Abstract
Deep learning on graphs has become a popular research topic with many applications. However, past work has concentrated on learning graph embedding tasks, which is in contrast with advances in generative models for images and text. Is it possible to transfer this progress to the domain of graphs? We propose to sidestep hurdles associated with linearization of such discrete structures by having a decoder output a probabilistic fully-connected graph of a predefined maximum size directly at once. Our method is formulated as a variational autoencoder. We evaluate on the challenging task of molecule generation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bengio, S., Vinyals, O., Jaitly, N., Shazeer, N.: Scheduled sampling for sequence prediction with recurrent neural networks. In: NIPS, pp. 1171–1179 (2015)
Bowman, S.R., Vilnis, L., Vinyals, O., Dai, A.M., Józefowicz, R., Bengio, S.: Generating sentences from a continuous space. In: CoNLL, pp. 10–21 (2016)
Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric deep learning: going beyond Euclidean data. IEEE Signal Process. Mag. 34(4), 18–42 (2017)
Cho, M., Sun, J., Duchenne, O., Ponce, J.: Finding matches in a haystack: a max-pooling strategy for graph matching in the presence of outliers. In: CVPR, pp. 2091–2098 (2014)
Gómez-Bombarelli, R., et al.: Automatic chemical design using a data-driven continuous representation of molecules. CoRR abs/1610.02415 (2016)
Irwin, J.J., Sterling, T., Mysinger, M.M., Bolstad, E.S., Coleman, R.G.: ZINC: a free tool to discover chemistry for biology. J. Chem. Inf. Model. 52(7), 1757–1768 (2012)
Jang, E., Gu, S., Poole, B.: Categorical reparameterization with Gumbel-Softmax. CoRR abs/1611.01144 (2016)
Johnson, D.D.: Learning graphical state transitions. In: ICLR (2017)
Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. CoRR abs/1312.6114 (2013)
Kusner, M.J., Hernández-Lobato, J.M.: GANS for sequences of discrete elements with the Gumbel-Softmax distribution. CoRR abs/1611.04051 (2016)
Kusner, M.J., Paige, B., Hernández-Lobato, J.M.: Grammar variational autoencoder. In: ICML, pp. 1945–1954 (2017)
Landrum, G.: RDKit: Open-source cheminformatics. http://www.rdkit.org
Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R.S.: Gated graph sequence neural networks. CoRR abs/1511.05493 (2015)
Olivecrona, M., Blaschke, T., Engkvist, O., Chen, H.: Molecular de novo design through deep reinforcement learning. CoRR abs/1704.07555 (2017)
Ramakrishnan, R., Dral, P.O., Rupp, M., von Lilienfeld, O.A.: Quantum chemistry structures and properties of 134 kilo molecules. Sci. Data 1, 140022 (2014)
Segler, M.H.S., Kogej, T., Tyrchan, C., Waller, M.P.: Generating focussed molecule libraries for drug discovery with recurrent neural networks. CoRR abs/1701.01329 (2017)
Simonovsky, M., Komodakis, N.: Dynamic edge-conditioned filters in convolutional neural networks on graphs. In: CVPR (2017)
Sohn, K., Lee, H., Yan, X.: Learning structured output representation using deep conditional generative models. In: NIPS, pp. 3483–3491 (2015)
Stewart, R., Andriluka, M., Ng, A.Y.: End-to-end people detection in crowded scenes. In: CVPR, pp. 2325–2333 (2016)
Theis, L., van den Oord, A., Bethge, M.: A note on the evaluation of generative models. CoRR abs/1511.01844 (2015)
Vinyals, O., Bengio, S., Kudlur, M.: Order matters: sequence to sequence for sets. arXiv preprint arXiv:1511.06391 (2015)
Williams, R.J., Zipser, D.: A learning algorithm for continually running fully recurrent neural networks. Neural Comput. 1(2), 270–280 (1989)
Xu, D., Zhu, Y., Choy, C.B., Fei-Fei, L.: Scene graph generation by iterative message passing. In: CVPR (2017)
Yu, L., Zhang, W., Wang, J., Yu, Y.: SeqGAN: sequence generative adversarial nets with policy gradient. In: AAAI (2017)
Acknowledgments
We thank Shell Xu Hu for discussions on variational methods, Shinjae Yoo for project motivation, and anonymous reviewers for their comments.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Simonovsky, M., Komodakis, N. (2018). GraphVAE: Towards Generation of Small Graphs Using Variational Autoencoders. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds) Artificial Neural Networks and Machine Learning – ICANN 2018. ICANN 2018. Lecture Notes in Computer Science(), vol 11139. Springer, Cham. https://doi.org/10.1007/978-3-030-01418-6_41
Download citation
DOI: https://doi.org/10.1007/978-3-030-01418-6_41
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-01417-9
Online ISBN: 978-3-030-01418-6
eBook Packages: Computer ScienceComputer Science (R0)