Abstract
The effects of (bounded versions of) the forcing axioms \(\mathsf {SCFA}\), \(\mathsf {PFA}\) and \(\mathsf {MM}\) on the failure of weak threaded square principles of the form \(\square (\lambda ,\kappa )\) are analyzed. To this end, a diagonal reflection principle, \(\mathsf {DSR}{\left( {<}\kappa ,S\right) }\) is introduced. It is shown that \(\mathsf {SCFA} \) implies \(\mathsf {DSR}{\left( \omega _1,S^\lambda _\omega \right) }\), for all regular \(\lambda \ge \omega _2\), and that \(\mathsf {DSR}{\left( \omega _1,S^\lambda _\omega \right) }\) implies the failure of \(\square (\lambda ,\omega _1)\) if \(\lambda >\omega _2\), and it implies the failure of \(\square (\lambda ,\omega )\) if \(\lambda =\omega _2\). It is also shown that this result is sharp. It is noted that \(\mathsf {MM}\)/\(\mathsf {PFA}\) imply the failure of \(\square (\lambda ,\omega _1)\), for every regular \(\lambda >\omega _1\), and that this result is sharp as well.
Similar content being viewed by others
References
Claverie, B., Schindler, R.: Woodin’s axiom \((*)\), bounded forcing axioms, and precipitous ideals on \(\omega _1\). J. Symb. Log. 77(2), 475–498 (2012)
Cummings, J., Foreman, M., Magidor, M.: Squares, scales and stationary reflection. J. Math. Log. 01(01), 35–98 (2001)
Cummings, J., Magidor, M.: Martin’s maximum and weak square. Proc. Am. Math. Soc. 139(9), 3339–3348 (2011)
Džamonja, M., Hamkins, J.D.: Diamond (on the regulars) can fail at any strongly unfoldable cardinal. Ann. Pure Appl. Log. 144, 83–95 (2006)
Fuchs, G.: Hierarchies of forcing axioms, the continuum hypothesis and square principles. J. Symb. Log. Preprint available at http://www.math.csi.cuny.edu/~fuchs/ (2016)
Fuchs, G.: Hierarchies of (virtual) resurrection axioms. J. Symb. Log. Preprint available at http://www.math.csi.cuny.edu/~fuchs/ (2016)
Fuchs, G.: Closure properties of parametric subcompleteness. Arch. Math. Log. Preprint available at http://www.math.csi.cuny.edu/~fuchs/ (2017)
Fuchs, G., Rinot, A.: Weak square and stationary reflection. Acta Math. Hung. (2017). Preprint at arXiv:1711.06213 [math.LO]
Hamkins, J.D., Johnstone, T.A.: Resurrection axioms and uplifting cardinals. Arch. Math. Log. 53(3–4), 463–485 (2014)
Hamkins, J.D., Johnstone, T.A.: Strongly uplifting cardinals and the boldface resurrection axioms. Arch. Math. Log. 56(7–8), 1115–1133 (2017)
Hayut, Y., Lambie-Hanson, C.: Simultaneous stationary reflection and square sequences. J. Math. Log. 17(2) (2017). Preprint: arXiv: 1603.05556v1 [math.LO]
Jensen, R.B.: Some remarks on \(\square \) below \(0^{\text{pistol}}\). Circulated notes (unpublished)
Jensen, R.B.: Forcing axioms compatible with CH. Handwritten notes, available at https://www.mathematik.hu-berlin.de/~raesch/org/jensen.html (2009)
Jensen, R.B.: Subproper and subcomplete forcing. 2009. Handwritten notes, available at https://www.mathematik.hu-berlin.de/~raesch/org/jensen.html
Jensen, R.B.: Subcomplete forcing and \({\cal{L}}\)-forcing. In: Chong, C., Feng, Q., Slaman, T.A., Woodin, W.H., Yang, Y. (eds.) E-recursion, forcing and \(C^*\)-algebras, volume 27 of Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore, pp. 83–182. World Scientific, Singapore (2014)
Kurepa, G.: Ensembles ordonnés et ramifiés. Publ. Math. Univ. Belgrade 4, 1–138 (1935)
Lambie-Hanson, C.: Squares and narrow systems. J. Symb. Log. 82(3), 834–859 (2017)
Larson, P.: Separating stationary reflection principles. J. Symb. Log. 65(1), 247–258 (2000)
Laver, R.: Making the supercompactness of \(\kappa \) indestructible under \(\kappa \)-directed closed forcing. Isr. J. Math. 29(4), 385–388 (1978)
Magidor, M., Lambie-Hanson, C.: On the strengths and weaknesses of weak squares. In: Appalachian Set Theory 2006–2012, volume 406 of London Mathematical Society Lecture Notes Series, pp. 301–330. Cambridge University Press, Cambridge (2013)
Minden, K.: On subcomplete forcing. Ph.D. thesis, The CUNY Graduate Center (2017). Preprint: arXiv:1705.00386 [math.LO]
Moore, J.T.: Set mapping reflection. J. Math. Log. 5(1), 87–97 (2005)
Schimmerling, E.: Coherent sequences and threads. Adv. Math. 216, 89–117 (2007)
Todorčević, S.: A note on the proper forcing axiom. Contemp. Math. 31, 209–218 (1984)
Tsaprounis, K.: On resurrection axioms. J. Symb. Log. 80(2), 587–608 (2015)
Veličković, B.: Jensen’s \(\Box \) principles and the Novák number of partially ordered sets. J. Symb. Log. 51(1), 47–58 (1986)
Weiß, C.: Subtle and ineffable tree properties. Ph.D. thesis, Ludwig-Maximilians-Universität München (2010)
Author information
Authors and Affiliations
Corresponding author
Additional information
The research for this work was supported in part by PSC CUNY Grant 60630-00 48.
Rights and permissions
About this article
Cite this article
Fuchs, G. Diagonal reflections on squares. Arch. Math. Logic 58, 1–26 (2019). https://doi.org/10.1007/s00153-018-0614-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00153-018-0614-7
Keywords
- Square principles
- Stationary reflection
- Forcing axioms
- Subcomplete forcing
- Resurrection axioms
- Continuum hypothesis