Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Diagonal reflections on squares

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

The effects of (bounded versions of) the forcing axioms \(\mathsf {SCFA}\), \(\mathsf {PFA}\) and \(\mathsf {MM}\) on the failure of weak threaded square principles of the form \(\square (\lambda ,\kappa )\) are analyzed. To this end, a diagonal reflection principle, \(\mathsf {DSR}{\left( {<}\kappa ,S\right) }\) is introduced. It is shown that \(\mathsf {SCFA} \) implies \(\mathsf {DSR}{\left( \omega _1,S^\lambda _\omega \right) }\), for all regular \(\lambda \ge \omega _2\), and that \(\mathsf {DSR}{\left( \omega _1,S^\lambda _\omega \right) }\) implies the failure of \(\square (\lambda ,\omega _1)\) if \(\lambda >\omega _2\), and it implies the failure of \(\square (\lambda ,\omega )\) if \(\lambda =\omega _2\). It is also shown that this result is sharp. It is noted that \(\mathsf {MM}\)/\(\mathsf {PFA}\) imply the failure of \(\square (\lambda ,\omega _1)\), for every regular \(\lambda >\omega _1\), and that this result is sharp as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Claverie, B., Schindler, R.: Woodin’s axiom \((*)\), bounded forcing axioms, and precipitous ideals on \(\omega _1\). J. Symb. Log. 77(2), 475–498 (2012)

    Article  MATH  Google Scholar 

  2. Cummings, J., Foreman, M., Magidor, M.: Squares, scales and stationary reflection. J. Math. Log. 01(01), 35–98 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cummings, J., Magidor, M.: Martin’s maximum and weak square. Proc. Am. Math. Soc. 139(9), 3339–3348 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Džamonja, M., Hamkins, J.D.: Diamond (on the regulars) can fail at any strongly unfoldable cardinal. Ann. Pure Appl. Log. 144, 83–95 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fuchs, G.: Hierarchies of forcing axioms, the continuum hypothesis and square principles. J. Symb. Log. Preprint available at http://www.math.csi.cuny.edu/~fuchs/ (2016)

  6. Fuchs, G.: Hierarchies of (virtual) resurrection axioms. J. Symb. Log. Preprint available at http://www.math.csi.cuny.edu/~fuchs/ (2016)

  7. Fuchs, G.: Closure properties of parametric subcompleteness. Arch. Math. Log. Preprint available at http://www.math.csi.cuny.edu/~fuchs/ (2017)

  8. Fuchs, G., Rinot, A.: Weak square and stationary reflection. Acta Math. Hung. (2017). Preprint at arXiv:1711.06213 [math.LO]

  9. Hamkins, J.D., Johnstone, T.A.: Resurrection axioms and uplifting cardinals. Arch. Math. Log. 53(3–4), 463–485 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hamkins, J.D., Johnstone, T.A.: Strongly uplifting cardinals and the boldface resurrection axioms. Arch. Math. Log. 56(7–8), 1115–1133 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hayut, Y., Lambie-Hanson, C.: Simultaneous stationary reflection and square sequences. J. Math. Log. 17(2) (2017). Preprint: arXiv: 1603.05556v1 [math.LO]

  12. Jensen, R.B.: Some remarks on \(\square \) below \(0^{\text{pistol}}\). Circulated notes (unpublished)

  13. Jensen, R.B.: Forcing axioms compatible with CH. Handwritten notes, available at https://www.mathematik.hu-berlin.de/~raesch/org/jensen.html (2009)

  14. Jensen, R.B.: Subproper and subcomplete forcing. 2009. Handwritten notes, available at https://www.mathematik.hu-berlin.de/~raesch/org/jensen.html

  15. Jensen, R.B.: Subcomplete forcing and \({\cal{L}}\)-forcing. In: Chong, C., Feng, Q., Slaman, T.A., Woodin, W.H., Yang, Y. (eds.) E-recursion, forcing and \(C^*\)-algebras, volume 27 of Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore, pp. 83–182. World Scientific, Singapore (2014)

  16. Kurepa, G.: Ensembles ordonnés et ramifiés. Publ. Math. Univ. Belgrade 4, 1–138 (1935)

    MATH  Google Scholar 

  17. Lambie-Hanson, C.: Squares and narrow systems. J. Symb. Log. 82(3), 834–859 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Larson, P.: Separating stationary reflection principles. J. Symb. Log. 65(1), 247–258 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Laver, R.: Making the supercompactness of \(\kappa \) indestructible under \(\kappa \)-directed closed forcing. Isr. J. Math. 29(4), 385–388 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  20. Magidor, M., Lambie-Hanson, C.: On the strengths and weaknesses of weak squares. In: Appalachian Set Theory 2006–2012, volume 406 of London Mathematical Society Lecture Notes Series, pp. 301–330. Cambridge University Press, Cambridge (2013)

  21. Minden, K.: On subcomplete forcing. Ph.D. thesis, The CUNY Graduate Center (2017). Preprint: arXiv:1705.00386 [math.LO]

  22. Moore, J.T.: Set mapping reflection. J. Math. Log. 5(1), 87–97 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Schimmerling, E.: Coherent sequences and threads. Adv. Math. 216, 89–117 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Todorčević, S.: A note on the proper forcing axiom. Contemp. Math. 31, 209–218 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tsaprounis, K.: On resurrection axioms. J. Symb. Log. 80(2), 587–608 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Veličković, B.: Jensen’s \(\Box \) principles and the Novák number of partially ordered sets. J. Symb. Log. 51(1), 47–58 (1986)

    Article  MATH  Google Scholar 

  27. Weiß, C.: Subtle and ineffable tree properties. Ph.D. thesis, Ludwig-Maximilians-Universität München (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunter Fuchs.

Additional information

The research for this work was supported in part by PSC CUNY Grant 60630-00 48.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuchs, G. Diagonal reflections on squares. Arch. Math. Logic 58, 1–26 (2019). https://doi.org/10.1007/s00153-018-0614-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-018-0614-7

Keywords

Mathematics Subject Classification