Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Monitoring Continental Surface Waters by Satellite Altimetry

  • Original Paper
  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

The monitoring of continental water stages is a requirement for meeting human needs and assessing ongoing climatic changes. However, regular gauging networks fail to provide the information needed for spatial coverage and timely delivery. Although the space missions discussed here were not primarily dedicated to hydrology, 18 years of satellite altimetry have furnished complementary data that can be used to create hydrological products, such as time series of stages, estimated discharges of rivers or volume change of lakes, river altitude profiles or leveling of in situ stations. Raw data still suffer uncertainties of one to several decimeters. These require specific reprocessing such as waveform retracking or geophysical correction editing; much work still remains to be done. Besides, measuring the flow velocity appears feasible owing to SAR interferometer techniques. Inundated surfaces, and the time variations of their extent, are currently almost routinely computed using satellite imagery. Thus, the compilation of the continuous efforts of the scientific community in these various investigative directions, such as recording from space the discharges of rivers or the change in water volume stored in lakes, can be foreseen in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Agencia National das Aguas. http://hidroweb.ana.gov.br/doc/WRMB/part1.htm. Accessed Nov 2008

  • Aladin NV, Cretaux J-F, Plotnikov IS, Kouraev AV, Smurov AO, Cazenave A, Egorov AN, Papa F (2005) Modern hydro-biological state of the small Aral sea. Environmetric 16:1–18. doi:10.1002/env.709

    Article  Google Scholar 

  • Alsdorf DE, Birkett CM, Dunne T, Melack J, Hess L (2001) Water level changes in a large Amazon lake measured with spaceborne radar interferometry and altimetry. Geophys Res Lett 28(14):2671–2674

    Article  Google Scholar 

  • Alsdorf D, Lettenmaier D, Vörösmarty C et al (2003) The need for global, satellite-based observations of terrestrial surface waters. EOS Trans 84(29):269–276

    Google Scholar 

  • Bercher N, Kosuth P, Bruniquel J (2006) Quality of river water level time series issued from satellite radar altimetry: influence of river hydrology and satellite measurement accuracy and frequency. Presented at EGU General Assembly, Vienna, April 2006

  • Berry PAM, Garlick JD, Freeman JA, Mathers EL (2005) Global inland water monitoring from multi-mission altimetry. Geophys Res Lett 32:L16401. doi:10.1029/2005GL022814

    Article  Google Scholar 

  • Birkett CM (1995a) The contribution of Topex/Poseidon to the global monitoring of climatically sensitive lakes. J Geophys Res 100(C12):25179–25204

    Article  Google Scholar 

  • Birkett CM (1995b) The global remote sensing of lakes, wetlands and rivers for hydrological and climate research. Geoscience and Remote Sensing Symposium, IGARSS’ 95, Quantitative Remote Sensing for Science and Applications, vol 3. pp 1979–1981

  • Birkett CM (1998) Contribution of the Topex NASA radar altimeter to the global monitoring of large rivers and wetlands. Water Resour Res 34(5):1223–1239

    Article  Google Scholar 

  • Birkett CM (2000) Synergistic remote sensing of Lake Chad: variability of basin inundation. Remote Sens Environ 72:218–236

    Article  Google Scholar 

  • Birkett CM, Murtugudde R, Allan T (1999) Indian Ocean climate event brings floods to east Africa’s lakes and the Sudd marsh. Geophys Res Lett 26:1031–1034

    Article  Google Scholar 

  • Birkett CM, Mertes LAK, Dunne T, Costa M, Jasinski J (2002) Altimetric remote sensing of the Amazon: application of satellite radar altimetry. J Geophys Res 107(D20):8059. doi:10.1029/2001JD000609

    Article  Google Scholar 

  • Bjerklie DM, Moller D, Smith LC, Dingman SL (2005) Estimating discharge in rivers using remotely sensed hydraulic information. J Hydrol 309:191–209

    Article  Google Scholar 

  • Bonnefond P, Exertier P, Laurain O, Menard Y, Orsoni A, Jan G, Jansou E (2003) Absolute calibration of Jason-1 and TOPEX/Poseidon altimeters in Corsica. Mar Geod 26:261–284

    Article  Google Scholar 

  • Bortnik VN (1999) Alteration of water level and salinity of the Aral sea, creeping environmental problems and sustainable development in the Aral sea basin. Cambridge University Press, Cambridge, UK, pp 47–65

