Abstract
We develop a stable and high-order accurate finite difference method for problems in earthquake rupture dynamics in complex geometries with multiple faults. The bulk material is an isotropic elastic solid cut by pre-existing fault interfaces that accommodate relative motion of the material on the two sides. The fields across the interfaces are related through friction laws which depend on the sliding velocity, tractions acting on the interface, and state variables which evolve according to ordinary differential equations involving local fields.
The method is based on summation-by-parts finite difference operators with irregular geometries handled through coordinate transforms and multi-block meshes. Boundary conditions as well as block interface conditions (whether frictional or otherwise) are enforced weakly through the simultaneous approximation term method, resulting in a provably stable discretization.
The theoretical accuracy and stability results are confirmed with the method of manufactured solutions. The practical benefits of the new methodology are illustrated in a simulation of a subduction zone megathrust earthquake, a challenging application problem involving complex free-surface topography, nonplanar faults, and varying material properties.
Similar content being viewed by others
References
Aagaard, B.T., Heaton, T.H., Hall, J.F.: Dynamic earthquake ruptures in the presence of lithostatic normal stresses: implications for friction models and heat production. Bull. Seismol. Soc. Am. 91(6), 1765–1796 (2001). doi:10.1785/0120000257
Ampuero, J.-P.: Etude physique et numérique de la nucléation des séismes. PhD thesis, Univ. Denis Diderot, Paris (2002)
Andrews, D.J.: Rupture propagation with finite stress in antiplane strain. J. Geophys. Res. 81(20), 3575–3582 (1976). doi:10.1029/JB081i020p03575
Andrews, D.J.: Dynamic plane-strain shear rupture with a slip-weakening friction law calculated by a boundary integral method. Bull. Seismol. Soc. Am. 75(1), 1–21 (1985)
Aochi, H., Fukuyama, E., Matsu’ura, M.: Selectivity of spontaneous rupture propagation on a branched fault. Geophys. Res. Lett. 27(22), 3635–3638 (2000). doi:10.1029/2000GL011560
Appelö, D., Petersson, N.A.: A stable finite difference method for the elastic wave equation on complex geometries with free surfaces. Commun. Comput. Phys. 5(1), 84–107 (2009)
Appelö, D., Hagstrom, T., Kreiss, G.: Perfectly matched layers for hyperbolic systems: general formulation, well-posedness, and stability. SIAM J. Appl. Math. 67(1), 1–23 (2006). doi:10.1137/050639107
Bayliss, A., Jordan, K.E., Lemesurier, B.J., Turkel, E.: A fourth-order accurate finite-difference scheme for the computation of elastic waves. Bull. Seismol. Soc. Am. 76(4), 1115–1132 (1986)
Carpenter, M.H., Kennedy, C.A.: Fourth-order 2N-storage Runge-Kutta schemes. Technical report NASA TM-109112, National Aeronautics and Space Administration, Langley Research Center, Hampton, VA (1994)
Carpenter, M.H., Nordström, J., Gottlieb, D.: A stable and conservative interface treatment of arbitrary spatial accuracy. J. Comput. Phys. 148(2), 341–365 (1999). doi:10.1006/jcph.1998.6114
Cruz-Atienza, V.M., Virieux, J.: Dynamic rupture simulation of non-planar faults with a finite-difference approach. Geophys. J. Int. 158(3), 939–954 (2004). doi:10.1111/j.1365-246X.2004.02291.x
Das, S.: A numerical method for determination of source time functions for general three-dimensional rupture propagation. Geophys. J. R. Astron. Soc. 62(3), 591–604 (1980). doi:10.1111/j.1365-246X.1980.tb02593.x
Das, S., Kostrov, B.V.: An investigation of the complexity of the earthquake source time function using dynamic faulting models. J. Geophys. Res. 93(B7), 8035–8050 (1988). doi:10.1029/JB093iB07p08035
