Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Sympathetic neuronal activity in diabetic and non-diabetic subjects with peripheral arterial occlusive disease

  • Reviews
  • Published:
Klinische Wochenschrift Aims and scope Submit manuscript

Summary

Despite the vasoconstrictory influence of theα-adrenergic system on the peripheral blood circulation the results of the sympathectomy were not satisfying in the therapy of peripheral arterial occlusive disease (PAOD). The aim of the present investigation was to clarify the pathophysiologic mechanisms of this clinical observation. Free and sulfoconjugated catecholamines were determined in the femoral artery, vein, and cubital vein of 19 healthy controls, 21 non-diabetic patients with PAOD stage II, 8 non-diabetic (PAOD IV) and 20 diabetic patients (D IV) with PAOD stage IV. In comparison with controls and group PAOD II an increased sympathoneuronal tone in group PAOD IV was evident at rest. Sympathetic activation was not restricted to the affected limb, since femoral and cubital venous norepinephrine levels were not different and plasma epinephrine fractional extraction (PEFE) was not altered by angiopathy. The lower sympathoneuronal activation in the group D IV may be attributed to an impaired pain perception or a reduced dopamineβ-hydroxylase activity indicated by a lower ratio of norepinephrine to dopamine. The failing long-term efficacy of lumbar sympathectomy in critical arterial limb disease may be explained by marked spontaneous sympathicolysis in diabetics, whereas in nondiabetics with sympathetic activation other mechanisms like development of unilateral Mönckeberg sclerosis, progression of proximal arterial occlusion or induction of steal effects have to be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DA:

dopamine

DBH:

dopamine beta-hydroxylase

EGTA:

ethylene glycol-bis(β-aminoethylether)-N,N,N′,N′-tetraacetic acid

EPI:

epinephrine

HPLCA:

high performance liquid chromatography with amperometric detection

NE:

norepinephrine

PAOD:

peripheral arterial occlusive disease

PEFE:

plasma epinephrine fractional extraction

References

  1. Beretta-Piccoli C, Weidmann P, Ziegler W, Glück Z, Keusch G (1979) Plasma catecholamines and renin in diabetes mellitus. Relationships with posture, age, sodium, and blood pressure. Klin Wochenschr 57:681–691

    Google Scholar 

  2. Burke D, Sundlöf G, Walin BG (1977) Postural effects on muscle nerve sympathetic activity in man. J Physiol 272:399

    Google Scholar 

  3. Diehm C (1984) Effects of beta-adrenergic blocking drugs on arterial blood flow. Vasa 13:201–206

    Google Scholar 

  4. Ewing DJ, Clarke BF (1982) Diagnosis and management of diabetic autonomic neuropathy. Br Med J 285:916–918

    Google Scholar 

  5. Galbo H. Sympathoadrenal activity in exercise (1983). In: Galbo H (ed) Hormonal and metabolic adaptation to exercise. Georg Thieme, Stuttgart New York, pp 14–16

    Google Scholar 

  6. Goebel FD, Füessel HS (1983) Mönckeberg's sclerosis after sympathetic denervation in diabetic and non-diabetic subjects. Diabetologia 24:347–350

    Google Scholar 

  7. Goldstein DS, McCarty R, Polinsky RJ, Kopin IJ (1983) Relationship between plasma norepinephrine and sympathetic neural activity. Hypertension 5:552–559

    Google Scholar 

  8. Goldstein DS, Bonner RF, Zimlichman R, Zahn TP, Cannon RO, Rosing DR, Stull R, Keiser HR (1986) Indices of sympathetic vascular innervation in sympathectomized patients. J Autonomic Nervous System 15:309–318

    Google Scholar 

  9. Hild R, Zolg H, Brecht T, Huber U (1964) Ergometrische Belastungen während intraarterieller Infusion eines Nucleotid-Nucleosid-Gemisches als neues Verfahren zur Behandlung der arteriellen Verschlußkrankheit. Med Welt I:614–624

    Google Scholar 

  10. Huber KH, Werle E, Jost J, Manz F, Stehli H, Weicker H (1988) Orthostasetoleranz und sympathoadrenale Adaptation bei Langstreckenläufern und Ringern. Dtsch Z Sportmed 39:7–16

