know which
gives the best consumption forecasting results. From the simplest to the
more sophisticated method, an explanation of the generation process, an
analysis of the load forecasting performance and a contrast of the workload
of each one needs to be performed.

In short, on the basis of the existing literature, all paradigmatic data
sources and different techniques are used to generate several occupancy in-
dicators. Then, a compendium of STLF performances and the pertinent
workloads for each occupancy indicator is provided. The presented methods
solve the previously commented shortcomings.

3. Background

Taking into account that a large amount of instances is available, covering
a broad range of weather and building conditions, three paradigmatic black
box models such as an MLR [9] model, an ANN [38] model and an SVR model
were tested in [24]. The results showed that the SVR model provides the most
accurate prediction for this kind of data and models. In that case, a grid
search algorithm was used to adjust the training parameters of the models,
in this case an evolutionary algorithm is used to adjust them. This section
gives a brief explanation of the SVR model and the parameter optimization
method.

3.1. Support vector regression

The support vector machine [36] model consists of separate classes, that
are not linearly separable, transforming them using kernel functions and

8
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moving them to a high-dimensional feature space where the data is classified
through a hyperplane. On the other hand, the SVR performs a linear regres-
sion on this new high-dimensional feature space. The SVR function is seen
on Equation 1:

flx) = Z(Oé? — a)k(zi, ) +b (1)

Where:
a; and o are Lagrangian multipliers.
k(x;,x) is a kernel function.
b is a computed parameter.

There are several kernel functions [3] with different features, proper for
each case. However, the most common are linear, radial basis function and
polynomial kernel. There is no clear rule about which is better.

3.2. Parameter optimization

There are two main reasons for using a parameter optimization method.
The first one is because all the occupancy indicators in the experiments
must have equal conditions. The second is because the manually search of
the suitable training parameters is a slow process and the grid search is
computationally expensive.

The evolutionary computation approach executes a sub-process a multiple
number of times to find the optimal values for the specified parameters.
The evolutionary strategies, based on the theory of Rechenberg created in
1970 [32], help us to solve an optimization problem without falling into local
optimum and premature closure.

Evolutionary search [4] is based on a parental and offspring candidate
solution. These solutions, called individuals, are subject to random changes
and selection of best solutions iteratively. Based on the principle of biologi-
cal evolution, the concepts of recombination, mutation and selection are used
to solve the problem. First, a recombination selects x parents and combines
their parts to create new solutions. Then, the mutation adds random changes
to the preliminary solutions. Finally, n individuals are selected and consti-
tute the parental population of the following cycle. Until the termination
condition is not achieved, the process continues.
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4. Dataset

In this study the experiments are performed using data from four build-
ings (PI, PII, PIV and Faculty of Science) located at the University of Girona.
The buildings are composed mainly by classrooms, offices and laboratories.
The buildings PI and PII are used in all the experiments and the buildings
PIV and Faculty of Science are only used for contrasting purposes. Regarding
HVAC, the heating systems consist of gas boilers and fancoils. The cooling
systems are composed of compression refrigeration systems and fancoils.

Building PI, built in 1983, has 6 floors and a volume of 26150 m®. The
frontage has an area of 3791 m?, of which 610 m? are glass surface. Building
PII has 6 floors, a volume of 25560 m?® and was built in 1992. The frontage
has an area of 2326 m?, of which 1351 m? are glass surface. Building PIV
has 3 floors, a volume of 12000 m? and was built in 2003. The frontage has
an area of 1836 m?, of which 630 m? is glass. The Faculty of Science building
has 5 floors, a volume of 34810 m?® and was built in 1997. The frontage has
an area of 4903 m?, of which 1233 m? is glass.

The set-point temperature is manually adjusted in the summer to 26°C,
and in the winter to 20°C. The HVAC control system detects the temper-
ature of the offices and classrooms, and modifies the fan speed to achieve
the set point temperature. The profile of these buildings in relation to the
HVAC is similar, in that the four buildings have systems where most of the
consumption is produced with gas boilers.

As previously stated, temperature and occupancy are the main attributes
used in the non-residential buildings forecasting. The data used in this work
is as follows:

e Electric load data: electrical load data of the buildings PI, PII and PIV
and Faculty of Science is collected using a power meter (PM810 Power
Logics of Schneider) linked to the campus infrastructure monitoring
system.

e Temperature data: temperature data using a sensor (Vaisala) from the
Department of Physics outside the buildings.

e (Calendar data: information about working and non-working days, hol-
idays, exams, etc.

e School schedule: the hourly schedule of each classroom.

10
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e Working schedule: the work schedule of the teachers and employees.
e (Classroom size: the number of student places for each classroom.

e (Classroom devices: the list of electrical devices and their features with
regard to each classroom.

e Expert knowledge information: information about the building occu-
pancy based on interviews with experts with experience.

e Occupancy sensor data: the data of occupancy collected in PIV using
PIR sensors from previous work.