Day, S.M.: Three-dimensional finite difference simulation of fault dynamics: rectangular faults with fixed rupture velocity. Bull. Seismol. Soc. Am. 72(3), 705–727 (1982)
Day, S.M., Dalguer, L.A., Lapusta, N., Liu, Y.: Comparison of finite difference and boundary integral solutions to three-dimensional spontaneous rupture. J. Geophys. Res. 110, B12307 (2005). doi:10.1029/2005JB003813
de la Puente, J., Ampuero, J.-P., Käser, M.: Dynamic rupture modeling on unstructured meshes using a discontinuous Galerkin method. J. Geophys. Res. 114, B10302 (2009). doi:10.1029/2008JB006271
Dunham, E.M., Belanger, D., Cong, L., Kozdon, J.E.: Earthquake ruptures with strongly rate-weakening friction and off-fault plasticity, Part 1: Planar faults. Bull. Seismol. Soc. Am. 101(5), 2296–2307 (2011). doi:10.1785/0120100075
Dunham, E.M., Belanger, D., Cong, L., Kozdon, J.E.: Earthquake ruptures with strongly rate-weakening friction and off-fault plasticity, Part 2: Nonplanar faults. Bull. Seismol. Soc. Am. 101(5), 2308–2322 (2011). doi:10.1785/0120100076
Festa, G., Vilotte, J.-P.: The Newmark scheme as velocity and stress time-staggering: an efficient PML implementation for spectral element simulations of elastodynamics. Geophys. J. Int. 161(3), 789–812 (2005). doi:10.1111/j.1365-246X.2005.02601.x
Fornberg, B.: The pseudospectral method: accurate representation of interfaces in elastic wave calculations. Geophysics 53(5), 625–637 (1988). doi:10.1190/1.1442497
Geubelle, P.H., Rice, J.R.: A spectral method for three-dimensional elastodynamic fracture problems. J. Mech. Phys. Solids 43(11), 1791–1824 (1995). doi:10.1016/0022-5096(95)00043-I
Gustafsson, B.: The convergence rate for difference approximations to mixed initial boundary value problems. Math. Comput. 29(130), 396–406 (1975)
Gustafsson, B., Kreiss, H.-O., Oliger, J.: Time Dependent Problems and Difference Methods. Wiley-Interscience, New York (1996)
Hagstrom, T., Mar-Or, A., Givoli, D.: High-order local absorbing conditions for the wave equation: extensions and improvements. J. Comput. Phys. 227(6), 3322–3357 (2008). doi:10.1016/j.jcp.2007.11.040
Kame, N., Yamashita, T.: Simulation of the spontaneous growth of a dynamic crack without constraints on the crack tip path. Geophys. J. Int. 139(2), 345–358 (1999). doi:10.1046/j.1365-246x.1999.00940.x
Kaneko, Y., Lapusta, N., Ampuero, J.-P.: Spectral element modeling of spontaneous earthquake rupture on rate and state faults: effect of velocity-strengthening friction at shallow depths. J. Geophys. Res. 113, B09317 (2008). doi:10.1029/2007JB005553
Knupp, P.M., Steinberg, S.: The Fundamentals of Grid Generation. CRC Press, Boca Raton (1993)
Kozdon, J.E., Dunham, E.M.: Rupture to the trench in dynamic models of the Tohoku-Oki earthquake. Abstract U51B-0041 presented at 2011 Fall Meeting, AGU, San Francisco, Calif., 5–9 Dec., 2011
Kozdon, J.E., Dunham, E.M.: Rupture to the trench: dynamic rupture simulations of the 11 March 2011 Tohoku earthquake. Bull. Seism. Soc. Am. (2013, accepted). URL www.stanford.edu/~jkozdon/publications/kozdon_dunham_tohoku_BSSA12.pdf
Kozdon, J.E., Dunham, E.M., Nordström, J.: Interaction of waves with frictional interfaces using summation-by-parts difference operators: weak enforcement of nonlinear boundary conditions. J. Sci. Comput. 50(2), 341–367 (2012). doi:10.1007/s10915-011-9485-3
Kreiss, H.-O.: Initial boundary value problems for hyperbolic systems. Commun. Pure Appl. Math. 23(3), 277–298 (1970). doi:10.1002/cpa.3160230304
Kreiss, H.-O., Lorenz, J.: Intial-Boundary Value Problems and the Navier-Stokes Equations. Academic Press, New York (1989)
Kreiss, H.-O., Scherer, G.: Finite element and finite difference methods for hyperbolic partial differential equations. In: Mathematical Aspects of Finite Elements in Partial Differential Equations; Proceedings of the Symposium, Madison, WI, pp. 195–212 (1974)
