Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A new ambulatory system for comparative evaluation of the three-dimensional knee kinematics, applied to anterior cruciate ligament injuries

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

The aim of this study was to develop an ambulatory system for the three-dimensional (3D) knee kinematics evaluation, which can be used outside a laboratory during long-term monitoring. In order to show the efficacy of this ambulatory system, knee function was analysed using this system, after an anterior cruciate ligament (ACL) lesion, and after reconstructive surgery. The proposed system was composed of two 3D gyroscopes, fixed on the shank and on the thigh, and a portable data logger for signal recording. The measured parameters were the 3D mean range of motion (ROM) and the healthy knee was used as control. The precision of this system was first assessed using an ultrasound reference system. The repeatability was also estimated. A clinical study was then performed on five unilateral ACL-deficient men (range: 19–36 years) prior to, and a year after the surgery. The patients were evaluated with the IKDC score and the kinematics measurements were carried out on a 30 m walking trial. The precision in comparison with the reference system was 4.4°, 2.7° and 4.2° for flexion–extension, internal–external rotation, and abduction–adduction, respectively. The repeatability of the results for the three directions was 0.8°, 0.7° and 1.8°. The averaged ROM of the five patients’ healthy knee were 70.1° [standard deviation (SD) 5.8°], 24.0° (SD 3.0°) and 12.0° (SD 6.3°) for flexion–extension, internal–external rotation and abduction–adduction before surgery, and 76.5° (SD 4.1°), 21.7° (SD 4.9°) and 10.2° (SD 4.6°) 1 year following the reconstruction. The results for the pathologic knee were 64.5° (SD 6.9°), 20.6° (SD 4.0°) and 19.7° (8.2°) during the first evaluation, and 72.3° (SD 2.4°), 25.8° (SD 6.4°) and 12.4° (SD 2.3°) during the second one. The performance of the system enabled us to detect knee function modifications in the sagittal and transverse plane. Prior to the reconstruction, the ROM of the injured knee was lower in flexion–extension and internal–external rotation in comparison with the controlateral knee. One year after the surgery, four patients were classified normal (A) and one almost normal (B), according to the IKDC score, and changes in the kinematics of the five patients remained: lower flexion–extension ROM and higher internal–external rotation ROM in comparison with the controlateral knee. The 3D kinematics was changed after an ACL lesion and remained altered one year after the surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shelbourne KD, Gray T (2000) Results of anterior cruciate ligament reconstruction based on meniscus and articular cartilage status at the time of surgery. Five- to fifteen-year evaluations. Am J Sports Med 28:446–452

    PubMed  CAS  Google Scholar 

  2. Chol C, Ait Si Selmi T, Chambat P, Dejourdagger H, Neyret P (2002) Seventeen year outcome after anterior cruciate ligament reconstruction with a intact or repaired medial meniscus. Rev Chir Orthop Reparatrice Appar Mot 88:157–162

    PubMed  CAS  Google Scholar 

  3. Gillquist J, Messner K (1999) Anterior cruciate ligament reconstruction and the long-term incidence of gonarthrosis. Sports Med 27:143–156

    Article  PubMed  CAS  Google Scholar 

  4. Fink C, Hoser C, Hackl W, Navarro RA, Benedetto KP (2001) Long-term outcome of operative or nonoperative treatment of anterior cruciate ligament rupture—is sports activity a determining variable? Int J Sports Med 22:304–309

    Article  PubMed  CAS  Google Scholar 

  5. Daniel DM, Stone ML, Dobson BE, Fithian DC, Rossman DJ, Kaufman KR (1994) Fate of the ACL-injured patient. A prospective outcome study. Am J Sports Med 22:632–644

    Article  PubMed  CAS  Google Scholar 

  6. Brandsson S, Karlsson J, Sward L, Kartus J, Eriksson BI, Karrholm J (2002) Kinematics and laxity of the knee joint after anterior cruciate ligament reconstruction: pre- and postoperative radiostereometric studies. Am J Sports Med 30:361–367

    PubMed  Google Scholar 

  7. Hagemeister N, Long R, Yahia L et al (2002) Quantitative comparison of three different types of anterior cruciate ligament reconstruction methods: laxity and 3D kinematic measurements. Biomed Mater Eng 12:47–57

    PubMed  Google Scholar 

  8. Knoll Z, Kocsis L, Kiss RM (2004) Gait patterns before and after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 12:7–14