Based on this information, several artificial occupancy attributes with
different levels of complexity are artificially created. The main objective is
to analyse which one provides the best forecast. In the search of the proper
occupancy indicator, there is probably a balance point between workload and
forecasting performance.

The number of data instances of PI is 27375, covering a total of 38 months,
from 1%° September, 2011 to 15th October, 2014. The total of instances of
PII is 16589, covering a total of 24 months, from 21% November, 2012 to 15th
October, 2014. The number of instances of PIV is 16590, covering a total of
24 months, from 23rd November, 2012 to 15th October, 2014. The number
of instances of Faculty of Science is 27366, covering a total of 38 months,
from 1%¢ September, 2011 to 14th October, 2014.

The patterns of consumption and temperature for a summer (August 5th,
2013) and a winter (February 18th, 2013) week for the PI and PII buildings
are shown in the Figure 2:

Figure 2: Temperature and consumption data for summer and winter weeks.

5. Methodology

This section contains the description of the artificial occupancy indicators
and the forecasting method used.

11
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5.1. Occupancy indicators

The main target is to create an artificial occupancy indicator to determine
the occupancy in advance. Using some available information, there is the
option of creating occupancy indicators to predict consumption some months
ahead.

In this section, 43 occupancy indicators, with different levels of complex-
ity, are created in order to find the best one. There are 7 methods used to
create the indicators, ranging from low to high complexity. These 7 methods
comprehend the main used techniques in the literature and some new lines
are proposed, trying to cover all the possible data sources. The different
indicators are tested in several experiments and finally a method is selected.
The occupancy indicator is an attribute that varies from 0% to 100%. In
summary, 43 short-term load forecasting models are trained and tested us-
ing only one occupancy indicator set as attribute each time with the aim of
finding which performs better.

The first number of the indicator is referred to as the set, while the other
ones are the data sources. For example, the indicator 4.32 is generated with
the method of set 4 on the basis of indicators 2.3 and 3.2. The indicators,
organized in sets, are as follows:

1. Indicator set 1.

e Binary occupancy. The simplest indicator. If the university is
open, there is a 100% occupancy. If the university is closed, there
is 0% occupancy.

2. Indicator set 2 (2.1 to 2.3). Daily profile. These 3 indicators are based
on daily profiles. There are 7 different daily profiles: school day, non-
school day, examination day, school-leaving examination day, August
day, holiday and weekend day and, finally, Easter and Christmas holi-
day. Each daily profile has its own level of occupancy. Each one of the
3 indicators of this set is created using only one of the 3 data sources.
The data sources to describe each daily profile are:

e Expert knowledge. Based on the experience of the employees of

the university, a level of occupancy of the building for each day
type is created.

12

Page 12 of 35



e Sensor data. Based on the PIR sensor data collected for the pre-
vious work in the PIV building, a level of occupancy for each day
type is created. The average of the level of occupancy for several
days of each type of day is used.

e Teacher scheduling. Based on the schedules of certain employees
of the university, a level of occupancy for each day type is created.

3. Indicator set 3 (3.1 to 3.3). Hourly profile. These 3 indicators are based
on hourly profiles. There are 24 different hourly profiles. Each hour
has its own level of occupancy. As in the previous case, each one of the
3 indicators of this set is created using only one of the 3 data sources.
The data sources to describe each hourly profile are:

e Expert knowledge. Based on the experience of the employees of
the university, a level of occupancy of the building for each hour
of the day is created.

e Sensor data. Based on the PIR sensor data collected for the pre-
vious work in the PIV building, a level of occupancy for each hour
type is created. The average of the level of occupancy for several
hours of each type of hour is used.

e Teacher scheduling. Based on the schedules of certain employees
of the university, a level of occupancy for each hour type is created.

4. Indicator set 4 (4.1.1 to 4.3.3). Aggregation function profile. These 9
occupancy indicators are created by aggregating the indicators of sets
2 and 3. The main idea is to merge the hourly information with that of
the days. Up to 5 aggregation functions are tested in order to discover
which provides the best results. Then, the aggregation function which
provides the best performance in terms of forecasting, is selected. The
aggregation functions are the following ones:

Aggregation function A is presented in the Equation 2:

I I
1= 2-]:3 2)

Aggregation function B is presented in the Equation 3:

13
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Aggregation function C is presented in the Equation 4:

- VAT

: @

Aggregation function D is presented in the Equation 5:

Ip = < 213)2 (5)

Aggregation function E is presented in the Equation 6:

[QXIg

ik ) .

Where:

I, and I3 are the aggregated indicators of sets 2 and 3.
k is the value to scale the output to the proper range, from 0 to 100.

