Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Advection-Robust Hybrid High-Order Method for the Oseen Problem

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this work, we study advection-robust Hybrid High-Order discretizations of the Oseen equations. For a given integer \(k\geqslant 0\), the discrete velocity unknowns are vector-valued polynomials of total degree \(\leqslant \, k\) on mesh elements and faces, while the pressure unknowns are discontinuous polynomials of total degree \(\leqslant \,k\) on the mesh. From the discrete unknowns, three relevant quantities are reconstructed inside each element: a velocity of total degree \(\leqslant \,(k+1)\), a discrete advective derivative, and a discrete divergence. These reconstructions are used to formulate the discretizations of the viscous, advective, and velocity–pressure coupling terms, respectively. Well-posedness is ensured through appropriate high-order stabilization terms. We prove energy error estimates that are advection-robust for the velocity, and show that each mesh element T of diameter \(h_T\) contributes to the discretization error with an \(\mathcal {O}(h_{T}^{k+1})\)-term in the diffusion-dominated regime, an \(\mathcal {O}(h_{T}^{k+\frac{1}{2}})\)-term in the advection-dominated regime, and scales with intermediate powers of \(h_T\) in between. Numerical results complete the exposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aghili, J., Boyaval, S., Di Pietro, D.A.: Hybridization of mixed high-order methods on general meshes and application to the Stokes equations. Comput. Methods Appl. Math. 15(2), 111–134 (2015). https://doi.org/10.1515/cmam-2015-0004

    Article  MathSciNet  MATH  Google Scholar 

  2. Ayuso de Dios, B., Lipnikov, K., Manzini, G.: The nonconforming virtual element method. ESAIM: Math. Model. Numer. Anal. 50(3), 879–904 (2016)

    Article  MathSciNet  Google Scholar 

  3. Badia, S., Codina, R., Gudi, T., Guzmán, J.: Error analysis of discontinuous Galerkin methods for the Stokes problem under minimal regularity. IMA J. Numer. Anal. 34(2), 800–819 (2014). https://doi.org/10.1093/imanum/drt022

    Article  MathSciNet  MATH  Google Scholar 

  4. Bassi, F., Botti, L., Colombo, A., Di Pietro, D.A., Tesini, P.: On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations. J. Comput. Phys. 231(1), 45–65 (2012). https://doi.org/10.1016/j.jcp.2011.08.018

    Article  MathSciNet  Google Scholar 

  5. Bassi, F., Crivellini, A., Di Pietro, D.A., Rebay, S.: An artificial compressibility flux for the discontinuous Galerkin solution of the incompressible Navier–Stokes equations. J. Comput. Phys. 218(2), 794–815 (2006). https://doi.org/10.1016/j.jcp.2006.03.006

    Article  MathSciNet  MATH  Google Scholar 

  6. Bassi, F., Crivellini, A., Di Pietro, D.A., Rebay, S.: An implicit high-order discontinuous Galerkin method for steady and unsteady incompressible flows. Comp. Fluids 36(10), 1529–1546 (2007). https://doi.org/10.1016/j.compfluid.2007.03.012

    Article  MathSciNet  MATH  Google Scholar 

  7. Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131(2), 267–279 (1997). https://doi.org/10.1006/jcph.1996.5572

    Article  MathSciNet  MATH  Google Scholar 

  8. Becker, R., Capatina, D., Joie, J.: Connections between discontinuous Galerkin and nonconforming finite element methods for the Stokes equations. Numer. Methods Partial Differ. Equ. 28(3), 1013–1041 (2012). https://doi.org/10.1002/num.20671

    Article  MathSciNet  Google Scholar 

  9. Beirao da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 199(23), 199–214 (2013)

    Article  MathSciNet  Google Scholar 

  10. Beirao da Veiga, L., Lovadina, C., Vacca, G.: Divergence free virtual elements for the Stokes problem on polygonal meshes. ESAIM: Math. Model. Numer. Anal. (M2AN) 51(2), 509–535 (2017)

    Article  MathSciNet  Google Scholar 

  11. Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics, vol. 44. Springer, Berlin (2013)