    Google Scholar 

  • Brooks RL (1982) Lake elevation from satellite radar altimetry from a validation area in Canada. Report, Geoscience Research Corporation, Salibury, Maryland, USA

  • Brown GS (1977) Skylab S-193 radar experiment analysis and results. NASA CR-2763, February 1977

  • Calmant S, Seyler F (2004) Tapajos hydraulic slope at the confluence with the Amazon from combined satellite altimetric data. EGU, Nice, April 2004

  • Calmant S, Seyler F (2006) Continental surface waters from satellite altimetry. C R Geosciences 338:1113–1122

    Article  Google Scholar 

  • Cauhopé M (2004) Hauteurs d’eau d’une plaine d’inondation amazonienne par altimétrie spatiale. Rapport de stage de DEA Sciences de la Terre et l’Environnement. IMFT, Toulouse, France, p 30 (in French)

  • Cazenave A, Bonnefond P, DoMinh K (1997) Caspian sea level from Topex/Poseidon altimetry: level now falling. Geophys Res Lett 24:881–884

    Article  Google Scholar 

  • Coe MT (2000) Modeling terrestrial hydrological systems at the continental scale: testing the accuracy of an atmospheric GCM. J Climatol 13:686–704

    Article  Google Scholar 

  • Coe MT, Birkett CM (2004) Calculation of river discharge and prediction of lake height from satellite radar altimetry: example for the Lake Chad basin. Water Resour Res 40:W10205. doi:10.1029/2003WR002543

    Article  Google Scholar 

  • Cretaux J-F, Kouraev AV, Papa F, Bergé Nguyen M, Cazenave A, Aladin NV, Plotnikov IS (2005) Water balance of the big Aral sea from satellite remote sensing and in situ observations. J Great Lakes Res 31(4):520–534

    Article  Google Scholar 

  • Cretaux J-F, Calmant S, Romanovski V, Shibuyin A, Lyard F, Berge-Nguyen M, Cazenave A, Hernandez F (2008) Implementation of a new absolute calibration site for radar altimeter in the continental area: lake Issykkul in Central Asia. J Geod (in press)

  • Cudlip W, Ridley JK, Rapley CG (1992) The use of satellite radar altimetry for monitoring wetlands. In: Remote sensing and global change. Proceedings of the 16th annual conference of Remote Sensing Society, London, UK, pp 207–216

  • De Oliveira Campos I, Mercier F, Maheu C, Cochonneau G, Kosuth P, Blitzkow D, Cazenave A (2001) Temporal variations of river basin waters from Topex/Poseidon satellite altimetry. Application to the Amazon basin. CR Acad Sci Paris 333:633–643

    Google Scholar 

  • Dunne T, Mertes LAK, Meade RH, Richey JE, Forsberg BR (1998) Exchanges of sediment between the floodplain and channel of the Amazon river in Brazil. GSA Bull 110(4):450–467

    Google Scholar 

  • Frappart F, Martinez JM, Seyler F, Leon JG, Cazenave A (2005) Determination of the water volume variation in the Negro river sub-basin by combination of remote sensing and in-situ data. Remote Sens Environ 99:387–399

    Article  Google Scholar 

  • Frappart F, Calmant S, Cauhopé M, Seyler F, Cazenave A (2006a) Results of ENVISAT RA-2 derived levels, validation over the Amazon basin. Remote Sens Environ 100:252–264

    Article  Google Scholar 

  • Frappart F, Dominh K, Lhermitte J, Ramilllien G, Cazenave A, LeToan T (2006b) Water volume change in the lower MEKONG basin from satellite altimetry and other remote sensing data. Geophys J Int 167:570–584. doi:10.1111/j.1365-246X.2006.03184.x

    Article  Google Scholar 

  • Fu L, Cazenave A (2001) Satellite altimetry and earth sciences: a handbook of techniques and applications. Academic Press, London (UK), 464 p

    Google Scholar 

  • Goldstein RM, Zebker HA (1987) Interferometric radar measurement of ocean surface currents. Nature 328(6132):707–709

    Article  Google Scholar 

  • Guzkowska MAJ, Rapley CG, Rideley JK, Cudlip W, Birkett CM, Scott RF (1990) Developments in inland water and land altimetry. ESA contract report 78391881FIFL