    Article  PubMed  Google Scholar 

  9. Gokeler A, Schmalz T, Knopf E, Freiwald J, Blumentritt S (2003) The relationship between isokinetic quadriceps strength and laxity on gait analysis parameters in anterior cruciate ligament reconstructed knees. Knee Surg Sports Traumatol Arthrosc 11:372–378

    Article  PubMed  Google Scholar 

  10. Lewek M, Rudolph K, Axe M, Snyder-Mackler L (2002) The effect of insufficient quadriceps strength on gait after anterior cruciate ligament reconstruction. Clin Biomech (Bristol, Avon) 17:56–63

    Article  Google Scholar 

  11. Ferber R, Osternig LR, Woollacott MH, Wasielewski NJ, Lee JH (2002) Gait mechanics in chronic ACL deficiency and subsequent repair. Clin Biomech (Bristol, Avon) 17:274–285

    Article  Google Scholar 

  12. Hooper DM, Morrissey MC, Drechsler WI, Clark NC, Coutts FJ, McAuliffe TB (2002) Gait analysis 6 and 12 months after anterior cruciate ligament reconstruction surgery. Clin Orthop 168–178

    Google Scholar 

  13. DeVita P, Hortobagyi T, Barrier J. (1998) Gait biomechanics are not normal after anterior cruciate ligament reconstruction and accelerated rehabilitation. Med Sci Sports Exerc 30:1481–1488

    Article  PubMed  CAS  Google Scholar 

  14. Tashman S, Collon D, Anderson K, Kolowich P, Anderst W (2004) Abnormal rotational knee motion during running after anterior cruciate ligament reconstruction. Am J Sports Med 32:975–983

    Article  PubMed  Google Scholar 

  15. Ristanis S, Giakas G, Papageorgiou CD, Moraiti T, Stergiou N, Georgoulis AD (2003) The effects of anterior cruciate ligament reconstruction on tibial rotation during pivoting after descending stairs. Knee Surg Sports Traumatol Arthrosc 11:360–365

    Article  PubMed  CAS  Google Scholar 

  16. Georgoulis AD, Papadonikolakis A, Papageorgiou CD, Mitsou A, Stergiou N (2003) Three-dimensional tibiofemoral kinematics of the anterior cruciate ligament-deficient and reconstructed knee during walking. Am J Sports Med 31:75–79

    PubMed  Google Scholar 

  17. Bulgheroni P, Bulgheroni MV, Andrini L, Guffanti P, Giughello A (1997) Gait patterns after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 5:14–21

    Article  PubMed  CAS  Google Scholar 

  18. Van Bogart J (2000) Motion analysis technologies. Pediatric Gait, IEEE CNF

  19. Fuller J, Liu LJ, Murphy MC, Mann RW (1997) A comparison of lower-extremity skeletal kinematics measured using skin- and pin-mounted markers. Hum Mov Sci 16:219–242

    Article  Google Scholar 

  20. Sati M, de Guise JA, Larouche S, Drouin G (1996) Quantitative assessment of skin-movement at the knee. Knee 3:121–138

    Article  Google Scholar 

  21. Woltring HJ (1994) 3D attitude representation of human joints: a standardization proposal. J Biom 1399–1414

  22. Ramakrishnan HK, Kabada MP (1991) On the estimation of joint kinematics during gait. J Biom 969–977

  23. Cheze L (2000) Comparison of different calculations of three-dimensional joint kinematics from video-based system data. J Biomech 33:1695–1699

    Article  PubMed  CAS  Google Scholar 

  24. Yagi M, Wong EK, Kanamori A, et al. (2002) Biomechanical analysis of an anatomic anterior cruciate ligament reconstruction. Am J Sports Med 30:660–666

    PubMed  Google Scholar 

  25. Chambat P, Chaker M (2004) Technique de la ligamentoplastie du ligament croisé antérieur au tendon rotulien (tunnel fémoral de dehors en dedans). In: Landreau P, Christel P, Djian P (eds) Pathologie ligamentaire du genou. Paris, pp 365–390

  26. Jacquot L, Rachet O, Chambat P (2001) La rééducation du genou après greffe du ligament croisé antérieur. In: Chambat P, Neyret P, Bonnin M, Dejour D (eds) Sport et Rééducation du membre inférieur. Montpellier, pp 31–50