    Book  Google Scholar 

  12. Boffi, D., Di Pietro, D.A.: Unified formulation and analysis of mixed and primal discontinuous skeletal methods on polytopal meshes. ESAIM: Math. Model. Numer. Anal. 52(1), 1–28 (2018). https://doi.org/10.1051/m2an/2017036

    Article  MathSciNet  MATH  Google Scholar 

  13. Botti, M., Di Pietro, D.A., Sochala, P.: A hybrid high-order method for nonlinear elasticity. SIAM J. Numer. Anal. 55(6), 2687–2717 (2017). https://doi.org/10.1137/16M1105943

    Article  MathSciNet  MATH  Google Scholar 

  14. Brezzi, F., Falk, R.S., Marini, L.D.: Basic principles of mixed virtual element methods. ESAIM: Math. Model. Numer. Anal. 48(4), 1227–1240 (2014). https://doi.org/10.1051/m2an/2013138

    Article  MathSciNet  MATH  Google Scholar 

  15. Brezzi, F., Marini, L.D., Süli, E.: Discontinuous Galerkin methods for first-order hyperbolic problems. Math. Models Methods Appl. Sci. 14(12), 1893–1903 (2004). https://doi.org/10.1142/S0218202504003866

    Article  MathSciNet  MATH  Google Scholar 

  16. Burman, E., Stamm, B.: Bubble stabilized discontinuous Galerkin method for Stokes’ problem. Math. Models Methods Appl. Sci. 20(2), 297–313 (2010). https://doi.org/10.1142/S0218202510004234

    Article  MathSciNet  MATH  Google Scholar 

  17. Castillo, P., Cockburn, B., Perugia, I., Schötzau, D.: An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal. 38, 1676–1706 (2000)

    Article  MathSciNet  Google Scholar 

  18. Çeşmelioğlu, A., Cockburn, B., Nguyen, N.C., Peraire, J.: Analysis of HDG methods for Oseen equations. J. Sci. Comput. 55(2), 392–431 (2013). https://doi.org/10.1007/s10915-012-9639-y

    Article  MathSciNet  MATH  Google Scholar 

  19. Çeşmelioğlu, A., Cockburn, B., Qiu, W.: Analysis of an HDG method for the incompressible Navier–Stokes equations. Math. Comput. 86, 1643–1670 (2017). https://doi.org/10.1090/mcom/3195

    Article  MATH  Google Scholar 

  20. Cockburn, B., Di Pietro, D.A., Ern, A.: Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods. ESAIM: Math. Model. Numer. Anal. 50(3), 635–650 (2016). https://doi.org/10.1051/m2an/2015051

    Article  MathSciNet  MATH  Google Scholar 

  21. Cockburn, B., Fu, G.: Superconvergence by \(M\)-decompositions. Part II: construction of two-dimensional finite elements. ESAIM: Math. Model. Numer. Anal. 51, 165–186 (2017)

    Article  MathSciNet  Google Scholar 

  22. Cockburn, B., Fu, G.: Superconvergence by \(M\)-decompositions. Part III: construction of three-dimensional finite elements. ESAIM: Math. Model. Numer. Anal. 51, 365–398 (2017)

    Article  MathSciNet  Google Scholar 

  23. Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319–1365 (2009). https://doi.org/10.1137/070706616

    Article  MathSciNet  MATH  Google Scholar 

  24. Cockburn, B., Gopalakrishnan, J., Sayas, F.J.: A projection-based error analysis of HDG methods. Math. Comput. 79, 1351–1367 (2010)

    Article  MathSciNet  Google Scholar 

  25. Cockburn, B., Hou, S., Shu, C.W.: The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case. Math. Comput. 54(190), 545–581 (1990). https://doi.org/10.2307/2008501

    Article  MathSciNet  MATH  Google Scholar 

  26. Cockburn, B., Kanschat, G., Schötzau, D.: A locally conservative LDG method for the incompressible Navier–Stokes equations. Math. Comput. 74(251), 1067–1095 (2005). https://doi.org/10.1090/S0025-5718-04-01718-1