    Google Scholar 

  11. Jakobson J, Brimijoin S, Skan K, Sidenius P, Wells D (1981) Retrograde axonal transport of transmitter enzymes, fucose-labeled protein and nerve growth factor in streptozotocin-diabetic rats. Diabetes 30:797–803

    Google Scholar 

  12. Joyce DA, Beilin LJ, Vandongen R, Davidson L (1982) Epinephrine sulfation in the forearm: Arteriovenous differences in free and conjugated catecholamines. Life Sci 31:2513–2517

    Google Scholar 

  13. Joyce DA, Beilin LJ, Vandongen R, Davidson L (1982) Plasma free and sulfate conjugated catecholamine levels during acute physiological stimulation in man. Life Sci 30:447–454

    Google Scholar 

  14. Péronnet F, Béliveau L, Bourdeau G, Trudeau F, Brisson G, Nadeau R (1988) Regional plasma catecholamine removal and release at rest and exercise in dogs. Am J Physiol 254(23):R663–672

    Google Scholar 

  15. Ratge D, Knoll E, Wisser H (1986) Plasma free and conjugated catecholamines in clinical disorders. Life Sci 39:557–564

    Google Scholar 

  16. Reinhart K (1988) Zum Monitoring des Sauerstofftransportsystems. Anaesthesist 37:1–9

    Google Scholar 

  17. Rexroth W, Hageloch W, Isgro F, Koeth T, Manzl G, Weicker H (1989) Influence of peripheral arterial occlusive disease on muscular metabolism. Part 1: Changes in lactate, ammonia, and hypoxanthine concentration in femoral blood. Klin Wochenschr 67:576–582

    Google Scholar 

  18. Rexroth W, Isgro F, Koeth T, Manzl G, Weicker H (1989) Influence of peripheral arterial occlusive disease on muscular metabolism. Part 2: Changes in pyruvate, alanine, and urea concentration in femoral blood. Klin Wochenschr 67:616–620

    Google Scholar 

  19. Robertson D, Goldberg MR, Ourot J, Hollister AS, Wiley R, Thomson JG, Robertson RM (1986) Isolated failure of autonomic noradrenergic neurotransmission. New Engl J Med 314(23):1494–1497

    Google Scholar 

  20. Schömig A, Dart AM, Dietz R, Mayer E, Kübler W (1984) Release of endogenous catecholamines in the ischemic myocardium of the rat. Part A: Locally mediated release. Circ Res 55:689–701

    Google Scholar 

  21. Stegemann J. Leistungsphysiologie: Physiologische Grundlagen der Arbeit und des Sports (1984), 3rd ed., Georg Thieme, Stuttgart, New York, pp 157–160, p 206

    Google Scholar 

  22. Sundkvist G, Almér LO, Lilja B (1979) Respiratory influence on heart rate in diabetes mellitus. Br Med J 1:924–925

    Google Scholar 

  23. Wallin BG, Sundlöf G, Erikson BM, Dominiak P, Grobecker H, Lindblad LE (1981) Plasma noradrenalin correlates to sympathetic muscle nerve activity in normotensive man. Acta Physiol Scand 111:169

    Google Scholar 

  24. Weicker H (1986) Bestimmung der freien und konjugierten Katecholamine mit HPLC und amperometrischer Detektion. Lab Med 10:31–44

    Google Scholar 

  25. Werle E, Michel G, Lenz T, Kather H, Schneider B, Weicker H (1988) Restricted alpha- and beta-adrenoceptor affinity of sulfoconjugated catecholamines in human mononuclear leucocytes, platelets and fat cells and reduction of the postreceptor mechanisms. Int J Sports Med 9 (Suppl. 2):93–102

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huber, K.H., Rexroth, W., Werle, E. et al. Sympathetic neuronal activity in diabetic and non-diabetic subjects with peripheral arterial occlusive disease. Klin Wochenschr 69, 233–238 (1991). https://doi.org/10.1007/BF01666848

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01666848

Key words