  • Hostetler SW (1995) Hydrological and thermal response of lakes to climate: description and modeling. In: Physics and chemistry of lakes. Springer-Verlag, Berlin, Germany

    Google Scholar 

  • Kaula WM (1969) The terrestrial environment: solid earth and ocean physics. NASA report study at Williamstown, MA, NASA CR-1579, August 1969

  • Koblinsky CJ, Clarke RT, Brenner AC, Frey H (1993) Measurements of river level variations with satellite altimetry. Water Resour Res 29(6):1839–1848

    Article  Google Scholar 

  • Koster RD, Houser PR, Engman ET, Kustas WP (1999) Remote sensing may provide unprecedented hydrological data. American Geophysical Union. http://www.agu.org/eos_elec

  • Kosuth P, Blitzkow D, Cochonneau G (2006) Establishment of an altimetric reference network over the Amazon basin using satellite radar altimetry (Topex Poseidon). Proceedings of the symposium on 15 years of progress in radar altimetry, Venice, Italy, 13–18 March 2006

  • Kouraev A, Zakharova E, Samain O, Mognard N, Cazenave A (2004) “Ob” river discharge from TOPEX/Poseidon satellite altimetry (1992–2002). Remote Sens Environ 93:238–245

    Article  Google Scholar 

  • Leon JG, Calmant S, Seyler F, Bonnet M-P, Cauhopé M, Frappart F, Filizola N (2006a) Rating curves and estimation of average water depth at the upper Rio Negro river based on satellite altimeter data and modeled discharges. J Hydrol 328:481–496

    Article  Google Scholar 

  • Leon JG, Seyler F, Calmant S, Bonnet M, Cauhope M (2006b) Hydrological parameter estimation for ungauged basin based on satellite altimeter data and discharge modeling. A simulation for the Caqueta river (Amazonian basin, Colombia). Hydrology and Earth System Sciences. SRef-ID: 1812-2116/hessd/2006-3-3023

  • Leon JG, Bonnet MP, Seyler F, Calmant S, Cauhope M (2008) Distributed water flow estimates of the upper Negro river by a Muskingum-Cunge routing model using altimetric spatial data. J Hydrol

  • Le Traon PY, Gaspar P, Bouyssel F, Makhmara H (1995) Using Topex/Poseidon data to enhance ERS1 data. J Atmos Ocean Technol 12(1):161–170

    Article  Google Scholar 

  • Maheu C, Cazenave A, Mechoso CR (2003) Water level fluctuations in the Plata basin (South America) from Topex/Poseidon satellite altimetry. Geophys Res Lett 30(3):1143–1146

    Article  Google Scholar 

  • Mason IM, Rapley CG, Street-Perrott FA, Guzkowska M (1985) ERS-1 observations of lakes for climate research. Proceedings of the EARSeL/ESA symposium on “European remote sensing opportunities”, Strasbourg, 31 March-3 April 1985

  • Meade RH, Rayol JM, da Conceicão SC, Natividade JRG (1991) Backwater effects in the Amazon river basin of Brazil. Environ Geol Water Sci 18(2):105–114

    Article  Google Scholar 

  • Mercier F (2001) Altimétrie spatiale sur les eaux continentales: apport des missions Topex/Poseidon et ERS1&2 à l’étude des lacs, mers intérieures et bassins fluviaux. Thèse Univ. Toulouse III-Paul Sabatier, 9/11/2001, p 190

  • Mercier F, Zanife O-Z (2006) Improvement of the Topex/Poseidon altimetric data processing for hydrological purposes (CASH project). Proceedings of the symposium on 15 years of progress in radar altimetry, Venice, Italy, 13–18 March 2006

  • Mercier F, Cazenave A, Maheu C (2002) Interannual lake level fluctuations (1993–1999) in Africa from Topex/Poseidon: connections with ocean–atmosphere interactions over the Indian ocean. Glob Planet Changes 32:141–163

    Article  Google Scholar 

  • Mertes LAK, Dunne T, Martinelli LA (1996) Channel-floodplain geomorphology along the Solimões-Amazon river, Brazil. GSA Bull 108(9):1089–1107

    Google Scholar 

  • Miller LS (1979) Topographic and backscatter characteristics of GEOS 3 overland data. J Geophys Res 84-B8:4045–4054

    Article  Google Scholar 

  • Morris CS, Gill SK (1994a) Variation of Great Lakes waters from geosat altimetry. Water Resour Res 30:1009–1017