    Article  MathSciNet  MATH  Google Scholar 

  27. Cockburn, B., Kanschat, G., Schötzau, D.: A note on discontinuous Galerkin divergence-free solutions of the Navier–Stokes equations. J. Sci. Comput. 31(1–2), 61–73 (2007). https://doi.org/10.1007/s10915-006-9107-7

    Article  MathSciNet  MATH  Google Scholar 

  28. Cockburn, B., Kanschat, G., Schötzau, D., Schwab, C.: Local discontinuous Galerkin methods for the Stokes system. SIAM J. Numer. Anal. 40(1), 319–343 (2002). https://doi.org/10.1137/S0036142900380121

    Article  MathSciNet  MATH  Google Scholar 

  29. Cockburn, B., Lin, S.Y., Shu, C.W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. III. One-dimensional systems. J. Comput. Phys. 84(1), 90–113 (1989). https://doi.org/10.1016/0021-9991(89)90183-6

    Article  MathSciNet  MATH  Google Scholar 

  30. Cockburn, B., Shu, C.W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comput. 52(186), 411–435 (1989). https://doi.org/10.2307/2008474

    Article  MathSciNet  MATH  Google Scholar 

  31. Cockburn, B., Shu, C.W.: The Runge–Kutta local projection \(P^1\)-discontinuous-Galerkin finite element method for scalar conservation laws. RAIRO Modél. Math. Anal. Numér. 25(3), 337–361 (1991). https://doi.org/10.1051/m2an/1991250303371

    Article  MathSciNet  MATH  Google Scholar 

  32. Cockburn, B., Shu, C.W.: The Runge–Kutta discontinuous Galerkin method for conservation laws. V. Multidimensional systems. J. Comput. Phys. 141(2), 199–224 (1998). https://doi.org/10.1006/jcph.1998.5892

    Article  MathSciNet  MATH  Google Scholar 

  33. Crivellini, A., D’Alessandro, V., Bassi, F.: Assessment of a high-order discontinuous Galerkin method for incompressible three-dimensional Navier–Stokes equations: benchmark results for the flow past a sphere up to \({{\rm Re}}=500\). Comput. Fluids 86, 442–458 (2013). https://doi.org/10.1016/j.compfluid.2013.07.027

    Article  MathSciNet  MATH  Google Scholar 

  34. Decuypere, R., Dibelius, G. (eds.): A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows (1997)

  35. Di Pietro, D.A.: Analysis of a discontinuous Galerkin approximation of the Stokes problem based on an artificial compressibility flux. Int. J. Numer. Methods Fluids 55(8), 793–813 (2007). https://doi.org/10.1002/fld.1495

    Article  MathSciNet  MATH  Google Scholar 

  36. Di Pietro, D.A., Droniou, J.: A hybrid high-order method for Leray–Lions elliptic equations on general meshes. Math. Comput. 86(307), 2159–2191 (2017). https://doi.org/10.1090/mcom/3180

    Article  MathSciNet  MATH  Google Scholar 

  37. Di Pietro, D.A., Droniou, J.: \(W^{s, p}\)-approximation properties of elliptic projectors on polynomial spaces, with application to the error analysis of a hybrid high-order discretisation of Leray–Lions problems. Math. Models Methods Appl. Sci. 27(5), 879–908 (2017). https://doi.org/10.1142/S0218202517500191

    Article  MathSciNet  MATH  Google Scholar 

  38. Di Pietro, D.A., Droniou, J., Ern, A.: A discontinuous-skeletal method for advection–diffusion–reaction on general meshes. SIAM J. Numer. Anal. 53(5), 2135–2157 (2015). https://doi.org/10.1137/140993971

    Article  MathSciNet  MATH  Google Scholar 

  39. Di Pietro, D.A., Droniou, J., Manzini, G.: Discontinuous skeletal gradient discretisation methods on polytopal meshes. J. Comput. Phys. 355, 397–425 (2018). https://doi.org/10.1016/j.jcp.2017.11.018

    Article  MathSciNet  MATH  Google Scholar 

  40. Di Pietro, D.A., Ern, A.: Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier–Stokes equations. Math. Comput. 79, 1303–1330 (2010). https://doi.org/10.1090/S0025-5718-10-02333-1