. Indicator set 5 (5.1.1 to 5.3.3). Summation of classes. These 9 indi-
cators are based on the data of the previous indicator. The school,
examination and school-leaving examination days instances are substi-
tuted for new values of occupancy. These new values are calculated
taking into account the summation of the active classrooms for each
hour. Therefore, the hour with more active classes is the hour with
the maximum level of occupancy. Then, an adjustment is needed to
equilibrate the instances of the previous indicator (holidays, non-school
days and night hours) and the instances of the summation of classes.

The occupancy of the building for a determined active hour is shown
in Equation T7:

m o Ac
Ohizzﬁ—lacc % Eaf x 100 (7)

Where:
Oh; is the level of occupancy of one building for a determined hour.
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Ac; is the number of active classrooms for a determined hour.
Mac is the maximum number of active classrooms.
FEaf is the adjustment factor. Varies from 0 to 1.

6. Indicator set 6 (6.1.1 to 6.3.3). Summation of weighted classes. On the
basis of the previous indicator, a weighting that considers the electrical
devices used in the classroom is added to the method. Each classroom is
analysed and then the total electrical power of the devices is calculated.
The weighting considers all types of rooms, from the laboratories which
contain big electric motors, to theory classrooms which only have lights.

The occupancy of the building for a determined active hour is shown
in Equation 8:

Oh; = == = E 100 8
Mac 8 Mep X Eaf x (8)

Where:

Oh; is the level of occupancy of one building for a determined hour.
Ac; is the number of active classrooms for a determined hour.

Mac is the maximum number of active classrooms.

Edp; is the summation of the power of the electric devices for a deter-
mined classroom.

Mep is the power of the classroom with more electric power.

FEaf is the adjustment factor. Varies from 0 to 1.

7. Indicator set 7. (7.1.1 to 7.3.3). Summation of weighted classes with
events. Using the data of indicator set 6, some variations in the occu-
pancy are added at the beginning and at the end of certain events. The
events are: the summer, the Christmas holidays, the examination pe-
riod, the Easter week holidays, local festivities and university parties.
In these events the occupancy is very slightly reduced.

In Figure 3 the several occupancy indicators for a week during school term
are shown. The figure shows that the complexity of the profiles increases
between the occupancy indicators.

Figure 3: Example of occupancy indicators of sets 4, 5 and 6.
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5.2. Procedure block diagram

The proposed methodology consists of several blocks as shown in Figure
4. In the first block, the missing values are filtered. Then, the instances
are normalized. In the following block, the outliers are filtered. In the next
block, a feature selection is performed. Then, the data is split with 1/3 of
the data to testing and 2/3 to training. In the case of PI, the training data
goes from September 1%, 2011 to September 13th, 2013 and the test data
goes from September 13th, 2013 to October 15th, 2014. In the case of PII,
the training data goes from November 23rd, 2012 to February 23rd, 2014 and
the test data goes from February 23rd, 2013 to October 15th, 2014. At that
point, an instance selection (20%) is performed with the training data, and
an evolutionary search of the suitable training parameters is performed over
the selected model. Finally, the validation of the model is done using test
data.

Figure 4: Block diagram of the process.

5.2.1. Missing values filter

Due to mistakes in sensor readings, there is always a small amount of lost
values. The percentage of missing values needs to be minimized as much as
possible. There are several methods used to filter the missing values such as
filling or deleting. In this case, the method that provides best performance
in terms of forecasting, is the deletion of the instances with missing values.

In the case of PI, the instances with missing values are 691 out of a total
of 27375, which represents 2.5%. For PII, the instances with missing values
are 592 out of a total of 16589, which represents 3.6%. In the case of PIV, the
instances with missing values are 579 out of a total of 16590, which represents
3.5%. In the case of the Science Faculty the instances with missing values
are 683 out of a total of 27366, which represents 2.5%.

5.2.2. Normalization

Normalization is needed to work with different scales and units. The use
of the same data scale improves the forecasting. The normalization range
used is from 0 to 1.

5.2.8. Qutliers filter
By filtering the outliers the performance of the model is increased. The
outliers need to be detected and can then be deleted or filled. In the filtering,
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the more restrictive the process, the greater the amount of data lost. In the
present case, the method used to detect outliers is the local outlier factor,
that consists of calculating the anomaly score according to the local outlier
factor algorithm proposed by Breunig [11]. The instances with high scores
are then removed.

In the case of PI, the instances with outliers are 227 out of a total of 26684,
which represents 0.85%. For PII, the instances with outliers are 119 out of
a total of 15997, which represents 0.74%. In the case of PIV, the instances
with outliers are 118 out of a total of 16011, which represents 0.74%. In the
case of the Science Faculty the instances with outliers are 227 out of a total
of 26683, which represents 0.85%.

