Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Bibliographie

  1. H. Cartan etC. Chevalley, Séminaire de l’École Normale Supérieure, 8e année (1955–56),Gémétrie algébrique.

  2. H. Cartan andS. Eilenberg,Homological Algebra, Princeton Math. Series (Princeton University Press), 1956.

  3. W. L. Chow andJ. Igusa, Cohomology theory of varieties over rings,Proc. Nat. Acad. Sci. U.S.A., t. XLIV (1958), p. 1244–1248.

    Article  MathSciNet  Google Scholar 

  4. R. Godement,Théorie des faisceaux, Actual. Scient. et Ind., no 1252, Paris (Hermann), 1958.

  5. H. Grauert, Ein Theorem der analytischen Garbentheorie und die Modulräume komplexer Strukturen,Publ. Math. Inst. Hautes Études Scient., no 5, 1960.

  6. A. Grothendieck, Sur quelques points d’algèbre homologique,Tôhoku Math. Journ., t. IX (1957), p. 119–221.

    MathSciNet  Google Scholar 

  7. A. Grothendieck, Cohomology theory of abstract algebraic varieties,Proc. Intern. Congress of Math., p. 103–118, Edinburgh (1958).

  8. A. Grothendieck, Géométrie formelle et géométrie algébrique,Séminaire Bourbaki, 11e année (1958–59), exposé 182.

  9. M. Nagata, A general theory of algebraic geometry over Dedekind domains,Amer. Math. Journ.: I, t. LXXVIII, p. 78–116 (1956); II, t. LXXX, p. 382–420 (1958).

    Article  MathSciNet  Google Scholar 

  10. D. G. Northcott,Ideal theory, Cambridge Univ. Press, 1953.

  11. P. Samuel,Commutative algebra (Notes by D. Herzig), Cornell Univ., 1953.

  12. P. Samuel,Algèbre locale, Mém. Sci. Math., no 123, Paris, 1953.

  13. P. Samuel andO. Zariski,Commutative algebra, 2 vol., New York (Van Nostrand), 1958–60.

    MATH  Google Scholar 

  14. J.-P. Serre, Faisceaux algébriques cohérents,Ann. of Math., t. LXI (1955), p. 197–278.

    Article  MathSciNet  Google Scholar 

  15. J.-P. Serre, Sur la cohomologie des variétés algébriques,Journ. de Math. (9), t. XXXVI (1957), p. 1–16.

    MathSciNet  Google Scholar 

  16. J.-P. Serre, Géométrie algébrique et géométrie analytique,Ann. Inst. Fourier, t. VI (1955–56), p. 1–42.

    MathSciNet  Google Scholar 

  17. J.-P. Serre, Sur la dimension homologique des anneaux et des modules noethériens,Proc. Intern. Symp. on Alg. Number theory, p. 176–189, Tokyo-Nikko, 1955.

  18. A. Weil,Foundations of algebraic geometry, Amer. Math. Soc. Coll. Publ., no 29, 1946.

  19. A. Weil, Numbers of solutions of equations in finite fields,Bull. Amer. Math. Soc., t. LV (1949), p. 497–508.

    Article  MathSciNet  Google Scholar 

  20. O. Zariski,Theory and applications of holomorphic functions on algebraic varieties over arbitrary ground fields, Mem. Amer. Math. Soc., no 5 (1951).

  21. O. Zariski, A new proof of Hilbert’s Nullstellensatz,Bull. Amer. Math. Soc., t. LIII (1947), p. 362–368.

    MathSciNet  Google Scholar 

  22. E. Kähler, Geometria Arithmetica,Ann. di Mat. (4), t. XLV (1958), p. 1–368.

    Article  Google Scholar 

Download references

Authors

About this article

Cite this article

Grothendieck, A., Dieudonné, J. Éléments de Géométrie algébrique. Publications Mathématiques de L’Institut des Hautes Scientifiques 4, 5–214 (1960). https://doi.org/10.1007/BF02684778

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02684778