    Article  MathSciNet  MATH  Google Scholar 

  41. Di Pietro, D.A., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods. Mathématiques and Applications, vol. 69. Springer, Berlin (2012)

    MATH  Google Scholar 

  42. Di Pietro, D.A., Ern, A.: A hybrid high-order locking-free method for linear elasticity on general meshes. Comput. Methods Appl. Mech. Eng. 283, 1–21 (2015). https://doi.org/10.1016/j.cma.2014.09.009

    Article  MathSciNet  MATH  Google Scholar 

  43. Di Pietro, D.A., Ern, A., Guermond, J.L.: Discontinuous Galerkin methods for anisotropic semi-definite diffusion with advection. SIAM J. Numer. Anal. 46(2), 805–831 (2008). https://doi.org/10.1137/060676106

    Article  MathSciNet  MATH  Google Scholar 

  44. Di Pietro, D.A., Ern, A., Lemaire, S.: An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators. Comput. Methods Appl. Math. 14(4), 461–472 (2014). https://doi.org/10.1515/cmam-2014-0018

    Article  MathSciNet  MATH  Google Scholar 

  45. Di Pietro, D.A., Ern, A., Linke, A., Schieweck, F.: A discontinuous skeletal method for the viscosity-dependent Stokes problem. Comput. Methods Appl. Mech. Eng. 306, 175–195 (2016). https://doi.org/10.1016/j.cma.2016.03.033

    Article  MathSciNet  Google Scholar 

  46. Di Pietro, D.A., Krell, S.: A hybrid high-order method for the steady incompressible Navier–Stokes problem. J. Sci. Comput. 74(3), 1677–1705 (2018). https://doi.org/10.1007/s10915-017-0512-x

    Article  MathSciNet  MATH  Google Scholar 

  47. Di Pietro, D.A., Lemaire, S.: An extension of the Crouzeix–Raviart space to general meshes with application to quasi-incompressible linear elasticity and Stokes flow. Math. Comput. 84(291), 1–31 (2015). https://doi.org/10.1090/S0025-5718-2014-02861-5

    Article  MathSciNet  MATH  Google Scholar 

  48. Di Pietro, D.A., Tittarelli, R.: Lectures from the fall 2016 thematic quarter at Institut Henri Poincaré, chap. An Introduction to Hybrid High-Order methods. SEMA-SIMAI. Springer (2017). arXiv:1703.05136 (to appear)

  49. Droniou, J., Eymard, R., Gallouët, T., Guichard, C., Herbin, R.: The gradient discretisation method: a framework for the discretisation and numerical analysis of linear and nonlinear elliptic and parabolic problems. Maths and Applications. Springer (2017). https://hal.archives-ouvertes.fr/hal-01382358 (to appear)

  50. Ern, A., Guermond, J.L.: Theory and Practice of Finite Elements, Applied Mathematical Sciences, vol. 159. Springer, New York (2004)

    Book  Google Scholar 

  51. Giorgiani, G., Fernández-Méndez, S., Huerta, A.: Hybridizable discontinuous Galerkin with degree adaptivity for the incompressible Navier–Stokes equations. Comput. Fluids 98, 196–208 (2014)

    Article  MathSciNet  Google Scholar 

  52. Girault, V., Rivière, B., Wheeler, M.F.: A discontinuous Galerkin method with nonoverlapping domain decomposition for the Stokes and Navier–Stokes problems. Math. Comput. 74(249), 53–84 (2005). https://doi.org/10.1090/S0025-5718-04-01652-7

    Article  MathSciNet  MATH  Google Scholar 

  53. Guennebaud, G., Jacob, B., et al.: Eigen v3. http://eigen.tuxfamily.org (2010)

  54. Hansbo, P., Larson, M.G.: Piecewise divergence-free discontinuous Galerkin methods for Stokes flow. Commun. Numer. Methods Eng. 24(5), 355–366 (2008). https://doi.org/10.1002/cnm.975

    Article  MathSciNet  MATH  Google Scholar 

  55. Herbin, R., Hubert, F.: Benchmark on discretization schemes for anisotropic diffusion problems on general grids. In: Eymard, R., Hérard, J.M. (eds.) Finite Volumes for Complex Applications, vol. V, pp. 659–692. Wiley, New York (2008)