5.2.4. Feature selection

In order to remove irrelevant and duplicate data, the redundant and non-
correlated attributes are removed. Reducing the size of the database, the
computational cost of the training process is reduced. The feature selection
consists in two blocks. In the first block the correlation with the class of each
attribute is calculated and the features with low correlation are removed. In
the second block the correlation between attributes is calculated and the
attributes with high correlation with other attribute are removed.

That block is only for the experiments in which calendar nominal at-
tributes are used, not for regular experiments, where only occupancy and
temperature are used.

5.2.5. Instance selection

In order to reduce the computational cost of the training process, the
number of instances is reduced. A random sub-sample of about 20% of
the training data is selected. Some previous validations demonstrate that
samples about this percentage reduce the computational time while maintain
the forecasting performance levels.

5.2.6. Evolutionary search

The evolutionary search [4] is used to search the training parameters of
the model. The objective of this is to deliver the same opportunities to each
experiment in which all the models are trained using the same scenario. Each
occupancy indicator has equal possibilities of providing the best forecasting
results.
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The main parameters of the evolutionary search are: maximum gener-
ations that specifies the number of generations after which the algorithm
should be terminated; population size that stipulates the population size;
mutation type that determines the type of the mutation operator; tourna-
ment fraction that specifies the fraction of the current population which
should be used as tournament members and crossover probability that stip-
ulates the probability of an individual being selected. The parameters of the
evolutionary search method are given in the Table 2:

Parameter Value
Max generations 35
Population size 5

Mutation type Gaussian
Tournament fraction 0.25
Crossover probability 0.9

Table 2: Parameters of the evolutionary search.

5.2.7. Support vector machine

The main training parameters of SVR [34] are the C parameter, the type
of kernel and the kernel parameters [3]. The tested kernels and their param-
eters, are linear (C), Polynomial (C and degree) and Radial Basis function
(C and gamma). The C parameter is the complexity constant and adjusts
the misclassification tolerance. If C is too large there is an over-fitting, but
if it is too small there is an over-generalization. The polynomial kernel is
defined by k(z,y) = (x x y + 1)? where d is the degree of polynomial. The
radial kernel is defined by k(z,y) = exp(—g||z — y||?) where g is gamma.

The optimization of the training parameters of SVR for each experiment,
is performed using the evolutionary search method. A range for each param-
eter is defined before undertaking each experiment. Then, when the training
process is finished, the proper parameters are found.

5.2.8. Validation

In the validation process, the model generated with training data (65%),
is used to calculate the class attribute of the test data (35%). This data is
then validated with a MAPE (mean absolute percentage error) indicator in
front of the real values. The MAPE performance indicator is chosen due to
its popularity in the forecasting field. The data is chronologically selected,
so that the first period of time is used to predict the last period of time.
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6. Experimental Results

The experiments have been realized using Rapid Miner [12] and a com-
puter with an Intel Core i7-4500U processor and 8 GB of DDR3 RAM. In
the next section the indicator used to measure the performance is described.
Then, several scenarios and the results obtained are described.

6.1. Error indicator

Among the different methods used to calculate the quality of the model,
mean absolute percentage error (MAPE) is the most common indicator found
in the forecasting literature. The MAPE performance indicator, showed in
Equation 9, does not depend on the magnitude of the unit of measurement,
and is used to compare models. The smaller the MAPE, the more accurate
is the model.

N

1
MAPE = v Z

=1

Ym(@) — Yp(i)

x 100 9)
Ym(i)

Where:
N is the number of observations.
Ym 1s the measured output.
Yp 1s the predicted output.

6.2. Quality factor

The quality factor is a parameter calculated performing the weighted
average of the MAPE and the workload, and then scaling it between 0 and
100, as seen in the Equation 10. The workload is created calculating the
hours invested in the generation of each indicator set and then translating it
in a 0 to 100 range.

MAPE 0.1xWL
Quality factor = 5 ><+]\;<[QF* x 100 (10)

Where:
MAPE is the mean absolute percentage error in a 0 to 100 range.
WL is the workload.
MM is the maximum value of MAPE.
MQF is the maximum value of quality factor.
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6.3. Analytical results

In this section the results of several scenarios are analysed, and then
the results of the best model are plotted. In each scenario a comparison
is performed with the aim of resolving doubts and reaching a conclusion.
The main purpose of the experiments is to discover which method generates
the best occupancy indicator, a trade-off between workload and forecasting
accuracy. The performance of the model (MAPE) is the main output in each
experiment.

In the first scenario, the average performance of each indicator set is
calculated. In the second scenario, the influence of the temperature attribute
is analysed. In the third scenario, the prediction accuracy of each data
driven-model is studied. In the fourth scenario, the performance of each data
source is examined. In the fifth scenario, the several aggregation functions are
assessed. In the sixth scenario, the performances of the SVR kernel functions
are contrasted. In the seventh scenario, the proposed model is compared to a
model based on several calendar nominal attributes. In the eighth scenario,
the presented model is compared to an autoregressive model. In the ninth
scenario, the performance of the model for several buildings is presented. In
the tenth scenario, the forecasting accuracy for each sensor data treatment
is evaluated. In the eleventh scenario, the workload for each indicator set is
provided.