Kreiss, H.-O., Scherer, G.: On the existence of energy estimates for difference approximations for hyperbolic systems. Technical report, Dept. of Scientific Computing, Uppsala University (1977)
Lapusta, N., Rice, J.R., Ben-Zion, Y., Zheng, G.: Elastodynamic analysis for slow tectonic loading with spontaneous rupture episodes on faults with rate- and state-dependent friction. J. Geophys. Res. 105, 23765–23790 (2000). doi:10.1029/2000JB900250
Ma, S., Liu, P.: Modeling of the perfectly matched layer absorbing boundaries and intrinsic attenuation in explicit finite-element methods. Bull. Seismol. Soc. Am. 96(5), 1779–1794 (2006). doi:10.1785/0120050219
Madariaga, R., Olsen, K., Archuleta, R.: Modeling dynamic rupture in a 3D earthquake fault model. Bull. Seismol. Soc. Am. 88(5), 1182–1197 (1998)
Malvern, L.E.: Introduction to the Mechanics of a Continuous Medium, 1st edn. Prentice Hall, New York (1977)
Mattsson, K., Nordström, J.: Summation by parts operators for finite difference approximations of second derivatives. J. Comput. Phys. 199(2), 503–540 (2004). doi:10.1016/j.jcp.2004.03.001
Miura, S., Takahashi, N., Nakanishi, A., Ito, A., Kodaira, S., Tsuru, T., Kaneda, Y.: Seismic velocity structure off Miyagi fore-arc region, Japan Trench, using ocean bottom seismographic data. In: Frontier Res. Earth Evolut., vol. 1, pp. 337–340 (2001)
Miura, S., Takahashi, N., Nakanishi, A., Tsuru, T., Kodaira, S., Kaneda, Y.: Structural characteristics off Miyagi forearc region, the Japan Trench seismogenic zone, deduced from a wide-angle reflection and refraction study. Tectonophysics 407(3–4), 165–188 (2005). doi:10.1016/j.tecto.2005.08.001
Miyatake, T.: Numerical simulations of earthquake source process by a three-dimensional crack model. Part I. Rupture process. J. Phys. Earth 28(6), 565–598 (1980)
Moczo, P., Kristek, J., Gallis, M., Pazak, P., Balazovjecha, M.: The finite-difference and finite-element modeling of seismic wave propagation and earthquake motion. Acta Phys. Slovaca 57(2), 177–406 (2007)
Nilsson, S., Petersson, N.A., Sjogreen, B., Kreiss, H.-O.: Stable difference approximations for the elastic wave equation in second order formulation. SIAM J. Numer. Anal. 45(5), 1902–1936 (2007). doi:10.1137/060663520
Noda, H., Dunham, E.M., Rice, J.R.: Earthquake ruptures with thermal weakening and the operation of major faults at low overall stress levels. J. Geophys. Res. 114, B07302 (2009). doi:10.1029/2008JB006143
Nordström, J.: Conservative finite difference formulations, variable coefficients, energy estimates and artificial dissipation. J. Sci. Comput. 29(3), 375–404 (2006). doi:10.1007/s10915-005-9013-4
Nordström, J., Carpenter, M.H.: High-order finite difference methods, multidimensional linear problems, and curvilinear coordinates. J. Comput. Phys. 173(1), 149–174 (2001). doi:10.1006/jcph.2001.6864
Oglesby, D.D., Archuleta, R.J., Nielsen, S.B.: Earthquakes on dipping faults: the effects of broken symmetry. Science 280(5366), 1055–1059 (1998). doi:10.1126/science.280.5366.1055
Olsson, P.: Summation by parts, projections, and stability. II. Math. Comput. 64(212), 1473–1493 (1995)
Pelties, C., de la Puente, J., Ampuero, J.-P., Brietzke, G.B., Käser, M.: Three-dimensional dynamic rupture simulation with a high-order discontinuous Galerkin method on unstructured tetrahedral meshes. J. Geophys. Res. Solid Earth 117, B02309 (2012). doi:10.1029/2011JB008857
Perrin, G., Rice, J.R., Zheng, G.: Self-healing slip pulse on a frictional surface. J. Mech. Phys. Solids 43(9), 1461–1495 (1995). doi:10.1016/0022-5096(95)00036-I
Rice, J.R.: Constitutive relations for fault slip and earthquake instabilities. Pure Appl. Geophys. 121(3), 443–475 (1983). doi:10.1007/BF02590151
Rice, J.R., Ruina, A.L.: Stability of steady frictional slipping. J. Appl. Mech. 50(2), 343–349 (1983). doi:10.1115/1.3167042