    MATH  Google Scholar 

  56. Karakashian, O., Katsaounis, T.: A discontinuous Galerkin method for the incompressible Navier–Stokes equations. In: Discontinuous Galerkin Methods (Newport, RI, 1999). Lecture Notes in Computational Science and Engineering, vol. 11, pp. 157–166. Springer, Berlin (2000). https://doi.org/10.1007/978-3-642-59721-3_11

    Google Scholar 

  57. Kovasznay, L.I.G.: Laminar flow behind a two-dimensional grid. Math. Proc. Camb. Philos. Soc. 44(1), 58–62 (1948). https://doi.org/10.1017/S0305004100023999

    Article  MathSciNet  MATH  Google Scholar 

  58. Mozolevski, I., Süli, E., Bösing, P.R.: Discontinuous Galerkin finite element approximation of the two-dimensional Navier–Stokes equations in stream-function formulation. Commun. Numer. Methods Eng. 23(6), 447–459 (2007). https://doi.org/10.1002/cnm.944

    Article  MathSciNet  MATH  Google Scholar 

  59. Nguyen, N., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier–Stokes equations. J. Comput. Phys. 230, 1147–1170 (2011)

    Article  MathSciNet  Google Scholar 

  60. Qiu, W., Shi, K.: A superconvergent HDG method for the incompressible Navier–Stokes equations on general polyhedral meshes. IMA J. Numer. Anal. 36(4), 1943–1967 (2016)

    Article  MathSciNet  Google Scholar 

  61. Rivière, B., Sardar, S.: Penalty-free discontinuous Galerkin methods for incompressible Navier–Stokes equations. Math. Models Methods Appl. Sci. 24(6), 1217–1236 (2014). https://doi.org/10.1142/S0218202513500826

    Article  MathSciNet  MATH  Google Scholar 

  62. Tavelli, M., Dumbser, M.: A staggered semi-implicit discontinuous Galerkin method for the two dimensional incompressible Navier–Stokes equations. Appl. Math. Comput. 248, 70–92 (2014). https://doi.org/10.1016/j.amc.2014.09.089

    Article  MathSciNet  MATH  Google Scholar 

  63. Toselli, A.: \(hp\) discontinuous Galerkin approximations for the Stokes problem. Math. Models Methods Appl. Sci. 12(11), 1565–1597 (2002). https://doi.org/10.1142/S0218202502002240

    Article  MathSciNet  MATH  Google Scholar 

  64. Ueckermann, M.P., Lermusiaux, P.F.J.: Hybridizable discontinuous Galerkin projection methods for Navier–Stokes and Boussinesq equations. J. Comput. Phys. 306, 390–421 (2016). https://doi.org/10.1016/j.jcp.2015.11.028

    Article  MathSciNet  MATH  Google Scholar 

  65. Wihler, T.P., Wirz, M.: Mixed \(hp\)-discontinuous Galerkin FEM for linear elasticity and Stokes flow in three dimensions. Math. Models Methods Appl. Sci. 22(8), 1250016 (2012). https://doi.org/10.1142/S0218202512500169.31

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele A. Di Pietro.

Additional information

The work of the second author was supported by Agence Nationale de la Recherche Grant HHOMM (ANR-15-CE40-0005).

Flux Formulation

Flux Formulation

In this section we reformulate the discrete problem in terms of numerical fluxes, and show that local momentum and mass balances hold. Let a mesh element \(T\in \mathcal {T}_{h}\) be fixed, and define the boundary difference space

$$\begin{aligned} \underline{\varvec{D}}_{\partial T}^k:=\left\{ \underline{\varvec{\alpha }}_{\partial T} = (\varvec{\alpha }_F)_{F\in \mathcal {F}_{T}}\; : \;\varvec{\alpha }_F\in \mathbb {P}^{k}(F)^d \text{ for } \text{ all } F\in \mathcal {F}_{T} \right\} . \end{aligned}$$

We introduce the boundary difference operator \(\underline{\varvec{\varDelta }}_{\partial T}^{k}:\underline{\varvec{U}}_{T}^{k}\rightarrow \underline{\varvec{D}}_{\partial T}^k\) such that, for all \(\underline{\varvec{v}}_{T}\in \underline{\varvec{U}}_{T}^{k}\),

$$\begin{aligned} \underline{\varvec{\varDelta }}_{\partial T}^{k}\underline{\varvec{v}}_{T}:=(\varvec{v}_{F}-\varvec{v}_{T|F})_{F\in \mathcal {F}_{T}}. \end{aligned}$$

The following result was proved in the scalar case in [48, Proposition 3].

