Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Liquid Crystal Flows in Two Dimensions

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

This paper is concerned with a simplified hydrodynamic equation, proposed by Ericksen and Leslie, modeling the flow of nematic liquid crystals. In dimension two, we establish both interior and boundary regularity theorems for such a flow under smallness conditions. As a consequence, we establish the existence of global (in time) weak solutions on a bounded smooth domain in \({\mathbb{R}^2}\) which are smooth everywhere with possible exceptions of finitely many singular times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chang K.C.: Heat flow and boundary value problem for harmonic maps. Annales de l’institut Henri Poincaré (C) Analyse non linéaire 6(5), 363–395 (1989)

    MATH  Google Scholar 

  2. Chang K.C., Ding W.Y., Ye R.: Finite-time blow-up of the heat flow of harmonic maps from surfaces. J. Differ. Geom. 36, 507–515 (1992)

    MATH  MathSciNet  Google Scholar 

  3. Constantin, P., Seregin, S.: Hölder continuity of solutions of 2D Navier-Stokes equations with singular forcing. Preprint, 2009

  4. Chen Y.M., Lin F.H.: Evolution of harmonic maps with Dirichlet boundary conditions. Comm. Anal. Geom. 1(3–4), 327–346 (1993)

    MATH  MathSciNet  Google Scholar 

  5. Caffarelli L., Kohn R., Nirenberg L.: Partial regularity of suitable weak solutions of Navier-Stokes equations. CPAM 35, 771–831 (1982)

    MATH  MathSciNet  ADS  Google Scholar 

  6. de Gennes, P.G.: The Physics of Liquid Crystals. Oxford, 1974

  7. Ericksen J.L.: Hydrostatic theory of liquid crystal. Arch. Ration. Mech. Anal. 9, 371–378 (1962)

    MATH  MathSciNet  Google Scholar 

  8. Hong, M.C.: Global existence of solutions of the simplified Ericksen-Leslie system in \({\mathbb{R}^2}\) . Preprint

  9. Ladyzhenskaya, O.: The Mathematical Theory of Viscous Incompressible Fluid, Gordon and Breach, New York, 1969

  10. Ladyzenskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and quasilinear equations of parabolic type. Am. Math. Soc., Providence, 1968

  11. Leslie F.M.: Some constitutive equations for liquid crystals. Arch. Ration. Mech. Anal. 28, 265–283 (1962)

    MathSciNet  Google Scholar 

  12. Lemaire L.: Applications harmoniques de surfaces riemanniennes. J. Differ. Geom. 13(1), 51–78 (1978)

    MATH  MathSciNet  Google Scholar 

  13. Lin F.H.: A new proof of the Caffarelli-Kohn-Nirenberg Theorem. Comm. Pure. Appl. Math. LI, 0241–0257 (1998)

    Article  Google Scholar 

  14. Lin F.H., Liu C.: Nonparabolic dissipative systems modeling the flow of liquid crystals. CPAM XLVIII, 501–537 (1995)

    MathSciNet  Google Scholar 

  15. Lin F.H., Liu C.: Partial regularity of the dynamic system modeling the flow of liquid crystals. DCDS 2(1), 1–22 (1998)

    Google Scholar 

  16. Lin F.H., Wang C.Y.: Harmonic and quasi-harmonic spheres. II. Comm. Anal. Geom. 10(2), 341–375 (2002)

    MATH  MathSciNet  Google Scholar 

  17. Qing J.: On singularities of the heat flow for harmonic maps from surfaces into spheres. Comm. Anal. Geom. 3(1–2), 297–315 (1995)

    MATH  MathSciNet  Google Scholar 

  18. Seregin G., Shilkin T., Solonnikov V.: Boundary partial regularity for the Navier-Stokes equations. J. Math. Sci. 132(3), 339–358 (2006)

    Article  MathSciNet  Google Scholar 

  19. Solonnikov, V.A.: On Schauder estimates for the evolution generalized stokes problem. Hyperbolic Problems and Regularity Questions, Trends in Mathematics, Birkhäuser, Basel, 197–205, 2007

  20. Solonnikov V.A.: L p -Estimates for solutions to the initial boundary-value problem for the generalized Stokes system in a bounded domain. J. Math. Sci. 105(5), 2448–2484 (2001)

    Article  MathSciNet  Google Scholar 

  21. Sacks, J., Uhlenbeck, K.: The existence of minimal immersions of 2-spheres. Ann. Math. (2) 113(1), 1--24 (1981)

    Google Scholar 

  22. Schoen, R., Uhlenbeck, K.: Approximation of Sobolev maps between Riemannian manifolds. Preprint (1984)

  23. Struwe M.: On the evolution of harmonic mappings of Riemannian surfaces. Comment. Math. Helvetici 60, 558–581 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  24. Temam, R.: Navier-Stokes equations. Studies in Mathematics and its Applications, Vol. 2, North Holland, Amsterdam, 1977

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fanghua Lin.

Additional information

Communicated by J. Ball and R. James

Fanghua Lin and Changyou Wang are partially supported by NSF.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, F., Lin, J. & Wang, C. Liquid Crystal Flows in Two Dimensions. Arch Rational Mech Anal 197, 297–336 (2010). https://doi.org/10.1007/s00205-009-0278-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-009-0278-x

Keywords