Rice, J.R., Lapusta, N., Ranjith, K.: Rate and state dependent friction and the stability of sliding between elastically deformable solids. J. Mech. Phys. Solids 49(9), 1865–1898 (2001). doi:10.1016/S0022-5096(01)00042-4
Roache, P.J.: Verification and Validation in Computational Science and Engineering. Hermosa Publishers, Albuquerque (1998)
Rojas, O., Dunham, E.M., Day, S.M., Dalguer, L.A., Castillo, J.E.: Finite difference modelling of rupture propagation with strong velocity-weakening friction. Geophys. J. Int. 179, 1831–1858 (2009). doi:10.1111/j.1365-246X.2009.04387.x
Sato, M., Ishikawa, T., Ujihara, N., Yoshida, S., Fujita, M., Mochizuki, M., Asada, A.: Displacement above the hypocenter of the 2011 Tohoku-Oki earthquake. Science 332(6036) (2011). doi:10.1126/science.1207401
Slaughter, W.S.: The Linearized Theory of Elasticity. Birkhäuser, Boston (2002)
Strand, B.: Summation by parts for finite difference approximations for d/dx. J. Comput. Phys. 110(1), 47–67 (1994). doi:10.1006/jcph.1994.1005
Svärd, M., Nordström, J.: On the order of accuracy for difference approximations of initial-boundary value problems. J. Comput. Phys. 218(1), 333–352 (2007). doi:10.1016/j.jcp.2006.02.014
Tessmer, E., Kosloff, D., Behle, A.: Elastic wave propagation simulation in the presence of surface topography. Geophys. J. Int. 108(2), 621–632 (1992). doi:10.1111/j.1365-246X.1992.tb04641.x
Zhang, H., Chen, X.: Dynamic rupture process of the 1999 Chi-Chi, Taiwan, earthquake. Earth Sci. 22(1), 3–12 (2009). doi:10.1007/s11589-009-0003-8
Acknowledgements
J.E.K. and E.M.D. were supported by National Science Foundation (NSF) award EAR-0910574 and the Southern California Earthquake Center (SCEC), as funded by NSF Cooperative Agreement EAR-0529922 and US Geological Survey Cooperative Agreement 07HQAG0008 (SCEC contribution number 1424). J.E.K. was also supported by NSF Fellowship for Transformative Computational Science using CyberInfrastructure OCI-1122734. The computations in this paper were conducted at the Stanford Center for Computational Earth and Environmental Science. Finally, we would like to thank the two anonymous reviewers of the manuscript for their suggestions and comments.
Author information
Authors and Affiliations
Corresponding author
Appendix: Equivalence of Friction Law in Physical and Characteristic Variables
Appendix: Equivalence of Friction Law in Physical and Characteristic Variables
In this appendix we show that if ∂f/∂V≥0 then friction law f(V,ψ) is expressible in characteristic form. Assuming that the interface is between blocks (a) and (b), the normal stress and fault normal velocity can be written using the characteristic interface variables (30):
Continuity of normal stress (36) and fault normal velocity (38) implies that these can be written as
All that remains is to show that (40) can also be written in characteristic form (35). We can write the shear stress and slip velocity using the characteristic variables (31):
Force balance (36) and the nonlinear friction law (40) then can be written as the nonlinear system
where \(V_{m} = -v_{m}^{(a)} - v_{m}^{(b)}\) and \(V_{z} = -v_{z}^{(a)} + v_{z}^{(b)}\); see (39). The Jacobian of (121) with respect to the variables \(\mathcal{W}^{-(a)}_{m}\), \(\mathcal{W}^{-(a)}_{z}\), \(\mathcal{W}^{-(b)}_{m}\), and \(\mathcal{W}^{-(b)}_{z}\), is
where 0 2 is the 2×2 zero matrix and
with f=f(V,ψ). The determinant of J is
If ∂f/∂V≥0 then J≠0 and it follows by the implicit function theorem that friction law f is expressible in characteristic form.
Rights and permissions
About this article
Cite this article
Kozdon, J.E., Dunham, E.M. & Nordström, J. Simulation of Dynamic Earthquake Ruptures in Complex Geometries Using High-Order Finite Difference Methods. J Sci Comput 55, 92–124 (2013). https://doi.org/10.1007/s10915-012-9624-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-012-9624-5