  27. Irrgang JJ, Ho H, Harner CD, Fu FH (1998) Use of the International Knee Documentation Committee guidelines to assess outcome following anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 6:107–114

    Article  PubMed  CAS  Google Scholar 

  28. Irrgang JJ, Anderson AF, Boland AL (2001) Development and validation of the international knee documentation committee subjective knee form. Am J Sports Med 29:600–613

    PubMed  CAS  Google Scholar 

  29. Aminian K, Najafi B, Bula C, Leyvraz PF, Robert PH (2002) Spatio-temporal parameters of gait measured by an ambulatory system using miniature gyroscopes. J Biom 35:689–699

    Article  Google Scholar 

  30. Chateau H, Girard D, Degueurce C, Denoix JM (2003) Methodological considerations for using a kinematic analysis system based on ultrasonic triangulation. ITBM-RBM, pp 69–78

  31. Della Croce U, Camomilla V, Leardini A, Cappozzo A (2003) Femoral anatomical frame: assessment of various definitions. Med Eng Phys 25:425–431

    Article  PubMed  CAS  Google Scholar 

  32. Birac R, Andriacchi TP, Bach BR (1991) Time related changes following ACL rupture. Trans Orthop Res Soc 1:231

    Google Scholar 

  33. Webster JG (2004) Bioinstrumentation. Wiley, NJ, ISBN 0-471-26327-3

  34. Marin F, Allain J, Diop A, Maurel N, Simondi M, Lavaste F (1999) On the estimation of knee joint kinematics. Hum Mov Sci 18:613–626

    Article  Google Scholar 

  35. Zhang LQ, Shiavi RG, Limbird TJ, Minorik JM (2003) Six degrees-of-freedom kinematics of ACL deficient knees during locomotion-compensatory mechanism. Gait Posture 17:34–42

    Article  PubMed  Google Scholar 

  36. Richards JG (1999) The measurement of human motion: a comparison of commercially available systems. Hum Mov Sci 18:589–602

    Article  Google Scholar 

  37. Milne AD, Chess DG, Johnson JA, King GJW (1995) Accuracy of an electromagnetic tracking device: a study of the optimal operating range and metal interference. J Biom 791–793

  38. Willemsen ATM, Frigo C, Boom HBK (1991) Lower extremity angle measurement with accelerometers—error and sensitivity analysis. IEEE Trans Biomed Eng 38(12):1186–1193

    Article  PubMed  CAS  Google Scholar 

  39. Dejnabadi H, Jolles BM, Aminian K. A new approach to accurate measurement of uniaxial joint angles based on a combination of accelerometers and gyroscopes. IEEE Trans Biomed Eng (in press)

  40. Giansanti D, Macellari V, Maccioni G, Cappozzo A (2003) Is it feasible to reconstruct body segment 3D position and orientation using accelerometric data. IEEE Trans Biomed Eng 50(4):476–483

    Article  PubMed  Google Scholar 

  41. Zhu R, Zhou Z (2004) A real-time articulated human motion tracking using tri-axis inertial/magnetic sensors package. IEEE Trans Neural Syst Rehabilitat Eng 295–302

  42. Mayagoitia RE, Nene AV, Veltink PH (2002) Accelerometer and rate gyroscope measurement of kinematics: an inexpensive alternative to optical motion analysis systems. J Biom 35:537–542

    Article  Google Scholar 

  43. Stokes VP, Lanshammar H, Thorstensson A (1999) Dominant pattern extraction from 3D kinematic data. IEEE Trans Biomed Eng 46:100–106

    Article  PubMed  CAS  Google Scholar 

  44. Deluzio KJ, Wyss UP, Zee B, Costigan PA, Sorbie C (1997) Principal component models of knee kinematics: normal vs. pathological gait patterns. Hum Mov Sci 16:201–217

    Article  Google Scholar 

  45. Aminian K, Najafi B, Gramiger J, Morel P (2002) Body movement monitoring device, PCT no CH02/00075

  46. Andriacchi TP, Birac D (1993) Functional testing in the anterior cruciate ligament-deficient knee. Clin Orthop 40–47

  47. Berchuck M, Andriacchi TP, Bach BR, Reider B (1990) Gait adaptations by patients who have a deficient anterior cruciate ligament. J Bone Joint Surg Am 72:871–877