The several experiments, unless otherwise indicated, have been performed
with PI and PII data, using occupancy and temperature attributes, with an
SVR model, linear kernel, aggregation function E, 65% of the training data,
35% of the test data and 20% of the training sub-sample.

6.3.1. Scenario 1. Performance according to the indicator set

The first experiment is performed with temperature and each of the artifi-
cial occupancy attributes. For each building, a total of 43 of training and test
processes are realized, one for each occupancy indicator. Then, the MAPE
average is calculated for each occupancy indicator set. The main idea is to
discover which is the best occupancy indicator set, that is the method that
provides the best predictive accuracy, as seen in Table 3.

20

Page 20 of 35



Indicator set P1 P11
Avg. MAPE (%) | Avg. MAPE (%)
Set 1 49.81 48.34
Set, 2 24.34 22.90
Set 3 30.08 23.91
Set 4 18.11 18.05
Set 5 17.05 18.01
Set 6 17.03 17.96
Set 7 16.99 17.93

Table 3: Performance for indicator set.

The Table 3 indicates that most sophisticated indicator set, set 7, presents
the best results. However, the improvement between sets 4, 5, 6 and 7 is very
slight. So, there is a relationship between the complexity of the indicator and
the MAPE, but it is not linear.

6.3.2. Scenario 2. Performance according to the temperature attribute

The objective of the second experiment is to determine if the tempera-
ture attribute improves the forecasting quality. The second experiment is
implemented first with the temperature and then without the temperature
attribute. The same steps as in the first experiment are undertaken, and the
outcome is shown in Table 4.

PI PII
Indicator set | Without Temp. \ Temp. | Without Temp. \ Temp.
Avg. MAPE (%) Avg. MAPE (%)
Set 1 49.16 49.81 52.40 48.34
Set 2 23.21 24.34 27.01 22.90
Set 3 30.52 30.08 25.27 23.91
Set 4 17.13 18.11 18.67 18.05
Set 5 16.29 17.05 18.65 18.01
Set 6 16.28 17.03 18.53 17.96
Set 7 16.25 16.99 18.51 17.93

Table 4: Performance for temperature attribute.

As seen in Table 4, the outcomes do not show an improvement based on
the use of the temperature attribute. The forecasting performance variation
is minimal and in opposite directions.
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6.3.3. Scenario 3. Performance according to the model

The third experiment has the aim of evaluating which is the most ap-
propriate model. An MLR [9] and an ANN [38] models are compared with
the SVR model. The adjustable training parameters are as follows: for the
MLR the ridge factor and the feature selection method, and for the MLP
the learning rate, the momentum and the training cycles. The experiment is
conducted for indicator set 4, as seen in Table 5.

Avg. MAPE (%)

Model PI PTI
MLR | 23.69 21.13
MLP | 21.31 34.96
SVR | 18.11 18.05

Table 5: Performance for model (set 4).

According to Table 5, the SVR model provides the most suitable results,
but there are no clear evidences as to whether the MLR or the MLP model
is better. As seen in [24], the SVR model is the correct model for dealing
with load consumption forecasting in non-residential buildings.

6.3.4. Scenario 4. Performance according to the data source

Experiment 4 consists of assessing the several data sources in order to
know which is the most suitable: expert knowledge, sensor data or teacher
schedule. The results for indicator set 4 are depicted in Table 6.

Avg. MAPE (%)
PI PII
Expert knowledge | 17.67 17.91
Sensor data 17.63 18.35
Teacher schedule | 19.55 19.17

Data source

Table 6: Performance for data source (set 4).

The conclusion is that expert knowledge and sensor data sources enhance
the forecasting accuracy of the teachers’ schedule data source. The use of
the sensor data source is preferable because is an impartial and repeatable
method compared with the expert knowledge data source. The fact that the
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sensor data were collected in PIV indicates that there is room for improve-
ment. Therefore, the differences in the results between the three data sources
are slight, as seen in Table 6.

6.3.5. Scenario 5. Performance according to the aggregation function

Experiment 5 analyses the effect of the aggregation function as described
in 5.1. In the generation of the occupancy indicator 4, a process of aggrega-
tion between indicators 2 and 3, is carried out. To find out how to perform
the aggregation process properly, five aggregation functions are tested. The
results for indicator 4.2.2 are shown in Table 7.

. . Avg. MAPE (%)
Aggregation function PI PTI

A 27.22 27.14

B 14.60 18.01

C 28.01 29.47

D 19.36 20.62

E 14.42 16.99

Table 7: Performance for aggregation function (indicator 4.2.2).