Proposition 2

(Reformulation of the viscous stabilization bilinear form) Let an element \(T\in \mathcal {T}_{h}\) be fixed, and let \(\{\mathrm {s}_{\nu ,T}\; : \;T\in \mathcal {T}_{h}\}\) denote a family of viscous stabilization bilinear forms that satisfy assumptions (S1)–(S3) in Remark 2, and which depend on their arguments only via the difference operators defined by (12). Then, for all \(T\in \mathcal {T}_{h}\) and all \(\underline{\varvec{w}}_{T},\underline{\varvec{v}}_{T}\in \underline{\varvec{U}}_{T}^{k}\) it holds that

$$\begin{aligned} \mathrm {s}_{\nu ,T}(\underline{\varvec{w}}_{T},\underline{\varvec{v}}_{T}) = \mathrm {s}_{\nu ,T}(\underline{\varvec{w}}_{T},(\varvec{0},\underline{\varvec{\varDelta }}_{\partial T}^{k}\underline{\varvec{v}}_{T})). \end{aligned}$$
(67)

The reformulation (67) of the viscous stabilization term prompts the following definition: For all \(T\in \mathcal {T}_{h}\), the boundary residual operator \(\underline{\varvec{R}}_{\partial T}^k:\underline{\varvec{U}}_{T}^{k}\rightarrow \underline{\varvec{D}}_{\partial T}^k\) is such that, for all \(\underline{\varvec{w}}_{T}\in \underline{\varvec{U}}_{T}^{k}\),

$$\begin{aligned} \underline{\varvec{R}}_{\partial T}^k\underline{\varvec{w}}_{T}=(\varvec{R}_{TF}^k\underline{\varvec{w}}_{T})_{F\in \mathcal {F}_{T}} \end{aligned}$$

satisfies

$$\begin{aligned} -\sum _{F\in \mathcal {F}_{T}}(\varvec{R}_{TF}^k\underline{\varvec{w}}_{T},\varvec{\alpha }_F)_F = \mathrm {s}_{\nu ,T}(\underline{\varvec{w}}_{T},(\varvec{0},\underline{\varvec{\alpha }}_{\partial T}))\qquad \forall \underline{\varvec{\alpha }}_{\partial T}\in \underline{\varvec{D}}_{\partial T}^k. \end{aligned}$$
(68)

Theorem 3

(Flux formulation) Under the assumptions of Proposition 2, denote by \((\underline{\varvec{u}}_{h},p_h)\in \underline{\varvec{U}}_{h,0}^{k}\times P_{h}^{k}\) the unique solution of problem (31) and, for all \(T\in \mathcal {T}_{h}\) and all \(F\in \mathcal {F}_{T}\), define the numerical normal trace of the momentum flux as

$$\begin{aligned} \varvec{\varPhi }_{TF} :=\varvec{\varPhi }_{TF}^{\mathrm{cons}} + \varvec{\varPhi }_{TF}^{\mathrm{stab}} \end{aligned}$$

with consistency and stabilization contributions given by, respectively,

$$\begin{aligned} \varvec{\varPhi }_{TF}^{\mathrm{cons}} :=-\nu \nabla (\varvec{r}_{T}^{k+1}\underline{\varvec{u}}_{T})\varvec{n}_{TF} + \beta _{TF}\varvec{u}_{T} + p_T\varvec{n}_{TF},\qquad \varvec{\varPhi }_{TF}^{\mathrm{stab}} :=\varvec{R}_{TF}^k\underline{\varvec{u}}_{T} + \beta _{TF}^-(\varvec{u}_{T}-\varvec{u}_{F}). \end{aligned}$$

