Abstract
In medical and personal health systems for vital sign monitoring, contact-free remote detection is favourable compared to wired solutions. For example, they help to avoid severe pain, which is involved when a patient with burned skin has to be examined. Continuous wave (CW) radar systems have proven to be good candidates for this purpose. In this paper a monolithic millimetre-wave integrated circuit (MMIC) based CW radar system operating in the W-band (75–110 GHz) at 96 GHz is presented. The MMIC components are custom-built and make use of 100 nm metamorphic high electron mobility transistors (mHEMTs). The radar system is employing a frequency multiplier-by-twelve MMIC and a receiver MMIC both packaged in split-block modules. They allow for the determination of respiration and heartbeat frequency of a human target sitting in 1 m distance. The analysis of the measured data is carried out in time and frequency domain and each approach is shown to have its advantages and drawbacks.
Similar content being viewed by others
References
Ayhan, S., Pauli, M., Kayser, T., Scherr, S., Zwick, T.: FMCW radar system with additional phase evaluation for high accuracy range detection. In: European Radar Conference (EuRAD), pp. 117–120 (2011)
Ayhan, S., Diebold, S., Scherr, S., Tessmann, A., Ambacher, O., Kallfass, I., Zwick, T.: A 96 GHz radar system for respiration and heart rate measurements. In: IEEE MTT-S International Microwave Symposium Digest, pp. 1–3 (2012)
Balanis, C.A. (ed.): Antenna theory: analysis and design, 3rd edn. Knovel library. Wiley-Interscience, Hoboken, N.J. (2005)
Camargo, E.: Design of FET frequency multipliers and harmonic oscillators, xiii edn. Artech House microwave library. Artech House, Boston (1998)
Diebold, S., Ayhan, S., Scherr, S., Massler, H., Tessmann, A., Leuther, A., Zwick, T., Ambacher, O., Kallfass, I.: A 96 GHz MMIC CW radar system for remote detection of vital signs. In: 42nd European Microwave Conference (EuMC) (2012)
Droitcour, A., Boric-Lubecke, O., Lubecke, V., Lin, J., Kovacs, G.: Range correlation and I/Q performance benefits in single-chip silicon Doppler radars for noncontact cardiopulmonary monitoring. IEEE Transactions on Microwave Theory and Techniques 52(3), 838–848 (2004). doi:10.1109/TMTT.2004.823552
Droitcour, A., Lubecke, V., Lin, J., Boric-Lubecke, O.: A microwave radio for Doppler radar sensing of vital signs. In: IEEE MTT-S International Microwave Symposium Digest, vol. 1, pp. 175–178 (2001). doi:10.1109/MWSYM.2001.966866
Immoreev, I., Tao, T.H.: UWB radar for patient monitoring. IEEE Aerospace and Electronic Systems Magazine 23(11), 11–18 (2008)
Lai, J., Xu, Y., Gunawan, E., Chua, E., Maskooki, A., Guan, Y.L., Low, K.S., Soh, C.B., Poh, C.L.: Wireless Sensing of Human Respiratory Parameters by Low-Power Ultrawideband Impulse Radio Radar. IEEE Transactions on Instrumentation and Measurement 60(3), 928–938 (2011)
Leib, M., Menzel, W., Schleicher, B., Schumacher, H.: Vital signs monitoring with a UWB radar based on a correlation receiver. In: Proceedings of the Fourth European Conference on Antennas and Propagation (EuCAP), pp. 1–5 (2010)
Li, C., Cummings, J., Lam, J., Graves, E., Wu, W.: Radar remote monitoring of vital signs. Microwave Magazine, IEEE 10(1), 47–56 (2009)
Lohman, B., Boric-Lubecke, O., Lubecke, V., Ong, P., Sondhi, M.: A digital signal processor for Doppler radar sensing of vital signs. In: Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 4, pp. 3359–3362 (2001)
M.C. Budge, J., Burt, M.: Range correlation effects in radars. In: Record of the 1993 IEEE National Radar Conference, pp. 212–216 (1993)
Mikhelson, I., Bakhtiari, S., Elmer, T., Sahakian, A.: Remote Sensing of Heart Rate and Patterns of Respiration on a Stationary Subject Using 94-GHz Millimeter-Wave Interferometry. IEEE Transactions on Biomedical Engineering 58(6), 1671–1677 (2011). doi:10.1109/TBME.2011.2111371
Obeid, D., Sadek, S., Zaharia, G., Zein, G.E.: Noncontact heartbeat detection at 2.4, 5.8, and 60 GHz: A comparative study. Microwave and Optical Technology Letters 51(3), 666–669 (2009)
Petkie, D., Benton, C., Bryan, E.: Millimeter wave radar for remote measurement of vital signs. In: IEEE Radar Conference, pp. 1 –3 (2009). doi:10.1109/RADAR.2009.4977021
Skolnik, M.I. (ed.): Radar handbook, 2nd edn. McGraw-Hill, New York (1990)
Starr, I., Wood, F.C.: Twenty-year studies with the ballistocardiograph. Circulation 23(5), 714–732 (1961). doi:10.1161/01.CIR.23.5.714
Tariq, A., Ghafouri-Shiraz, H.: Vital signs detection using Doppler radar and continuous wavelet Transform. In: Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), pp. 285–288 (2011)
Tessmann, A.: 220-GHz metamorphic HEMT amplifier MMICs for high-resolution imaging applications. IEEE J. Solid-State Circuits 40(10), 2070–2076 (2005)
Wiesner, A.: A dual frequency interferometric CW radar for vital signs detection. In: European Radar Conference (EuRAD), pp. 365–368 (2011)
Xiao, Y., Lin, J., Boric-Lubecke, O., Lubecke, M.: Frequency-tuning technique for remote detection of heartbeat and respiration using low-power double-sideband transmission in the Ka-band. IEEE Transactions on Microwave Theory and Techniques 54(5), 2023–2032 (2006). doi:10.1109/TMTT.2006.873625
Zito, D., Pepe, D., Mincica, M., Zito, F., Tognetti, A., Lanata, A., De Rossi, D.: SoC CMOS UWB Pulse Radar Sensor for Contactless Respiratory Rate Monitoring. IEEE Transactions on Biomedical Circuits and Systems 5(6), 503 -510 (2011)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Diebold, S., Ayhan, S., Scherr, S. et al. A W-Band MMIC Radar System for Remote Detection of Vital Signs. J Infrared Milli Terahz Waves 33, 1250–1267 (2012). https://doi.org/10.1007/s10762-012-9941-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10762-012-9941-7