As shown in Table 7, the aggregation function is absolutely crucial. The
aggregation functions B and E far exceed the results of the rest. The multi-
plicative aggregation functions improve the forecasting performance of the
additive ones. The aggregation function E slightly exceeds performance
method B.

6.3.0. Scenario 6. Performance according to the kernel

In experiment 6, the performance of each SVR kernel is tested. Linear,
radial basis function (RBF) and polynomial kernels are analysed with the
aim of comparing their forecasting accuracy. The parameters for the RBF
kernel are C and gamma, for the polynomial kernel are C and the polynomial

degree and for the linear kernel is C. The outcomes for indicator set 4 are
listed in Table 8.
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Avg. MAPE (%)
PI PII
Linear 18.11 18.05
Polynomial | 25.47 22.55
RBF 20.59 19.45

Kernel

Table 8: Performance for kernel type (set 4).

The experiments presented in Table 8, show that the linear kernel is the
most efficient of all three kernels. In addition, the linear kernel involves a
lower computational cost than the RBF and the polynomial.

6.3.7. Scenario 7. Performance for nominal attributes

The principal purpose of the experiment 7 is to prove that the utilization
of one single occupancy attribute in the load forecasting model is more ap-
propriate than the use of several calendar nominal attributes, such as year,
month, week day, holiday, type of day and hour of the day.

In the experiment, all the nominal attributes are converted into numeric
class to deal with the SVR. A comparison is performed between the nominal
attributes model and the 4.2.2 occupancy indicator model. The results are
shown in Table 9.

. Avg. MAPE (%)
Attribute type PI PII
Calendar nominal attributes | 26.67 21.63
Indicator 4.2.2 14.42 16.99

Table 9: Performance for attribute type (indicator 4.2.2).

As seen in Table 9, the presented model provides better prediction results
than the model with the calendar nominal attributes. The presented model
outperforms the models with a large set of attributes if the data used in the
occupancy attribute creation is processed correctly. Significant differences
can also be seen in terms of computational time, in favour of one single
attribute model.

6.3.8. Scenario 8. Performance for auto-regression model
In the experiment 8 the main issue is to show that the presented model
increases the forecasting accuracy compared with the auto-regressive models
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[1]. So, a 24-hour ahead ARMA model with exogenous variables including
temperature, is contrasted with the SVR model with the 4.2.2 occupancy
indicator. The results are presented in Table 10.

Avg. MAPE (%)
Model PI PTI

ARMA-X 26.84 19.87
SVR (indicator 4.2.2) | 14.42 16.99

Table 10: Performance for model (indicator 4.2.2).

This experiment contrasts with an ARMA-X model where the past values
of consumption and temperature are used as attributes, with the presented
model. Usually, the auto-regressive models provide suitable results in this
field. However, the presented results show that the ARMA model does not
improve the occupancy indicator SVR model, as seen in Table 10. Moreover,
due to the amount of attributes used in the ARMA-X, the difference in com-
putational time, in favour of the single occupancy attribute, is remarkable.

6.3.9. Scenario 9. Performance according to the building
Experiment 9 is done to test the method in other buildings of the univer-
sity. PI and PII buildings are compared to PIV and the Faculty of Science

buildings. The results of the comparison for indicator set 4 are presented in
Table 11.

Building | Avg. MAPE (%)
PI 18.11
PII 18.05
PIV 16.35
Science 18.75

Table 11: Performance for building (set 4).

The results of PIV and the Faculty of Science buildings are similar to the
results of the buildings used in the experiments. The PI, PII and Faculty of
Science buildings have the same profile in terms of offices, laboratories and
classrooms. However, the profile of PIV is different as it consists mainly of
offices. Due to the fact that the sensor data collection was realized in PIV,
the prediction accuracy for PIV is higher.
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6.3.10. Scenario 10. Performance according to the sensor data treatment

The experiment 10 analyses which is the most suitable method for pro-
cessing the sensor data. The performance comparison is between the pre-
sented model, the 4.2.2 indicator, and an occupancy indicator generated by
calculating for each of the 7 day profiles the 24 hourly occupancy levels,
based on the average of the available sensor data, for an each hour of each
day profile.

Avg. MAPE (%)
PI PII
Hour per day 14,76 17,19
Aggregation function (indicator 4.2.2) | 14.42 16.99

Sensor data treatment

Table 12: Performance for sensor data treatment (indicator 4.2.2).

The results show that the presented method is slightly better than the
hour per day method, as Table 12 shows.

6.3.11. Scenario 11. Workload according to the indicator
Experiment 11 clarifies the workload product of the creation of each oc-
cupancy indicator.

Indicator set | Workload units
1 10

20

20

25

80

90

100

| O O =] W[ N

Table 13: Workload for each indicator set.