    Article  Google Scholar 

  • Morris CS, Gill SK (1994b) Evaluation of the Topex/Poseidon altimeter system over the Great Lakes. J Geophys Res 99(C12):24527–24539

    Article  Google Scholar 

  • Nordin CF Jr, Meade RH (1986) The Amazon and the Orinoco in McGraw Hill Yearbook of Sciences and Technology. McGraw Hill, New York, USA, pp 385–390

    Google Scholar 

  • Ponchaut F, Cazenave A (1998) Continental lake level variations from Topex/Poseidon (1993–1996). C R Acad Sci Paris 326:13–20

    Google Scholar 

  • Population Reference Bureau (1997) http://www.prb.org/Content/NavigationMenu/Other_reports/1997-1999/WorldPopMoreThanNos_Eng.pdf)

  • Roads J, Lawford R, Bainto E, Berbery E, Chen S, Fekete B, Gallo K, Grundstein A, Higgins W, Kanamitsu M, Krajewski W, Lakshmi V, Leathers D, Lettenmaier D, Luo L, Maurer E, Meyers T, Miller D, Mirchell K, Mote T, Pinker R, Reichler T, Robinson D, Robock A, Smith J, Srinivasan G, Verdin K, Vinnikov K, Vonder Haar T, Vörösmarty C, Williams S, Yarosh E (2003) GCIP water and energy budget synthesis (WEBS). J Geophys Res 108(D16):8609. doi:10.1029/2002JD002583

    Article  Google Scholar 

  • Romeiser R, Runge H (2007) Theoretical evaluation of several possible along-track inSAR modes of TerraSAR-X for ocean current measurements. IEEE Trans Geosci Remote Sens 45(1):21–35

    Article  Google Scholar 

  • Romeiser R, Runge H, Suchandt S, Sprenger J, Weibeer H, Sohrmann A, Stammer D (2007) Current measurements in rivers by spaceborne along-track InSAR. IEEE Trans Geosci Remote Sens 45(12):4019–4031

    Article  Google Scholar 

  • Rosmorduc V, Benveniste J, Lauret O, Milagro M, Picot N (2006) In: Benveniste J, Picot N (ed) Radar altimetry tutorial. http://www.altimetry.info

  • Roux E, Cauhopé M, Bonnet M-P, Calmant Seyler F (2008) Daily water stage estimated from satellite altimetric data for large river basin monitoring. Hydrol Sci J—Journal des Sciences Hydrologiques 53-1:81–99

    Google Scholar 

  • Salati E, Marques J (1984) Climatology of the Amazon region. In: Sioli H (ed) The Amazon, limnology and landscape ecology of a mighty tropical river and its basin. Monographs in biology, vol 56. Kluwer Academics, Norwell, MA, pp 85–126

  • Singh B, Swamy ASR (2006) Delta sedimentation: east coast of India. Technology Publication, Dehradun, India, iv, p 400

  • Sioli H (1984) The Amazon and its main affluents. In: Sioli H (ed) The Amazon, limnology and landscape ecology of a mighty tropical river and its basin. Monographs in biology, vol 56. Kluwer Academics, Norwell, MA, pp 127–165

  • Smith LC (1997) Satellite remote sensing of river inundation area, stage, and discharge: a review. Hydrol Process 11:1427–1439

    Article  Google Scholar 

  • WMO (2003) Report GTOS32. HWRP/GCOS/GTOS Expert meeting on hydrological data for global studies. Report, Toronto, Canada, 18–20 Nov 2002, GCOS 84, GTOS 32, WMO/TD—N°1156

  • WMO (2004) WMO statement on the status of the global climate. WMO Tech Rep 966, 22p

  • World Resources Institute (2000) http://www.wri.org/wri/wr

  • Zakharova EA, Kouraev AV, Cazenave A, Seyler F (2006) Amazon river discharge estimated from TOPEX/Poseidon altimetry. Geosciences Comptes Rendus (French Academy of Sciences) 338(3):188–196

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank P. Bates, an anonymous reviewer and the Editor for their in-depth reviews that greatly helped to improve this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Calmant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calmant, S., Seyler, F. & Cretaux, J.F. Monitoring Continental Surface Waters by Satellite Altimetry. Surv Geophys 29, 247–269 (2008). https://doi.org/10.1007/s10712-008-9051-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-008-9051-1

Keywords