Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Efficient virtual element formulations for compressible and incompressible finite deformations

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The virtual element method has been developed over the last decade and applied to problems in elasticity and other areas. The successful application of the method to linear problems leads naturally to the question of its effectiveness in the nonlinear regime. This work is concerned with extensions of the virtual element method to problems of compressible and incompressible nonlinear elasticity. Low-order formulations for problems in two dimensions, with elements being arbitrary polygons, are considered: for these, the ansatz functions are linear along element edges. The various formulations considered are based on minimization of energy, with a novel construction of the stabilization energy. The formulations are investigated through a series of numerical examples, which demonstrate their efficiency, convergence properties, and for the case of nearly incompressible and incompressible materials, locking-free behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Bathe KJ (1996) Finite element procedures. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  2. Belytschko T, Bindeman LP (1991) Assumed strain stabilization of the 4-node quadrilateral with 1-point quadrature for nonlinear problems. Comput Methods Appl Mech Eng 88(3):311–340

    Article  MathSciNet  MATH  Google Scholar 

  3. Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, Chichester

    MATH  Google Scholar 

  4. Belytschko T, Ong JSJ, Liu WK, Kennedy JM (1984) Hourglass control in linear and nonlinear problems. Comput Methods Appl Mech Eng 43:251–276

    Article  MATH  Google Scholar 

  5. Biabanaki S, Khoei A (2012) A polygonal finite element method for modeling arbitrary interfaces in large deformation problems. Comput Mech 50:19–33

    Article  MathSciNet  MATH  Google Scholar 

  6. Biabanaki SOR, Khoei AR, Wriggers P (2014) Polygonal finite element methods for contact-impact problems on non-conformal meshes. Comput Methods Appl Mech Eng 269:198–221

    Article  MathSciNet  MATH  Google Scholar 

  7. Boerner E, Loehnert S, Wriggers P (2007) A new finite element based on the theory of a Cosserat point—extension to initially distorted elements for 2D plane strains. Int J Numer Methods Eng 71:454–472

    Article  MathSciNet  MATH  Google Scholar 

  8. Cangiani A, Manzini G, Russo A, Sukumar N (2015) Hourglass stabilization and the virtual element method. Int J Numer Methods Eng 102:404–436

    Article  MathSciNet  MATH  Google Scholar 

  9. Chi H, da Veiga LB, Paulino G (2016) Some basic formulations of the virtual element method (VEM) for finite deformations. Comput Methods Appl Mech Eng. doi:10.1016/j.cma.2016.12.020

    Google Scholar 

  10. Chi H, Talischi C, Lopez-Pamies O, Paulino HG (2015) Polygonal finite elements for finite elasticity. Int J Numer Methods Eng 101(4):305–328

    Article  MathSciNet  MATH  Google Scholar 

  11. da Beirão LV, Brezzi F, Cangiani A, Manzini G, Marini L, Russo A (2013) Basic principles of virtual element methods. Math Models Methods Appl Sci 23(01):199–214

    Article  MathSciNet  MATH  Google Scholar 

  12. da Beirão LV, Brezzi F, Marini L (2013) Virtual elements for linear elasticity problems. SIAM J Numer Anal 51(2):794–812

    Article  MathSciNet  MATH  Google Scholar 

  13. da Beirão LV, Brezzi F, Marini LD, Russo A (2014) The Hitchhiker’s guide to the virtual element method. Math Models Methods Appl Sci 24(08):1541–1573

    Article  MathSciNet  MATH  Google Scholar 

  14. da Beirão LV, Lovadina C, Mora D (2015) A virtual element method for elastic and inelastic problems on polytope meshes. Comput Methods Appl Mech Eng 295:327–346

    Article  MathSciNet  Google Scholar 

  15. Flanagan D, Belytschko T (1981) A uniform strain hexahedron and quadrilateral with orthogonal hour-glass control. Int J Numer Methods Eng 17:679–706

    Article  MATH  Google Scholar 

  16. Gain AL, Talischi C, Paulino GH (2014) On the virtual element method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes. Comput Methods Appl Mech Eng 282:132–160

  17. Korelc J, Solinc U, Wriggers P (2010) An improved EAS brick element for finite deformation. Comput Mech 46:641–659

    Article  MATH  Google Scholar 

  18. Korelc J, Wriggers P (2016) Automation of finite element methods. Springer, Berlin

  19. Krysl P (2015a) Mean-strain eight-node hexahedron with optimized energy-sampling stabilization for large-strain deformation. Int J Numer Methods Eng 103:650–670