Then, for all \(T\in \mathcal {T}_{h}\) the following local balances hold: For all \(\varvec{v}_{T}\in \mathbb {P}^{k}(T)^d\) and all \(q_T\in \mathbb {P}^{k}(T)\),

$$\begin{aligned}&\nu (\nabla (\varvec{r}_{T}^{k+1}\underline{\varvec{u}}_{T}),\nabla \varvec{v}_{T})_T - (\varvec{u}_{T},(\varvec{\beta }{\cdot }\nabla )\varvec{v}_{T})_T + \mu (\varvec{u}_{T},\varvec{v}_{T})_T - (p_T,\nabla {\cdot }\varvec{v}_{T})_T\nonumber \\&\quad + \sum _{F\in \mathcal {F}_{T}}(\varvec{\varPhi }_{TF},\varvec{v}_{T})_F = (\varvec{f}_{},\varvec{v}_{T})_T,\end{aligned}$$
(69a)
$$\begin{aligned}&(D_{T}^{k}\underline{\varvec{u}}_{T},q_T)_T = 0, \end{aligned}$$
(69b)

where \(p_T:=p_{h|T}\) and, for any interface \(F\in \mathcal {F}_{h}^{\mathrm{i}}\) such that \(F\subset \partial T_1\cap \partial T_2\) for distinct mesh elements \(T_1,T_2\in \mathcal {T}_{h}\), the numerical traces of the flux are continuous in the sense that

$$\begin{aligned} \varvec{\varPhi }_{T_1F} + \varvec{\varPhi }_{T_2F}=\varvec{0}. \end{aligned}$$
(70)

Proof

(i) Local momentum balance. Let \(\underline{\varvec{v}}_{h}\in \underline{\varvec{U}}_{h,0}^{k}\) be fixed. Expanding \(\mathrm {a}_{\nu ,h}\) according to its definition (11) then using, for all \(T\in \mathcal {T}_{h}\), the definition (9) of \(\varvec{r}_{T}^{k+1}\underline{\varvec{v}}_{T}\) with \({\varvec{w}}=\varvec{r}_{T}^{k+1}\underline{\varvec{u}}_{T}\) and the definition (68) of the boundary residual operator with \(\underline{\varvec{w}}_{T}=\underline{\varvec{u}}_{T}\) and \(\underline{\varvec{\alpha }}_{\partial T}=\underline{\varvec{\varDelta }}_{\partial T}^k\underline{\varvec{v}}_{T}\), we can write

$$\begin{aligned}&\mathrm {a}_{\nu ,h}(\underline{\varvec{u}}_{h},\underline{\varvec{v}}_{h}) \\&\quad = \sum _{T\in \mathcal {T}_{h}}\left( \nu (\nabla (\varvec{r}_{T}^{k+1}\underline{\varvec{u}}_{T}),\nabla \varvec{v}_{T})_T - \sum _{F\in \mathcal {F}_{T}}(-\nu \nabla (\varvec{r}_{T}^{k+1}\underline{\varvec{u}}_{T}) + \varvec{R}_{TF}^k\underline{\varvec{u}}_{T},\varvec{v}_{F}-\varvec{v}_{T})_F \right) , \end{aligned}$$

where the viscous stabilization was reformulated using (67) then (68). In a similar way, expanding \(\mathrm {a}_{\varvec{\beta },\mu ,h}\) then, for all \(T\in \mathcal {T}_{h}\), \(\varvec{G}_{\varvec{\beta },T}^{k}\underline{\varvec{v}}_{T}\) according to their respective definitions (17) and (16), we have that

Finally, recalling the definition (23) of \(\mathrm {b}_h\) and (21) of the discrete divergence operator, we have that

$$\begin{aligned} \mathrm {b}_h(\underline{\varvec{v}}_{h},p_h) = \sum _{T\in \mathcal {T}_{h}}\left( -(p_h,\nabla {\cdot }\varvec{v}_{T})_T - \sum _{F\in \mathcal {F}_{T}}(p_T\varvec{n}_{TF},\varvec{v}_{F}-\varvec{v}_{T})_F \right) . \end{aligned}$$