    PubMed  CAS  Google Scholar 

  48. Hurwitz DE, Andriacchi TP, Bush-Joseph CA, Bach BR Jr (1997) Functional adaptations in patients with ACL-deficient knees. Exerc Sport Sci Rev 25:1–20

    Article  PubMed  CAS  Google Scholar 

  49. Wexler G, Hurwitz DE, Bush-Joseph CA, Andriacchi TP, Bach BR Jr (1998) Functional gait adaptations in patients with anterior cruciate ligament deficiency over time. Clin Orthop 166–175

  50. Shiavi R, Limbird T, Frazer M, Stivers K, Strauss A, Abramovitz J (1987) Helical motion analysis of the knee–II. Kinematics of uninjured and injured knees during walking and pivoting. J Biomech 20:653–665

    Article  PubMed  CAS  Google Scholar 

  51. Patel RR, Hurwitz DE, Bush-Joseph CA, Bach BR Jr, Andriacchi TP (2003) Comparison of clinical and dynamic knee function in patients with anterior cruciate ligament deficiency. Am J Sports Med 31:68–74

    PubMed  Google Scholar 

  52. Timoney JM, Inman WS, Quesada PM et al (1993) Return of normal gait patterns after anterior cruciate ligament reconstruction. Am J Sports Med 21:887–889

    Article  PubMed  CAS  Google Scholar 

  53. Rudolph KS, Eastlack ME, Axe MJ, Snyder-Mackler L (1998) Basmajian student award paper: movement patterns after anterior cruciate ligament injury: a comparison of patients who compensate well for the injury and those who require operative stabilization. J Electromyogr Kinesiol 8:349–362

    Article  PubMed  CAS  Google Scholar 

  54. Houck J, Yack HJ (2003) Associations of knee angles, moments and function among subjects that are healthy and anterior cruciate ligament deficient (ACLD) during straight ahead and crossover cutting activities. Gait Posture 18:126–138

    Article  PubMed  Google Scholar 

  55. Brandsson S, Karlsson J, Eriksson BI, Karrholm J (2001) Kinematics after tear in the anterior cruciate ligament: dynamic bilateral radiostereometric studies in 11 patients. Acta Orthop Scand 72:372–378

    Article  PubMed  CAS  Google Scholar 

  56. Jonsson H, Karrholm J, Elmqvist LG (1989) Kinematics of active knee extension after tear of the anterior cruciate ligament. Am J Sports Med 17:796–802

    Article  PubMed  CAS  Google Scholar 

  57. Limbird TJ, Shiavi R, Frazer M, Borra H (1988) EMG profiles of knee joint musculature during walking: changes induced by anterior cruciate ligament deficiency. J Orthop Res 6:630–638

    Article  PubMed  CAS  Google Scholar 

  58. Ciccotti MG, Kerlan RK, Perry J, Pink M (1994) An electromyographic analysis of the knee during functional activities. II. The anterior cruciate ligament-deficient and -reconstructed profiles. Am J Sports Med 22:651–658

    Article  PubMed  CAS  Google Scholar 

  59. Imran A, O’Connor JJ (1998) Control of knee stability after ACL injury or repair: interaction between hamstrings contraction and tibial translation. Clin Biomech (Bristol, Avon) 13:153–162

    Article  Google Scholar 

  60. Loh JC, Fukuda Y, Tsuda E, Steadman RJ, Fu FH, Woo SL (2003) Knee stability and graft function following anterior cruciate ligament reconstruction: Comparison between 11 o’clock and 10 o’clock femoral tunnel placement. Arthroscopy 19:297–304

    Article  PubMed  Google Scholar 

  61. Woo SL, Kanamori A, Zeminski J, Yagi M, Papageorgiou C, Fu FH (2002) The effectiveness of reconstruction of the anterior cruciate ligament with hamstrings and patellar tendon. A cadaveric study comparing anterior tibial and rotational loads. J Bone Joint Surg Am 84-A:907–914

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Favre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Favre, J., Luthi, F., Jolles, B.M. et al. A new ambulatory system for comparative evaluation of the three-dimensional knee kinematics, applied to anterior cruciate ligament injuries. Knee Surg Sports Traumatol Arthr 14, 592–604 (2006). https://doi.org/10.1007/s00167-005-0023-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-005-0023-4

Keywords