The aim of the experiment 11 is to show the great difference in the gen-
eration of indicators 1, 2, 3 and 4, that involve a small amount of work, and
indicators 5, 6 and 7, the production of which requires more labour hours,
as shown in Table 13.
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6.4. Graphic results

In the present section some of the previous experiments are plotted. The
following figures show the output of the model based on the indicators, with
the best ratio between accuracy in terms of forecasting and the workload
needed to produce it, appearing with regard to indicator 4.2.2.

6.4.1. Chart 1. MAPE vs. hour
In the Figure 5, a chart of MAPE vs. hour for both buildings is shown.

Figure 5: MAPE vs. hour.

Figure 5 shows that the prediction in the class hours presents good results.
There are 4 hourly zones where the prediction is of poor quality. These time-
slots are at the beginning and the end of the school day, at lunch time and
during some night time hours.

6.4.2. Chart 2. MAPE vs. day of the week

In Figure 6, a MAPE vs. day plot for both buildings is presented, where
the numbers 1 to 7 represent Monday to Sunday respectively.

Figure 6: MAPE vs. day of the week.

As seen in Figure 6, the forecasting of the midweek days is suitable. The
prediction performance decays principally at the beginning and at the end
of the working week and on Saturdays.

6.4.3. Chart 8. MAPE vs. day type
In Figure 7, a MAPE vs. day type chart for both buildings is plotted.

Figure 7: MAPE vs. day type.

Among the several profiles of days: school (1), exam (3), school-leaving
examination (4), holiday and weekend (6) days are well predicted by the
model. At a lower level of prediction performance there are: non-school (2),
Easter week and Christmas (7) and August days (5).
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6.4.4. Chart 4. MAPE vs. month
In Figure 8, a MAPE vs. month chart for both buildings is shown.

Figure 8: MAPE vs. month.

Overall, both models offer a poor level of prediction in April and August.
Equally, the following months are better in terms of prediction: January,
February, March, June, September, October, November and December.

6.4.5. Chart 5. Quality factor vs. indicator set
In Figure 9, a plot of the quality factor vs. the occupancy indicator set
is presented.

Figure 9: Quality factor vs. occupancy indicator set.

The smaller the quality factor, the better it is. Figure 9 shows that
indicator set 4 presents a balance between prediction accuracy and workload.

7. Discussion

Taking into account the experiments, there is a non-linear relationship
between occupancy indicator complexity and forecasting accuracy. The com-
putational cost is not the main issue in this work because most of the ex-
periments use few attributes. In this work, the workload to generate the
artificial attributes is a major concern. The more sophisticated indicators
(5, 6 and 7) predict better than the simple ones (1, 2 and 3) but require a
large amount of workload. There is a balance point situated on indicator set
4, where forecasting precision and workload are suitable, as the quality factor
indicates in Figure 9. In addition, the occupancy indicators created using
expert knowledge and sensor data sources provide a superior prediction than
the teacher schedule ones, although the method based on collected sensor
data is more expensive, delivers more impartiality and repeatability. In rela-
tion to the aggregation functions, it is shown that multiplicative aggregation
functions such as aggregation function E, are much better than the additive
ones. In addition, the experiments show that the temperature attribute, in
this work, is not necessary, so it does not improve the load forecasting. This
is due to the partial disaggregation of the HVAC system from the electric
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consumption, since it is composed by gas boilers and fancoils, and a portion
of the energy consumption is not electricity. Furthermore, the proposed sen-
sor data treatment, based on the aggregation functions, enhances the hour
per day treatment.

As in [24], SVR model outperforms the other tested models (MLR, ARMA-
X and MLP), however the computational cost slightly increases due the low
number of attributes, though it is entirely acceptable. Moreover, among the
several tested SVR kernels, the linear kernel not only provides more accurate
predictions, but also involves a short computational training time. Further-
more, the utilization of a single attribute of occupation in comparison with
several calendar nominal attributes such as hour, day of the week, day type
and month has resulted in a more compact and precise model. Additionally,
the method has proved to work satisfactorily with other university buildings
such as the PIV and Faculty of Science ones, as shown in Table 11.

Analysing the charts, can be seen that the worst consumption prediction
periods are in the non-well defined human conduct intervals, and in the high
variability intervals. In Figure 5, referring to MAPE vs. hour chart, the load
forecast is less efficient in the nocturnal hours, at the beginning and the end
of the school-day and at lunch time. In the nocturnal hours, this is due to
the uncertainties generated by the cleaning and security services. At lunch
time and at the beginning and the end of the school-day it is due to the
variability in the individual behaviours of the users.

Comparing Figure 6, which refers to the MAPE vs. day chart, the predic-
tion performance decreases principally with regard to the beginning and the
end of the working week and Saturdays. Mondays and Fridays contain a large
variability, especially Fridays, because there are no classes in the afternoon,
but some teacher’s offices are occupied. Saturdays are complicated with re-
gard to prediction due to random activities in the university installations,
which is not the case on Sundays.