    Article  MathSciNet  MATH  Google Scholar 

  20. Krysl P (2015b) Mean-strain eight-node hexahedron with stabilization by energy sampling stabilization. Int J Numer Methods Eng 103:437–449

    Article  MathSciNet  MATH  Google Scholar 

  21. Krysl P (2016) Mean-strain 8-node hexahedron with optimized energy-sampling stabilization. Finite Elem Anal Des 108:41–53

    Article  MathSciNet  Google Scholar 

  22. Loehnert S, Boerner E, Rubin M, Wriggers P (2005) Response of a nonlinear elastic general Cosserat brick element in simulations typically exhibiting locking and hourglassing. Comput Mech 36:255–265

    Article  MATH  Google Scholar 

  23. Lovadina C, Auricchio F (2003) On the enhanced strain technique for elasticity problems. Comput Struct 81:777–787

    Article  MathSciNet  Google Scholar 

  24. Mueller-Hoeppe DS, Loehnert S, Wriggers P (2009) A finite deformation brick element with inhomogeneous mode enhancement. Int J Numer Methods Eng 78:1164–1187

    Article  MathSciNet  MATH  Google Scholar 

  25. Nadler B, Rubin M (2003) A new 3-d finite element for nonlinear elasticity using the theory of a cosserat point. Int J Solids Struct 40:4585–4614

    Article  MATH  Google Scholar 

  26. Noels L, Radovitzky R (2006) A general discontinuous galerkin method for finite hyperelasticity. formulation and numerical applications. Int J Numer Methods Eng 68:64–97

    Article  MathSciNet  MATH  Google Scholar 

  27. Reddy BD, Simo JC (1995) Stability and convergence of a class of enhanced strain methods. SIAM J Numer Anal 32:1705–1728

    Article  MathSciNet  MATH  Google Scholar 

  28. Reese S (2003) On a consistent hourglass stabilization technique to treat large inelastic deformations and thermo-mechanical coupling in plane strain problems. Int J Numer Methods Eng 57:1095–1127

    Article  MATH  Google Scholar 

  29. Reese S, Kuessner M, Reddy BD (1999) A new stabilization technique to avoid hourglassing in finite elasticity. Int J Numer Methods Eng 44:1617–1652

    Article  Google Scholar 

  30. Reese S, Wriggers P (2000) A new stabilization concept for finite elements in large deformation problems. Int J Numer Methods Eng 48:79–110

    Article  MATH  Google Scholar 

  31. Simo JC, Armero F (1992) Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes. Int J Numer Methods Eng 33:1413–1449

    Article  MATH  Google Scholar 

  32. Simo JC, Rifai MS (1990) A class of assumed strain methods and the method of incompatible modes. Int J Numer Methods Eng 29:1595–1638

    Article  MathSciNet  MATH  Google Scholar 

  33. Simo JC, Taylor RL, Pister KS (1985) Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comput Methods Appl Mech Eng 51:177–208

    Article  MathSciNet  MATH  Google Scholar 

  34. Sukumar N (2004) Construction of polygonal interpolants: a maximum entropy approach. Int J Numer Methods Eng 61:2159–2181

    Article  MathSciNet  MATH  Google Scholar 

  35. Sukumar N, Malsch EA (2006) Recent advances in the construction of polygonal finite element interpolants. Arch Comput Methods Eng 13:129–163

    Article  MathSciNet  MATH  Google Scholar 

  36. Taylor RL (2000) A mixed-enhanced formulation for tetrahedral finite elements. Int J Numer Methods Eng 47:205–227

    Article  MathSciNet  MATH  Google Scholar 

  37. ten Eyck A, Lew A (2006) Discontinuous Galerkin methods for non-linear elasticity. Int J Numer Methods Eng 67:1204–1243

    Article  MathSciNet  MATH  Google Scholar 

  38. Wriggers P (2008) Nonlinear finite elements. Springer, Berlin, Heidelberg, New York

    MATH  Google Scholar 

  39. Wriggers P, Rust W, Reddy BD (2016) A virtual element method for contact. Comput Mech 58:1039–1050

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author gratefully acknowledges support by the Deutsche Forschungsgemeinschaft in the Priority Program 1748 ‘Reliable simulation techniques in solid mechanics: Development of non- standard discretization methods, mechanical and mathematical analysis’ under the Project WR 19/50-1. The second author acknowledges the support of the National Research Foundation of South Africa, and the Alexander von Humboldt Foundation through a Georg Forster Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Wriggers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wriggers, P., Reddy, B.D., Rust, W. et al. Efficient virtual element formulations for compressible and incompressible finite deformations. Comput Mech 60, 253–268 (2017). https://doi.org/10.1007/s00466-017-1405-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-017-1405-4

Keywords