Plugging the above expressions into (31a), we conclude that

$$\begin{aligned}&\sum _{T\in \mathcal {T}_{h}}\Bigg ( \nu (\nabla (\varvec{r}_{T}^{k+1}\underline{\varvec{u}}_{T}),\nabla \varvec{v}_{T})_T - (\varvec{u}_{T},(\varvec{\beta }{\cdot }\nabla )\varvec{v}_{T})_T + \mu (\varvec{u}_{T},\varvec{v}_{T})_T - (p_T,\nabla {\cdot }\varvec{v}_{T})_T \\&\qquad \quad - \sum _{F\in \mathcal {F}_{T}}(\varvec{\varPhi }_{TF},\varvec{v}_{F}-\varvec{v}_{T})_F \Bigg ) = (\varvec{f}_{},\varvec{v}_{h}). \end{aligned}$$

Selecting now \(\underline{\varvec{v}}_{h}\) such that \(\varvec{v}_{T}\) spans \(\mathbb {P}^{k}(T)^d\) for a selected mesh element \(T\in \mathcal {T}_{h}\) while \(\varvec{v}_{T'} = \varvec{0}\) for all \(T'\in \mathcal {T}_{h}\setminus \{T\}\) and \(\varvec{v}_{F} = \varvec{0}\) for all \(F\in \mathcal {F}_{h}\), we obtain the local momentum balance (69a). On the other hand, selecting \(\underline{\varvec{v}}_{h}\) such that \(\varvec{v}_{T} = \varvec{0}\) for all \(T\in \mathcal {T}_{h}\), \(\varvec{v}_{F}\) spans \(\mathbb {P}^{k}(F)^d\) for a selected interface \(F\in \mathcal {F}_{h}^{\mathrm{i}}\) such that \(F\subset \partial T_1\cap \partial T_2\) for distinct mesh elements \(T_1,T_2\in \mathcal {T}_{h}\), and \(\varvec{v}_{F'} = \varvec{0}\) for all \(F'\in \mathcal {F}_{h}\setminus \{F\}\) yields the flux continuity (70) after observing that \(\left( \varvec{\varPhi }_{T_1F}+\varvec{\varPhi }_{T_2F}\right) \in \mathbb {P}^{k}(F)^d\).

(ii) Local mass balance. We start by observing that (31b) holds in fact for all \(q_h\in \mathbb {P}^{k}(\mathcal {T}_{h})\), not necessary with zero mean value on \(\varOmega \). This can be easily checked using the definition (23) of \(\mathrm {b}_h\) and (21) of the discrete divergence to write

$$\begin{aligned} b_h(\underline{\varvec{u}}_{h},1)= & {} -\sum _{T\in \mathcal {T}_{h}}(D_{T}^{k}\underline{\varvec{u}}_{T},1)_T = -\sum _{T\in \mathcal {T}_{h}}\sum _{F\in \mathcal {F}_{T}}(\varvec{u}_{F}{\cdot }\varvec{n}_{TF},1)_F \\= & {} -\sum _{F\in \mathcal {F}_{h}}\sum _{T\in \mathcal {T}_{F}}(\varvec{u}_{F}{\cdot }\varvec{n}_{TF},1)_F = 0, \end{aligned}$$

where we have denoted by \(\mathcal {T}_{F}\) the set of elements that share F and the conclusion follows from the single-valuedness of \(\varvec{u}_{F}\) for any \(F\in \mathcal {F}_{h}^{\mathrm{i}}\) and the fact that \(\varvec{u}_{F}=\varvec{0}\) for any \(F\in \mathcal {F}_{h}^{\mathrm{b}}\). In order to prove the local mass balance (69b), it then suffices to take \(q_h\) in (31b) equal to \(q_T\) inside T and zero elsewhere. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghili, J., Di Pietro, D.A. An Advection-Robust Hybrid High-Order Method for the Oseen Problem. J Sci Comput 77, 1310–1338 (2018). https://doi.org/10.1007/s10915-018-0681-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0681-2

Keywords

Mathematics Subject Classification