In relation to Figure 7, referring to MAPE vs. day type chart, the ac-
curacy of the model is reduced in non-school, Easter week, Christmas and
August days. The profile of days that are adequately predicted are uniform
days. For example, in school, examination and school-leaving examination
days, the university is open and there are students. In the same way, in
holidays and weekend days the university is closed and there are neither
students nor teachers. On the other hand, non-school, Easter week and
Christmas days are not accurately predicted. Given the dispersion of human
behaviours, there are no students in the building, but some employees tend
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to work during these periods. In relation to August, the HVAC system is not
running, so the consumption pattern is slightly different, and there are some
employees who work with non-defined schedules in some laboratories.

As shown in Figure 8, referring to the MAPE vs. month chart, the pre-
diction presents the lowest forecasting levels during April and August. The
month of April mainly contains Easter week, therefore is hard to predict, as
explained previously. The month of August has been explained previously. In
general, months with classes, where consumption patterns are mainly defined
by the students’ behaviour, the low-dispersion human behaviour periods, are
the months that present the highest accuracy level with regard to prediction.

Among the improvements for future work, there is no doubt that enhanc-
ing the descriptive level of human behaviour in terms of the worst-defined
time periods would improve forecasting accuracy. Furthermore, the chosen
model that appears in the charts is based on the sensor data (indicator 4.2.2).
For this reason the largest deviations in terms of prediction are located in
specific hourly or daily periods. If another data source has been used, the
forecasting divergences would be located in other intervals. So, the data
sources could be analysed to know which are better for each time-slot, and
then apply them selectively or mixed in order to achieve optimal performance.
Finally, a revision and an improvement in terms of the occupancy levels of
special days including Easter week, Christmas and non-school days, is neces-
sary. Perhaps, the model could be improved by incrementing the number of
captured special days in the sensors’ database. Besides, although the results
are not poor, the sensor data source uses general data from the PIV building.
Performing a short data collection procedure in the other buildings to obtain
specific data could improve the accuracy of the predictions. It is important
to note that by improving the adjustment between indicator sets 3 and 4,
some additional prediction accuracy could be obtained.

8. Conclusions

One of the most prevailing needs in terms of utilities is to adjust electricity
generation to consumption. For this reason, consumption forecasting is a well
understood domain. Also, 40% of electricity consumption is in the building
sector. In a previous paper [24], the authors presented an STLF model
for non-residential buildings for the University of Girona. The main results
obtained showed that using occupancy and temperature as attributes, and
as a model the SVR model provides the best load forecasting. However,
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that model used continuous occupancy sensor data, unavailable in advance.
In fact, the main purpose of the paper was to determine the appropriate
attributes and models. Now, a fully operational STLF model for the non-
residential buildings of the University of Girona is presented.

This paper aims to dispose of the occupancy data in advance. Therefore,
several artificial occupancy attributes from different data sources have been
created. Then, to find which is the best artificial occupancy indicator, several
methods and data sources including sensor data, expert knowledge, class
schedules and school calendar, are tested and analysed through the SVR
model. Furthermore, this information is compared in terms of the workload
resulting from the creation process associated with each occupancy attribute,
searching for the most balanced occupancy indicator between performance
and workload. Finally, some experiments are conducted to compare the
proposed model to other classic models and attributes.

Although the prediction accuracy is lower with respect to previous work
[24], the main objective of the presented work is to generate a model based
only on artificial attributes, tracing a new path towards artificial occupancy
attributes generation methods. The results show that the model which has
the best ratio between forecasting precision and workload is an SVR model
with a linear kernel trained only with one occupancy attribute generated
from the aggregation of the hourly and daily profiles, based on sensor data.
So, the SVR model provides the best results in comparison with other data-
driven models (ARMA-X, MLR or ANN). Moreover, taking into account
the partial disaggregation of the HVAC system, the model does not depend
on temperature, converting it in a more compact and simple model and
reducing the computational cost. Unlike the other models, this new model
can perform hourly consumption predictions months in advance, using only
occupancy data. In addition, the proposed method could interpolate the new
consumption levels if new classrooms would be constructed, which differs
from other works.

In summary, an STLF method for non-residential buildings is provided.
This simple and compact model predicts the hourly consumption, months in
advance, and is based only on occupancy. Other methods are based on auto-
regression or on the need for previously unavailable exogenous variables, and
thus require weather forecasts or consumption data to perform the predic-
tion, making a long-term hourly forecast impossible. Moreover, this paper
explains the methods for the generation of these occupancy indicators. Ev-
ery occupancy attribute is assessed in order to determine which method and
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data source provide the best results in terms of prediction. In future work,
departing from the presented methods, some indicator adjustments and revi-
sions of the data sources will be performed in order to improve the forecasting
precision of the method.
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